International Nuclear Information System (INIS)
Wen Jihong; Yu, Dianlong; Wang Gang; Zhao Honggang; Liu Yaozong; Wen Xisen
2007-01-01
The directional propagation characteristics of elastic wave during pass bands in two-dimensional thin plate phononic crystals are analyzed by using the lumped-mass method to yield the phase constant surface. The directions and regions of wave propagation in phononic crystals for certain frequencies during pass bands are predicted with the iso-frequency contour lines of the phase constant surface, which are then validated with the harmonic responses of a finite two-dimensional thin plate phononic crystals with 16x16 unit cells. These results are useful for controlling the wave propagation in the pass bands of phononic crystals
International Nuclear Information System (INIS)
Liu, Wei; Chen, Jiwei; Liu, Yongquan; Su, Xianyue
2012-01-01
In the present Letter, the multiple scattering theory (MST) for calculating the elastic wave band structure of two-dimensional phononic crystals (PCs) is extended to include the interface/surface stress effect at the nanoscale. The interface/surface elasticity theory is employed to describe the nonclassical boundary conditions at the interface/surface and the elastic Mie scattering matrix embodying the interface/surface stress effect is derived. Using this extended MST, the authors investigate the interface/surface stress effect on the elastic wave band structure of two-dimensional PCs, which is demonstrated to be significant when the characteristic size reduces to nanometers. -- Highlights: ► Multiple scattering theory including the interface/surface stress effect. ► Interface/surface elasticity theory to describe the nonclassical boundary conditions. ► Elastic Mie scattering matrix embodying the interface/surface stress effect. ► Interface/surface stress effect would be significant at the nanoscale.
Voinovich, Peter; Merlen, Alain
2005-12-01
The effect of parametric wave phase conjugation (WPC) in application to ultrasound or acoustic waves in magnetostrictive solids has been addressed numerically by Ben Khelil et al. [J. Acoust. Soc. Am. 109, 75-83 (2001)] using 1-D unsteady formulation. Here the numerical method presented by Voinovich et al. [Shock waves 13(3), 221-230 (2003)] extends the analysis to the 2-D effects. The employed model describes universally elastic solids and liquids. A source term similar to Ben Khelil et al.'s accounts for the coupling between deformation and magnetostriction due to external periodic magnetic field. The compatibility between the isotropic constitutive law of the medium and the model of magnetostriction has been considered. Supplementary to the 1-D simulations, the present model involves longitudinal/transversal mode conversion at the sample boundaries and separate magnetic field coupling with dilatation and shear stress. The influence of those factors in a 2-D geometry on the potential output of a magneto-elastic wave phase conjugator is analyzed in this paper. The process under study includes propagation of a wave burst of a given frequency from a point source in a liquid into the active solid, amplification of the waves due to parametric resonance, and formation of time-reversed waves, their radiation into liquid, and focusing. The considered subject is particularly important for ultrasonic applications in acoustic imaging, nondestructive testing, or medical diagnostics and therapy.
Rudianto, Indra; Sudarmaji
2018-04-01
We present an implementation of the spectral-element method for simulation of two-dimensional elastic wave propagation in fully heterogeneous media. We have incorporated most of realistic geological features in the model, including surface topography, curved layer interfaces, and 2-D wave-speed heterogeneity. To accommodate such complexity, we use an unstructured quadrilateral meshing technique. Simulation was performed on a GPU cluster, which consists of 24 core processors Intel Xeon CPU and 4 NVIDIA Quadro graphics cards using CUDA and MPI implementation. We speed up the computation by a factor of about 5 compared to MPI only, and by a factor of about 40 compared to Serial implementation.
International Nuclear Information System (INIS)
Yan Zhizhong; Zhang Chuanzeng; Wang Yuesheng
2011-01-01
The band structures of in-plane elastic waves propagating in two-dimensional phononic crystals with one-dimensional random disorder and aperiodicity are analyzed in this paper. The localization of wave propagation is discussed by introducing the concept of the localization factor, which is calculated by the plane-wave-based transfer-matrix method. By treating the random disorder and aperiodicity as the deviation from the periodicity in a special way, three kinds of aperiodic phononic crystals that have normally distributed random disorder, Thue-Morse and Rudin-Shapiro sequence in one direction and translational symmetry in the other direction are considered and the band structures are characterized using localization factors. Besides, as a special case, we analyze the band gap properties of a periodic planar layered composite containing a periodic array of square inclusions. The transmission coefficients based on eigen-mode matching theory are also calculated and the results show the same behaviors as the localization factor does. In the case of random disorders, the localization degree of the normally distributed random disorder is larger than that of the uniformly distributed random disorder although the eigenstates are both localized no matter what types of random disorders, whereas, for the case of Thue-Morse and Rudin-Shapiro structures, the band structures of Thue-Morse sequence exhibit similarities with the quasi-periodic (Fibonacci) sequence not present in the results of the Rudin-Shapiro sequence.
Delrue, Steven; Aleshin, Vladislav; Truyaert, Kevin; Bou Matar, Olivier; Van Den Abeele, Koen
2018-01-01
Our study aims at the creation of a numerical toolbox that describes wave propagation in samples containing internal contacts (e.g. cracks, delaminations, debondings, imperfect intergranular joints) of known geometry with postulated contact interaction laws including friction. The code consists of two entities: the contact model and the solid mechanics module. Part I of the paper concerns an in-depth description of a constitutive model for realistic contacts or cracks that takes into account the roughness of the contact faces and the associated effects of friction and hysteresis. In the crack model, three different contact states can be recognized: contact loss, total sliding and partial slip. Normal (clapping) interactions between the crack faces are implemented using a quadratic stress-displacement relation, whereas tangential (friction) interactions were introduced using the Coulomb friction law for the total sliding case, and the Method of Memory Diagrams (MMD) in case of partial slip. In the present part of the paper, we integrate the developed crack model into finite element software in order to simulate elastic wave propagation in a solid material containing internal contacts or cracks. We therefore implemented the comprehensive crack model in MATLAB® and introduced it in the Structural Mechanics Module of COMSOL Multiphysics®. The potential of the approach for ultrasound based inspection of solids with cracks showing acoustic nonlinearity is demonstrated by means of an example of shear wave propagation in an aluminum sample containing a single crack with rough surfaces and friction. Copyright © 2017 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Lan, Haiqiang; Zhang, Zhongjie
2011-01-01
The finite-difference (FD) method is a powerful tool in seismic wave field modelling for understanding seismic wave propagation in the Earth's interior and interpreting the real seismic data. The accuracy of FD modelling partly depends on the implementation of the free-surface (i.e. traction-free) condition. In the past 40 years, at least six kinds of free-surface boundary condition approximate schemes (such as one-sided, centred finite-difference, composed, new composed, implicit and boundary-modified approximations) have been developed in FD second-order elastodynamic simulation. Herein we simulate seismic wave fields in homogeneous and lateral heterogeneous models using these free-surface boundary condition approximate schemes and evaluate their stability and applicability by comparing with corresponding analytical solutions, and then quantitatively evaluate the accuracies of different approximate schemes from the misfit of the amplitude and phase between the numerical and analytical results. Our results confirm that the composed scheme becomes unstable for the V s /V p ratio less than 0.57, and suggest that (1) the one-sided scheme is only accurate to first order and therefore introduces serious errors for the shorter wavelengths, other schemes are all of second-order precision; (2) the new composed, implicit and boundary-modified schemes are stable even when the V s /V p ratio is less than 0.2; (3) the implicit and boundary-modified schemes are able to deal with laterally varying (heterogeneous) free surface; (4) in the corresponding stability range, the one-sided scheme shows remarkable errors in both phase and amplitude compared to analytical solution (which means larger errors in travel-time and reflection strength), the other five approximate schemes show better performance in travel-time (phase) than strength (amplitude)
Two-dimensional electroacoustic waves in silicene
Zhukov, Alexander V.; Bouffanais, Roland; Konobeeva, Natalia N.; Belonenko, Mikhail B.
2018-01-01
In this letter, we investigate the propagation of two-dimensional electromagnetic waves in a piezoelectric medium built upon silicene. Ultrashort optical pulses of Gaussian form are considered to probe this medium. On the basis of Maxwell's equations supplemented with the wave equation for the medium's displacement vector, we obtain the effective governing equation for the vector potential associated with the electromagnetic field, as well as the component of the displacement vector. The dependence of the pulse shape on the bandgap in silicene and the piezoelectric coefficient of the medium was analyzed, thereby revealing a nontrivial triadic interplay between the characteristics of the pulse dynamics, the electronic properties of silicene, and the electrically induced mechanical vibrations of the medium. In particular, we uncovered the possibility for an amplification of the pulse amplitude through the tuning of the piezoelectric coefficient. This property could potentially offer promising prospects for the development of amplification devices for the optoelectronics industry.
Vectorized Matlab Codes for Linear Two-Dimensional Elasticity
Directory of Open Access Journals (Sweden)
Jonas Koko
2007-01-01
Full Text Available A vectorized Matlab implementation for the linear finite element is provided for the two-dimensional linear elasticity with mixed boundary conditions. Vectorization means that there is no loop over triangles. Numerical experiments show that our implementation is more efficient than the standard implementation with a loop over all triangles.
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Temperature maxima in stable two-dimensional shock waves
International Nuclear Information System (INIS)
Kum, O.; Hoover, W.G.; Hoover, C.G.
1997-01-01
We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith model for strong shock waves in dilute three-dimensional gases. copyright 1997 The American Physical Society
Wave dispersion relations in two-dimensional Yukawa systems
International Nuclear Information System (INIS)
Liu Yanhong; Liu Bin; Chen Yanping; Yang Size; Wang Long; Wang Xiaogang
2003-01-01
Collective modes in a two-dimensional Yukawa system are investigated by molecular dynamics simulation in a wide range of coupling parameter Γ and screening strength κ. The dispersion relations and sound speeds of the transverse and longitudinal waves obtained for hexagonal lattice are in agreement with the theoretical results. The negative dispersion of the longitudinal wave is demonstrated. Frequency gaps are found on the dispersion curves of the transverse wave due to scattering of the waves on lattice defects for proper values of Γ. The common frequency of transverse and longitudinal waves drops dramatically with the increasing screening strength κ
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
Solar Internal Rotation and Dynamo Waves: A Two Dimensional ...
Indian Academy of Sciences (India)
tribpo
Solar Internal Rotation and Dynamo Waves: A Two Dimensional. Asymptotic Solution in the Convection Zone ... We calculate here a spatial 2 D structure of the mean magnetic field, adopting real profiles of the solar internal ... of the asymptotic solution in low (middle) and high (right panel) latitudes. field is shifted towards the ...
Two dimensional kinetic analysis of electrostatic harmonic plasma waves
Energy Technology Data Exchange (ETDEWEB)
Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); SSR, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)
2016-06-15
Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.
Discrete elastic model for two-dimensional melting.
Lansac, Yves; Glaser, Matthew A; Clark, Noel A
2006-04-01
We present a network model for the study of melting and liquid structure in two dimensions, the first in which the presence and energy of topological defects (dislocations and disclinations) and of geometrical defects (elemental voids) can be independently controlled. Interparticle interaction is via harmonic springs and control is achieved by Monte Carlo moves which springs can either be orientationally "flipped" between particles to generate topological defects, or can be "popped" in force-free shape, to generate geometrical defects. With the geometrical defects suppressed the transition to the liquid phase occurs via disclination unbinding, as described by the Kosterlitz-Thouless-Halperin-Nelson-Young model and found in soft potential two-dimensional (2D) systems, such as the dipole-dipole potential [H. H. von Grünberg, Phys. Rev. Lett. 93, 255703 (2004)]. By contrast, with topological defects suppressed, a disordering transition, the Glaser-Clark condensation of geometrical defects [M. A. Glaser and N. A. Clark, Adv. Chem. Phys. 83, 543 (1993); M. A. Glaser, (Springer-Verlag, Berlin, 1990), Vol. 52, p. 141], produces a state that accurately characterizes the local liquid structure and first-order melting observed in hard-potential 2D systems, such as hard disk and the Weeks-Chandler-Andersen (WCA) potentials (M. A. Glaser and co-workers, see above). Thus both the geometrical and topological defect systems play a role in melting. The present work introduces a system in which the relative roles of topological and geometrical defects and their interactions can be explored. We perform Monte Carlo simulations of this model in the isobaric-isothermal ensemble, and present the phase diagram as well as various thermodynamic, statistical, and structural quantities as a function of the relative populations of geometrical and topological defects. The model exhibits a rich phase behavior including hexagonal and square crystals, expanded crystal, dodecagonal quasicrystal
Two-dimensional wave propagation in layered periodic media
Quezada de Luna, Manuel
2014-09-16
We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.
One and two dimensional simulations on beat wave acceleration
International Nuclear Information System (INIS)
Mori, W.; Joshi, C.; Dawson, J.M.; Forslund, D.W.; Kindel, J.M.
1984-01-01
Recently there has been considerable interest in the use of fast-large-amplitude plasma waves as the basis for a high energy particle accelerator. In these schemes, lasers are used to create the plasma wave. To date the few simulation studies on this subject have been limited to one-dimensional, short rise time simulations. Here the authors present results from simulations in which more realistic parameters are used. In addition, they present the first two dimensional simulations on this subject. One dimensional simulations on a 2 1/2-D relativistic electromagnetic particle code, in which only a few cells were used in one direction, on colinear optical mixing are presented. In these simulations the laser rise time, laser intensity, plasma density, plasma temperature and system size were varied. The simulations indicate that the theory of Rosenbluth and Liu is applicable over a wide range of parameters. In addition, simulations with a DC magnetic field are presented in order to study the ''Surfatron'' concept
Almost two-dimensional treatment of drift wave turbulence
International Nuclear Information System (INIS)
Albert, J.M.; Similon, P.L.; Sudan, R.N.
1990-01-01
The approximation of two-dimensionality is studied and extended for electrostatic drift wave turbulence in a three-dimensional, magnetized plasma. It is argued on the basis of the direct interaction approximation that in the absence of parallel viscosity, purely 2-D solutions exist for which only modes with k parallel =0 are excited, but that the 2-D spectrum is unstable to perturbations at nonzero k parallel . A 1-D equation for the parallel profile g k perpendicular (k parallel ) of the saturated spectrum at steady state is derived and solved, allowing for parallel viscosity; the spectrum has finite width in k parallel , and hence finite parallel correlation length, as a result of nonlinear coupling. The enhanced energy dissipation rate, a 3-D effect, may be incorporated in the 2-D approximation by a suitable renormalization of the linear dissipation term. An algorithm is presented that reduces the 3-D problem to coupled 1- and 2-D problems. Numerical results from a 2-D spectral direct simulation, thus modified, are compared with the results from the corresponding 3-D (unmodified) simulation for a specific model of drift wave excitation. Damping at high k parallel is included. It is verified that the 1-D solution for g k perpendicular (k parallel ) accurately describes the shape and width of the 3-D spectrum, and that the modified 2-D simulation gives a good estimate of the 3-D energy saturation level and distribution E(k perpendicular )
Spin Wave Theory in Two-Dimensional Coupled Antiferromagnets
Shimahara, Hiroshi
2018-04-01
We apply spin wave theory to two-dimensional coupled antiferromagnets. In particular, we primarily examine a system that consists of small spins coupled by a strong exchange interaction J1, large spins coupled by a weak exchange interaction J2, and an anisotropic exchange interaction J12 between the small and large spins. This system is an effective model of the organic antiferromagnet λ-(BETS)2FeCl4 in its insulating phase, in which intriguing magnetic phenomena have been observed, where the small and large spins correspond to π electrons and 3d spins, respectively. BETS stands for bis(ethylenedithio)tetraselenafulvalene. We obtain the antiferromagnetic transition temperature TN and the sublattice magnetizations m(T) and M(T) of the small and large spins, respectively, as functions of the temperature T. When T increases, m(T) is constant with a slight decrease below TN, even where M(T) decreases significantly. When J1 ≫ J12 and J2 = 0, an analytical expression for TN is derived. The estimated value of TN and the behaviors of m(T) and M(T) agree with the observations of λ-(BETS)2FeCl4.
Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals
Energy Technology Data Exchange (ETDEWEB)
Foteinopoulou, Stavroula [Iowa State Univ., Ames, IA (United States)
2003-01-01
In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates
Vorotnikov, K.; Starosvetsky, Y.
2018-01-01
The present study concerns two-dimensional nonlinear mechanisms of bidirectional and unidirectional channeling of longitudinal and shear waves emerging in the locally resonant acoustic structure. The system under consideration comprises an oscillatory chain of the axially coupled masses. Each mass of the chain is subject to the local linear potential along the lateral direction and incorporates the lightweight internal rotator. In the present work, we demonstrate the emergence of special resonant regimes of complete bi- and unidirectional transitions between the longitudinal and the shear waves of the locally resonant chain. These regimes are manifested by the two-dimensional energy channeling between the longitudinal and the shear traveling waves in the recurrent as well as the irreversible fashion. We show that the spatial control of the two dimensional energy flow between the longitudinal and the shear waves is solely governed by the motion of the internal rotators. Nonlinear analysis of the regimes of a bidirectional wave channeling unveils their global bifurcation structure and predicts the zones of their spontaneous transitions from a complete bi-directional wave channeling to the one-directional entrapment. An additional regime of a complete irreversible resonant transformation of the longitudinal wave into a shear wave is analyzed in the study. The intrinsic mechanism governing the unidirectional wave reorientation is described analytically. The results of the analysis of both mechanisms are substantiated by the numerical simulations of the full model and are found to be in a good agreement.
Solitary wave solutions of two-dimensional nonlinear Kadomtsev ...
Indian Academy of Sciences (India)
Aly R Seadawy
2017-09-13
Sep 13, 2017 ... We considered the two-dimensional DASWs in colli- sionless, unmagnetized cold plasma consisting of dust fluid, ions and electrons. The dynamics of DASWs is governed by the normalized fluid equations of nonlin- ear continuity (1), nonlinear motion of system (2) and. (3) and linear Poisson equation (4) as.
Surface acoustic waves in two dimensional phononic crystal with anisotropic inclusions
Directory of Open Access Journals (Sweden)
Ketata H.
2012-06-01
Full Text Available An analysis is given to the band structure of the two dimensional solid phononic crystal considered as a semi infinite medium. The lattice includes an array of elastic anisotropic materials with different shapes embedded in a uniform matrix. For illustration two kinds of phononic materials are assumed. A particular attention is devoted to the computational procedure which is mainly based on the plane wave expansion (PWE method. It has been adapted to Matlab environment. Numerical calculations of the dispersion curves have been achieved by introducing particular functions which transform motion equations into an Eigen value problem. Significant improvements are obtained by increasing reasonably the number of Fourier components even when a large elastic mismatch is assumed. Such approach can be generalized to different types of symmetry and permit new physical properties as piezoelectricity to be added. The actual semi infinite phononic structure with a free surface has been shown to support surface acoustic waves (SAW. The obtained dispersion curves reveal band gaps in the SAW branches. It has been found that the influence, of the filling factor and anisotropy on their band gaps, is different from that of bulk waves.
International Nuclear Information System (INIS)
Jagla, E A
2004-01-01
I study the buckling transition under compression of a two-dimensional, hexagonal, regular elastic honeycomb. Under isotropic compression, the system buckles to a configuration consisting of a unit cell containing four of the original hexagons. This buckling pattern preserves the sixfold rotational symmetry of the original lattice but is chiral, and can be described as a combination of three different elemental distortions in directions rotated by 2π/3 from each other. Non-isotropic compression may induce patterns consisting of a single elemental distortion or a superposition of two of them. The numerical results compare very well with the outcome of a Landau theory of second-order phase transitions
TWO-DIMENSIONAL MODELLING OF ACCIDENTAL FLOOD WAVES PROPAGATION
Lorand Catalin STOENESCU
2011-01-01
The study presented in this article describes a modern modeling methodology of the propagation of accidental flood waves in case a dam break; this methodology is applied in Romania for the first time for the pilot project „Breaking scenarios of Poiana Uzului dam”. The calculation programs used help us obtain a bidimensional calculation (2D) of the propagation of flood waves, taking into consideration the diminishing of the flood wave on a normal direction to the main direction; this diminishi...
Reduced-order prediction of rogue waves in two-dimensional deep-water waves
Sapsis, Themistoklis; Farazmand, Mohammad
2017-11-01
We consider the problem of large wave prediction in two-dimensional water waves. Such waves form due to the synergistic effect of dispersive mixing of smaller wave groups and the action of localized nonlinear wave interactions that leads to focusing. Instead of a direct simulation approach, we rely on the decomposition of the wave field into a discrete set of localized wave groups with optimal length scales and amplitudes. Due to the short-term character of the prediction, these wave groups do not interact and therefore their dynamics can be characterized individually. Using direct numerical simulations of the governing envelope equations we precompute the expected maximum elevation for each of those wave groups. The combination of the wave field decomposition algorithm, which provides information about the statistics of the system, and the precomputed map for the expected wave group elevation, which encodes dynamical information, allows (i) for understanding of how the probability of occurrence of rogue waves changes as the spectrum parameters vary, (ii) the computation of a critical length scale characterizing wave groups with high probability of evolving to rogue waves, and (iii) the formulation of a robust and parsimonious reduced-order prediction scheme for large waves. T.S. has been supported through the ONR Grants N00014-14-1-0520 and N00014-15-1-2381 and the AFOSR Grant FA9550-16-1-0231. M.F. has been supported through the second Grant.
International Nuclear Information System (INIS)
de Jong, G.
1975-01-01
With the aid of a two-dimensional integral equation formulation, the ground wave propagation of electromagnetic waves transmitted by a vertical electric dipole over an inhomogeneous flat earth is investigated. For the configuration in which a ground wave is propagating across an ''island'' on a flat earth, the modulus and argument of the attenuation function have been computed. The results for the two-dimensional treatment are significantly more accurate in detail than the calculations using a one-dimensional integral equation
TWO-DIMENSIONAL MODELLING OF ACCIDENTAL FLOOD WAVES PROPAGATION
Directory of Open Access Journals (Sweden)
Lorand Catalin STOENESCU
2011-05-01
Full Text Available The study presented in this article describes a modern modeling methodology of the propagation of accidental flood waves in case a dam break; this methodology is applied in Romania for the first time for the pilot project „Breaking scenarios of Poiana Uzului dam”. The calculation programs used help us obtain a bidimensional calculation (2D of the propagation of flood waves, taking into consideration the diminishing of the flood wave on a normal direction to the main direction; this diminishing of the flood wave is important in the case of sinuous courses of water or with urban settlements very close to the minor river bed. In the case of Poiana Uzului dam, 2 scenarios were simulated with the help of Ph.D. Eng. Dan Stematiu, plausible scenarios but with very little chances of actually producing. The results were presented as animations with flooded surfaces at certain time steps successively.
Two-dimensional theory of ionization waves in the contracted discharge of noble gases
International Nuclear Information System (INIS)
Golubovskij, Ju.B.; Kolobov, V.I.; Tsendin, L.D.
1985-01-01
The mechanism of instability generating ionization waves in contracted neon and argon discharges is connected to its two-dimensional structure. The two-dimensional perturbations of sausage-type may have the most increment. The numerical solution of the ambipolar diffusion equation and qualitative asymptotic solutions showed that the situation differs greatly from diffuse discharges at low pressure, where the waves of large wave number are instable. In the case discussed, there is a wave number interval of unstable waves. (D.Gy.)
Engelbrecht, Jüri
2015-01-01
This book addresses the modelling of mechanical waves by asking the right questions about them and trying to find suitable answers. The questions follow the analytical sequence from elementary understandings to complicated cases, following a step-by-step path towards increased knowledge. The focus is on waves in elastic solids, although some examples also concern non-conservative cases for the sake of completeness. Special attention is paid to the understanding of the influence of microstructure, nonlinearity and internal variables in continua. With the help of many mathematical models for describing waves, physical phenomena concerning wave dispersion, nonlinear effects, emergence of solitary waves, scales and hierarchies of waves as well as the governing physical parameters are analysed. Also, the energy balance in waves and non-conservative models with energy influx are discussed. Finally, all answers are interwoven into the canvas of complexity.
Nonlinear Wave Propagation and Solitary Wave Formation in Two-Dimensional Heterogeneous Media
Luna, Manuel
2011-05-01
Solitary wave formation is a well studied nonlinear phenomenon arising in propagation of dispersive nonlinear waves under suitable conditions. In non-homogeneous materials, dispersion may happen due to effective reflections between the material interfaces. This dispersion has been used along with nonlinearities to find solitary wave formation using the one-dimensional p-system. These solitary waves are called stegotons. The main goal in this work is to find two-dimensional stegoton formation. To do so we consider the nonlinear two-dimensional p-system with variable coefficients and solve it using finite volume methods. The second goal is to obtain effective equations that describe the macroscopic behavior of the variable coefficient system by a constant coefficient one. This is done through a homogenization process based on multiple-scale asymptotic expansions. We compare the solution of the effective equations with the finite volume results and find a good agreement. Finally, we study some stability properties of the homogenized equations and find they and one-dimensional versions of them are unstable in general.
Optical properties of two-dimensional charge density wave materials
Sayers, Charles; Karbassi, Sara; Friedemann, Sven; da Como, Enrico
Titanium diselenide (TiSe2) is a member of the layered transition metal dichalcogenide (TMD) materials. It exhibits unusual chiral charge ordering below 190 K after undergoing an initial phase transition to a commensurate (2 x 2 x 2) charge density wave (CDW) at 200 K which is enhanced further in the monolayer. Recently, the first evidence of chirality in a CDW system was discovered in this material by scanning tunneling microscopy and time-resolved reflectivity experiments, where separate left and right handed charge-ordered domains were found to exist within a single sample. We have prepared single crystals of 1T-TiSe2 using iodine vapour transport, and confirmed their quality by x-ray analysis and charge transport measurements. Using a combination of polarised optical spectroscopy techniques in the mid to far infrared (4 to 700 meV photon energy), we have measured an anisotropy relating to the CDW gap. We discuss the results on the basis of chiral domains with different handedness and the nature of the CDW transition.
Diffraction of a plane wave on two-dimensional conductive structures and a surface wave
Davidovich, Mikhael V.
2018-04-01
We consider the structures type of two-dimensional electron gas in the form of a thin conductive, in particular, graphene films described by tensor conductivity, which are isolated or located on the dielectric layers. The dispersion equation for hybrid modes, as well as scattering parameters. We show that free wave (eigenwaves) problem follow from the problem of diffraction when linking the amplitude of the current of the linear equations are unsolvable, i.e., the determinant of this system is zero. As a particular case the dispersion equation follow from the conditions of matching (with zero reflection coefficient).
Oblique propagation of nonlinear hydromagnetic waves: One- and two-dimensional behavior
International Nuclear Information System (INIS)
Malara, F.; Elaoufir, J.
1991-01-01
The one- and two-dimensional behavior of obliquely propagating hydromagnetic waves is analyzed by means of analytical theory and numerical simulations. It is shown that the nonlinear evolution of a one-dimensional MHD wave leads to the formation of a rotational discontinuity and a compressive steepened quasi-linearly polarized pulse whose structure is similar to that of a finite amplitude magnetosonic simple wave. For small propagation angles, the pulse mode (fast or slow) depends on the value of β with respect to unity while for large propagation angles the wave mode is fixed by the sign of the initial density-field correlation. The two-dimensional evolution shows that an MHD wave is unstable against a small-amplitude long-wavelength modulation in the direction transverse to the wave propagation direction. A two-dimensional magnetosonic wave solution is found, in which the density fluctuation is driven by the corresponding total pressure fluctuation, exactly as in the one-dimensional simple wave. Along with the steepening effect, the wave experiences both wave front deformation and a self-focusing effect which may eventually lead to the collapse of the wave. The results compare well with observations of MHD waves in the Earth's foreshock and at comets
Spin waves in two-dimensional ferromagnet with large easy-plane anisotropy
International Nuclear Information System (INIS)
Fridman, Yu.A.; Spirin, D.V.
2002-01-01
Spin waves in easy-plane two-dimensional ferromagnet when anisotropy is much stronger than exchange are investigated. The spectra of magnons, the spin-spin and quadrupolar correlation functions have been derived. It is shown that in such a system there exist spin waves at low temperatures. Some properties of the quadrupolar ordering in ferromagnets are discussed
Large band gaps of water waves through two-dimensional periodic topography
International Nuclear Information System (INIS)
Yang Shaohua; Wu Fugen; Zhong Huilin; Zhong Lanhua
2006-01-01
In this Letter, the band structures and band gaps of liquid surface waves propagating over two-dimensional periodic topography was investigated by plane-waves expansion method. The periodic topography drilled by square hollows with square lattice was considered. And the effects of the filling fraction and the orientation of bottom-hollows on the band gaps are investigated in detail
Topology optimization of two-dimensional elastic wave barriers
DEFF Research Database (Denmark)
Van Hoorickx, C.; Sigmund, Ole; Schevenels, M.
2016-01-01
harmonic sources at a frequency in a given range, a uniform reduction of the response over a frequency range is pursued. The minimal insertion loss over the frequency range of interest is maximized. The resulting design contains features at depth leading to a reduction of the insertion loss at the lowest...... frequencies and features close to the surface leading to a reduction at the highest frequencies. For broadband sources, the average insertion loss in a frequency range is optimized. This leads to designs that especially reduce the response at high frequencies. The designs optimized for the frequency averaged...
Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao
2015-01-01
Two-dimensional (2D) shear wave elastography presents 2D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2D shear wave elastography on conventional ultrasound scanners, however, is challenging due to the low tracking pulse-repetition-frequency (PRF) of these systems. While some clinical and research platforms support software beamforming and plane wave imaging with high PRF, the majority of...
Observation of two-dimensional Faraday waves in extremely shallow depth.
Li, Xiaochen; Yu, Zhengyue; Liao, Shijun
2015-09-01
A family of two-dimensional Faraday waves in extremely shallow depth (1 mm to 2 mm) of absolute ethanol are observed experimentally using a Hele-Shaw cell that vibrates vertically. The same phenomena are not observed by means of water, ethanol solution, and silicone oil. These Faraday waves are quite different from the traditional ones. These phenomena are helpful to deepen and enrich our understandings about Faraday waves, and besides provide a challenging problem for computational fluid dynamics.
Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole
Energy Technology Data Exchange (ETDEWEB)
Yan, Shiling; Shen, Zhonghua, E-mail: shenzh@njust.edu.cn [Faculty of Science, Nanjing University of Science and Technology, Nanjing 210094 (China); Lomonosov, Alexey M. [Faculty of Science, Nanjing University of Science and Technology, Nanjing 210094 (China); General Physics Institute, Russian Academy of Sciences, 119991 Moscow (Russian Federation)
2016-06-07
The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.
Qian, Yu; Zhang, Zhaoyang
2016-01-01
In this paper we have systematically investigated the fundamental structure and the reproduction of spiral wave in a two-dimensional excitable lattice. A periodically rotating spiral wave is introduced as the model to reproduce spiral wave artificially. Interestingly, by using the dominant phase-advanced driving analysis method, the fundamental structure containing the loop structure and the wave propagation paths has been revealed, which can expose the periodically rotating orbit of spiral tip and the charity of spiral wave clearly. Furthermore, the fundamental structure is utilized as the core for artificial spiral wave. Additionally, the appropriate parameter region, in which the artificial spiral wave can be reproduced, is studied. Finally, we discuss the robustness of artificial spiral wave to defects.
Magnetohydrodynamic waves in two-dimensional prominences embedded in coronal arcades
International Nuclear Information System (INIS)
Terradas, J.; Soler, R.; Díaz, A. J.; Oliver, R.; Ballester, J. L.
2013-01-01
Solar prominence models used so far in the analysis of MHD waves in two-dimensional structures are quite elementary. In this work, we calculate numerically magnetohydrostatic models in two-dimensional configurations under the presence of gravity. Our interest is in models that connect the magnetic field to the photosphere and include an overlying arcade. The method used here is based on a relaxation process and requires solving the time-dependent nonlinear ideal MHD equations. Once a prominence model is obtained, we investigate the properties of MHD waves superimposed on the structure. We concentrate on motions purely two-dimensional, neglecting propagation in the ignorable direction. We demonstrate how, by using different numerical tools, we can determine the period of oscillation of stable waves. We find that vertical oscillations, linked to fast MHD waves, are always stable and have periods in the 4-10 minute range. Longitudinal oscillations, related to slow magnetoacoustic-gravity waves, have longer periods in the range of 28-40 minutes. These longitudinal oscillations are strongly influenced by the gravity force and become unstable for short magnetic arcades.
Wave dispersion relation of two-dimensional plasma crystals in a magnetic field
International Nuclear Information System (INIS)
Uchida, G.; Konopka, U.; Morfill, G.
2004-01-01
The wave dispersion relation in a two-dimensional strongly coupled plasma crystal is studied by theoretical analysis and molecular dynamics simulation taking into account a constant magnetic field parallel to the crystal normal. The expression for the wave dispersion relation clearly shows that high-frequency and low-frequency branches exist as a result of the coupling of longitudinal and transverse modes due to the Lorenz force acting on the dust particles. The high-frequency and the low-frequency branches are found to belong to right-hand and left-hand polarized waves, respectively
Two dimensional fully nonlinear numerical wave tank based on the BEM
Sun, Zhe; Pang, Yongjie; Li, Hongwei
2012-12-01
The development of a two dimensional numerical wave tank (NWT) with a rocker or piston type wavemaker based on the high order boundary element method (BEM) and mixed Eulerian-Lagrangian (MEL) is examined. The cauchy principle value (CPV) integral is calculated by a special Gauss type quadrature and a change of variable. In addition the explicit truncated Taylor expansion formula is employed in the time-stepping process. A modified double nodes method is assumed to tackle the corner problem, as well as the damping zone technique is used to absorb the propagation of the free surface wave at the end of the tank. A variety of waves are generated by the NWT, for example; a monochromatic wave, solitary wave and irregular wave. The results confirm the NWT model is efficient and stable.
Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Alexandre G.M. [Departamento de Ciencias Exatas, Polo Universitario de Volta Redonda-Universidade Federal Fluminense, Av. dos Trabalhadores 420, Volta Redonda RJ, CEP 27255-125 (Brazil)], E-mail: agmschmidt@gmail.com; Azeredo, Abel D. [Departamento de Fisica-Universidade Federal de Roraima, Av. Cap. Ene Garcez 2413, Boa Vista RR, CEP 69304-000 (Brazil)], E-mail: aazeredo@gmail.com; Gusso, A. [Departamento de Ciencias Exatas e Tecnologicas-Universidade Estadual de Santa Cruz, km 16 Rodovia Ilheus-Itabuna, Ilheus BA, CEP 45662-000 (Brazil)], E-mail: agusso@uesc.br
2008-04-14
We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r){proportional_to}r{sup w} with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them.
Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass
International Nuclear Information System (INIS)
Schmidt, Alexandre G.M.; Azeredo, Abel D.; Gusso, A.
2008-01-01
We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r)∝r w with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them
Dynamics of wave packets in two-dimensional random systems with anisotropic disorder.
Samelsohn, Gregory; Gruzdev, Eugene
2008-09-01
A theoretical model is proposed to describe narrowband pulse dynamics in two-dimensional systems with arbitrary correlated disorder. In anisotropic systems with elongated cigarlike inhomogeneities, fast propagation is predicted in the direction across the structure where the wave is exponentially localized and tunneling of evanescent modes plays a dominant role in typical realizations. Along the structure, where the wave is channeled as in a waveguide, the motion of the wave energy is relatively slow. Numerical simulations performed for ultra-wide-band pulses show that even at the initial stage of wave evolution, the radiation diffuses predominantly in the direction along the major axis of the correlation ellipse. Spectral analysis of the results relates the long tail of the wave observed in the transverse direction to a number of frequency domain "lucky shots" associated with the long-living resonant modes localized inside the sample.
Controlling elastic waves with small phononic crystals containing rigid inclusions
Peng, Pai
2014-05-01
We show that a two-dimensional elastic phononic crystal comprising rigid cylinders in a solid matrix possesses a large complete band gap below a cut-off frequency. A mechanical model reveals that the band gap is induced by negative effective mass density, which is affirmed by an effective medium theory based on field averaging. We demonstrate, by two examples, that such elastic phononic crystals can be utilized to design small devices to control low-frequency elastic waves. One example is a waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic crystal loaded with solid inclusions. The effective mass density and reciprocal of the modulus of the single-layer elastic phononic crystal are simultaneously near zero. © CopyrightEPLA, 2014.
Czech Academy of Sciences Publication Activity Database
Tichý, V.; Kuběna, Aleš Antonín; Skála, L.
2012-01-01
Roč. 90, č. 6 (2012), s. 503-513 ISSN 0008-4204 Institutional support: RVO:67985556 Keywords : Schroninger equation * partial differential equation * analytic solution * anharmonic oscilator * double-well Subject RIV: BE - Theoretical Physics Impact factor: 0.902, year: 2012 http://library.utia.cas.cz/separaty/2012/E/kubena-analytic energies and wave functions of the two-dimensional schrodinger equation.pdf
Bispectral analysis of nonlinear compressional waves in a two-dimensional dusty plasma crystal
International Nuclear Information System (INIS)
Nosenko, V.; Goree, J.; Skiff, F.
2006-01-01
Bispectral analysis was used to study the nonlinear interaction of compressional waves in a two-dimensional strongly coupled dusty plasma. A monolayer of highly charged polymer microspheres was suspended in a plasma sheath. The microspheres interacted with a Yukawa potential and formed a triangular lattice. Two sinusoidal pump waves with different frequencies were excited in the lattice by pushing the particles with modulated Ar + laser beams. Coherent nonlinear interaction of the pump waves was shown to be the mechanism of generating waves at the sum, difference, and other combination frequencies. However, coherent nonlinear interaction was ruled out for certain combination frequencies, in particular, for the difference frequency below an excitation-power threshold, as predicted by theory
Terahertz Plasma Waves in Two Dimensional Quantum Electron Gas with Electron Scattering
International Nuclear Information System (INIS)
Zhang Liping
2015-01-01
We investigate the Terahertz (THz) plasma waves in a two-dimensional (2D) electron gas in a nanometer field effect transistor (FET) with quantum effects, the electron scattering, the thermal motion of electrons and electron exchange-correlation. We find that, while the electron scattering, the wave number along y direction and the electron exchange-correlation suppress the radiation power, but the thermal motion of electrons and the quantum effects can amplify the radiation power. The radiation frequency decreases with electron exchange-correlation contributions, but increases with quantum effects, the wave number along y direction and thermal motion of electrons. It is worth mentioning that the electron scattering has scarce influence on the radiation frequency. These properties could be of great help to the realization of practical THz plasma oscillations in nanometer FET. (paper)
Simulation of detonation cell kinematics using two-dimensional reactive blast waves
Thomas, G. O.; Edwards, D. H.
1983-10-01
A method of generating a cylindrical blast wave is developed which overcomes the disadvantages inherent in the converging-diverging nozzle technique used by Edwards et al., 1981. It is demonstrated than an exploding wire placed at the apex of a two-dimensional sector provides a satisfactory source of the generation of blast waves in reactive systems. The velocity profiles of the blast waves are found to simulate those in freely propagating detonations very well, and this method does not suffer from the disadvantage of having the mass flow at the throat as in the nozzle method. The density decay parameter is determined to have a constant value of 4 in the systems investigated, and it is suggested that this may be a universal value. It is proposed that suitable wedges could be used to create artificial Mach stems in the same manner as Strehlow and Barthel (1971) without the attendant disadvantages of the nozzle method.
Imaging off-plane shear waves with a two-dimensional phononic crystal lens
International Nuclear Information System (INIS)
Chiang Chenyu; Luan Pigang
2010-01-01
A two-dimensional flat phononic crystal (PC) lens for focusing off-plane shear waves is proposed. The lens consists of a triangular lattice hole-array, embedded in a solid matrix. The self-collimation effect is employed to guide the shear waves propagating through the lens along specific directions. The Dirichlet-to-Neumann maps (DtN) method is employed to calculate the band structure of the PC, which can avoid the problems of bad convergence and fake bands automatically in the void-solid PC structure. When the lens is illuminated by the off-plane shear waves emanating from a point source, a subwavelength image appears in the far-field zone. The imaging characteristics are investigated by calculating the displacement fields explicitly using the multiple scattering method, and the results are in good agreement with the ray-trace predictions. Our results may provide insights for designing new phononic devices.
International Nuclear Information System (INIS)
Li Jing; Liu Zhengyou; Qiu Chunyin
2008-01-01
By using of the multiple scattering methods, we study the negative refraction imaging effect of solid acoustic waves by two-dimensional three-component phononic crystals composed of coated solid inclusions placed in solid matrix. We show that localized resonance mechanism brings on a group of flat single-mode bands in low-frequency region, which provides two equivalent frequency surfaces (EFS) close to circular. The two constant frequency surfaces correspond to two Bloch modes, a right-handed and a left-handed, whose leading mode are respectively transverse (T) and longitudinal (L) modes. The negative refraction behaviors of the two kinds of modes have been demonstrated by simulation of a Gaussian beam through a finite system. High-quality far-field imaging by a planar lens for transverse or longitudinal waves has been realized separately. This three-component phononic crystal may thus serve as a mode selector in negative refraction imaging of solid acoustic waves
Hybrid surface waves in two-dimensional Rashba-Dresselhaus materials
Yudin, Dmitry; Gulevich, Dmitry R.; Shelykh, Ivan A.
2017-01-01
We address the electromagnetic properties of two-dimensional electron gas confined by a dielectric environment in the presence of both Rashba and Dresselhaus spin-orbit interactions. It is demonstrated that off-diagonal components of the conductivity tensor resulting from a delicate interplay between Rashba and Dresselhaus couplings lead to the hybridization of transverse electric and transverse magnetic surface electromagnetic modes localized at the interface. We show that the characteristics of these hybrid surface waves can be controlled by additional intense external off-resonant coherent pumping.
Dispersion and damping of two-dimensional dust acoustic waves: theory and simulation
International Nuclear Information System (INIS)
Upadhyaya, Nitin; Miskovic, Z L; Hou, L-J
2010-01-01
A two-dimensional generalized hydrodynamics (GH) model is developed to study the full spectrum of both longitudinal and transverse dust acoustic waves (DAW) in strongly coupled complex (dusty) plasmas, with memory-function-formalism being implemented to enforce high-frequency sum rules. Results are compared with earlier theories (such as quasi-localized charge approximation and its extended version) and with a self-consistent Brownian dynamics simulation. It is found that the GH approach provides a good account, not only of dispersion relations, but also of damping rates of the DAW modes in a wide range of coupling strengths, an issue hitherto not fully addressed for dusty plasmas.
Directory of Open Access Journals (Sweden)
Mihai-Victor PRICOP
2010-09-01
Full Text Available The present paper introduces a numerical approach of static linear elasticity equations for anisotropic materials. The domain and boundary conditions are simple, to enhance an easy implementation of the finite difference scheme. SOR and gradient are used to solve the resulting linear system. The simplicity of the geometry is also useful for MPI parallelization of the code.
International Nuclear Information System (INIS)
Lidorikis, E.; Sigalas, M. M.; Economou, E. N.; Soukoulis, C. M.
2000-01-01
By using two ab initio numerical methods, we study the effects that disorder has on the spectral gaps and on wave localization in two-dimensional photonic-band-gap materials. We find that there are basically two different responses depending on the lattice realization (solid dielectric cylinders in air or vice versa), the wave polarization, and the particular form under which disorder is introduced. Two different pictures for the photonic states are employed, the ''nearly free'' photon and the ''strongly localized'' photon. These originate from the two different mechanisms responsible for the formation of the spectral gaps, i.e., multiple scattering and single scatterer resonances, and they qualitatively explain our results. (c) 2000 The American Physical Society
Two-dimensional full-wave code for reflectometry simulations in TJ-II
International Nuclear Information System (INIS)
Blanco, E.; Heuraux, S.; Estrada, T.; Sanchez, J.; Cupido, L.
2004-01-01
A two-dimensional full-wave code in the extraordinary mode has been developed to simulate reflectometry in TJ-II. The code allows us to study the measurement capabilities of the future correlation reflectometer that is being installed in TJ-II. The code uses the finite-difference-time-domain technique to solve Maxwell's equations in the presence of density fluctuations. Boundary conditions are implemented by a perfectly matched layer to simulate free propagation. To assure the stability of the code, the current equations are solved by a fourth-order Runge-Kutta method. Density fluctuation parameters such as fluctuation level, wave numbers, and correlation lengths are extrapolated from those measured at the plasma edge using Langmuir probes. In addition, realistic plasma shape, density profile, magnetic configuration, and experimental setup of TJ-II are included to determine the plasma regimes in which accurate information may be obtained
Tracer particles in two-dimensional elastic networks diffuse logarithmically slow
International Nuclear Information System (INIS)
Lizana, Ludvig; Ambjörnsson, Tobias; Lomholt, Michael A
2017-01-01
Several experiments on tagged molecules or particles in living systems suggest that they move anomalously slow—their mean squared displacement (MSD) increase slower than linearly with time. Leading models aimed at understanding these experiments predict that the MSD grows as a power law with a growth exponent that is smaller than unity. However, in some experiments the growth is so slow (fitted exponent ∼0.1–0.2) that they hint towards other mechanisms at play. In this paper, we theoretically demonstrate how in-plane collective modes excited by thermal fluctuations in a two dimensional membrane lead to logarithmic time dependence for the the tracer particle’s MSD. (paper)
Wang, Wenjun; Li, Peng; Jin, Feng
2016-09-01
A novel two-dimensional linear elastic theory of magneto-electro-elastic (MEE) plates, considering both surface and nonlocal effects, is established for the first time based on Hamilton’s principle and the Lee plate theory. The equations derived are more general, suitable for static and dynamic analyses, and can also be reduced to the piezoelectric, piezomagnetic, and elastic cases. As a specific application example, the influences of the surface and nonlocal effects, poling directions, piezoelectric phase materials, volume fraction, damping, and applied magnetic field (i.e., constant applied magnetic field and time-harmonic applied magnetic field) on the magnetoelectric (ME) coupling effects are first investigated based on the established two-dimensional plate theory. The results show that the ME coupling coefficient has an obvious size-dependent characteristic owing to the surface effects, and the surface effects increase the ME coupling effects significantly when the plate thickness decreases to its critical thickness. Below this critical thickness, the size-dependent effect is obvious and must be considered. In addition, the output power density of a magnetic energy nanoharvester is also evaluated using the two-dimensional plate theory obtained, with the results showing that a relatively larger output power density can be achieved at the nanoscale. This study provides a mathematical tool which can be used to analyze the mechanical properties of nanostructures theoretically and numerically, as well as evaluating the size effect qualitatively and quantitatively.
International Nuclear Information System (INIS)
Malescio, G.
1981-04-01
The two-dimensional Fokker-Planck equation describing the ion motion in a coherent lower hybrid wave above the stochasticity threshold is analytically solved. An expression is given for the steady state power dissipation
Parametric study of nonlinear electrostatic waves in two-dimensional quantum dusty plasmas
International Nuclear Information System (INIS)
Ali, S; Moslem, W M; Kourakis, I; Shukla, P K
2008-01-01
The nonlinear properties of two-dimensional cylindrical quantum dust-ion-acoustic (QDIA) and quantum dust-acoustic (QDA) waves are studied in a collisionless, unmagnetized and dense (quantum) dusty plasma. For this purpose, the reductive perturbation technique is employed to the quantum hydrodynamical equations and the Poisson equation, obtaining the cylindrical Kadomtsev-Petviashvili (CKP) equations. The effects of quantum diffraction, as well as quantum statistical and geometric effects on the profiles of QDIA and QDA solitary waves are examined. It is found that the amplitudes and widths of the nonplanar QDIA and QDA waves are significantly affected by the quantum electron tunneling effect. The addition of a dust component to a quantum plasma is seen to affect the propagation characteristics of localized QDIA excitations. In the case of low-frequency QDA waves, this effect is even stronger, since the actual form of the potential solitary waves, in fact, depends on the dust charge polarity (positive/negative) itself (allowing for positive/negative potential forms, respectively). The relevance of the present investigation to metallic nanostructures is highlighted
Two-dimensional flow characteristics of wave interactions with a free-rolling rectangular structure
Energy Technology Data Exchange (ETDEWEB)
Kwang Hyo Jung; Kuang-An Chang [Texas A and M University, College Station, TX (United States). Dept. of Civil Engineering; Huang, E.T. [Naval Facilities Engineering Service Center, Port Hueneme, CA (United States). Amphibious System Div.
2005-01-01
This paper presents laboratory observations of flow characteristics for regular waves passing a rectangular structure in a two-dimensional wave tank. The structure with a draft one-half of its height was hinged at the center of gravity and free to roll (one degree of freedom) by waves. Particle image velocimetry (PIV) was used to measure the velocity field in the vicinity of the structure. The mean velocity and turbulence properties were obtained by phase-averaging the PIV velocity maps from repeated test runs. Since the viscous damping (also called the eddy making damping) in a vortical flow affects the roll motion of a blunt body, the quantitative flow pattern was represented to elucidate the coupled interactions between the body motion and the waves. Additionally, the turbulence properties including the turbulence length scale and the turbulent kinetic energy budget were investigated to characterize the interactions. The results show that vortices were generated near the structure corners at locations opposing to that of the roll damping effect for waves with a period longer than the roll natural period of the structure. (Author)
Two-dimensional kinetic analysis on the ionization waves in a low current discharge
International Nuclear Information System (INIS)
Yamazaki, Tsutomu; Fujii, Masaharu; Noda, Shozou; Miura, Kousuke; Imazu, Shingo.
1982-01-01
In the research on the ionization waves produced in the positive column in a low pressure discharge, theoretical analyses have been made since long ago using mainly the fluid theory. However, the experimental properties that cannot be explained with the fluid theory have been found lately. For example, it has been shown experimentally that the product of longitudinal electric field E and the wavelength lambda of ionization waves becomes some specific values depending on the kinds of gas as one of the characteristics of the ionization waves produced in the positive column plasma in rare gas glow discharge, but these specific values of E-lambda cannot be explained with the fluid theory. In this paper, the perturbation component of electron energy distribution function accompanying ionization waves was derived from a two-dimensional Boltzmann equation which takes the radial non-uniformity into account, to consider the E-lambda values of ionization waves from the relative equation between electron density and the perturbation component of an electric field. The following results were obtained. The relative equation between electron density and the perturbation component of an electric field, which cannot be derived from the fluid theory, was able to be obtained; the values of E-lambda product agreed with the experimental results better than one-dimensional analysis; The steeper the shape of radial potential distribution, the more likely the resonance occurrence and the larger the E-lambda product; and so forth. (Wakatsuki, Y.)
Two Dimensional Finite Element Analysis for the Effect of a Pressure Wave in the Human Brain
Ponce L., Ernesto; Ponce S., Daniel
2008-11-01
Brain injuries in people of all ages is a serious, world-wide health problem, with consequences as varied as attention or memory deficits, difficulties in problem-solving, aggressive social behavior, and neuro degenerative diseases such as Alzheimer's and Parkinson's. Brain injuries can be the result of a direct impact, but also pressure waves and direct impulses. The aim of this work is to develop a predictive method to calculate the stress generated in the human brain by pressure waves such as high power sounds. The finite element method is used, combined with elastic wave theory. The predictions of the generated stress levels are compared with the resistance of the arterioles that pervade the brain. The problem was focused to the Chilean mining where there are some accidents happen by detonations and high sound level. There are not formal medical investigation, however these pressure waves could produce human brain damage.
Elastic-plastic code in the static regime for two-dimensional structures
International Nuclear Information System (INIS)
Giuliani, S.
1976-07-01
The finite-element computer code STEP-2D, which was conceived as a numerical tool for basic research in fracture mechanics presently under way in the Materials Division of JRC Ispra is described. The code employs 8-node isoparametric elements for calculating elastic-plastic stress and strain distributions in 2-D geometries. The von Mises yield criterion is used. Material strain hardening is described by means of either the isotropic or the so-called 'overlay' model. An incremental solution is employed in the plastic range. The program has been written in Fortran IV and compiled on an IBM 370-165
Two-dimensional linear and nonlinear Talbot effect from rogue waves.
Zhang, Yiqi; Belić, Milivoj R; Petrović, Milan S; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Lu, Keqing; Zhang, Yanpeng
2015-03-01
We introduce two-dimensional (2D) linear and nonlinear Talbot effects. They are produced by propagating periodic 2D diffraction patterns and can be visualized as 3D stacks of Talbot carpets. The nonlinear Talbot effect originates from 2D rogue waves and forms in a bulk 3D nonlinear medium. The recurrences of an input rogue wave are observed at the Talbot length and at the half-Talbot length, with a π phase shift; no other recurrences are observed. Differing from the nonlinear Talbot effect, the linear effect displays the usual fractional Talbot images as well. We also find that the smaller the period of incident rogue waves, the shorter the Talbot length. Increasing the beam intensity increases the Talbot length, but above a threshold this leads to a catastrophic self-focusing phenomenon which destroys the effect. We also find that the Talbot recurrence can be viewed as a self-Fourier transform of the initial periodic beam that is automatically performed during propagation. In particular, linear Talbot effect can be viewed as a fractional self-Fourier transform, whereas the nonlinear Talbot effect can be viewed as the regular self-Fourier transform. Numerical simulations demonstrate that the rogue-wave initial condition is sufficient but not necessary for the observation of the effect. It may also be observed from other periodic inputs, provided they are set on a finite background. The 2D effect may find utility in the production of 3D photonic crystals.
International Nuclear Information System (INIS)
Lan Chaohui; Hu Xiwei; Jiang Zhonghe
2008-01-01
A two-dimensional metal model is established to investigate the stealth mechanisms of radar absorbing material (RAM) and plasma when they cover the model together. Using the finite-difference time-domain (FDTD) method, the interaction of electromagnetic (EM) waves with the model can be studied. In this paper, three covering cases are considered: a. RAM or plasma covering the metal solely; b. RAM and plasma covering the metal, while plasma is placed outside; c. RAM and plasma covering the metal, while RAM is placed outside. The calculated results show that the covering order has a great influence on the absorption of EM waves. Compared to case a, case b has an advantage in the absorption of relatively high-frequency EM waves (HFWs), whereas case c has an advantage in the absorption of relatively low-frequency EM waves (LFWs). Through the optimization of the parameters of both plasma and RAM, it is hopeful to obtain a broad absorption band by RAM and plasma covering. Near-field attenuation rate and far-field radar cross section (RCS) are employed to compare the different cases. (low temperature plasma)
International Nuclear Information System (INIS)
Grekov, D.; Kasilov, S.; Kernbichler, W.
2016-01-01
A two dimensional numerical code for computation of the electromagnetic field of a fast magnetosonic wave in a tokamak at high harmonics of the ion cyclotron frequency has been developed. The code computes the finite difference solution of Maxwell equations for separate toroidal harmonics making use of the toroidal symmetry of tokamak plasmas. The proper boundary conditions are prescribed at the realistic tokamak vessel. The currents in the RF antenna are specified externally and then used in Ampere law. The main poloidal tokamak magnetic field and the ''kinetic'' part of the dielectric permeability tensor are treated iteratively. The code has been verified against known analytical solutions and first calculations of current drive in the spherical torus are presented.
Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices
International Nuclear Information System (INIS)
Luz, H. L. F. da; Gammal, A.; Abdullaev, F. Kh.; Salerno, M.; Tomio, Lauro
2010-01-01
The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.
Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices
da Luz, H. L. F.; Abdullaev, F. Kh.; Gammal, A.; Salerno, M.; Tomio, Lauro
2010-10-01
The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.
Coherent Two-Dimensional Terahertz Magnetic Resonance Spectroscopy of Collective Spin Waves.
Lu, Jian; Li, Xian; Hwang, Harold Y; Ofori-Okai, Benjamin K; Kurihara, Takayuki; Suemoto, Tohru; Nelson, Keith A
2017-05-19
We report a demonstration of two-dimensional (2D) terahertz (THz) magnetic resonance spectroscopy using the magnetic fields of two time-delayed THz pulses. We apply the methodology to directly reveal the nonlinear responses of collective spin waves (magnons) in a canted antiferromagnetic crystal. The 2D THz spectra show all of the third-order nonlinear magnon signals including magnon spin echoes, and 2-quantum signals that reveal pairwise correlations between magnons at the Brillouin zone center. We also observe second-order nonlinear magnon signals showing resonance-enhanced second-harmonic and difference-frequency generation. Numerical simulations of the spin dynamics reproduce all of the spectral features in excellent agreement with the experimental 2D THz spectra.
Gorodnichev, E E
2018-04-01
The problem of multiple scattering of polarized light in a two-dimensional medium composed of fiberlike inhomogeneities is studied. The attenuation lengths for the density matrix elements are calculated. For a highly absorbing medium it is found that, as the sample thickness increases, the intensity of waves polarized along the fibers decays faster than the other density matrix elements. With further increase in the sample thickness, the off-diagonal elements which are responsible for correlations between the cross-polarized waves disappear. In the asymptotic limit of very thick samples the scattered light proves to be polarized perpendicular to the fibers. The difference in the attenuation lengths between the density matrix elements results in a nonmonotonic depth dependence of the degree of polarization. In the opposite case of a weakly absorbing medium, the off-diagonal element of the density matrix and, correspondingly, the correlations between the cross-polarized fields are shown to decay faster than the intensity of waves polarized along and perpendicular to the fibers.
Graff, Karl F
1991-01-01
This highly useful textbook presents comprehensive intermediate-level coverage of nearly all major topics of elastic wave propagation in solids. The subjects range from the elementary theory of waves and vibrations in strings to the three-dimensional theory of waves in thick plates. The book is designed not only for a wide audience of engineering students, but also as a general reference for workers in vibrations and acoustics. Chapters 1-4 cover wave motion in the simple structural shapes, namely strings, longitudinal rod motion, beams and membranes, plates and (cylindrical) shells. Chapter
Vâgberg, Daniel; Olsson, Peter; Teitel, S.
2017-01-01
We carry out constant volume simulations of steady-state, shear-driven flow in a simple model of athermal, bidisperse, soft-core, frictionless disks in two dimensions, using a dissipation law that gives rise to Bagnoldian rheology. Focusing on the small strain rate limit, we map out the rheological behavior as a function of particle packing fraction ϕ and a parameter Q that measures the elasticity of binary particle collisions. We find a Q*(ϕ ) that marks the clear crossover from a region characteristic of strongly inelastic collisions, Q Q* , and give evidence that Q*(ϕ ) diverges as ϕ →ϕJ , the shear-driven jamming transition. We thus conclude that the jamming transition at any value of Q behaves the same as the strongly inelastic case, provided one is sufficiently close to ϕJ. We further characterize the differing nature of collisions in the strongly inelastic vs weakly inelastic regions, and recast our results into the constitutive equation form commonly used in discussions of hard granular matter.
International Nuclear Information System (INIS)
Krapchev, V.
1976-01-01
In the framework of the two-dimensional scalar quantum theory of the bag model of Chodos et al a definition of the physical field and a general scheme for constructing a physical state are given. Some of the difficulties associated with such an approach are exposed. Expressions for the physical current and the elastic form factor are given. The calculation of the latter is restricted at first to the approximation in which the mapping from a bag of changing shape to a fixed domain is realized only by a term which is a diagonal, bilinear function of the creation and annihilation operators. This is done for the case of a one-mode and an infinite-mode bag theory. By computing the form factor in an exact one-mode bag model it is shown that the logarithmic falloff of the asymptotic term is the same as the one in the approximation. On the basis of this a form for the asymptotic behavior of the form factor is suggested which may be correct for the general two-dimensional scalar bag theory
On the Dynamics of Two-Dimensional Capillary-Gravity Solitary Waves with a Linear Shear Current
Directory of Open Access Journals (Sweden)
Dali Guo
2014-01-01
Full Text Available The numerical study of the dynamics of two-dimensional capillary-gravity solitary waves on a linear shear current is presented in this paper. The numerical method is based on the time-dependent conformal mapping. The stability of different kinds of solitary waves is considered. Both depression wave and large amplitude elevation wave are found to be stable, while small amplitude elevation wave is unstable to the small perturbation, and it finally evolves to be a depression wave with tails, which is similar to the irrotational capillary-gravity waves.
Spatiotemporal chaos and two-dimensional dissipative rogue waves in Lugiato-Lefever model
Panajotov, Krassimir; Clerc, Marcel G.; Tlidi, Mustapha
2017-06-01
Driven nonlinear optical cavities can exhibit complex spatiotemporal dynamics. We consider the paradigmatic Lugiato-Lefever model describing driven nonlinear optical resonator. This model is one of the most-studied nonlinear equations in optics. It describes a large spectrum of nonlinear phenomena from bistability, to periodic patterns, localized structures, self-pulsating localized structures and to a complex spatiotemporal behavior. The model is considered also as prototype model to describe several optical nonlinear devices such as Kerr media, liquid crystals, left handed materials, nonlinear fiber cavity, and frequency comb generation. We focus our analysis on a spatiotemporal chaotic dynamics in one-dimension. We identify a route to spatiotemporal chaos through an extended quasiperiodicity. We have estimated the Kaplan-Yorke dimension that provides a measure of the strange attractor complexity. Likewise, we show that the Lugiato-Leferver equation supports rogues waves in two-dimensional settings. We characterize rogue-wave formation by computing the probability distribution of the pulse height. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.
Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals
International Nuclear Information System (INIS)
Mario Agio
2002-01-01
This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser
International Nuclear Information System (INIS)
Piraud, M; Pezzé, L; Sanchez-Palencia, L
2013-01-01
The macroscopic transport properties in a disordered potential, namely diffusion and weak/strong localization, closely depend on the microscopic and statistical properties of the disorder itself. This dependence is rich in counter-intuitive consequences. It can be particularly exploited in matter wave experiments, where the disordered potential can be tailored and controlled, and anisotropies are naturally present. In this work, we apply a perturbative microscopic transport theory and the self-consistent theory of Anderson localization to study the transport properties of ultracold atoms in anisotropic two-dimensional (2D) and three-dimensional (3D) speckle potentials. In particular, we discuss the anisotropy of single-scattering, diffusion and localization. We also calculate disorder-induced shift of the energy states and propose a method to include it, which amounts to renormalizing energies in the standard on-shell approximation. We show that the renormalization of energies strongly affects the prediction for the 3D localization threshold (mobility edge). We illustrate the theoretical findings with examples which are relevant for current matter wave experiments, where the disorder is created with laser speckle. This paper provides a guideline for future experiments aiming at the precise location of the 3D mobility edge and study of anisotropic diffusion and localization effects in 2D and 3D. (paper)
Evidence for intertwined superfluid and density wave order in two dimensional 4He
Saunders, John
2015-03-01
We report the identification of a new state of quantum matter with intertwined superfluid and density wave order in a system of two dimensional bosons subject to a triangular lattice potential. Using a torsional oscillator we have measured the response of the second atomic layer of 4He adsorbed on the surface of graphite over a wide temperature range down to 2 mK. Superfluidity is observed over a narrow range of film densities, emerging suddenly and collapsing towards a quantum critical point, near to layer completion where a Mott insulating phase is predicted to form. The unusual temperature dependence of the superfluid density in the T --> 0 limit and the absence of a clear superfluid onset temperature are explained, self-consistently, by an ansatz for the excitation spectrum, reflecting density wave order, and a quasi-condensate wavefunction breaking both gauge and translational symmetry. In collaboration with Jan Nyeki, Anastasia Phillis, Andrew Ho, Derek Lee, Piers Coleman, Jeevak Parpia, Brian Cowan. Supported by EPSRC (U.K) EP/H048375/1.
Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals
Energy Technology Data Exchange (ETDEWEB)
Agio, Mario [Iowa State Univ., Ames, IA (United States)
2002-12-31
This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.
Wave propagation in elastic solids
Achenbach, Jan
1984-01-01
The propagation of mechanical disturbances in solids is of interest in many branches of the physical scienses and engineering. This book aims to present an account of the theory of wave propagation in elastic solids. The material is arranged to present an exposition of the basic concepts of mechanical wave propagation within a one-dimensional setting and a discussion of formal aspects of elastodynamic theory in three dimensions, followed by chapters expounding on typical wave propagation phenomena, such as radiation, reflection, refraction, propagation in waveguides, and diffraction. The treat
Lee, Su Hyun; Chang, Jung Min; Kim, Won Hwa; Bae, Min Sun; Cho, Nariya; Yi, Ann; Koo, Hye Ryoung; Kim, Seung Ja; Kim, Jin You; Moon, Woo Kyung
2013-04-01
To prospectively compare the diagnostic performances of two-dimensional (2D) and three-dimensional (3D) shear-wave elastography (SWE) for differentiating benign from malignant breast masses. B-mode ultrasound and SWE were performed for 134 consecutive women with 144 breast masses before biopsy. Quantitative elasticity values (maximum and mean elasticity in the stiffest portion of mass, Emax and Emean; lesion-to-fat elasticity ratio, Erat) were measured with both 2D and 3D SWE. The area under the receiver operating characteristic curve (AUC), sensitivity and specificity of B-mode, 2D, 3D SWE and combined data of B-mode and SWE were compared. Sixty-seven of the 144 breast masses (47 %) were malignant. Overall, higher elasticity values of 3D SWE than 2D SWE were noted for both benign and malignant masses. The AUC for 2D and 3D SWE were not significantly different: Emean, 0.938 vs 0.928; Emax, 0.939 vs 0.930; Erat, 0.907 vs 0.871. Either 2D or 3D SWE significantly improved the specificity of B-mode ultrasound from 29.9 % (23 of 77) up to 71.4 % (55 of 77) and 63.6 % (49 of 77) without a significant change in sensitivity. Two-dimensional and 3D SWE performed equally in distinguishing benign from malignant masses and both techniques improved the specificity of B-mode ultrasound.
Directory of Open Access Journals (Sweden)
Mongur Hossain
2017-10-01
Full Text Available Recently, two-dimensional (2D charge density wave (CDW materials have attracted extensive interest due to potential applications as high performance functional nanomaterials. As other 2D materials, 2D CDW materials are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into layers of single unit cell thickness. Although bulk CDW materials have been studied for decades, recent developments in nanoscale characterization and device fabrication have opened up new opportunities allowing applications such as oscillators, electrodes in supercapacitors, energy storage and conversion, sensors and spinelectronic devices. In this review, we first outline the synthesis techniques of 2D CDW materials including mechanical exfoliation, liquid exfoliation, chemical vapor transport (CVT, chemical vapor deposition (CVD, molecular beam epitaxy (MBE and electrochemical exfoliation. Then, the characterization procedure of the 2D CDW materials such as temperature-dependent Raman spectroscopy, temperature-dependent resistivity, magnetic susceptibility and scanning tunneling microscopy (STM are reviewed. Finally, applications of 2D CDW materials are reviewed.
Sakaguchi, Hidetsugu; Ishibashi, Kazuya
2018-06-01
We study self-propelled particles by direct numerical simulation of the nonlinear Kramers equation for self-propelled particles. In our previous paper, we studied self-propelled particles with velocity variables in one dimension. In this paper, we consider another model in which each particle exhibits directional motion. The movement direction is expressed with a variable ϕ. We show that one-dimensional solitary wave states appear in direct numerical simulations of the nonlinear Kramers equation in one- and two-dimensional systems, which is a generalization of our previous result. Furthermore, we find two-dimensionally localized states in the case that each self-propelled particle exhibits rotational motion. The center of mass of the two-dimensionally localized state exhibits circular motion, which implies collective rotating motion. Finally, we consider a simple one-dimensional model equation to qualitatively understand the formation of the solitary wave state.
DEFF Research Database (Denmark)
Staugaard, Benjamin; Christensen, Peer Brehm; Mössner, Belinda
2016-01-01
BACKGROUND AND AIMS: Transient elastography (TE) is hampered in some patients by failures and unreliable results. We hypothesized that real time two-dimensional shear wave elastography (2D-SWE), the FibroScan XL probe, and repeated TE exams, could be used to obtain reliable liver stiffness...
Atom-field interaction in the single-quantum limit in a two dimensional travelling-wave cavity
International Nuclear Information System (INIS)
Youn, Sun Hyun; Chough, Young Tak; An, Kyung Won
2003-01-01
We analyze the interaction of an atom with two dimensional travelling-wave cavity modes in the strong coupling region, with the quantized atomic center of mass motion taken into account. Analytic and numerical calculation shows that the atom in two independent pairs of travelling wave modes can be made to interact only with a particular travelling mode by matching the initial momentum and the detuning of the cavities. We also numerically investigate the atomic momentum deflection in the cavities
International Nuclear Information System (INIS)
Zimbovskaya, Natalya A
2011-01-01
We theoretically analyze weakly attenuated electromagnetic waves in quasi-two-dimensional (Q2D) metals in high magnetic fields. Within the chosen geometry, the magnetic field is directed perpendicular to the conducting layers of a Q2D conductor. We have shown that longitudinal collective modes could propagate along the magnetic field provided that the Fermi surface is moderately corrugated. The considered wave speeds strongly depend on the magnetic field magnitude. Also, we have analyzed interactions of these quantum waves with sound waves of suitable polarization and propagation direction, and we have shown that such interaction may bring significant changes to the low temperature magnetoacoustic response of Q2D conductors.
Transient waves in visco-elastic media
Ricker, Norman
1977-01-01
Developments in Solid Earth Geophysics 10: Transient Waves in Visco-Elastic Media deals with the propagation of transient elastic disturbances in visco-elastic media. More specifically, it explores the visco-elastic behavior of a medium, whether gaseous, liquid, or solid, for very-small-amplitude disturbances. This volume provides a historical overview of the theory of the propagation of elastic waves in solid bodies, along with seismic prospecting and the nature of seismograms. It also discusses the seismic experiments, the behavior of waves propagated in accordance with the Stokes wave
Directory of Open Access Journals (Sweden)
F Bakhshi Garmi
2016-02-01
Full Text Available In this paper we studied the focusing effect of electromagnetic wave in the two-dimensional graded photonic crystal consisting of Silicon rods in the air background with gradually varying lattice constant. The results showed that graded photonic crystal can focus wide beams on a narrow area at frequencies near the lower edge of the band gap, where equal frequency contours are not concave. For calculation of photonic band structure and equal frequency contours, we have used plane wave expansion method and revised plane wave expansion method, respectively. The calculation of the electric and magnetic fields was performed by finite difference time domain method.
Marcon, J; Trottmann, M; Rübenthaler, J; D'Anastasi, M; Stief, C G; Reiser, M F; Clevert, D A
2016-01-01
Shear wave elastography (SWE) and its derivative Supersonic Shear Imaging (SSI) are newer techniques for the determination of tissue elasticity by measuring the velocity of generated shear waves (SWV), which correlates positively with tissue stiffness.The techniques are integrated into many modern ultrasound systems and have been examined in the evaluation of viscoelastic properties of different organ systems. Two-dimensional shear wave elastography (2D SWE) of the testes has been found to be a useful tool in recent studies which included the determination of standard values in healthy volunteers. Three-dimensional shear wave elastography (3D SWE) is the latest development in elastography and is made possible by generation of a multiplanar three-dimensional map via volumetric acquisition with a special ultrasound transducer. This technique allows the assessment of tissue elasticity in a three-dimensional, fully accessible organ map.The aim of this preliminary study was to both evaluate the feasibility of 3D SWE and to compare 2D and 3D SWE standard values in the testes of healthy subjects. We examined the testes of healthy male volunteers (n = 32) with a mean age of 51.06±17.75 years (range 25-77 years) by B-mode ultrasound, 2D and 3D SWE techniques in September of 2016. Volunteers with a history of testicular pathologies were excluded. For all imaging procedures the SL15-4 linear transducer (bandwidth 4-15 MHz) as well as the SLV16-4 volumetric probe (bandwidth 4-16 MHz) of the Aixplorer® ultrasound device (SuperSonic Imagine, Aix-en-Provence, France) were used. Seven regions of interest (ROI, Q-Box®) within the testes were evaluated for SWV using both procedures. SWV values were described in m/s. Results were statistically evaluated using univariateanalysis. Mean SWV values were 1.05 m/s for the 2D SWE and 1.12 m/s for the 3D SWE.Comparisons of local areas delivered no statistically significant differences (p = 0.11 to p = 0.66), except for
Energy Technology Data Exchange (ETDEWEB)
Yoon, Hyun Jin; Kim, Dong Il [Korea Maritime University, Busan (Korea, Republic of)
2004-10-15
The purpose of this simulation study is to design and fabricate an electromagnetic (EM) wave absorber in order to develop a wide-band absorber. We have proposed and modeled a bird-eye-type and cutting-cone-type EM wave absorber by using the equivalent material constants method (EMCM), and we simulated them by using a finite-difference time-domain (FDTD) method. A two or a three-dimensional simulation would be desirable to analyze the EM wave absorber characteristics and to develop new structures. The two-dimensional FDTD simulation requires less computer resources than a three-dimensional simulation to consider the structural effects of the EM wave absorbers. The numerical simulation by using the FDTD method shows propagating EM waves in various types of periodic structure EM wave absorbers. Simultaneously, a Fourier analysis is used to characterize the input pulse and the reflected EM waves for ferrite absorbers with various structures. The results have a wide-band reflection-reducing characteristic. The validity of the proposed model was confirmed by comparing the two-dimensional simulation with the experimental results. The simulations were carried out in the frequency band from 30 MHz to 10 GHz.
International Nuclear Information System (INIS)
Yoon, Hyun Jin; Kim, Dong Il
2004-01-01
The purpose of this simulation study is to design and fabricate an electromagnetic (EM) wave absorber in order to develop a wide-band absorber. We have proposed and modeled a bird-eye-type and cutting-cone-type EM wave absorber by using the equivalent material constants method (EMCM), and we simulated them by using a finite-difference time-domain (FDTD) method. A two or a three-dimensional simulation would be desirable to analyze the EM wave absorber characteristics and to develop new structures. The two-dimensional FDTD simulation requires less computer resources than a three-dimensional simulation to consider the structural effects of the EM wave absorbers. The numerical simulation by using the FDTD method shows propagating EM waves in various types of periodic structure EM wave absorbers. Simultaneously, a Fourier analysis is used to characterize the input pulse and the reflected EM waves for ferrite absorbers with various structures. The results have a wide-band reflection-reducing characteristic. The validity of the proposed model was confirmed by comparing the two-dimensional simulation with the experimental results. The simulations were carried out in the frequency band from 30 MHz to 10 GHz.
International Nuclear Information System (INIS)
Feng Zhaosheng
2003-01-01
In this paper, we study the two-dimensional Burgers-Korteweg-de Vries (2D-BKdV) equation by analysing an equivalent two-dimensional autonomous system, which indicates that under some particular conditions, the 2D-BKdV equation has a unique bounded travelling wave solution. Then by using a direct method, a travelling solitary wave solution to the 2D-BKdV equation is expressed explicitly, which appears to be more efficient than the existing methods proposed in the literature. At the end of the paper, the asymptotic behaviour of the proper solutions of the 2D-BKdV equation is established by applying the qualitative theory of differential equations
Two-dimensional atom localization via two standing-wave fields in a four-level atomic system
International Nuclear Information System (INIS)
Zhang Hongtao; Wang Hui; Wang Zhiping
2011-01-01
We propose a scheme for the two-dimensional (2D) localization of an atom in a four-level Y-type atomic system. By applying two orthogonal standing-wave fields, the atoms can be localized at some special positions, leading to the formation of sub-wavelength 2D periodic spatial distributions. The localization peak position and number as well as the conditional position probability can be controlled by the intensities and detunings of optical fields.
Instability and Death of Spiral Wave in a Two-Dimensional Array of Hindmarsh-Rose Neurons
International Nuclear Information System (INIS)
Wang Chunni; Ma Jun; Li Yanlong; Tang Jun
2010-01-01
Spiral wave could be observed in the excitable media, the neurons are often excitable within appropriate parameters. The appearance and formation of spiral wave in the cardiac tissue is linked to monomorphic ventricular tachycardia that can denervate into polymorphic tachycardia and ventricular fibrillation. The neuronal system often consists of a large number of neurons with complex connections. In this paper, we theoretically study the transition from spiral wave to spiral turbulence and homogeneous state (death of spiral wave) in two-dimensional array of the Hindmarsh-Rose neuron with completely nearest-neighbor connections. In our numerical studies, a stable rotating spiral wave is developed and selected as the initial state, then the bifurcation parameters are changed to different values to observe the transition from spiral wave to homogeneous state, breakup of spiral wave and weak change of spiral wave, respectively. A statistical factor of synchronization is defined with the mean field theory to analyze the transition from spiral wave to other spatial states, and the snapshots of the membrane potentials of all neurons and time series of mean membrane potentials of all neurons are also plotted to discuss the change of spiral wave. It is found that the sharp changing points in the curve for factor of synchronization vs. bifurcation parameter indicate sudden transition from spiral wave to other states. And the results are independent of the number of neurons we used. (interdisciplinary physics and related areas of science and technology)
Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao
2014-01-01
Two-dimensional (2D) shear wave elastography presents 2D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2D shear wave elastography on conventional ultrasound scanners, however, is challenging due to the low tracking pulse-repetition-frequency (PRF) of these systems. While some clinical and research platforms support software beamforming and plane wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2D shear wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a Time Aligned Sequential Tracking (TAST) method for shear wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high PRF shear wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The Comb-push Ultrasound Shear Elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave signal-to-noise-ratio (SNR) and facilitate robust reconstructions of 2D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner (the General Electric LOGIQ E9). A phantom study showed that the shear wave speed measurements from the LOGIQ E9 were in good agreement to the values measured from other 2D shear wave imaging technologies. An inclusion phantom study showed that the LOGIQ E9 had comparable performance to the Aixplorer (Supersonic Imagine) in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the LOGIQ E9 for in vivo 2D shear wave
Faraday wave lattice as an elastic metamaterial.
Domino, L; Tarpin, M; Patinet, S; Eddi, A
2016-05-01
Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.
International Nuclear Information System (INIS)
Kumar, D.; Barman, A.; Kłos, J. W.; Krawczyk, M.
2014-01-01
We present the observation of a complete bandgap and collective spin wave excitation in two-dimensional magnonic crystals comprised of arrays of nanoscale antidots and nanodots, respectively. Considering that the frequencies dealt with here fall in the microwave band, these findings can be used for the development of suitable magnonic metamaterials and spin wave based signal processing. We also present the application of a numerical procedure, to compute the dispersion relations of spin waves for any high symmetry direction in the first Brillouin zone. The results obtained from this procedure have been reproduced and verified by the well established plane wave method for an antidot lattice, when magnetization dynamics at antidot boundaries are pinned. The micromagnetic simulation based method can also be used to obtain iso–frequency contours of spin waves. Iso–frequency contours are analogous of the Fermi surfaces and hence, they have the potential to radicalize our understanding of spin wave dynamics. The physical origin of bands, partial and full magnonic bandgaps have been explained by plotting the spatial distribution of spin wave energy spectral density. Although, unfettered by rigid assumptions and approximations, which afflict most analytical methods used in the study of spin wave dynamics, micromagnetic simulations tend to be computationally demanding. Thus, the observation of collective spin wave excitation in the case of nanodot arrays, which can obviate the need to perform simulations, may also prove to be valuable
Liu, Tuo; Zhu, Xuefeng; Chen, Fei; Liang, Shanjun; Zhu, Jie
2018-03-01
Exploring the concept of non-Hermitian Hamiltonians respecting parity-time symmetry with classical wave systems is of great interest as it enables the experimental investigation of parity-time-symmetric systems through the quantum-classical analogue. Here, we demonstrate unidirectional wave vector manipulation in two-dimensional space, with an all passive acoustic parity-time-symmetric metamaterials crystal. The metamaterials crystal is constructed through interleaving groove- and holey-structured acoustic metamaterials to provide an intrinsic parity-time-symmetric potential that is two-dimensionally extended and curved, which allows the flexible manipulation of unpaired wave vectors. At the transition point from the unbroken to broken parity-time symmetry phase, the unidirectional sound focusing effect (along with reflectionless acoustic transparency in the opposite direction) is experimentally realized over the spectrum. This demonstration confirms the capability of passive acoustic systems to carry the experimental studies on general parity-time symmetry physics and further reveals the unique functionalities enabled by the judiciously tailored unidirectional wave vectors in space.
Two-dimensional shear wave elastography of breast lesions: Comparison of two different systems.
Ren, Wei-Wei; Li, Xiao-Long; He, Ya-Ping; Li, Dan-Dan; Wang, Dan; Zhao, Chong-Ke; Bo, Xiao-Wan; Liu, Bo-Ji; Yue, Wen-Wen; Xu, Hui-Xiong
2017-01-01
To evaluate the diagnostic performance of two different shear wave elastography (SWE) techniques in distinguishing malignant breast lesions from benign ones. From March 2016 to May 2016, a total of 153 breast lesions (mean diameter, 16.8 mm±10.5; range 4.1-90.0 mm) in 153 patients (mean age, 46.4 years±15.1; age range 20-86 years) were separately performed by two different SWE techniques (i.e. T-SWE, Aplio500, Toshiba Medical System, Tochigi, Japan; and S-SWE, the Aixplorer US system, SuperSonic Imagine, Provence, France). The maximum (Emax), mean (Emean) and standard deviation (ESD) of elasticity modulus values in T-SWE and S-SWE were analyzed. All the lesions were confirmed by ultrasound (US)-guided core needle biopsy (n = 26), surgery (n = 122), or both (n = 5), with pathological results as the gold standard. The areas under the receiver operating characteristic curves (AUROCs) were calculated. Sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV) were calculated to assess the diagnostic performance between T-SWE and S-SWE. Operator consistency was also evaluated. Among the 153 lesions, 41 (26.8%) were malignant and 112 (73.2%) were benign. Emax (T-SWE: 40.10±37.14 kPa vs. 118.78±34.41 kPa; S-SWE: 41.22±22.54 kPa vs. 134.77±60.51 kPa), Emean (T-SWE: 19.75±16.31 kPa vs. 52.93±25.75 kPa; S-SWE: 20.95±10.98 kPa vs. 55.95±22.42 kPa) and ESD (T-SWE: 9.00±8.55 kPa vs. 38.44±12.30 kPa; S-SWE: 8.17±6.14 kPa vs. 29.34±13.88 kPa) showed statistical differences in distinguishing malignant lesions from benign ones both in T-SWE and S-SWE (all p 0.05 in comparison with Emax) and Emean (AUROC = 0.930, p = 0.034 in comparison with Emax). AUROC-max (T-SWE: 0.909 vs. 0.967), AUROC-mean (T-SWE: 0.892 vs. 0.930) and AUROC-SD (T-SWE: 0.958 vs. 0.962) showed no significant difference between T-SWE and S-SWE (all p > 0.05). The intra-class correlation coefficients
Solitary waves on nonlinear elastic rods. I
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.
1984-01-01
Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq equations when transverse motion and nonlinearity in the elastic medium are taken into account. Solitary wave solutions to these equations have been found. The present paper treats the interaction betwe...... nonlinearity. The balance between dispersion and nonlinearity in the equation is investigated.......Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq equations when transverse motion and nonlinearity in the elastic medium are taken into account. Solitary wave solutions to these equations have been found. The present paper treats the interaction between...... the solitary waves numerically. It is demonstrated that the waves behave almost like solitons in agreement with the fact that the improved Boussinesq equations are nearly integrable. Thus three conservation theorems can be derived from the equations. A new subsonic quasibreather is found in the case of a cubic...
Two-Dimensional Analysis of Cable Stayed Bridge under Wave Loading
Seeram, Madhuri; Manohar, Y.
2018-06-01
In the present study finite element analysis is performed for a modified fan type cable-stayed bridge using ANSYS Mechanical. A cable stayed bridge with two towers and main deck is considered for the present study. Dynamic analysis is performed to evaluate natural frequencies. The obtained natural frequencies and mode shapes of cable stayed bridge are compared to the existing results. Further studies have been conducted for offshore area application by increasing the pylon/tower height depending upon the water depth. Natural frequencies and mode shapes are evaluated for the cable stayed bridge for offshore area application. The results indicate that the natural periods are higher than the existing results due to the effect of increase in mass of the structure and decrease in stiffness of the pylon/tower. The cable stayed bridge is analyzed under various environmental loads such as dead, live, vehicle, seismic and wave loading. Morison equation is considered to evaluate the wave force. The sum of inertia and drag force is taken as the wave force distribution along the fluid interacting height of the pylon. Airy's wave theory is used to assess water particle kinematics, for the wave periods ranging from 5 to 20 s and unit wave height. The maximum wave force among the different regular waves is considered in the wave load case. The support reactions, moments and deflections for offshore area application are highlighted. It is observed that the maximum support reactions and support moments are obtained due to wave and earthquake loading respectively. Hence, it is concluded that the wave and earthquake forces shall be given significance in the design of cable stayed bridge.
Elastic wave diffraction by infinite wedges
Energy Technology Data Exchange (ETDEWEB)
Fradkin, Larissa; Zernov, Victor [Sound Mathematics Ltd., Cambridge CB4 2AS (United Kingdom); Gautesen, Arthur [Mathematics Department, Iowa State University and Ames Laboratory (United States); Darmon, Michel, E-mail: l.fradkin@soundmathematics.com [CEA-LIST, CEA-Saclay, 91191 Gif-sur-Yvette (France)
2011-01-01
We compare two recently developed semi-analytical approaches to the classical problem of diffraction by an elastic two dimensional wedge, one based on the reciprocity principle and Fourier Transform and another, on the representations of the elastodynamic potentials in the form of Sommerfeld Integrals. At present, in their common region of validity, the approaches are complementary, one working better than the other at some isolated angles of incidence.
Energy Technology Data Exchange (ETDEWEB)
Kim, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petersson, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-25
Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examples and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.
International Nuclear Information System (INIS)
Golubovskii, Yu B; Kozakov, R V; Wilke, C; Behnke, J; Nekutchaev, V O
2004-01-01
Time and space resolved measurements of the plasma potential in axial and radial directions in S- and P-striations in neon are performed. The measurements in different radial positions were carried out with high spatial resolution by means of simultaneous displacement of electrodes relative to the stationary probe. The plasma potential was found to be a superposition of the potentials of ionization wave and plasma oscillations relative to the electrodes. A method of decomposition of the measured spatio-temporal structure of the potential in components associated with the plasma oscillations and ionization wave propagation is proposed. A biorthogonal decomposition of the spatio-temporal structure of the potential is performed. A comparison of the decomposition results obtained by the two methods is made. The experiments revealed a two-dimensional structure of the potential field in an ionization wave. Qualitative discussions of the reasons for the occurrence of this two-dimensional structure are presented based on the analysis of the kinetic equation and the equation for the potential
Interface-guided mode of Lamb waves in a two-dimensional phononic crystal plate
International Nuclear Information System (INIS)
Huang Ping-Ping; Yao Yuan-Wei; Zhang Xin; Li Jing; Hu Ai-Zhen; Wu Fu-Gen
2015-01-01
We investigate the interface-guided mode of Lamb waves in a phononic crystal heterostructures plate, which is composed of two different semi-infinite phononic crystal (PC) plates. The interface-guided modes of the Lamb wave can be obtained by the lateral lattice slipping or by the interface longitudinal gliding. Significantly, it is observed that the condition to generate the interface-guided modes of the Lamb wave is more demanding than that of the studied fluid–fluid system. The interface-guided modes are strongly affected not only by the relative movement of the two semi-infinite PCs but also by the thickness of the PC plate. (paper)
International Nuclear Information System (INIS)
Estevez, P G; Kuru, S; Negro, J; Nieto, L M
2006-01-01
The travelling wave solutions of the two-dimensional Korteweg-de Vries-Burgers and Kadomtsev-Petviashvili equations are studied from two complementary points of view. The first one is an adaptation of the factorization technique that provides particular as well as general solutions. The second one applies the Painleve analysis to both equations, throwing light on some aspects of the first method and giving an explanation to some restriction on the coefficients, as well as the relation between factorizations and integrals of motion
Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems
International Nuclear Information System (INIS)
Wang, Ken Kang-Hsin; Ye Zhen
2003-01-01
We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems
Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.
Wang, Ken Kang-Hsin; Ye, Zhen
2003-12-01
We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.
Frequency degeneracy of acoustic waves in two-dimensional phononic crystals
International Nuclear Information System (INIS)
Darinskii, A N; Le Clezio, E; Feuillard, G
2007-01-01
Degeneracies of acoustic wave spectra in 2D phononic crystals (PC) and PC slabs are studied. A PC structure is constituted of parallel steel rods immersed into water and forming the quadratic lattice. Given the projection k z of the wave vector on the direction of rods, the bulk wave spectrum of the infinite PC is a set of frequency surfaces f i (k x , k y ), i = 1,2,..., where k x,y are the components of the wave vector in the plane perpendicular to the rods. An investigation is performed of the shape of frequency surfaces in the vicinity of points (k dx , k dy ), where these surfaces fall into contact. In addition, the evolution of the degeneracy with changing rod radius and cross-section shape is examined. Degeneracy in the spectrum of leaky modes propagating along a single waveguide in a PC slab is also investigated
International Nuclear Information System (INIS)
Alinejad, H.; Robinson, P. A.; Cairns, I. H.; Skjaeraasen, O.; Sobhanian, S.
2007-01-01
Nucleating and collapsing wave packets relevant to electromagnetic strong plasma turbulence are studied theoretically in two dimensions. Model collapsing Langmuir and transverse potentials are constructed as superpositions of approximate eigenstates of a spherically symmetric density well. Electrostatic and electromagnetic potentials containing only components with azimuthal quantum numbers m=0, 1, 2 are found to give a good representation of the electric fields of nucleating collapsing wave packets in turbulence simulations. The length scales of these trapped states are related to the electron thermal speed v e and the length scale of the density well. It is shown analytically that the electromagnetic trapped states change with v e and that for v e e > or approx. 0.17c, the Langmuir and transverse modes remain coupled during collapse, with autocorrelation lengths in a constant ratio. An investigation of energy transfer to packets localized in density wells shows that the strongest power transfer to the nucleating state occurs for Langmuir waves. Energy transitions between different trapped and free states for collapsing wave packets are studied, and the transition rate from trapped Langmuir to free plane electromagnetic waves is calculated and related to the emission of electromagnetic waves at the plasma frequency
Effects of flow shear and Alfven waves on two-dimensional magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Douglas, Jamie; Kim, Eun-jin; Thyagaraja, A.
2008-01-01
The suppression of turbulent transport by large scale mean shear flows and uniform magnetic fields is investigated in two-dimensional magnetohydrodynamic turbulence driven by a small-scale forcing with finite correlation time. By numerical integration the turbulent magnetic diffusivity D T is shown to be significantly quenched, with a scaling D T ∝B -2 Ω 0 -5/4 , which is much more severe than in the case of a short or delta correlated forcing typified by white noise, studied in E. Kim and B. Dubrulle [Phys. Plasmas 8, 813 (2001)]. Here B and Ω 0 are magnetic field strength and flow shear rate, respectively. The forcing with finite correlation time also leads to much stronger suppression of momentum transport through the cancellation of the Reynolds stress by the Maxwell stress with a positive small value of turbulent viscosity, ν T >0. While fluctuating kinetic and magnetic energies are unaffected by the magnetic field just as in the case of a delta correlated forcing, they are much more severely quenched by flow shear than in that of a delta correlated forcing. Underlying physical mechanisms for the reduction of turbulent transport and turbulence level by flow shear and magnetic field are discussed
KP solitons and the Grassmannians combinatorics and geometry of two-dimensional wave patterns
Kodama, Yuji
2017-01-01
This is the first book to treat combinatorial and geometric aspects of two-dimensional solitons. Based on recent research by the author and his collaborators, the book presents new developments focused on an interplay between the theory of solitons and the combinatorics of finite-dimensional Grassmannians, in particular, the totally nonnegative (TNN) parts of the Grassmannians. The book begins with a brief introduction to the theory of the Kadomtsev–Petviashvili (KP) equation and its soliton solutions, called the KP solitons. Owing to the nonlinearity in the KP equation, the KP solitons form very complex but interesting web-like patterns in two dimensions. These patterns are referred to as soliton graphs. The main aim of the book is to investigate the detailed structure of the soliton graphs and to classify these graphs. It turns out that the problem has an intimate connection with the study of the TNN part of the Grassmannians. The book also provides an elementary introduction to the recent development of ...
Coexistence of superconductivity and density waves in quasi-two-dimensional metals
Energy Technology Data Exchange (ETDEWEB)
Ismer, Jan-Peter
2011-06-03
This dissertation deals with the high-temperature superconductivity in the hole- and electron-doped copper superconductors. In the first part, superconducting phases are investigated on a background of different types of density waves. Singlet superconductivity is studied with s- and d-wave symmetry on a background of spin, charge or D-density waves with respect to stability as well as phase structure and impulse dependence of the gap function. In the second part, the dynamic spin susceptibility for different phases is calculated and compared with experimental data extracted from results of inelastic neutron scattering experiments. The observed phases are d-wave superconductivity, D-density wave, and coexistence of the two. For d-wave superconductivity, the influence of a magnetic field parallel to the copper oxide layer and the temperature development of the susceptibility when for T >> T{sub c} a spin density wave phase is present are investigated. [German] Diese Dissertation beschaeftigt sich mit der Hochtemperatursupraleitung in den loch- und elektron-dotierten Kuprat-Supraleitern. Im ersten Teil der Arbeit werden supraleitende Phasen auf einem Hintergrund verschiedener Typen von Dichtewellen untersucht. Es wird Singlett-Supraleitung mit s- und d-Wellen-Symmetrie auf einem Hintergrund von Spin-, Ladungs- oder D-Dichtewelle hinsichtlich Stabilitaet sowie Phasenstruktur und Impulsabhaengigkeit der Gapfunktion untersucht. Im zweiten Teil wird die dynamische Spinsuszeptibilitaet fuer verschiedene Phasen berechnet und mit experimentellen Daten verglichen, die aus Ergebnissen von Inelastischen Neutronenstreuungsexperimenten extrahiert wurden. Die betrachteten Phasen sind d-Wellen-Supraleitung, D-Dichtewelle und Koexistenz der beiden. Fuer d-Wellen-Supraleitung werden der Einfluss eines Magnetfelds parallel zur Kupferoxidschicht und die Temperaturentwicklung der Suszeptibilitaet, wenn fuer T >> T{sub c} eine Spin-Dichtewelle-Phase vorliegt, untersucht.
Ahn, Young Kwan; Lee, Hyung Jin; Kim, Yoon Young
2017-08-30
Conical refraction, which is quite well-known in electromagnetic waves, has not been explored well in elastic waves due to the lack of proper natural elastic media. Here, we propose and design a unique anisotropic elastic metamaterial slab that realizes conical refraction for horizontally incident longitudinal or transverse waves; the single-mode wave is split into two oblique coupled longitudinal-shear waves. As an interesting application, we carried out an experiment of parallel translation of an incident elastic wave system through the anisotropic metamaterial slab. The parallel translation can be useful for ultrasonic non-destructive testing of a system hidden by obstacles. While the parallel translation resembles light refraction through a parallel plate without angle deviation between entry and exit beams, this wave behavior cannot be achieved without the engineered metamaterial because an elastic wave incident upon a dissimilar medium is always split at different refraction angles into two different modes, longitudinal and shear.
Two-dimensional studies of electron Bernstein Wave Emission in MAST
Shevchenko, V.F.; Bock, de M.F.M.; Freethy, S. J.; Saveliev, A. N.; Vann, R.G.L.
2011-01-01
Angular scanning of electron Bernstein wave emission (EBE) has been conducted in MAST. From EBE measurements over a range of viewing angles, the angular position and orientation of the B-X-O mode conversion (MC) window can be estimated, giving the pitch angle of the magnetic field in the MC layer.
Directory of Open Access Journals (Sweden)
Kai Tsuruta
2013-05-01
Full Text Available We prove the existence of the wave operator for the Klein-Gordon-Schrodinger system with Yukawa coupling. This non-linearity type is below Strichartz scaling, and therefore classic perturbation methods will fail in any Strichartz space. Instead, we follow the "first iteration method" to handle these critical non-linearities.
Frequency degeneracy of acoustic waves in two-dimensional phononic crystals
Energy Technology Data Exchange (ETDEWEB)
Darinskii, A N [Institute of Crystallography RAS, Leninskiy pr. 59, Moscow, 119333 (Russian Federation); Le Clezio, E [Universite Francois Rabelais de Tours, ENI Val de Loire, LUSSI, FRE CNRS 2448, rue de la Chocolaterie, BP3410, 41034 Blois (France); Feuillard, G [Universite Francois Rabelais de Tours, ENI Val de Loire, LUSSI, FRE CNRS 2448, rue de la Chocolaterie, BP3410, 41034 Blois (France)
2007-12-15
Degeneracies of acoustic wave spectra in 2D phononic crystals (PC) and PC slabs are studied. A PC structure is constituted of parallel steel rods immersed into water and forming the quadratic lattice. Given the projection k{sub z} of the wave vector on the direction of rods, the bulk wave spectrum of the infinite PC is a set of frequency surfaces f{sub i}(k{sub x}, k{sub y}), i = 1,2,..., where k{sub x,y} are the components of the wave vector in the plane perpendicular to the rods. An investigation is performed of the shape of frequency surfaces in the vicinity of points (k{sub dx}, k{sub dy}), where these surfaces fall into contact. In addition, the evolution of the degeneracy with changing rod radius and cross-section shape is examined. Degeneracy in the spectrum of leaky modes propagating along a single waveguide in a PC slab is also investigated.
Spiral waves are stable in discrete element models of two-dimensional homogeneous excitable media
Feldman, A. B.; Chernyak, Y. B.; Cohen, R. J.
1998-01-01
The spontaneous breakup of a single spiral wave of excitation into a turbulent wave pattern has been observed in both discrete element models and continuous reaction-diffusion models of spatially homogeneous 2D excitable media. These results have attracted considerable interest, since spiral breakup is thought to be an important mechanism of transition from the heart rhythm disturbance ventricular tachycardia to the fatal arrhythmia ventricular fibrillation. It is not known whether this process can occur in the absence of disease-induced spatial heterogeneity of the electrical properties of the ventricular tissue. Candidate mechanisms for spiral breakup in uniform 2D media have emerged, but the physical validity of the mechanisms and their applicability to myocardium require further scrutiny. In this letter, we examine the computer simulation results obtained in two discrete element models and show that the instability of each spiral is an artifact resulting from an unphysical dependence of wave speed on wave front curvature in the medium. We conclude that spiral breakup does not occur in these two models at the specified parameter values and that great care must be exercised in the representation of a continuous excitable medium via discrete elements.
Localization of Matter Waves in Two-Dimensional Disordered Optical Potentials
International Nuclear Information System (INIS)
Kuhn, R.C.; Miniatura, C.; Delande, D.; Sigwarth, O.; Mueller, C.A.
2005-01-01
We consider ultracold atoms in 2D disordered optical potentials and calculate microscopic quantities characterizing matter wave quantum transport in the noninteracting regime. We derive the diffusion constant as a function of all relevant microscopic parameters and show that coherent multiple scattering induces significant weak localization effects. In particular, we find that even the strong localization regime is accessible with current experimental techniques and calculate the corresponding localization length
Parallel implementation of geometrical shock dynamics for two dimensional converging shock waves
Qiu, Shi; Liu, Kuang; Eliasson, Veronica
2016-10-01
Geometrical shock dynamics (GSD) theory is an appealing method to predict the shock motion in the sense that it is more computationally efficient than solving the traditional Euler equations, especially for converging shock waves. However, to solve and optimize large scale configurations, the main bottleneck is the computational cost. Among the existing numerical GSD schemes, there is only one that has been implemented on parallel computers, with the purpose to analyze detonation waves. To extend the computational advantage of the GSD theory to more general applications such as converging shock waves, a numerical implementation using a spatial decomposition method has been coupled with a front tracking approach on parallel computers. In addition, an efficient tridiagonal system solver for massively parallel computers has been applied to resolve the most expensive function in this implementation, resulting in an efficiency of 0.93 while using 32 HPCC cores. Moreover, symmetric boundary conditions have been developed to further reduce the computational cost, achieving a speedup of 19.26 for a 12-sided polygonal converging shock.
Two-dimensional aspects of toroidal drift waves in the ballooning representation
International Nuclear Information System (INIS)
Zhang, Y.Z.; Mahajan, S.M.; Zhang, X.D.
1992-01-01
By systematically doing the higher-order theory, the predictions of the conventional ballooning theory (CBT) are examined for nonideal systems. For the complex solvability condition to be satisfied, radial variation of the lowest-order mode amplitude needs to be invoked. It turns out, however, that even this procedure with its concomitant modifications of eigenvalues and eigenstructures, is not sufficient to justify the predictions of many CBT solutions; only a small set of the CBT solutions could be put on firm footing. To demonstrate this work's general conclusions, theoretical and numerical results are presented for a system of fluid drift waves with nonadiabatic electron response
Two dimensional aspects of toroidal drift waves in the ballooning representation
International Nuclear Information System (INIS)
Zhang, Y.Z.; Mahajan, S.M.; Zhang, X.D.
1992-05-01
By systematically doing the higher order theory, the predictions of the conventional ballooning theory (CBT) are examined for non-ideal systems. For the complex solvability condition to be satisfied, radial variation of the lowest order mode amplitude needs to be invoked. It turns out, however, that even this procedure with its concomitant modifications of eigenvalues and eigenstructures, is not sufficient to justify the predictions of many CBT solutions; only a small set of CBT solutions could be put on a firm footing. To demonstrate our general conclusions, theoretical and numerical results are presented for system of fluid drift waves non-adiabatic electron response
Welch, Kyle J; Hastings-Hauss, Isaac; Parthasarathy, Raghuveer; Corwin, Eric I
2014-04-01
We have constructed a macroscopic driven system of chaotic Faraday waves whose statistical mechanics, we find, are surprisingly simple, mimicking those of a thermal gas. We use real-time tracking of a single floating probe, energy equipartition, and the Stokes-Einstein relation to define and measure a pseudotemperature and diffusion constant and then self-consistently determine a coefficient of viscous friction for a test particle in this pseudothermal gas. Because of its simplicity, this system can serve as a model for direct experimental investigation of nonequilibrium statistical mechanics, much as the ideal gas epitomizes equilibrium statistical mechanics.
Assessment of biopsy-proven liver fibrosis by two-dimensional shear wave elastography
DEFF Research Database (Denmark)
Herrmann, Eva; de Lédinghen, Victor; Cassinotto, Christophe
2018-01-01
sites, as well as on successful transient elastography (TE) in 665 patients. Most patients had chronic hepatitis C (HCV, n = 379), hepatitis B (HBV, n = 400) or non-alcoholic fatty liver disease (NAFLD, n = 156). AUROCs of 2D-SWE in patients with HCV, HBV and NAFLD were 86.3%, 90.6% and 85...... equipment were contacted to share their data. Retrospective statistical analysis used direct and paired receiver operating characteristic (ROC) and area under the ROC curve (AUROC) analysis accounting for random effects. RESULTS: Data on both 2D-SWE and liver biopsy was available in 1134 patients from 13......BACKGROUND AND AIMS: 2D shear wave elastography (2D-SWE) has proven to be efficient for the evaluation of liver fibrosis in small to moderate size clinical trials. We aimed at running a larger scale meta-analysis of individual data. METHODS: Centers which have worked with Aixplorer ultrasound...
Two-dimensional structure of mountain wave observed by aircraft during the PYREX experiment
Directory of Open Access Journals (Sweden)
J. L. Attié
Full Text Available This study presents an experimental analysis from aircraft measurements above the Pyrenees chain during the PYREX experiment. The Pyrenees chain, roughly WE oriented, is a major barrier for northerly and southerly airflows. We present a case of southerly flow (15 October 1990 and three successive cases of northerly flows above the Pyrenees (14, 15 and 16 November 1990 documented by two aircraft. The aircraft have described a vertical cross section perpendicular to the Pyrenean ridge. This area is described via the thermodynamical and dynamical fields which have a horizontal resolution of 10 km. Three methods for computing the vertical velocity of the air are presented. The horizontal advection terms which play a role in the budget equations are also evaluated. The altitude turbulence zone of 15 October are shown via turbulent fluxes, turbulent kinetic energy (TKE, dissipation rate of TKE and inertial length-scale. A comparison of results obtained by eddy-correlation and inertial-dissipation method is presented. The experimental results show a warm and dry downdraft for the southerly flow with large values for advection terms. All the mountain wave cases are also shown to present an important dynamical perturbation just above the Pyrenees at upper altitudes.
Wave propagation in elastic layers with damping
DEFF Research Database (Denmark)
Sorokin, Sergey; Darula, Radoslav
2016-01-01
The conventional concepts of a loss factor and complex-valued elastic moduli are used to study wave attenuation in a visco-elastic layer. The hierarchy of reduced-order models is employed to assess attenuation levels in various situations. For the forcing problem, the attenuation levels are found...... for alternative excitation cases. The differences between two regimes, the low frequency one, when a waveguide supports only one propagating wave, and the high frequency one, when several waves are supported, are demonstrated and explained....
Nanoscale measurement of Nernst effect in two-dimensional charge density wave material 1T-TaS2
Wu, Stephen M.; Luican-Mayer, Adina; Bhattacharya, Anand
2017-11-01
Advances in nanoscale material characterization on two-dimensional van der Waals layered materials primarily involve their optical and electronic properties. The thermal properties of these materials are harder to access due to the difficulty of thermal measurements at the nanoscale. In this work, we create a nanoscale magnetothermal device platform to access the basic out-of-plane magnetothermal transport properties of ultrathin van der Waals materials. Specifically, the Nernst effect in the charge density wave transition metal dichalcogenide 1T-TaS2 is examined on nano-thin flakes in a patterned device structure. It is revealed that near the commensurate charge density wave (CCDW) to nearly commensurate charge density wave (NCCDW) phase transition, the polarity of the Nernst effect changes. Since the Nernst effect is especially sensitive to changes in the Fermi surface, this suggests that large changes are occurring in the out-of-plane electronic structure of 1T-TaS2, which are otherwise unresolved in just in-plane electronic transport measurements. This may signal a coherent evolution of out-of-plane stacking in the CCDW → NCCDW transition.
International Nuclear Information System (INIS)
Chunxi, L.; Xuemin, Y.
2004-01-01
The temporal stability equation of the two-dimensional traveling waves of evaporating or condensing liquid films falling down on an inclined wall is established based on the Prandtl boundary layer theory and complete boundary conditions. The model indicates that the wave velocity is related to the effects of evaporating, isothermal and condensing states, thermo-capillarity, Reynolds number, fluid property and inclined angle, and the effects of above factors are distinctly different under different Reynolds numbers. The theoretical studies show that evaporation process induces the wave velocity to increase slightly compared with the isothermal case, and condensation process induces the wave velocity to decrease slightly. Furthermore, the wave velocity decreases because of the effects of thermo-capillarity under evaporation and increases because of the effects of thermo-capillarity under condensation. The effects of thermal non-equilibrium conditions have relatively obvious effects under lower Reynolds numbers and little effects under higher Reynolds numbers
International Nuclear Information System (INIS)
Eltayeb, I.A.
1983-07-01
The linear progation properties and stability of wave motions in spherical shells examined in paper I (Geophys. Astr. Fluid Dyn., 16, 129) are here extended to the case of a toroidal magnetic field together with an associated shear flow. The analysis is restricted to moderate values of the magnetic field amplitude, in which case the ensuing motions are two-dimensional. They occur in thin cylindrical cells coaxial with the axis of rotation. For every set of the relevant parameters an infinity of modes exists and is divided into two uncoupled categories. One category is associated with a temperature perturbation even in the axial coordinate z and the other category odd in z. In the presence of an inner solid core the even set persists only outside the cylindrical surface, Csub(c), whose generators touch the inner core at its equator while the odd set persists everywhere. The direction of propagation of these waves depends on the ratio, q, of thermal to magnetic diffusivities and on the modified Chandrasekhar number Q (which is the ratio of Lorentz to Coriolis forces). For small values of q relevant to geophysical applications both eastward and westward propagation is possible if Q is small; but as Q increases beyond a certain value, only eastward propagation is possible. For the case of large q applicable to astrophysical situations both eastward and westward propagation is possible. All these results apply for a variety of temperature gradients in which both internal and differential forms of heating are invoked, and various forms of toroidal magnetic fields. The stability of these wave motions is examined and the most preferred mode of convection is identified in each case. The unstable cell always lies on Csub(c) or outside it. Its precise location depends on the types of magnetic field and temperature gradient. The sloping boundary of the spherical shell tends to stabilize westward propagating waves
International Nuclear Information System (INIS)
Woo, Sung-Jae; Hong, Jin Hee; Kim, Tae Yun; Bae, Byung Wook; Lee, Kyoung J
2008-01-01
Understanding spiral reentry wave dynamics in cardiac systems is important since it underlies various cardiac arrhythmia including cardiac fibrillation. Primary cultures of dissociated cardiac cells have been a convenient and useful system for studying cardiac wave dynamics, since one can carry out systematic and quantitative studies with them under well-controlled environments. One key drawback of the dissociated cell culture is that, inevitably, some spatial inhomogeneities in terms of cell types and density, and/or the degree of gap junction connectivity, are introduced to the system during the preparation. These unintentional spatial inhomogeneities can cause some non-trivial wave dynamics, for example, the entrainment dynamics among different spiral waves and the generation of complex-oscillatory spiral waves. The aim of this paper is to quantify these general phenomena in an in vitro cardiac system and provide explanations for them with a simple physiological model having some realistic spatial inhomogeneities incorporated
Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Loubère, Raphaël; Rebourcet, Bernard
2013-02-01
In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.
Solitary waves on nonlinear elastic rods. II
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.
1987-01-01
In continuation of an earlier study of propagation of solitary waves on nonlinear elastic rods, numerical investigations of blowup, reflection, and fission at continuous and discontinuous variation of the cross section for the rod and reflection at the end of the rod are presented. The results ar...... are compared with predictions of conservation theorems for energy and momentum....
The theory of elastic waves and waveguides
Miklowitz, J
1984-01-01
The primary objective of this book is to give the reader a basic understanding of waves and their propagation in a linear elastic continuum. The studies of elastodynamic theory and its application to fundamental value problems should prepare the reader to tackle many physical problems of general interest in engineering and geophysics, and of particular interest in mechanics and seismology.
Zhao, L.; Wen, L.
2009-12-01
The shear wave splitting measurements provide important information on mantle flow, deformation and mineralogy. They are now routinely made using the method developed by Silver and Chan (1994). More and more dense regional observations also begin to reveal sharp spatial variations of seismic anisotropy which could not be explained by simplified horizontal homogeneous anisotropic structures. To better constrain the mantle anisotropy beneath those regions, we developed a two-dimensional hybrid method for simulating seismic wave propagation in laterally-varying anisotropic media [Zhao et al., 2008]. In this presentation, we apply the method to study anisotropic structures beneath central Tibet by waveform modeling the teleseismic SKS phases recorded in the International Deep Profiling of Tibet and the Himalayas project (INDEPTH) III. Using data from two events that were selected such that the stations and sources can be approximated as a two-dimensional profile, we derived an optimal model for the anisotropic structures of the upper mantle beneath the study region: a 50-70 km thick anisotropic layer with a fast direction trending N95°E beneath the Qiangtang block, a 150 km thick and 60 km wide anisotropic segment with an axis trending N95°E beneath the northernmost Lhasa block, and a ~30 km wide transition zone in between within which the fast direction trends N45°E and the depth extent of anisotropy decreases northward sharply. Synthetic waveform modeling further suggests that an anisotropic model with a horizontal symmetry axis can explain the observations better than that with a dipping symmetry, and a low velocity zone possibly underlies or mixes with the anisotropic structures in the northern portion of the region. The optimal model yields synthetic seismograms that are in good agreement with the observations in both amplitudes and relative arrival times of SKS phases. Synthetic tests also indicate that different elastic constants, source parameters and depth
Low-temperature specific heat of the quasi-two-dimensional charge-density wave compound KMo6O17
Wang, Junfeng; Xiong, Rui; Yin, Di; Li, Changzhen; Tang, Zheng; Wang, Ququan; Shi, Jing; Wang, Yue; Wen, Haihu
2006-05-01
Low temperature specific heat (Cp) of quasi-two-dimensional charge-density wave (CDW) compound KMo6O17 has been studied by a relaxation method from 2to48K under zero and 12T magnetic fields. The results show that no specific heat anomaly is found at 16K under both zero and 12T magnetic fields, although an anomaly is clearly observed in the resistivity and magnetoresistance measurements. From the data between 2 and 4K , the density of states at Fermi level is estimated as 0.2eV-1permolecule and the Debye temperature is extracted to be 418K . A bump appearing in Cp/T3 is found between 4 and 48K centered around 12.5-15K , indicating that the phason excitations contribute to the total specific heat similarly as in quasi-one-dimensional CDW conductors. Using a modified Debye model, a pinning frequency of 0.73THz for KMo6O17 is estimated from the phason contribution.
Local Tensor Radiation Conditions For Elastic Waves
DEFF Research Database (Denmark)
Krenk, S.; Kirkegaard, Poul Henning
2001-01-01
A local boundary condition is formulated, representing radiation of elastic waves from an arbitrary point source. The boundary condition takes the form of a tensor relation between the stress at a point on an arbitrarily oriented section and the velocity and displacement vectors at the point....... The tensor relation generalizes the traditional normal incidence impedance condition by accounting for the angle between wave propagation and the surface normal and by including a generalized stiffness term due to spreading of the waves. The effectiveness of the local tensor radiation condition...
Wave anisotropy of shear viscosity and elasticity
Rudenko, O. V.; Sarvazyan, A. P.
2014-11-01
The paper presents the theory of shear wave propagation in a "soft solid" material possessing anisotropy of elastic and dissipative properties. The theory is developed mainly for understanding the nature of the low-frequency acoustic characteristics of skeletal muscles, which carry important diagnostic information on the functional state of muscles and their pathologies. It is shown that the shear elasticity of muscles is determined by two independent moduli. The dissipative properties are determined by the fourth-rank viscosity tensor, which also has two independent components. The propagation velocity and attenuation of shear waves in muscle depend on the relative orientation of three vectors: the wave vector, the polarization vector, and the direction of muscle fiber. For one of the many experiments where attention was distinctly focused on the vector character of the wave process, it was possible to make a comparison with the theory, estimate the elasticity moduli, and obtain agreement with the angular dependence of the wave propagation velocity predicted by the theory.
Bulk solitary waves in elastic solids
Samsonov, A. M.; Dreiden, G. V.; Semenova, I. V.; Shvartz, A. G.
2015-10-01
A short and object oriented conspectus of bulk solitary wave theory, numerical simulations and real experiments in condensed matter is given. Upon a brief description of the soliton history and development we focus on bulk solitary waves of strain, also known as waves of density and, sometimes, as elastic and/or acoustic solitons. We consider the problem of nonlinear bulk wave generation and detection in basic structural elements, rods, plates and shells, that are exhaustively studied and widely used in physics and engineering. However, it is mostly valid for linear elasticity, whereas dynamic nonlinear theory of these elements is still far from being completed. In order to show how the nonlinear waves can be used in various applications, we studied the solitary elastic wave propagation along lengthy wave guides, and remarkably small attenuation of elastic solitons was proven in physical experiments. Both theory and generation for strain soliton in a shell, however, remained unsolved problems until recently, and we consider in more details the nonlinear bulk wave propagation in a shell. We studied an axially symmetric deformation of an infinite nonlinearly elastic cylindrical shell without torsion. The problem for bulk longitudinal waves is shown to be reducible to the one equation, if a relation between transversal displacement and the longitudinal strain is found. It is found that both the 1+1D and even the 1+2D problems for long travelling waves in nonlinear solids can be reduced to the Weierstrass equation for elliptic functions, which provide the solitary wave solutions as appropriate limits. We show that the accuracy in the boundary conditions on free lateral surfaces is of crucial importance for solution, derive the only equation for longitudinal nonlinear strain wave and show, that the equation has, amongst others, a bidirectional solitary wave solution, which lead us to successful physical experiments. We observed first the compression solitary wave in the
DEFF Research Database (Denmark)
Wenger, F.; Käll, M.
1997-01-01
We analyze the Raman-scattering response in a two-dimensional d(x2-y2)-wave superconductor and point out a strong suppression of relative intensity in the screened A(1g) channel compared to the B-1g channel for a generic tight-binding model. This is in contrast with the observed behavior in high...
Lee, Dong Ho; Lee, Jeong Min; Yoon, Jung-Hwan; Kim, Yoon Jun; Lee, Jeong-Hoon; Yu, Su Jong; Han, Joon Koo
2018-03-01
To evaluate the prognostic value of liver stiffness (LS) measured using two-dimensional (2D) shear-wave elastography (SWE) in patients with hepatocellular carcinoma (HCC) treated by radiofrequency ablation (RFA). The Institutional Review Board approved this retrospective study and informed consent was obtained from all patients. A total of 134 patients with up to 3 HCCs ≤5 cm who had undergone pre-procedural 2D-SWE prior to RFA treatment between January 2012 and December 2013 were enrolled. LS values were measured using real-time 2D-SWE before RFA on the procedural day. After a mean follow-up of 33.8 ± 9.9 months, we analyzed the overall survival after RFA using the Kaplan-Meier method and Cox proportional hazard regression model. The optimal cutoff LS value to predict overall survival was determined using the minimal p value approach. During the follow-up period, 22 patients died, and the estimated 1- and 3-year overall survival rates were 96.4 and 85.8%, respectively. LS measured by 2D-SWE was found to be a significant predictive factor for overall survival after RFA of HCCs, as was the presence of extrahepatic metastases. As for the optimal cutoff LS value for the prediction of overall survival, it was determined to be 13.3 kPa. In our study, 71 patients had LS values ≥13.3 kPa, and the estimated 3-year overall survival was 76.8% compared to 96.3% in 63 patients with LS values measured by 2D-SWE was a significant predictive factor for overall survival after RFA for HCC.
Zeng, Jie; Huang, Ze-Ping; Zheng, Jian; Wu, Tao; Zheng, Rong-Qin
2017-07-14
To determine the diagnostic accuracy of two-dimensional shear wave elastography (2D-SWE) for the non-invasive assessment of liver fibrosis in patients with autoimmune liver diseases (AILD) using liver biopsy as the reference standard. Patients with AILD who underwent liver biopsy and 2D-SWE were consecutively enrolled. Receiver operating characteristic (ROC) curves were constructed to assess the overall accuracy and to identify optimal cut-off values. The characteristics of the diagnostic performance were determined for 114 patients with AILD. The areas under the ROC curves for significant fibrosis, severe fibrosis, and cirrhosis were 0.85, 0.85, and 0.86, respectively, and the optimal cut-off values associated with significant fibrosis (≥ F2), severe fibrosis (≥ F3), and cirrhosis (F4) were 9.7 kPa, 13.2 kPa and 16.3 kPa, respectively. 2D-SWE showed sensitivity values of 81.7% for significant fibrosis, 83.0% for severe fibrosis, and 87.0% for cirrhosis, and the respective specificity values were 81.3%, 74.6%, and 80.2%. The overall concordance rate of the liver stiffness measurements obtained using 2D-SWE vs fibrosis stages was 53.5%. 2D-SWE showed promising diagnostic performance for assessing liver fibrosis stages and exhibited high cut-off values in patients with AILD. Low overall concordance rate was observed in the liver stiffness measurements obtained using 2D-SWE vs fibrosis stages.
Staugaard, Benjamin; Christensen, Peer Brehm; Mössner, Belinda; Hansen, Janne Fuglsang; Madsen, Bjørn Stæhr; Søholm, Jacob; Krag, Aleksander; Thiele, Maja
2016-11-01
Transient elastography (TE) is hampered in some patients by failures and unreliable results. We hypothesized that real time two-dimensional shear wave elastography (2D-SWE), the FibroScan XL probe, and repeated TE exams, could be used to obtain reliable liver stiffness measurements in patients with an invalid TE examination. We reviewed 1975 patients with 5764 TE exams performed between 2007 and 2014, to identify failures and unreliable exams. Fifty-four patients with an invalid TE at their latest appointment entered a comparative feasibility study of TE vs. 2D-SWE. The initial TE exam was successful in 93% (1835/1975) of patients. Success rate increased from 89% to 96% when the XL probe became available (OR: 1.07, 95% CI 1.06-1.09). Likewise, re-examining those with a failed or unreliable TE led to a reliable TE in 96% of patients. Combining availability of the XL probe with TE re-examination resulted in a 99.5% success rate on a per-patient level. When comparing the feasibility of TE vs. 2D-SWE, 96% (52/54) of patients obtained a reliable TE, while 2D-SWE was reliable in 63% (34/54, p < 0.001). The odds of a successful 2D-SWE exam decreased with higher skin-capsule distance (OR = 0.77, 95% CI 0.67-0.98). Transient elastography can be accomplished in nearly all patients by use of the FibroScan XL probe and repeated examinations. In difficult-to-scan patients, the feasibility of TE is superior to 2D-SWE.
Elastic wave scattering methods: assessments and suggestions
International Nuclear Information System (INIS)
Gubernatis, J.E.
1985-01-01
The author was asked by the meeting organizers to review and assess the developments over the past ten or so years in elastic wave scattering methods and to suggest areas of future research opportunities. He highlights the developments, focusing on what he feels were distinct steps forward in our theoretical understanding of how elastic waves interact with flaws. For references and illustrative figures, he decided to use as his principal source the proceedings of the various annual Reviews of Progress in Quantitative Nondestructive Evaluation (NDE). These meetings have been the main forum not only for presenting results of theoretical research but also for demonstrating the relevance of the theoretical research for the design and interpretation of experiment. In his opinion a quantitative NDE is possible only if this relevance exists, and his major objective is to discuss and illustrate the degree to which relevance has developed
Scattering of elastic waves by thin inclusions
International Nuclear Information System (INIS)
Simons, D.A.
1980-01-01
A solution is derived for the elastic waves scattered by a thin inclusion. The solution is asymptotically valid as inclusion thickness tends to zero with the other dimensions and the frequency fixed. The method entails first approximating the total field in the inclusion in terms of the incident wave by enforcing the appropriate continuity conditions on traction and displacement across the interface, then using these displacements and strains in the volume integral that gives the scattered field. Expressions are derived for the far-field angular distributions of P and S waves due to an incident plane P wave, and plots are given for normalized differential cross sections of an oblate spheroidal tungsten carbide inclusion in a titanium matrix
Existence of longitudinal waves in pre-stressed anisotropic elastic ...
Indian Academy of Sciences (India)
waves is truly longitudinal. Longitudinal wave in an anisotropic elastic medium is defined as the wave motion in which the particle motion (i.e., the. Keywords. General anisotropy; elastic stiffness; pre-stress; group velocity; ray direction; longitudinal waves; polarization. J. Earth Syst. Sci. 118, No. 6, December 2009, pp. 677– ...
Wave chaos in the elastic disk.
Sondergaard, Niels; Tanner, Gregor
2002-12-01
The relation between the elastic wave equation for plane, isotropic bodies and an underlying classical ray dynamics is investigated. We study, in particular, the eigenfrequencies of an elastic disk with free boundaries and their connection to periodic rays inside the circular domain. Even though the problem is separable, wave mixing between the shear and pressure component of the wave field at the boundary leads to an effective stochastic part in the ray dynamics. This introduces phenomena typically associated with classical chaos as, for example, an exponential increase in the number of periodic orbits. Classically, the problem can be decomposed into an integrable part and a simple binary Markov process. Similarly, the wave equation can, in the high-frequency limit, be mapped onto a quantum graph. Implications of this result for the level statistics are discussed. Furthermore, a periodic trace formula is derived from the scattering matrix based on the inside-outside duality between eigenmodes and scattering solutions and periodic orbits are identified by Fourier transforming the spectral density.
Wave chaos in acoustics and elasticity
International Nuclear Information System (INIS)
Tanner, Gregor; Soendergaard, Niels
2007-01-01
Interpreting wave phenomena in terms of an underlying ray dynamics adds a new dimension to the analysis of linear wave equations. Forming explicit connections between spectra and wavefunctions on the one hand and the properties of a related ray dynamics on the other hand is a comparatively new research area, especially in elasticity and acoustics. The theory has indeed been developed primarily in a quantum context; it is increasingly becoming clear, however, that important applications lie in the field of mechanical vibrations and acoustics. We provide an overview over basic concepts in this emerging field of wave chaos. This ranges from ray approximations of the Green function to periodic orbit trace formulae and random matrix theory and summarizes the state of the art in applying these ideas in acoustics-both experimentally and from a theoretical/numerical point of view. (topical review)
Controlling elastic waves with small phononic crystals containing rigid inclusions
Peng, Pai; Qiu, Chunyin; Liu, Zhengyou; Wu, Ying
2014-01-01
waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic
Topologically protected edge states for out-of-plane and in-plane bulk elastic waves
Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo
2018-04-01
Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.
Guyot, H.; Dumas, J.; Marcus, J.; Schlenker, C.; Vignolles, D.
2005-12-01
We report high magnetic field magnetoresistance measurements performed in pulsed fields up to 55 T on the quasi-two dimensional charge density wave conductor KMo{6}O{17}. Magnetoresistance curves show several anomalies below 28 T. First order transitions to smaller gap states take place at low temperature above 30 T. A phase diagram T(B) has been obtained. The angular dependence of the anomalies is reported.
Energy Technology Data Exchange (ETDEWEB)
Yoshino, F. [Tottori University, Tottori (Japan). Faculty of Engineering; Urata, K. [Hitachi Zosen Corp., Osaka (Japan); Kishi, H.
1996-01-25
A photogrammetric measurement method for two-dimensional small-amplitude waves were proposed where a diffuse reflection spot is used as an index point. An equation used to obtain the still water depth was introduced. This equation was confirmed experimentally by using a laser displacement sensor which is equivalent to a camera-index-point system in principle. To confirm the applicability of this method to waves form measurement, numerical simulations of measurement by this method were carried out for sinusoidal waves and a composed wave. The results of these simulations show that the small-amplitude waves can be measured with sufficient accuracy when the water surface inclination is small. 4 refs., 14 figs., 1 tab.
Dumas, Jean; Guyot, Hervé; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire
2004-04-01
Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo 6O 17 . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations.
Energy Technology Data Exchange (ETDEWEB)
Dumas, Jean; Guyot, Herve; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire
2004-04-30
Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo{sub 6}O{sub 17} . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations.
International Nuclear Information System (INIS)
Dumas, Jean; Guyot, Herve; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire
2004-01-01
Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo 6 O 17 . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations
Filtering of elastic waves by opal-based hypersonic crystal.
Salasyuk, Alexey S; Scherbakov, Alexey V; Yakovlev, Dmitri R; Akimov, Andrey V; Kaplyanskii, Alexander A; Kaplan, Saveliy F; Grudinkin, Sergey A; Nashchekin, Alexey V; Pevtsov, Alexander B; Golubev, Valery G; Berstermann, Thorsten; Brüggemann, Christian; Bombeck, Michael; Bayer, Manfred
2010-04-14
We report experiments in which high quality silica opal films are used as three-dimensional hypersonic crystals in the 10 GHz range. Controlled sintering of these structures leads to well-defined elastic bonding between the submicrometer-sized silica spheres, due to which a band structure for elastic waves is formed. The sonic crystal properties are studied by injection of a broadband elastic wave packet with a femtosecond laser. Depending on the elastic bonding strength, the band structure separates long-living surface acoustic waves with frequencies in the complete band gap from bulk waves with band frequencies that propagate into the crystal leading to a fast decay.
Surface phonons and elastic surface waves
Büscher, H.; Klein-Heßling, W.; Ludwig, W.
Theoretical investigations on the dynamics of the (001), (110) and (111) surfaces of some cubic metals (Ag, Cu, Ni) will be reviewed. Both, lattice dynamical and continuum theoretical results are obtained via a Green's function formalism. The main attitude of this paper is the comparison of our results with experiments and with results obtained via slab-calculations. The calculation of elastic surface waves has been performed using a modified surface-green-function-matching method. We have used two different approaches of calculation the bulk Green's function (a) using the spectral representation and (b) a method, what works on residues. The investigations are carried out using shortrange phenomenological potentials. The atomic force constants in the first surface layers are modified to describe surface phonon anomalies, observed by experiments. In the case of Ag (100) and Ag(110) we conclude that the detection of odd symmetry shear modes by Erskine et al. [1 a, b] was not very accurate.
Surface phonons and elastic surface waves
International Nuclear Information System (INIS)
Buescher, H.; Klein-Hessling, W.; Ludwig, W.
1993-01-01
Theoretical investigations on the dynamics of the (001), (110) and (111) surfaces of some cubic metals (Ag, Cu, Ni) will be reviewed. Both, lattice dynamical and continuum theoretical results are obtained via a Green's function formalism. The main attitude of this paper is the comparison of our results with experiments and with results obtained via slab-calculations. The calculation of elastic surface waves has been performed using a modified surface-green-function-matching method. We have used two different approaches of calculation the bulk Green's function (a) using the spectral representation and (b) a method, what works on residues. The investigations are carried out using shortrange phenomenological potentials. The atomic force constants in the first surface layers are modified to describe surface phonon anomalies, observed by experiments. In the case of Ag(100) and Ag(110) we conclude that the detection of odd symmetry shear modes by Erskine et al. was not very accurate. (orig.)
Charge density wave properties of the quasi two-dimensional purple molybdenum bronze KMo 6O 17
Balaska, H.; Dumas, J.; Guyot, H.; Mallet, P.; Marcus, J.; Schlenker, C.; Veuillen, J. Y.; Vignolles, D.
2005-06-01
The purple molybdenum bronze KMo 6O 17 is a quasi-two-dimensional compound which shows a Peierls transition towards a commensurate metallic CDW state. Electron spectroscopy (ARUPS), Scanning Tunnelling Microscopy (STM) and spectroscopy (STS) as well as high magnetic field studies are reported. ARUPS studies corroborate the model of the hidden nesting and provide a value of the CDW vector in good agreement with other measurements. STM studies visualize the triple- q CDW in real space. This is consistent with other measurements of the CDW vector. STS studies provide a value of several 10 meV for the average CDW gap. High magnetic field measurements performed in pulsed fields up to 55 T establish that first order transitions to smaller gap states take place at low temperature. These transitions are ascribed to Pauli type coupling. A phase diagram summarizing all observed anomalies and transitions is presented.
Support minimized inversion of acoustic and elastic wave scattering
International Nuclear Information System (INIS)
Safaeinili, A.
1994-01-01
This report discusses the following topics on support minimized inversion of acoustic and elastic wave scattering: Minimum support inversion; forward modelling of elastodynamic wave scattering; minimum support linearized acoustic inversion; support minimized nonlinear acoustic inversion without absolute phase; and support minimized nonlinear elastic inversion
Modeling and analysis of waves in a heat conducting thermo-elastic plate of elliptical shape
Directory of Open Access Journals (Sweden)
R. Selvamani
Full Text Available Wave propagation in heat conducting thermo elastic plate of elliptical cross-section is studied using the Fourier expansion collocation method based on Suhubi's generalized theory. The equations of motion based on two-dimensional theory of elasticity is applied under the plane strain assumption of generalized thermo elastic plate of elliptical cross-sections composed of homogeneous isotropic material. The frequency equations are obtained by using the boundary conditions along outer and inner surface of elliptical cross-sectional plate using Fourier expansion collocation method. The computed non-dimensional frequency, velocity and quality factor are plotted in dispersion curves for longitudinal and flexural (symmetric and antisymmetric modes of vibrations.
Elastic-plastic collapse of super-elastic shock waves in face-centered-cubic solids
International Nuclear Information System (INIS)
Zhakhovsky, Vasily V; Demaske, Brian J; Oleynik, Ivan I; Inogamov, Nail A; White, Carter T
2014-01-01
Shock waves in the [110] and [111] directions of single-crystal Al samples were studied using molecular dynamics (MD) simulations. Piston-driven simulations were performed to investigate the split shock-wave regime. At low piston velocities, the material is compressed initially to a metastable over-compressed elastic state leading to a super-elastic single shock wave. This metastable elastic state later collapses to a plastic state resulting in the formation of a two-wave structure consisting of an elastic precursor followed by a slower plastic wave. The single two-zone elastic-plastic shock-wave regime appearing at higher piston velocities was studied using moving window MD. The plastic wave attains the same average speed as the elastic precursor to form a single two-zone shock wave. In this case, repeated collapse of the highly over-compressed elastic state near the plastic shock front produces ultrashort triangle pulses that provide the pressure support for the leading elastic precursor.
Hashimoto, Yusuke; Bossini, Davide; Johansen, Tom H.; Saitoh, Eiji; Kirilyuk, Andrei; Rasing, Theo
2017-01-01
Using spin-wave tomography (SWaT), we have investigated the excitation and the propagation dynamics of optically-excited magnetoelastic waves, i.e. hybridized modes of spin waves and elastic waves, in a garnet film. By using time-resolved SWaT, we reveal the excitation dynamics of magnetoelastic waves through coherent-energy transfer between optically-excited pure-elastic waves and spin waves via magnetoelastic coupling. This process realizes frequency and wavenumber selective excitation of s...
Energy Technology Data Exchange (ETDEWEB)
Trevisanutto, Paolo E. [Graphene Research Centre and CA2DM, National University of Singapore, Singapore 117542, Singapore and Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603 (Singapore); Vignale, Giovanni, E-mail: vignaleg@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211 (United States)
2016-05-28
Ab initio electronic structure calculations of two-dimensional layered structures are typically performed using codes that were developed for three-dimensional structures, which are periodic in all three directions. The introduction of a periodicity in the third direction (perpendicular to the layer) is completely artificial and may lead in some cases to spurious results and to difficulties in treating the action of external fields. In this paper we develop a new approach, which is “native” to quasi-2D materials, making use of basis function that are periodic in the plane, but atomic-like in the perpendicular direction. We show how some of the basic tools of ab initio electronic structure theory — density functional theory, GW approximation and Bethe-Salpeter equation — are implemented in the new basis. We argue that the new approach will be preferable to the conventional one in treating the peculiarities of layered materials, including the long range of the unscreened Coulomb interaction in insulators, and the effects of strain, corrugations, and external fields.
Extension of Seismic Scanning Tunneling Macroscope to Elastic Waves
Tarhini, Ahmad
2017-11-06
The theory for the seismic scanning tunneling macroscope is extended from acoustic body waves to elastic body-wave propagation. We show that, similar to the acoustic case, near-field superresolution imaging from elastic body waves results from the O(1/R) term, where R is the distance between the source and near-field scatterer. The higher-order contributions R−n for n>1 are cancelled in the near-field region for a point source with normal stress.
Extension of Seismic Scanning Tunneling Macroscope to Elastic Waves
Tarhini, Ahmad; Guo, Bowen; Dutta, Gaurav; Schuster, Gerard T.
2017-01-01
The theory for the seismic scanning tunneling macroscope is extended from acoustic body waves to elastic body-wave propagation. We show that, similar to the acoustic case, near-field superresolution imaging from elastic body waves results from the O(1/R) term, where R is the distance between the source and near-field scatterer. The higher-order contributions R−n for n>1 are cancelled in the near-field region for a point source with normal stress.
Li, Peng; Wang, Guan; Luo, Dong; Cao, Xiaoshan
2018-02-01
The band structure of a two-dimensional phononic crystal, which is composed of four homogenous steel quarter-cylinders immersed in rubber matrix, is investigated and compared with the traditional steel/rubber crystal by the finite element method (FEM). It is revealed that the frequency can then be tuned by changing the distance between adjacent quarter-cylinders. When the distance is relatively small, the integrality of scatterers makes the inner region inside them almost motionless, so that they can be viewed as a whole at high-frequencies. In the case of relatively larger distance, the interaction between each quarter-cylinder and rubber will introduce some new bandgaps at relatively low-frequencies. Lastly, the point defect states induced by the four quarter-cylinders are revealed. These results will be helpful in fabricating devices, such as vibration insulators and acoustic/elastic filters, whose band frequencies can be manipulated artificially.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yijing, E-mail: yzhng123@illinois.edu; Moore, Keegan J.; Vakakis, Alexander F. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); McFarland, D. Michael [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)
2015-12-21
We study passive pulse redirection and nonlinear targeted energy transfer in a granular network composed of two semi-infinite, ordered homogeneous granular chains mounted on linear elastic foundations and coupled by weak linear stiffnesses. Periodic excitation in the form of repetitive half-sine pulses is applied to one of the chains, designated as the “excited chain,” whereas the other chain is initially at rest and is regarded as the “absorbing chain.” We show that passive pulse redirection and targeted energy transfer from the excited to the absorbing chain can be achieved by macro-scale realization of the spatial analog of the Landau-Zener quantum tunneling effect. This is realized by finite stratification of the elastic foundation of the excited chain and depends on the system parameters (e.g., the percentage of stratification) and on the parameters of the periodic excitation. Utilizing empirical mode decomposition and numerical Hilbert transforms, we detect the existence of two distinct nonlinear phenomena in the periodically forced network; namely, (i) energy localization in the absorbing chain due to sustained 1:1 resonance capture leading to irreversible pulse redirection from the excited chain, and (ii) continuous energy exchanges in the form of nonlinear beats between the two chains in the absence of resonance capture. Our results extend previous findings of transient passive energy redirection in impulsively excited granular networks and demonstrate that steady state passive pulse redirection in these networks can be robustly achieved under periodic excitation.
Energy Technology Data Exchange (ETDEWEB)
Ma, Tian-Xue [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Wang, Yue-Sheng, E-mail: yswang@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Chuanzeng [Department of Civil Engineering, University of Siegen, D-57068 Siegen (Germany)
2017-01-30
A phoxonic crystal is a periodically patterned material that can simultaneously localize optical and acoustic modes. The acousto-optical coupling in two-dimensional air-slot phoxonic crystal cavities is investigated numerically. The photons can be well confined in the slot owing to the large electric field discontinuity at the air/dielectric interfaces. Besides, the surface acoustic modes lead to the localization of the phonons near the air-slot. The high overlap of the photonic and phononic cavity modes near the slot results in a significant enhancement of the moving interface effect, and thus strengthens the total acousto-optical interaction. The results of two cavities with different slot widths show that the coupling strength is dependent on the slot width. It is expected to achieve a strong acousto-optical/optomechanical coupling in air-slot phoxonic crystal structures by utilizing surface acoustic modes. - Highlights: • Two-dimensional air-slot phoxonic crystal cavities which can confine simultaneously optical and acoustic waves are proposed. • The acoustic and optical waves are highly confined near/in the air-slot. • The high overlap of the photonic and phononic cavity modes significantly enhances the moving interface effect. • Different factors which affect the acousto-optical coupling are discussed.
Energy Technology Data Exchange (ETDEWEB)
Nakra Mohajer, Soukaina; El Harouny, El Hassan [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); El Khamkhami, Jamal [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); and others
2016-09-15
Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.
International Nuclear Information System (INIS)
Nakra Mohajer, Soukaina; El Harouny, El Hassan; Ibral, Asmaa; El Khamkhami, Jamal
2016-01-01
Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.
Ma, Tian-Xue; Zou, Kui; Wang, Yue-Sheng; Zhang, Chuanzeng; Su, Xiao-Xing
2014-11-17
Phoxonic crystal is a promising material for manipulating sound and light simultaneously. In this paper, we theoretically demonstrate the propagation of acoustic and optical waves along the truncated surface of a two-dimensional square-latticed phoxonic crystal. Further, a phoxonic crystal hetero-structure cavity is proposed, which can simultaneously confine surface acoustic and optical waves. The interface motion and photoelastic effects are taken into account in the acousto-optical coupling. The results show obvious shifts in eigenfrequencies of the photonic cavity modes induced by different phononic cavity modes. The symmetry of the phononic cavity modes plays a more important role in the single-phonon exchange process than in the case of the multi-phonon exchange. Under the same deformation, the frequency shift of the photonic transverse electric mode is larger than that of the transverse magnetic mode.
Guyot, H.; Dumas, J.; Kartsovnik, M. V.; Marcus, J.; Schlenker, C.; Sheikin, I.; Vignolles, D.
2007-07-01
The purple molybdenum bronze KMo6O17 is a quasi-two-dimensional compound which shows a Peierls transition towards a commensurate metallic charge density wave (CDW) state. High magnetic field measurements have revealed several transitions at low temperature and have provided an unusual phase diagram “temperature-magnetic field”. Angular studies of the interlayer magnetoresistance are now reported. The results suggest that the orbital coupling of the magnetic field to the CDW is the most likely mechanism for the field induced transitions. The angular dependence of the magnetoresistance is discussed on the basis of a warped quasi-cylindrical Fermi surface and provides information on the geometry of the Fermi surface in the low temperature density wave state.
The instability of the spiral wave induced by the deformation of elastic excitable media
International Nuclear Information System (INIS)
Ma Jun; Jia Ya; Wang Chunni; Li Shirong
2008-01-01
There are some similarities between the spiral wave in excitable media and in cardiac tissue. Much evidence shows that the appearance and instability of the spiral wave in cardiac tissue can be linked to one kind of heart disease. There are many models that can be used to investigate the formation and instability of the spiral wave. Cardiac tissue is excitable and elastic, and it is interesting to simulate the transition and instability of the spiral wave induced by media deformation. For simplicity, a class of the modified Fitzhugh-Nagumo (MFHN) model, which can generate a stable rotating spiral wave, meandering spiral wave and turbulence within appropriate parameter regions, will be used to simulate the instability of the spiral wave induced by the periodical deformation of media. In the two-dimensional case, the total acreage of elastic media is supposed to be invariable in the presence of deformation, and the problem is described with L x x L y = N x ΔxN x Δy = L' x L' y = N x Δx'N x Δy'. In our studies, elastic media are decentralized into N x N sites and the space of the adjacent sites is changed to simulate the deformation of elastic media. Based on the nonlinear dynamics theory, the deformation effect on media is simplified and simulated by perturbing the diffusion coefficients D x and D y with different periodical signals, but the perturbed diffusion coefficients are compensatory. The snapshots of our numerical results find that the spiral wave can coexist with the spiral turbulence, instability of the spiral wave and weak deformation of the spiral wave in different conditions. The ratio parameter ε and the frequency of deformation forcing play a deterministic role in inducing instability of the spiral wave. Extensive studies confirm that the instability of the spiral wave can be induced and developed only if an appropriate frequency for deformation is used. We analyze the power spectrum for the time series of the mean activator of four sampled sites
The instability of the spiral wave induced by the deformation of elastic excitable media
Ma, Jun; Jia, Ya; Wang, Chun-Ni; Li, Shi-Rong
2008-09-01
There are some similarities between the spiral wave in excitable media and in cardiac tissue. Much evidence shows that the appearance and instability of the spiral wave in cardiac tissue can be linked to one kind of heart disease. There are many models that can be used to investigate the formation and instability of the spiral wave. Cardiac tissue is excitable and elastic, and it is interesting to simulate the transition and instability of the spiral wave induced by media deformation. For simplicity, a class of the modified Fitzhugh-Nagumo (MFHN) model, which can generate a stable rotating spiral wave, meandering spiral wave and turbulence within appropriate parameter regions, will be used to simulate the instability of the spiral wave induced by the periodical deformation of media. In the two-dimensional case, the total acreage of elastic media is supposed to be invariable in the presence of deformation, and the problem is described with Lx × Ly = N × ΔxN × Δy = L'xL'y = N × Δx'N × Δy'. In our studies, elastic media are decentralized into N × N sites and the space of the adjacent sites is changed to simulate the deformation of elastic media. Based on the nonlinear dynamics theory, the deformation effect on media is simplified and simulated by perturbing the diffusion coefficients Dx and Dy with different periodical signals, but the perturbed diffusion coefficients are compensatory. The snapshots of our numerical results find that the spiral wave can coexist with the spiral turbulence, instability of the spiral wave and weak deformation of the spiral wave in different conditions. The ratio parameter ɛ and the frequency of deformation forcing play a deterministic role in inducing instability of the spiral wave. Extensive studies confirm that the instability of the spiral wave can be induced and developed only if an appropriate frequency for deformation is used. We analyze the power spectrum for the time series of the mean activator of four sampled sites
Rayleigh wave effects in an elastic half-space.
Aggarwal, H. R.
1972-01-01
Consideration of Rayleigh wave effects in a homogeneous isotropic linearly elastic half-space subject to an impulsive uniform disk pressure loading. An approximate formula is obtained for the Rayleigh wave effects. It is shown that the Rayleigh waves near the center of loading arise from the portion of the dilatational and shear waves moving toward the axis, after they originate at the edge of the load disk. A study is made of the vertical displacement due to Rayleigh waves at points on the axis near the surface of the elastic half-space.
Glass, Christopher E.
1990-08-01
The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.
Willey, Carson L; Simonetti, Francesco
2016-06-01
Mapping the speed of mechanical waves traveling inside a medium is a topic of great interest across many fields from geoscience to medical diagnostics. Much work has been done to characterize the fidelity with which the geometrical features of the medium can be reconstructed and multiple resolution criteria have been proposed depending on the wave-matter interaction model used to decode the wave speed map from scattering measurements. However, these criteria do not define the accuracy with which the wave speed values can be reconstructed. Using two-dimensional simulations, it is shown that the first-arrival traveltime predicted by ray theory can be an accurate representation of the arrival of a pulse first break even in the presence of diffraction and other phenomena that are not accounted for by ray theory. As a result, ray-based tomographic inversions can yield accurate wave speed estimations also when the size of a sound speed anomaly is smaller than the resolution length of the inversion method provided that traveltimes are estimated from the signal first break. This increased sensitivity however renders the inversion more susceptible to noise since the amplitude of the signal around the first break is typically low especially when three-dimensional anomalies are considered.
Surface waves in fibre-reinforced anisotropic elastic media
Indian Academy of Sciences (India)
Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45
Rayleigh, Love and Stoneley types. The wave velocity equations are found to be in agreement with the corresponding classical result when the ... (1924) and Jeffreys (1959), regarding surface waves in classical elasticity. Sengupta and his research collaborators have also studied surface waves (Acharya & Sengupta 1978;.
Study of elastic waves with a camouflage explosion
Energy Technology Data Exchange (ETDEWEB)
Dunin, S.Z.; Nagornov, O.V.; Popov, E.A.
1982-01-01
Examination is made of the problem concerning the study of elastic waves with an explosion in a porous medium with consideration given to the effect of dilation. Investigation is made of the character of the study of elastic energy at various moments. An analysis is made of the spectral properties of the investigated seismic signal, the effect of strong parameters of the medium, porosity, and the coefficient of dilation on the magnitude of elastic energy, which is emitted during an explosion.
Elastic wave excitation in centrosymmetric strontium titanate crystals
International Nuclear Information System (INIS)
Yushin, N.K.; Sotnikov, A.V.
1980-01-01
The main experimental dependencies are measured and the excitation mechanism of elastic waves in centrosymmetric crystals is established. The surface generation of three-dimensional elastic waves of the 30 MHz frequency in strontium titanate crystals is observed and studied. Elastic wave excitation is observed in the 4 350 K temperature range. The efficiency of hysteresis excitation depends on the external electric field. The effect of light irradiation on the amplitude of excited elastic waves is observed. It is shown that escitation is connected with linearization of electrostriction by the constant electric field appearing in a near-surface crystal layer due to phenomena in the Schottky barrier and appearance of electretic near-electrode layers
Uniqueness in inverse elastic scattering with finitely many incident waves
International Nuclear Information System (INIS)
Elschner, Johannes; Yamamoto, Masahiro
2009-01-01
We consider the third and fourth exterior boundary value problems of linear isotropic elasticity and present uniqueness results for the corresponding inverse scattering problems with polyhedral-type obstacles and a finite number of incident plane elastic waves. Our approach is based on a reflection principle for the Navier equation. (orig.)
On Maximally Dissipative Shock Waves in Nonlinear Elasticity
Knowles, James K.
2010-01-01
Shock waves in nonlinearly elastic solids are, in general, dissipative. We study the following question: among all plane shock waves that can propagate with a given speed in a given one-dimensional nonlinearly elastic bar, which one—if any—maximizes the rate of dissipation? We find that the answer to this question depends strongly on the qualitative nature of the stress-strain relation characteristic of the given material. When maximally dissipative shocks do occur, they propagate according t...
Passive retrieval of Rayleigh waves in disordered elastic media
International Nuclear Information System (INIS)
Larose, Eric; Derode, Arnaud; Clorennec, Dominique; Margerin, Ludovic; Campillo, Michel
2005-01-01
When averaged over sources or disorder, cross correlation of diffuse fields yields the Green's function between two passive sensors. This technique is applied to elastic ultrasonic waves in an open scattering slab mimicking seismic waves in the Earth's crust. It appears that the Rayleigh wave reconstruction depends on the scattering properties of the elastic slab. Special attention is paid to the specific role of bulk to Rayleigh wave coupling, which may result in unexpected phenomena, such as a persistent time asymmetry in the diffuse regime
Energy in elastic fiber embedded in elastic matrix containing incident SH wave
Williams, James H., Jr.; Nagem, Raymond J.
1989-01-01
A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials.
International Nuclear Information System (INIS)
Anon.
1991-01-01
This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements
Nanoscale measurement of Nernst effect in two-dimensional charge density wave material 1T-TaS_{2}
Energy Technology Data Exchange (ETDEWEB)
Wu, Stephen M. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, USA; Luican-Mayer, Adina [Nanoscience and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Bhattacharya, Anand [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Nanoscience and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
2017-11-27
Advances in nanoscale material characterization on two-dimensional van der Waals layered materials primarily involve their optical and electronic properties. The thermal properties of these materials are harder to access due to the difficulty of thermal measurements at the nanoscale. In this work, we create a nanoscale magnetothermal device platform to access the basic out-of-plane magnetothermal transport properties of ultrathin van der Waals materials. Specifically, the Nernst effect in the charge density wave transition metal dichalcogenide 1T-TaS_{2} is examined on nano-thin flakes in a patterned device structure. It is revealed that near the commensurate charge density wave (CCDW) to nearly commensurate charge density wave (NCCDW) phase transition, the polarity of the Nernst effect changes. Since the Nernst effect is especially sensitive to changes in the Fermi surface, this suggests that large changes are occurring in the out-of-plane electronic structure of 1T-TaS_{2}, which are otherwise unresolved in just in-plane electronic transport measurements. This may signal a coherent evolution of out-of-plane stacking in the CCDW! NCCDW transition.
Piezoelectric excitation of elastic waves in centrosymmetrical potassium tantalate crystal
International Nuclear Information System (INIS)
Smolenskij, G.A.; Lemanov, V.V.; Sotnikov, A.V.; Syrnikov, P.P.; Yushin, N.K.
1981-01-01
Experiment results on excitation of elastic oscillations in potassium tantalate crystals are considered. The experiment has been conducted by usual for supersonic measurements technique: an impulse of the variable electric field has been applied to one of plane-parallel sample end-faces, at the same end-face signals corresponding to elastic pulses propagating in the crystal have been detected. Basic radiopulses parameters: basic frequency 30 MHz, duration 1-2 μs, pulse recurrence frequency 500 Hz, power 10 W. The investigation carried out has shown that the application to the sample at T=80 K temperature of constant external electrical field parallel to direction of elastic wave propagation leads to hysteresis dependence of elastic waves amplitude on the external voltage value. With temperature increase the hysteresis loop is deformed. It has been found when investigating temperature dependence of elastic wave amplitude that in the absence of external constant electrical field in short-circuited by constant current samples the oxillation excitation effect disappears at T approximately equal to 200 K. An essential influence on the elastic wave amplitude value is exerted by illumination of the crystal surface by light with 360-630 nm wave length. At T 130 K bacaee of photovoltaic effect in illuminated samples [ru
Two-dimensional topological photonics
Khanikaev, Alexander B.; Shvets, Gennady
2017-12-01
Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.
Manipulating acoustic wave reflection by a nonlinear elastic metasurface
Guo, Xinxin; Gusev, Vitalyi E.; Bertoldi, Katia; Tournat, Vincent
2018-03-01
The acoustic wave reflection properties of a nonlinear elastic metasurface, derived from resonant nonlinear elastic elements, are theoretically and numerically studied. The metasurface is composed of a two degree-of-freedom mass-spring system with quadratic elastic nonlinearity. The possibility of converting, during the reflection process, most of the fundamental incoming wave energy into the second harmonic wave is shown, both theoretically and numerically, by means of a proper design of the nonlinear metasurface. The theoretical results from the harmonic balance method for a monochromatic source are compared with time domain simulations for a wave packet source. This protocol allows analyzing the dynamics of the nonlinear reflection process in the metasurface as well as exploring the limits of the operating frequency bandwidth. The reported methodology can be applied to a wide variety of nonlinear metasurfaces, thus possibly extending the family of exotic nonlinear reflection processes.
Yi, Xin; Gao, Huajian
2014-06-01
A fundamental understanding of cell-nanomaterial interaction is essential for biomedical diagnostics, therapeutics, and nanotoxicity. Here, we perform a theoretical analysis to investigate the phase diagram and morphological evolution of an elastic rod-shaped nanoparticle wrapped by a lipid membrane in two dimensions. We show that there exist five possible wrapping phases based on the stability of full wrapping, partial wrapping, and no wrapping states. The wrapping phases depend on the shape and size of the particle, adhesion energy, membrane tension, and bending rigidity ratio between the particle and membrane. While symmetric morphologies are observed in the early and late stages of wrapping, in between a soft rod-shaped nanoparticle undergoes a dramatic symmetry breaking morphological change while stiff and rigid nanoparticles experience a sharp reorientation. These results are of interest to the study of a range of phenomena including viral budding, exocytosis, as well as endocytosis or phagocytosis of elastic particles into cells.
Steering elastic SH waves in an anomalous way by metasurface
Cao, Liyun; Yang, Zhichun; Xu, Yanlong
2018-03-01
Metasurface, which does not exist in nature, has exhibited exotic essence on the manipulation of both electromagnetic and acoustic waves. In this paper, the concept of metasurface is extended to the field of elastic SH waves, and the anomalous refractions of SH waves across the designed elastic SH wave metasurfaces (SHWMs) are demonstrated numerically. Firstly, a SHWM is designed with supercells, each supercell is composed of four subunits. It is demonstrated that this configuration has the ability of deflecting the vertical and oblique incident waves in an arbitrary desired direction. Then, a unique SHWM with supercell composed of only two subunits is designed. Numerical simulation shows its ability of splitting the vertical and oblique incident waves into two tunable transmitted wave beams, respectively. In the process of steering SH waves, it is also found that two kinds of leakages of transmitted waves across the designed SHWM will occur in some particular situations, which will affect the desired transmitted wave. The mechanisms of the leakages, which are different from that of the common high-order diffraction mentioned in existing literatures, are revealed. The current study can offer theoretical guidance not only for designing devices of directional ultrasonic detection and splitting SH waves but also for steering other kinds of classical waves.
Frequency tunable surface magneto elastic waves
Janusonis, J.; Chang, C. L.; van Loosdrecht, P. H. M.; Tobey, R. I.
2015-01-01
We use the transient grating technique to generate narrow-band, widely tunable, in-plane surface magnetoelastic waves in a nickel film. We monitor both the structural deformation of the acoustic wave and the accompanying magnetic precession and witness their intimate coupling in the time domain.
Rayleigh waves in elastic medium with double porosity
Directory of Open Access Journals (Sweden)
Rajneesh KUMAR
2018-03-01
Full Text Available The present paper deals with the propagation of Rayleigh waves in isotropic homogeneous elastic half-space with double porosity whose surface is subjected to stress-free boundary conditions. The compact secular equations for elastic solid half-space with voids are deduced as special cases from the present analysis. In order to illustrate the analytical developments, the secular equations have been solved numerically. The computer simulated results for copper materials in respect of Rayleigh wave velocity and attenuation coe¢ cient have been presented graphically.
International Nuclear Information System (INIS)
Mamica, S; Krawczyk, M; Lévy, J-C S
2014-01-01
We use a microscopic theory taking into account the dipolar and nearest-neighbour exchange interactions for exploring spin-wave excitations in two-dimensional magnetic dots in the vortex state. Normal modes of different profiles are observed: azimuthal and radial modes, as well as fundamental (quasiuniform) and highly localized modes. We examine the dependence of the frequencies and profiles of these modes on the dipolar-to-exchange interaction ratio and the size of the dot. Special attention is paid to some particular modes, including the lowest mode in the spectrum and the evolution of its profile, and the fundamental mode, the frequency of which proves almost independent of the dipolar-to-exchange interaction ratio. We also provide a selective overview of the experimental, analytical and numerical results from the literature, where different profiles of the lowest mode are reported. We attribute this diversity to the competition between the dipolar and exchange interactions. Finally, we study the hybridization of the modes, show the multi-mode hybridization and explain the selection rules. (paper)
Shui, Tao; Yang, Wen-Xing; Chen, Ai-Xi; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu
2018-03-01
We propose a scheme for high-precision two-dimensional (2D) atom localization via the four-wave mixing (FWM) in a four-level double-Λ atomic system. Due to the position-dependent atom-field interaction, the 2D position information of the atoms can be directly determined by the measurement of the normalized light intensity of output FWM-generated field. We further show that, when the position-dependent generated FWM field has become sufficiently intense, efficient back-coupling to the FWM generating state becomes important. This back-coupling pathway leads to competitive multiphoton destructive interference of the FWM generating state by three supplied and one internally generated fields. We find that the precision of 2D atom localization can be improved significantly by the multiphoton destructive interference and depends sensitively on the frequency detunings and the pump field intensity. Interestingly enough, we show that adjusting the frequency detunings and the pump field intensity can modify significantly the FWM efficiency, and consequently lead to a redistribution of the atoms. As a result, the atom can be localized in one of four quadrants with holding the precision of atom localization.
Propagation law of impact elastic wave based on specific materials
Directory of Open Access Journals (Sweden)
Chunmin CHEN
2017-02-01
Full Text Available In order to explore the propagation law of the impact elastic wave on the platform, the experimental platform is built by using the specific isotropic materials and anisotropic materials. The glass cloth epoxy laminated plate is used for anisotropic material, and an organic glass plate is used for isotropic material. The PVDF sensors adhered on the specific materials are utilized to collect data, and the elastic wave propagation law of different thick plates and laminated plates under impact conditions is analyzed. The Experimental results show that in anisotropic material, transverse wave propagation speed along the fiber arrangement direction is the fastest, while longitudinal wave propagation speed is the slowest. The longitudinal wave propagation speed in anisotropic laminates is much slower than that in the laminated thick plates. In the test channel arranged along a particular angle away from the central region of the material, transverse wave propagation speed is larger. Based on the experimental results, this paper proposes a material combination mode which is advantageous to elastic wave propagation and diffusion in shock-isolating materials. It is proposed to design a composite material with high acoustic velocity by adding regularly arranged fibrous materials. The overall design of the barrier material is a layered structure and a certain number of 90°zigzag structure.
Measurements of radiated elastic wave energy from dynamic tensile cracks
Boler, Frances M.
1990-01-01
The role of fracture-velocity, microstructure, and fracture-energy barriers in elastic wave radiation during a dynamic fracture was investigated in experiments in which dynamic tensile cracks of two fracture cofigurations of double cantilever beam geometry were propagating in glass samples. The first, referred to as primary fracture, consisted of fractures of intact glass specimens; the second configuration, referred to as secondary fracture, consisted of a refracture of primary fracture specimens which were rebonded with an intermittent pattern of adhesive to produce variations in fracture surface energy along the crack path. For primary fracture cases, measurable elastic waves were generated in 31 percent of the 16 fracture events observed; the condition for radiation of measurable waves appears to be a local abrupt change in the fracture path direction, such as occurs when the fracture intersects a surface flaw. For secondary fractures, 100 percent of events showed measurable elastic waves; in these fractures, the ratio of radiated elastic wave energy in the measured component to fracture surface energy was 10 times greater than for primary fracture.
Directory of Open Access Journals (Sweden)
Qian Wan
2015-04-01
Full Text Available Research on shock wave mitigation in channels has been a topic of much attention in the shock wave community. One approach to attenuate an incident shock wave is to use obstacles of various geometries arranged in different patterns. This work is inspired by the study from Chaudhuri et al. (2013, in which cylinders, squares and triangles placed in staggered and non-staggered subsequent columns were used to attenuate a planar incident shock wave. Here, we present numerical simulations using a different obstacle pattern. Instead of using a matrix of obstacles, an arrangement of square or cylindrical obstacles placed along a logarithmic spiral curve is investigated, which is motivated by our previous work on shock focusing using logarithmic spirals. Results show that obstacles placed along a logarithmic spiral can delay both the transmitted and the reflected shock wave. For different incident shock Mach numbers, away from the logarithmic spiral design Mach number, this shape is effective to either delay the transmitted or the reflected shock wave. Results also confirm that the degree of attenuation depends on the obstacle shape, effective flow area and obstacle arrangement, much like other obstacle configurations.
Damping of elastic waves in crystals with impurities
International Nuclear Information System (INIS)
Lemanov, V.V.; Petrov, A.V.; Akhmedzhanov, F.R.; Nasyrov, A.N.
1979-01-01
Elastic wave damping and thermal conductivity of NaCl-NaBr and Y 3 AL 5 O 12 crystals with Er impurity has been examined. The experimental results on a decrease in elastic wave damping in such crystals are analyzed in the framework of the Ahiezer damping theory. The measurements were made in the frequency range of 300-1500 MHz in propagation of longitudinal and transverse elastic waves along the [100] and [110] directions. At 10 % concentration of erbium impurity the transverse wave damping decreases by a factor of three, and for longitudinal waves by a factor of two in NaBr:Cl crystals, and by approximately 10 and 30 % for NaBr:Cl and Y 3 Al 5 O 12 :Er crystals, respectively. In Y 3 Al 5 O 12 crystals, unlike NaCl-NaBr crystals, no noticeable anisotropy of damping is observed. The transVerse wave damping in impurity crystals has been shown to increase significantly with decreasing temperature and increasing the impurity concentration
Numerical simulation of ultrasonic wave propagation in elastically anisotropic media
International Nuclear Information System (INIS)
Jacob, Victoria Cristina Cheade; Jospin, Reinaldo Jacques; Bittencourt, Marcelo de Siqueira Queiroz
2013-01-01
The ultrasonic non-destructive testing of components may encounter considerable difficulties to interpret some inspections results mainly in anisotropic crystalline structures. A numerical method for the simulation of elastic wave propagation in homogeneous elastically anisotropic media, based on the general finite element approach, is used to help this interpretation. The successful modeling of elastic field associated with NDE is based on the generation of a realistic pulsed ultrasonic wave, which is launched from a piezoelectric transducer into the material under inspection. The values of elastic constants are great interest information that provide the application of equations analytical models, until small and medium complexity problems through programs of numerical analysis as finite elements and/or boundary elements. The aim of this work is the comparison between the results of numerical solution of an ultrasonic wave, which is obtained from transient excitation pulse that can be specified by either force or displacement variation across the aperture of the transducer, and the results obtained from a experiment that was realized in an aluminum block in the IEN Ultrasonic Laboratory. The wave propagation can be simulated using all the characteristics of the material used in the experiment valuation associated to boundary conditions and from these results, the comparison can be made. (author)
thermoelastic waves without energy dissipation in an elastic plate ...
African Journals Online (AJOL)
cistvr
The first generalization, for isotropic bodies, is due to Lord & Shulman (1967) who obtained a wave-type heat equation by postulating a new law of heat conduction to replace the classical Fourier's law. ...... In this paper we have studied the thermoelastic interactions due to the punching of a cylindrical hole in an elastic plate ...
Elastic waves trapped by a homogeneous anisotropic semicylinder
Energy Technology Data Exchange (ETDEWEB)
Nazarov, S A [Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St.-Petersburg (Russian Federation)
2013-11-30
It is established that the problem of elastic oscillations of a homogeneous anisotropic semicylinder (console) with traction-free lateral surface (Neumann boundary condition) has no eigenvalues when the console is clamped at one end (Dirichlet boundary condition). If the end is free, under additional requirements of elastic and geometric symmetry, simple sufficient conditions are found for the existence of an eigenvalue embedded in the continuous spectrum and generating a trapped elastic wave, that is, one which decays at infinity at an exponential rate. The results are obtained by generalizing the methods developed for scalar problems, which however require substantial modification for the vector problem in elasticity theory. Examples are given and open questions are stated. Bibliography: 53 titles.
Elastic-wave generation in the evolution of displacement peaks
International Nuclear Information System (INIS)
Zhukov, V.P.; Boldin, A.A.
1988-01-01
This paper investigated the character of elastic shock wave generation and damping in irradiated materials along with the possibility of their long-range influence on the structure of the irradiated materials. Dispersion at the elastoplastic stage of atomic displacement peak development was taken into account. The three-dimensional nonlinear wave was described by an equation in the approximation of weak nonlinearity and weak spatial dispersion. Numerical modeling of the propagation of a plane shock wave in a crystal lattice was conducted. The distribution of the density and mass velocity of the material at the instant of complete damping of the plastic shock-wave component was determined. The appearance of solitary waves (solitons) at large amplitudes, localized in space, which propagate without distortion to arbitrary distances and retain their amplitude and form in interacting with one another, was investigated. Some physical consequences of the influence of solitary waves on the irradiated materials were considered
Herrmann, Eva; de Lédinghen, Victor; Cassinotto, Christophe; Chu, Winnie C-W; Leung, Vivian Y-F; Ferraioli, Giovanna; Filice, Carlo; Castera, Laurent; Vilgrain, Valérie; Ronot, Maxime; Dumortier, Jérôme; Guibal, Aymeric; Pol, Stanislas; Trebicka, Jonel; Jansen, Christian; Strassburg, Christian; Zheng, Rongqin; Zheng, Jian; Francque, Sven; Vanwolleghem, Thomas; Vonghia, Luisa; Manesis, Emanuel K; Zoumpoulis, Pavlos; Sporea, Ioan; Thiele, Maja; Krag, Aleksander; Cohen-Bacrie, Claude; Criton, Aline; Gay, Joel; Deffieux, Thomas; Friedrich-Rust, Mireen
2018-01-01
Two-dimensional shear wave elastography (2D-SWE) has proven to be efficient for the evaluation of liver fibrosis in small to moderate-sized clinical trials. We aimed at running a larger-scale meta-analysis of individual data. Centers which have worked with Aixplorer ultrasound equipment were contacted to share their data. Retrospective statistical analysis used direct and paired receiver operating characteristic and area under the receiver operating characteristic curve (AUROC) analyses, accounting for random effects. Data on both 2D-SWE and liver biopsy were available for 1,134 patients from 13 sites, as well as on successful transient elastography in 665 patients. Most patients had chronic hepatitis C (n = 379), hepatitis B (n = 400), or nonalcoholic fatty liver disease (n = 156). AUROCs of 2D-SWE in patients with hepatitis C, hepatitis B, and nonalcoholic fatty liver disease were 86.3%, 90.6%, and 85.5% for diagnosing significant fibrosis and 92.9%, 95.5%, and 91.7% for diagnosing cirrhosis, respectively. The AUROC of 2D-SWE was 0.022-0.084 (95% confidence interval) larger than the AUROC of transient elastography for diagnosing significant fibrosis (P = 0.001) and 0.003-0.034 for diagnosing cirrhosis (P = 0.022) in all patients. This difference was strongest in hepatitis B patients. 2D-SWE has good to excellent performance for the noninvasive staging of liver fibrosis in patients with hepatitis B; further prospective studies are needed for head-to-head comparison between 2D-SWE and other imaging modalities to establish disease-specific appropriate cutoff points for assessment of fibrosis stage. (Hepatology 2018;67:260-272). © 2017 The Authors. Hepatology published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of Liver Diseases.
Electromagnetic signals produced by elastic waves in the Earth's crust
Sgrigna, V.; Buzzi, A.; Conti, L.; Guglielmi, A. V.; Pokhotelov, O. A.
2004-03-01
The paper describes the excitation of geoelectromagnetic-field oscillations caused by elastic waves propagating in the Earth's crust and generated by natural and anthropogenic phenomena, such as earthquakes, explosions, etc. Two mechanisms of electromagnetic signal generation, i.e. induction and electrokinetics ones, are considered and a comparative analysis between them is carried out. The first mechanism is associated with the induction of Foucault currents due to movements of the Earth's crust in the core geomagnetic field. The second mechanism is connected with movements of liquids filling pores and cracks of rocks. An equation is derived for describing in a uniform way these two manifestations of seismomagnetism. The equation is solved for body and surface waves. The study shows that a magnetic precursor signal is moving in the front of elastic waves.
Comparison of matrix methods for elastic wave scattering problems
International Nuclear Information System (INIS)
Tsao, S.J.; Varadan, V.K.; Varadan, V.V.
1983-01-01
This article briefly describes the T-matrix method and the MOOT (method of optimal truncation) of elastic wave scattering as they apply to A-D, SH- wave problems as well as 3-D elastic wave problems. Two methods are compared for scattering by elliptical cylinders as well as oblate spheroids of various eccentricity as a function of frequency. Convergence, and symmetry of the scattering cross section are also compared for ellipses and spheroidal cavities of different aspect ratios. Both the T-matrix approach and the MOOT were programmed on an AMDHL 470 computer using double precision arithmetic. Although the T-matrix method and MOOT are not always in agreement, it is in no way implied that any of the published results using MOOT are in error
Elastic wave attenuation in rocks containing fluids
International Nuclear Information System (INIS)
Berryman, J.G.
1986-01-01
The low-frequency limit of Biot's theory of fluid-saturated porous media predicts that the coefficients for viscous attenuation of shear waves and of the fast compressional wave are proportional to the fluid permeability. Although the observed attenuation is generally in qualitative agreement with the theory, the magnitude of the observed attenuation coefficient in rocks is often more than an order of magnitude higher than expected. This apparent dilemma can be resolved without invoking other attenuation mechanisms if the intrinsic permeability of the rock is inhomogeneous and varies widely in magnitude. A simple calculation of the overall behavior of a layered porous material using local-flow Biot theory shows that the effective permeability for attenuation is the mean of the constituent permeabilities while the effective permeability for fluid flow is the harmonic mean. When the range of variation in the local permeability is one or more orders of magnitude, this difference in averaging method can easily explain some of the observed discrepancies
Integrated analysis of energy transfers in elastic-wave turbulence.
Yokoyama, Naoto; Takaoka, Masanori
2017-08-01
In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
International Nuclear Information System (INIS)
Schroer, Bert; Freie Universitaet, Berlin
2005-02-01
It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)
Wave propagation in elastic medium with heterogeneous quadratic nonlinearity
International Nuclear Information System (INIS)
Tang Guangxin; Jacobs, Laurence J.; Qu Jianmin
2011-01-01
This paper studies the one-dimensional wave propagation in an elastic medium with spatially non-uniform quadratic nonlinearity. Two problems are solved analytically. One is for a time-harmonic wave propagating in a half-space where the displacement is prescribed on the surface of the half-space. It is found that spatial non-uniformity of the material nonlinearity causes backscattering of the second order harmonic, which when combined with the forward propagating waves generates a standing wave in steady-state wave motion. The second problem solved is the reflection from and transmission through a layer of finite thickness embedded in an otherwise linearly elastic medium of infinite extent, where it is assumed that the layer has a spatially non-uniform quadratic nonlinearity. The results show that the transmission coefficient for the second order harmonic is proportional to the spatial average of the nonlinearity across the thickness of the layer, independent of the spatial distribution of the nonlinearity. On the other hand, the coefficient of reflection is proportional to a weighted average of the nonlinearity across the layer thickness. The weight function in this weighted average is related to the propagating phase, thus making the coefficient of reflection dependent on the spatial distribution of the nonlinearity. Finally, the paper concludes with some discussions on how to use the reflected and transmitted second harmonic waves to evaluate the variance and autocorrelation length of nonlinear parameter β when the nonlinearity distribution in the layer is a stochastic process.
Two-dimensional ferroelectrics
Energy Technology Data Exchange (ETDEWEB)
Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)
2000-03-31
The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)
Wang, T.
2017-05-26
Elastic full waveform inversion (EFWI) provides high-resolution parameter estimation of the subsurface but requires good initial guess of the true model. The traveltime inversion only minimizes traveltime misfits which are more sensitive and linearly related to the low-wavenumber model perturbation. Therefore, building initial P and S wave velocity models for EFWI by using elastic wave-equation reflections traveltime inversion (WERTI) would be effective and robust, especially for the deeper part. In order to distinguish the reflection travletimes of P or S-waves in elastic media, we decompose the surface multicomponent data into vector P- and S-wave seismogram. We utilize the dynamic image warping to extract the reflected P- or S-wave traveltimes. The P-wave velocity are first inverted using P-wave traveltime followed by the S-wave velocity inversion with S-wave traveltime, during which the wave mode decomposition is applied to the gradients calculation. Synthetic example on the Sigbee2A model proves the validity of our method for recovering the long wavelength components of the model.
Barrelet zeros and elastic π+p partial waves
International Nuclear Information System (INIS)
Chew, D.M.; Urban, M.
1976-06-01
A procedure is proposed for constructing low-order partial-wave amplitudes from a knowledge of Barrelet zeros near the physical region. The method is applied to the zeros already obtained for elastic π + p scattering data between 1.2 and 2.2 GeV cm energies. The partial waves emerge with errors that are straight-forwardly related to the accuracy of the data and satisfy unitarity without any constraint being imposed. There are significant differences from the partial waves obtained by other methods; this can be partially explained by the fact that no previous partial-wave analysis has been able to solve the discrete ambiguity. The cost of the analysis is much less
Whispering gallery modes for elastic waves in disk resonators
Directory of Open Access Journals (Sweden)
S. Kaproulias
2011-12-01
Full Text Available The resonant modes of elastic waves in disk resonators are computationally studied with the finite difference time domain method. Different materials examined for the disk such as platinum and silicon. The effect of a glass substrate is also important especially in the case of silicon disks because of the similarity of sound velocities and mass densities between the two materials. The possibility of using those structures as sensors is also considered.
Source Illusion Devices for Flexural Lamb Waves Using Elastic Metasurfaces.
Liu, Yongquan; Liang, Zixian; Liu, Fu; Diba, Owen; Lamb, Alistair; Li, Jensen
2017-07-21
Inspired by recent demonstrations of metasurfaces in achieving reduced versions of electromagnetic cloaks, we propose and experimentally demonstrate source illusion devices to manipulate flexural waves using metasurfaces. The approach is particularly useful for elastic waves due to the lack of form invariance in usual transformation methods. We demonstrate compact and simple-to-implement metasurfaces for shifting, transforming, and splitting a point source. The effects are measured to be broadband and robust against a change of source positions, with agreement from numerical simulations and the Huygens-Fresnel theory. The proposed method is potentially useful for applications such as nondestructive testing, high-resolution ultrasonography, and advanced signal modulation.
Nonlinear reflection of shock shear waves in soft elastic media.
Pinton, Gianmarco; Coulouvrat, François; Gennisson, Jean-Luc; Tanter, Mickaël
2010-02-01
For fluids, the theoretical investigation of shock wave reflection has a good agreement with experiments when the incident shock Mach number is large. But when it is small, theory predicts that Mach reflections are physically unrealistic, which contradicts experimental evidence. This von Neumann paradox is investigated for shear shock waves in soft elastic solids with theory and simulations. The nonlinear elastic wave equation is approximated by a paraxial wave equation with a cubic nonlinear term. This equation is solved numerically with finite differences and the Godunov scheme. Three reflection regimes are observed. Theory is developed for shock propagation by applying the Rankine-Hugoniot relations and entropic constraints. A characteristic parameter relating diffraction and non-linearity is introduced and its theoretical values are shown to match numerical observations. The numerical solution is then applied to von Neumann reflection, where curved reflected and Mach shocks are observed. Finally, the case of weak von Neumann reflection, where there is no reflected shock, is examined. The smooth but non-monotonic transition between these three reflection regimes, from linear Snell-Descartes to perfect grazing case, provides a solution to the acoustical von Neumann paradox for the shear wave equation. This transition is similar to the quadratic non-linearity in fluids.
Elastic wave from fast heavy ion irradiation on solids
Kambara, T; Kanai, Y; Kojima, T M; Nanai, Y; Yoneda, A; Yamazaki, Y
2002-01-01
To study the time-dependent mechanical effects of fast heavy ion irradiations, we have irradiated various solids by a short-bunch beam of 95 MeV/u Ar ions and observed elastic waves generated in the bulk. The irradiated targets were square-shaped plates of poly-crystals of metals (Al and Cu), invar alloy, ceramic (Al sub 2 O sub 3), fused silica (SiO sub 2) and single crystals of KC1 and LiF with a thickness of 10 mm. The beam was incident perpendicular to the surface and all ions were stopped in the target. Two piezo-electric ultrasonic sensors were attached to the surface of the target and detected the elastic waves. The elastic waveforms as well as the time structure and intensity of the beam bunch were recorded for each shot of a beam bunch. The sensor placed opposite to the beam spot recorded a clear waveform of the longitudinal wave across the material, except for the invar and fused silica targets. From its propagation time along with the sound velocity and the thickness of the target, the depth of the...
Application of RMS for damage detection by guided elastic waves
Energy Technology Data Exchange (ETDEWEB)
Radzienski, M; Dolinski, L; Krawczuk, M [Gdansk University of Technology, Faculty of Electrical and Control Engineering, Narutowicza 11/12, 80-952 Gdansk (Poland); Zak, A; Ostachowicz, W, E-mail: Maciej.Radzienski@gmail.com [Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk (Poland)
2011-07-19
This paper presents certain results of an experimental study related with a damage detection in structural elements based on deviations in guided elastic wave propagation patterns. In order to excite guided elastic waves within specimens tested piezoelectric transducers have been applied. As excitation signals 5 sine cycles modulated by Hanning window have been used. Propagation of guided elastic waves has been monitored by a scanning Doppler laser vibrometer. The time signals recorded during measurement have been utilised to calculate the values of RMS. It has turned out that the values of RMS differed significantly in damaged areas from the values calculated for the healthy ones. In this way it has become possible to pinpoint precisely the locations of damage over the entire measured surface. All experimental investigations have been carried out for thin aluminium or composite plates. Damage has been simulated by a small additional mass attached on the plate surface or by a narrow notch cut. It has been shown that proposed method allows one to localise damage of various shapes and sizes within structural elements over the whole area under investigation.
Application of RMS for damage detection by guided elastic waves
Radzieński, M.; Doliński, Ł.; Krawczuk, M.; dot Zak, A.; Ostachowicz, W.
2011-07-01
This paper presents certain results of an experimental study related with a damage detection in structural elements based on deviations in guided elastic wave propagation patterns. In order to excite guided elastic waves within specimens tested piezoelectric transducers have been applied. As excitation signals 5 sine cycles modulated by Hanning window have been used. Propagation of guided elastic waves has been monitored by a scanning Doppler laser vibrometer. The time signals recorded during measurement have been utilised to calculate the values of RMS. It has turned out that the values of RMS differed significantly in damaged areas from the values calculated for the healthy ones. In this way it has become possible to pinpoint precisely the locations of damage over the entire measured surface. All experimental investigations have been carried out for thin aluminium or composite plates. Damage has been simulated by a small additional mass attached on the plate surface or by a narrow notch cut. It has been shown that proposed method allows one to localise damage of various shapes and sizes within structural elements over the whole area under investigation.
CSIR Research Space (South Africa)
Naidoo, K
2011-06-01
Full Text Available research by Ernst Mach in 1878. The steady, two-dimensional transition criteria between regular and Mach reflection are well established. There has been little done to consider the dynamic effect of a rapidly rotating wedge on the transition between regular...
Rayleigh scattering and nonlinear inversion of elastic waves
Energy Technology Data Exchange (ETDEWEB)
Gritto, Roland [Univ. of California, Berkeley, CA (United States)
1995-12-01
Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of -100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to k_{p}R = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.
Nonlinear modulation of torsional waves in elastic rod. [Instability
Energy Technology Data Exchange (ETDEWEB)
Hirao, M; Sugimoto, N [Osaka Univ., Toyonaka (Japan). Faculty of Engineering Science
1977-06-01
Nonlinear Schroedinger equation, which describes the nonlinear modulation of dispersive torsional waves in an elastic rod of circular cross-section, is derived by the derivative expansion method. It is found, for the lowest dispersive mode, that the modulational instability occurs except in the range of the carrier wavenumber, 2.799
Mechanisms of elastic wave generation in solids by ion impact
International Nuclear Information System (INIS)
Deemer, B.; Murphy, J.; Claytor, T.
1990-01-01
This study is directed at understanding the mechanisms of acoustic signal generation by modulated beams of energetic ions as a function of ion energy. Interaction of ions with solids initiates a range of processes including sputtering, ion implantation, ionization, both internal and external, as well as thermal deposition in the solid. Accumulated internal stress also occurs by generation of dislocations resulting from, inelastic nuclear scattering of the incident ion beam. With respect to elastic wave generation, two potential mechanisms are thermoelastic induced stress and momentum transfer. The latter process includes contributions of momentum transfer from the incident beam and from ions ejected via sputtering. Other aspects of the generation process include the potential for shock wave generation since the mean particle velocity for a wide range of ion energies exceeds the velocity of sound in solids. This study seeks to distinguish the contribution of these mechanisms by studying the signature, angular distribution and energy dependence of the elastic wave response in the time domain and to use this information to understand technologically important processes such as implantation and sputtering
Integral Equation Methods for Electromagnetic and Elastic Waves
Chew, Weng; Hu, Bin
2008-01-01
Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral eq
Observation of shock transverse waves in elastic media.
Catheline, S; Gennisson, J-L; Tanter, M; Fink, M
2003-10-17
We report the first experimental observation of a shock transverse wave propagating in an elastic medium. This observation was possible because the propagation medium, a soft solid, allows one to reach a very high Mach number. In this extreme configuration, the shock formation is observed over a distance of less than a few wavelengths, thanks to a prototype of an ultrafast scanner (that acquires 5000 frames per second). A comparison of these new experimental data with theoretical predictions, based on a modified Burger's equation, shows good agreement.
The relationship between elastic constants and structure of shock waves in a zinc single crystal
Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.
2017-12-01
The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.
Seadawy, Aly R.
2017-12-01
In this study, we presented the problem formulations of models for internal solitary waves in a stratified shear flow with a free surface. The nonlinear higher order of extended KdV equations for the free surface displacement is generated. We derived the coefficients of the nonlinear higher-order extended KdV equation in terms of integrals of the modal function for the linear long-wave theory. The wave amplitude potential and the fluid pressure of the extended KdV equation in the form of solitary-wave solutions are deduced. We discussed and analyzed the stability of the obtained solutions and the movement role of the waves by making graphs of the exact solutions.
Conical refraction of elastic waves in absorbing crystals
International Nuclear Information System (INIS)
Alshits, V. I.; Lyubimov, V. N.
2011-01-01
The absorption-induced acoustic-axis splitting in a viscoelastic crystal with an arbitrary anisotropy is considered. It is shown that after “switching on” absorption, the linear vector polarization field in the vicinity of the initial degeneracy point having an orientation singularity with the Poincaré index n = ±1/2, transforms to a planar distribution of ellipses with two singularities n = ±1/4 corresponding to new axes. The local geometry of the slowness surface of elastic waves is studied in the vicinity of new degeneracy points and a self-intersection line connecting them. The absorption-induced transformation of the classical picture of conical refraction is studied. The ellipticity of waves at the edge of the self-intersection wedge in a narrow interval of propagation directions drastically changes from circular at the wedge ends to linear in the middle of the wedge. For the wave normal directed to an arbitrary point of this wedge, during movement of the displacement vector over the corresponding polarization ellipse, the wave ray velocity s runs over the same cone describing refraction in a crystal without absorption. In this case, the end of the vector moves along a universal ellipse whose plane is orthogonal to the acoustic axis for zero absorption. The areal velocity of this movement differs from the angular velocity of the displacement vector on the polarization ellipse only by a constant factor, being delayed by π/2 in phase. When the wave normal is localized at the edge of the wedge in its central region, the movement of vector s along the universal ellipse becomes drastically nonuniform and the refraction transforms from conical to wedge-like.
Exact result in strong wave turbulence of thin elastic plates
Düring, Gustavo; Krstulovic, Giorgio
2018-02-01
An exact result concerning the energy transfers between nonlinear waves of a thin elastic plate is derived. Following Kolmogorov's original ideas in hydrodynamical turbulence, but applied to the Föppl-von Kármán equation for thin plates, the corresponding Kármán-Howarth-Monin relation and an equivalent of the 4/5 -Kolmogorov's law is derived. A third-order structure function involving increments of the amplitude, velocity, and the Airy stress function of a plate, is proven to be equal to -ɛ ℓ , where ℓ is a length scale in the inertial range at which the increments are evaluated and ɛ the energy dissipation rate. Numerical data confirm this law. In addition, a useful definition of the energy fluxes in Fourier space is introduced and proven numerically to be flat in the inertial range. The exact results derived in this Rapid Communication are valid for both weak and strong wave turbulence. They could be used as a theoretical benchmark of new wave-turbulence theories and to develop further analogies with hydrodynamical turbulence.
International Nuclear Information System (INIS)
Gus'kov, Sergei Yu; Doskach, I Ya
1999-01-01
An analytical solution is obtained to the problem of propagation of a 2-D nonlinear heat conduction wave from a cylindrical energy source, which acts in a planar layer of a material surrounded by a medium with different mass density and degree of ionisation. A theoretical justification is given of several interesting phenomena of 2-D thermal wave propagation through an inhomogeneous medium. These phenomena are related to the difference between the thermal wave velocities in the media with different thermal diffusivities. When the mass density in a layer experiencing the action of an energy source exceeds the density of the surrounding medium, the thermal wave front is shown to glide along the layer boundaries with a spatial velocity exceeding the velocity of the wave inside the layer. Moreover, there is a possibility of 'themal flow' of a layer across the boundaries between the layer and the surrounding medium in front of a thermal wave propagating inside the layer. The problems of heat transfer in multilayer targets for laser thermonuclear fusion are considered as an application. (interaction of laser radiation with matter. laser plasma)
A staggered-grid convolutional differentiator for elastic wave modelling
Sun, Weijia; Zhou, Binzhong; Fu, Li-Yun
2015-11-01
The computation of derivatives in governing partial differential equations is one of the most investigated subjects in the numerical simulation of physical wave propagation. An analytical staggered-grid convolutional differentiator (CD) for first-order velocity-stress elastic wave equations is derived in this paper by inverse Fourier transformation of the band-limited spectrum of a first derivative operator. A taper window function is used to truncate the infinite staggered-grid CD stencil. The truncated CD operator is almost as accurate as the analytical solution, and as efficient as the finite-difference (FD) method. The selection of window functions will influence the accuracy of the CD operator in wave simulation. We search for the optimal Gaussian windows for different order CDs by minimizing the spectral error of the derivative and comparing the windows with the normal Hanning window function for tapering the CD operators. It is found that the optimal Gaussian window appears to be similar to the Hanning window function for tapering the same CD operator. We investigate the accuracy of the windowed CD operator and the staggered-grid FD method with different orders. Compared to the conventional staggered-grid FD method, a short staggered-grid CD operator achieves an accuracy equivalent to that of a long FD operator, with lower computational costs. For example, an 8th order staggered-grid CD operator can achieve the same accuracy of a 16th order staggered-grid FD algorithm but with half of the computational resources and time required. Numerical examples from a homogeneous model and a crustal waveguide model are used to illustrate the superiority of the CD operators over the conventional staggered-grid FD operators for the simulation of wave propagations.
Propagation of Love waves in an elastic layer with void pores
Indian Academy of Sciences (India)
The paper presents a study of propagation of Love waves in a poroelastic layer resting over a poro-elastic half-space. Pores contain nothing of mechanical or energetic signiﬁcance. The study reveals that such a medium transmits two types of love waves. The ﬁrst front depends upon the modulus of rigidity of the elastic ...
Acoustic phonon emission by two dimensional plasmons
International Nuclear Information System (INIS)
Mishonov, T.M.
1990-06-01
Acoustic wave emission of the two dimensional plasmons in a semiconductor or superconductor microstructure is investigated by using the phenomenological deformation potential within the jellium model. The plasmons are excited by the external electromagnetic (e.m.) field. The power conversion coefficient of e.m. energy into acoustic wave energy is also estimated. It is shown, the coherent transformation has a sharp resonance at the plasmon frequency of the two dimensional electron gas (2DEG). The incoherent transformation of the e.m. energy is generated by ohmic dissipation of 2DEG. The method proposed for coherent phonon beam generation can be very effective for high mobility 2DEG and for thin superconducting layers if the plasmon frequency ω is smaller than the superconducting gap 2Δ. (author). 21 refs, 1 fig
Two-zone elastic-plastic single shock waves in solids.
Zhakhovsky, Vasily V; Budzevich, Mikalai M; Inogamov, Nail A; Oleynik, Ivan I; White, Carter T
2011-09-23
By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
International Nuclear Information System (INIS)
Zayed, E.M.E.
2004-01-01
We study the influence of a finite container on an ideal gas using the wave equation approach. The asymptotic expansion of the trace of the wave kernel μ-circumflex(t)=Σ υ=1 ∞ exp(-itμ υ 1/2 ) for small vertical bar t vertical bar and i=√-1, where {μ ν } ν=1 ∞ are the eigenvalues of the negative Laplacian -Δ=-Σ k=1 2 (((∂)/(∂x k ))) 2 in the (x 1 ,x 2 )-plane, is studied for an annular vibrating membrane Ω in R 2 together with its smooth inner boundary ∂Ω 1 and its smooth outer boundary ∂Ω 2 , where a finite number of Dirichlet, Neumann and Robin boundary conditions on the piecewise smooth components Γ j (j=1,...,m) of ∂Ω 1 and on the piecewise smooth components Γ j (j=m+1,...,n) of ∂Ω 2 such that ∂Ω 1 =union j=1 m Γ j and ∂Ω 2 =union j=m+1 n Γ j is considered. The basic problem is to extract information on the geometry of the annular vibrating membrane Ω from complete knowledge of its eigenvalues using the wave equation approach by analyzing the asymptotic expansions of the spectral function μ-circumflex(t) for small vertical bar t vertical bar. Some applications of μ-circumflex(t) for an ideal gas enclosed in the general annular bounded domain Ω are given.
Tong, Yuan; He, Man; Zhou, Yuming; Zhong, Xi; Fan, Lidan; Huang, Tingyuan; Liao, Qiang; Wang, Yongjuan
2018-03-01
In this study, multilayer sandwich heterostructural Ti3C2Tx MXenes decorated with polypyrrole chains have been synthesized successfully via HF etching treatment and in-situ chemical oxidative polymerization approach. The hybrids were investigated as EM wave absorbers for the first time. It is found that the composites consisting of 25 wt% Ti3C2Tx/PPy hybrids in a paraffin matrix exhibit a minimum reflection loss of -49.2 dB (∼99.99% absorption) at the thickness of 3.2 mm and a maximum effective absorption bandwidth of 4.9 GHz (12.4-17.3 GHz) corresponding to an absorber thickness of 2.0 mm. Additionally, a broad effective absorption bandwidth of 13.7 GHz (4.3-18.0 GHz) can be reached up by adjusting the thickness from 1.5 to 5.0 mm. Furthermore, the highest effective absorption bandwidth of 5.7 GHz can be reached when the mass fraction is 15 wt%. The enhanced comprehensive electromagnetic wave absorption has close correlation with the well-designed heterogeneous multilayered microstructure, generated heterogeneous interfaces, conductive paths, surface functional groups, localized defects and synergistic effect between laminated Ti3C2Tx and conductive polypyrrole network, which significantly improve impedance matching and attenuation abilities. The superior absorbing performance together with strong absorption and broad bandwidth endows the Ti3C2Tx/PPy hybrids with the potential prospect to be advanced EM wave absorbers.
Selkirk, Henry B.; Pfister, Leonhard; Chan, K. Roland; Kritz, Mark; Kelly, Ken
1989-01-01
During January and February 1987, as part of the Stratosphere-Troposphere Exchange Project, the NASA ER-2 made 11 flights from Darwin, Australia to investigate dehydration mechanisms in the vicinity of the tropical tropopause. After the monsoon onset in the second week of January, steady easterly flow of 15-25 ms (exp -1) was established in the upper troposphere and lower stratosphere over northern Australia and adjacent seas. Penetrating into this regime were elements of the monsoon convection such as overshooting convective turrets and extensive anvils including cyclone cloud shields. In cases of the latter, the resulting flow obstructions tended to produce mesoscale gravity waves. In several instances the ER- 2 meteorological and trace constituent measurements provide a detailed description of the structure of these gravity waves. Among these was STEP Flight 6, 22-23 January. It is of particular interest to STEP because of the close proximity of ice-laden and dehydrated air on the same isentropic surfaces. Convective events inject large amounts of ice into the upper troposphere and lower stratosphere which may not be completely removed by local precipitation processes. In the present instance, a gravity wave for removed from the source region appears to induce relativity rapid upward motion in the ice-laden air and subsequent dessication. Potential mechanisms for such a localized removal process are under investigation.
Directory of Open Access Journals (Sweden)
Anne-Christine Hladky-Hennion
2011-12-01
Full Text Available Negative refraction properties of a two-dimensional phononic crystal (PC, made of a triangular lattice of steel rods embedded in epoxy are investigated both experimentally and numerically. First, experiments have been carried out on a prism shaped PC immersed in water. Then, for focusing purposes, a flat lens is considered and the construction of the image of a point source is analyzed in details, when indices are matched between the PC and the surrounding fluid medium, whereas acoustic impedances are mismatched. Optimal conditions for focusing longitudinal elastic waves by such PC flat lens are then discussed.
Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.
Cleveland, Robin O; Sapozhnikov, Oleg A
2005-10-01
A time-domain finite-difference solution to the equations of linear elasticity was used to model the propagation of lithotripsy waves in kidney stones. The model was used to determine the loading on the stone (principal stresses and strains and maximum shear stresses and strains) due to the impact of lithotripsy shock waves. The simulations show that the peak loading induced in kidney stones is generated by constructive interference from shear waves launched from the outer edge of the stone with other waves in the stone. Notably the shear wave induced loads were significantly larger than the loads generated by the classic Hopkinson or spall effect. For simulations where the diameter of the focal spot of the lithotripter was smaller than that of the stone the loading decreased by more than 50%. The constructive interference was also sensitive to shock rise time and it was found that the peak tensile stress reduced by 30% as rise time increased from 25 to 150 ns. These results demonstrate that shear waves likely play a critical role in stone comminution and that lithotripters with large focal widths and short rise times should be effective at generating high stresses inside kidney stones.
Topological aspect of disclinations in two-dimensional crystals
International Nuclear Information System (INIS)
Wei-Kai, Qi; Tao, Zhu; Yong, Chen; Ji-Rong, Ren
2009-01-01
By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given. (the physics of elementary particles and fields)
International Nuclear Information System (INIS)
Haas, Florian
2014-01-01
The dynamics of strong interaction in the regime of low energies, i.e. large distances, is still not understood. Given its simplicity the non-relativistic simple quark model (SQM) describes successfully the observed hadronic spectra. QCD-inspired models, however, predict hadronic states where the gluonic content contributes to the hadron quantum numbers. These so-called hybrids cannot be explained within the SQM. A solid experimental proof of the existence of such systems would be the observation of spin-exotic states, with spin-parity quantum numbers, not allowed in the SQM. The study of mesons, the simplest hadrons, permits to gain insight into the realm of strong interaction where hadrons are the relevant degrees of freedom. The most promising spin-exotic meson candidate is the π 1 (1600), which was claimed in several experiments and in particular in data taken during a previous hadron campaign of the COMPASS experiment. The hadron spectroscopy program of the COMPASS experiment at CERN focuses on the investigation of the light-meson spectrum in order to enlighten this rarely understood regime of strong interaction. During the 2008 data taking an unprecedented statistical precision has been reached in peripheral interactions of 190 GeV/c pions with a proton target leading to the π - π - π + final state. A spin-parity analysis in the kinematical region of the squared fourmomentum transfer 0.1≤t'0≤1.0 GeV 2 /c 2 was carried out based on a model of 88 partial waves up to a total angular momentum of 6. Besides the precise determination of properties of known resonances, a new axial-vector state, the a 1 (1420), was observed for the first time in a mass region where neither model nor lattice calculations predict mesons with this quantum numbers. Noteworthy is the very small intensity of this signal and that it only couples to the f 0 (980) isobar which is assumed to have a large strangeness content. The spin-exotic π 1 (1600) was observed albeit as a
Elastic-plastic waves in UV 0.2 Uranium alloy
International Nuclear Information System (INIS)
Bernier, H.; Lalle, P.
1984-09-01
Release waves coming from the back face of an uranium alloy projectile in a symmetric collision are used to estimate some dynamic characteristics of this material. In the pressure range experimentally covered (<=29GPa) the velocity of the elastic precursor is about 3,45 km/s, and the Hugoniot elastic limit (HEL) is 1,15GPa. The pressure decrease behind the 20GPa (29GPa) shock wave begins with a quasi-elastic wave which velocity is 3,9 km/s (4,2 km/s), and pressure jump of 3GPa (3,7GPa)
International Nuclear Information System (INIS)
Miles, A.R.; Edwards, M.J.; Greenough, J.A.
2004-01-01
Perturbations on an interface driven by a strong blast wave grow in time due to a combination of Rayleigh-Taylor, Richtmyer-Meshkov, and decompression effects. In this paper, the results from a computational study of such a system under drive conditions to be attainable on the National Ignition Facility [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] are presented. Using the multiphysics, adaptive mesh refinement, higher order Godunov Eulerian hydrocode, Raptor [L. H. Howell and J. A. Greenough, J. Comput. Phys. 184, 53 (2003)], the late nonlinear instability evolution for multiple amplitude and phase realizations of a variety of multimode spectral types is considered. Compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. Certain aspects of the initial conditions, including the rms amplitude, are shown to have a strong effect on the time to transition to the quasi-self-similar regime
Two-dimensional NMR spectrometry
International Nuclear Information System (INIS)
Farrar, T.C.
1987-01-01
This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2
Quasi-two-dimensional holography
International Nuclear Information System (INIS)
Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.
1980-01-01
The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de
Diameter effect on stress-wave evaluation of modulus of elasticity of logs
Xiping Wang; Robert J. Ross; Brian K. Brashaw; John Punches; John R. Erickson; John W. Forsman; Roy E. Pellerin
2004-01-01
Recent studies on nondestructive evaluation (NDE) of logs have shown that a longitudinal stress-wave method can be used to nondestructively evaluate the modulus of elasticity (MOE) of logs. A strong relationship has been found between stress-wave MOE and static MOE of logs, but a significant deviation was observed between stress-wave and static values. The objective of...
A new type of surface acoustic waves in solids due to nonlinear elasticity
International Nuclear Information System (INIS)
Mozhaev, V.G.
1988-12-01
It is shown that in nonlinear elastic semi-infinite medium possessing a property of self focusing of shear waves, besides bulk non-linear shear waves, new surface acoustic waves exist, localization of which near the boundary is entirely due to nonlinear effects. (author). 8 refs
Energy Technology Data Exchange (ETDEWEB)
Uesaka, S [Kyoto University, Kyoto (Japan). Faculty of Engineering; Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan)
1997-05-27
Algorithm is constructed and a program developed for a full-wave inversion (FWI) method utilizing the elastic wave equation in seismic exploration. The FWI method is a method for obtaining a physical property distribution using the whole observed waveforms as the data. It is capable of high resolution which is several times smaller than the wavelength since it can handle such phenomena as wave reflection and dispersion. The method for determining the P-wave velocity structure by use of the acoustic wave equation does not provide information about the S-wave velocity since it does not consider S-waves or converted waves. In an analysis using the elastic wave equation, on the other hand, not only P-wave data but also S-wave data can be utilized. In this report, under such circumstances, an inverse analysis algorithm is constructed on the basis of the elastic wave equation, and a basic program is developed. On the basis of the methods of Mora and of Luo and Schuster, the correction factors for P-wave and S-wave velocities are formulated directly from the elastic wave equation. Computations are performed and the effects of the hypocenter frequency and vibration transmission direction are examined. 6 refs., 8 figs.
Two-dimensional metamaterial optics
International Nuclear Information System (INIS)
Smolyaninov, I I
2010-01-01
While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes
Analysis and computation of the elastic wave equation with random coefficients
Motamed, Mohammad; Nobile, Fabio; Tempone, Raul
2015-01-01
We consider the stochastic initial-boundary value problem for the elastic wave equation with random coefficients and deterministic data. We propose a stochastic collocation method for computing statistical moments of the solution or statistics
Tunable modulation of refracted lamb wave front facilitated by adaptive elastic metasurfaces
Li, Shilong; Xu, Jiawen; Tang, J.
2018-01-01
This letter reports designs of adaptive metasurfaces capable of modulating incoming wave fronts of elastic waves through electromechanical-tuning of their cells. The proposed elastic metasurfaces are composed of arrayed piezoelectric units with individually connected negative capacitance elements that are online tunable. By adjusting the negative capacitances properly, accurately formed, discontinuous phase profiles along the elastic metasurfaces can be achieved. Subsequently, anomalous refraction with various angles can be realized on the transmitted lowest asymmetric mode Lamb wave. Moreover, designs to facilitate planar focal lenses and source illusion devices can also be accomplished. The proposed flexible and versatile strategy to manipulate elastic waves has potential applications ranging from structural fault detection to vibration/noise control.
Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates
International Nuclear Information System (INIS)
Wu, Bin; Zhang, Chunli; Chen, Weiqiu; Zhang, Chuanzeng
2015-01-01
Material surfaces may have a remarkable effect on the mechanical behavior of magneto-electro-elastic (or multiferroic) structures at nanoscale. In this paper, a surface magneto-electro-elasticity theory (or effective boundary condition formulation), which governs the motion of the material surface of magneto-electro-elastic nanoplates, is established by employing the state-space formalism. The properties of anti-plane shear (SH) waves propagating in a transversely isotropic magneto-electro-elastic plate with nanothickness are investigated by taking surface effects into account. The size-dependent dispersion relations of both antisymmetric and symmetric SH waves are presented. The thickness-shear frequencies and the asymptotic characteristics of the dispersion relations considering surface effects are determined analytically as well. Numerical results show that surface effects play a very pronounced role in elastic wave propagation in magneto-electro-elastic nanoplates, and the dispersion properties depend strongly on the chosen surface material parameters of magneto-electro-elastic nanoplates. As a consequence, it is possible to modulate the waves in magneto-electro-elastic nanoplates through surface engineering. (paper)
THE WAVE INTERACTION OF HEAVY BREAKS IN THE WATER WITH ELASTIC BARRIER
Directory of Open Access Journals (Sweden)
Ivanchenko G.M.
2014-06-01
Full Text Available Transformation of underwater shock wave spherical front geometry and chauge of impulse carried by it at interaction witu elastic shield is numerically investigated witu the use of zero approximation of ray technique. It is established, that in the vicinity of spots of total internal reflection in the plane interface between water and elastic body the additional internal stresses tend to infinity.
Comparison of classical and modern theories of longitudinal wave propagation in elastic rods
CSIR Research Space (South Africa)
Shatalov, M
2011-01-01
Full Text Available Conference on Computational and Applied Mechanics SACAM10 Pretoria, 10?13 January 2010 ? SACAM COMPARISON OF CLASSICAL AND MODERN THEORIES OF LONGITUDINAL WAVE PROPAGATION IN ELASTIC RODS M. Shatalov*,?,?? , I. Fedotov? 1 , HM. Tenkam? 2, J. Marais..., Pretoria, 0001 FIN-40014, South Africa 1fedotovi@tut.ac.za, 2djouosseutenkamhm@tut.ac.za ?? Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa Keywords: Elastic rod, wave propagation, classical...
Elastic wave manipulation by using a phase-controlling meta-layer
Shen, Xiaohui; Sun, Chin-Teh; Barnhart, Miles V.; Huang, Guoliang
2018-03-01
In this work, a high pass meta-layer for elastic waves is proposed. An elastic phase-controlling meta-layer is theoretically realized using parallel and periodically arranged metamaterial sections based on the generalized Snell's law. The elastic meta-layer is composed of periodically repeated supercells, in which the frequency dependent elastic properties of the metamaterial are used to control a phase gradient at the interface between the meta-layer and conventional medium. It is analytically and numerically demonstrated that with a normal incident longitudinal wave, the wave propagation characteristics can be directly manipulated by the periodic length of the meta-layer element at the sub-wavelength scale. It is found that propagation of the incident wave through the interface is dependent on whether the working wavelength is longer or shorter than the periodic length of the meta-layer element. Specifically, a mode conversion of the P-wave to an SV-wave is investigated as the incident wave passes through the meta-layer region. Since the most common and damaging elastic waves in civil and mechanical industries are in the low frequency region, the work in this paper has great potential in the seismic shielding, engine vibration isolation, and other highly dynamic fields.
Two-dimensional flexible nanoelectronics
Akinwande, Deji; Petrone, Nicholas; Hone, James
2014-12-01
2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.
Two-dimensional thermofield bosonization
International Nuclear Information System (INIS)
Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.
2005-01-01
The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized
Two-dimensional critical phenomena
International Nuclear Information System (INIS)
Saleur, H.
1987-09-01
Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
International Nuclear Information System (INIS)
Silagadze, Z.K.
2007-01-01
Two-dimensional generalization of the original peak finding algorithm suggested earlier is given. The ideology of the algorithm emerged from the well-known quantum mechanical tunneling property which enables small bodies to penetrate through narrow potential barriers. We merge this 'quantum' ideology with the philosophy of Particle Swarm Optimization to get the global optimization algorithm which can be called Quantum Swarm Optimization. The functionality of the newborn algorithm is tested on some benchmark optimization problems
One-Dimensional Mass-Spring Chains Supporting Elastic Waves with Non-Conventional Topology
Directory of Open Access Journals (Sweden)
2016-04-01
Full Text Available There are two classes of phononic structures that can support elastic waves with non-conventional topology, namely intrinsic and extrinsic systems. The non-conventional topology of elastic wave results from breaking time reversal symmetry (T-symmetry of wave propagation. In extrinsic systems, energy is injected into the phononic structure to break T-symmetry. In intrinsic systems symmetry is broken through the medium microstructure that may lead to internal resonances. Mass-spring composite structures are introduced as metaphors for more complex phononic crystals with non-conventional topology. The elastic wave equation of motion of an intrinsic phononic structure composed of two coupled one-dimensional (1D harmonic chains can be factored into a Dirac-like equation, leading to antisymmetric modes that have spinor character and therefore non-conventional topology in wave number space. The topology of the elastic waves can be further modified by subjecting phononic structures to externally-induced spatio-temporal modulation of their elastic properties. Such modulations can be actuated through photo-elastic effects, magneto-elastic effects, piezo-electric effects or external mechanical effects. We also uncover an analogy between a combined intrinsic-extrinsic systems composed of a simple one-dimensional harmonic chain coupled to a rigid substrate subjected to a spatio-temporal modulation of the side spring stiffness and the Dirac equation in the presence of an electromagnetic field. The modulation is shown to be able to tune the spinor part of the elastic wave function and therefore its topology. This analogy between classical mechanics and quantum phenomena offers new modalities for developing more complex functions of phononic crystals and acoustic metamaterials.
Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines
DEFF Research Database (Denmark)
Kallesøe, Bjarne Skovmose
This report present results from the PSO project 2008-1-10092 entitled Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines that deals with measurements, modelling and simulations of the world’s first combined wave and wind energy platform. The floating energy...
Optimal synthesis of tunable elastic wave-guides
DEFF Research Database (Denmark)
Evgrafov, Anton; Rupp, Cory J.; Dunn, Martin L.
2008-01-01
Topology optimization, or control in the coefficients of partial differential equations, has been successfully utilized for designing wave-guides with precisely tailored functionalities. For many applications it would be desirable to have the possibility of drastically altering the wave...
Compact solitary waves in linearly elastic chains with non-smooth on-site potential
Energy Technology Data Exchange (ETDEWEB)
Gaeta, Giuseppe [Dipartimento di Matematica, Universita di Milano, Via Saldini 50, 20133 Milan (Italy); Gramchev, Todor [Dipartimento di Matematica e Informatica, Universita di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Walcher, Sebastian [Lehrstuhl A Mathematik, RWTH Aachen, 52056 Aachen (Germany)
2007-04-27
It was recently observed by Saccomandi and Sgura that one-dimensional chains with nonlinear elastic interaction and regular on-site potential can support compact solitary waves, i.e. travelling solitary waves with strictly compact support. In this paper, we show that the same applies to chains with linear elastic interaction and an on-site potential which is continuous but non-smooth at minima. Some different features arise; in particular, the speed of compact solitary waves is not uniquely fixed by the equation. We also discuss several generalizations of our findings.
Two dimensional infinite conformal symmetry
International Nuclear Information System (INIS)
Mohanta, N.N.; Tripathy, K.C.
1993-01-01
The invariant discontinuous (discrete) conformal transformation groups, namely the Kleinian and Fuchsian groups Gamma (with an arbitrary signature) of H (the Poincare upper half-plane l) and the unit disc Delta are explicitly constructed from the fundamental domain D. The Riemann surface with signatures of Gamma and conformally invariant automorphic forms (functions) with Peterson scalar product are discussed. The functor, where the category of complex Hilbert spaces spanned by the space of cusp forms constitutes the two dimensional conformal field theory. (Author) 7 refs
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
-dimensional separation space. Optimization of gradients in online RP×RP is more difficult than in normal HPLC as a result of the increased number of parameters and their influence on each other. Modeling the coverage of the compounds across the two-dimensional chromatogram as a result of a change in gradients could...... be used for optimization purposes, and reduce the time spend on optimization. In this thesis (chapter 6), and manuscript B, a measure of the coverage of the compounds in the twodimensional separation space is defined. It is then shown that this measure can be modeled for changes in the gradient in both...
E3D, 3-D Elastic Seismic Wave Propagation Code
International Nuclear Information System (INIS)
Larsen, S.; Harris, D.; Schultz, C.; Maddix, D.; Bakowsky, T.; Bent, L.
2004-01-01
1 - Description of program or function: E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output. 2 - Methods: The software simulates wave propagation by solving the elasto-dynamic formulation of the full wave equation on a staggered grid. The solution scheme is 4-order accurate in space, 2-order accurate in time
Liu, Hu; Liu, Hua; Yang, Jialing
2017-09-01
In the present paper, the coupling effect of transverse magnetic field and elastic medium on the longitudinal wave propagation along a carbon nanotube (CNT) is studied. Based on the nonlocal elasticity theory and Hamilton's principle, a unified nonlocal rod theory which takes into account the effects of small size scale, lateral inertia and radial deformation is proposed. The existing rod theories including the classic rod theory, the Rayleigh-Love theory and Rayleigh-Bishop theory for macro solids can be treated as the special cases of the present model. A two-parameter foundation model (Pasternak-type model) is used to represent the elastic medium. The influence of transverse magnetic field, Pasternak-type elastic medium and small size scale on the longitudinal wave propagation behavior of the CNT is investigated in detail. It is shown that the influences of lateral inertia and radial deformation cannot be neglected in analyzing the longitudinal wave propagation characteristics of the CNT. The results also show that the elastic medium and the transverse magnetic field will also affect the longitudinal wave dispersion behavior of the CNT significantly. The results obtained in this paper are helpful for understanding the mechanical behaviors of nanostructures embedded in an elastic medium.
Elastic metamaterials for tuning circular polarization of electromagnetic waves.
Zárate, Yair; Babaee, Sahab; Kang, Sung H; Neshev, Dragomir N; Shadrivov, Ilya V; Bertoldi, Katia; Powell, David A
2016-06-20
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.
Lee, Su Hyun; Moon, Woo Kyung; Cho, Nariya; Chang, Jung Min; Moon, Hyeong-Gon; Han, Wonshik; Noh, Dong-Young; Lee, Jung Chan; Kim, Hee Chan; Lee, Kyoung-Bun; Park, In-Ae
2014-03-01
The objective of this study was to compare the quantitative and qualitative shear-wave elastographic (SWE) features of breast cancers with mechanical elasticity and histopathologic characteristics. This prospective study was conducted with institutional review board approval, and written informed consent was obtained. Shear-wave elastography was performed for 30 invasive breast cancers in 30 women before surgery. The mechanical elasticity of a fresh breast tissue section, correlated with the ultrasound image, was measured using an indentation system. Quantitative (maximum, mean, minimum, and standard deviation of elasticity in kilopascals) and qualitative (color heterogeneity and presence of signal void areas in the mass) SWE features were compared with mechanical elasticity and histopathologic characteristics using the Pearson correlation coefficient and the Wilcoxon signed rank test. Maximum SWE values showed a moderate correlation with maximum mechanical elasticity (r = 0.530, P = 0.003). There were no significant differences between SWE values and mechanical elasticity in histologic grade I or II cancers (P = 0.268). However, SWE values were significantly higher than mechanical elasticity in histologic grade III cancers (P masses were present in 43% of breast cancers (13 of 30) and were correlated with dense collagen depositions (n = 11) or intratumoral necrosis (n = 2). Quantitative and qualitative SWE features reflect both the mechanical elasticity and histopathologic characteristics of breast cancers.
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two-dimensional capillary origami
International Nuclear Information System (INIS)
Brubaker, N.D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two dimensional solid state NMR
International Nuclear Information System (INIS)
Kentgens, A.P.M.
1987-01-01
This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs
Two-dimensional turbulent convection
Mazzino, Andrea
2017-11-01
We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].
International Nuclear Information System (INIS)
Nasu, K.
1987-01-01
The phase diagram of a two-dimensional N-site N-electron system (N>>1) with site-diagonal electron-phonon (e-ph) coupling is studied in the context of polaron theory, so as to clarify the competition between the superconducting (SC) state and the charge-density wave (CDW) state. The Fermi surface of noninteracting electrons is assumed to be a complete circle with no nesting-type instability in the case of weak e-ph coupling, so as to focus on such a strong coupling that even the standard ''strong-coupling theory'' for superconductivity breaks down. Phonon clouds moving with electrons as well as a frozen phonon are taken into account by a variational method, combined with a mean-field theory. It covers the whole region of three basic parameters characterizing the system: the intersite transfer energy of electron T, the e-ph coupling energy S, and the phonon energy ω. The resultant phase diagram is given in a triangular coordinate space spanned by T, S, and ω. In the adiabatic region ω >(T,S) near the ω vertex of the triangle, on the other hand, each electron becomes a small polaron, and the SC state is always more stable than the CDW state, because the retardation effect is absent
Non-linear waves in heterogeneous elastic rods via homogenization
Quezada de Luna, Manuel
2012-03-01
We consider the propagation of a planar loop on a heterogeneous elastic rod with a periodic microstructure consisting of two alternating homogeneous regions with different material properties. The analysis is carried out using a second-order homogenization theory based on a multiple scale asymptotic expansion. © 2011 Elsevier Ltd. All rights reserved.
Surface acoustic waves and elastic constants of InN epilayers determined by Brillouin scattering
Energy Technology Data Exchange (ETDEWEB)
Jimenez-Rioboo, R.J.; Prieto, C. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, Madrid (Spain); Cusco, R.; Domenech-Amador, N.; Artus, L. [Institut Jaume Almera, Consell Superior d' Investigacions Cientifiques (CSIC), Lluis Sole i Sabaris s.n., Barcelona, Catalonia (Spain); Yamaguchi, T.; Nanishi, Y. [Faculty of Science and Engineering, Ritsumeikan University, Noji-Higashi, Kusatsu, Shiga (Japan)
2012-06-15
The surface acoustic wave velocity in InN has been experimentally determined by means of Brillouin scattering experiments on c - and m -face epilayers. From simulations based on the Green's function formalism we determine the shear elastic constants c{sub 66} and c{sub 44} and propose a complete set of elastic constants for wurtzite InN. The analysis of the sagittal and azimuthal dependence of the surface acoustic wave velocity indicates a slightly different elastic behavior of the m -face sample that basically affects the c{sub 44} elastic constant. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Wave velocities in a pre-stressed anisotropic elastic medium
Indian Academy of Sciences (India)
Modiﬁed Christoffel equations are derived for three-dimensional wave propagation in a general anisotropic medium under initial stress.The three roots of a cubic equation deﬁne the phase velocities of three quasi-waves in the medium.Analytical expressions are used to calculate the directional derivatives of phase ...
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Seismic isolation of two dimensional periodic foundations
International Nuclear Information System (INIS)
Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.
2014-01-01
Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.
Rayleigh Waves in a Rotating Orthotropic Micropolar Elastic Solid Half-Space
Directory of Open Access Journals (Sweden)
Baljeet Singh
2013-01-01
Full Text Available A problem on Rayleigh wave in a rotating half-space of an orthotropic micropolar material is considered. The governing equations are solved for surface wave solutions in the half space of the material. These solutions satisfy the boundary conditions at free surface of the half-space to obtain the frequency equation of the Rayleigh wave. For numerical purpose, the frequency equation is approximated. The nondimensional speed of Rayleigh wave is computed and shown graphically versus nondimensional frequency and rotation-frequency ratio for both orthotropic micropolar elastic and isotropic micropolar elastic cases. The numerical results show the effects of rotation, orthotropy, and nondimensional frequency on the nondimensional speed of the Rayleigh wave.
Bending wave propagation of carbon nanotubes in a bi-parameter elastic matrix
International Nuclear Information System (INIS)
Wu, J.-X.; Li, X.-F.; Tang, G.-J.
2012-01-01
This article studies transverse waves propagating in carbon nanotubes (CNTs) embedded in a surrounding medium. The CNTs are modeled as a nonlocal elastic beam, whereas the surrounding medium is modeled as a bi-parameter elastic medium. When taking into account the effect of rotary inertia of cross-section, a governing equation is acquired. A comparison of wave speeds using the Rayleigh and Euler-Bernoulli theories of beams with the results of molecular dynamics simulation indicates that the nonlocal Rayleigh beam model is more adequate to describe flexural waves in CNTs than the nonlocal Euler-Bernoulli model. The influences of the surrounding medium and rotary inertia on the phase speed for single-walled and double-walled CNTs are analyzed. Obtained results turn out that the surrounding medium plays a dominant role for lower wave numbers, while rotary inertia strongly affects the phase speed for higher wave numbers.
Bending wave propagation of carbon nanotubes in a bi-parameter elastic matrix
Energy Technology Data Exchange (ETDEWEB)
Wu, J.-X. [School of Civil Engineering, Central South University, Changsha, Hunan 410075 (China); Li, X.-F., E-mail: xfli25@yahoo.com.cn [School of Civil Engineering, Central South University, Changsha, Hunan 410075 (China); Tang, G.-J. [College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073 (China)
2012-02-15
This article studies transverse waves propagating in carbon nanotubes (CNTs) embedded in a surrounding medium. The CNTs are modeled as a nonlocal elastic beam, whereas the surrounding medium is modeled as a bi-parameter elastic medium. When taking into account the effect of rotary inertia of cross-section, a governing equation is acquired. A comparison of wave speeds using the Rayleigh and Euler-Bernoulli theories of beams with the results of molecular dynamics simulation indicates that the nonlocal Rayleigh beam model is more adequate to describe flexural waves in CNTs than the nonlocal Euler-Bernoulli model. The influences of the surrounding medium and rotary inertia on the phase speed for single-walled and double-walled CNTs are analyzed. Obtained results turn out that the surrounding medium plays a dominant role for lower wave numbers, while rotary inertia strongly affects the phase speed for higher wave numbers.
Yu, Tianbao; Wang, Zhong; Liu, Wenxing; Wang, Tongbiao; Liu, Nianhua; Liao, Qinghua
2016-04-18
We report numerically large and complete photonic and phononic band gaps that simultaneously exist in eight-fold phoxonic quasicrystals (PhXQCs). PhXQCs can possess simultaneous photonic and phononic band gaps over a wide range of geometric parameters. Abundant localized modes can be achieved in defect-free PhXQCs for all photonic and phononic polarizations. These defect-free localized modes exhibit multiform spatial distributions and can confine simultaneously electromagnetic and elastic waves in a large area, thereby providing rich selectivity and enlarging the interaction space of optical and elastic waves. The simulated results based on finite element method show that quasiperiodic structures formed of both solid rods in air and holes in solid materials can simultaneously confine and tailor electromagnetic and elastic waves; these structures showed advantages over the periodic counterparts.
A Study on Detection of Elastic Wave Using Patch Type Piezo-Polymer Sensor
International Nuclear Information System (INIS)
Kim, Ki Bok; Yoon, Dong Jin; Kueon, Jae Hwa; Lee, Young Seop
2004-01-01
Patch type piezo-polymer sensors for smart structures were experimented to detect elastic wave. The pencil lead braking test was performed to analyze the characteristics of patch-type piezo-polymer sensors such as polyvinyliden fluoride (PVDF) and polyvinylidene fluoride trifluorethylene (P(VDF-TrFE)) for several test specimens with various elastic wave velocities and acoustical impedances. The characteristics of the patch-type piezo-polymer sensor were compared with the commercial PZT acoustic emission (AE) sensor. The vacuum grease and epoxy resin were used as a couplant for the acoustic impedance matching between the sensor and specimen. The peak amplitude of elastic wave increased as the diameter of piezo-film and acoustical impedance of the specimen increased. The frequency detection range of the piezo-film sensors decreased with increasing diameter of the piezo-film sensor. The P(VDF-TrFE) sensor was more sensitive than the PVDF sensor
Study of the method to estimate the hydraulic characteristics in rock masses by using elastic wave
International Nuclear Information System (INIS)
Katsu, Kenta; Ohnishi, Yuzo; Nishiyama, Satoshi; Yano, Takao; Ando, Kenichi; Yoshimura, Kimitaka
2008-01-01
In the area of radioactive waste repository, estimating radionuclide migration through the rock mass is an important factor for assessment of the repository. The purpose of this study is to develop a method to estimate hydraulic characteristics of rock masses by using elastic wave velocity dispersion. This method is based on dynamics poroelastic relations such as Biot and BISQ theories. These theories indicate relations between velocity dispersion and hydraulic characteristics. In order to verify the validity of these theories in crystalline rocks, we performed laboratory experiments. The results of experiments show the dependency of elastic wave velocity on its frequency. To test the applicability of this method to real rock masses, we performed in-situ experiment for tuff rock masses. The results of in-situ experiment show the possibility as a practical method to estimate the hydraulic characteristics by using elastic wave velocity dispersion. (author)
Pair Interaction of Dislocations in Two-Dimensional Crystals
Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.; von Grünberg, H. H.
2005-10-01
The pair interaction between crystal dislocations is systematically explored by analyzing particle trajectories of two-dimensional colloidal crystals measured by video microscopy. The resulting pair energies are compared to Monte Carlo data and to predictions derived from the standard Hamiltonian of the elastic theory of dislocations. Good agreement is found with respect to the distance and temperature dependence of the interaction potential, but not regarding the angle dependence where discrete lattice effects become important. Our results on the whole confirm that the dislocation Hamiltonian allows a quantitative understanding of the formation and interaction energies of dislocations in two-dimensional crystals.
Dynamics of shock waves in elastic-plastic solids
Favrie , Nicolas; Gavrilyuk , Sergey ,
2010-01-01
Submitted in ESAIM Procedings; The Maxwell type elastic-plastic solids are characterized by decaying the absolute values of the principal components of the deviatoric part of the stress tensor during the plastic relaxation step. We propose a mathematical formulation of such a model which is compatible with the von Mises criterion of plasticity. Numerical examples show the ability of the model to deal with complex physical phenomena.
Energy Technology Data Exchange (ETDEWEB)
Seo, Ho Geon; Song, Dong Gi; Jhang, Kyoung Young [Hanyang University, Seoul (Korea, Republic of)
2016-04-15
Measurement of elastic constants is crucial for engineering aspects of predicting the behavior of materials under load as well as structural health monitoring of material degradation. Ultrasonic velocity measurement for material properties has been broadly used as a nondestructive evaluation method for material characterization. In particular, pulse-echo method has been extensively utilized as it is not only simple but also effective when only one side of the inspected objects is accessible. However, the conventional technique in this approach measures longitudinal and shear waves individually to obtain their velocities. This produces a set of two data for each measurement. This paper proposes a simultaneous sensing system of longitudinal waves and shear waves for elastic constant measurement. The proposed system senses both these waves simultaneously as a single overlapped signal, which is then analyzed to calculate both the ultrasonic velocities for obtaining elastic constants. Therefore, this system requires just half the number of data to obtain elastic constants compared to the conventional individual measurement. The results of the proposed simultaneous measurement had smaller standard deviations than those in the individual measurement. These results validate that the proposed approach improves the efficiency and reliability of ultrasonic elastic constant measurement by reducing the complexity of the measurement system, its operating procedures, and the number of data.
International Nuclear Information System (INIS)
Seo, Ho Geon; Song, Dong Gi; Jhang, Kyoung Young
2016-01-01
Measurement of elastic constants is crucial for engineering aspects of predicting the behavior of materials under load as well as structural health monitoring of material degradation. Ultrasonic velocity measurement for material properties has been broadly used as a nondestructive evaluation method for material characterization. In particular, pulse-echo method has been extensively utilized as it is not only simple but also effective when only one side of the inspected objects is accessible. However, the conventional technique in this approach measures longitudinal and shear waves individually to obtain their velocities. This produces a set of two data for each measurement. This paper proposes a simultaneous sensing system of longitudinal waves and shear waves for elastic constant measurement. The proposed system senses both these waves simultaneously as a single overlapped signal, which is then analyzed to calculate both the ultrasonic velocities for obtaining elastic constants. Therefore, this system requires just half the number of data to obtain elastic constants compared to the conventional individual measurement. The results of the proposed simultaneous measurement had smaller standard deviations than those in the individual measurement. These results validate that the proposed approach improves the efficiency and reliability of ultrasonic elastic constant measurement by reducing the complexity of the measurement system, its operating procedures, and the number of data
An Experimental Study on the Impact of Different-frequency Elastic Waves on Water Retention Curve
Deng, J. H.; Dai, J. Y.; Lee, J. W.; Lo, W. C.
2017-12-01
ABSTEACTOver the past few decades, theoretical and experimental studies on the connection between elastic wave attributes and the physical properties of a fluid-bearing porous medium have attracted the attention of many scholars in fields of porous medium flow and hydrogeology. It has been previously determined that the transmission of elastic waves in a porous medium containing two immiscible fluids will have an effect on the water retention curve, but it has not been found that the water retention curve will be affected by the frequency of elastic vibration waves or whether the effect on the soil is temporary or permanent. This research is based on a sand box test in which the soil is divided into three layers (a lower, middle, and upper layer). In this case, we discuss different impacts on the water retention curve during the drying process under sound waves (elastic waves) subject to three frequencies (150Hz, 300Hz, and 450Hz), respectively. The change in the water retention curve before and after the effect is then discussed. In addition, how sound waves affect the water retention curve at different depths is also observed. According to the experimental results, we discover that sound waves can cause soil either to expand or to contract. When the soil is induced to expand due to sound waves, it can contract naturally and return to the condition it was in before the influence of the sound waves. On the contrary, when the soil is induced to contract, it is unable to return to its initial condition. Due to the results discussed above, it is suggested that sound waves causing soil to expand have a temporary impact while those causing soil to contract have a permanent impact. In addition, our experimental results show how sound waves affect the water retention curve at different depths. The degree of soil expansion and contraction caused by the sound waves will differ at various soil depths. Nevertheless, the expanding or contracting of soil is only subject to the
Excitation of waves in elastic waveguides by piezoelectric patch actuators
CSIR Research Space (South Africa)
Loveday, PW
2006-01-01
Full Text Available for waveguides excited by piezoelectric patch actuators. The waveguide is modelled using specially developed waveguide finite elements. These elements are formulated using a complex exponential to describe the wave propagation along the structure and finite...
Surface waves in fibre-reinforced anisotropic elastic media
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Department of Mathematics, Maharshi Dayanand University, Rohtak 124001,. India e-mail: s−j−singh@yahoo.com. MS received 1 March 2002. Abstract. In the paper under discussion, the problem of surface waves in fibre- ... On close exam-.
Quasi-elastic high-pressure waves in 2024 Al and Cu
International Nuclear Information System (INIS)
Morris, C.E.; Fritz, J.N.; Holian, B.L.
1981-01-01
Release waves from the back of a plate slap experiment are used to estimate the longitudinal modulus, bulk modulus and shear strength of the metal in the state produced by a symmetric collision. The velocity of the interface between the metal target and a window material is measured by the axially symmetric magnetic (ASM) probe. Wave profiles for initial states up to 90 GPa for 2024 Al and up to 150 GPa for Cu have been obtained. Elastic perfectly-plastic (EPP) theory cannot account for the results. A relatively simple quasi-elastic plastic (QEP) model can
Elastic waves at periodically-structured surfaces and interfaces of solids
Directory of Open Access Journals (Sweden)
A. G. Every
2014-12-01
Full Text Available This paper presents a simple treatment of elastic wave scattering at periodically structured surfaces and interfaces of solids, and the existence and nature of surface acoustic waves (SAW and interfacial (IW waves at such structures. Our treatment is embodied in phenomenological models in which the periodicity resides in the boundary conditions. These yield zone folding and band gaps at the boundary of, and within the Brillouin zone. Above the transverse bulk wave threshold, there occur leaky or pseudo-SAW and pseudo-IW, which are attenuated via radiation into the bulk wave continuum. These have a pronounced effect on the transmission and reflection of bulk waves. We provide examples of pseudo-SAW and pseudo-IW for which the coupling to the bulk wave continuum vanishes at isloated points in the dispersion relation. These supersonic guided waves correspond to embedded discrete eigenvalues within a radiation continuum. We stress the generality of the phenomena that are exhibited at widely different scales of length and frequency, and their relevance to situations as diverse as the guiding of seismic waves in mine stopes, the metrology of periodic metal interconnect structures in the semiconductor industry, and elastic wave scattering by an array of coplanar cracks in a solid.
Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates
International Nuclear Information System (INIS)
Lee, Tae Hun; Kim, Chung Seok; Jhang, Kyung Young
2010-01-01
Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions: phase matching, non-zero power flux, group velocity matching, and non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter grew up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters
Two-Dimensional Homogeneous Fermi Gases
Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning
2018-02-01
We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.
Equilibrium: two-dimensional configurations
International Nuclear Information System (INIS)
Anon.
1987-01-01
In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7
Elastic metamaterial with simultaneously negative refraction for longitudinal and transverse waves
Directory of Open Access Journals (Sweden)
Ji-En Wu
2017-10-01
Full Text Available We present a study of elastic metamaterial that possesses multiple local resonances. We demonstrated that the elastic metamaterial can have simultaneously three negative effective parameters, i.e., negative effective mass, effective bulk modulus and effective shear modulus at a certain frequency range. Through the analysis of the resonant field, it has been elucidated that the three negative parameters are induced by dipolar, monopolar and quadrupolar resonance respectively. The dipolar and monopolar resonances result into the negative band for longitudinal waves, while the dipolar and quadrupolar resonances cause the negative band for transverse waves. The two bands have an overlapping frequency regime. A simultaneously negative refraction for both longitudinal waves and transverse waves has been demonstrated in the system.
Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams
Ebrahimi, Farzad; Barati, Mohammad Reza; Dabbagh, Ali
2016-11-01
The analysis of wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanobeam is performed in the framework of classical beam theory. To capture small-scale effects, the nonlocal elasticity theory of Eringen is applied. Furthermore, the material properties of nanobeam are assumed to vary gradually through the thickness based on power-law form. Nonlocal governing equations of MEE-FG nanobeam have been derived employing Hamilton's principle. The results of present research have been validated by comparing with those of previous investigations. An analytical solution of governing equations is utilized to obtain wave frequencies, phase velocities and escape frequencies. Effects of various parameters such as wave number, nonlocal parameter, gradient index, axial load, magnetic potential and electric voltage on wave dispersion characteristics of MEE-FG nanoscale beams are studied in detail.
Wave propagation analysis of a size-dependent magneto-electro-elastic heterogeneous nanoplate
Ebrahimi, Farzad; Dabbagh, Ali; Reza Barati, Mohammad
2016-12-01
The analysis of the wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanoplate is carried out in the framework of a refined higher-order plate theory. In order to take into account the small-scale influence, the nonlocal elasticity theory of Eringen is employed. Furthermore, the material properties of the nanoplate are considered to be variable through the thickness based on the power-law form. Nonlocal governing equations of the MEE-FG nanoplate have been derived using Hamilton's principle. The results of the present study have been validated by comparing them with previous researches. An analytical solution of governing equations is performed to obtain wave frequencies, phase velocities and escape frequencies. The effect of different parameters, such as wave number, nonlocal parameter, gradient index, magnetic potential and electric voltage on the wave dispersion characteristics of MEE-FG nanoscale plates is studied in detail.
Zhong, P; Chuong, C J
1993-07-01
To understand the physical process of the impingement of cavitation microjet and the resultant shock wave propagation in an elastic solid, a theoretical model using geometrical acoustics was developed. Shock waves induced in both the jet head (water) and the solid were analyzed during a tri-supersonic impact configuration when the contact edge between the jet head and the elastic boundary expands faster than the longitudinal wave speed in the solid. Impact pressure at the boundary was solved using continuity conditions along the boundary normal. Reflection and refraction of shock waves from a solid-water interface were also included in the model. With this model, the impact pressure at the solid boundary and the stress, strain as well as velocity discontinuities at the propagating shock fronts were calculated. A comparison with results from previous studies shows that this model provides a more complete and general solution for the jet impact problem.
On the steady-state structure of shock waves in elastic media and dielectrics
International Nuclear Information System (INIS)
Kulikovskii, A. G.; Chugainova, A. P.
2010-01-01
A simplified system of equations describing small-amplitude nonlinear quasi-transverse waves in an elastic weakly anisotropic medium with complicated dissipation and dispersion is considered. A simplified system of equations derived for describing the propagation and evolution of one-dimensional weakly nonlinear electromagnetic waves in a weakly anisotropic dielectric is found to be of the same type as the system of equations for quasi-transverse waves in an elastic medium. The steady-state structure of small-amplitude quasi-transverse discontinuities and a large number of admissible discontinuity types is studied using this system of equations. Viscous dissipation is traditionally assumed to be described in terms of the next differentiation order as compared to those constituting the hyperbolic system describing long waves, while the terms responsible for dispersion have an even higher differentiation order.
Phononic Crystal Waveguide Transducers for Nonlinear Elastic Wave Sensing.
Ciampa, Francesco; Mankar, Akash; Marini, Andrea
2017-11-07
Second harmonic generation is one of the most sensitive and reliable nonlinear elastic signatures for micro-damage assessment. However, its detection requires powerful amplification systems generating fictitious harmonics that are difficult to discern from pure nonlinear elastic effects. Current state-of-the-art nonlinear ultrasonic methods still involve impractical solutions such as cumbersome signal calibration processes and substantial modifications of the test component in order to create material-based tunable harmonic filters. Here we propose and demonstrate a valid and sensible alternative strategy involving the development of an ultrasonic phononic crystal waveguide transducer that exhibits both single and multiple frequency stop-bands filtering out fictitious second harmonic frequencies. Remarkably, such a sensing device can be easily fabricated and integrated on the surface of the test structure without altering its mechanical and geometrical properties. The design of the phononic crystal structure is supported by a perturbative theoretical model predicting the frequency band-gaps of periodic plates with sinusoidal corrugation. We find our theoretical findings in excellent agreement with experimental testing revealing that the proposed phononic crystal waveguide transducer successfully attenuates second harmonics caused by the ultrasonic equipment, thus demonstrating its wide range of potential applications for acousto/ultrasonic material damage inspection.
Highly Nonlinear Wave Propagation in Elastic Woodpile Periodic Structures
2016-08-03
called a nanopteron, is not only motivated theoretically and numerically, but are also visualized experimentally by means of a laser Doppler vibrometer...velocity, which clearly follow the prin- cipal solitary wave (highlighted in red color ). It should be noted that the velocities involved in the
Wave velocities in a pre-stressed anisotropic elastic medium
Indian Academy of Sciences (India)
The extent of fracturing in a region of a bore- hole is a vital factor in the extraction of oil and of geothermal heat. The observations of scat- tered waves provide the chief means of identi- fication of the extent and nature of fractures. Involving initial stress, the changes monitored in reservoir evolution during hydrocarbon pro-.
Bulk nonlinear elastic strain waves in a bar with nanosize inclusions
DEFF Research Database (Denmark)
Gula, Igor A.; Samsonov (†), Alexander M.
2018-01-01
We propose a mathematical model for propagation of the long nonlinearly elastic longitudinal strain waves in a bar, which contains nanoscale structural inclusions. The model is governed by a nonlinear doubly dispersive equation (DDE) with respect to the one unknown longitudinal strain function. We...
Guided elastic waves produced by a periodically joined interface in a rock mass
CSIR Research Space (South Africa)
Yenwong Fai
2012-09-01
Full Text Available on Computational and Applied Mechanics SACAM2012 Johannesburg, South Africa, 3−5 September 2012 c©SACAM Guided Elastic Waves Produced by a Periodically Joined Interface in a Rock Mass A.S. Yenwong Fai School of Physics University of the Witwatersrand Johannesburg...
International Nuclear Information System (INIS)
Mungan, M.; Coppersmith, S.; Vinokur, V.M.
1999-01-01
We analyze the strains near threshold in 1-d charge density wave models at zero temperature and strong pinning. We show that in these models local strains diverge near the depinning threshold and characterize the scaling behavior of the phenomenon. This helps quantify when the underlying elastic description breaks down and plastic effects have to be included
Directory of Open Access Journals (Sweden)
Brian Chin Wing Kot
Full Text Available Standardization on Shear wave ultrasound elastography (SWUE technical settings will not only ensure that the results are accurate, but also detect any differences over time that may be attributed to true physiological changes. The present study evaluated the variations of elastic modulus of muscle and tendon using SWUE when different technical aspects were altered. The results of this study indicated that variations of elastic modulus of muscle and tendon were found when different transducer's pressure and region of interest (ROI's size were applied. No significant differences in elastic modulus of the rectus femoris muscle and patellar tendon were found with different acquisition times of the SWUE sonogram. The SWUE on the muscle and tendon should be performed with the lightest transducer's pressure, a shorter acquisition time for the SWUE sonogram, while measuring the mean elastic modulus regardless the ROI's size.
Elastic wave generated by granular impact on rough and erodible surfaces
Bachelet, Vincent; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Farin, Maxime
2018-01-01
The elastic waves generated by impactors hitting rough and erodible surfaces are studied. For this purpose, beads of variable materials, diameters, and velocities are dropped on (i) a smooth PMMA plate, (ii) stuck glass beads on the PMMA plate to create roughness, and (iii) the rough plate covered with layers of free particles to investigate erodible beds. The Hertz model validity to describe impacts on a smooth surface is confirmed. For rough and erodible surfaces, an empirical scaling law that relates the elastic energy to the radius Rb and normal velocity Vz of the impactor is deduced from experimental data. In addition, the radiated elastic energy is found to decrease exponentially with respect to the bed thickness. Lastly, we show that the variability of the elastic energy among shocks increases from some percents to 70% between smooth and erodible surfaces. This work is a first step to better quantify seismic emissions of rock impacts in natural environment, in particular on unconsolidated soils.
Elastic meson-nucleon partial wave scattering analyses
International Nuclear Information System (INIS)
Arndt, R.A.
1986-01-01
Comprehensive analyses of π-n elastic scattering data below 1100 MeV(Tlab), and K+p scattering below 3 GeV/c(Plab) are discussed. Also discussed is a package of computer programs and data bases (scattering data, and solution files) through which users can ''explore'' these interactions in great detail; this package is known by the acronym SAID (for Scattering Analysis Interactive Dialin) and is accessible on VAX backup tapes, or by dialin to the VPI computers. The π-n, and k+p interactions will be described as seen through the SAID programs. A procedure will be described for generating an interpolating array from any of the solutions encoded in SAID; this array can then be used through a fortran callable subroutine (supplied as part of SAID) to give excellent amplitude reconstructions over a broad kinematic range
Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave
Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan
2015-08-01
We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.
New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod
Seadawy, Aly R.; Manafian, Jalil
2018-03-01
This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM) in exactly solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the longitudinal wave equation (LWE) that arises in mathematical physics with dispersion caused by the transverse Poisson's effect in a magneto-electro-elastic (MEE) circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method.
Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature
Austin, Ryan A.
2018-01-01
The effect of temperature on the dynamic flow behavior of aluminum is considered in the context of precursor wave decay measurements and simulations. In this regard, a dislocation-based model of high-rate metal plasticity is brought into agreement with previous measurements of evolving wave profiles at 300 to 933 K, wherein the amplification of the precursor structure with temperature arises naturally from the dislocation mechanics treatment. The model suggests that the kinetics of inelastic flow and stress relaxation are governed primarily by phonon scattering and radiative damping (sound wave emission from dislocation cores), both of which intensify with temperature. The manifestation of these drag effects is linked to low dislocation density ahead of the precursor wave and the high mobility of dislocations in the face-centered cubic lattice. Simulations performed using other typical models of shock wave plasticity do not reproduce the observed temperature-dependence of elastic/plastic wave structure.
International Nuclear Information System (INIS)
Wilcox, Lucas C.; Stadler, Georg; Burstedde, Carsten; Ghattas, Omar
2010-01-01
We introduce a high-order discontinuous Galerkin (dG) scheme for the numerical solution of three-dimensional (3D) wave propagation problems in coupled elastic-acoustic media. A velocity-strain formulation is used, which allows for the solution of the acoustic and elastic wave equations within the same unified framework. Careful attention is directed at the derivation of a numerical flux that preserves high-order accuracy in the presence of material discontinuities, including elastic-acoustic interfaces. Explicit expressions for the 3D upwind numerical flux, derived as an exact solution for the relevant Riemann problem, are provided. The method supports h-non-conforming meshes, which are particularly effective at allowing local adaptation of the mesh size to resolve strong contrasts in the local wavelength, as well as dynamic adaptivity to track solution features. The use of high-order elements controls numerical dispersion, enabling propagation over many wave periods. We prove consistency and stability of the proposed dG scheme. To study the numerical accuracy and convergence of the proposed method, we compare against analytical solutions for wave propagation problems with interfaces, including Rayleigh, Lamb, Scholte, and Stoneley waves as well as plane waves impinging on an elastic-acoustic interface. Spectral rates of convergence are demonstrated for these problems, which include a non-conforming mesh case. Finally, we present scalability results for a parallel implementation of the proposed high-order dG scheme for large-scale seismic wave propagation in a simplified earth model, demonstrating high parallel efficiency for strong scaling to the full size of the Jaguar Cray XT5 supercomputer.
Periodicity effects of axial waves in elastic compound rods
DEFF Research Database (Denmark)
Nielsen, R. B.; Sorokin, S. V.
2015-01-01
Floquet analysis is applied to the Bernoulli-Euler model for axial waves in a periodic rod. Explicit asymptotic formulae for the stop band borders are given and the topology of the stop band pattern is explained. Eigenfrequencies of the symmetric unit cell are determined by the Phase-closure Prin......Floquet analysis is applied to the Bernoulli-Euler model for axial waves in a periodic rod. Explicit asymptotic formulae for the stop band borders are given and the topology of the stop band pattern is explained. Eigenfrequencies of the symmetric unit cell are determined by the Phase......-closure Principle, and their correspondence with stop band formation is shown. Steady-state and transient dynamics of a periodic rod of finite length are analysed numerically and the difference in structural response when excitation is done in either stop- or pass bands is demonstrated. A physical interpretation...
Extracting Earth's Elastic Wave Response from Noise Measurements
Snieder, Roel; Larose, Eric
2013-05-01
Recent research has shown that noise can be turned from a nuisance into a useful seismic source. In seismology and other fields in science and engineering, the estimation of the system response from noise measurements has proven to be a powerful technique. To convey the essence of the method, we first treat the simplest case of a homogeneous medium to show how noise measurements can be used to estimate waves that propagate between sensors. We provide an overview of physics research—dating back more than 100 years—showing that random field fluctuations contain information about the system response. This principle has found extensive use in surface-wave seismology but can also be applied to the estimation of body waves. Because noise provides continuous illumination of the subsurface, the extracted response is ideally suited for time-lapse monitoring. We present examples of time-lapse monitoring as applied to the softening of soil after the 2011 Tohoku-oki earthquake, the detection of a precursor to a landslide, and temporal changes in the lunar soil.
Bulk elastic wave propagation in partially saturated porous solids
International Nuclear Information System (INIS)
Berryman, J.G.; Thigpen, L.; Chin, R.C.Y.
1988-01-01
The linear equations of motion that describe the behavior of small disturbances in a porous solid containing both liquid and gas are solved for bulk wave propagation. The equations have been simplified by neglecting effects due to changes in capillary pressure. With this simplifying assumption, the equations reduce to two coupled (vector) equations of the form found in Biot's equations (for full saturation) but with more complicated coefficients. As in fully saturated solids, two shear waves with the same speed but different polarizations exist as do two compressional waves with distinct speeds. Attenuation effects can be enhanced in the partially saturated solid, depending on the distribution of gas in the pore space. Two models of the liquid/gas spatial distribution are considered: a segregated-fluids model and a mixed-fluids model. The two models predict comparable attentuation when the gas saturation is low, but the segregated-fluids model predicts a more rapid roll-off of attenuation as the gas saturation increases
Anisotropic mass density by two-dimensional acoustic metamaterials
Energy Technology Data Exchange (ETDEWEB)
Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera s/n, E-46022 Valencia (Spain)], E-mail: jsdehesa@upvnet.upv.es
2008-02-15
We show that specially designed two-dimensional arrangements of full elastic cylinders embedded in a nonviscous fluid or gas define (in the homogenization limit) a new class of acoustic metamaterials characterized by a dynamical effective mass density that is anisotropic. Here, analytic expressions for the dynamical mass density and the effective sound velocity tensors are derived in the long wavelength limit. Both show an explicit dependence on the lattice filling fraction, the elastic properties of cylinders relative to the background, their positions in the unit cell, and their multiple scattering interactions. Several examples of these metamaterials are reported and discussed.
Theory of the one- and two-dimensional electron gas
International Nuclear Information System (INIS)
Emery, V.J.
1987-01-01
Two topics are discussed: (1) the competition between 2k/sub F/ and 4k/sub F/ charge state waves in a one-dimensional electron gas and (2) a two-dimensional model of high T/sub c/ superconductivity in the oxides
Self-bending elastic waves and obstacle circumventing in wireless power transfer
Tol, S.; Xia, Y.; Ruzzene, M.; Erturk, A.
2017-04-01
We demonstrate self-bending of elastic waves along convex trajectories by means of geometric and phased arrays. Potential applications include ultrasonic imaging and manipulation, wave focusing, and wireless power transfer around obstacles. The basic concept is illustrated through a geometric array, which is designed to implement a phase delay profile among the array elements that leads to self-bending along a specified circular trajectory. Experimental validation is conducted for the lowest asymmetric Lamb wave mode in a thin plate over a range of frequencies to investigate the bandwidth of the approach. Experiments also illustrate the functionality of the array as a transmitter to deliver elastic wave energy to a receiver/harvester located behind a large obstacle for electrical power extraction. It is shown that the trajectory is not distorted by the presence of the obstacle and circumventing is achieved. A linear phased array counterpart of the geometric array is then constructed to illustrate the concept by imposing proper time delays to the array elements, which allows the generation of different trajectories using the same line source. This capability is demonstrated by tailoring the path diameter in the phased array setting, which offers the flexibility and versatility to induce a variety of convex trajectories for self-bending elastic waves.
Diffraction of Elastic Waves in Fluid-Layered Solid Interfaces by an Integral Formulation
Directory of Open Access Journals (Sweden)
J. E. Basaldúa-Sánchez
2013-01-01
Full Text Available In the present communication, scattering of elastic waves in fluid-layered solid interfaces is studied. The indirect boundary element method is used to deal with this wave propagation phenomenon in 2D fluid-layered solid models. The source is represented by Hankel’s function of second kind and this is always applied in the fluid. Our method is an approximate boundary integral technique which is based upon an integral representation for scattered elastic waves using single-layer boundary sources. This approach is typically called indirect because the sources’ strengths are calculated as an intermediate step. In addition, this formulation is regarded as a realization of Huygens’ principle. The results are presented in frequency and time domains. Various aspects related to the different wave types that emerge from this kind of problems are emphasized. A near interface pulse generates changes in the pressure field and can be registered by receivers located in the fluid. In order to show the accuracy of our method, we validated the results with those obtained by the discrete wave number applied to a fluid-solid interface joining two half-spaces, one fluid and the other an elastic solid.
Simplified description of out-of-plane waves in thin annular elastic plates
DEFF Research Database (Denmark)
Zadeh, Maziyar Nesari; Sorokin, Sergey
2013-01-01
Dispersion relations are derived for the out-of-plane wave propagation in planar elastic plates with constant curvature using the classical Kirchhoff thin plate theory. The dispersion diagrams and the mode shapes are compared with their counterparts for a straight plate strip and the role...... of curvature is assessed for plates with unconstrained edges. Elementary Bernoulli–Euler theory for a beam of rectangular cross-section with the circular shape of its axis is also employed to analyze the wave guide properties of this structure in its out-of-plane deformation. The applicability range...... of the elementary beam theory is validated. The wave finite element method in the formulation of the three-dimensional elasticity theory is used to ensure that the comparison of dispersion diagrams is performed in the frequency range, where the classical thin plate theory is valid. Thus, the paper summarizes...
Elastic properties of amorphous thin films studied by Rayleigh waves
International Nuclear Information System (INIS)
Schwarz, R.B.; Rubin, J.B.
1993-01-01
Physical vapor deposition in ultra-high vacuum was used to co-deposit nickel and zirconium onto quartz single crystals and grow amorphous Ni 1-x Zr x (0.1 < x < 0.87) thin film. A high-resolution surface acoustic wave technique was developed for in situ measurement of film shear moduli. The modulus has narrow maxima at x = 0. 17, 0.22, 0.43, 0.5, 0.63, and 0.72, reflecting short-range ordering and formation of aggregates in amorphous phase. It is proposed that the aggregates correspond to polytetrahedral atom arrangements limited in size by geometrical frustration
Linear Elastic Waves - Series: Cambridge Texts in Applied Mathematics (No. 26)
Harris, John G.
2001-10-01
Wave propagation and scattering are among the most fundamental processes that we use to comprehend the world around us. While these processes are often very complex, one way to begin to understand them is to study wave propagation in the linear approximation. This is a book describing such propagation using, as a context, the equations of elasticity. Two unifying themes are used. The first is that an understanding of plane wave interactions is fundamental to understanding more complex wave interactions. The second is that waves are best understood in an asymptotic approximation where they are free of the complications of their excitation and are governed primarily by their propagation environments. The topics covered include reflection, refraction, the propagation of interfacial waves, integral representations, radiation and diffraction, and propagation in closed and open waveguides. Linear Elastic Waves is an advanced level textbook directed at applied mathematicians, seismologists, and engineers. Aimed at beginning graduate students Includes examples and exercises Has application in a wide range of disciplines
Elastic-plastic response characteristics during frequency nonstationary waves
International Nuclear Information System (INIS)
Miyama, T.; Kanda, J.; Iwasaki, R.; Sunohara, H.
1987-01-01
The purpose of this paper is to study fundamental effects of the frequency nonstationarity on the inelastic responses. First, the inelastic response characteristics are examined by applying stationary waves. Then simple representation of nonstationary characteristics is considered to general nonstationary input. The effects for frequency nonstationary response are summarized for inelastic systems. The inelastic response characteristics under white noise and simple frequency nonstationary wave were investigated, and conclusions can be summarized as follows. 1) The maximum response values for both BL model and OO model corresponds fairly well with those estimated from the energy constant law, even when R is small. For the OO model, the maximum displacement response forms a unique curve except for very small R. 2) The plastic deformation for the BL model is affected by wide frequency components, as R decreases. The plastic deformation for the OO model can be determined from the last stiffness. 3). The inelastic response of the BL model is considerably affected by the frequency nonstationarity of the input motion, while the response is less affected by the nonstationarity for OO model. (orig./HP)
s-wave elastic scattering of antihydrogen off atomic alkali-metal targets
International Nuclear Information System (INIS)
Sinha, Prabal K.; Ghosh, A. S.
2006-01-01
We have investigated the s-wave elastic scattering of antihydrogen atoms off atomic alkali-metal targets (Li, Na, K, and Rb) at thermal energies (10 -16 -10 -4 a.u.) using an atomic orbital expansion technique. The elastic cross sections of these systems at thermal energies are found to be very high compared to H-H and H-He systems. The theoretical models employed in this study are so chosen to consider long-range forces dynamically in the calculation. The mechanism of cooling suggests that Li may be considered to be a good candidate as a buffer gas for enhanced cooling of antihydrogen atoms to ultracold temperature
Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting
Tol, S.; Degertekin, F. L.; Erturk, A.
2016-08-01
We explore the enhancement of structure-borne elastic wave energy harvesting, both numerically and experimentally, by exploiting a Gradient-Index Phononic Crystal Lens (GRIN-PCL) structure. The proposed GRIN-PCL is formed by an array of blind holes with different diameters on an aluminum plate, where the blind hole distribution is tailored to obtain a hyperbolic secant gradient profile of refractive index guided by finite-element simulations of the lowest asymmetric mode Lamb wave band diagrams. Under plane wave excitation from a line source, experimentally measured wave field validates the numerical simulation of wave focusing within the GRIN-PCL domain. A piezoelectric energy harvester disk located at the first focus of the GRIN-PCL yields an order of magnitude larger power output as compared to the baseline case of energy harvesting without the GRIN-PCL on the uniform plate counterpart.
Cheng, Jiubing; Alkhalifah, Tariq Ali; Wu, Zedong; Zou, Peng; Wang, Chenlong
2016-01-01
In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied k-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.
Cheng, Jiubing
2016-03-15
In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied k-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.
Two modified symplectic partitioned Runge-Kutta methods for solving the elastic wave equation
Su, Bo; Tuo, Xianguo; Xu, Ling
2017-08-01
Based on a modified strategy, two modified symplectic partitioned Runge-Kutta (PRK) methods are proposed for the temporal discretization of the elastic wave equation. The two symplectic schemes are similar in form but are different in nature. After the spatial discretization of the elastic wave equation, the ordinary Hamiltonian formulation for the elastic wave equation is presented. The PRK scheme is then applied for time integration. An additional term associated with spatial discretization is inserted into the different stages of the PRK scheme. Theoretical analyses are conducted to evaluate the numerical dispersion and stability of the two novel PRK methods. A finite difference method is used to approximate the spatial derivatives since the two schemes are independent of the spatial discretization technique used. The numerical solutions computed by the two new schemes are compared with those computed by a conventional symplectic PRK. The numerical results, which verify the new method, are superior to those generated by traditional conventional methods in seismic wave modeling.
Zuo, Weiguang; Liu, Ming; Fan, Tianhui; Wang, Pengtao
2018-06-01
This paper presents the probability distribution of the slamming pressure from an experimental study of regular wave slamming on an elastically supported horizontal deck. The time series of the slamming pressure during the wave impact were first obtained through statistical analyses on experimental data. The exceeding probability distribution of the maximum slamming pressure peak and distribution parameters were analyzed, and the results show that the exceeding probability distribution of the maximum slamming pressure peak accords with the three-parameter Weibull distribution. Furthermore, the range and relationships of the distribution parameters were studied. The sum of the location parameter D and the scale parameter L was approximately equal to 1.0, and the exceeding probability was more than 36.79% when the random peak was equal to the sample average during the wave impact. The variation of the distribution parameters and slamming pressure under different model conditions were comprehensively presented, and the parameter values of the Weibull distribution of wave-slamming pressure peaks were different due to different test models. The parameter values were found to decrease due to the increased stiffness of the elastic support. The damage criterion of the structure model caused by the wave impact was initially discussed, and the structure model was destroyed when the average slamming time was greater than a certain value during the duration of the wave impact. The conclusions of the experimental study were then described.
Wang, T.; Cheng, J.B.; Guo, Qiang; Wang, C.L.
2017-01-01
Elastic full waveform inversion (EFWI) provides high-resolution parameter estimation of the subsurface but requires good initial guess of the true model. The traveltime inversion only minimizes traveltime misfits which are more sensitive
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas
International Nuclear Information System (INIS)
Valeo, E.J.; Kramer, G.J.; Nazikian, R.
2001-01-01
A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed
New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod
Directory of Open Access Journals (Sweden)
Aly R. Seadawy
2018-03-01
Full Text Available This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM in exactly solving a well-known nonlinear equation of partial differential equations (PDEs. In this respect, the longitudinal wave equation (LWE that arises in mathematical physics with dispersion caused by the transverse Poisson’s effect in a magneto-electro-elastic (MEE circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method. Keywords: Extended trial equation method, Longitudinal wave equation in a MEE circular rod, Dark solitons, Bright solitons, Solitary wave, Periodic solitary wave
Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity
Directory of Open Access Journals (Sweden)
Dae Woo Park
2016-01-01
Full Text Available Shear wave elasticity imaging (SWEI can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE- based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard tumor and surrounding tissue (soft. The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression.
Modeling of Distributed Sensing of Elastic Waves by Fiber-Optic Interferometry
Directory of Open Access Journals (Sweden)
Just Agbodjan Prince
2016-09-01
Full Text Available This paper deals with the transduction of strain accompanying elastic waves in solids by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain conversion of the fiber segment’s shape and size, as well as its inclination to the elastic wavefront is studied. FEM analyses show that severe distortions of the interferometric response occur when the attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain transduction are presented for typical transducer shapes. They are used to compute input-output relationships for the transduction of narrow-band strain pulses as a function of the mechanical wavelength. The described approach applies to many transducers depending on the distributed interaction with the investigated object.
Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity.
Park, Dae Woo
2015-01-01
Shear wave elasticity imaging (SWEI) can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE-) based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard) tumor and surrounding tissue (soft). The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression.
Directory of Open Access Journals (Sweden)
Jun Zhang
2017-08-01
Full Text Available We designed a high-quality filter that consists of aligned parallel polymethylmethacrylate (PMMA thin plates with small gaps for elastic SV waves propagate in metals. Both the theoretical model and the full numerical simulation show the transmission spectrum of the elastic SV waves through such a filter has several sharp peaks with flawless transmission within the investigated frequencies. These peaks can be readily tuned by manipulating the geometry parameters of the PMMA plates. Our investigation finds that the same filter performs well for different metals where the elastic SV waves propagated.
Yasukuni, Ryohei; Fukushima, Ryosuke; Iino, Takanori; Hosokawa, Yoichiroh
2017-11-01
A femtosecond-laser-induced impulsive force was applied to microsized calcium alginate (CaAlg) gel spheres as an external force to excite elastic waves. To evaluate elasticity, atomic force microscopy (AFM) was applied to detect vibration propagation. The sphere size dependence of the vibration was well reproduced by finite element method (FEM) simulation for pressure waves and surface acoustic waves. The obtained results indicate that the pulsed-laser-activated impulse response encoder (PLAIRE) enables the sensitive detection of elasticities, not only on inside but also on the surface.
Rabinskiy, L. N.; Zhavoronok, S. I.
2018-04-01
The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is
Electron-He+ P-wave elastic scattering and photoabsorption in two-electron systems
International Nuclear Information System (INIS)
Bhatia, A. K.
2006-01-01
In a previous paper [A. K. Bhatia, Phys. Rev. A 69, 032714 (2004)], electron-hydrogen P-wave scattering phase shifts were calculated using the optical potential approach based on the Feshbach projection operator formalism. This method is now extended to the singlet and triplet electron-He + P-wave scattering in the elastic region. Phase shifts are calculated using Hylleraas-type correlation functions with up to 220 terms. Results are rigorous lower bounds to the exact phase shifts, and they are compared to phase shifts obtained from the method of polarized orbitals and close-coupling calculations. The continuum functions calculated here are used to calculate photoabsorption cross sections. Photoionization cross sections of He and photodetachment cross sections of H - are calculated in the elastic region--i.e., leaving He + and H in their respective ground states--and compared with previous calculations. Radiative attachment rates are also calculated
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Wave propagation in magneto-electro-elastic nanobeams via two nonlocal beam models
Ma, Li-Hong; Ke, Liao-Liang; Wang, Yi-Ze; Wang, Yue-Sheng
2017-02-01
This paper makes the first attempt to investigate the dispersion behavior of waves in magneto-electro-elastic (MEE) nanobeams. The Euler nanobeam model and Timoshenko nanobeam model are developed in the formulation based on the nonlocal theory. By using the Hamilton's principle, we derive the governing equations which are then solved analytically to obtain the dispersion relations of MEE nanobeams. Results are presented to highlight the influences of the thermo-electro-magnetic loadings and nonlocal parameter on the wave propagation characteristics of MEE nanobeams. It is found that the thermo-electro-magnetic loadings can lead to the occurrence of the cut-off wave number below which the wave can't propagate in MEE nanobeams.
Effects of Defect Size and Number Density on the Transmission and Reflection of Guided Elastic Waves
2016-04-22
localized region, a photoacoustic source generates elastic waves on one side of the damaged region, and then two ultrasound transducers measure the...Panther OPO) operating at 1.55um and with a pulse width of 7ns, a repetition rate of 30Hz and an average power of 65mW. This configuration seems...where the defects are of the same order as the wavelength of the ultrasound , we find ourselves confronted with Mie scattering, which has weaker
Czech Academy of Sciences Publication Activity Database
Dos Santos, S.; Vejvodová, Šárka; Převorovský, Zdeněk
2009-01-01
Roč. 19, č. 2 (2009), s. 14-14 ISSN 1213-3825. [NDT in PROGRESS. 12.11.2009-14.11.2009, Praha] R&D Projects: GA ČR GA106/07/1393; GA MPO(CZ) FR-TI1/274 Institutional research plan: CEZ:AV0Z20760514 Keywords : nonlinear elastic wave spectroscopy (NEWS) * ESAM * time reversal (TR) * TR-NEWS imaging * tomography * DORT Subject RIV: BI - Acoustics
3D Orthorhombic Elastic Wave Propagation Pre-Test Simulation of SPE DAG-1 Test
Jensen, R. P.; Preston, L. A.
2017-12-01
A more realistic representation of many geologic media can be characterized as a dense system of vertically-aligned microfractures superimposed on a finely-layered horizontal geology found in shallow crustal rocks. This seismic anisotropy representation lends itself to being modeled as an orthorhombic elastic medium comprising three mutually orthogonal symmetry planes containing nine independent moduli. These moduli can be determined by observing (or prescribing) nine independent P-wave and S-wave phase speeds along different propagation directions. We have developed an explicit time-domain finite-difference (FD) algorithm for simulating 3D elastic wave propagation in a heterogeneous orthorhombic medium. The components of the particle velocity vector and the stress tensor are governed by a set of nine, coupled, first-order, linear, partial differential equations (PDEs) called the velocity-stress system. All time and space derivatives are discretized with centered and staggered FD operators possessing second- and fourth-order numerical accuracy, respectively. Additionally, we have implemented novel perfectly matched layer (PML) absorbing boundary conditions, specifically designed for orthorhombic media, to effectively suppress grid boundary reflections. In support of the Source Physics Experiment (SPE) Phase II, a series of underground chemical explosions at the Nevada National Security Site, the code has been used to perform pre-test estimates of the Dry Alluvium Geology - Experiment 1 (DAG-1). Based on literature searches, realistic geologic structure and values for orthorhombic P-wave and S-wave speeds have been estimated. Results and predictions from the simulations are presented.
The propagation of nonlinear rayleigh waves in layered elastic half-space
International Nuclear Information System (INIS)
Ahmetolan, S.
2004-01-01
In this work, the propagation of small but finite amplitude generalized Rayleigh waves in an elastic half-space covered by a different elastic layer of uniform and finite thickness is considered. The constituent materials are assumed to be homogeneous, isotropic, compressible hyperelastic. Excluding the harmonic resonance phenomena, it is shown that the nonlinear self modulation of generalized Rayleigh waves is governed asymptotically by a nonlinear Schrodinger (NLS) equation. The stability of the solutions and the existence of solitary wave-type solutions a NLS are strongly depend on the sign of the product of the coefficients of the nonlinear and dipersion terms of the equation.Therefore the analysis continues with the examination of dependence of these coefficients on the nonlinear material parameters. Three different models have been considered which are nonlinear layer-nonlinear half space, linear layer-nonlinear half space and nonlinear layer-linear half space. The behavior of the coefficients of the NLS equation was also analyzed the limit as h(thickness of the layer) goes to zero and k(the wave number) is constant. Then conclusions are drawn about the effect of nonlinear material parameters on the wave modulation. In the numerical investigations both hypothetical and real material models are used
Born reflection kernel analysis and wave-equation reflection traveltime inversion in elastic media
Wang, Tengfei
2017-08-17
Elastic reflection waveform inversion (ERWI) utilize the reflections to update the low and intermediate wavenumbers in the deeper part of model. However, ERWI suffers from the cycle-skipping problem due to the objective function of waveform residual. Since traveltime information relates to the background model more linearly, we use the traveltime residuals as objective function to update background velocity model using wave equation reflected traveltime inversion (WERTI). The reflection kernel analysis shows that mode decomposition can suppress the artifacts in gradient calculation. We design a two-step inversion strategy, in which PP reflections are firstly used to invert P wave velocity (Vp), followed by S wave velocity (Vs) inversion with PS reflections. P/S separation of multi-component seismograms and spatial wave mode decomposition can reduce the nonlinearity of inversion effectively by selecting suitable P or S wave subsets for hierarchical inversion. Numerical example of Sigsbee2A model validates the effectiveness of the algorithms and strategies for elastic WERTI (E-WERTI).
Langley, Robin S; Cotoni, Vincent
2010-04-01
Large sections of many types of engineering construction can be considered to constitute a two-dimensional periodic structure, with examples ranging from an orthogonally stiffened shell to a honeycomb sandwich panel. In this paper, a method is presented for computing the boundary (or edge) impedance of a semi-infinite two-dimensional periodic structure, a quantity which is referred to as the direct field boundary impedance matrix. This terminology arises from the fact that none of the waves generated at the boundary (the direct field) are reflected back to the boundary in a semi-infinite system. The direct field impedance matrix can be used to calculate elastic wave transmission coefficients, and also to calculate the coupling loss factors (CLFs), which are required by the statistical energy analysis (SEA) approach to predicting high frequency vibration levels in built-up systems. The calculation of the relevant CLFs enables a two-dimensional periodic region of a structure to be modeled very efficiently as a single subsystem within SEA, and also within related methods, such as a recently developed hybrid approach, which couples the finite element method with SEA. The analysis is illustrated by various numerical examples involving stiffened plate structures.
International Nuclear Information System (INIS)
Kosevich, Yu.A.; Syrkin, E.S.
1990-06-01
Low frequency collective oscillations in a superlattice consisting of alternating highly anisotropic layers are considered. Such superstructure may be formed in the ferroelastic near the structural phase transition by alternation of twins. For the surface waves, propagating along the layers, the conditions and the range of existence of those with the dispersion law ω∼K 1/2 , characteristics for two-dimensional plasmons, have been analyzed for a solid-state system with consideration for elastic anisotropy and retardation of acoustic waves. Such excitations ('dyadons') were used in an attempt to explain the anomalies of low temperature thermodynamic and kinetic characteristics of high-T c superconductors. We have shown that the similarity of the densities of the matching phases and the retardation of elastic waves in the crystal narrow the range of existence of dyadons, but high elastic anisotropy of the solid phases enlarges the range of existence of such excitations in solid-state systems. The example of possible crystalline geometry of the phase matching, for which there arise collective excitations of the type under consideration, is found. For transverse and longitudinal waves propagating across the layers, the existence is proved of low frequency acoustic branches separated by a wide gap from the nearest optical branches. (author). 18 refs
A spectral hybridizable discontinuous Galerkin method for elastic-acoustic wave propagation
Terrana, S.; Vilotte, J. P.; Guillot, L.
2018-04-01
We introduce a time-domain, high-order in space, hybridizable discontinuous Galerkin (DG) spectral element method (HDG-SEM) for wave equations in coupled elastic-acoustic media. The method is based on a first-order hyperbolic velocity-strain formulation of the wave equations written in conservative form. This method follows the HDG approach by introducing a hybrid unknown, which is the approximation of the velocity on the elements boundaries, as the only globally (i.e. interelement) coupled degrees of freedom. In this paper, we first present a hybridized formulation of the exact Riemann solver at the element boundaries, taking into account elastic-elastic, acoustic-acoustic and elastic-acoustic interfaces. We then use this Riemann solver to derive an explicit construction of the HDG stabilization function τ for all the above-mentioned interfaces. We thus obtain an HDG scheme for coupled elastic-acoustic problems. This scheme is then discretized in space on quadrangular/hexahedral meshes using arbitrary high-order polynomial basis for both volumetric and hybrid fields, using an approach similar to the spectral element methods. This leads to a semi-discrete system of algebraic differential equations (ADEs), which thanks to the structure of the global conservativity condition can be reformulated easily as a classical system of first-order ordinary differential equations in time, allowing the use of classical explicit or implicit time integration schemes. When an explicit time scheme is used, the HDG method can be seen as a reformulation of a DG with upwind fluxes. The introduction of the velocity hybrid unknown leads to relatively simple computations at the element boundaries which, in turn, makes the HDG approach competitive with the DG-upwind methods. Extensive numerical results are provided to illustrate and assess the accuracy and convergence properties of this HDG-SEM. The approximate velocity is shown to converge with the optimal order of k + 1 in the L2-norm
Energy Technology Data Exchange (ETDEWEB)
Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr. [Los Alamos National Lab., NM (United States)
1993-11-01
Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.
International Nuclear Information System (INIS)
Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr.
1993-01-01
Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime
Jun Zhang; Yaolu Liu; Wensheng Yan; Ning Hu
2017-01-01
We designed a high-quality filter that consists of aligned parallel polymethylmethacrylate (PMMA) thin plates with small gaps for elastic SV waves propagate in metals. Both the theoretical model and the full numerical simulation show the transmission spectrum of the elastic SV waves through such a filter has several sharp peaks with flawless transmission within the investigated frequencies. These peaks can be readily tuned by manipulating the geometry parameters of the PMMA plates. Our invest...
Nonlinear Hydroelastic Waves Generated due to a Floating Elastic Plate in a Current
Directory of Open Access Journals (Sweden)
Ping Wang
2017-01-01
Full Text Available Effects of underlying uniform current on the nonlinear hydroelastic waves generated due to an infinite floating plate are studied analytically, under the hypotheses that the fluid is homogeneous, incompressible, and inviscid. For the case of irrotational motion, the Laplace equation is the governing equation, with the boundary conditions expressing a balance among the hydrodynamics, the uniform current, and elastic force. It is found that the convergent series solutions, obtained by the homotopy analysis method (HAM, consist of the nonlinear hydroelastic wave profile and the velocity potential. The impacts of important physical parameters are discussed in detail. With the increment of the following current intensity, we find that the amplitudes of the hydroelastic waves decrease very slightly, while the opposing current produces the opposite effect on the hydroelastic waves. Furthermore, the amplitudes of waves increase very obviously for higher opposing current speed but reduce very slightly for higher following current speed. A larger amplitude of the incident wave increases the hydroelastic wave deflections for both opposing and following current, while for Young’s modulus of the plate there is the opposite effect.
International Nuclear Information System (INIS)
Zak, A; Ostachowicz, W; Krawczuk, M
2011-01-01
Damage of aircraft structural elements in any form always present high risks. Failures of these elements can be caused by various reasons including material fatigue or impact leading to damage initiation and growth. Detection of these failures at their earliest stage of development, estimation of their size and location, are one of the most crucial factors for each damage detection method. Structural health monitoring strategies based on propagation of guided elastic waves in structures and wave interaction with damage related discontinuities are very promising tools that offer not only damage detection capabilities, but are also meant to provide precise information about the state of the structures and their remaining lifetime. Because of that various techniques are employed to simulate and mimic the wave-discontinuity interactions. The use of various types of sensors, their networks together with sophisticated contactless measuring techniques are investigated both numerically and experimentally. Certain results of numerical simulations obtained by the use of the spectral finite element method are presented by the authors and related with propagation of guided elastic waves in shell-type aircraft structures. Two types of structures are considered: flat 2D panels with or without stiffeners and 3D shell structures. The applicability of two different damage detection approaches is evaluated in order to detect and localise damage in these structures. Selected results related with the use of laser scanning vibrometry are also presented and discussed by the authors.
Size Effects on Surface Elastic Waves in a Semi-Infinite Medium with Atomic Defect Generation
Directory of Open Access Journals (Sweden)
F. Mirzade
2013-01-01
Full Text Available The paper investigates small-scale effects on the Rayleigh-type surface wave propagation in an isotopic elastic half-space upon laser irradiation. Based on Eringen’s theory of nonlocal continuum mechanics, the basic equations of wave motion and laser-induced atomic defect dynamics are derived. Dispersion equation that governs the Rayleigh surface waves in the considered medium is derived and analyzed. Explicit expressions for phase velocity and attenuation (amplification coefficients which characterize surface waves are obtained. It is shown that if the generation rate is above the critical value, due to concentration-elastic instability, nanometer sized ordered concentration-strain structures on the surface or volume of solids arise. The spatial scale of these structures is proportional to the characteristic length of defect-atom interaction and increases with the increase of the temperature of the medium. The critical value of the pump parameter is directly proportional to recombination rate and inversely proportional to deformational potentials of defects.
Attarzadeh, M. A.; Nouh, M.
2018-05-01
One-dimensional phononic materials with material fields traveling simultaneously in space and time have been shown to break elastodynamic reciprocity resulting in unique wave propagation features. In the present work, a comprehensive mathematical analysis is presented to characterize and fully predict the non-reciprocal wave dispersion in two-dimensional space. The analytical dispersion relations, in the presence of the spatiotemporal material variations, are validated numerically using finite 2D membranes with a prescribed number of cells. Using omnidirectional excitations at the membrane's center, wave propagations are shown to exhibit directional asymmetry that increases drastically in the direction of the material travel and vanishes in the direction perpendicular to it. The topological nature of the predicted dispersion in different propagation directions are evaluated using the computed Chern numbers. Finally, the degree of the 2D non-reciprocity is quantified using a non-reciprocity index (NRI) which confirms the theoretical dispersion predictions as well as the finite simulations. The presented framework can be extended to plate-type structures as well as 3D spatiotemporally modulated phononic crystals.
An energy principle for two-dimensional collisionless relativistic plasmas
International Nuclear Information System (INIS)
Otto, A.; Schindler, K.
1984-01-01
Using relativistic Vlasov theory an energy principle for two-dimensional plasmas is derived, which provides a sufficient and necessary criterion for the stability of relativistic plasma equilibria. This energy principle includes charge separating effects since the exact Poisson equation was taken into consideration. Applying the variational principle to the case of the relativistic plane plasma sheet, the same marginal wave length is found as in the non-relativistic case. (author)
Uncertainty principles for inverse source problems for electromagnetic and elastic waves
Griesmaier, Roland; Sylvester, John
2018-06-01
In isotropic homogeneous media, far fields of time-harmonic electromagnetic waves radiated by compactly supported volume currents, and elastic waves radiated by compactly supported body force densities can be modelled in very similar fashions. Both are projected restricted Fourier transforms of vector-valued source terms. In this work we generalize two types of uncertainty principles recently developed for far fields of scalar-valued time-harmonic waves in Griesmaier and Sylvester (2017 SIAM J. Appl. Math. 77 154–80) to this vector-valued setting. These uncertainty principles yield stability criteria and algorithms for splitting far fields radiated by collections of well-separated sources into the far fields radiated by individual source components, and for the restoration of missing data segments. We discuss proper regularization strategies for these inverse problems, provide stability estimates based on the new uncertainty principles, and comment on reconstruction schemes. A numerical example illustrates our theoretical findings.
Propagation of Elastic Waves in a One-Dimensional High Aspect Ratio Nanoridge Phononic Crystal
Directory of Open Access Journals (Sweden)
Abdellatif Gueddida
2018-05-01
Full Text Available We investigate the propagation of elastic waves in a one-dimensional (1D phononic crystal constituted by high aspect ratio epoxy nanoridges that have been deposited at the surface of a glass substrate. With the help of the finite element method (FEM, we calculate the dispersion curves of the modes localized at the surface for propagation both parallel and perpendicular to the nanoridges. When the direction of the wave is parallel to the nanoridges, we find that the vibrational states coincide with the Lamb modes of an infinite plate that correspond to one nanoridge. When the direction of wave propagation is perpendicular to the 1D nanoridges, the localized modes inside the nanoridges give rise to flat branches in the band structure that interact with the surface Rayleigh mode, and possibly open narrow band gaps. Filling the nanoridge structure with a viscous liquid produces new modes that propagate along the 1D finite height multilayer array.
Transformation of Elastic Wave Energy to the Energy of Motion of Bodies
Vesnitskiĭ, A. I.; Lisenkova, E. E.
2002-01-01
The motion of a body along an elastic guide under the effect of an incident wave is considered. An equation describing the longitudinal motion of a body along an arbitrary guide is derived from the laws governing the energy and momentum variations for the case when the incident wave generates a single reflected wave. The equations that describe the motion of a body along a string and along a beam corresponding to the Bernoulli-Euler model are considered as examples. The process of the body acceleration along a beam of the aforementioned type is investigated. For the subcritical velocities, the law governing the motion of the body and the ratio of the kinetic energy variation to the energy supplied to the body are determined.
Condition Assessment of PC Tendon Duct Filling by Elastic Wave Velocity Mapping
Directory of Open Access Journals (Sweden)
Kit Fook Liu
2014-01-01
Full Text Available Imaging techniques are high in demand for modern nondestructive evaluation of large-scale concrete structures. The travel-time tomography (TTT technique, which is based on the principle of mapping the change of propagation velocity of transient elastic waves in a measured object, has found increasing application for assessing in situ concrete structures. The primary aim of this technique is to detect defects that exist in a structure. The TTT technique can offer an effective means for assessing tendon duct filling of prestressed concrete (PC elements. This study is aimed at clarifying some of the issues pertaining to the reliability of the technique for this purpose, such as sensor arrangement, model, meshing, type of tendon sheath, thickness of sheath, and material type as well as the scale of inhomogeneity. The work involved 2D simulations of wave motions, signal processing to extract travel time of waves, and tomography reconstruction computation for velocity mapping of defect in tendon duct.
Piezoelectricity in Two-Dimensional Materials
Wu, Tao; Zhang, Hua
2015-01-01
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards
Construction of two-dimensional quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Klimek, S.; Kondracki, W.
1987-12-01
We present a sketch of the construction of the functional measure for the SU(2) quantum chromodynamics with one generation of fermions in two-dimensional space-time. The method is based on a detailed analysis of Wilson loops.
Development of Two-Dimensional NMR
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...
Quantum oscillations in quasi-two-dimensional conductors
Galbova, O
2002-01-01
The electronic absorption of sound waves in quasi-two-dimensional conductors in strong magnetic fields, is investigated theoretically. A longitudinal acoustic wave, propagating along the normal n-> to the layer of quasi-two-dimensional conductor (k-> = left brace 0,0,k right brace; u-> = left brace 0,0,u right brace) in magnetic field (B-> = left brace 0, 0, B right brace), is considered. The quasiclassical approach for this geometry is of no interest, due to the absence of interaction between electromagnetic and acoustic waves. The problem is of interest in strong magnetic field when quantization of the charge carriers energy levels takes place. The quantum oscillations in the sound absorption coefficient, as a function of the magnetic field, are theoretically observed. The experimental study of the quantum oscillations in quasi-two-dimensional conductors makes it possible to solve the inverse problem of determining from experimental data the extrema closed sections of the Fermi surface by a plane p sub z = ...
Phase transitions in two-dimensional systems
International Nuclear Information System (INIS)
Salinas, S.R.A.
1983-01-01
Some experiences are related using synchrotron radiation beams, to characterize solid-liquid (fusion) and commensurate solid-uncommensurate solid transitions in two-dimensional systems. Some ideas involved in the modern theories of two-dimensional fusion are shortly exposed. The systems treated consist of noble gases (Kr,Ar,Xe) adsorbed in the basal plane of graphite and thin films formed by some liquid crystal shells. (L.C.) [pt
Crossing of identical solitary waves in a chain of elastic beads
International Nuclear Information System (INIS)
Manciu, Marian; Sen, Surajit; Hurd, Alan J.
2001-01-01
We consider a chain of elastic beads subjected to vanishingly weak loading conditions, i.e., the beads are barely in contact. The grains repel upon contact via the Hertz-type potential, V∝δ n , n>2, where delta≥0, delta being the grain--grain overlap. Our dynamical simulations build on several earlier studies by Nesterenko, Coste, and Sen and co-workers that have shown that an impulse propagates as a solitary wave of fixed spatial extent (dependent only upon n) through a chain of Hertzian beads and demonstrate, to our knowledge for the first time, that colliding solitary waves in the chain spawn a well-defined hierarchy of multiple secondary solitary waves, which is ∼ 0.5% of the energy of the original solitary waves. Our findings have interesting parallels with earlier observations by Rosenau and colleagues [P. Rosenau and J. M. Hyman, Phys. Rev. Lett. 70, 564 (1993); P. Rosenau, ibid. 73, 1737 (1994); Phys. Lett. A 211, 265 (1996)] regarding colliding compactons. To the best of our knowledge, there is no formal theory that describes the dynamics associated with the formation of secondary solitary waves. Calculations suggest that the formation of secondary solitary waves may be a fundamental property of certain discrete systems
Wave energy transfer in elastic half-spaces with soft interlayers.
Glushkov, Evgeny; Glushkova, Natalia; Fomenko, Sergey
2015-04-01
The paper deals with guided waves generated by a surface load in a coated elastic half-space. The analysis is based on the explicit integral and asymptotic expressions derived in terms of Green's matrix and given loads for both laminate and functionally graded substrates. To perform the energy analysis, explicit expressions for the time-averaged amount of energy transferred in the time-harmonic wave field by every excited guided or body wave through horizontal planes and lateral cylindrical surfaces have been also derived. The study is focused on the peculiarities of wave energy transmission in substrates with soft interlayers that serve as internal channels for the excited guided waves. The notable features of the source energy partitioning in such media are the domination of a single emerging mode in each consecutive frequency subrange and the appearance of reverse energy fluxes at certain frequencies. These effects as well as modal and spatial distribution of the wave energy coming from the source into the substructure are numerically analyzed and discussed.
Svitek, Tomáš; Vavryčuk, Václav; Lokajíček, Tomáš; Petružálek, Matěj
2014-12-01
The most common type of waves used for probing anisotropy of rocks in laboratory is the direct P wave. Information potential of the measured P-wave velocity, however, is limited. In rocks displaying weak triclinic anisotropy, the P-wave velocity depends just on 15 linear combinations of 21 elastic parameters, called the weak-anisotropy parameters. In strong triclinic anisotropy, the P-wave velocity depends on the whole set of 21 elastic parameters, but inversion for six of them is ill-conditioned and these parameters are retrieved with a low accuracy. Therefore, in order to retrieve the complete elastic tensor accurately, velocities of S waves must also be measured and inverted. For this purpose, we developed a lab facility which allows the P- and S-wave ultrasonic sounding of spherical rock samples in 132 directions distributed regularly over the sphere. The velocities are measured using a pair of P-wave sensors with the transmitter and receiver polarized along the radial direction and using two pairs of S-wave sensors with the transmitter and receiver polarized tangentially to the spherical sample in mutually perpendicular directions. We present inversion methods of phase and ray velocities for elastic parameters describing general triclinic anisotropy. We demonstrate on synthetic tests that the inversion becomes more robust and stable if the S-wave velocities are included. This applies even to the case when the velocity of the S waves is measured in a limited number of directions and with a significantly lower accuracy than that of the P wave. Finally, we analyse velocities measured on a rock sample from the Outokumpu deep drill hole, Finland. We present complete sets of elastic parameters of the sample including the error analysis for several levels of confining pressure ranging from 0.1 to 70 MPa.
On elastic waves in an thinly-layered laminated medium with stress couples under initial stress
Directory of Open Access Journals (Sweden)
P. Pal Roy
1988-01-01
Full Text Available The present work is concerned with a simple transformation rule in finding out the composite elastic coefficients of a thinly layered laminated medium whose bulk properties are strongly anisotropic with a microelastic bending rigidity. These elastic coefficients which were not known completely for a layered laminated structure, are obtained suitably in terms of initial stress components and Lame's constants λi, μi of initially isotropic solids. The explicit solutions of the dynamical equations for a prestressed thinly layered laminated medium under horizontal compression in a gravity field are derived. The results are discussed specifying the effects of hydrostatic, deviatoric and couple stresses upon the characteristic propagation velocities of shear and compression wave modes.
Castagnède, Bernard; Jenkins, James T.; Sachse, Wolfgang; Baste, Stéphane
1990-03-01
A method is described to optimally determine the elastic constants of anisotropic solids from wave-speeds measurements in arbitrary nonprincipal planes. For such a problem, the characteristic equation is a degree-three polynomial which generally does not factorize. By developing and rearranging this polynomial, a nonlinear system of equations is obtained. The elastic constants are then recovered by minimizing a functional derived from this overdetermined system of equations. Calculations of the functional are given for two specific cases, i.e., the orthorhombic and the hexagonal symmetries. Some numerical results showing the efficiency of the algorithm are presented. A numerical method is also described for the recovery of the orientation of the principal acoustical axes. This problem is solved through a double-iterative numerical scheme. Numerical as well as experimental results are presented for a unidirectional composite material.
Duru, Kenneth
2014-12-01
© 2014 Elsevier Inc. In this paper, we develop a stable and systematic procedure for numerical treatment of elastic waves in discontinuous and layered media. We consider both planar and curved interfaces where media parameters are allowed to be discontinuous. The key feature is the highly accurate and provably stable treatment of interfaces where media discontinuities arise. We discretize in space using high order accurate finite difference schemes that satisfy the summation by parts rule. Conditions at layer interfaces are imposed weakly using penalties. By deriving lower bounds of the penalty strength and constructing discrete energy estimates we prove time stability. We present numerical experiments in two space dimensions to illustrate the usefulness of the proposed method for simulations involving typical interface phenomena in elastic materials. The numerical experiments verify high order accuracy and time stability.
Two-dimensional study of shock breakout at the rear face of laser irradiated metallic targets
Energy Technology Data Exchange (ETDEWEB)
Cottet, F.; Marty, L.; Hallouin, M.; Romain, J.P.; Virmont, J.; Fabbro, R.; Faral, B.
1988-11-01
The two-dimensional propagation dynamics of laser-driven shock waves in solids is studied through the analysis of the shock breakout at the rear face of the target for a set of materials and laser intensities. The laser shock simulations were carried out by means of a two-dimensional hydrodynamics code in which the laser-ablation pressure is replaced by an equivalent pressure pulse. It is shown that the two-dimensional code is a very useful tool to analyze laser-shock experiments where two-dimensional effects arise from a finite laser-spot size or a heterogeneous energy deposition.
Two-dimensional study of shock breakout at the rear face of laser irradiated metallic targets
International Nuclear Information System (INIS)
Cottet, F.; Marty, L.; Hallouin, M.; Romain, J.P.; Virmont, J.; Fabbro, R.; Faral, B.
1988-01-01
The two-dimensional propagation dynamics of laser-driven shock waves in solids is studied through the analysis of the shock breakout at the rear face of the target for a set of materials and laser intensities. The laser shock simulations were carried out by means of a two-dimensional hydrodynamics code in which the laser-ablation pressure is replaced by an equivalent pressure pulse. It is shown that the two-dimensional code is a very useful tool to analyze laser-shock experiments where two-dimensional effects arise from a finite laser-spot size or a heterogeneous energy deposition
Jody D. Gray; Shawn T. Grushecky; James P. Armstrong
2008-01-01
Moisture content has a significant impact on mechanical properties of wood. In recent years, stress wave velocity has been used as an in situ and non-destructive method for determining the stiffness of wooden elements. The objective of this study was to determine what effect moisture content has on stress wave velocity and dynamic modulus of elasticity. Results...
Non-periodic homogenization of 3-D elastic media for the seismic wave equation
Cupillard, Paul; Capdeville, Yann
2018-05-01
Because seismic waves have a limited frequency spectrum, the velocity structure of the Earth that can be extracted from seismic records has a limited resolution. As a consequence, one obtains smooth images from waveform inversion, although the Earth holds discontinuities and small scales of various natures. Within the last decade, the non-periodic homogenization method shed light on how seismic waves interact with small geological heterogeneities and `see' upscaled properties. This theory enables us to compute long-wave equivalent density and elastic coefficients of any media, with no constraint on the size, the shape and the contrast of the heterogeneities. In particular, the homogenization leads to the apparent, structure-induced anisotropy. In this paper, we implement this method in 3-D and show 3-D tests for the very first time. The non-periodic homogenization relies on an asymptotic expansion of the displacement and the stress involved in the elastic wave equation. Limiting ourselves to the order 0, we show that the practical computation of an upscaled elastic tensor basically requires (i) to solve an elastostatic problem and (ii) to low-pass filter the strain and the stress associated with the obtained solution. The elastostatic problem consists in finding the displacements due to local unit strains acting in all directions within the medium to upscale. This is solved using a parallel, highly optimized finite-element code. As for the filtering, we rely on the finite-element quadrature to perform the convolution in the space domain. We end up with an efficient numerical tool that we apply on various 3-D models to test the accuracy and the benefit of the homogenization. In the case of a finely layered model, our method agrees with results derived from Backus. In a more challenging model composed by a million of small cubes, waveforms computed in the homogenized medium fit reference waveforms very well. Both direct phases and complex diffracted waves are
Nematic Equilibria on a Two-Dimensional Annulus
Lewis, A. H.; Aarts, D. G. A. L.; Howell, P. D.; Majumdar, A.
2017-01-01
We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.
Nematic Equilibria on a Two-Dimensional Annulus
Lewis, A. H.
2017-01-16
We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.
Acoustic metamaterials for new two-dimensional sonic devices
Energy Technology Data Exchange (ETDEWEB)
Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera sn, E-46022 Valencia (Spain)
2007-09-15
It has been shown that two-dimensional arrays of rigid or fluidlike cylinders in a fluid or a gas define, in the limit of large wavelengths, a class of acoustic metamaterials whose effective parameters (sound velocity and density) can be tailored up to a certain limit. This work goes a step further by considering arrays of solid cylinders in which the elastic properties of cylinders are taken into account. We have also treated mixtures of two different elastic cylinders. It is shown that both effects broaden the range of acoustic parameters available for designing metamaterials. For example, it is predicted that metamaterials with perfect matching of impedance with air are now possible by using aerogel and rigid cylinders equally distributed in a square lattice. As a potential application of the proposed metamaterial, we present a gradient index lens for airborne sound (i.e. a sonic Wood lens) whose functionality is demonstrated by multiple scattering simulations.
Backward elastic p3He-scattering and high momentum components of 3He wave function
International Nuclear Information System (INIS)
Uzikov, Yu.N.
1998-01-01
It is shown that owing to a dominance of np-pair transfer mechanism of backward elastic p 3 He-scattering for incident proton kinetic energies T p > 1 GeV the cross section of this process is defined mainly by the values of the Faddeev component of the wave function of 3 He nucleus, φ 23 (q 23 , p 1 ), at high relative momenta q 23 > 0.6 GeV/c of the NN-pair in the 1 S 0 -state and at low spectator momenta p 1 ∼ 0 - 0.2 GeV/c
DEFF Research Database (Denmark)
Katika, Konstantina; Alam, Mohammad Monzurul; Fabricius, Ida Lykke
divided into groups of three and each group was saturated either with deionized water, calcite equilibrated water, or sodium chloride, magnesium chloride and calcium chloride solutions of the same ionic strength. Saturation with solutions that contain divalent ions caused major shifts in the distribution...... of the relaxation time. Core samples saturated with calcium chloride solution relaxed slower and those saturated with magnesium chloride solution relaxed faster than the rest of the samples. Along with the changes in relaxation the samples experienced smaller velocities of elastic waves when saturated with MgCl2...
Predicting phase shift of elastic waves in pipes due to fluid flow and imperfections
DEFF Research Database (Denmark)
Thomsen, Jon Juel; Dahl, Jonas; Fuglede, Niels
2009-01-01
. This is relevant for understanding wave propagation in elastic media in general, and for the design and trouble-shooting of phase-shift measuring devices such as Coriolis mass flowmeters in particular. A multiple time scaling perturbation analysis is employed for a simple model of a fluid-conveying pipe......Flexural vibrations of a fluid-conveying pipe is investigated, with special consideration to the spatial shift in phase caused by fluid flow and various imperfections, e.g., non-ideal supports, non-uniform stiffness or mass, non-proportional damping, weak nonlinearity, and flow pulsation...
Energy Technology Data Exchange (ETDEWEB)
Tomishima, Y [National Institute for Resources and Environment, Tsukuba (Japan)
1997-10-22
With an objective to measure at high accuracy the positions and sizes of cracks existing in rocks, a theoretical study has been carried out on a method which utilizes initial movement characteristics of P-wave. The P-wave which diffracts and propagates at a crack tip has a characteristic that its phase may reverse according to the positional relationship between vibration transmitting and receiving points. This positional relationship is decided by the Poisson ratio of media alone. Therefore, when the P-wave is measured while the vibration transmitting and receiving points are moved sandwiching a crack, the polarity of received waveform is changed from negative to positive at a certain position as a boundary. In order to measure this change at high accuracy, an elastic wave of high frequency is required, but it is not easy to obtain the wave in situ. In contrast, utilizing the initial movement polarity can not only identify the change in the polarity, but also perform measurement at high accuracy. The present study discussed a case where cracks are parallel with a free surface and a case where the cracks have angles with the free surface, whereas it was shown that positions of the upper and lower tips of a crack, and length of the crack can be measured accurately. 4 refs., 5 figs.
Aero-hydro-elastic simulation platform for wave energy systems and floating wind turbines
Energy Technology Data Exchange (ETDEWEB)
Kallesoee, B.S.
2011-01-15
This report present results from the PSO project 2008-1-10092 entitled Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines that deals with measurements, modelling and simulations of the world's first combined wave and wind energy platform. The floating energy conversion platform, Poseidon, is owned and operated by Floating Power Plant A/S. The platform has been operating for two test periods; one period where it was operating as a wave energy conversion platform only and one period where the three turbines was mounted and the platform operated as a combined wind and wave energy platform. The PSO project has equipped the platform with comprehensive measurements equipment for measuring platform motion, wave and wind conditions and turbine loads. Data from the first test period has been used for determine if the turbine could be mounted on the platform. Preliminary analysis of data from the second test period indicates that the platform is suitable as wind turbine foundation and that the turbines reduce the platform motion. (Author)
Nonlinear Dispersive Elastic Waves in Solids: Exact, Approximate, and Numerical Solutions
Khajehtourian, Romik
Wave motion lies at the heart of many disciplines in the physical sciences and engineering. For example, problems and applications involving light, sound, heat, or fluid flow are all likely to involve wave dynamics at some level. A particular class of problems is concerned with the propagation of elastic waves in a solid medium, such as a fiber-reinforced composite material responding to vibratory excitations, or soil and rock admitting seismic waves moments after the onset of an earthquake, or phonon transport in a semiconducting crystal like silicon. Regardless of the type of wave, the dispersion relation provides a fundamental characterization of the elastodynamic properties of the medium. The first part of the dissertation examines the propagation of a large-amplitude elastic wave in a one-dimensional homogeneous medium with a focus on the effects of inherent nonlinearities on the dispersion relation. Considering a thin rod, where the thickness is small compared to the wavelength, an exact, closed-form formulation is presented for the treatment of two types of nonlinearity in the strain-displacement gradient relation: Green-Lagrange and Hencky. The derived relation is then verified by direct time-domain simulations, examining both instantaneous dispersion (by direct observation) and short-term, pre-breaking dispersion (by Fourier transformation). A high-order perturbation analysis is also conducted yielding an explicit analytical space-time solution, which is shown to be spectrally accurate. The results establish a perfect match between theory and simulation and reveal that regardless of the strength of the nonlinearity, the dispersion relation fully embodies all information pertaining to the nonlinear harmonic generation mechanism that unfolds as an arbitrary-profiled wave evolves in the medium. In the second part of the dissertation, the analysis is extended to a continuous periodic thin rod exhibiting multiple phases or embedded local resonators. The
The velocity of the arterial pulse wave: a viscous-fluid shock wave in an elastic tube.
Painter, Page R
2008-07-29
The arterial pulse is a viscous-fluid shock wave that is initiated by blood ejected from the heart. This wave travels away from the heart at a speed termed the pulse wave velocity (PWV). The PWV increases during the course of a number of diseases, and this increase is often attributed to arterial stiffness. As the pulse wave approaches a point in an artery, the pressure rises as does the pressure gradient. This pressure gradient increases the rate of blood flow ahead of the wave. The rate of blood flow ahead of the wave decreases with distance because the pressure gradient also decreases with distance ahead of the wave. Consequently, the amount of blood per unit length in a segment of an artery increases ahead of the wave, and this increase stretches the wall of the artery. As a result, the tension in the wall increases, and this results in an increase in the pressure of blood in the artery. An expression for the PWV is derived from an equation describing the flow-pressure coupling (FPC) for a pulse wave in an incompressible, viscous fluid in an elastic tube. The initial increase in force of the fluid in the tube is described by an increasing exponential function of time. The relationship between force gradient and fluid flow is approximated by an expression known to hold for a rigid tube. For large arteries, the PWV derived by this method agrees with the Korteweg-Moens equation for the PWV in a non-viscous fluid. For small arteries, the PWV is approximately proportional to the Korteweg-Moens velocity divided by the radius of the artery. The PWV in small arteries is also predicted to increase when the specific rate of increase in pressure as a function of time decreases. This rate decreases with increasing myocardial ischemia, suggesting an explanation for the observation that an increase in the PWV is a predictor of future myocardial infarction. The derivation of the equation for the PWV that has been used for more than fifty years is analyzed and shown to yield
Curvature effects in two-dimensional optical devices inspired by transformation optics
Yuan, Shuhao; Zhang, Yongyou; Zhang, Qingyun; Zou, Bingsuo; Schwingenschlö gl, Udo
2016-01-01
Light transport in curved quasi two-dimensional waveguides is considered theoretically. Within transformation optics and tensor theory, a concise description of curvature effects on transverse electric and magnetic waves is derived. We show
Two-dimensional atom localization via Raman-driven coherence
Energy Technology Data Exchange (ETDEWEB)
Rahmatullah,; Qamar, Sajid, E-mail: sajid_qamar@comsats.edu.pk
2014-02-07
A scheme for two-dimensional (2D) atom localization via Raman-driven coherence in a four-level diamond-configuration system is suggested. The atom interacts with two orthogonal standing-wave fields where each standing-wave field is constructed from the superposition of the two-standing wave fields along the corresponding directions. Due to the position-dependent atom–field interaction, the frequency of the spontaneously emitted photon carries the position information about the atom. We investigate the effect of the detunings and phase shifts associated with standing-wave fields. Unique position information of the single atom is obtained by properly adjusting the system parameters. This is an extension of our previous proposal for one-dimensional atom localization via Raman-driven coherence.
Superconductivity in engineered two-dimensional electron gases
Chubukov, Andrey V.; Kivelson, Steven A.
2017-11-01
We consider Kohn-Luttinger mechanism for superconductivity in a two-dimensional electron gas confined to a narrow well between two grounded metallic planes with two occupied subbands with Fermi momenta kF L>kF S . On the basis of a perturbative analysis, we conclude that non-s -wave superconductivity emerges even when the bands are parabolic. We analyze the conditions that maximize Tc as a function of the distance to the metallic planes, the ratio kF L/kF S , and rs, which measures the strength of Coulomb correlations. The largest attraction is in p -wave and d -wave channels, of which p wave is typically the strongest. For rs=O (1 ) we estimate that the dimensionless coupling λ ≈10-1 , but it likely continues increasing for larger rs (where we lose theoretical control).
Effects of an elastic membrane on tube waves in permeable formations
Energy Technology Data Exchange (ETDEWEB)
Liu, H; Johnson, D
1996-10-01
In this paper, the modified properties were calculated for tube wave propagation in a fluid-filled borehole penetrating a permeable rock due to the presence of a mudcake which forms on the borehole wall. The mudcake was characterized by an impermeable elastic layer. The mudcake partial sealing mechanism was simulated using a finite membrane stiffness. Consequently, it was shown that the mudcake can reduce, but not eliminate, the permeability effects on the tube wave slowness and attenuation. Moreover, this paper discusses a variety of values for the relevant parameters especially the mudcake thickness and membrane stiffness. The important combinations of mudcake parameters were clarified by using an analytic expression for the low-frequency limit.
Seismic wave propagation in non-homogeneous elastic media by boundary elements
Manolis, George D; Rangelov, Tsviatko V; Wuttke, Frank
2017-01-01
This book focuses on the mathematical potential and computational efficiency of the Boundary Element Method (BEM) for modeling seismic wave propagation in either continuous or discrete inhomogeneous elastic/viscoelastic, isotropic/anisotropic media containing multiple cavities, cracks, inclusions and surface topography. BEM models may take into account the entire seismic wave path from the seismic source through the geological deposits all the way up to the local site under consideration. The general presentation of the theoretical basis of elastodynamics for inhomogeneous and heterogeneous continua in the first part is followed by the analytical derivation of fundamental solutions and Green's functions for the governing field equations by the usage of Fourier and Radon transforms. The numerical implementation of the BEM is for antiplane in the second part as well as for plane strain boundary value problems in the third part. Verification studies and parametric analysis appear throughout the book, as do both ...
Two-dimensional nuclear magnetic resonance spectroscopy
International Nuclear Information System (INIS)
Bax, A.; Lerner, L.
1986-01-01
Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton distances is available from resonance intensities in certain types of two-dimensional experiments. Another method generates 1 H NMR spectra of a preselected fragment of the molecule, suppressing resonances from other regions and greatly simplifying spectral appearance. Two-dimensional NMR spectroscopy can also be applied to the study of 13 C and 15 N, not only providing valuable connectivity information but also improving sensitivity of 13 C and 15 N detection by up to two orders of magnitude. 45 references, 10 figures
An IBEM solution to the scattering of plane SH-waves by a lined tunnel in elastic wedge space
Liu, Zhongxian; Liu, Lei
2015-02-01
The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface. The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces. The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space. Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and efficiently. The wave motion feature strongly depends on the wedge angle, the angle of incidence, incident frequency, the location of lined tunnel, and material parameters. The waves interference and amplification effect around the tunnel in wedge space is more significant, causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0, respectively, more than double that of the case of half-space. Hence, considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.
Super-Grid Modeling of the Elastic Wave Equation in Semi-Bounded Domains
Energy Technology Data Exchange (ETDEWEB)
Petersson, N. Anders; Sjögreen, Björn
2014-10-01
We develop a super-grid modeling technique for solving the elastic wave equation in semi-bounded two- and three-dimensional spatial domains. In this method, waves are slowed down and dissipated in sponge layers near the far-field boundaries. Mathematically, this is equivalent to a coordinate mapping that transforms a very large physical domain to a significantly smaller computational domain, where the elastic wave equation is solved numerically on a regular grid. To damp out waves that become poorly resolved because of the coordinate mapping, a high order artificial dissipation operator is added in layers near the boundaries of the computational domain. We prove by energy estimates that the super-grid modeling leads to a stable numerical method with decreasing energy, which is valid for heterogeneous material properties and a free surface boundary condition on one side of the domain. Our spatial discretization is based on a fourth order accurate finite difference method, which satisfies the principle of summation by parts. We show that the discrete energy estimate holds also when a centered finite difference stencil is combined with homogeneous Dirichlet conditions at several ghost points outside of the far-field boundaries. Therefore, the coefficients in the finite difference stencils need only be boundary modified near the free surface. This allows for improved computational efficiency and significant simplifications of the implementation of the proposed method in multi-dimensional domains. Numerical experiments in three space dimensions show that the modeling error from truncating the domain can be made very small by choosing a sufficiently wide super-grid damping layer. The numerical accuracy is first evaluated against analytical solutions of Lamb’s problem, where fourth order accuracy is observed with a sixth order artificial dissipation. We then use successive grid refinements to study the numerical accuracy in the more
Analysis and Computation of Acoustic and Elastic Wave Equations in Random Media
Motamed, Mohammad
2014-01-06
We propose stochastic collocation methods for solving the second order acoustic and elastic wave equations in heterogeneous random media and subject to deterministic boundary and initial conditions [1, 4]. We assume that the medium consists of non-overlapping sub-domains with smooth interfaces. In each sub-domain, the materials coefficients are smooth and given or approximated by a finite number of random variable. One important example is wave propagation in multi-layered media with smooth interfaces. The numerical scheme consists of a finite difference or finite element method in the physical space and a collocation in the zeros of suitable tensor product orthogonal polynomials (Gauss points) in the probability space. We provide a rigorous convergence analysis and demonstrate different types of convergence of the probability error with respect to the number of collocation points under some regularity assumptions on the data. In particular, we show that, unlike in elliptic and parabolic problems [2, 3], the solution to hyperbolic problems is not in general analytic with respect to the random variables. Therefore, the rate of convergence is only algebraic. A fast spectral rate of convergence is still possible for some quantities of interest and for the wave solutions with particular types of data. We also show that the semi-discrete solution is analytic with respect to the random variables with the radius of analyticity proportional to the grid/mesh size h. We therefore obtain an exponential rate of convergence which deteriorates as the quantity h p gets smaller, with p representing the polynomial degree in the stochastic space. We have shown that analytical results and numerical examples are consistent and that the stochastic collocation method may be a valid alternative to the more traditional Monte Carlo method. Here we focus on the stochastic acoustic wave equation. Similar results are obtained for stochastic elastic equations.
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Equivalence of two-dimensional gravities
International Nuclear Information System (INIS)
Mohammedi, N.
1990-01-01
The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given
ACOUSTIC WAVES EMISSION IN THE TWO-COMPONENT HEREDITARY-ELASTIC MEDIUM
Directory of Open Access Journals (Sweden)
V. S. Polenov
2014-01-01
Full Text Available Summary. On the dynamics of two-component media a number of papers, which address the elastic waves in a homogeneous, unbounded fluid-saturated porous medium. In other studies address issues of dissipative processes in harmonic deformation hereditary elastic medium. In the article the dissipative processes of the viscoelastic porous medium, which hereditary properties are described by the core relaxation fractional exponential function U.N. Rabotnova integro-differential Boltzmann-Volterr ratio, harmonic deformation by the straining saturated incompressible liquid are investigated. Speed of wave propagation, absorption coefficient, mechanical loss tangent, logarithmic decrement, depending on fractional parameter γ, determining formulas received. The frequency logarithm and temperature graph dependences with the goal fractional parameter are constructed. Shows the dependences velocity and attenuation coefficient of the tangent of the phase angle of the logarithm of the temperature, and the dependence of the attenuation coefficient of the logarithm of the frequency. Dependencies the speed and the tangent of the phase angle of the frequency identical function of the logarithm of temperature.
Analysis and computation of the elastic wave equation with random coefficients
Motamed, Mohammad
2015-10-21
We consider the stochastic initial-boundary value problem for the elastic wave equation with random coefficients and deterministic data. We propose a stochastic collocation method for computing statistical moments of the solution or statistics of some given quantities of interest. We study the convergence rate of the error in the stochastic collocation method. In particular, we show that, the rate of convergence depends on the regularity of the solution or the quantity of interest in the stochastic space, which is in turn related to the regularity of the deterministic data in the physical space and the type of the quantity of interest. We demonstrate that a fast rate of convergence is possible in two cases: for the elastic wave solutions with high regular data; and for some high regular quantities of interest even in the presence of low regular data. We perform numerical examples, including a simplified earthquake, which confirm the analysis and show that the collocation method is a valid alternative to the more traditional Monte Carlo sampling method for approximating quantities with high stochastic regularity.
Spectral element method for elastic and acoustic waves in frequency domain
Energy Technology Data Exchange (ETDEWEB)
Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min; Zhuang, Mingwei [Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen, 361005 (China); Liu, Na, E-mail: liuna@xmu.edu.cn [Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen, 361005 (China); Liu, Qing Huo, E-mail: qhliu@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708 (United States)
2016-12-15
Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the use of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.
Evolution of elastic precursor and plastic shock wave in copper via molecular dynamics simulations
International Nuclear Information System (INIS)
Perriot, Romain; Zhakhovsky, Vasily V; Oleynik, Ivan I; Inogamov, Nail A
2014-01-01
Large-scale molecular dynamics (MD) simulations are performed to investigate shock propagation in single crystal copper. It is shown that the P-V plastic Hugoniot is unique regardless of the sample's orientation, its microstructure, or its length. However, the P-V pathway to the final state is not, and depends on many factors. Specifically, it is shown that the pressure in the elastic precursor (the Hugoniot elastic limit (HEL)) decreases as the shock wave propagates in a micron-sized sample. The attenuation of the HEL in sufficiently-long samples is the main source of disagreement between previous MD simulations and experiment: while single crystal experiments showed that the plastic shock speed is orientation-independent, the simulated plastic shock speed was observed to be orientation-dependent in relatively short single-crystal samples. Such orientation dependence gradually disappears for relatively long, micrometer-sized, samples for all three low-index crystallographic directions (100), (110), and (111), and the plastic shock velocities for all three directions approach the one measured in experiment. The MD simulations also demonstrate the existence of subsonic plastic shock waves generated by relatively weak supporting pressures.
Coombes, B K; Tucker, K; Vicenzino, B; Vuvan, V; Mellor, R; Heales, L; Nordez, A; Hug, F
2018-03-01
To compare tendon elastic and structural properties of healthy individuals with those with Achilles or patellar tendinopathy. Sixty-seven participants (22 Achilles tendinopathy, 17 patellar tendinopathy, and 28 healthy controls) were recruited between March 2015 and March 2016. Shear wave velocity (SWV), an index of tissue elastic modulus, and tendon thickness were measured bilaterally at mid-tendon and insertional regions of Achilles and patellar tendons by an examiner blinded to group. Analysis of covariance, adjusted for age, body mass index, and sex was used to compare differences in tendon thickness and SWV between the two tendinopathy groups (relative to controls) and regions. Tendon thickness was included as a covariate for analysis of SWV. Compared to controls, participants with Achilles tendinopathy had lower SWV at the distal insertion (Mean difference MD; 95% CI: -1.56; -2.49 to -0.62 m/s; P < .001) and greater thickness at the mid-tendon (MD 0.19; 0.05-0.33 cm; P = .007). Compared to controls, participants with patellar tendinopathy had higher SWV at both regions (MD 1.25; 0.40-2.10 m/s; P = .005) and greater thickness proximally (MD 0.17; 0.06-0.29 cm; P = .003). Compared to controls, participants with Achilles and patellar tendinopathy displayed lower Achilles tendon elastic modulus and higher patellar tendon elastic modulus, respectively. More research is needed to explore whether maturation, aging, or chronic load underlie these findings and whether current management programs for Achilles and patellar tendinopathy need to be tailored to the tendon. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
International Nuclear Information System (INIS)
Shad-Manamen, N.; Eskandari-Ghadi, M.
2008-01-01
The existing theory for wave propagation through a soil layer are not compatible with the real soil layers because in the theory the layers are flat and the sub-layers are parallel, while in real the soil layers are not flat and they may not be parallel. Thus, wave propagations through a corrugated interface are so important. In this paper, a two dimensional SH-wave propagation through a corrugated interface between two linear transversely isotropic half-spaces is assessed. In order to do this, Lord Rayleigh's method is accepted to express the non-flat surface by a Fourier series. In this way, the amplitude of the reflected and transmitted waves is analytically determined in terms of the incident SH-wave amplitude. It is shown that except for the regular reflected and refracted waves, some irregular reflected and refracted waves are exist, and the amplitudes of these waves vary in terms of the angle and frequency of incident wave, equation of surface, and the material properties of the domains. The numerical computations for some cases of different amplitude/wave-length ratio of the interface are done. This work is an extension of Asano's paper (1960) for a more complicated interface, where more non-zero coefficients are considered in expressing the equation of surface in the form of Fourier series. The analytical results for some simpler case of isotropic domain are collapsed on Asano's results (1960). In addition, the numerical evaluation is in good agreement with Asano's.
Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Paul, J.; Dey, P.; Karaiskaj, D., E-mail: karaiskaj@usf.edu [Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620 (United States); Tokumoto, T.; Hilton, D. J. [Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294 (United States); Reno, J. L. [CINT, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)
2014-10-07
The dephasing of the Fermi edge singularity excitations in two modulation doped single quantum wells of 12 nm and 18 nm thickness and in-well carrier concentration of ∼4 × 10{sup 11} cm{sup −2} was carefully measured using spectrally resolved four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. Although the absorption at the Fermi edge is broad at this doping level, the spectrally resolved FWM shows narrow resonances. Two peaks are observed separated by the heavy hole/light hole energy splitting. Temperature dependent “rephasing” (S{sub 1}) 2DFT spectra show a rapid linear increase of the homogeneous linewidth with temperature. The dephasing rate increases faster with temperature in the narrower 12 nm quantum well, likely due to an increased carrier-phonon scattering rate. The S{sub 1} 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations. Distinct 2DFT lineshapes were observed for co-linear and cross-linear polarizations, suggesting the existence of polarization dependent contributions. The “two-quantum coherence” (S{sub 3}) 2DFT spectra for the 12 nm quantum well show a single peak for both co-linear and co-circular polarizations.
International Nuclear Information System (INIS)
Lin, J.; Millis, A.J.
2011-01-01
We calculate the frequency-dependent longitudinal (σ xx ) and Hall (σ xy ) conductivities for two-dimensional metals with thermally disordered antiferromagnetism using a generalization of a theoretical model, involving a one-loop quasistatic fluctuation approximation, which was previously used to calculate the electron self-energy. The conductivities are calculated from the Kubo formula, with current vertex function treated in a conserving approximation satisfying the Ward identity. In order to obtain a finite dc limit, we introduce phenomenologically impurity scattering, characterized by a relaxation time τ. σ xx ((Omega)) satisfies the f-sum rule. For the infinitely peaked spin-correlation function, χ(q)∝(delta)(q-Q), we recover the expressions for the conductivities in the mean-field theory of the ordered state. When the spin-correlation length ζ is large but finite, both σ xx and σ xy show behaviors characteristic of the state with long-range order. The calculation runs into difficulty for (Omega) ∼ xx ((Omega)) and σ xy ((Omega)) are qualitatively consistent with data on electron-doped cuprates when (Omega) > 1/τ.
Low-frequency elastic vibrations localized near fracture in solid
International Nuclear Information System (INIS)
Kosevich, Yu.A.; Syrkin, E.S.
1994-11-01
We propose a consistent macroscopic description of the thermodynamic and dynamical properties of two-dimensional surface layers on the interface between two crystals or between different media. Such description enables one to elucidate the effect of two-dimensional defects (fracture) on the frequency, dispersion and polarization characteristics of surface waves and scattered on two-dimensional defects bulk waves of various nature, starting from rather general assumptions and without using of the microscopic models of surface or interface layers. A new thermodynamic variable for two-dimensional defect with an internal dynamical degree of freedom is introduced. The coupled long-wavelength and low-frequency equations of motion of the defect layer are obtained as a set of nontraditional boundary conditions for the bulk equations of the theory of elasticity. New types of surface and pseudo-surface (resonance) waves caused by two-dimensional absorbed or segregated layers with different strength of bonding with elastic substrate are analyzed. (author). 31 refs, 4 figs
Analytical simulation of two dimensional advection dispersion ...
African Journals Online (AJOL)
The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...
Analytical Simulation of Two Dimensional Advection Dispersion ...
African Journals Online (AJOL)
ADOWIE PERE
ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly...
Stability of two-dimensional vorticity filaments
International Nuclear Information System (INIS)
Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.
2004-01-01
We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability
Two-Dimensional Motions of Rockets
Kang, Yoonhwan; Bae, Saebyok
2007-01-01
We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Conformal invariance and two-dimensional physics
International Nuclear Information System (INIS)
Zuber, J.B.
1993-01-01
Actually, physicists and mathematicians are very interested in conformal invariance: geometric transformations which keep angles. This symmetry is very important for two-dimensional systems as phase transitions, string theory or node mathematics. In this article, the author presents the conformal invariance and explains its usefulness
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar...
Two-dimensional membranes in motion
Davidovikj, D.
2018-01-01
This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research
Extended Polymorphism of Two-Dimensional Material
Yoshida, Masaro; Ye, Jianting; Zhang, Yijin; Imai, Yasuhiko; Kimura, Shigeru; Fujiwara, Akihiko; Nishizaki, Terukazu; Kobayashi, Norio; Nakano, Masaki; Iwasa, Yoshihiro
When controlling electronic properties of bulk materials, we usually assume that the basic crystal structure is fixed. However, in two-dimensional (2D) materials, atomic structure or to functionalize their properties. Various polymorphs can exist in transition metal dichalcogenides (TMDCs) from
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).
Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P
2014-01-01
The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented. Copyright © 2013 Elsevier B.V. All rights reserved.
Reproducibility of real-time shear wave elastography in the evaluation of liver elasticity
International Nuclear Information System (INIS)
Ferraioli, Giovanna; Tinelli, Carmine; Zicchetti, Mabel; Above, Elisabetta; Poma, Gianluigi; Di Gregorio, Marta; Filice, Carlo
2012-01-01
Objective: To evaluate the reproducibility of real-time shear wave elastography in assessing liver elasticity in healthy volunteers. Methods: Forty-two volunteers were studied in day 1. Shear wave elastography studies were performed by using the ultrasound system Aixplorer™ (SuperSonic Imagine S.A., Aix-en-Provence, France) with a convex broadband probe. Measurements were carried by two operators, an expert (operator 1) and a novice (operator 2). Examinations were performed on the right lobe of the liver. Each operator performed 10 consecutive measurements in each volunteer. In a subset of volunteers (n = 18) measurements were performed twice on two different days (day 1 and day 2). Intraobserver and interobserver agreement were assessed by intraclass correlation coefficient. Results: Intraobserver agreement between measurements performed in the same subject in the same day (day 1 or day 2) showed intraclass correlation coefficient values of 0.95 (95% confidence interval, 0.93–0.98) and 0.93 (95% confidence interval, 0.90–0.96) for operator 1 and operator 2, respectively. Intraobserver agreement between measurements performed in the same subject in different days showed intraclass correlation coefficient values of 0.84 (95% confidence interval, 0.69–0.98) and 0.65 (95% confidence interval, 0.39–0.91) for operator 1 and operator 2, respectively. Interobserver agreement was 0.88 (95% confidence interval, 0.82–0.94). Conclusions: The results of this study show that shear wave elastography is a reliable and reproducible noninvasive method for the assessment of liver elasticity. Expert operator had higher reproducibility of measurements over time than novice operator.
Jiang, Yi; Li, Guoyang; Qian, Lin-Xue; Liang, Si; Destrade, Michel; Cao, Yanping
2015-10-01
We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when the ultrasonic probe is pushed into the soft tissue. We relied on an inverse method based on the theory governing the propagation of small-amplitude acoustic waves in deformed solids to interpret the experimental data. We found that, depending on the subjects, the resulting initial shear modulus [Formula: see text] varies from 1.8 to 3.2 kPa, the stiffening parameter [Formula: see text] of the hyperelastic Demiray-Fung model from 0.13 to 0.73, and the third- [Formula: see text] and fourth-order [Formula: see text] constants of weakly nonlinear elasticity from [Formula: see text]1.3 to [Formula: see text]20.6 kPa and from 3.1 to 8.7 kPa, respectively. Paired [Formula: see text] test performed on the experimental results of the left and right lobes of the brain shows no significant difference. These values are in line with those reported in the literature on brain tissue, indicating that the SSI method, combined to the inverse analysis, is an efficient and powerful tool for the mechanical characterization of brain tissue, which is of great importance for computer simulation of traumatic brain injury and virtual neurosurgery.
Reproducibility of real-time shear wave elastography in the evaluation of liver elasticity
Energy Technology Data Exchange (ETDEWEB)
Ferraioli, Giovanna, E-mail: giovanna.ferraioli@unipv.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Tinelli, Carmine, E-mail: ctinelli@smatteo.pv.it [Clinical Epidemiology and Biometric Unit, IRCCS San Matteo Hospital Foundation, Viale Golgi 19, 27100 Pavia (Italy); Zicchetti, Mabel, E-mail: mabel.zicchetti@unipv.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Above, Elisabetta, E-mail: betta.above@gmail.com [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Poma, Gianluigi, E-mail: gigi.poma@libero.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Di Gregorio, Marta, E-mail: martadigregorio@virgilio.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Filice, Carlo, E-mail: carfil@unipv.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy)
2012-11-15
Objective: To evaluate the reproducibility of real-time shear wave elastography in assessing liver elasticity in healthy volunteers. Methods: Forty-two volunteers were studied in day 1. Shear wave elastography studies were performed by using the ultrasound system Aixplorer Trade-Mark-Sign (SuperSonic Imagine S.A., Aix-en-Provence, France) with a convex broadband probe. Measurements were carried by two operators, an expert (operator 1) and a novice (operator 2). Examinations were performed on the right lobe of the liver. Each operator performed 10 consecutive measurements in each volunteer. In a subset of volunteers (n = 18) measurements were performed twice on two different days (day 1 and day 2). Intraobserver and interobserver agreement were assessed by intraclass correlation coefficient. Results: Intraobserver agreement between measurements performed in the same subject in the same day (day 1 or day 2) showed intraclass correlation coefficient values of 0.95 (95% confidence interval, 0.93-0.98) and 0.93 (95% confidence interval, 0.90-0.96) for operator 1 and operator 2, respectively. Intraobserver agreement between measurements performed in the same subject in different days showed intraclass correlation coefficient values of 0.84 (95% confidence interval, 0.69-0.98) and 0.65 (95% confidence interval, 0.39-0.91) for operator 1 and operator 2, respectively. Interobserver agreement was 0.88 (95% confidence interval, 0.82-0.94). Conclusions: The results of this study show that shear wave elastography is a reliable and reproducible noninvasive method for the assessment of liver elasticity. Expert operator had higher reproducibility of measurements over time than novice operator.
Electromagnetically induced two-dimensional grating assisted by incoherent pump
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn
2017-04-25
We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.
Modal approach for the full simulation of nondestructive tests by elastic guided waves
International Nuclear Information System (INIS)
Jezzine, K.
2006-11-01
Tools for simulating nondestructive tests by elastic guided waves are developed. Two overall formulations based on modal formalism and reciprocity are derived depending on whether transmission and reception are separated or not. They relate phenomena of guided wave radiation by a transducer, their propagation, their scattering by a non-uniformity of the guide or a defect and their reception. Receiver electrical output is expressed as a product of terms relating to each phenomenon that can be computed separately. Their computation uses developments based on the semi-analytical finite elements method, dealing with guides of arbitrary cross-section and cracks normal to the guide axis. Simulation tools are used to study means for selecting a single mode using a transducer positioned on the guide section, such a selection making easier the interpretation of the results of testing by guided waves. Two methods of mode selection are proposed, based on the use of two specific frequencies (which existence depends on guide geometry and mode symmetry). Mimicking the normal stress distribution of the mode at one of these two frequencies or the other makes it possible to radiate solely or predominantly the mode chosen. Examinations are simulated in configurations using a single or two separated transducers positioned on the section of various guide geometries and cracks of various shapes. The interest and performances of the two methods of mode selection are studied in these configurations. (author)
Visco-elastic controlled-source full waveform inversion without surface waves
Paschke, Marco; Krause, Martin; Bleibinhaus, Florian
2016-04-01
We developed a frequency-domain visco-elastic full waveform inversion for onshore seismic experiments with topography. The forward modeling is based on a finite-difference time-domain algorithm by Robertsson that uses the image-method to ensure a stress-free condition at the surface. The time-domain data is Fourier-transformed at every point in the model space during the forward modeling for a given set of frequencies. The motivation for this approach is the reduced amount of memory when computing kernels, and the straightforward implementation of the multiscale approach. For the inversion, we calculate the Frechet derivative matrix explicitly, and we implement a Levenberg-Marquardt scheme that allows for computing the resolution matrix. To reduce the size of the Frechet derivative matrix, and to stabilize the inversion, an adapted inverse mesh is used. The node spacing is controlled by the velocity distribution and the chosen frequencies. To focus the inversion on body waves (P, P-coda, and S) we mute the surface waves from the data. Consistent spatiotemporal weighting factors are applied to the wavefields during the Fourier transform to obtain the corresponding kernels. We test our code with a synthetic study using the Marmousi model with arbitrary topography. This study also demonstrates the importance of topography and muting surface waves in controlled-source full waveform inversion.
Ebrahimi, Farzad; Dabbagh, Ali
2017-02-01
Main object of the present research is an exact investigation of wave propagation responses of smart rotating magneto-electro-elastic (MEE) graded nanoscale plates. In addition, effective material properties of functionally graded (FG) nanoplate are presumed to be calculated using the power-law formulations. Also, it has been tried to cover both softening and stiffness-hardening behaviors of nanostructures by the means of employing nonlocal strain gradient theory (NSGT). Due to increasing the accuracy of the presented model in predicting shear deformation effects, a refined higher-order plate theory is introduced. In order to cover the most enormous circumstances, maximum amount of load generated by plate’s rotation is considered. Furthermore, utilizing a developed form of Hamilton’s principle, containing magneto-electric effects, the nonlocal governing equations of MEE-FG rotating nanoplates are derived. An analytical solution is obtained to solve the governing equations and validity of the solution method is proven by comparing results from present method with those of former attempts. At last, outcomes are plotted in the framework of some figures to show the influences of various parameters such as wave number, nonlocality, length scale parameter, magnetic potential, electric voltage, gradient index and angular velocity on wave frequency, phase velocity and escape frequency of the examined nanoplate.
Anisotropic propagation imaging of elastic waves in oriented columnar thin films
Coffy, E.; Dodane, G.; Euphrasie, S.; Mosset, A.; Vairac, P.; Martin, N.; Baida, H.; Rampnoux, J. M.; Dilhaire, S.
2017-12-01
We report on the observation of strongly anisotropic surface acoustic wave propagation on nanostructured thin films. Two kinds of tungsten samples were prepared by sputtering on a silicon substrate: a conventional thin film with columns normal to the substrate surface, and an oriented columnar architecture using the glancing angle deposition (GLAD) process. Pseudo-Rayleigh waves (PRWs) were imaged as a function of time in x and y directions for both films thanks to a femtosecond heterodyne pump-probe setup. A strong anisotropic propagation as well as a high velocity reduction of the PRWs were exhibited for the GLAD sample. For the wavevector k/2π = 3 × 105 m-1 the measured group velocities v x and v y equal 2220 m s-1 for the sample prepared with conventional sputtering, whereas a strong anisotropy appears (v x = 1600 m s-1 and v y = 870 m s-1) for the sample prepared with the GLAD process. Using the finite element method, the anisotropy is related to the structural anisotropy of the thin film’s architecture. The drop of PRWs group velocities is mainly assigned to the porous microstructure, especially favored by atomic shadowing effects which appear during the growth of the inclined columns. Such GLAD thin films constitute a new tool for the control of the propagation of surface elastic waves and for the design of new devices with useful properties.
Hybrid Theory of P-Wave Electron-Hydrogen Elastic Scattering
Bhatia, Anand
2012-01-01
We report on a study of electron-hydrogen scattering, using a combination of a modified method of polarized orbitals and the optical potential formalism. The calculation is restricted to P waves in the elastic region, where the correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only 35-term correlation function is needed in the wave function compared to the 220-term wave function required in the above-mentioned previous calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts.
Two-dimensional 220 MHz Fourier transform EPR imaging
International Nuclear Information System (INIS)
Placidi, Giuseppe; Brivati, John A.; Alecci, Marcello; Testa, Luca; Sotgiu, Antonello
1998-01-01
In the last decade radiofrequency continuous-wave EPR spectrometers have been developed to detect and localize free radicals in vivo. Only recently, pulsed radiofrequency EPR spectrometers have been described for imaging applications with small samples. In the present work, we show the first two-dimensional image obtained at 220 MHz on a large phantom (40 ml) that simulates typical conditions of in vivo EPR imaging. This pulsed EPR apparatus has the potential to make the time required for three-dimensional imaging compatible with the biological half-life of normally used paramagnetic probes. (author)
Engineering topological edge states in two dimensional magnetic photonic crystal
Yang, Bing; Wu, Tong; Zhang, Xiangdong
2017-01-01
Based on a perturbative approach, we propose a simple and efficient method to engineer the topological edge states in two dimensional magnetic photonic crystals. The topological edge states in the microstructures can be constructed and varied by altering the parameters of the microstructure according to the field-energy distributions of the Bloch states at the related Bloch wave vectors. The validity of the proposed method has been demonstrated by exact numerical calculations through three concrete examples. Our method makes the topological edge states "designable."
The Penalty Cost Functional for the Two-Dimensional
Directory of Open Access Journals (Sweden)
Victor Onomza WAZIRI
2006-07-01
Full Text Available This paper constructs the penalty cost functional for optimizing the two-dimensional control operator of the energized wave equation. In some multiplier methods such as the Lagrange multipliers and Pontrygean maximum principle, the cost of merging the constraint equation to the integral quadratic objective functional to obtain an unconstraint equation is normally guessed or obtained from the first partial derivatives of the unconstrained equation. The Extended Conjugate Gradient Method (ECGM necessitates that the penalty cost be sequentially obtained algebraically. The ECGM problem contains a functional which is completely given in terms of state and time spatial dependent variables.
Two-dimensional confinement of heavy fermions
International Nuclear Information System (INIS)
Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito
2010-01-01
Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)
Two-dimensional sensitivity calculation code: SENSETWO
International Nuclear Information System (INIS)
Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.
1979-05-01
A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Toward two-dimensional search engines
International Nuclear Information System (INIS)
Ermann, L; Shepelyansky, D L; Chepelianskii, A D
2012-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)
Confined catalysis under two-dimensional materials
Li, Haobo; Xiao, Jianping; Fu, Qiang; Bao, Xinhe
2017-01-01
Small spaces in nanoreactors may have big implications in chemistry, because the chemical nature of molecules and reactions within the nanospaces can be changed significantly due to the nanoconfinement effect. Two-dimensional (2D) nanoreactor formed under 2D materials can provide a well-defined model system to explore the confined catalysis. We demonstrate a general tendency for weakened surface adsorption under the confinement of graphene overlayer, illustrating the feasible modulation of su...
Two-Dimensional Extreme Learning Machine
Directory of Open Access Journals (Sweden)
Bo Jia
2015-01-01
(BP networks. However, like many other methods, ELM is originally proposed to handle vector pattern while nonvector patterns in real applications need to be explored, such as image data. We propose the two-dimensional extreme learning machine (2DELM based on the very natural idea to deal with matrix data directly. Unlike original ELM which handles vectors, 2DELM take the matrices as input features without vectorization. Empirical studies on several real image datasets show the efficiency and effectiveness of the algorithm.
Superintegrability on the two dimensional hyperboloid
International Nuclear Information System (INIS)
Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr
1998-01-01
This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out
Mechanical exfoliation of two-dimensional materials
Gao, Enlai; Lin, Shao-Zhen; Qin, Zhao; Buehler, Markus J.; Feng, Xi-Qiao; Xu, Zhiping
2018-06-01
Two-dimensional materials such as graphene and transition metal dichalcogenides have been identified and drawn much attention over the last few years for their unique structural and electronic properties. However, their rise begins only after these materials are successfully isolated from their layered assemblies or adhesive substrates into individual monolayers. Mechanical exfoliation and transfer are the most successful techniques to obtain high-quality single- or few-layer nanocrystals from their native multi-layer structures or their substrate for growth, which involves interfacial peeling and intralayer tearing processes that are controlled by material properties, geometry and the kinetics of exfoliation. This procedure is rationalized in this work through theoretical analysis and atomistic simulations. We propose a criterion to assess the feasibility for the exfoliation of two-dimensional sheets from an adhesive substrate without fracturing itself, and explore the effects of material and interface properties, as well as the geometrical, kinetic factors on the peeling behaviors and the torn morphology. This multi-scale approach elucidates the microscopic mechanism of the mechanical processes, offering predictive models and tools for the design of experimental procedures to obtain single- or few-layer two-dimensional materials and structures.
B-spline based finite element method in one-dimensional discontinuous elastic wave propagation
Czech Academy of Sciences Publication Activity Database
Kolman, Radek; Okrouhlík, Miloslav; Berezovski, A.; Gabriel, Dušan; Kopačka, Ján; Plešek, Jiří
2017-01-01
Roč. 46, June (2017), s. 382-395 ISSN 0307-904X R&D Projects: GA ČR(CZ) GAP101/12/2315; GA MŠk(CZ) EF15_003/0000493 Grant - others:AV ČR(CZ) DAAD-16-12; AV ČR(CZ) ETA-15-03 Program:Bilaterální spolupráce; Bilaterální spolupráce Institutional support: RVO:61388998 Keywords : discontinuous elastic wave propagation * B-spline finite element method * isogeometric analysis * implicit and explicit time integration * dispersion * spurious oscillations Subject RIV: BI - Acoustics OBOR OECD: Acoustics Impact factor: 2.350, year: 2016 http://www.sciencedirect.com/science/article/pii/S0307904X17300835
A Stochastic Multiscale Method for the Elastic Wave Equations Arising from Fiber Composites
Babuska, Ivo
2016-01-06
We present a stochastic multilevel global-local algorithm [1] for computing elastic waves propagating in fiber-reinforced polymer composites, where the material properties and the size and distribution of fibers in the polymer matrix may be random. The method aims at approximating statistical moments of some given quantities of interest, such as stresses, in regions of relatively small size, e.g. hot spots or zones that are deemed vulnerable to failure. For a fiber-reinforced cross-plied laminate, we introduce three problems: 1) macro; 2) meso; and 3) micro problems, corresponding to the three natural length scales: 1) the sizes of plate; 2) the tickles of plies; and 3) and the diameter of fibers. The algorithm uses a homogenized global solution to construct a local approximation that captures the microscale features of the problem. We perform numerical experiments to show the applicability and efficiency of the method.
Variational integrators for the dynamics of thermo-elastic solids with finite speed thermal waves
International Nuclear Information System (INIS)
Mata, Pablo; Lew, Adrian J.
2014-01-01
This paper formulates variational integrators for finite element discretizations of deformable bodies with heat conduction in the form of finite speed thermal waves. The cornerstone of the construction consists in taking advantage of the fact that the Green–Naghdi theory of type II for thermo-elastic solids has a Hamiltonian structure. Thus, standard techniques to construct variational integrators can be applied to finite element discretizations of the problem. The resulting discrete-in-time trajectories are then consistent with the laws of thermodynamics for these systems: for an isolated system, they exactly conserve the total entropy, and nearly exactly conserve the total energy over exponentially long periods of time. Moreover, linear and angular momenta are also exactly conserved whenever the exact system does. For definiteness, we construct an explicit second-order accurate algorithm for affine tetrahedral elements in two and three dimensions, and demonstrate its performance with numerical examples
Low-frequency wave propagation in an elastic plate loaded by a two-layer fluid
DEFF Research Database (Denmark)
Indeitsev, Dmitrij; Sorokin, Sergey
2012-01-01
concern is propagation of low-frequency waves in such a coupled waveguide. In the present paper, we assume that an inhomogeneous fluid may be modelled as two homogeneous, inviscid and incompressible layers with slightly different densities. The lighter layer of fresh water lies on top of the heavier layer......In several technical applications, for example, in the Arctic off-shore oil industry, it is necessary to predict waveguide properties of floating elastic plates in contact with a relatively thin layer of water, which has a non-uniform density distribution across its depth. The issue of particular...... formulation, such as depths of the layers, stiffness and inertia of the plate, are assessed in several frequency ranges. Dispersion diagrams obtained from approximate dispersion relations are compared with their exact counterparts....
A robust approach for analysing dispersion of elastic waves in an orthotropic cylindrical shell
Kaplunov, J.; Nobili, A.
2017-08-01
Dispersion of elastic waves in a thin orthotropic cylindrical shell is considered, within the framework of classical 2D Kirchhoff-Love theory. In contrast to direct multi-parametric analysis of the lowest propagating modes, an alternative robust approach is proposed that simply requires evaluation of the evanescent modes (quasi-static edge effect), which, at leading order, do not depend on vibration frequency. A shortened dispersion relation for the propagating modes is then derived by polynomial division and its accuracy is numerically tested against the full Kirchhoff-Love dispersion relation. It is shown that the same shortened relation may be also obtained from a refined dynamic version of the semi-membrane theory for cylindrical shells. The presented results may be relevant for modelling various types of nanotubes which, according to the latest experimental findings, possess strong material anisotropy.
Elastic-Plastic Behavior of U6Nb Under Ramp Wave Loading
Hayes, D. B.; Hall, C.; Hixson, R. S.
2005-07-01
Prior shock experiments on the alloy uranium-niobium-6 wt.% (U6Nb) were absent an elastic precursor when one was expected (A. K. Zurek, et. al., Journal de Physique IV, 10 (#9) p677-682). This was later explained as a consequence of shear stress relaxation from time-dependent twinning that prevented sufficient shear stress for plastic yielding. (D. B. Hayes, et. al., Shock Compression of Condensed Matter-2003, p1177, American Institute of Physics 2004) Pressure was ramped to 13 GPa in 150-ns on eight U6Nb specimens with thicknesses from 0.5 -- 1.1-mm and the back surface velocities were measured with laser interferometry. This pressure load produces a stress wave with sufficiently fast rise time so that, according to the prior work, twins do not have time to form. Four of the U6Nb specimens had been cold-rolled which increased the yield stress. Each velocity history was analyzed with a backward integration analysis to give the stress-strain response of the U6Nb. Comparison of these results with prior Hugoniot measurements shows that the U6Nb in the present experiments responds as an elastic-plastic material and the deduced yield strength of the baseline and of the cold-rolled material agree with static results.
Elastic-Plastic Behavior of U6Nb under Ramp Wave Loading
International Nuclear Information System (INIS)
Hayes, D. B.; Gray, G. T. III; Hixson, R. S.; Hall, C. A.
2006-01-01
When uranium-niobium (6 wt.%) alloy is shock loaded, the expected elastic precursor is absent. A prior model attributed this absence to shear-induced twinning and the concomitant shear stress reduction that prevented the shocked material from reaching the plastic yield point. In the present study, carefully prepared U6Nb was subjected to shock loading to verify the adequacy of the prior model. Other samples were loaded with a ramp pressure pulse with strain rate large enough so that significant twinning would not occur during the experiment. Backward integration analyses of these latter experiments' back surface motion give stress-strain loading paths in U6Nb that suggest ordinary elastic-plastic flow. Some of the U6Nb was pre-strained by cold rolling in an effort to further ensure that twinning did not affect wave propagation. Shock and ramp loadings yielded similar results to the baseline material except, as expected, they are consistent with a higher yield stress and twinning shear stress threshold
Measurement of tissue-radiation dosage using a thermal steady-state elastic shear wave.
Chang, Sheng-Yi; Hsieh, Tung-Sheng; Chen, Wei-Ru; Chen, Jin-Chung; Chou, Chien
2017-08-01
A biodosimeter based on thermal-induced elastic shear wave (TIESW) in silicone acellular porcine dermis (SAPD) at thermal steady state has been proposed and demonstrated. A square slab SAPD treated with ionizing radiation was tested. The SAPD becomes a continuous homogeneous and isotropic viscoelastic medium due to the generation of randomly coiled collagen fibers formed from their bundle-like structure in the dermis. A harmonic TIESW then propagates on the surface of the SAPD as measured by a nanometer-scaled strain-stress response under thermal equilibrium conditions at room temperature. TIESW oscillation frequency was noninvasively measured in real time by monitoring the transverse displacement of the TIESW on the SAPD surface. Because the elastic shear modulus is highly sensitive to absorbed doses of ionizing radiation, this proposed biodosimeter can become a highly sensitive and noninvasive method for quantitatively determining tissue-absorbed dosage in terms of TIESW’s oscillation frequency. Detection sensitivity at 1 cGy and dynamic ranges covering 1 to 40 cGy and 80 to 500 cGy were demonstrated.
Elastic Wave Imaging of in-Situ Bio-Alterations in a Contaminated Aquifer
Jaiswal, P.; Raj, R.; Atekwana, E. A.; Briand, B.; Alam, I.
2014-12-01
We present a pioneering report on the utility of seismic methods in imaging bio-induced elastic property changes within a contaminated aquifer. To understand physical properties of contaminated soil, we acquired 48 meters long multichannel seismic profile over the Norman landfill leachate plume in Norman Oklahoma, USA. We estimated both the P- and S- wave velocities respectively using full-waveform inversion of the transmission and the ground-roll coda. The resulting S-wave model showed distinct velocity anomaly (~10% over background) within the water table fluctuation zone bounded by the historical minimum and maximum groundwater table. In comparison, the P-wave velocity anomaly within the same zone was negligible. The Environmental Scanning Electron Microscope (ESEM) images of samples from a core located along the seismic profile clearly shows presence of biofilms in the water table fluctuation zone and their absence both above and below the fluctuation zone. Elemental chemistry further indicates that the sediment composition throughout the core is fairly constant. We conclude that the velocity anomaly in S-wave is due to biofilms. As a next step, we develop mechanistic modeling to gain insights into the petro-physical behavior of biofilm-bearing sediments. Preliminary results suggest that a plausible model could be biofilms acting as contact cement between sediment grains. The biofilm cement can be placed in two ways - (i) superficial non-contact deposition on sediment grains, and (ii) deposition at grain contacts. Both models explain P- and S- wave velocity structure at reasonable (~5-10%) biofilm saturation and are equivocally supported by the ESEM images. Ongoing attenuation modeling from full-waveform inversion and its mechanistic realization, may be able to further discriminate between the two cement models. Our study strongly suggests that as opposed to the traditional P-wave seismic, S-wave acquisition and imaging can be a more powerful tool for in
Small Effect of Hydration on Elastic Wave Velocities of Ringwoodite in Earth's Transition Zone
Schulze, K.; Marquardt, H.; Boffa Ballaran, T.; Kurnosov, A.; Kawazoe, T.; Koch-Müller, M.
2017-12-01
Ringwoodite can incorporate significant amounts of hydrogen as OH-defects into its crystal structure. The measurement of 1.4 wt.% H20 in a natural ringwoodite diamond inclusion (Pearson et al. 2014) showed that hydrous ringwoodite can exist in the Earth's mantle. Since ringwoodite is considered to be the major phase in the mantle between 520 and 660 km depth it likely plays an important role for Earth's deep water cycle and the mantle water budget. Previous experimental work has shown that hydration reduces seismic wave velocities in ringwoodite, motivating attempts to map the hydration state of the mantle using seismic wave speed variations as depicted by seismic tomography. However, large uncertainties on the actual effects at transition zone pressures and temperatures remain. A major difficulty is the comparability of studies with different experimental setups and pressure- and temperature conditions. Here, we present results from a comparative elasticity study designed to quantify the effects of hydration on the seismic wave velocities of ringwoodite in Earth's transition zone. Focused ion beam cut single-crystals of four samples of either Fo90 or Fo100 ringwoodite with hydration states between 0.21 - 1.71 wt.% H2O were loaded in the pressure chamber of one diamond-anvil cell to ensure identical experimental conditions. Single-crystal Brillouin Spectroscopy and X-ray diffraction measurements were performed at room temperature to a pressure of 22 GPa. Additional experiments at high pressure and temperatures up to 500 K were performed. Our data collected at low pressures show a significant reduction of elastic wave velocities with hydration, consistent with previous work. However, in contrast to previous inferences, our results indicate that pressure significantly reduces the effect of hydration. Based on the outcome of our work, the redution in aggregate velocities caused by 1 wt.% H2O becomes smaller than 1% in ringwoodite at pressures equivalent to the Earth
Shan, Zhendong; Ling, Daosheng
2018-02-01
This article develops an analytical solution for the transient wave propagation of a cylindrical P-wave line source in a semi-infinite elastic solid with a fluid layer. The analytical solution is presented in a simple closed form in which each term represents a transient physical wave. The Scholte equation is derived, through which the Scholte wave velocity can be determined. The Scholte wave is the wave that propagates along the interface between the fluid and solid. To develop the analytical solution, the wave fields in the fluid and solid are defined, their analytical solutions in the Laplace domain are derived using the boundary and interface conditions, and the solutions are then decomposed into series form according to the power series expansion method. Each item of the series solution has a clear physical meaning and represents a transient wave path. Finally, by applying Cagniard's method and the convolution theorem, the analytical solutions are transformed into the time domain. Numerical examples are provided to illustrate some interesting features in the fluid layer, the interface and the semi-infinite solid. When the P-wave velocity in the fluid is higher than that in the solid, two head waves in the solid, one head wave in the fluid and a Scholte wave at the interface are observed for the cylindrical P-wave line source.
Yang, J. C. S.; Tsui, C. Y.
1972-01-01
Analytical and experimental studies were made of the attenuation of the stress waves during passage through single and multilayer structures. The investigation included studies on elastic and plastic stress wave propagation in the composites and those on shock mitigating material characteristics such as dynamic stress-strain relations and energy absorbing properties. The results of the studies are applied to methods for reducing the stresses imposed on a spacecraft during planetary or ocean landings.
Propagation of acoustic-gravity waves in arctic zones with elastic ice-sheets
Kadri, Usama; Abdolali, Ali; Kirby, James T.
2017-04-01
We present an analytical solution of the boundary value problem of propagating acoustic-gravity waves generated in the ocean by earthquakes or ice-quakes in arctic zones. At the surface, we assume elastic ice-sheets of a variable thickness, and show that the propagating acoustic-gravity modes have different mode shape than originally derived by Ref. [1] for a rigid ice-sheet settings. Computationally, we couple the ice-sheet problem with the free surface model by Ref. [2] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice-sheets cause inter modal transition at the edges and multidirectional reflections. We then derive a depth-integrated equation valid for spatially slowly varying thickness of ice-sheet and water depth. Surprisingly, and unlike the free-surface setting, here it is found that the higher acoustic-gravity modes exhibit a larger contribution. These modes travel at the speed of sound in water carrying information on their source, e.g. ice-sheet motion or submarine earthquake, providing various implications for ocean monitoring and detection of quakes. In addition, we found that the propagating acoustic-gravity modes can result in orbital displacements of fluid parcels sufficiently high that may contribute to deep ocean currents and circulation, as postulated by Refs. [1, 3]. References [1] U. Kadri, 2016. Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones. Advances in Acoustics and Vibration, 2016, Article ID 8076108, 7 pages http://dx.doi.org/10.1155/2016/8076108 [2] A. Abdolali, J. T. Kirby and G. Bellotti, 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, J. Fluid Mech., 766, R1 doi:10.1017/jfm.2015.37 [3] U. Kadri, 2014. Deep ocean water transportation by acoustic?gravity waves. J. Geophys. Res. Oceans, 119, doi:10.1002/ 2014JC010234
Glushkov, E. V.; Glushkova, N. V.; Evdokimov, A. A.
2018-01-01
Numerical simulation of traveling wave excitation, propagation, and diffraction in structures with local inhomogeneities (obstacles) is computationally expensive due to the need for mesh-based approximation of extended domains with the rigorous account for the radiation conditions at infinity. Therefore, hybrid numerical-analytic approaches are being developed based on the conjugation of a numerical solution in a local vicinity of the obstacle and/or source with an explicit analytic representation in the remaining semi-infinite external domain. However, in standard finite-element software, such a coupling with the external field, moreover, in the case of multimode expansion, is generally not provided. This work proposes a hybrid computational scheme that allows realization of such a conjugation using a standard software. The latter is used to construct a set of numerical solutions used as the basis for the sought solution in the local internal domain. The unknown expansion coefficients on this basis and on normal modes in the semi-infinite external domain are then determined from the conditions of displacement and stress continuity at the boundary between the two domains. We describe the implementation of this approach in the scalar and vector cases. To evaluate the reliability of the results and the efficiency of the algorithm, we compare it with a semianalytic solution to the problem of traveling wave diffraction by a horizontal obstacle, as well as with a finite-element solution obtained for a limited domain artificially restricted using absorbing boundaries. As an example, we consider the incidence of a fundamental antisymmetric Lamb wave onto surface and partially submerged elastic obstacles. It is noted that the proposed hybrid scheme can also be used to determine the eigenfrequencies and eigenforms of resonance scattering, as well as the characteristics of traveling waves in embedded waveguides.
Chino, Kentaro; Takahashi, Hideyuki
2016-04-01
Passive joint stiffness is an important quantitative measure of flexibility, but is affected by muscle volume and all of the anatomical structures located within and over the joint. Shear wave elastography can assess muscle elasticity independent of the influences of muscle volume and the other nearby anatomical structures. We determined how muscle elasticity, as measured using shear wave elastography, is associated with passive joint stiffness and patient sex. Twenty-six healthy men (24.4 ± 5.9 years) and 26 healthy women (25.2 ± 4.8 years) participated in this study. The passive ankle joint stiffness and tissue elasticity of the medial gastrocnemius (MG) were quantified with the ankle in 30° plantar flexion (PF), a neutral anatomical position (NE), and 20° dorsiflexion (DF). No significant difference in passive joint stiffness by sex was observed with the ankle in PF, but significantly greater passive ankle joint stiffness in men than in women was observed in NE and DF. The MG elasticity was not significantly associated with joint stiffness in PF or NE, but it was significantly associated with joint stiffness in DF. There were no significant differences in MG elasticity by sex at any ankle position. Muscle elasticity, measured independent of the confounding effects of muscle volume and the other nearby anatomical structures, is associated with passive joint stiffness in the joint position where the muscle is sufficiently lengthened, but does not vary by sex in any joint position tested.
International Nuclear Information System (INIS)
Mirzade, Fikret Kh.
2005-01-01
The propagation of longitudinal strain wave in a plate with quadratic nonlinearity of elastic continuum was studied in the context of a model that takes into account the joint dynamics of elastic displacements in the medium and the concentration of the nonequilibrium laser-induced point defects. The input equations of the problem are reformulated in terms of only the total displacements of the medium points. In this case, the presence of structural defects manifests itself in the emergence of a delayed response of the system to the propagation of the strain-related perturbations, which is characteristic of media with relaxation or memory. The model equations describing the nonlinear displacement wave were derived with allowance made for the values of the relaxation parameter. The influence of the generation and relaxation of lattice defects on the propagation of this wave was analyzed. It is shown that, for short relaxation times of defects, the strain can propagate in the form of shock fronts. In the case of longer relaxation times, shock waves do not form and the strain wave propagates only in the form of solitary waves or a train of solitons. The contributions of the finiteness of the defect-recombination rate to linear and nonlinear elastic modulus, and spatial dispersion are determined
Brantut, N.; David, E. C.; Héripré, E.; Schubnel, A. J.; Zimmerman, R. W.; Gueguen, Y.
2010-12-01
Dehydration experiments were performed on natural Gypsum polycrystal samples coming from Volterra, Italy in order to study contemporaneously the evolution of P and S elastic wave velocities and acoustic emission (AE) triggering. During these experiments, temperature was slowly raised at 0.15 degrees C per minute under constant stress conditions. Two experiments were realized under quasi-hydrostatic stress (15 and 55 MPa respectively). The third experiment was realized under constant triaxial stress (σ3=45MPa, σ1=75MPa). All three were drained (10MPa constant pore pressure). In each experiments, both P and S wave velocities reduced drastically (as much as approx. 50% in the low confining pressure case) at the onset of dehydration. Importantly, the Vp/Vs ratio also decreased. Shortly after the onset of decrease in P and S wave velocities, the dehydration reaction was also accompanied by bursts of AEs. Time serie locations of the AEs show that they initiated from the pore pressure port, ie from where the pore fluid could easily be drained, and then slowly migrated within the sample. In each experiments, the AE rate could be positively correlated to the reaction rate, inferred from pore volumetry. In such a way, the AE rate reached a peak when the reaction was the fastest. Focal mechanism analysis of the largest AEs showed they had a large volumetric component in compaction, confirming that AEs were indeed related to pore closure and/or collapse. In addition, the AE rate also increased with confinement, ie when a larger amount of compaction was observed. Interestingly, when under differential stress conditions, AE focal mechanisms were mainly in shear. Additional dehydration experiments performed within an environmental scanning electron microscope under low vacuum highlight that, in drained conditions at least, the reaction seems to take place in two phases. First, cracks are being opened along cleavage planes within a single gypsum crystal, which allows for the
Self-organized defect strings in two-dimensional crystals.
Lechner, Wolfgang; Polster, David; Maret, Georg; Keim, Peter; Dellago, Christoph
2013-12-01
Using experiments with single-particle resolution and computer simulations we study the collective behavior of multiple vacancies injected into two-dimensional crystals. We find that the defects assemble into linear strings, terminated by dislocations with antiparallel Burgers vectors. We show that these defect strings propagate through the crystal in a succession of rapid one-dimensional gliding and rare rotations. While the rotation rate decreases exponentially with the number of defects in the string, the diffusion constant is constant for large strings. By monitoring the separation of the dislocations at the end points, we measure their effective interactions with high precision beyond their spontaneous formation and annihilation, and we explain the double-well form of the dislocation interaction in terms of continuum elasticity theory.
Two-dimensional strain gradient damage modeling: a variational approach
Placidi, Luca; Misra, Anil; Barchiesi, Emilio
2018-06-01
In this paper, we formulate a linear elastic second gradient isotropic two-dimensional continuum model accounting for irreversible damage. The failure is defined as the condition in which the damage parameter reaches 1, at least in one point of the domain. The quasi-static approximation is done, i.e., the kinetic energy is assumed to be negligible. In order to deal with dissipation, a damage dissipation term is considered in the deformation energy functional. The key goal of this paper is to apply a non-standard variational procedure to exploit the damage irreversibility argument. As a result, we derive not only the equilibrium equations but, notably, also the Karush-Kuhn-Tucker conditions. Finally, numerical simulations for exemplary problems are discussed as some constitutive parameters are varying, with the inclusion of a mesh-independence evidence. Element-free Galerkin method and moving least square shape functions have been employed.
Seismic isolation of buildings on two dimensional phononic crystal foundation
Han, Lin; Li, Xiao-mei; Zhang, Yan
2017-11-01
In order to realize the seismic isolation of buildings, we establish the two dimensional phononic crystal (PC) foundation which has the cell with the size close to the regular concrete test specimens, and is composed of the concrete base, rubber coating and lead cylindrical core. We study the in-plane band gap (BG) characteristics in it, through the analysis of the frequency dispersion relation and frequency response result. To lower the start BG frequency to the seismic frequency range, we also study the influences of material parameters (the elastic modulus of coating and density of cylindrical core) and geometry parameters (the thickness of coating, radius of cylindrical core and lattice constant) on BG ranges. The study could help to design the PC foundation for seismic isolation of building.
Chu, Chunlei; Stoffa, Paul L.; Seif, Roustam
2009-01-01
We present two Lax‐Wendroff type high‐order time stepping schemes and apply them to solving the 3D elastic wave equation. The proposed schemes have the same format as the Taylor series expansion based schemes, only with modified temporal extrapolation coefficients. We demonstrate by both theoretical analysis and numerical examples that the modified schemes significantly improve the stability conditions.
Zhang, Xiaoming; Qiang, Bo; Greenleaf, James
2011-02-01
The speed of the surface Rayleigh wave, which is related to the viscoelastic properties of the medium, can be measured by noninvasive and noncontact methods. This technique has been applied in biomedical applications such as detecting skin diseases. Static spherical indentation, which quantifies material elasticity through the relationship between loading force and displacement, has been applied in various areas including a number of biomedical applications. This paper compares the results obtained from these two methods on five gelatin phantoms of different concentrations (5%, 7.5%, 10%, 12.5% and 15%). The concentrations are chosen because the elasticity of such gelatin phantoms is close to that of tissue types such as skin. The results show that both the surface wave method and the static spherical indentation method produce the same values for shear elasticity. For example, the shear elasticities measured by the surface wave method are 1.51, 2.75, 5.34, 6.90 and 8.40kPa on the five phantoms, respectively. In addition, by studying the dispersion curve of the surface wave speed, shear viscosity can be extracted. The measured shear viscosities are 0.00, 0.00, 0.13, 0.39 and 1.22Pa.s on the five phantoms, respectively. The results also show that the shear elasticity of the gelatin phantoms increases linearly with their prepared concentrations. The linear regressions between concentration and shear elasticity have R(2) values larger than 0.98 for both methods. Copyright © 2010 Elsevier B.V. All rights reserved.
Low frequency energy scavenging using sub-wave length scale acousto-elastic metamaterial
Directory of Open Access Journals (Sweden)
Riaz U. Ahmed
2014-11-01
Full Text Available This letter presents the possibility of energy scavenging (ES utilizing the physics of acousto-elastic metamaterial (AEMM at low frequencies (<∼3KHz. It is proposed to use the AEMM in a dual mode (Acoustic Filter and Energy Harvester, simultaneously. AEMM’s are typically reported for filtering acoustic waves by trapping or guiding the acoustic energy, whereas this letter shows that the dynamic energy trapped inside the soft constituent (matrix of metamaterials can be significantly harvested by strategically embedding piezoelectric wafers in the matrix. With unit cell AEMM model, we experimentally asserted that at lower acoustic frequencies (< ∼3 KHz, maximum power in the micro Watts (∼35µW range can be generated, whereas, recently reported phononic crystal based metamaterials harvested only nano Watt (∼30nW power against 10KΩ resistive load. Efficient energy scavengers at low acoustic frequencies are almost absent due to large required size relevant to the acoustic wavelength. Here we report sub wave length scale energy scavengers utilizing the coupled physics of local, structural and matrix resonances. Upon validation of the argument through analytical, numerical and experimental studies, a multi-frequency energy scavenger (ES with multi-cell model is designed with varying geometrical properties capable of scavenging energy (power output from ∼10µW – ∼90µW between 0.2 KHz and 1.5 KHz acoustic frequencies.
A generalized multiscale finite element method for elastic wave propagation in fractured media
Chung, Eric T.
2016-02-26
In this paper, we consider elastic wave propagation in fractured media applying a linear-slip model to represent the effects of fractures on the wavefield. Fractured media, typically, are highly heterogeneous due to multiple length scales. Direct numerical simulations for wave propagation in highly heterogeneous fractured media can be computationally expensive and require some type of model reduction. We develop a multiscale model reduction technique that captures the complex nature of the media (heterogeneities and fractures) in the coarse scale system. The proposed method is based on the generalized multiscale finite element method, where the multiscale basis functions are constructed to capture the fine-scale information of the heterogeneous, fractured media and effectively reduce the degrees of freedom. These multiscale basis functions are coupled via the interior penalty discontinuous Galerkin method, which provides a block-diagonal mass matrix. The latter is needed for fast computation in an explicit time discretization, which is used in our simulations. Numerical results are presented to show the performance of the presented multiscale method for fractured media. We consider several cases where fractured media contain fractures of multiple lengths. Our numerical results show that the proposed reduced-order models can provide accurate approximations for the fine-scale solution.
Fatigue crack detection and identification by the elastic wave propagation method
Stawiarski, Adam; Barski, Marek; Pająk, Piotr
2017-05-01
In this paper the elastic wave propagation phenomenon was used to detect the initiation of the fatigue damage in isotropic plate with a circular hole. The safety and reliability of structures mostly depend on the effectiveness of the monitoring methods. The Structural Health Monitoring (SHM) system based on the active pitch-catch measurement technique was proposed. The piezoelectric (PZT) elements was used as an actuators and sensors in the multipoint measuring system. The comparison of the intact and defected structures has been used by damage detection algorithm. One part of the SHM system has been responsible for detection of the fatigue crack initiation. The second part observed the evolution of the damage growth and assess the size of the defect. The numerical results of the wave propagation phenomenon has been used to present the effectiveness and accuracy of the proposed method. The preliminary experimental analysis has been carried out during the tension test of the aluminum plate with a circular hole to determine the efficiency of the measurement technique.
S-wave elastic scattering of ${\\it o} $-Ps from $\\text {H} _2 $ at low energy
Zhang, J. -Y.
2018-03-08
The confined variational method is applied to investigate the low-energy elastic scattering of ortho-positronium from $\\\\text{H}_2$ by first-principles quantum mechanics. Describing the correlation effect with explicitly correlated Gaussians, we obtain accurate $S$-wave phase shifts and pick-off annihilation parameters for different incident momenta. By a least-squares fit of the data to the effective-range theory, we determine the $S$-wave scattering length, $A_s=2.06a_0$, and the zero-energy value of the pick-off annihilation parameter, $^1\\\\!\\\\text{Z}_\\\\text{eff}=0.1858$. The obtained $^1\\\\!\\\\text{Z}_\\\\text{eff}$ agrees well with the precise experimental value of $0.186(1)$ (J.\\\\ Phys.\\\\ B \\\\textbf{16}, 4065 (1983)) and the obtained $A_s$ agrees well with the value of $2.1(2)a_0$ estimated from the average experimental momentum-transfer cross section for Ps energy below 0.3 eV (J.\\\\ Phys.\\\\ B \\\\textbf{36}, 4191 (2003)).
Propagation characteristics of SH wave in an mm2 piezoelectric layer on an elastic substrate
Directory of Open Access Journals (Sweden)
Yanping Kong
2015-09-01
Full Text Available We investigate the propagation characteristics of shear horizontal (SH waves in a structure consisting of an elastic substrate and an mm2 piezoelectric layer with different cut orientations. The dispersion equations are derived for electrically open and shorted conditions on the free surface of the piezoelectric layer. The phase velocity and electromechanical coupling coefficient are calculated for a layered structure with a KNbO3 layer perfectly bonded to a diamond substrate. The dispersion curves for the electrically shorted boundary condition indicate that for a given cut orientation, the phase velocity of the first mode approaches the B-G wave velocity of the KNbO3 layer, while the phase velocities of the higher modes tend towards the limit velocity of the KNbO3 layer. For the electrically open boundary condition, the asymptotic phase velocities of all modes are the limit velocity of the KNbO3 layer. In addition, it is found that the electromechanical coupling coefficient strongly depends on the cut orientation of the KNbO3 crystal. The obtained results are useful in device applications.
Hybridizable discontinuous Galerkin method for the 2-D frequency-domain elastic wave equations
Bonnasse-Gahot, Marie; Calandra, Henri; Diaz, Julien; Lanteri, Stéphane
2018-04-01
Discontinuous Galerkin (DG) methods are nowadays actively studied and increasingly exploited for the simulation of large-scale time-domain (i.e. unsteady) seismic wave propagation problems. Although theoretically applicable to frequency-domain problems as well, their use in this context has been hampered by the potentially large number of coupled unknowns they incur, especially in the 3-D case, as compared to classical continuous finite element methods. In this paper, we address this issue in the framework of the so-called hybridizable discontinuous Galerkin (HDG) formulations. As a first step, we study an HDG method for the resolution of the frequency-domain elastic wave equations in the 2-D case. We describe the weak formulation of the method and provide some implementation details. The proposed HDG method is assessed numerically including a comparison with a classical upwind flux-based DG method, showing better overall computational efficiency as a result of the drastic reduction of the number of globally coupled unknowns in the resulting discrete HDG system.
A generalized multiscale finite element method for elastic wave propagation in fractured media
Chung, Eric T.; Efendiev, Yalchin R.; Gibson, Richard L.; Vasilyeva, Maria
2016-01-01
In this paper, we consider elastic wave propagation in fractured media applying a linear-slip model to represent the effects of fractures on the wavefield. Fractured media, typically, are highly heterogeneous due to multiple length scales. Direct numerical simulations for wave propagation in highly heterogeneous fractured media can be computationally expensive and require some type of model reduction. We develop a multiscale model reduction technique that captures the complex nature of the media (heterogeneities and fractures) in the coarse scale system. The proposed method is based on the generalized multiscale finite element method, where the multiscale basis functions are constructed to capture the fine-scale information of the heterogeneous, fractured media and effectively reduce the degrees of freedom. These multiscale basis functions are coupled via the interior penalty discontinuous Galerkin method, which provides a block-diagonal mass matrix. The latter is needed for fast computation in an explicit time discretization, which is used in our simulations. Numerical results are presented to show the performance of the presented multiscale method for fractured media. We consider several cases where fractured media contain fractures of multiple lengths. Our numerical results show that the proposed reduced-order models can provide accurate approximations for the fine-scale solution.
Mixing of two co-directional Rayleigh surface waves in a nonlinear elastic material.
Morlock, Merlin B; Kim, Jin-Yeon; Jacobs, Laurence J; Qu, Jianmin
2015-01-01
The mixing of two co-directional, initially monochromatic Rayleigh surface waves in an isotropic, homogeneous, and nonlinear elastic solid is investigated using analytical, finite element method, and experimental approaches. The analytical investigations show that while the horizontal velocity component can form a shock wave, the vertical velocity component can form a pulse independent of the specific ratios of the fundamental frequencies and amplitudes that are mixed. This analytical model is then used to simulate the development of the fundamentals, second harmonics, and the sum and difference frequency components over the propagation distance. The analytical model is further extended to include diffraction effects in the parabolic approximation. Finally, the frequency and amplitude ratios of the fundamentals are identified which provide maximum amplitudes of the second harmonics as well as of the sum and difference frequency components, to help guide effective material characterization; this approach should make it possible to measure the acoustic nonlinearity of a solid not only with the second harmonics, but also with the sum and difference frequency components. Results of the analytical investigations are then confirmed using the finite element method and the experimental feasibility of the proposed technique is validated for an aluminum specimen.
Directory of Open Access Journals (Sweden)
Hanson Huang
1996-01-01
Full Text Available A detailed solution to the transient interaction of plane acoustic waves with a spherical elastic shell was obtained more than a quarter of a century ago based on the classical separation of variables, series expansion, and Laplace transform techniques. An eight-term summation of the time history series was sufficient for the convergence of the shell deflection and strain, and to a lesser degree, the shell velocity. Since then, the results have been used routinely for validation of solution techniques and computer methods for the evaluation of underwater explosion response of submerged structures. By utilizing modern algorithms and exploiting recent advances of computer capacities and floating point mathematics, sufficient terms of the inverse Laplace transform series solution can now be accurately computed. Together with the application of the Cesaro summation using up to 70 terms of the series, two primary deficiencies of the previous solution are now remedied: meaningful time histories of higher time derivative data such as acceleration and pressure are now generated using a sufficient number of terms in the series; and uniform convergence around the discontinuous step wave front is now obtained, completely eradicating spurious oscillations due to the Gibbs' phenomenon. New results of time histories of response items of interest are presented.
Boyd, O.S.
2006-01-01
We have created a second-order finite-difference solution to the anisotropic elastic wave equation in three dimensions and implemented the solution as an efficient Matlab script. This program allows the user to generate synthetic seismograms for three-dimensional anisotropic earth structure. The code was written for teleseismic wave propagation in the 1-0.1 Hz frequency range but is of general utility and can be used at all scales of space and time. This program was created to help distinguish among various types of lithospheric structure given the uneven distribution of sources and receivers commonly utilized in passive source seismology. Several successful implementations have resulted in a better appreciation for subduction zone structure, the fate of a transform fault with depth, lithospheric delamination, and the effects of wavefield focusing and defocusing on attenuation. Companion scripts are provided which help the user prepare input to the finite-difference solution. Boundary conditions including specification of the initial wavefield, absorption and two types of reflection are available. ?? 2005 Elsevier Ltd. All rights reserved.
Detecting Damage in Composite Material Using Nonlinear Elastic Wave Spectroscopy Methods
Meo, Michele; Polimeno, Umberto; Zumpano, Giuseppe
2008-05-01
Modern aerospace structures make increasing use of fibre reinforced plastic composites, due to their high specific mechanical properties. However, due to their brittleness, low velocity impact can cause delaminations beneath the surface, while the surface may appear to be undamaged upon visual inspection. Such damage is called barely visible impact damage (BVID). Such internal damages lead to significant reduction in local strengths and ultimately could lead to catastrophic failures. It is therefore important to detect and monitor damages in high loaded composite components to receive an early warning for a well timed maintenance of the aircraft. Non-linear ultrasonic spectroscopy methods are promising damage detection and material characterization tools. In this paper, two different non-linear elastic wave spectroscopy (NEWS) methods are presented: single mode nonlinear resonance ultrasound (NRUS) and nonlinear wave modulation technique (NWMS). The NEWS methods were applied to detect delamination damage due to low velocity impact (<12 J) on various composite plates. The results showed that the proposed methodology appear to be highly sensitive to the presence of damage with very promising future NDT and structural health monitoring applications.
Mode selection in two-dimensional Bragg resonators based on planar dielectric waveguides
International Nuclear Information System (INIS)
Baryshev, V R; Ginzburg, N S; Zaslavskii, V Yu; Malkin, A M; Sergeev, A S; Thumm, M
2009-01-01
Two-dimensional Bragg resonators based on planar dielectric waveguides are analysed. It is shown that the doubly periodic corrugation deposited on the dielectric surface in the form of two gratings with translational vectors directed perpendicular to each other ensures effective selection of modes along two coordinates at large Fresnel parameters. This result is obtained both by the method of coupled waves (geometrical optics approximation) and by the direct numerical simulations. Two-dimensional Bragg resonators make it possible to fabricate two-dimensional distributed feedback lasers and to provide generation of spatially coherent radiation in large-volume active media. (waveguides)
Vector (two-dimensional) magnetic phenomena
International Nuclear Information System (INIS)
Enokizono, Masato
2002-01-01
In this paper, some interesting phenomena were described from the viewpoint of two-dimensional magnetic property, which is reworded with the vector magnetic property. It shows imperfection of conventional magnetic property and some interested phenomena were discovered, too. We found magnetic materials had the strong nonlinearity both magnitude and spatial phase due to the relationship between the magnetic field strength H-vector and the magnetic flux density B-vector. Therefore, magnetic properties should be defined as the vector relationship. Furthermore, the new Barukhausen signal was observed under rotating flux. (Author)
Two-dimensional Semiconductor-Superconductor Hybrids
DEFF Research Database (Denmark)
Suominen, Henri Juhani
This thesis investigates hybrid two-dimensional semiconductor-superconductor (Sm-S) devices and presents a new material platform exhibiting intimate Sm-S coupling straight out of the box. Starting with the conventional approach, we investigate coupling superconductors to buried quantum well....... To overcome these issues we integrate the superconductor directly into the semiconducting material growth stack, depositing it in-situ in a molecular beam epitaxy system under high vacuum. We present a number of experiments on these hybrid heterostructures, demonstrating near unity interface transparency...
Optimized two-dimensional Sn transport (BISTRO)
International Nuclear Information System (INIS)
Palmiotti, G.; Salvatores, M.; Gho, C.
1990-01-01
This paper reports on an S n two-dimensional transport module developed for the French fast reactor code system CCRR to optimize algorithms in order to obtain the best performance in terms of computational time. A form of diffusion synthetic acceleration was adopted, and a special effort was made to solve the associated diffusion equation efficiently. The improvements in the algorithms, along with the use of an efficient programming language, led to a significant gain in computational time with respect to the DOT code
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Airy beams on two dimensional materials
Imran, Muhammad; Li, Rujiang; Jiang, Yuyu; Lin, Xiao; Zheng, Bin; Dehdashti, Shahram; Xu, Zhiwei; Wang, Huaping
2018-05-01
We propose that quasi-transverse-magnetic (quasi-TM) Airy beams can be supported on two dimensional (2D) materials. By taking graphene as a typical example, the solution of quasi-TM Airy beams is studied under the paraxial approximation. The analytical field intensity in a bilayer graphene-based planar plasmonic waveguide is confirmed by the simulation results. Due to the tunability of the chemical potential of graphene, the self-accelerating behavior of the quasi-TM Airy beam can be steered effectively. 2D materials thus provide a good platform to investigate the propagation of Airy beams.
Two-dimensional heat flow apparatus
McDougall, Patrick; Ayars, Eric
2014-06-01
We have created an apparatus to quantitatively measure two-dimensional heat flow in a metal plate using a grid of temperature sensors read by a microcontroller. Real-time temperature data are collected from the microcontroller by a computer for comparison with a computational model of the heat equation. The microcontroller-based sensor array allows previously unavailable levels of precision at very low cost, and the combination of measurement and modeling makes for an excellent apparatus for the advanced undergraduate laboratory course.
Quantum mechanical treatment of a constrained particle on two dimensional sphere
Energy Technology Data Exchange (ETDEWEB)
Jahangiri, L., E-mail: laleh.jahangiry@yahoo.com; Panahi, H., E-mail: t-panahi@guilan.ac.ir
2016-12-15
In this work, we study the motion of a particle on two dimensional sphere. By writing the Schrodinger equation, we obtain the wave function and energy spectra for three dimensional harmonic oscillator potential plus trigonometric Rosen–Morse non-central potential. By letting three special cases for intertwining operator, we investigate the energy spectra and wave functions for Smorodinsky–Winternitz potential model.
Elastic Wave Velocity Measurements on Mantle Peridotite at High Pressure and Temperature
Mistler, G. W.; Ishikawa, M.; Li, B.
2002-12-01
With the success of conducting ultrasonic measurements at high pressure and high temperature in large volume high pressure apparatus with in-situ measurement of the sample length by X-ray imaging, it is now possible to measure elastic wave velocities on aggregate samples with candidate compositions of the mantle to the conditions of the Earth's transition zone in the laboratory. These data can be directly compared with seismic data to distinguish the compositional models in debate. In this work, we carried out velocity measurements on natural peridotite KLB-1 at the conditions of the Earth's upper mantle. Fine powered sample of natural KLB-1 was used as starting material. Specimens for ultrasonic measurements were hot-pressed and equilibrated at various pressure and temperature conditions along geotherm up to the transition zone. The recovered samples were characterized with density measurement, X-ray diffraction and microprobe analysis. Bench top P and S wave velocities of KLB-1 sample sintered at 3-4 GPa and 1400 degree centigrade showed a very good agreement with the VRH average of pyrolite. High pressure and high temperature measurements was conducted up to 7 GPa and 800 degree centigrade using ultrasonic interferometric method in a DIA-type high pressure apparatus in conjunction with X-ray diffraction and X-ray imaging. The utilization of X-ray imaging technique provides direct measurements of sample lengths at high pressure and high temperature, ensuring a precise determination of velocities. The results of P and S wave velocities at high pressure and high temperature as well as their comparison with calculated pyrolite model will be presented.
Rosado-Mendez, Ivan M.; Carlson, Lindsey C.; Woo, Kaitlin M.; Santoso, Andrew P.; Guerrero, Quinton W.; Palmeri, Mark L.; Feltovich, Helen; Hall, Timothy J.
2018-04-01
Abnormal parturition, e.g. pre- or post-term birth, is associated with maternal and neonatal morbidity and increased economic burden. This could potentially be prevented by accurate detection of abnormal softening of the uterine cervix. Shear wave elasticity imaging (SWEI) techniques that quantify tissue softness, such as shear wave speed (SWS) measurement, are promising for evaluation of the cervix. Still, interpretation of results can be complicated by biological variability (i.e. spatial variations of cervix stiffness, parity), as well as by experimental factors (i.e. type of transducer, posture during scanning). Here we investigated the ability of SWEI to detect cervical softening, as well as sources of SWS variability that can affect this task, in the pregnant and nonpregnant Rhesus macaque. Specifically, we evaluated SWS differences when imaging the cervix transabdominally with a typical linear array abdominal transducer, and transrectally with a prototype intracavitary linear array transducer. Linear mixed effects (LME) models were used to model SWS as a function of menstrual cycle day (in nonpregnant animals) and gestational age (in pregnant animals). Other variables included parity, shear wave direction, and cervix side (anterior versus posterior). In the nonpregnant cervix, the LME model indicated that SWS increased by 2% (95% confidence interval 0–3%) per day, starting eight days before menstruation. During pregnancy, SWS significantly decreased at a rate of 6% (95% CI 5–7%) per week (intracavitary approach) and 3% (95% CI 2–4%) per week (transabdominal approach), and interactions between the scanning approach and other fixed effects were also significant. These results suggest that, while absolute SWS values are influenced by factors such as scanning approach and SWEI implementation, these sources of variability do not compromise the sensitivity of SWEI to cervical softening. Our results also highlight the importance of standardizing SWEI
Chino, Kentaro; Kawakami, Yasuo; Takahashi, Hideyuki
2017-07-01
The aim of the present study was to measure in vivo skeletal muscle elasticity in the transverse and longitudinal planes using shear wave elastography and then to compare the image stability, measurement values and measurement repeatability between these imaging planes. Thirty-one healthy males participated in this study. Tissue elasticity (shear wave velocity) of the medial gastrocnemius, rectus femoris, biceps brachii and rectus abdominis was measured in both the transverse and longitudinal planes using shear wave elastography. Image stability was evaluated by the standard deviation of the colour distribution in the shear wave elastography image. Measurement repeatability was assessed by the coefficient of variance obtained from three measurement values. Image stability of all tested muscles was significantly higher in the longitudinal plane (Pplanes (P>0·05), except in the biceps brachii (P = 0·001). Measurement values of the medial gastrocnemius, rectus femoris and biceps brachii were significantly different between the imaging planes (Pplane, which indicates that imaging plane should be considered when measuring skeletal muscle tissue elasticity by shear wave elastography. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
DEFF Research Database (Denmark)
Sorokin, Vladislav
2016-01-01
The paper concerns determining frequency band-gaps for longitudinal wave motion in a periodic waveguide. The waveguide may be considered either as an elastic layer with variable thickness or as a rod with variable cross section. As a result, widths and locations of all frequency band-gaps are det......The paper concerns determining frequency band-gaps for longitudinal wave motion in a periodic waveguide. The waveguide may be considered either as an elastic layer with variable thickness or as a rod with variable cross section. As a result, widths and locations of all frequency band......, harmonic in the corrugation series. The revealed insights into the mechanism of band-gap formation can be used to predict locations and widths of all frequency band-gaps featured by any corrugation shape. These insights are general and can be valid also for other types of wave motion in periodic structures...
Energy Technology Data Exchange (ETDEWEB)
Cho, H.; Takemoto, M. [Aoyama Gakuin University, Tokyo (Japan). College of Science and Engineering
1994-07-20
A bulk wave is generated when a pulse laser is irradiated to the material, and the characteristics of a Young`s modulus and Poisson`s ratio can be nondestructively estimated from the bulk wave. The generation mechanism of laser ultrasonic waves must be first clarified for such application. In this paper, fundamental research was conducted to study the generation mechanism of the elastic waves excited by a Q-switched Nd-YAG laser, and the generation method and characteristics of Rayleigh waves. The following result was obtained. A bulk wave is generated by the disk-like adiabatic expansion near the surface if the laser power is small when a spot-shape pulse laser was irradiated. A bulk wave is generated by the thin disk-like adiabatic expansion beneath the surface due to the thermal diffusion in the depth direction of a base material when the laser power becomes large. Moreover, a bulk wave is generated by the impact force due to abrasion and plasma when the power becomes still larger. The information on the bulk wave characteristics and Rayleigh wave was also obtained. 25 refs., 15 figs., 1 tab.
Decoherence in two-dimensional quantum walks
International Nuclear Information System (INIS)
Oliveira, A. C.; Portugal, R.; Donangelo, R.
2006-01-01
We analyze the decoherence in quantum walks in two-dimensional lattices generated by broken-link-type noise. In this type of decoherence, the links of the lattice are randomly broken with some given constant probability. We obtain the evolution equation for a quantum walker moving on two-dimensional (2D) lattices subject to this noise, and we point out how to generalize for lattices in more dimensions. In the nonsymmetric case, when the probability of breaking links in one direction is different from the probability in the perpendicular direction, we have obtained a nontrivial result. If one fixes the link-breaking probability in one direction, and gradually increases the probability in the other direction from 0 to 1, the decoherence initially increases until it reaches a maximum value, and then it decreases. This means that, in some cases, one can increase the noise level and still obtain more coherence. Physically, this can be explained as a transition from a decoherent 2D walk to a coherent 1D walk
Study of two-dimensional interchange turbulence
International Nuclear Information System (INIS)
Sugama, Hideo; Wakatani, Masahiro.
1990-04-01
An eddy viscosity model describing enstrophy transfer in two-dimensional turbulence is presented. This model is similar to that of Canuto et al. and provides an equation for the energy spectral function F(k) as a function of the energy input rate to the system per unit wavenumber, γ s (k). In the enstrophy-transfer inertial range, F(k)∝ k -3 is predicted by the model. The eddy viscosity model is applied to the interchange turbulence of a plasma in shearless magnetic field. Numerical simulation of the two-dimensional interchange turbulence demonstrates that the energy spectrum in the high wavenumber region is well described by this model. The turbulent transport driven by the interchange turbulence is expressed in terms of the Nusselt number Nu, the Rayleigh number Ra and Prantl number Pr in the same manner as that of thermal convection problem. When we use the linear growth rate for γ s (k), our theoretical model predicts that Nu ∝ (Ra·Pr) 1/2 for a constant background pressure gradient and Nu ∝ (Ra·Pr) 1/3 for a self-consistent background pressure profile with the stress-free slip boundary conditions. The latter agrees with our numerical result showing Nu ∝ Ra 1/3 . (author)
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
Three-dimensional inverse modelling of damped elastic wave propagation in the Fourier domain
Petrov, Petr V.; Newman, Gregory A.
2014-09-01
3-D full waveform inversion (FWI) of seismic wavefields is routinely implemented with explicit time-stepping simulators. A clear advantage of explicit time stepping is the avoidance of solving large-scale implicit linear systems that arise with frequency domain formulations. However, FWI using explicit time stepping may require a very fine time step and (as a consequence) significant computational resources and run times. If the computational challenges of wavefield simulation can be effectively handled, an FWI scheme implemented within the frequency domain utilizing only a few frequencies, offers a cost effective alternative to FWI in the time domain. We have therefore implemented a 3-D FWI scheme for elastic wave propagation in the Fourier domain. To overcome the computational bottleneck in wavefield simulation, we have exploited an efficient Krylov iterative solver for the elastic wave equations approximated with second and fourth order finite differences. The solver does not exploit multilevel preconditioning for wavefield simulation, but is coupled efficiently to the inversion iteration workflow to reduce computational cost. The workflow is best described as a series of sequential inversion experiments, where in the case of seismic reflection acquisition geometries, the data has been laddered such that we first image highly damped data, followed by data where damping is systemically reduced. The key to our modelling approach is its ability to take advantage of solver efficiency when the elastic wavefields are damped. As the inversion experiment progresses, damping is significantly reduced, effectively simulating non-damped wavefields in the Fourier domain. While the cost of the forward simulation increases as damping is reduced, this is counterbalanced by the cost of the outer inversion iteration, which is reduced because of a better starting model obtained from the larger damped wavefield used in the previous inversion experiment. For cross-well data, it is