Strongly interacting two-dimensional Dirac fermions
Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.
2009-01-01
We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature
A two-dimensional Dirac fermion microscope
DEFF Research Database (Denmark)
Bøggild, Peter; Caridad, Jose; Stampfer, Christoph
2017-01-01
in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...
A two-dimensional Dirac fermion microscope
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
A two-dimensional Dirac fermion microscope.
Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-09
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
Two-dimensional gas of massless Dirac fermions in graphene.
Novoselov, K S; Geim, A K; Morozov, S V; Jiang, D; Katsnelson, M I; Grigorieva, I V; Dubonos, S V; Firsov, A A
2005-11-10
Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrödinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.
Quasi-two-dimensional Dirac fermions and quantum magnetoresistance in LaAgBi$_2$
Wang, Kefeng; Graf, D.; Petrovic, C.
2016-01-01
We report quasi-two-dimensional Dirac fermions and quantum magnetoresistance in LaAgBi$_2$. The band structure shows several narrow bands with nearly linear energy dispersion and Dirac-cone-like points at the Fermi level. The quantum oscillation experiments revealed one quasi-two-dimensional Fermi pocket and another complex pocket with small cyclotron resonant mass. The in-plane transverse magnetoresistance exhibits a crossover at a critical field $B^*$ from semiclassical weak-field $B^2$ dep...
Eremeev, Sergey V; Tsirkin, Stepan S; Nechaev, Ilya A; Echenique, Pedro M; Chulkov, Evgueni V
2015-08-04
Intriguing phenomena and novel physics predicted for two-dimensional (2D) systems formed by electrons in Dirac or Rashba states motivate an active search for new materials or combinations of the already revealed ones. Being very promising ingredients in themselves, interplaying Dirac and Rashba systems can provide a base for next generation of spintronics devices, to a considerable extent, by mixing their striking properties or by improving technically significant characteristics of each other. Here, we demonstrate that in BiTeI@PbSb2Te4 composed of a BiTeI trilayer on top of the topological insulator (TI) PbSb2Te4 weakly- and strongly-coupled Dirac-Rashba hybrid systems are realized. The coupling strength depends on both interface hexagonal stacking and trilayer-stacking order. The weakly-coupled system can serve as a prototype to examine, e.g., plasmonic excitations, frictional drag, spin-polarized transport, and charge-spin separation effect in multilayer helical metals. In the strongly-coupled regime, within ~100 meV energy interval of the bulk TI projected bandgap a helical state substituting for the TI surface state appears. This new state is characterized by a larger momentum, similar velocity, and strong localization within BiTeI. We anticipate that our findings pave the way for designing a new type of spintronics devices based on Rashba-Dirac coupled systems.
Masuda, Hidetoshi; Sakai, Hideaki; Tokunaga, Masashi; Yamasaki, Yuichi; Miyake, Atsushi; Shiogai, Junichi; Nakamura, Shintaro; Awaji, Satoshi; Tsukazaki, Atsushi; Nakao, Hironori; Murakami, Youichi; Arima, Taka-hisa; Tokura, Yoshinori; Ishiwata, Shintaro
2016-01-01
For the innovation of spintronic technologies, Dirac materials, in which low-energy excitation is described as relativistic Dirac fermions, are one of the most promising systems because of the fascinating magnetotransport associated with extremely high mobility. To incorporate Dirac fermions into spintronic applications, their quantum transport phenomena are desired to be manipulated to a large extent by magnetic order in a solid. We report a bulk half-integer quantum Hall effect in a layered antiferromagnet EuMnBi2, in which field-controllable Eu magnetic order significantly suppresses the interlayer coupling between the Bi layers with Dirac fermions. In addition to the high mobility of more than 10,000 cm(2)/V s, Landau level splittings presumably due to the lifting of spin and valley degeneracy are noticeable even in a bulk magnet. These results will pave a route to the engineering of magnetically functionalized Dirac materials.
Two dimensional fermions in four dimensional YM
Narayanan, R
2009-01-01
Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.
On localization of Dirac fermions by disorder
Medvedyeva, Mariya Vyacheslavivna
2011-01-01
This thesis is devoted to the effects of disorder on two-dimensional systems of Dirac fermions. Disorder localizes the usual electron system governed by the Schroedinger equation. The influence of disorder on Dirac fermions is qualitevely different. We concentrate on a random mass term in the Dira
Dirac quasinormal modes of two-dimensional charged dilatonic black holes
Energy Technology Data Exchange (ETDEWEB)
Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)
2014-06-15
We study charged fermionic perturbations in the background of two-dimensional charged dilatonic black holes, and we present the exact Dirac quasinormal modes. Also, we study the stability of these black holes under charged fermionic perturbations. (orig.)
Two dimensional fermions in three dimensional YM
Narayanan, R
2010-01-01
Dirac fermions in the fundamental representation of $SU(N)$ live on the surface of a cylinder embedded in $R^3$ and interact with a three dimensional $SU(N)$ Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the circumference of the cylinder is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit at a typical bulk scale. Replacing three dimensional YM by four dimensional YM introduces non-trivial renormalization effects.
Excitonic pairing and insulating transition in two-dimensional semi-Dirac semimetals
Wang, Jing-Rong; Liu, Guo-Zhu; Zhang, Chang-Jin
2017-02-01
A sufficiently strong long-range Coulomb interaction can induce excitonic pairing in gapless Dirac semimetals, which generates a finite gap and drives the semimetal-insulator quantum phase transition. This phenomenon is in close analogy to dynamical chiral symmetry breaking in high-energy physics. In most realistic Dirac semimetals, including suspended graphene, the Coulomb interaction is too weak to open an excitonic gap. The Coulomb interaction plays a more important role at low energies in a two-dimensional semi-Dirac semimetal, in which the fermion spectrum is linear in one component of momenta and quadratic in the other, than a Dirac semimetal, and indeed leads to breakdown of Fermi liquid theory. We study dynamical excitonic gap generation in a two-dimensional semi-Dirac semimetal by solving the Dyson-Schwinger equation, and show that a moderately strong Coulomb interaction suffices to induce excitonic pairing. Additional short-range four-fermion coupling tends to promote excitonic pairing. Among the available semi-Dirac semimetals, we find that the TiO2/VO2 nanostructure provides a promising candidate for the realization of an excitonic insulator. We also apply the renormalization group method to analyze the strong coupling between the massless semi-Dirac fermions and the quantum critical fluctuation of the excitonic order parameter at the semimetal-insulator quantum critical point, and reveal non-Fermi liquid behaviors of semi-Dirac fermions.
The Rare Two-Dimensional Materials with Dirac Cones
Wang, Jinying; Deng, Shibin; Liu, Zhongfan; Liu, Zhirong
2014-01-01
Inspired by the great development of graphene, more and more works have been conducted to seek new two-dimensional (2D) materials with Dirac cones. Although 2D Dirac materials possess many novel properties and physics, they are rare compared with the numerous 2D materials. To provide explanation for the rarity of 2D Dirac materials as well as clues in searching for new Dirac systems, here we review the recent theoretical aspects of various 2D Dirac materials, including graphene, silicene, ger...
Scarring of Dirac fermions in chaotic billiards.
Ni, Xuan; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso
2012-07-01
Scarring in quantum systems with classical chaotic dynamics is one of the most remarkable phenomena in modern physics. Previous works were concerned mostly with nonrelativistic quantum systems described by the Schrödinger equation. The question remains outstanding of whether truly relativistic quantum particles that obey the Dirac equation can scar. A significant challenge is the lack of a general method for solving the Dirac equation in closed domains of arbitrary shape. In this paper, we develop a numerical framework for obtaining complete eigensolutions of massless fermions in general two-dimensional confining geometries. The key ingredients of our method are the proper handling of the boundary conditions and an efficient discretization scheme that casts the original equation in a matrix representation. The method is validated by (1) comparing the numerical solutions to analytic results for a geometrically simple confinement and (2) verifying that the calculated energy level-spacing statistics of integrable and chaotic geometries agree with the known results. Solutions of the Dirac equation in a number of representative chaotic geometries establish firmly the existence of scarring of Dirac fermions.
Energy Technology Data Exchange (ETDEWEB)
Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Saavedra, Joel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)
2015-02-01
We study massive charged fermionic perturbations in the background of a charged two-dimensional dilatonic black hole, and we solve the Dirac equation analytically. Then we compute the reflection and transmission coefficients and the absorption cross section for massive charged fermionic fields, and we show that the absorption cross section vanishes at the low- and high-frequency limits. However, there is a range of frequencies where the absorption cross section is not null. Furthermore, we study the effect of the mass and electric charge of the fermionic field over the absorption cross section. (orig.)
Electron-hole asymmetry, Dirac fermions, and quantum magnetoresistance in BaMnBi2
Li, Lijun; Wang, Kefeng; Graf, D.; Wang, Limin; Wang, Aifeng; Petrovic, C.
2016-01-01
We report two-dimensional quantum transport and Dirac fermions in BaMnBi2 single crystals. BaMnBi2 is a layered bad metal with highly anisotropic conductivity and magnetic order below 290 K. Magnetotransport properties, nonzero Berry phase, small cyclotronmass, and the first-principles band structure calculations indicate the presence of Dirac fermions in Bi square nets. Quantum oscillations in the Hall channel suggest the presence of both electron and hole pockets, whereas Dirac and paraboli...
Confined two-dimensional fermions at finite density
De Francia, M; Loewe, M; Santangelo, E M; De Francia, M; Falomir, H; Loewe, M; Santangelo, E M
1995-01-01
We introduce the chemical potential in a system of two-dimensional massless fermions, confined to a finite region, by imposing twisted boundary conditions in the Euclidean time direction. We explore in this simple model the application of functional techniques which could be used in more complicated situations.
Neutrinos Are Nearly Dirac Fermions
Cahill, K E
1999-01-01
Neutrino masses and mixings are analyzed in terms of left-handed fields and a 6x6 complex symmetric mass matrix whose singular values are the neutrino masses. An angle theta_nu characterizes the kind of the neutrinos, with theta_nu = 0 for Dirac neutrinos and theta_nu = pi/2 for Majorana neutrinos. If theta_nu = 0, then baryon-minus-lepton number is conserved. When theta_nu is approximately zero, the six neutrino masses coalesce into three nearly degenerate pairs. Thus the smallness of the differences in neutrino masses exhibited in the solar and atmospheric neutrino experiments and the stringent limits on neutrinoless double-beta decay are naturally explained if B-L is approximately conserved and neutrinos are nearly Dirac fermions. If one sets theta_nu = 0.0005, suppresses inter-generational mixing, and imposes a quark-like mass hierarchy, then one may fit the essential features of the solar, reactor, and atmospheric neutrino experiments with otherwise random mass matrices in the eV range. This B-L model le...
Analytical solutions of the two-dimensional Dirac equation for a topological channel intersection
Anglin, J. R.; Schulz, A.
2017-01-01
Numerical simulations in a tight-binding model have shown that an intersection of topologically protected one-dimensional chiral channels can function as a beam splitter for noninteracting fermions on a two-dimensional lattice [Qiao, Jung, and MacDonald, Nano Lett. 11, 3453 (2011), 10.1021/nl201941f; Qiao et al., Phys. Rev. Lett. 112, 206601 (2014), 10.1103/PhysRevLett.112.206601]. Here we confirm this result analytically in the corresponding continuum k .p model, by solving the associated two-dimensional Dirac equation, in the presence of a "checkerboard" potential that provides a right-angled intersection between two zero-line modes. The method by which we obtain our analytical solutions is systematic and potentially generalizable to similar problems involving intersections of one-dimensional systems.
Superpersistent Currents in Dirac Fermion Systems
2017-03-06
TITLE AND SUBTITLE Superpersistent Currents in Dirac Fermion Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-15-1-0151 5c. PROGRAM ELEMENT...currents in 2D Dirac material systems and pertinent phenomena in the emerging field of relativistic quantum nonlinear dynamics and chaos. Systematic...anomalous optical transitions, and spin control in topological insulator quantum dots, (4) the discovery of nonlinear dynamics induced anomalous Hall
Two-dimensional Confinement of Heavy Fermions in Artificial Superlattices
Shishido, Hiroaki
2011-03-01
Low dimensionality and strong electron-electron Coulomb interactions are both key parameters for novel quantum states of condensed matter. A metallic system with the strongest electron correlations is reported in rare-earth and actinide compounds with f electrons, known as heavy-fermion compounds, where the effective mass of the conduction electrons are strikingly enhanced by the electron correlations up to some hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. We realized experimentally a two-dimensional heavy fermion system, adjusting the dimensionality in a controllable fashion. We grew artificial superlattices of CeIn 3 (m)/ LaIn 3 (n), in which m -layers of heavy-fermion antiferromagnet CeIn 3 and n -layers of a non-magnetic isostructual compound LaIn 3 are stacked alternately, by a molecular beam epitaxy. By reducing the thickness of the CeIn 3 layers, the magnetic order was suppressed and the effective electron mass was further enhanced. The Néel temperature becomes zero at around m = 2 , concomitant with striking deviations from the standard Fermi liquid low-temperature electronic properties. Standard Fermi liquid behaviors are, however, recovered under high magnetic field. These behaviors imply new ``dimensional tuning'' towards a quantum critical point. We also succeeded to fabricate artificial superlattices of a heavy fermion superconductor CeCoIn 5 and non-magnetic divalent Yb-compound YbCoIn 5 . Superconductivity survives even in CeCoIn 5 (3)/ YbCoIn 5 (5) films, while the thickness of CeCoIn 5 layer, 2.3 nm, is comparable to the c -axis coherence length ξc ~ 2 nm. This work has been done in collaboration with Y. Mizukami, S. Yasumoto, M. Shimozawa, H. Kontani, T. Shibauchi, T. Terashima and Y. Matsuda.superconductivity is realized in the artificial superlattices. This work has been done in collaboration with Y. Mizukami, S. Yasumoto, M. Shimozawa, H. Kontani, T
Pairing instabilities of Dirac composite fermions
Milovanović, M. V.; Ćirić, M. Dimitrijević; Juričić, V.
2016-09-01
Recently, a Dirac (particle-hole symmetric) description of composite fermions in the half-filled Landau level (LL) was proposed [D. T. Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027], and we study its possible consequences on BCS (Cooper) pairing of composite fermions (CFs). One of the main consequences is the existence of anisotropic states in single-layer and bilayer systems, which was previously suggested in Jeong and Park [J. S. Jeong and K. Park, Phys. Rev. B 91, 195119 (2015), 10.1103/PhysRevB.91.195119]. We argue that in the half-filled LL in the single-layer case the gapped states may sustain anisotropy, because isotropic pairings may coexist with anisotropic ones. Furthermore, anisotropic pairings with the addition of a particle-hole symmetry-breaking mass term may evolve into rotationally symmetric states, i.e., Pfaffian states of Halperin-Lee-Read (HLR) ordinary CFs. On the basis of the Dirac formalism, we argue that in the quantum Hall bilayer at total filling factor 1, with decreasing distance between the layers, weak pairing of p -wave paired CFs is gradually transformed from Dirac to ordinary, HLR-like, with a concomitant decrease in the CF number. Global characterization of low-energy spectra based on the Dirac CFs agrees well with previous calculations performed by exact diagonalization on a torus. Finally, we discuss features of the Dirac formalism when applied in this context.
Chiral scars in chaotic Dirac fermion systems.
Xu, Hongya; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso
2013-02-08
Do relativistic quantum scars in classically chaotic systems possess unique features that are not shared by nonrelativistic quantum scars? We report a class of relativistic quantum scars in massless Dirac fermion systems whose phases return to the original values or acquire a 2π change only after circulating twice about some classical unstable periodic orbits. We name such scars chiral scars, the successful identification of which has been facilitated tremendously by our development of an analytic, conformal-mapping-based method to calculate an unprecedentedly large number of eigenstates with high accuracy. Our semiclassical theory indicates that the physical origin of chiral scars can be attributed to a combined effect of chirality intrinsic to massless Dirac fermions and the geometry of the underlying classical orbit.
Thermometry for Dirac fermions in graphene
Energy Technology Data Exchange (ETDEWEB)
Liu, Fan-Hung; Hsu, Chang-Shun; Lo, Shun-Tsung [National Taiwan University, Taipei, Taiwan (China); and others
2015-01-15
We use both the zero-magnetic-field resistivity and the phase coherence time determined by weak localization as independent thermometers for Dirac fermions (DF) in multilayer graphene. In the high current (I) region, there exists a simple power law T{sub DF} ∼ I{sup ∼0.5}, where T{sub DF} is the effective Dirac fermion temperature for epitaxial graphene on SiC. In contrast, T{sub DF} ∼ I{sup ∼1} in exfoliated multilayer graphene. We discuss possible reasons for the different power laws observed in these multilayer graphene systems. Our experimental results on DF-phonon scattering may find applications in graphene-based nanoelectronics.
Transport Phenomena in Multilayered Massless Dirac Fermion System α-(BEDT-TTF2I3
Directory of Open Access Journals (Sweden)
Naoya Tajima
2012-06-01
Full Text Available A zero-gap state with a Dirac cone type energy dispersion was discovered in an organic conductor α-(BEDT-TTF2I3 under high hydrostatic pressures. This is the first two-dimensional (2D zero-gap state discovered in bulk crystals with a layered structure. In contrast to the case of graphene, the Dirac cone in this system is highly anisotropic. The present system, therefore, provides a new type of massless Dirac fermion system with anisotropic Fermi velocity. This system exhibits remarkable transport phenomena characteristic to electrons on the Dirac cone type energy structure.
Orbital magnetization of interacting Dirac fermions in graphene
Yan, Xin-Zhong; Ting, C. S.
2017-09-01
We present a formalism to calculate the orbital magnetization of interacting Dirac fermions under a magnetic field. In this approach, the divergence difficulty is overcome with a special limit of the derivative of the thermodynamic potential with respect to the magnetic field. The formalism satisfies the particle-hole symmetry of the Dirac fermions system. We apply the formalism to the interacting Dirac fermions in graphene. The charge and spin orderings and the exchange interactions between all the Landau levels are taken into account by the mean-field theory. The results for the orbital magnetization of interacting Dirac fermions are compared with that of noninteracting cases.
Nearly massless Dirac fermions hosted by Sb square net in BaMnSb2
Liu, Jinyu; Hu, Jin; Cao, Huibo; Zhu, Yanglin; Chuang, Alyssa; Graf, D.; Adams, D. J.; Radmanesh, S. M. A.; Spinu, L.; Chiorescu, I.; Mao, Zhiqiang
2016-01-01
Layered compounds AMnBi2 (A = Ca, Sr, Ba, or rare earth element) have been established as Dirac materials. Dirac electrons generated by the two-dimensional (2D) Bi square net in these materials are normally massive due to the presence of a spin-orbital coupling (SOC) induced gap at Dirac nodes. Here we report that the Sb square net in an isostructural compound BaMnSb2 can host nearly massless Dirac fermions. We observed strong Shubnikov-de Haas (SdH) oscillations in this material. From the analyses of the SdH oscillations, we find key signatures of Dirac fermions, including light effective mass (~0.052m0; m0, mass of free electron), high quantum mobility (1280 cm2V−1S−1) and a π Berry phase accumulated along cyclotron orbit. Compared with AMnBi2, BaMnSb2 also exhibits much more significant quasi two-dimensional (2D) electronic structure, with the out-of-plane transport showing nonmetallic conduction below 120 K and the ratio of the out-of-plane and in-plane resistivity reaching ~670. Additionally, BaMnSb2 also exhibits a G-type antiferromagnetic order below 283 K. The combination of nearly massless Dirac fermions on quasi-2D planes with a magnetic order makes BaMnSb2 an intriguing platform for seeking novel exotic phenomena of massless Dirac electrons. PMID:27466151
Küppersbusch, C.S.
2015-01-01
In the first part of the thesis I derive a full quantitative formula which describes the amplitude and frequency of magnetic oscillations in two-dimensional Dirac systems. The investigations are on the basis of graphene, but they generally also hold for other two-dimensional Dirac systems. Starting
Tunneling for Dirac Fermions in Constant Magnetic Field
Choubabi, El Bouazzaoui; Jellal, Ahmed
2009-01-01
The tunneling effect of two-dimensional Dirac fermions in a constant magnetic field is studied. This can be done by using the continuity equation at some points to determine the corresponding reflexion and transmission coefficients. For this, we consider a system made of graphene as superposition of two different regions where the second is characterized by an energy gap t'. In fact, we treat concrete systems to practically give two illustrations: barrier and diode. For each case, we discuss the transmission in terms of the ratio of the energy conservation and t'. Moreover, we analyze the resonant tunneling by introducing a scalar Lorentz potential where it is shown that a total transmission is possible.
Time reversal, fermion doubling, and the masses of lattice Dirac fermions in three dimensions
Herbut, Igor F.
2011-06-01
Motivated by recent examples of three-dimensional lattice Hamiltonians with massless Dirac fermions in their (bulk) spectrum, I revisit the problem of fermion doubling on bipartite lattices. The number of components of the Dirac fermion in a time-reversal and parity-invariant d-dimensional lattice system is determined by the minimal representation of the Clifford algebra of d+1 Hermitian Dirac matrices that allows a construction of the time-reversal operator with the square of unity, and it equals 2d for d=2 and 3. Possible mass terms for (spinless) Dirac fermions are listed and discussed. In three dimensions, there are altogether eight independent masses, out of which four are even and four are odd under time reversal. A specific violation of time-reversal symmetry that leads to (minimal) four-component massless Dirac fermion in three dimensions at low energies is constructed.
Selection rule for Dirac-like points in two-dimensional dielectric photonic crystals
Li, Yan
2013-01-01
We developed a selection rule for Dirac-like points in two-dimensional dielectric photonic crystals. The rule is derived from a perturbation theory and states that a non-zero, mode-coupling integral between the degenerate Bloch states guarantees a Dirac-like point, regardless of the type of the degeneracy. In fact, the selection rule can also be determined from the symmetry of the Bloch states even without computing the integral. Thus, the existence of Dirac-like points can be quickly and conclusively predicted for various photonic crystals independent of wave polarization, lattice structure, and composition. © 2013 Optical Society of America.
Position space formulation for Dirac fermions on honeycomb lattice
Hirotsu, Masaki; Shintani, Eigo
2014-01-01
We study how to construct Dirac fermion defined on the honeycomb lattice in position space. Starting from the nearest neighbor interaction in tight binding model, we show that the Hamiltonian is constructed by kinetic term and second derivative term of three flavor Dirac fermions in which one flavor has a mass of cutoff order and the other flavors are massless. In this formulation the structure of the Dirac point is simplified so that its uniqueness can be easily shown even if we consider the next-nearest neighbor interaction. We also explicitly show that there exists an exact chiral symmetry at finite lattice spacing, which protects the masslessness of the Dirac fermion, and discuss the analogy with the staggered fermion formulation.
Discovery of Novel Dirac and Weyl Fermion Materials
Alidoust, Nasser
In this dissertation, we present the experimental discovery of a new topological phase of matter, the Weyl semimetal state, in the monoarsenides TaAs and NbAs. Furthermore, we study various material systems with strong electron interactions, and provide compelling evidence for the existence of robust surface states in samarium hexaboride SmB6, as well as identify a Z2 topological insulator state with intriguing Dirac fermions in the low-carrier strongly-correlated cerium monopnictides CeBi and CeSb. We also investigate the honeycomb iridate Na2IrO3 and uncover linearly dispersing metallic states on its surface. Finally, we image the spin-orbit split valence band and the deposited quantum well states of the monolayer and bulk transition metal dichalcogenides MoS2 and MoSe2. The measurements presented in this dissertation constitute the first realization of emergent Weyl fermions in nature, introduce various directions for future discoveries of topological phases in strongly-correlated materials, and shed light on the spin-orbit physics of two-dimensional atomic crystals. These findings expand the field of topological phases of matter to gapless semimetallic and strongly-correlated materials, and offer great promises for further technological applications of topological materials in diverse platforms such as fault-tolerant qubits and low-power electronic and spintronic devices.
Klein Paradox of Two-Dimensional Dirac Electrons in Circular Well Potential
Institute of Scientific and Technical Information of China (English)
黄海; 付星球; 韩榕生
2012-01-01
We study two-dimensional massive Dirac equation in circular well potential. The energies of bound states are obtained. We demonstrate the Klein paradox of this relativistic wave equation： For large enough potential depth, the bound states disappear from the spectra. Applications to graphene systems are discussed.
Fermionic boundary modes in two-dimensional noncentrosymmetric superconductors
Samokhin, K. V.; Mukherjee, S. P.
2016-09-01
We calculate the spectrum of the Andreev boundary modes in a two-dimensional superconductor formed at an interface between two different nonsuperconducting materials, e.g., insulating oxides. Inversion symmetry is absent in this system, and both the electron band structure and the superconducting pairing are strongly affected by the spin-orbit coupling of the Rashba type. We consider isotropic s -wave pairing states, both with and without time-reversal symmetry breaking, as well as various d -wave states. In all cases, there exist subgap Andreev boundary states, whose properties, in particular, the number and location of the zero-energy modes, qualitatively depend on the gap symmetry and the spin-orbit coupling strength.
Cluster simulation of two-dimensional relativistic fermions
Wolff, U
2007-01-01
The (discrete) Gross-Neveu model is studied in a lattice realization with an N-component Majorana Wilson fermion field. It has an internal O(N) symmetry in addition to the euclidean lattice symmetries. The discrete chiral symmetry for vanishing mass is expected to emerge in the continuum limit only. The lattice theory is first recast in terms of two-valued bosonic link variables (dimers). In this representation, which coincides with the loop representation obtained earlier by Gattringer with the help of eight-vertex-models, the Boltzmann weight is essentially positive. While standard local updates are possible in this form we construct a further exact transformation where we generate dimer configurations as Peierls contours of an Ising model with a local action residing on plaquettes. For this model a Swendsen-Wang type cluster algorithm is constructed. At vanishing coupling it is numerically demonstrated to almost completely eliminate critical slowing down. Although further tests are required, an avenue to n...
Dipolar fermions in a two-dimensional lattice at non-zero temperature
DEFF Research Database (Denmark)
Larsen, Anne-Louise G.; Bruun, Georg
2012-01-01
We examine density-ordered and superfluid phases of fermionic dipoles in a two-dimensional square lattice at nonzero temperature. The critical temperature of the density-ordered phases is determined and is shown to be proportional to the coupling strength for strong coupling. We calculate...
P T -Symmetric Real Dirac Fermions and Semimetals
Zhao, Y. X.; Lu, Y.
2017-02-01
Recently, Weyl fermions have attracted increasing interest in condensed matter physics due to their rich phenomenology originated from their nontrivial monopole charges. Here, we present a theory of real Dirac points that can be understood as real monopoles in momentum space, serving as a real generalization of Weyl fermions with the reality being endowed by the P T symmetry. The real counterparts of topological features of Weyl semimetals, such as Nielsen-Ninomiya no-go theorem, 2D subtopological insulators, and Fermi arcs, are studied in the P T symmetric Dirac semimetals and the underlying reality-dependent topological structures are discussed. In particular, we construct a minimal model of the real Dirac semimetals based on recently proposed cold atom experiments and quantum materials about P T symmetric Dirac nodal line semimetals.
Use of real Dirac matrices in two-dimensional coupled linear optics
Baumgarten, C.
2011-11-01
The Courant-Snyder theory for two-dimensional coupled linear optics is presented, based on the systematic use of the real representation of the Dirac matrices. Since any real 4×4 matrix can be expressed as a linear combination of these matrices, the presented ansatz allows for a comprehensive and complete treatment of two-dimensional linear coupling. A survey of symplectic transformations in two dimensions is presented. A subset of these transformations is shown to be identical to rotations and Lorentz boosts in Minkowski space-time. The transformation properties of the classical state vector are formulated and found to be analog to those of a Dirac spinor. The equations of motion for a relativistic charged particle—the Lorentz force equations—are shown to be isomorph to envelope equations of two-dimensional linear coupled optics. A universal and straightforward method to decouple two-dimensional harmonic oscillators with constant coefficients by symplectic transformations is presented, which is based on this isomorphism. The method yields the eigenvalues (i.e., tunes) and eigenvectors and can be applied to a one-turn transfer matrix or directly to the coefficient matrix of the linear differential equation.
Dai, Jian; Song, Xing-Chang
2001-07-01
One of the key ingredients of Connes's noncommutative geometry is a generalized Dirac operator which induces a metric (Connes's distance) on the pure state space. We generalize such a Dirac operator devised by Dimakis et al, whose Connes distance recovers the linear distance on an one-dimensional lattice, to the two-dimensional case. This Dirac operator has the local eigenvalue property and induces a Euclidean distance on this two-dimensional lattice, which is referred to as `natural'. This kind of Dirac operator can be easily generalized into any higher-dimensional lattices.
Fermionic response from fractionalization in an insulating two-dimensional magnet
Nasu, J.; Knolle, J.; Kovrizhin, D. L.; Motome, Y.; Moessner, R.
2016-10-01
Conventionally ordered magnets possess bosonic elementary excitations, called magnons. By contrast, no magnetic insulators in more than one dimension are known whose excitations are not bosons but fermions. Theoretically, some quantum spin liquids (QSLs)--new topological phases that can occur when quantum fluctuations preclude an ordered state--are known to exhibit Majorana fermions as quasiparticles arising from fractionalization of spins. Alas, despite much searching, their experimental observation remains elusive. Here, we show that fermionic excitations are remarkably directly evident in experimental Raman scattering data across a broad energy and temperature range in the two-dimensional material α-RuCl3. This shows the importance of magnetic materials as hosts of Majorana fermions. In turn, this first systematic evaluation of the dynamics of a QSL at finite temperature emphasizes the role of excited states for detecting such exotic properties associated with otherwise hard-to-identify topological QSLs.
Sarkar, Sujit
2014-01-01
Quantum simulation aims to simulate a quantum system using a controble laboratory system that underline the same mathematical model. Cavity QED lattice system is that prescribe system to simulate the relativistic quantum effect. We quantum simulate the Dirac fermion mode, Majorana fermion mode and Majorana-Weyl fermion mode and a crossover between them in cavity QED lattice. We also present the different analytical relations between the field operators for different mode excitations.
Repulsively interacting fermions in a two-dimensional deformed trap with spin-orbit coupling
DEFF Research Database (Denmark)
Marchukov, O. V.; Fedorov, D. V.; Jensen, A. S.
2015-01-01
We investigate a two-dimensional system of fermions with two internal (spin) degrees of freedom. It is confined by a deformed harmonic trap and subject to a Zeeman field, Rashba or Dresselhaus one-body spin-orbit couplings and two-body short range repulsion. We obtain self-consistent mean-field $...... that cold atoms may be used to study quantum chaos both in the presence and absence of interactions....
Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model
Chen, Cheng-Chien; Muechler, Lukas; Car, Roberto; Neupert, Titus; Maciejko, Joseph
2016-08-01
We study the two-dimensional (2D) Hubbard model using exact diagonalization for spin-1 /2 fermions on the triangular and honeycomb lattices decorated with a single hexagon per site. In certain parameter ranges, the Hubbard model maps to a quantum compass model on those lattices. On the triangular lattice, the compass model exhibits collinear stripe antiferromagnetism, implying d -density wave charge order in the original Hubbard model. On the honeycomb lattice, the compass model has a unique, quantum disordered ground state that transforms nontrivially under lattice reflection. The ground state of the Hubbard model on the decorated honeycomb lattice is thus a 2D fermionic symmetry-protected topological phase. This state—protected by time-reversal and reflection symmetries—cannot be connected adiabatically to a free-fermion topological phase.
Line nodes, Dirac points, and Lifshitz transition in two-dimensional nonsymmorphic photonic crystals
Lin, Jun Yu; Hu, Nai Chao; Chen, You Jian; Lee, Ching Hua; Zhang, Xiao
2017-08-01
Topological phase transitions, which have fascinated generations of physicists, are always demarcated by gap closures. In this work, we propose very simple two-dimensional photonic crystal lattices with gap closures, i.e., band degeneracies protected by nonsymmorphic symmetry. Our photonic structures are relatively easy to fabricate, consisting of two inequivalent dielectric cylinders per unit cell. Along high-symmetry directions, they exhibit line degeneracies protected by glide-reflection symmetry and time-reversal symmetry, which we explicitly demonstrate for p g ,p m g ,p g g , and p 4 g nonsymmorphic groups. They also exhibit point degeneracies (Dirac points) protected by a Z2 topological number associated only with crystalline symmetry. Strikingly, the robust protection of p g symmetry allows a Lifshitz transition to a type-II Dirac cone across a wide range of experimentally accessible parameters, thus providing a convenient route for realizing anomalous refraction. Further potential applications include a stoplight device based on electrically induced strain that dynamically switches the lattice symmetry from p g g to the higher p 4 g symmetry. This controls the coalescence of Dirac points and hence the group velocity within the crystal.
Dirac-Kaehler Fermion from Clifford Product with Noncommutative Differential Form on a Lattice
Kanamori, I; Kanamori, Issaku; Kawamoto, Noboru
2004-01-01
We formulate Dirac-Kaehler fermion action by introducing a new Clifford product with noncommutative differential form on a lattice. Hermiticity of the Dirac-Kaehler action requires to choose the lattice structure having both orientabilities on a link. The Kogut-Susskind fermion and the staggered fermion actions are derived directly from the Dirac-Kaehler fermion formulated by the Clifford product. The lattice QCD action with Dirac-Kaehler matter fermion is also derived via an inner product defined by the Clifford product.
Fermionic quasinormal modes for two-dimensional Horava-Lifshitz black holes
Energy Technology Data Exchange (ETDEWEB)
Stetsko, M.M. [Ivan Franko National University of Lviv, Department for Theoretical Physics, Lviv (Ukraine)
2017-06-15
To obtain fermionic quasinormal modes, the Dirac equation for two types of black holes is investigated. It is shown that two different geometries lead to distinctive types of quasinormal modes, while the boundary conditions imposed on the solutions in both cases are identical. For the first type of black hole, the quasinormal modes have continuous spectrum with negative imaginary part that provides the stability of perturbations. For the second type of the black hole, the quasinormal modes have a discrete spectrum and are completely imaginary. (orig.)
Twisting dirac fermions: circular dichroism in bilayer graphene
Suárez Morell, E.; Chico, Leonor; Brey, Luis
2017-09-01
Twisted bilayer graphene is a chiral system which has been recently shown to present circular dichroism. In this work we show that the origin of this optical activity is the rotation of the Dirac fermions’ helicities in the top and bottom layer. Starting from the Kubo formula, we obtain a compact expression for the Hall conductivity that takes into account the dephasing of the electromagnetic field between the top and bottom layers and gathers all the symmetries of the system. Our results are based in both a continuum and a tight-binding model, and they can be generalized to any two-dimensional Dirac material with a chiral stacking between layers.
Massive Dirac fermions and the zero field quantum Hall effect
Raya, Alfredo
2008-01-01
Through an explicit calculation for a Lagrangian in quantum electrodynamics in (2+1)-space--time dimensions (QED$_3$), making use of the relativistic Kubo formula, we demonstrate that the filling factor accompanying the quantized electrical conductivity for massive Dirac fermions of a single species in two spatial dimensions is a half (in natural units) when time reversal and parity symmetries of the Lagrangian are explicitly broken by the fermion mass term. We then discuss the most general form of the QED$_3$ Lagrangian, both for irreducible and reducible representations of the Dirac matrices in the plane, with emphasis on the appearance of a Chern-Simons term. We also identify the value of the filling factor with a zero field quantum Hall effect (QHE).
Massive Dirac fermions and the zero field quantum Hall effect
Raya, Alfredo; Reyes, Edward D.
2008-09-01
Through an explicit calculation for a Lagrangian in quantum electrodynamics in (2+1)-spacetime dimensions (QED3), making use of the relativistic Kubo formula, we demonstrate that the filling factor accompanying the quantized electrical conductivity for massive Dirac fermions of a single species in two spatial dimensions is a half (in natural units) when time reversal and parity symmetries of the Lagrangian are explicitly broken by the fermion mass term. We then discuss the most general form of the QED3 Lagrangian, for both irreducible and reducible representations of the Dirac matrices in the plane, with emphasis on the appearance of a Chern-Simons term. We also identify the value of the filling factor with a zero field quantum Hall effect (QHE).
Imaging electrostatically confined Dirac fermions in graphene quantum dots
Lee, Juwon; Wong, Dillon; Velasco, Jairo, Jr.; Rodriguez-Nieva, Joaquin F.; Kahn, Salman; Tsai, Hsin-Zon; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Levitov, Leonid S.; Crommie, Michael F.
2016-11-01
Electrostatic confinement of charge carriers in graphene is governed by Klein tunnelling, a relativistic quantum process in which particle-hole transmutation leads to unusual anisotropic transmission at p-n junction boundaries. Reflection and transmission at these boundaries affect the quantum interference of electronic waves, enabling the formation of novel quasi-bound states. Here we report the use of scanning tunnelling microscopy to map the electronic structure of Dirac fermions confined in quantum dots defined by circular graphene p-n junctions. The quantum dots were fabricated using a technique involving local manipulation of defect charge within the insulating substrate beneath a graphene monolayer. Inside such graphene quantum dots we observe resonances due to quasi-bound states and directly visualize the quantum interference patterns arising from these states. Outside the quantum dots Dirac fermions exhibit Friedel oscillation-like behaviour. Bolstered by a theoretical model describing relativistic particles in a harmonic oscillator potential, our findings yield insights into the spatial behaviour of electrostatically confined Dirac fermions.
Trapping Dirac fermions in tubes generated by two scalar fields
Casana, R.; Gomes, A. R.; Martins, G. V.; Simas, F. C.
2014-04-01
In this work we consider (1,1)-dimensional resonant Dirac fermionic states on tubelike topological defects. The defects are formed by rings in (2,1) dimensions, constructed with two scalar fields ϕ and χ, and embedded in the (3,1)-dimensional Minkowski spacetime. The tubelike defects are attained from a Lagrangian density explicitly dependent with the radial distance r relative to the ring axis and the radius and thickness of its cross section are related to the energy density. For our purposes we analyze a general Yukawa-like coupling between the topological defect and the fermionic field ηF(ϕ ,χ)ψ¯ψ. With a convenient decomposition of the fermionic fields in left and right components, we establish a coupled set of first-order differential equations for the amplitudes of the left and right components of the Dirac field. After decoupling and decomposing the amplitudes in polar coordinates, the radial modes satisfy Schrödinger-like equations whose eigenvalues are the masses of the fermionic states. With F(ϕ ,χ)=ϕχ the Schrödinger-like equations are numerically solved with appropriated boundary conditions. Several resonance peaks for both components are obtained, and the results are confronted with the qualitative analysis of the Schrödinger-like potentials.
Lu, Wei; Liu, Xuefeng; Lu, Hong; Li, Caizhen; Lai, Jiawei; Zhao, Chuan; Tian, Ye; Liao, Zhimin; Jia, Shuang; Sun, Dong
2016-01-01
Three dimensional (3D) Dirac semimetal exhibiting ultrahigh mobility has recently attracted enormous research interests as 3D analogues of graphene. From the prospects of future application toward electronic/optoelectronic devices with extreme performance, it is crucial to understand the relaxation dynamics of photo-excited carriers and their coupling with lattice. In this work, we report ultrafast transient reflection measurements of photo-excited carrier dynamics in cadmium arsenide (Cd3As2), which is among the most stable Dirac semimetals that have been confirmed experimentally. With low energy probe photon of 0.3 eV, photo-excited Dirac Fermions dynamics closing to Dirac point are probed. Through transient reflection measurements on bulk and nanoplate samples that have different doping intensities, and systematic probe wavelength, pump power and lattice temperature dependent measurements, the dynamical evolution of carrier distributions can be retrieved qualitatively using a two-temperature model. The pho...
Trapping Dirac fermions in tubes generated by two scalar fields
Casana, R; Martins, G V; Simas, F C
2013-01-01
In this work we consider $(1,1)-$dimensional resonant Dirac fermionic states on tube-like topological defects. The defects are formed by rings in $(2,1)$ dimensions, constructed with two scalar field $\\phi$ and $\\chi$, and embedded in the $(3,1)-$dimensional Minkowski spacetime. The tube-like defects are attained from a lagrangian density explicitly dependent with the radial distance $r$ relative to the ring axis and the radius and thickness of the its cross-section are related to the energy density. For our purposes we analyze a general Yukawa-like coupling between the topological defect and the fermionic field $\\eta F(\\phi,\\chi)\\bar\\psi\\psi$. With a convenient decomposition of the fermionic fields in left- and right- chiralities, we establish a coupled set of first order differential equations for the amplitudes of the left- and right- components of the Dirac field. After decoupling and decomposing the amplitudes in polar coordinates, the radial modes satisfy Schr\\"odinger-like equations whose eigenvalues a...
Quantum Hall Effect of Massless Dirac Fermions and Free Fermions in Hofstadter's Butterfly
Yoshioka, Nobuyuki; Matsuura, Hiroyasu; Ogata, Masao
2016-06-01
We propose a new physical interpretation of the Diophantine equation of σxy for the Hofstadter problem. First, we divide the energy spectrum, or Hofstadter's butterfly, into smaller self-similar areas called "subcells", which were first introduced by Hofstadter to describe the recursive structure. We find that in the energy gaps between subcells, there are two ways to account for the quantization rule of σxy, that are consistent with the Diophantine equation: Landau quantization of (i) massless Dirac fermions or (ii) free fermions in Hofstadter's butterfly.
Kalesaki, E.; Delerue, C.; de Morais Smith, C.; Beugeling, W.; Allan, G.; Vanmaekelbergh, D.A.M.
2014-01-01
We study theoretically two-dimensional single-crystalline sheets of semiconductors that form a honeycomb lattice with a period below 10 nm. These systems could combine the usual semiconductor properties with Dirac bands. Using atomistic tight-binding calculations, we show that both the atomic lattic
Different models of gravitating Dirac fermions in optical lattices
Celi, Alessio
2017-07-01
In this paper I construct the naive lattice Dirac Hamiltonian describing the propagation of fermions in a generic 2D optical metric for different lattice and flux-lattice geometries. First, I apply a top-down constructive approach that we first proposed in [Boada et al., New J. Phys. 13, 035002 (2011)] to the honeycomb and to the brickwall lattices. I carefully discuss how gauge transformations that generalize momentum (and Dirac cone) shifts in the Brillouin zone in the Minkowski homogeneous case can be used in order to change the phases of the hopping. In particular, I show that lattice Dirac Hamiltonian for Rindler spacetime in the honeycomb and brickwall lattices can be realized by considering real and isotropic (but properly position dependent) tunneling terms. For completeness, I also discuss a suitable formulation of Rindler Dirac Hamiltonian in semi-synthetic brickwall and π-flux square lattices (where one of the dimension is implemented by using internal spin states of atoms as we originally proposed in [Boada et al., Phys. Rev. Lett. 108, 133001 (2012)] and [Celi et al., Phys. Rev. Lett. 112, 043001 (2014)]).
Micromagnetic Sensors and Dirac Fermions in HgTe Heterostructures
Büttner, Bastian
2012-01-01
Within the scope of this thesis two main topics have been investigated: the examination of micromagnetic sensors and transport of massive and massless Dirac fermions in HgTe quantum wells. For the investigation of localized, inhomogeneous magnetic ﬁelds, the fabrication and characterization of two different non-invasive and ultra sensitive sensors has been established at the chair ”Experimentelle Physik” of the University of Würzburg. The ﬁrst sensor is based on the young technique named micr...
Micromagnetic sensors and Dirac fermions in HgTe heterostructures
Energy Technology Data Exchange (ETDEWEB)
Buettner, Bastian
2012-08-06
Within the scope of this thesis two main topics have been investigated: the examination of micromagnetic sensors and transport of massive and massless Dirac fermions in HgTe quantum wells. For the investigation of localized, inhomogeneous magnetic fields, the fabrication and characterization of two different non-invasive and ultra sensitive sensors has been established at the chair ''Experimentelle Physik'' of the University of Wuerzburg. The first sensor is based on the young technique named micro-Hall magnetometry. The necessary semiconductor devices (Hall cross structures) were fabricated by high-resolution electron beam lithography based on two different two dimensional electron gases (2DEGs), namely InAs/(Al,Ga)Sb- and HgTe/(Hg,Cd)Te-heterostructures. The characteristics have been examined in two different ways. Measurements in homogeneous magnetic fields served for characterization of the sensors, whereas the investigation of artificially produced sub-{mu}m magnets substantiates the suitability of the devices for the study of novel nanoscale magnetic materials (e.g. nanowires). Systematic experiments with various magnets are in accordance with the theory of single-domain particles and anisotropic behavior due to shapes with high aspect ratio. The highest sensitivity for strongly localized fields was obtained at T=4.2 K for a (200.200) nm{sup 2} Hall cross - made from shallow, high mobility HgTe 2DEG. Although the field resolution was merely {delta}B{approx}100 {mu}T, the nanoscale sensor size yields an outstanding flux resolution of {delta}{Phi}=2.10{sup -3} {Phi}{sub 0}, where {Phi}{sub 0}=h/2e is the flux quantum. Translating this result in terms of magnetic moment, the sensitivity allows for the detection of magnetization changes of a particle centered on top of the sensor as low as {delta}M{approx}10{sup 2} {mu}{sub B}, with the magnetic moment of a single electron {mu}{sub B}, the Bohr magneton. The further examination of a permalloy
Micromagnetic sensors and Dirac fermions in HgTe heterostructures
Energy Technology Data Exchange (ETDEWEB)
Buettner, Bastian
2012-08-06
Within the scope of this thesis two main topics have been investigated: the examination of micromagnetic sensors and transport of massive and massless Dirac fermions in HgTe quantum wells. For the investigation of localized, inhomogeneous magnetic fields, the fabrication and characterization of two different non-invasive and ultra sensitive sensors has been established at the chair ''Experimentelle Physik'' of the University of Wuerzburg. The first sensor is based on the young technique named micro-Hall magnetometry. The necessary semiconductor devices (Hall cross structures) were fabricated by high-resolution electron beam lithography based on two different two dimensional electron gases (2DEGs), namely InAs/(Al,Ga)Sb- and HgTe/(Hg,Cd)Te-heterostructures. The characteristics have been examined in two different ways. Measurements in homogeneous magnetic fields served for characterization of the sensors, whereas the investigation of artificially produced sub-{mu}m magnets substantiates the suitability of the devices for the study of novel nanoscale magnetic materials (e.g. nanowires). Systematic experiments with various magnets are in accordance with the theory of single-domain particles and anisotropic behavior due to shapes with high aspect ratio. The highest sensitivity for strongly localized fields was obtained at T=4.2 K for a (200.200) nm{sup 2} Hall cross - made from shallow, high mobility HgTe 2DEG. Although the field resolution was merely {delta}B{approx}100 {mu}T, the nanoscale sensor size yields an outstanding flux resolution of {delta}{Phi}=2.10{sup -3} {Phi}{sub 0}, where {Phi}{sub 0}=h/2e is the flux quantum. Translating this result in terms of magnetic moment, the sensitivity allows for the detection of magnetization changes of a particle centered on top of the sensor as low as {delta}M{approx}10{sup 2} {mu}{sub B}, with the magnetic moment of a single electron {mu}{sub B}, the Bohr magneton. The further examination of a permalloy
Existence of semi-Dirac cones and symmetry of two-dimensional materials.
Damljanovic, Vladimir; Gajic, Rados
2017-03-06
There have been growing efforts in finding new two-dimensional (2D) materials with anisotropic properties due to their potential applications in electronics. Although in such a search, a symmetry based analysis can be useful, it has not been reported so far. By use of group theory we have found sufficient conditions for the existence of linear dispersion in one direction and quadratic one in perpendicular direction, in the vicinity of points of symmetry in the Brillouin zone (BZ) of any non-magnetic, 2D material with negligible spin-orbit coupling. We have formulated a set of symmetry conditions that lead to the semi-Dirac dispersion and analyzed all possible symmetries of 2D materials. In four, out of all eighty symmetry groups, combined time-reversal and crystal symmetry leads, at given points in the BZ, to such dispersion. The result is valid irrespectively of strength of electronic correlations in the system, model used to calculate the band structure or the actual crystal structure that realizes given groups. We have illustrated our findings by a tight-binding example.
General solution of the Dirac equation for quasi-two-dimensional electrons
Energy Technology Data Exchange (ETDEWEB)
Eremko, Alexander, E-mail: eremko@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Str., 14-b, Kyiv, 03680 (Ukraine); Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Str., 14-b, Kyiv, 03680 (Ukraine); Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Str., 14-b, Kyiv, 03680 (Ukraine); National Technical University of Ukraine “KPI”, Peremohy av., 37, Kyiv, 03056 (Ukraine)
2016-06-15
The general solution of the Dirac equation for quasi-two-dimensional electrons confined in an asymmetric quantum well, is found. The energy spectrum of such a system is exactly calculated using special unitary operator and is shown to depend on the electron spin polarization. This solution contains free parameters, whose variation continuously transforms one known particular solution into another. As an example, two different cases are considered in detail: electron in a deep and in a strongly asymmetric shallow quantum well. The effective mass renormalized by relativistic corrections and Bychkov–Rashba coefficients are analytically obtained for both cases. It is demonstrated that the general solution transforms to the particular solutions, found previously (Eremko et al., 2015) with the use of spin invariants. The general solution allows to establish conditions at which a specific (accompanied or non-accompanied by Rashba splitting) spin state can be realized. These results can prompt the ways to control the spin degree of freedom via the synthesis of spintronic heterostructures with the required properties.
Detection of topological states in two-dimensional Dirac systems by the dynamic spin susceptibility
Nakamura, Masaaki; Tokuno, Akiyuki
2016-08-01
We discuss dynamic spin susceptibility (DSS) in two-dimensional (2D) Dirac electrons with spin-orbit interactions to characterize topological insulators. The imaginary part of the DSS appears as an absorption rate in response to a transverse ac magnetic field, just as in an electron spin resonance experiment for localized spin systems. We found that when the system is in a static magnetic field, the topological state can be identified by an anomalous resonant peak of the imaginary part of the DSS as a function of the frequency of the transverse magnetic field ω . In the absence of a static magnetic field, the imaginary part of the DSS becomes a continuous function of ω with a threshold frequency ωc. In this case, the topological and the trivial phases can also be distinguished by the values of ωc and by the line shapes. Thus the DSS is an experimentally observable physical quantity to characterize a topological insulator directly from bulk properties, without observing a topological transition.
Heavy Dirac fermions in a graphene/topological insulator hetero-junction
Cao, Wendong; Zhang, Rui-Xing; Tang, Peizhe; Yang, Gang; Sofo, Jorge; Duan, Wenhui; Liu, Chao-Xing
2016-09-01
The low energy physics of both graphene and surface states of three-dimensional topological insulators (TIs) is described by gapless Dirac fermions with linear dispersion. In this work, we predict the emergence of a ‘heavy’ Dirac fermion in a graphene/TI hetero-junction, where the linear term almost vanishes and the corresponding energy dispersion becomes highly nonlinear. By combining ab initio calculations and an effective low-energy model, we show explicitly how strong hybridization between Dirac fermions in graphene and the surface states of TIs can reduce the Fermi velocity of Dirac fermions. Due to the negligible linear term, interaction effects will be greatly enhanced and can drive ‘heavy’ Dirac fermion states into the half quantum Hall state with non-zero Hall conductance.
Quantum critical point of Dirac fermion mass generation without spontaneous symmetry breaking
He, Yuan-Yao; Wu, Han-Qing; You, Yi-Zhuang; Xu, Cenke; Meng, Zi Yang; Lu, Zhong-Yi
2016-12-01
We study a lattice model of interacting Dirac fermions in (2 +1 ) dimensions space-time with an SU(4) symmetry. While increasing the interaction strength, this model undergoes a continuous quantum phase transition from a weakly interacting Dirac semimetal to a fully gapped and nondegenerate phase without condensing any Dirac fermion bilinear mass operator. This unusual mechanism for mass generation is consistent with recent studies of interacting topological insulators/superconductors, and also consistent with recent progress in the lattice QCD community.
Dirac Fermions in Non-trivial Topology Black Hole Backgrounds
Gozdz, Marek; Rogatko, Marek
2010-01-01
We discuss the behaviour of the Dirac fermions in a general spherically symmetric black hole background with a non-trivial topology of the event horizon. Both massive and massless cases are taken into account. The analytical studies of intermediate and late-time behaviour of massive Dirac hair in the background of a black hole with a global monopole and dilaton black hole pierced by a cosmic string will be conducted. It was revealed that in the case of a global monopole swallowed by a static black hole the intermediate late-time behaviour depends on the mass of the Dirac field, the multiple number of the wave mode and the global monopole parameter. The late-time behaviour is quite independent of these factors and has the decay rate proportional to $t^{-5/6}$. As far as the black hole pierced by a cosmic string is concerned the intermediate late-time behaviour depends only on the hair mass and the multipole number of the wave mode while the late-time behaviour dependence is the same as in the previous case. Th...
Dirac Fermions without bulk backscattering in rhombohedral topological insulators
Mera Acosta, Carlos; Lima, Matheus; Seixas, Leandro; da Silva, Antônio; Fazzio, Adalberto
2015-03-01
The realization of a spintronic device using topological insulators is not trivial, because there are inherent difficulties in achieving the surface transport regime. The majority of 3D topological insulators materials (3DTI) despite of support helical metallic surface states on an insulating bulk, forming topological Dirac fermions protected by the time-reversal symmetry, exhibit electronic scattering channels due to the presence of residual continuous bulk states near the Dirac-point. From ab initio calculations, we studied the microscopic origin of the continuous bulk states in rhombohedral topological insulators materials with the space group D3d 5 (R 3 m) , showing that it is possible to understand the emergence of residual continuous bulk states near the Dirac-point into a six bands effective model, where the breaking of the R3 symmetry beyond the Γ point has an important role in the hybridization of the px, py and pz atomic orbitals. Within these model, the mechanisms known to eliminate the bulk scattering, for instance: the stacking faults (SF), electric field and alloy, generated the similar effect in the effective states of the 3DTI. Finally, we show how the surface electronic transport is modified by perturbations of bulk with SF. We would like to thank the financial support by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).
6d Dirac fermion on a rectangle; scrutinizing boundary conditions, mode functions and spectrum
Fujimoto, Yukihiro; Hasegawa, Kouhei; Nishiwaki, Kenji; Sakamoto, Makoto; Tatsumi, Kentaro
2017-09-01
We classify possible boundary conditions of a 6d Dirac fermion Ψ on a rectangle under the requirement that the 4d Lorentz structure is maintained, and derive the profiles and spectrum of the zero modes and nonzero KK modes under the two specific boundary conditions, (i) 4d-chirality positive components being zero at the boundaries and (ii) internal chirality positive components being zero at the boundaries. In the case of (i), twofold degenerated chiral zero modes appear which are localized towards specific directions of the rectangle pointed by an angle parameter θ. This leads to an implication for a new direction of pursuing the origin of three generations in the matter fields of the standard model, even though triple-degenerated zero modes are not realized in the six dimensions. When such 6d fermions couple with a 6d scalar with a vacuum expectation value, θ contributes to a mass matrix of zero-mode fermions consisting of Yukawa interactions. The emergence of the angle parameter θ originates from a rotational symmetry in the degenerated chiral zero modes on the rectangle extra dimensions since they do not feel the boundaries. In the case of (ii), this rotational symmetry is promoted to the two-dimensional conformal symmetry though no chiral massless zero mode appears. We also discuss the correspondence between our model on a rectangle and orbifold models in some details.
D-Dimensional Dirac Fermions BEC-BCS Crossover Thermodynamics
Institute of Scientific and Technical Information of China (English)
CHEN Ji-Sheng
2007-01-01
An effective relativistic continuum massive Proca Lagrangian action is used to account for the Lorentz vector condensation effects on the equation of state of the strongly interacting fermions system. The interior quantum fluctuation effects are incorporated as an external field approximation indirectly through a fictive generalized Thomson Problem counterterm background. The general analytical formulas for the d-dimensional thermodynamics are given near the unitary limit region. In the non-relativistic limit for d = 3, the universal dimensionless coefficient ξ = 4/9 and energy gap △/εf = 5/ 18 are reasonably consistent with the existing theoretical and experimental results. In the unitary limit for d = 2 and T = 0, the universal coefficient can even approach the extreme occasion ξ = 0 corresponding to the infinite effective fermion mass m* = ∞, which can be mapped to the strongly coupled two-dimensional electrons and is quite similar to the three-dimensional Bose-Einstein condensation of ideal boson gas. Instead, for d = 1, the universal coefficient ξ is negative, implying the non-existence of phase transition from superfluidity to normal state. The solutions manifest the quantum Ising universal class characteristic of the strongly coupled unitary fermions gas.
Directory of Open Access Journals (Sweden)
E. Kalesaki
2014-01-01
Full Text Available We study theoretically two-dimensional single-crystalline sheets of semiconductors that form a honeycomb lattice with a period below 10 nm. These systems could combine the usual semiconductor properties with Dirac bands. Using atomistic tight-binding calculations, we show that both the atomic lattice and the overall geometry influence the band structure, revealing materials with unusual electronic properties. In rocksalt Pb chalcogenides, the expected Dirac-type features are clouded by a complex band structure. However, in the case of zinc-blende Cd-chalcogenide semiconductors, the honeycomb nanogeometry leads to rich band structures, including, in the conduction band, Dirac cones at two distinct energies and nontrivial flat bands and, in the valence band, topological edge states. These edge states are present in several electronic gaps opened in the valence band by the spin-orbit coupling and the quantum confinement in the honeycomb geometry. The lowest Dirac conduction band has S-orbital character and is equivalent to the π-π^{⋆} band of graphene but with renormalized couplings. The conduction bands higher in energy have no counterpart in graphene; they combine a Dirac cone and flat bands because of their P-orbital character. We show that the width of the Dirac bands varies between tens and hundreds of meV. These systems emerge as remarkable platforms for studying complex electronic phases starting from conventional semiconductors. Recent advancements in colloidal chemistry indicate that these materials can be synthesized from semiconductor nanocrystals.
Roslyak, O.; Gumbs, Godfrey; Mukamel, S.
2012-05-01
We study the localization of dressed Dirac electrons in a cylindrical quantum dot (QD) formed on monolayer and bilayer graphene by spatially different potential profiles. Short lived excitonic states which are too broad to be resolved in linear spectroscopy are revealed by cross peaks in the photon-echo nonlinear technique. Signatures of the dynamic gap in the two-dimensional spectra are discussed. The effect of the Coulomb induced exciton-exciton scattering and the formation of biexciton molecules are demonstrated.
Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides
Huang, Huaqing; Zhou, Shuyun; Duan, Wenhui
2016-09-01
Recently, a new "type-II" Weyl fermion, which exhibits exotic phenomena, such as an angle-dependent chiral anomaly, was discovered in a new phase of matter where electron and hole pockets contact at isolated Weyl points [Nature (London) 527, 495 (2015), 10.1038/nature15768]. This raises an interesting question about whether its counterpart, i.e., a type-II Dirac fermion, exists in real materials. Here, we predict the existence of symmetry-protected type-II Dirac fermions in a class of transition metal dichalcogenide materials. Our first-principles calculations on PtSe2 reveal its bulk type-II Dirac fermions which are characterized by strongly tilted Dirac cones, novel surface states, and exotic doping-driven Lifshitz transition. Our results show that the existence of type-II Dirac fermions in PtSe2-type materials is closely related to its structural P 3 ¯m 1 symmetry, which provides useful guidance for the experimental realization of type-II Dirac fermions and intriguing physical properties distinct from those of the standard Dirac fermions known before.
Universal thermoelectric effect of Dirac fermions in graphene.
Zhu, Lijun; Ma, Rong; Sheng, Li; Liu, Mei; Sheng, Dong-Ning
2010-02-19
We numerically study the thermoelectric transports of Dirac fermions in graphene in the presence of a strong magnetic field and disorder. We find that the thermoelectric transport coefficients demonstrate universal behavior depending on the ratio between the temperature and the width of the disorder-broadened Landau levels (LLs). The transverse thermoelectric conductivity alpha{xy} reaches a universal quantum value at the center of each LL in the high temperature regime, and it has a linear temperature dependence at low temperatures. The calculated Nernst signal has a peak at the central LL with heights of the order of k{B}/e, and changes sign near other LLs, while the thermopower has an opposite behavior, in good agreement with experimental data. The validity of the generalized Mott relation between the thermoelectric and electrical transport coefficients is verified in a wide range of temperatures.
Induced fermionic charge and current densities in two-dimensional rings
Bellucci, S; Grigoryan, A Kh
2016-01-01
For a massive quantum fermionic field, we investigate the vacuum expectation values (VEVs) of the charge and current densities induced by an external magnetic flux in a two-dimensional circular ring. Both the irreducible representations of the Clifford algebra are considered. On the ring edges the bag (infinite mass) boundary conditions are imposed for the field operator. This leads to the Casimir type effect on the vacuum characteristics. The radial current vanishes. The charge and the azimuthal current are decomposed into the boundary-free and boundary-induced contributions. Both these contributions are odd periodic functions of the magnetic flux with the period equal to the flux quantum. An important feature that distinguishes the VEVs of the charge and current densities from the VEV of the energy density, is their finiteness on the ring edges. The current density is equal to the charge density for the outer edge and has the opposite sign on the inner edge. The VEVs are peaked near the inner edge and, as f...
Inferences about interactions: Fermions and the Dirac equation
Knuth, Kevin H.
2013-08-01
At a fundamental level every measurement process relies on an interaction where one entity influences another. The boundary of an interaction is given by a pair of events, which can be ordered by virtue of the interaction. This results in a partially ordered set (poset) of events often referred to as a causal set. In this framework, an observer can be represented by a chain of events. Quantification of events and pairs of events, referred to as intervals, can be performed by projecting them onto an observer chain, or even a pair of observer chains, which in specific situations leads to a Minkowski metric replete with Lorentz transformations. We illustrate how this framework of interaction events gives rise to some of the well-known properties of the Fermions, such as Zitterbewegung. We then take this further by making inferences about events, which is performed by employing the process calculus, which coincides with the Feynman path integral formulation of quantum mechanics. We show that in the 1+1 dimensional case this results in the Feynman checkerboard model of the Dirac equation describing a Fermion at rest.
Red'kov, V M
2011-01-01
Tetrad based equation for Dirac-K\\"{a}hler particle is solved in spherical coordinates in the flat Minkocski space-time. Spherical solutions of boson type (J =0,1,2,...) are constructed. After performing a special transformation over spherical boson solutions of the Dirac-K\\"{a}hler equation, 4 \\times 4-matrices U(x) \\Longrightarrow V(x), simple linear expansions of the four rows of new representativeof the Dirac--K\\"{a}hler field V(x) in terms of spherical fermion solutions \\Psi_{i}(x) of the four ordinary Dirac equations have been derived. However, this fact cannot be interpreted as the possibility not to distinguish between the Dirac-K\\"{a}hler field and the system four Dirac fermions. The main formal argument is that the special transformation (I \\otimes S(x)) involved does not belong to the group of tetrad local gauge transformation for Dirac-K\\"{a}hler field, 2-rank bispinor under the Lorentz group. Therefore, the linear expansions between boson and fermion functions are not gauge invariant under the gr...
Energy Technology Data Exchange (ETDEWEB)
Dai Jian [Theory Group, Department of Physics, Peking University, Beijing (China)]. E-mail: jdai@mail.phy.pku.edu.cn; Song Xingchang [Theory Group, Department of Physics, Peking University, Beijing (China)]. E-mail: songxc@ibm320h.phy.pku.edu.cn
2001-07-13
One of the key ingredients of Connes's noncommutative geometry is a generalized Dirac operator which induces a metric (Connes's distance) on the pure state space. We generalize such a Dirac operator devised by Dimakis et al, whose Connes distance recovers the linear distance on an one-dimensional lattice, to the two-dimensional case. This Dirac operator has the local eigenvalue property and induces a Euclidean distance on this two-dimensional lattice, which is referred to as 'natural'. This kind of Dirac operator can be easily generalized into any higher-dimensional lattices. (author)
Nonperturbative emergence of the Dirac fermion in a strongly correlated composite Fermi liquid
Yang, Yibin; Luo, Xi; Yu, Yue
2017-01-01
The classic composite fermion field theory [B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312 (1993)], 10.1103/PhysRevB.47.7312 builds up an excellent framework to uniformly study important physical objects and globally explain anomalous experimental phenomena in fractional quantum Hall physics while there are also inherent weaknesses. We present a nonperturbative emergent Dirac fermion theory from this strongly correlated composite fermion field theory, which overcomes these serious long-standing shortcomings. The particle-hole symmetry of the Dirac equation resolves this particle-hole symmetry enigma in the composite fermion field theory. With the help of presented numerical data, we show that for main Jain's sequences of fractional quantum Hall effects, this emergent Dirac fermion theory in mean field approximation is most likely stable.
Surface states of a system of Dirac fermions: A minimal model
Energy Technology Data Exchange (ETDEWEB)
Volkov, V. A., E-mail: volkov.v.a@gmail.com; Enaldiev, V. V. [Russian Academy of Sciences, Kotel’nikov Institute of Radio Engineering and Electronics (Russian Federation)
2016-03-15
A brief survey is given of theoretical works on surface states (SSs) in Dirac materials. Within the formalism of envelope wave functions and boundary conditions for these functions, a minimal model is formulated that analytically describes surface and edge states of various (topological and nontopological) types in several systems with Dirac fermions (DFs). The applicability conditions of this model are discussed.
Cotaescu, Ion I; Sporea, Ciprian
2016-01-01
The asymptotic form of the Dirac spinors in the field of the Reissner-Nordstrom black hole are derived for the scattering states (with $E>mc^2$) obtaining the phase shifts of the partial wave analysis of the Dirac fermions scattered from charged black holes. The elastic scattering and the absorption are studied giving analytic formulas for the partial amplitudes and cross sections.
Spin eigen-states of Dirac equation for quasi-two-dimensional electrons
Energy Technology Data Exchange (ETDEWEB)
Eremko, Alexander, E-mail: eremko@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); National Technical University of Ukraine “KPI”, Peremohy av., 37, Kyiv, 03056 (Ukraine)
2015-10-15
Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shown that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.
Considerations concering the generalization of the Dirac equations to unstable fermions
Energy Technology Data Exchange (ETDEWEB)
Kniehl, Bernd A.; Sirlin, Alberto [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Muenchen (Germany)
2014-08-15
We discuss the generalization of the Dirac equations and spinors in momentum space to free unstable spin-1/2 fermions taking into account the fundamental requirement of Lorentz covariance. We derive the generalized adjoint Dirac equations and spinors, and explain the very simple relation that exists, in our formulation, between the unstable and stable cases. As an application of the generalized spinors, we evaluate the probability density. We also discuss the behavior of the generalized Dirac equations under time reversal.
Zero modes of the Dirac operator on a noncompact two-dimensional surface in a magnetic field
Energy Technology Data Exchange (ETDEWEB)
Sitenko, Y.A. (Institute of Theoretical Physics, Academy of Sciences, Ukrainian SSR (UA))
1989-09-01
We investigate zero modes of the two-dimensional Dirac operator on a noncompact singly connected surface in an external magnetic field. The number of square-integrable zero modes is shown to be determined by global characteristics of the external field and surface: the flux of the magnetic field through the surface and the Gauss curvature integrated over the surface. The equivalence of the square integrability condition for the noncompact surface to the conditions of the index theorem for a closed compact surface is discussed.
Mattheakis, Marios; Valagiannopoulos, Constantinos A.; Kaxiras, Efthimios
2016-11-01
The electromagnetic response of a two-dimensional metal embedded in a periodic array of a dielectric host can give rise to a plasmonic Dirac point that emulates epsilon-near-zero (ENZ) behavior. This theoretical result is extremely sensitive to structural features like periodicity of the dielectric medium and thickness imperfections. We propose that such a device can actually be realized by using graphene as the two-dimensional metal and materials like the layered semiconducting transition-metal dichalcogenides or hexagonal boron nitride as the dielectric host. We propose a systematic approach, in terms of design characteristics, for constructing metamaterials with linear, elliptical, and hyperbolic dispersion relations which produce ENZ behavior, normal or negative diffraction.
Observation of negative refraction of Dirac fermions in graphene
Lee, Gil-Ho; Park, Geon-Hyoung; Lee, Hu-Jong
2015-11-01
Half a century ago, Veselago proposed `left-handed’ materials with negative permittivity and permeability, in which waves propagate with phase and group velocities in opposite directions. Significant work has been undertaken to attain this left-handed response, such as establishing a negative refractive index in so-called metamaterials, which consist of periodic sub-wavelength structures. However, an electronic counterpart has not been demonstrated owing to difficulties in creating repeated structures smaller than the electronic Fermi wavelength of the order ~10 nm. Here, without needing to engineer sub-wavelength structures, we demonstrate negative refractive behaviour of Dirac fermions in graphene, exploiting its unique relativistic band structure. Analysis of both electron focusing through an n-p-n flat lens and negative refraction across n-p junctions confirms left-handed behaviour in the electronic system. This approach to electronic optics is of particular relevance to the on-going efforts to develop novel quantum devices with emerging layered materials.
Mendy, J E B; Mendy, Jean El Bachir; Govaerts, Jan
2002-01-01
Given the most general Lorentz invariant four-fermion effective interaction possible for two neutrinos and two charged fermions, whether quarks or leptons, all possible 2-to-2 processes involving two neutrinos, whether Dirac or Majorana ones, and two charged fermions are considered. Explicit and convenient expressions are given for the associated differential cross-sections. Such a parametrization should help assess the sensitivity to physics beyond the Standard Model of neutrino beam experiments which are in the design stage at neutrino factories.
Karbstein, Felix
2007-01-01
We use 1+1 dimensional large N Gross-Neveu models as a laboratory to derive microscopically effective Lagrangians for positive energy fermions only. When applied to baryons, the Euler-Lagrange equation for these effective theories assumes the form of a non-linear Dirac equation. Its solution reproduces the full semi-classical results including the Dirac sea to any desired accuracy. Dynamical effects from the Dirac sea are encoded in higher order derivative terms and multi-fermion interactions with perturbatively calculable, finite coefficients. Characteristic differences between models with discrete and continuous chiral symmetry are observed and clarified.
Disordered loops in the two-dimensional antiferromagnetic spin-fermion model
Energy Technology Data Exchange (ETDEWEB)
Enss, T. [CNR-INFM-SMC Center and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , P.le A. Moro 5, 00185 Roma (Italy)], E-mail: tilman.enss@gmail.com; Caprara, S.; Castellani, C.; Di Castro, C.; Grilli, M. [CNR-INFM-SMC Center and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , P.le A. Moro 5, 00185 Roma (Italy)
2008-06-01
The spin-fermion model has long been used to describe the quantum-critical behavior of 2d electron systems near an antiferromagnetic (AFM) instability. Recently, the standard procedure to integrate out the fermions and obtain an effective action for spin waves has been questioned in the clean case. We show that, in the presence of disorder, the single fermion loops display two crossover scales: upon lowering the energy, the singularities of the clean fermionic loops are first cut off, but below a second scale new singularities arise that lead again to marginal scaling. In addition, impurity lines between different fermion loops generate new relevant couplings which dominate at low energies. We outline a non-linear {sigma} model formulation of the single-loop problem, which allows to control the higher singularities and provides an effective model in terms of low-energy diffusive as well as spin modes.
Otsuka, Yuichi; Yunoki, Seiji; Sorella, Sandro
2016-01-01
The metal-insulator transition has been a subject of intense research since Mott first proposed that the metallic behavior of interacting electrons could turn to an insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite-size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. Thereby, we find that the transition is continuous, and we determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. Furthermore, we discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: The metal-insulator transition is triggered only by the vanishing of the quasiparticle weight, not by the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture but is rather consistent with the low-energy behavior of the Gross-Neveu model.
Directory of Open Access Journals (Sweden)
Yuichi Otsuka
2016-03-01
Full Text Available The metal-insulator transition has been a subject of intense research since Mott first proposed that the metallic behavior of interacting electrons could turn to an insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite-size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. Thereby, we find that the transition is continuous, and we determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. Furthermore, we discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: The metal-insulator transition is triggered only by the vanishing of the quasiparticle weight, not by the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture but is rather consistent with the low-energy behavior of the Gross-Neveu model.
Buot, Felix A.; Otadoy, Roland E. S.; Rivero, Karla B.
2017-03-01
Wide ranging interest in Dirac Hamiltonian is due to the emergence of novel materials, namely, graphene, topological insulators and superconductors, the newly-discovered Weyl semimetals, and still actively-sought after Majorana fermions in real materials. We give a brief review of the relativistic Dirac quantum mechanics and its impact in the developments of modern physics. The quantum band dynamics of Dirac Hamiltonian is crucial in resolving the giant diamagnetism of bismuth and Bi-Sb alloys. Quantitative agreement of the theory with the experiments on Bi-Sb alloys has been achieved, and physically meaningful contributions to the diamagnetism has been identified. We also treat relativistic Dirac fermion as an interband dynamics in uniform magnetic fields. For the interacting Bloch electrons, the role of translation symmetry for calculating the magnetic susceptibility avoids any approximation to second order in the field. The expressions for magnetic susceptibility of dilute nonmagnetic alloys give a firm theoretical foundation of the empirical formulas used in fitting experimental results. The unified treatment of all the above calculations is based on the lattice Weyl-Wigner formulation of discrete phase-space quantum mechanics. For completeness, the magnetic susceptibility of Kondo alloys is also given since Dirac fermions in conduction band and magnetic impurities exhibit Kondo effect.
Dynamic zero modes of Dirac fermions and competing singlet phases of antiferromagnetic order
Goswami, Pallab
2016-01-01
In quantum spin systems, singlet phases often develop in the vicinity of an antiferromagnetic order. Typical settings for such problems arise when itinerant fermions are also present. In this work, we develop a theoretical framework for addressing such competing orders in an itinerant system, described by Dirac fermions strongly coupled to an O(3) nonlinear sigma model. We focus on two spatial dimensions, where upon disordering the antiferromagnetic order by quantum fluctuations the singular tunneling events also known as (anti)hedgehogs can nucleate competing singlet orders in the paramagnetic phase. In the presence of an isolated hedgehog configuration of the nonlinear sigma model field, we show that the fermion determinant vanishes as the dynamic Euclidean Dirac operator supports fermion zero modes of definite chirality. This provides a topological mechanism for suppressing the tunneling events. Using the methodology of quantum chromodynamics, we evaluate the fermion determinant in the close proximity of m...
Dirac points and line degeneracies in two-dimensional nonsymmorphic photonic crystals
Lin, Jun Yu; Chen, You Jian; Lee, Ching Hua; Zhang, Xiao
2016-01-01
Topological phase transitions, which have fascinated generations of physicists, are always demarcated by gap closures. In this work, we study the topological properties of gap closure points, i.e. band degeneracies, in photonic crystal lattices exhibiting nonsymmorphic group symmetries. Despite their relatively esoteric symmetries, such lattice structures are relatively easy to fabricate, and thus experimentally study, in photonic systems. We show that the combination of glide symmetry and time reversal symmetry can protect point degeneracies. Line degeneracies along two high symmetry momenta are, however, only protected by one glide symmetry. By defining a topological winding number for point degeneracies, Dirac points with windings of $\\pm 1,\\ -1,\\ -2$ are found in lattices with $pmg$, $pgg$ and $p4g$ nonsymmorphic group symmetries respectively. More interestingly, the breaking of time reversal symmetry in systems with symmetry groups $pgg$ and $p4g$ yield Chern insulators with nontrivial edge states as sol...
Mattheakis, Marios; Kaxiras, Efthimios
2016-01-01
The electromagnetic response of a two-dimensional metal embedded in a periodic array of a dielectric host can give rise to a plasmonic Dirac point that emulates Epsilon-Near-Zero (ENZ) behavior. This theoretical result is extremely sensitive to tructural features like periodicity of the dielectric medium and thickness imperfections. We propose that such a device can actually be realized by using graphene as the 2D metal and materials like the layered semiconducting transition-metal dichalcogenides or hexagonal boron nitride as the dielectric host. We propose a systematic approach, in terms of design characteristics, for constructing metamaterials with linear, elliptical and hyperbolic dispersion relations which produce ENZ behavior, normal or negative diffraction.
Gong, Pu; Yu, Hongyi; Wang, Yong; Yao, Wang
2017-03-01
We investigate the optical transition selection rules for excitonic Rydberg series formed in massive Dirac cones. The entanglement of the exciton envelop function with the pseudospin texture leads to anomalous selection rules for one-photon generation of excitons, where d orbitals can be excited with the opposite helicity selection rule from the s orbitals in a given valley. The trigonal warping effects in realistic hexagonal lattices further renders more excited states bright, where p orbitals can also be accessed by one-photon excitation with the opposite valley selection rules to the s orbitals. The one-photon generation of exciton in the various states and the intraexcitonic transition between these states are both dictated by the discrete in-plane rotational symmetry of the lattices, and our results show that in hexagonal 2D materials the symmetry allowed transitions are enabled when trigonal warping effects are included in the massive Dirac fermion model. In monolayer transition metal dichalcogenides where excitons can be generated by visible light and intraexcitonic transitions can be induced by infrared light, we give the strength of these optical transitions, estimated using modified hydrogenlike envelope functions combined with the optical transition matrix elements between the Bloch states calculated at various k points.
Mott insulating states and quantum phase transitions of correlated SU(2 N ) Dirac fermions
Zhou, Zhichao; Wang, Da; Meng, Zi Yang; Wang, Yu; Wu, Congjun
2016-06-01
The interplay between charge and spin degrees of freedom in strongly correlated fermionic systems, in particular of Dirac fermions, is a long-standing problem in condensed matter physics. We investigate the competing orders in the half-filled SU (2 N ) Hubbard model on a honeycomb lattice, which can be accurately realized in optical lattices with ultracold large-spin alkaline-earth fermions. Employing large-scale projector determinant quantum Monte Carlo simulations, we have explored quantum phase transitions from the gapless Dirac semimetals to the gapped Mott insulating phases in the SU(4) and SU(6) cases. Both of these Mott insulating states are found to be columnar valence bond solid (cVBS) and to be absent of the antiferromagnetic Néel ordering and the loop current ordering. Inside the cVBS phases, the dimer ordering is enhanced by increasing fermion components and behaves nonmonotonically as the interaction strength increases. Although the transitions generally should be of first order due to a cubic invariance possessed by the cVBS order, the coupling to gapless Dirac fermions can soften the transitions to second order through a nonanalytic term in the free energy. Our simulations provide important guidance for the experimental explorations of novel states of matter with ultracold alkaline-earth fermions.
Energy Technology Data Exchange (ETDEWEB)
Quinn, John
2009-11-30
Work related to this project introduced the idea of an effective monopole strength Q* that acted as the effective angular momentum of the lowest shell of composite Fermions (CF). This allowed us to predict the angular momentum of the lowest band of energy states for any value of the applied magnetic field simply by determining N{sub QP} the number of quasielectrons (QE) or quasiholes (QH) in a partially filled CF shell and adding angular momenta of the N{sub QP} Fermions excitations. The approach reported treated the filled CF level as a vacuum state which could support QE and QH excitations. Numerical diagonalization of small systems allowed us to determine the angular momenta, the energy, and the pair interaction energies of these elementary excitations. The spectra of low energy states could then be evaluated in a Fermi liquid-like picture, treating the much smaller number of quasiparticles and their interactions instead of the larger system of N electrons with Coulomb interactions.
New chiral fermions, a new gauge interaction, Dirac neutrinos, and dark matter
Energy Technology Data Exchange (ETDEWEB)
Gouvêa, André de; Hernández, Daniel [Northwestern University, Department of Physics & Astronomy,2145 Sheridan Road, Evanston, IL 60208 (United States)
2015-10-07
We propose that all light fermionic degrees of freedom, including the Standard Model (SM) fermions and all possible light beyond-the-standard-model fields, are chiral with respect to some spontaneously broken abelian gauge symmetry. Hypercharge, for example, plays this role for the SM fermions. We introduce a new symmetry, U(1){sub ν}, for all new light fermionic states. Anomaly cancellations mandate the existence of several new fermion fields with nontrivial U(1){sub ν} charges. We develop a concrete model of this type, for which we show that (i) some fermions remain massless after U(1){sub ν} breaking — similar to SM neutrinos — and (ii) accidental global symmetries translate into stable massive particles — similar to SM protons. These ingredients provide a solution to the dark matter and neutrino mass puzzles assuming one also postulates the existence of heavy degrees of freedom that act as “mediators' between the two sectors. The neutrino mass mechanism described here leads to parametrically small Dirac neutrino masses, and the model also requires the existence of at least four Dirac sterile neutrinos. Finally, we describe a general technique to write down chiral-fermions-only models that are at least anomaly-free under a U(1) gauge symmetry.
Two-Dimensional Dirac Fermions in a Topological Insulator: Transport in the Quantum Limit
Energy Technology Data Exchange (ETDEWEB)
Analytis, J.G.; /SIMES, Stanford /SLAC /Stanford U., Geballe Lab /Stanford U., Appl. Phys. Dept.; McDonald, R.D.; /Los Alamos; Riggs, S.C.; /Natl. High Mag. Field Lab.; Chu, J.-H.; /SIMES, Stanford /SLAC /Stanford U., Geballe Lab /Stanford U., Appl. Phys. Dept.; Boebinger, G.S.; /Natl. High Mag. Field Lab.; Fisher, I.R.; /SIMES, Stanford /SLAC /Stanford U., Geballe Lab /Stanford U., Appl. Phys. Dept.
2011-08-12
Pulsed magnetic fields of up to 55T are used to investigate the transport properties of the topological insulator Bi{sub 2}Se{sub 3} in the extreme quantum limit. For samples with a bulk carrier density of n = 2.9 x 10{sup 16} cm{sup -3}, the lowest Landau level of the bulk 3D Fermi surface is reached by a field of 4T. For fields well beyond this limit, Shubnikov-de Haas oscillations arising from quantization of the 2D surface state are observed, with the {nu} = 1 Landau level attained by a field of {approx} 35T. These measurements reveal the presence of additional oscillations which occur at fields corresponding to simple rational fractions of the integer Landau indices.
Dirac-Kaehler fermion with noncommutative differential forms on a lattice
Kanamori, I
2003-01-01
Noncommutativity between a differential form and a function allows us to define differential operator satisfying Leibniz's rule on a lattice. We propose a new associative Clifford product defined on the lattice by introducing the noncommutative differential forms. We show that this Clifford product naturally leads to the Dirac-K\\"ahler fermion on the lattice.
Analogy between rotation and density for Dirac fermions in a magnetic field
Chen, Hao-Lei; Huang, Xu-Guang; Mameda, Kazuya
2015-01-01
We analyse the energy spectra of Dirac fermions in the presence of rotation and magnetic field. We find that the Landau degeneracy is resolved by rotation. A drastic change in the energy dispersion relation leads to the "rotational magnetic inhibition" that is a novel phenomenon analogous to the inverse magnetic catalysis in a magnetic system at finite chemical potential.
Fermion unification model based on the intrinsic SU(8 symmetry of a generalized Dirac equation
Directory of Open Access Journals (Sweden)
Eckart eMarsch
2015-10-01
Full Text Available A natural generalization of the original Dirac spinor into a multi-component spinor is achieved, which corresponds to the single lepton and the three quarks of the first family of the standard model of elementary particle physics. Different fermions result from similarity transformations of the Dirac equation, but apparently there can be no more fermions according to the maximal multiplicity revealed in this study. Rotations in the fermion state space are achieved by the unitary generators of the U(1 and the SU(3 groups, corresponding to quantum electrodynamics (QED based on electric charge and chromodynamics (QCD based on colour charge. In addition to hypercharge the dual degree of freedom of hyperspin emerges, which occurs due to the duplicity implied by the two related (Weyl and Dirac representations of the Dirac equation. This yields the SU(2 symmetry of the weak interaction, which can be married to U(1 to generate the unified electroweak interaction as in the standard model. Therefore, the symmetry group encompassing all the three groups mentioned above is SU(8, which can accommodate and unify the observed eight basic stable fermions.
Bruning, J.; Dobrokhotov, S.Y.; Katsnelson, M.I.; Minenkov, D.S.
2016-01-01
We consider the two-dimensional stationary Schrodinger and Dirac equations in the case of radial symmetry. A radially symmetric potential simulates the tip of a scanning tunneling microscope. We construct semiclassical asymptotic forms for generalized eigenfunctions and study the local density of st
Time-dependent massless Dirac fermions in graphene
Energy Technology Data Exchange (ETDEWEB)
Khantoul, Boubakeur, E-mail: bobphys@gmail.com [Department of Mathematics, City University London, Northampton Square, London EC1V 0HB (United Kingdom); Department of Physics, University of Jijel, BP 98, Ouled Aissa, 18000 Jijel (Algeria); Fring, Andreas, E-mail: a.fring@city.ac.uk [Department of Mathematics, City University London, Northampton Square, London EC1V 0HB (United Kingdom)
2015-10-30
Using the Lewis–Riesenfeld method of invariants we construct explicit analytical solutions for the massless Dirac equation in 2+1 dimensions describing quasi-particles in graphene. The Hamiltonian of the system considered contains some explicit time-dependence in addition to one resulting from being minimally coupled to a time-dependent vector potential. The eigenvalue equations for the two spinor components of the Lewis–Riesenfeld invariant are found to decouple into a pair of supersymmetric invariants in a similar fashion as the known decoupling for the time-independent Dirac Hamiltonians. - Highlights: • An explicit analytical solution for a massless 2+1 dimensional time-dependent Dirac equation is found. • All steps of the Lewis–Riesenfeld method have been carried out.
Electronic structure of a graphene superlattice with massive Dirac fermions
Energy Technology Data Exchange (ETDEWEB)
Lima, Jonas R. F., E-mail: jonas.iasd@gmail.com [Instituto de Ciencia de Materiales de Madrid (CSIC) - Cantoblanco, Madrid 28049 (Spain)
2015-02-28
We study the electronic and transport properties of a graphene-based superlattice theoretically by using an effective Dirac equation. The superlattice consists of a periodic potential applied on a single-layer graphene deposited on a substrate that opens an energy gap of 2Δ in its electronic structure. We find that extra Dirac points appear in the electronic band structure under certain conditions, so it is possible to close the gap between the conduction and valence minibands. We show that the energy gap E{sub g} can be tuned in the range 0 ≤ E{sub g} ≤ 2Δ by changing the periodic potential. We analyze the low energy electronic structure around the contact points and find that the effective Fermi velocity in very anisotropic and depends on the energy gap. We show that the extra Dirac points obtained here behave differently compared to previously studied systems.
Spin-1 Dirac-Weyl fermions protected by bipartite symmetry
Energy Technology Data Exchange (ETDEWEB)
Lin, Zeren [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); School of Physics, Peking University, Beijing 100871 (China); Liu, Zhirong, E-mail: LiuZhiRong@pku.edu.cn [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871 (China)
2015-12-07
We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K′ in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T{sub 3}, an extensively studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K′.
Dynamic zero modes of Dirac fermions and competing singlet phases of antiferromagnetic order
Goswami, Pallab; Si, Qimiao
2017-06-01
In quantum spin systems, singlet phases often develop in the vicinity of an antiferromagnetic order. Typical settings for such problems arise when itinerant fermions are also present. In this paper, we develop a theoretical framework for addressing such competing orders in an itinerant system, described by Dirac fermions strongly coupled to an O(3) nonlinear sigma model. We focus on two spatial dimensions, where upon disordering the antiferromagnetic order by quantum fluctuations the singular tunneling events also known as (anti)hedgehogs can nucleate competing singlet orders in the paramagnetic phase. In the presence of an isolated hedgehog configuration of the nonlinear sigma model field, we show that the fermion determinant vanishes as the dynamic Euclidean Dirac operator supports fermion zero modes of definite chirality. This provides a topological mechanism for suppressing the tunneling events. Using the methodology of quantum chromodynamics, we evaluate the fermion determinant in the close proximity of magnetic quantum phase transition, when the antiferromagnetic order-parameter field can be described by a dilute gas of hedgehogs and antihedgehogs. We show how the precise nature of emergent singlet order is determined by the overlap between dynamic fermion zero modes of opposite chirality, localized on the hedgehogs and antihedgehogs. For a Kondo-Heisenberg model on the honeycomb lattice, we demonstrate the competition between spin Peierls order and Kondo singlet formation, thereby elucidating its global phase diagram. We also discuss other physical problems that can be addressed within this general framework.
Sato, T.; Segawa, Kouji; Kosaka, K.; Souma, S.; Nakayama, K.; Eto, K.; Minami, T.; Ando, Yoichi; Takahashi, T.
2011-11-01
The three-dimensional (3D) topological insulator is a novel quantum state of matter where an insulating bulk hosts a linearly dispersing surface state, which can be viewed as a sea of massless Dirac fermions protected by the time-reversal symmetry (TRS). Breaking the TRS by a magnetic order leads to the opening of a gap in the surface state, and consequently the Dirac fermions become massive. It has been proposed theoretically that such a mass acquisition is necessary to realize novel topological phenomena, but achieving a sufficiently large mass is an experimental challenge. Here we report an unexpected discovery that the surface Dirac fermions in a solid-solution system TlBi(S1-xSex)2 acquire a mass without explicitly breaking the TRS. We found that this system goes through a quantum phase transition from the topological to the non-topological phase, and, by tracing the evolution of the electronic states using the angle-resolved photoemission, we observed that the massless Dirac state in TlBiSe2 switches to a massive state before it disappears in the non-topological phase. This result suggests the existence of a condensed-matter version of the `Higgs mechanism' where particles acquire a mass through spontaneous symmetry breaking.
Elias, V; Elias, Victor; Sprague, Kevin
1998-01-01
We consider the contribution of fermion-antifermion condensates to the anomalous magnetic moment of a fermion in a vacuum in which such condensates exist. The real part of the condensate contribution to the anomalous magnetic moment is shown to be zero. A nonzero imaginary part is obtained below the kinematic threshold for intermediate fermion-antifermion pairs. The calculation is shown to be gauge-parameter independent provided a single fermion mass characterizes both the fermion propagator and condensate-sensitive contributions, suggestive of a dynamically-generated fermion mass. The nonzero imaginary part is then argued to correspond to the kinematic production of the intermediate-state Goldstone bosons anticipated from a chiral-noninvariant vacuum. Finally, speculations are presented concerning the applicability of these results to quark electromagnetic properties.
Matsuno, Genki; Kobayashi, Akito
2017-01-01
The nontrivial properties of interband spin fluctuations are studied by the random phase approximation in a Hubbard model describing the molecular conductor α-(BEDT-TTF)2I3, where wave functions are based on the four sublattices named A, A', B, and C in a two-dimensional BEDT-TTF molecular plane. It is found that the ferrimagnetic polarization observed by a recent NMR measurement emerges only if there exist cross terms among intra- and inter-band irreducible susceptibility matrix elements in the presence of the on-site Coulomb interaction U. It is also found that the nontrivial sign of the interband components of the spin susceptibility, being negative only for the B sublattice, is closely related to the characteristic phase structure of wave functions in the Dirac fermion system with multisublattices. The negative value of the spin susceptibility on the B sublattice observed in the experiment is associated with this negative interband susceptibility, which comes from the excitations in the gentle-slope region of the energy dispersion connecting the Dirac points with saddle points in the first Brillouin zone.
Existence of Majorana fermion mode and Dirac equation in cavity quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Sarkar, Sujit, E-mail: sujit.tifr@gmail.com
2015-10-15
We present the results of low lying collective mode of coupled optical cavity arrays. We derive the Dirac equation for this system and explain the existence of Majorana fermion mode in the system. We present quite a few analytical relations between the Rabi frequency oscillation and the atom–photon coupling strength to explain the different physical situation of our study and also the condition for massless collective mode in the system. We present several analytical relations between the Dirac spinor field, order and disorder operators for our systems. We also show that the Luttinger liquid physics is one of the intrinsic concepts in our system.
Chen, R Y; Chen, Z G; Song, X-Y; Schneeloch, J A; Gu, G D; Wang, F; Wang, N L
2015-10-23
We present a magnetoinfrared spectroscopy study on a newly identified three-dimensional (3D) Dirac semimetal ZrTe(5). We observe clear transitions between Landau levels and their further splitting under a magnetic field. Both the sequence of transitions and their field dependence follow quantitatively the relation expected for 3D massless Dirac fermions. The measurement also reveals an exceptionally low magnetic field needed to drive the compound into its quantum limit, demonstrating that ZrTe(5) is an extremely clean system and ideal platform for studying 3D Dirac fermions. The splitting of the Landau levels provides direct, bulk spectroscopic evidence that a relatively weak magnetic field can produce a sizable Zeeman effect on the 3D Dirac fermions, which lifts the spin degeneracy of Landau levels. Our analysis indicates that the compound evolves from a Dirac semimetal into a topological line-node semimetal under the current magnetic field configuration.
Quasiballistic Transport of Dirac Fermions in a Bi2Se3 Nanowire
Dufouleur, J.; Veyrat, L.; Teichgräber, A.; Neuhaus, S.; Nowka, C.; Hampel, S.; Cayssol, J.; Schumann, J.; Eichler, B.; Schmidt, O. G.; Büchner, B.; Giraud, R.
2013-05-01
Quantum coherent transport of surface states in a mesoscopic nanowire of the three-dimensional topological insulator Bi2Se3 is studied in the weak-disorder limit. At very low temperatures, many harmonics are evidenced in the Fourier transform of Aharonov-Bohm oscillations, revealing the long phase coherence length of spin-chiral Dirac fermions. Remarkably, from their exponential temperature dependence, we infer an unusual 1/T power law for the phase coherence length Lφ(T). This decoherence is typical for quasiballistic fermions weakly coupled to their environment.
Volume scaling of Dirac eigenvalues in SU(3) lattice gauge theory with color sextet fermions
DeGrand, Thomas
2009-01-01
I observe a rough volume-dependent scaling of the low eigenvalues of a chiral Dirac operator in lattice studies of SU(3) lattice gauge theory with two flavors of color sextet fermions, in its weak-coupling phase. The mean value of the ith eigenvalue scales with the simulation volume V=L^4 as L^p ~zeta_i, where zeta_i is a volume-independent constant. The exponent p is about 1.4. A possible explanation for this phenomenon is that p is the leading relevant exponent associated with the fermion mass dependence of correlation functions in a theory whose zero-mass limit is conformal.
Dirac fermion reflector by ballistic graphene sawtooth-shaped npn junctions
Morikawa, Sei; Wilmart, Quentin; Masubuchi, Satoru; Watanabe, Kenji; Taniguchi, Takashi; Plaçais, Bernard; Machida, Tomoki
2017-04-01
We have realized a Dirac fermion reflector in graphene by controlling the ballistic carrier trajectory in a sawtooth-shaped npn junction. When the carrier density in the inner p-region is much larger than that in the outer n-regions, the first straight np interface works as a collimator, and the collimated ballistic carriers can be totally reflected at the second zigzag pn interface. We observed clear resistance enhancement around the np+n regime, which is in good agreement with the numerical simulation. Though the effect observed is mild and needs more validation for future application with better device design, the qualitative tunable reflectance of ballistic carriers could be an elementary and important step for realizing ultrahigh-mobility graphene field effect transistors utilizing Dirac fermion optics in the near future. We also comment on some possible guidelines to improve the quantitative device performance.
Liu, Yizhuang
2015-01-01
We show that the QCD Dirac spectrum at finite chemical potential using a 2-matrix model in the spontaneously broken phase, is amenable to a generic 2-dimensional effective action on a curved eigenvalue manifold. The eigenvalues form a droplet with strong screening and non-linear plasmons. The droplet is threaded by a magnetic vortex which is at the origin of a Berry phase. The adiabatic transport in the droplet maps onto the one in the fractional quantum Hall effect, suggesting that composite fermions at half filling are Dirac particles. We use this observation to argue for two novel anomalous effects in the edge transport of composite fermions, and conversely on a novel contribution to the QCD quark condensate in a rotating frame.
Rivasseau, Vincent; Fuchs, Jean-Nöel
2017-01-01
This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other mater...
Josephson junction detectors for Majorana modes and Dirac fermions
Maiti, M.; Kulikov, K. M.; Sengupta, K.; Shukrinov, Yu. M.
2015-12-01
We demonstrate that the current-voltage (I -V ) characteristics of resistively and capacitively shunted Josephson junctions (RCSJs) hosting localized subgap Majorana states provide a phase-sensitive method for their detection. The I -V characteristics of such RCSJs, in contrast to their resistively shunted counterparts, exhibit subharmonic odd Shapiro steps. These steps, owing to their subharmonic nature, exhibit qualitatively different properties compared to harmonic odd steps of conventional junctions. In addition, the RCSJs hosting Majorana bound states also display an additional sequence of steps in the devil's staircase structure seen in their I -V characteristics; such a sequence of steps makes their I -V characteristics qualitatively distinct from that of their conventional counterparts. A similar study for RCSJs with graphene superconducting junctions hosting Dirac-like quasiparticles reveals that the Shapiro step width in their I -V curves bears a signature of the transmission resonance phenomenon of their underlying Dirac quasiparticles; consequently, these step widths exhibit a π periodic oscillatory behavior with variation of the junction barrier potential. We discuss experiments which can test our theory.
Robustness of Rashba and Dirac Fermions against Strong Disorder.
Di Sante, Domenico; Barone, Paolo; Plekhanov, Evgeny; Ciuchi, Sergio; Picozzi, Silvia
2015-06-12
By addressing the interplay between substitutional disorder and spin-orbit-coupling in chalcogenide alloys, we predict a strong robustness of spectral features at the Fermi energy. Indeed, supplementing our state of the art first-principles calculations with modeling analysis, we show that the disorder self-energy is vanishingly small close to the band gap, thus i) allowing for bulk Rashba-like spin splitting to be observed in ferroelectric alloys by means of Angle Resolved PhotoEmission Spectroscopy, and ii) protecting the band-character inversion related to the topological transition in recently discovered Topological Crystalline Insulators. Such a protection against strong disorder, which we demonstrate to be general for three dimensional Dirac systems, has potential and valuable implications for novel technologies, as spintronics and/or spinorbitronics.
Relativistic quantum Darwinism in Dirac fermion and graphene systems
Ni, Xuan; Huang, Liang; Lai, Ying-Cheng; Pecora, Louis
2012-02-01
We solve the Dirac equation in two spatial dimensions in the setting of resonant tunneling, where the system consists of two symmetric cavities connected by a finite potential barrier. The shape of the cavities can be chosen to yield both regular and chaotic dynamics in the classical limit. We find that certain pointer states about classical periodic orbits can exist, which are signatures of relativistic quantum Darwinism (RQD). These localized states suppress quantum tunneling, and the effect becomes less severe as the underlying classical dynamics in the cavity is chaotic, leading to regularization of quantum tunneling. Qualitatively similar phenomena have been observed in graphene. A physical theory is developed to explain relativistic quantum Darwinism and its effects based on the spectrum of complex eigenenergies of the non-Hermitian Hamiltonian describing the open cavity system.
Lattice Dirac Fermions on a Simplicial Riemannian Manifold
Brower, Richard C; Gasbarro, Andrew D; Raben, Timothy G; Tan, Chung-I; Weinberg, Evan S
2016-01-01
The lattice Dirac equation is formulated on a simplicial complex which approximates a smooth Riemann manifold by introducing a lattice vierbein on each site and a lattice spin connection on each link. Care is taken so the construction applies to any smooth D-dimensional Riemannian manifold that permits a spin connection. It is tested numerically in 2D for the projective sphere ${\\mathbb S}^2$ in the limit of an increasingly refined sequence of triangles. The eigenspectrum and eigenvectors are shown to converge rapidly to the exact result in the continuum limit. In addition comparison is made with the continuum Ising conformal field theory on ${\\mathbb S}^2$. Convergence is tested for the two point, $\\langle \\epsilon(x_1) \\epsilon(x_2) \\rangle$, and the four point, $\\langle \\sigma(x_1) \\epsilon(x_2) \\epsilon(x_3 )\\sigma(x_4) \\rangle $, correlators for the energy, $\\epsilon(x) = i \\bar \\psi(x)\\psi(x)$, and twist operators, $\\sigma(x)$, respectively.
Inferences about Interactions: Fermions and the Dirac Equation
Knuth, Kevin H
2012-01-01
At a fundamental level every measurement process relies on an interaction where one entity influences another. The boundary of an interaction is given by a pair of events, which can be ordered by virtue of the interaction. This results in a partially ordered set (poset) of events often referred to as a causal set. In this framework, an observer can be represented by a chain of events. Quantification of events and pairs of events, referred to as intervals, can be performed by projecting them onto an observer chain, or even a pair of observer chains, which in specific situations leads to a Minkowski metric replete with Lorentz transformations. We illustrate how this framework of interaction events gives rise to some of the well-known properties of the Fermions, such as Zitterbewegung. We then take this further by making inferences about events, which is performed by employing the process calculus, which coincides with the Feynman path integral formulation of quantum mechanics. We show that in the 1+1 dimensiona...
A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions
Zhu, Chunhui; Wang, Fengqiu; Meng, Yafei; Yuan, Xiang; Xiu, Faxian; Luo, Hongyu; Wang, Yazhou; Li, Jianfeng; Lv, Xinjie; He, Liang; Xu, Yongbing; Liu, Junfeng; Zhang, Chao; Shi, Yi; Zhang, Rong; Zhu, Shining
2017-01-01
Pulsed lasers operating in the mid-infrared (3-20 μm) are important for a wide range of applications in sensing, spectroscopy, imaging and communications. Despite recent advances with mid-infrared gain platforms, the lack of a capable pulse generation mechanism remains a significant technological challenge. Here we show that bulk Dirac fermions in molecular beam epitaxy grown crystalline Cd3As2, a three-dimensional topological Dirac semimetal, constitutes an exceptional ultrafast optical switching mechanism for the mid-infrared. Significantly, we show robust and effective tuning of the scattering channels of Dirac fermions via an element doping approach, where photocarrier relaxation times are found flexibly controlled over an order of magnitude (from 8 ps to 800 fs at 4.5 μm). Our findings reveal the strong impact of Cr doping on ultrafast optical properties in Cd3As2 and open up the long sought parameter space crucial for the development of compact and high-performance mid-infrared ultrafast sources.
Partial wave analysis of the Dirac fermions scattered from Schwarzschild black holes
Energy Technology Data Exchange (ETDEWEB)
Cotaescu, Ion I.; Crucean, Cosmin; Sporea, Ciprian A. [West University of Timisoara, Timisoara (Romania)
2016-03-15
Asymptotic analytic solutions of the Dirac equation, giving the scattering modes (of the continuous energy spectrum, E > mc{sup 2}) in Schwarzschild's chart and Cartesian gauge, are used for building the partial wave analysis of Dirac fermions scattered by black holes. In this framework, the analytic expressions of the differential cross section and induced polarization degree are derived in terms of scattering angle, mass of the black hole, and energy and mass of the fermion. Moreover, the closed form of the absorption cross section due to the scattering modes is derived showing that in the high-energy limit this tends to the event horizon area regardless of the fermion mass (including zero). A graphical study presents the differential cross section analyzing the forward/backward scattering (known also as glory scattering) and the polarization degree as functions of scattering angle. The graphical analysis shows the presence of oscillations in scattering intensity around forward/backward directions, phenomena known as spiral scattering. The energy dependence of the differential cross section is also established by using analytical and graphical methods. (orig.)
Bai, Ke-Ke; Qiao, Jia-Bin; Jiang, Hua; Liu, Haiwen; He, Lin
2017-05-01
Massless Dirac fermions in graphene provide unprecedented opportunities to realize the Klein paradox, which is one of the most exotic and striking properties of relativistic particles. In the seminal theoretical work [M. I. Katsnelson et al., Nat. Phys. 2, 620 (2006), 10.1038/nphys384], it was predicted that the massless Dirac fermions can pass through one-dimensional (1D) potential barriers unimpededly at normal incidence. Such a result seems to preclude confinement of the massless Dirac fermions in graphene by using 1D potential barriers. Here, we demonstrate both experimentally and theoretically that massless Dirac fermions can be trapped in a quasi-1D n p n junction of a continuous graphene monolayer. Because of highly anisotropic transmission of the massless Dirac fermions at n-p junction boundaries (the so-called Klein tunneling in graphene), charge carriers incident at large oblique angles will be reflected from one edge of the junction with high probability and continue to bounce from the opposite edge. Consequently, these electrons are trapped for a finite time to form quasibound states in the quasi-1D n p n junction. The quasibound states seen as pronounced resonances are probed and the quantum interference patterns arising from these states are directly visualized in our scanning tunneling microscope measurements.
Ultrafast spin-polarization control of Dirac fermions in topological insulators
Sánchez-Barriga, J.; Golias, E.; Varykhalov, A.; Braun, J.; Yashina, L. V.; Schumann, R.; Minár, J.; Ebert, H.; Kornilov, O.; Rader, O.
2016-04-01
Three-dimensional topological insulators (TIs) are characterized by spin-polarized Dirac-cone surface states that are protected from backscattering by time-reversal symmetry. Control of the spin polarization of topological surface states (TSSs) using femtosecond light pulses opens novel perspectives for the generation and manipulation of dissipationless surface spin currents on ultrafast time scales. Using time-, spin-, and angle-resolved spectroscopy, we directly monitor the ultrafast response of the spin polarization of photoexcited TSSs to circularly polarized femtosecond pulses of infrared light. We achieve all-optical switching of the transient out-of-plane spin polarization, which relaxes in about 1.2 ps. Our observations establish the feasibility of ultrafast optical control of spin-polarized Dirac fermions in TIs and pave the way for optospintronic applications at ultimate speeds.
On the excited state wave functions of Dirac fermions in the random gauge potential
Indian Academy of Sciences (India)
H Milani Moghaddam
2010-04-01
In the last decade, it was shown that the Liouville field theory is an effective theory of Dirac fermions in the random gauge potential (FRGP). We show that the Dirac wave functions in FRGP can be written in terms of descendents of the Liouville vertex operator. In the quasiclassical approximation of the Liouville theory, our model predicts 22.2 that the localization length scales with the energy as $ ∼ E^{−b^{2}(1+b^{2})^{2}}$, where is the strength of the disorder. The self-duality of the theory under the transformation → 1/ is discussed. We also calculate the distribution functions of 0 = |0 ()|2, (i.e. (0); 0 () is the ground state wave function), which behaves as the log-normal distribution function. It is also shown that in small 0, (0) behaves as a chi-square distribution.
Vacuum polarization of planar Dirac fermions by a superstrong Coulomb potential
Khalilov, V R
2016-01-01
We study the vacuum polarization of planar charged Dirac fermions by a strong Coulomb potential. Induced vacuum charge density is calculated and analyzed at the subcritical and supercritical Coulomb potentials for massless and massive fermions. For the massless case the induced vacuum charge density is localized at the origin when the Coulomb center charge is subcritical while it has a power-law tail when the Coulomb center charge is supercritical. The finite mass contribution into the induced charge due to the vacuum polarization is small and insignificantly distorts the Coulomb potential only at distances of order of the Compton length. The induced vacuum charge has a screening sign. As is known the quantum electrodynamics vacuum becomes unstable when the Coulomb center charge is increased from subcritical to supercritical values. In the supercritical Coulomb potential the quantum electrodynamics vacuum acquires the charge due to the so-called real vacuum polarization. We calculate the real vacuum polarizat...
Generalized Gauge Theories and Weinberg-Salam Model with Dirac-Kähler Fermions
Kawamoto, N; Umetsu, H; Kawamoto, Noboru; Tsukioka, Takuya; Umetsu, Hiroshi
2001-01-01
We extend previously proposed generalized gauge theory formulation of Chern-Simons type and topological Yang-Mills type actions into Yang-Mills type actions. We formulate gauge fields and Dirac-K\\"ahler matter fermions by all degrees of differential forms. The simplest version of the model which includes only zero and one form gauge fields accommodated with the graded Lie algebra of $SU(2|1)$ supergroup leads Weinberg-Salam model. Thus the Weinberg-Salam model formulated by noncommutative geometry is a particular example of the present formulation.
Thermal and thermoelectric response from Keldysh formalism with application to gapped Dirac fermions
Institute of Scientific and Technical Information of China (English)
朱国宝; 杨慧敏; 杨声远
2015-01-01
Based on the Keldysh Green’s functions theory, we present a general formula of the thermal and thermoelectric transport. In the clean limit, our formula recovers the previous results obtained from the semiclassical transport theory. In our approach, we propose an appropriate energy current operator and electric current operator, and the unphysical divergence from the direct application of the Kubo formula is eliminated. As an application, we study the thermal and the thermoelectric Hall conductivities of a gapped Dirac fermion model in the presence of impurity scattering.
Liu, Qihang; Zunger, Alex
2017-04-01
We show that the previously predicted "cubic Dirac fermion," composed of six conventional Weyl fermions including three with left-handed and three with right-handed chirality, is realized in a specific, stable solid state system that has been made years ago, but was not appreciated as a "cubically dispersed Dirac semimetal" (CDSM). We identify the crystal symmetry constraints and find the space group P 63/m as one of the two that can support a CDSM, of which the characteristic band crossing has linear dispersion along the principle axis but cubic dispersion in the plane perpendicular to it. We then conduct a material search using density functional theory, identifying a group of quasi-one-dimensional molybdenum monochalcogenide compounds AI(MoXVI)3 (AI=Na , K, Rb, In, Tl; XVI=S , Se, Te) as ideal CDSM candidates. Studying the stability of the A (MoX) 3 family reveals a few candidates such as Rb (MoTe) 3 and Tl (MoTe) 3 that are predicted to be resilient to Peierls distortion, thus retaining the metallic character. Furthermore, the combination of one dimensionality and metallic nature in this family provides a platform for unusual optical signature—polarization-dependent metallic vs insulating response.
Systematic control of surface Dirac fermion density on topological insulator Bi2Te3
Xu, Suyang; Xia, Yuqi; Grauer, David; Hor, Yewsan; Cava, Robert; Hasan, Zahid
2010-03-01
Three dimensional (3D) topological insulators are quantum materials with a spin-orbit induced bulk insulating gap that exhibit quantum-Hall-like phenomena in the absence of applied magnetic fields. They feature surface states that are topologically protected against scattering by time reversal symmetry. The proposed applications of topological insulators in device geometries rely on the ability to tune the chemical potential on their surfaces in the vicinity of the Dirac node. Here, we demonstrate a suite of surface control methods based on a combination of photo-doping and molecular-doping to tune the Dirac fermion density on the topological (111) surface of Bi2Te3. Their efficacy is demonstrated via direct electronic structure measurements using high resolution angle-resolved photoemission spectroscopy. These results open up new opportunities for probing topological behavior of Dirac electrons in Bi2Te3. At least one of the methods demonstrated here can be successfully applied to other topological insulators (Bi1-xSbx, Sb2Te3 and Bi2Se3). More importantly, our methods of topological surface state manipulation demonstrated here are highly suitable for future spectroscopic studies of topological phenomena which will complement the transport results gained from the traditional electrical gating techniques.
Studies of Dirac and Weyl fermions by angle resolved photoemission spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Huang, Lunan [Iowa State Univ., Ames, IA (United States)
2016-01-01
This dissertation consists of three parts. First, we study magnetic domains in Nd_{2}Fe_{14}B single crystals using high resolution magnetic force microscopy (MFM). In addition to the elongated, wavy nano-domains reported by a previous MFM study, we found that the micrometer size, star-shaped fractal pattern is constructed of an elongated network of nano-domains about 20 nm in width, with resolution-limited domain walls thinner than 2 nm. Second, we studied extra Dirac cones of multilayer graphene on SiC surface by ARPES and SPA-LEED. We discovered extra Dirac cones on Fermi surface due to SiC 6 x 6 and graphene 6√ 3 6√ 3 coincidence lattice on both single-layer and three-layer graphene sheets. We interpreted the position and intensity of the Dirac cone replicas, based on the scattering vectors from LEED patterns. We found the positions of replica Dirac cones are determined mostly by the 6 6 SiC superlattice even graphene layers grown thicker. Finally, we studied the electronic structure of MoTe_{2} by ARPES and experimentally con rmed the prediction of type II Weyl state in this material. By combining the result of Density Functional Theory calculations and Berry curvature calculations with out experimental data, we identi ed Fermi arcs, track states and Weyl points, all features predicted to exist in a type II Weyl semimetal. This material is an excellent playground for studies of exotic Fermions.
Inhomogeneous disorder Dirac Fermions: from heavy fermion superconductors to graphene. Final report
Energy Technology Data Exchange (ETDEWEB)
Vekhter, Ilya [Louisiana State University
2013-08-11
This is the final report on the award designed to foster a partnership between Louisiana State University and Los Alamos National Laboratory (LANL) in conducting fundamental research in support of energy needs. The general focus of the research effort was on developing a better understanding of materials with new functionalities. We investigated two distinct and very promising classes of new materials, which serve as a testing ground for many of the novel phenomena in condensed matter physics: the heavy fermion 115 series, where the interplay of strong interactions between the electrons leads to a rich variety of competing phases and anomalous properties, and newly discovered pnictide superconductors. The former focus was planned; the latter emerged during the collaborative effort with LANL. Our objective was to determine the origin, and to establish a functional effective theory description of the phases in these systems, and transitions between them. We report on the main accomplishments under the award that serves to clarify the nature of superconductivity in both families of materials. In particular, we collaborated with experimentalists to predict and analyze the magnetic field and temperature dependence of the bulk thermodynamic and transport properties and to determine the gap shape in CeCoIn₅ and in Ba(Fe_{1-x}Co_{x})₂As₂, investigated the Kondo temperature in the presence of spin-orbit coupling in the conduction band, and provided theoretical guidance for local probes such as scanning tunneling spectroscopy of vortex cores and impurity resonances, and magnetic force microscopy of the superconducting states.
Eshghi, M.; Mehraban, H.; Azar, I. Ahmadi
2017-10-01
In this research, firstly, by using the new form of Dirac-Weyl equation and the series method with submitting more suitable details, the energy spectrum and wave functions of the massless Dirac fermions are calculated under the inhomogeneous and q-deformed spatially magnetic fields. Although, we discussed about the results of the energy levels, further, we obtained the wave function as the Hessenberg determinant with calculating the elements of it as exact. On the other hand, by using the Mellin-Barnes integral representation and Hurwitz zeta function, we have achieved the thermodynamic physical quantities of the Dirac-Weyl fermions in the absence of a magnetic field for inside of the graphene quantum dot. Finally, our numerical results for the wave functions and probability densities are presented too.
Hu, Jin; Tang, Zhijie; Liu, Jinyu; Zhu, Yanglin; Wei, Jiang; Mao, Zhiqiang
2017-07-01
Topological semimetals represent a new class of quantum materials hosting Dirac/Weyl fermions. The essential properties of topological fermions can be revealed by quantum oscillations. Here we present systematic de Haas-van Alphen (dHvA) oscillation studies on the recently discovered topological Dirac nodal-line semimetal ZrSiS. From the angular dependence of dHvA oscillations, we have revealed the anisotropic Dirac bands in ZrSiS and found surprisingly strong Zeeman splitting at low magnetic fields. The Landé g factor estimated from the separation of Zeeman splitting peaks is as large as 38. From the analyses of dHvA oscillations, we also revealed nearly zero effective mass and exceptionally high quantum mobility for Dirac fermions in ZrSiS. These results shed light on the nature of novel Dirac fermion physics of ZrSiS.
Bakke, K.; Belich, H.
2014-07-01
We study the effects of the Lorentz symmetry violation in the nonrelativistic quantum dynamics of a spin-1/2 neutral particle interacting with external fields confined to a two-dimensional quantum ring (W.-C. Tan, J.C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996)). We show a possible scenario for the Lorentz symmetry breaking that permits us to make an analogy with the Landau-Aharonov-Casher system (M. Ericsson, E. Sjöqvist, Phys. Rev. A 65, 013607 (2001)), where a change in the angular frequency characteristic of the confinement of a quantum particle to a two-dimensional ring is obtained. Then, we show that an upper bound for the Lorentz symmetry breaking parameters may be set up. Besides, we analyse another possible scenario of the Lorentz symmetry violation by showing the presence of an analogue of the Coulomb potential. We obtain the bound states solutions to the Schrödinger-Pauli equation and discuss a quantum effect characterized by the dependence of the angular frequency on the quantum numbers of the system.
Temperature-driven single-valley Dirac fermions in HgTe quantum wells
Marcinkiewicz, M.; Ruffenach, S.; Krishtopenko, S. S.; Kadykov, A. M.; Consejo, C.; But, D. B.; Desrat, W.; Knap, W.; Torres, J.; Ikonnikov, A. V.; Spirin, K. E.; Morozov, S. V.; Gavrilenko, V. I.; Mikhailov, N. N.; Dvoretskii, S. A.; Teppe, F.
2017-07-01
We report on the temperature-dependent magnetospectroscopy of two HgTe/CdHgTe quantum wells below and above the critical well thickness dc. Our results, obtained in magnetic fields up to 16 T and s temperature range from 2 to 150 K, clearly indicate a change in the band-gap energy with temperature. A quantum well wider than dc evidences a temperature-driven transition from topological insulator to semiconductor phases. At a critical temperature of 90 K, the merging of inter- and intraband transitions in weak magnetic fields clearly specifies the formation of a gapless state, revealing the appearance of single-valley massless Dirac fermions with a velocity of 5.6 ×105m s-1 . For both quantum wells, the energies extracted from the experimental data are in good agreement with calculations on the basis of the eight-band Kane Hamiltonian with temperature-dependent parameters.
Enhanced Mobility of Spin-Helical Dirac Fermions in Disordered 3D Topological Insulators
Dufouleur, Joseph; Veyrat, Louis; Dassonneville, Bastien; Nowka, Christian; Hampel, Silke; Leksin, Pavel; Eichler, Barbara; Schmidt, Oliver G.; Büchner, Bernd; Giraud, Romain
2016-11-01
The transport length $l_\\textrm{tr}$ and the mean free path $l_\\textrm{e}$ are experimentally determined for bulk and surface states in a Bi$_2$Se$_3$ nanoribbon by quantum transport and transconductance measurements. We show that the anisotropic scattering of spin-helical Dirac fermions results in a strong enhancement of $l_\\textrm{tr}$, which confirms theoretical predictions \\cite{Culcer2010}. Despite strong disorder ($l_\\textrm{e}\\approx30$~nm), our result further points to the long-range nature of the scattering potential, giving a large ratio $l_\\textrm{tr}/l_\\textrm{e}\\approx8$ that is likely limited by a finite bulk/surface coupling. This suggests that the spin-flip length could reach the micron size in disordered 3D topological insulator nanostructures with a reduced bulk doping, even if due to charge compensation.
Localization properties of random-mass Dirac fermions from real-space renormalization group.
Mkhitaryan, V V; Raikh, M E
2011-06-24
Localization properties of random-mass Dirac fermions for a realization of mass disorder, commonly referred to as the Cho-Fisher model, are studied on the D-class chiral network. We show that a simple renormalization group (RG) description captures accurately a rich phase diagram: thermal metal and two insulators with quantized σ(xy), as well as transitions (including critical exponents) between them. Our main finding is that, even with small transmission of nodes, the RG block exhibits a sizable portion of perfect resonances. Delocalization occurs by proliferation of these resonances to larger scales. Evolution of the thermal conductance distribution towards a metallic fixed point is synchronized with evolution of signs of transmission coefficients, so that delocalization is accompanied with sign percolation.
Magnetic Dirac fermions and Chern insulator supported on pristine silicon surface
Fu, Huixia; Liu, Zheng; Lian, Chao; Zhang, Jin; Li, Hui; Sun, Jia-Tao; Meng, Sheng
2016-07-01
Emergence of ferromagnetism in nonmagnetic semiconductors is strongly desirable, especially in topological materials because of the possibility of achieving the quantum anomalous Hall effect. Based on first-principles calculations, we propose that for Si thin film grown on metal substrate, the pristine Si(111)-√{3 }×√{3 } surface with a spontaneous weak reconstruction has a strong tendency toward ferromagnetism and nontrivial topological properties, characterized by spin-polarized Dirac-fermion surface states. In contrast to conventional routes relying on introduction of alien charge carriers or specially patterned substrates, the spontaneous magnetic order and spin-orbit coupling on the pristine silicon surface together give rise to the quantized anomalous Hall effect with a finite Chern number C =-1 . This work suggests opportunities in silicon-based spintronics and quantum computing free from alien dopants or proximity effects.
Habe, Tetsuro
2017-08-01
We theoretically study the spin and charge currents induced by a spin-motive force in a two-dimensional Dirac semimetal protected by nonsymmorphic symmetries. Glide mirror plane symmetry, a nonsymmorphic symmetry, leads to a constraint to the induced current; the spin-motive force acting on out-of-plane spin (in-plane spin) induces the pure spin (charge) current. We calculate the response function to the spin-motive force in linear-response theory and find that the conductivity for the pure spin current remains nonzero even if the Fermi energy is crossing the node of linear dispersion. We also find that the conserved spin current is induced at the charge neutral point.
Scanning Tunnelling Spectroscopic Studies of Dirac Fermions in Graphene and Topological Insulators
Directory of Open Access Journals (Sweden)
wang K.-L.
2012-03-01
Full Text Available We report novel properties derived from scanning tunnelling spectroscopic (STS studies of Dirac fermions in graphene and the surface state (SS of a strong topological insulator (STI, Bi2Se3. For mono-layer graphene grown on Cu by chemical vapour deposition (CVD, strain-induced scalar and gauge potentials are manifested by the charging effects and the tunnelling conductance peaks at quantized energies, respectively. Additionally, spontaneous time-reversal symmetry breaking is evidenced by the alternating anti-localization and localization spectra associated with the zero-mode of two sublattices while global time-reversal symmetry is preserved under the presence of pseudo-magnetic fields. For Bi2Se3 epitaxial films grown on Si(111 by molecular beam epitaxy (MBE, spatially localized unitary impurity resonances with sensitive dependence on the energy difference between the Fermi level and the Dirac point are observed for samples thicker than 6 quintuple layers (QL. These findings are characteristic of the SS of a STI and are direct manifestation of strong topological protection against impurities. For samples thinner than 6-QL, STS studies reveal the openup of an energy gap in the SS due to overlaps of wave functions between the surface and interface layers. Additionally, spin-preserving quasiparticle interference wave-vectors are observed, which are consistent with the Rashba-like spin-orbit splitting.
Dirac fermions at high-index surfaces of bismuth chalcogenide topological insulator nanostructures
Virk, Naunidh; Yazyev, Oleg V.
2016-01-01
Binary bismuth chalcogenides Bi2Se3, Bi2Te3, and related materials are currently being extensively investigated as the reference topological insulators (TIs) due to their simple surface-state band dispersion (single Dirac cone) and relatively large bulk band gaps. Nanostructures of TIs are of particular interest as an increased surface-to-volume ratio enhances the contribution of surfaces states, meaning they are promising candidates for potential device applications. So far, the vast majority of research efforts have focused on the low-energy (0001) surfaces, which correspond to natural cleavage planes in these layered materials. However, the surfaces of low-dimensional nanostructures (nanoplatelets, nanowires, nanoribbons) inevitably involve higher-index facets. We perform a systematic ab initio investigation of the surfaces of bismuth chalcogenide TI nanostructures characterized by different crystallographic orientations, atomic structures and stoichiometric compositions. We find several stable terminations of high-index surfaces, which can be realized at different values of the chemical potential of one of the constituent elements. For the uniquely defined stoichiometric termination, the topological Dirac fermion states are shown to be strongly anisotropic with a clear dependence of Fermi velocities and spin polarization on the surface orientation. Self-doping effects and the presence of topologically trivial mid-gap states are found to characterize the non-stoichiometric surfaces. The results of our study pave the way towards experimental control of topologically protected surface states in bismuth chalcogenide nanostructures. PMID:26847409
Dirac fermions at high-index surfaces of bismuth chalcogenide topological insulator nanostructures
Virk, Naunidh; Yazyev, Oleg V.
2016-02-01
Binary bismuth chalcogenides Bi2Se3, Bi2Te3, and related materials are currently being extensively investigated as the reference topological insulators (TIs) due to their simple surface-state band dispersion (single Dirac cone) and relatively large bulk band gaps. Nanostructures of TIs are of particular interest as an increased surface-to-volume ratio enhances the contribution of surfaces states, meaning they are promising candidates for potential device applications. So far, the vast majority of research efforts have focused on the low-energy (0001) surfaces, which correspond to natural cleavage planes in these layered materials. However, the surfaces of low-dimensional nanostructures (nanoplatelets, nanowires, nanoribbons) inevitably involve higher-index facets. We perform a systematic ab initio investigation of the surfaces of bismuth chalcogenide TI nanostructures characterized by different crystallographic orientations, atomic structures and stoichiometric compositions. We find several stable terminations of high-index surfaces, which can be realized at different values of the chemical potential of one of the constituent elements. For the uniquely defined stoichiometric termination, the topological Dirac fermion states are shown to be strongly anisotropic with a clear dependence of Fermi velocities and spin polarization on the surface orientation. Self-doping effects and the presence of topologically trivial mid-gap states are found to characterize the non-stoichiometric surfaces. The results of our study pave the way towards experimental control of topologically protected surface states in bismuth chalcogenide nanostructures.
Disorder-driven itinerant quantum criticality of three-dimensional massless Dirac fermions
Pixley, J. H.; Goswami, Pallab; Das Sarma, S.
2016-02-01
Progress in the understanding of quantum critical properties of itinerant electrons has been hindered by the lack of effective models which are amenable to controlled analytical and numerically exact calculations. Here we establish that the disorder-driven semimetal to metal quantum phase transition of three-dimensional massless Dirac fermions could serve as a paradigmatic toy model for studying itinerant quantum criticality, which is solved in this work by exact numerical and approximate field-theoretic calculations. As a result, we establish the robust existence of a non-Gaussian universality class, and also construct the relevant low-energy effective field theory that could guide the understanding of quantum critical scaling for many strange metals. Using the kernel polynomial method (KPM), we provide numerical results for the calculated dynamical exponent (z ) and correlation length exponent (ν ) for the disorder-driven semimetal (SM) to diffusive metal (DM) quantum phase transition at the Dirac point for several types of disorder, establishing its universal nature and obtaining the numerical scaling functions in agreement with our field-theoretical analysis.
Point-particle effective field theory III: relativistic fermions and the Dirac equation
Burgess, C. P.; Hayman, Peter; Rummel, Markus; Zalavári, László
2017-09-01
We formulate point-particle effective field theory (PPEFT) for relativistic spin-half fermions interacting with a massive, charged finite-sized source using a first-quantized effective field theory for the heavy compact object and a second-quantized language for the lighter fermion with which it interacts. This description shows how to determine the near-source boundary condition for the Dirac field in terms of the relevant physical properties of the source, and reduces to the standard choices in the limit of a point source. Using a first-quantized effective description is appropriate when the compact object is sufficiently heavy, and is simpler than (though equivalent to) the effective theory that treats the compact source in a second-quantized way. As an application we use the PPEFT to parameterize the leading energy shift for the bound energy levels due to finite-sized source effects in a model-independent way, allowing these effects to be fit in precision measurements. Besides capturing finite-source-size effects, the PPEFT treatment also efficiently captures how other short-distance source interactions can shift bound-state energy levels, such as due to vacuum polarization (through the Uehling potential) or strong interactions for Coulomb bound states of hadrons, or any hypothetical new short-range forces sourced by nuclei.
Dirac-fermionic dark matter in U(1){sub X} models
Energy Technology Data Exchange (ETDEWEB)
Alves, Alexandre [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo,Diadema, São Paulo, 09972-270 (Brazil); Berlin, Asher [Enrico Fermi Institute, University of Chicago,Chicago, Illinois, 60637 (United States); Kavli Institute for Cosmological Physics, University of Chicago,Chicago, Illinois, 60637 (United States); Profumo, Stefano [Department of Physics and Santa Cruz Institute for Particle Physics, University of California,Santa Cruz, California, 95064 (United States); Queiroz, Farinaldo S. [Department of Physics and Santa Cruz Institute for Particle Physics, University of California,Santa Cruz, California, 95064 (United States); Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A & M University,College Station, Texas, 77843-4242 (United States); Max-Planck-Institut für Kernphysik,Saupfercheckweg 1, Heidelberg, 69117 (Germany)
2015-10-12
We study a number of U(1){sub X} models featuring a Dirac fermion dark matter particle. We perform a comprehensive analysis which includes the study of corrections to the muon magnetic moment, dilepton searches with LHC data, as well as direct and indirect dark matter detection constraints. We consider four different coupling structures, namely U(1){sub B−L},U(1){sub d−u},U(1){sub universal}, and U(1){sub 10+5̄}, all motivated by compelling extensions to the standard model. We outline the viable and excluded regions of parameter space using a large set of probes. Our key findings are that (i) the combination of direct detection and collider constraints rule out dark matter particle masses lighter than ∼1 TeV, unless rather suppressed Z{sup ′}-fermion couplings exist, and that (ii) for several of the models under consideration, collider constraints rule out Z{sup ′} masses up to ∼3 TeV. Lastly, we show that we can accommodate the recent Diboson excess reported by ATLAS collaboration within the U(1){sub d−u} model.
Fermions as generalized Ising models
Wetterich, C.
2017-04-01
We establish a general map between Grassmann functionals for fermions and probability or weight distributions for Ising spins. The equivalence between the two formulations is based on identical transfer matrices and expectation values of products of observables. The map preserves locality properties and can be realized for arbitrary dimensions. We present a simple example where a quantum field theory for free massless Dirac fermions in two-dimensional Minkowski space is represented by an asymmetric Ising model on a euclidean square lattice.
Xu, Yang; Miotkowski, Ireneusz; Chen, Yong P
2016-05-04
Topological insulators are a novel class of quantum matter with a gapped insulating bulk, yet gapless spin-helical Dirac fermion conducting surface states. Here, we report local and non-local electrical and magneto transport measurements in dual-gated BiSbTeSe2 thin film topological insulator devices, with conduction dominated by the spatially separated top and bottom surfaces, each hosting a single species of Dirac fermions with independent gate control over the carrier type and density. We observe many intriguing quantum transport phenomena in such a fully tunable two-species topological Dirac gas, including a zero-magnetic-field minimum conductivity close to twice the conductance quantum at the double Dirac point, a series of ambipolar two-component half-integer Dirac quantum Hall states and an electron-hole total filling factor zero state (with a zero-Hall plateau), exhibiting dissipationless (chiral) and dissipative (non-chiral) edge conduction, respectively. Such a system paves the way to explore rich physics, ranging from topological magnetoelectric effects to exciton condensation.
Optimizing the domain wall fermion Dirac operator using the R-Stream source-to-source compiler
Lin, Meifeng; Langston, M Harper; Meister, Benoit; Baskaran, Muthu; Izubuchi, Taku; Jung, Chulwoo
2015-01-01
The application of the Dirac operator on a spinor field, the Dslash operation, is the most computation-intensive part of the lattice QCD simulations. It is often the key kernel to optimize to achieve maximum performance on various platforms. Here we report on a project to optimize the domain wall fermion Dirac operator in Columbia Physics System (CPS) using the R-Stream source-to-source compiler. Our initial target platform is the Intel PC clusters. We discuss the optimization strategies involved before and after the automatic code generation with R-Stream and present some preliminary benchmark results.
Sochichiu, Corneliu
2011-01-01
We study the emergence of Dirac fermionic field in the low energy description of non-relativistic dynamical network models. The Dirac fermionic field appears as the effective field describing the excitations above point-like Fermi levels. Together with the Dirac fermionic field an effective space-time metric is also emerging. We analyze the conditions for such Fermi points to appear in general, paying special attention to the case of two and three spacial dimensions.
Lu, Hai-Zhou; Shen, Shun-Qing
2016-11-01
Weak localization and antilocalization are quantum transport phenomena that arise from the quantum interference in disordered metals. At low temperatures, they can give distinct temperature and magnetic field dependences in conductivity, allowing the symmetry of the system to be explored. In the past few years, they have also been observed in newly emergent topological materials, including topological insulators and topological semimetals. In contrast from the conventional electrons, in these new materials the quasiparticles are described as Dirac or Weyl fermions. In this article, we review our recent efforts on the theories of weak antilocalization and interaction-induced localization for Dirac and Weyl fermions in topological insulators and topological semimetals. Project supported by the National Key R & D Program, China (Grant No. 2016YFA0301700), the Research Grant Council, University Grants Committee, Hong Kong, China (Grant No. 17303714), the National Natural Science Foundation of China (Grant No. 11574127), and the National Thousand-Young-Talents Program of China.
Zhou, Zhenyu; Zhao, Erhai; Liu, W Vincent
2015-03-13
Mott insulators with both spin and orbital degeneracy are pertinent to a large number of transition metal oxides. The intertwined spin and orbital fluctuations can lead to rather exotic phases such as quantum spin-orbital liquids. Here, we consider two-component (spin 1/2) fermionic atoms with strong repulsive interactions on the p band of the optical square lattice. We derive the spin-orbital exchange for quarter filling of the p band when the density fluctuations are suppressed, and show that it frustrates the development of long-range spin order. Exact diagonalization indicates a spin-disordered ground state with ferro-orbital order. The system dynamically decouples into individual Heisenberg spin chains, each realizing a Luttinger liquid accessible at higher temperatures compared to atoms confined to the s band.
6d Dirac fermion on a rectangle; scrutinizing boundary conditions, mode functions and spectrum
Fujimoto, Yukihiro; Nishiwaki, Kenji; Sakamoto, Makoto; Tatsumi, Kentaro
2016-01-01
We classify possible boundary conditions of a 6d Dirac fermion $\\Psi$ on a rectangle under the requirement that the 4d Lorentz structure is maintained, and derive the profiles and spectrum of the zero modes and nonzero KK modes under the two specific boundary conditions, (i) 4d-chirality positive components being zero at the boundaries and (ii) 2d-chirality positive components being zero at the boundaries. In the case of (i), twofold degenerated chiral zero modes appear which are localized towards specific directions of the rectangle pointed by an angle parameter $\\theta$. This leads to an implication for a new direction of pursuing the origin of three generations in the matter fields of the standard model, even though triple-degenerated zero modes are not realized in the six dimensions. The emergence of the angle parameter $\\theta$ originates from a rotational symmetry in the degenerated chiral zero modes on the rectangle extra dimensions since they do not feel the boundaries. In the case of (ii), this rotat...
Transport of Dirac fermions on the surface of strong topological insulator and graphene
Energy Technology Data Exchange (ETDEWEB)
Kundu, Arijit
2012-06-14
In this dissertation I study electronic transport through Dirac Fermions on the surface of strong topological insulator and graphene. I start by reviewing the physics of topological insulator and graphene and the low energy effective theory for the electronic states of the surface of a 3D strong topological insulator and graphene. Using this theory the electronic structure of the surface states of strong topological insulators of geometries with large surface to bulk ratio like nanowire and thin film are obtained. Then the energy spectrum and the spin-parity structure of the eigenstates for a finite size topological insulator quantum dot of the shape of a nanotube are considered. Numerical calculations show that even at the lowest energy scales, the ''spin-surface locking'' is broken, that is, the spin direction in a topologically protected surface mode is not locked to the surface. The calculations also show the existence of ''zero-momentum'' modes, and sub-gap states localized near the ''caps'' of the dot. Both the energy spectrum and the spin texture of the eigenstates are basically reproduced from an analytical surface Dirac fermion description. The results are compared to microscopic calculations using a tight-binding model for a strong topological insulator in a finite-length nanowire geometry, which shows qualitative similarity. Then, a theoretical study of electron-phonon scattering effects in thin films made of a strong topological insulator is presented. Phonons are modeled by isotropic elastic continuum theory with stress-free boundary conditions, and the interaction with the helical surface Dirac fermions is mediated by the deformation potential. The temperature-dependent electrical resistivity ρ(T) and the quasi-particle decay rate Γ(T) observable in photo-emission are computed numerically. The low and high-temperature power laws for both quantities are obtained analytically. Detailed
Universal corner entanglement of Dirac fermions and gapless bosons from the continuum to the lattice
Helmes, Johannes; Chandran, Anushya; Witczak-Krempa, William; Melko, Roger G
2016-01-01
A quantum critical (QC) fluid exhibits universal subleading corrections to the area law of its entanglement entropies. In two dimensions when the partition involves a corner of angle $\\theta$, the subleading term is logarithmic with coefficient $a_\\alpha(\\theta)$ for the $\\alpha$-R\\'enyi entropy. In the smooth limit $\\theta\\!\\to\\!\\pi$, $a_1(\\theta)$ yields the central charge of the stress tensor when the QC point is described by a conformal field theory (CFT). For general R\\'enyi indices and angles, $a_\\alpha(\\theta)$ is richer and few general results exist. We study $a_\\alpha(\\theta)$ focusing on two benchmark CFTs, the free Dirac fermion and boson. We perform numerical lattice calculations to obtain high precision results in $\\theta,\\alpha$ regimes hitherto unexplored. We derive field theory estimates for $a_\\alpha(\\theta)$, including new exact results, and demonstrate an excellent quantitative match with our numerical calculations. We also develop and test strong lower bounds, which apply to both free and ...
Universal corner entanglement of Dirac fermions and gapless bosons from the continuum to the lattice
Helmes, Johannes; Hayward Sierens, Lauren E.; Chandran, Anushya; Witczak-Krempa, William; Melko, Roger G.
2016-09-01
A quantum critical (QC) fluid exhibits universal subleading corrections to the area law of its entanglement entropies. In two dimensions, when the partition involves a corner of angle θ , the subleading term is logarithmic with coefficient aα(θ ) for the α -Rényi entropy. In the smooth limit θ →π ,a1(θ ) yields the central charge of the stress tensor when the QC point is described by a conformal field theory (CFT). For general Rényi indices and angles, aα(θ ) is richer and few general results exist. We study aα(θ ) focusing on two benchmark CFTs, the free Dirac fermion and boson. We perform numerical lattice calculations to obtain high precision results in θ ,α regimes hitherto unexplored. We derive field theory estimates for aα(θ ) , including exact results, and demonstrate an excellent quantitative match with our numerical calculations. We also develop and test strong lower bounds, which apply to both free and interacting QC systems. Finally, we comment on the near collapse of aα(θ ) for various theories, including interacting O (N ) models.
The QCD chiral transition, $\\ua$ symmetry and the Dirac spectrum using domain wall fermions
Buchoff, Michael I; Christ, Norman H; Ding, H -T; Jung, Chulwoo; Karsch, F; Mawhinney, R D; Mukherjee, Swagato; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Vranas, P M; Yin, Hantao; Lin, Zhongjie
2013-01-01
We report on a study of the finite-temperature QCD transition region for temperatures between 139 and 196 MeV, with a pion mass of 200 MeV and two space-time volumes: $24^3\\times8$ and $32^3\\times8$, where the larger volume varies in linear size between 5.6 fm (at T=139 MeV) and 4.0 fm (at T=195 MeV). These results are compared with the results of an earlier calculation using the same action and quark masses but a smaller, $16^3\\times8$ volume. The chiral domain wall fermion formulation with a combined Iwasaki and dislocation suppressing determinant ratio gauge action are used. This lattice action accurately reproduces the $\\sua$ and $\\ua$ symmetries of the continuum. Results are reported for the chiral condensates, connected and disconnected susceptibilities and the Dirac eigenvalue spectrum. We find a pseudo-critical temperature, $T_c$, of approximately 165 MeV consistent with previous results and strong finite volume dependence below $T_c$. Clear evidence is seen for $\\ua$ symmetry breaking above $T_c$ whi...
Dirac Electrons in Two-Dimensional Hexagonal Crystalline Materials%二维六角晶体材料中的Dirac电子
Institute of Scientific and Technical Information of China (English)
翟学超; 戚凤华; 许亚芳; 周兴飞; 金国钧
2015-01-01
本文综述由碳、硅、硼氮和二硫化钼等单元素或双元素构成的二维六角晶体材料中Dirac电子的研究成果与最新进展。文章从引言开始，接着介绍这些二维六角晶体材料的空间结构和基本电子性质；然后探讨外场调控下这些材料在能谱和光吸收、量子输运、激子凝聚和热Josephson效应，以及拓扑量子相变等方面所表现出来的新奇的物理现象、简要的理论处理和可能的应用前景；最后给出二维六角晶体材料相关研究的总结和展望。谨以本文献给南京大学建立物理学科100周年。%We review here the research results and latest progress in studying Dirac electrons in two-dimensional hexagonal crystalline materials composed of single element or double elements like carbon, silicon, boron nitride and molybdenum disulfide. Following a short introduction, the pa-per discusses the spatial structures and elementary electronic properties of the two-dimensional hexagonal crystalline materials, and analyzes the novel physical phenomena, provides simple the-oretical treatments and shows possible applications in near future, involved in the energy spectra and optical absorption, quantum transport, exciton condensation and thermal Josephson effect, as well as topological quantum phase transitions under external fields;finally it gives a summary and perspective for the field. We would like to present this paper to the 100 anniversary of physical discipline in Nanjing University.
Lu, Wei; Ge, Shaofeng; Liu, Xuefeng; Lu, Hong; Li, Caizhen; Lai, Jiawei; Zhao, Chuan; Liao, Zhimin; Jia, Shuang; Sun, Dong
2017-01-01
Three-dimensional (3D) Dirac semimetals that can be seen as 3D analogues of graphene have attracted enormous interest in research recently. In order to apply these ultra-high-mobility materials in future electronic/optoelectronic devices, it is crucial to understand the relaxation dynamics of photoexcited carriers and their coupling with lattice. In this paper, we report ultrafast transient reflection measurements of the photoexcited carrier dynamics in cadmium arsenide (C d3A s2 ), which is one of the most stable Dirac semimetals that have been confirmed experimentally. By using the low-energy probe photon of 0.3 eV, we probed the dynamics of the photoexcited carriers that are Dirac-Fermi-like approaching the Dirac point. We systematically studied the transient reflection on bulk and nanoplate samples that have different doping intensities by tuning the probe wavelength, pump power, and lattice temperature and find that the dynamical evolution of carrier distributions can be retrieved qualitatively by using a two-temperature model. This result is very similar to that of graphene, but the carrier cooling through the optical phonon couplings is slower and lasts over larger electron temperature range because the optical phonon energies in C d3A s2 are much lower than those in graphene.
New Chiral Fermions, a New Gauge Interaction, Dirac Neutrinos, and Dark Matter
de Gouvea, André
2015-01-01
We propose that all light fermionic degrees of freedom, including the Standard Model (SM) fermions and all possible light beyond-the-standard-model fields, are chiral with respect to some spontaneously broken abelian gauge symmetry. Hypercharge, for example, plays this role for the SM fermions. We introduce a new symmetry, $U(1)_{\
Twisted Superspace for N=D=2 Super BF and Yang-Mills with Dirac-K\\"ahler Fermion Mechanism
Kato, J; Uchida, Y; Kato, Junji; Kawamoto, Noboru; Uchida, Yukiya
2003-01-01
We propose a twisted D=N=2 superspace formalism. The relation between the twisted super charges including the BRST charge, vector and pseudo scalar super charges and the N=2 spinor super charges is established. We claim that this relation is essentially related with the Dirac-K\\"ahler fermion mechanism. We show that a fermionic bilinear form of twisted N=2 chiral and anti-chiral superfields is equivalent to the quantized version of BF theory with the Landau type gauge fixing while a bosonic bilinear form leads to the N=2 Wess-Zumino action. We then construct a Yang-Mills action described by the twisted N=2 chiral and vector superfields, and show that the action is equivalent to the twisted version of the D=N=2 super Yang-Mills action, previously obtained from the quantized generalized topological Yang-Mills action with instanton gauge fixing.
Terahertz-induced acceleration of massive Dirac electrons in semimetal bismuth.
Minami, Yasuo; Araki, Kotaro; Dao, Thang Duy; Nagao, Tadaaki; Kitajima, Masahiro; Takeda, Jun; Katayama, Ikufumi
2015-11-02
Dirac-like electrons in solid state have been of great interest since they exhibit many peculiar physical behaviors analogous to relativistic mechanics. Among them, carriers in graphene and surface states of topological insulators are known to behave as massless Dirac fermions with a conical band structure in the two-dimensional momentum space, whereas electrons in semimetal bismuth (Bi) are expected to behave as massive Dirac-like fermions in the three-dimensional momentum space, whose dynamics is of particular interest in comparison with that of the massless Dirac fermions. Here, we demonstrate that an intense terahertz electric field transient accelerates the massive Dirac-like fermions in Bi from classical Newtonian to the relativistic regime; the electrons are accelerated approaching the effective "speed of light" with the "relativistic" beta β = 0.89 along the asymptotic linear band structure. As a result, the effective electron mass is enhanced by a factor of 2.4.
NLO+NLL Collider Bounds, Dirac Fermion and Scalar Dark Matter in the B-L Model
Klasen, Michael; Queiroz, Farinaldo S
2016-01-01
Baryon and lepton numbers being accidental global symmetries of the Standard Model (SM), it is natural to promote them to local symmetries. However, to preserve anomaly freedom, only combinations of B-L are viable. In this spirit, we investigate possible dark matter realizations in the context of the $U(1)_{B-L}$ model: (i) Dirac fermion with unbroken B-L; (ii) Dirac fermion with broken B-L; (iii) scalar dark matter; (iv) two component dark matter. We compute the relic abundance, direct and indirect detection observables and confront them with recent results from Planck, LUX-2016, and Fermi-LAT and prospects from XENON1T. In addition to the well known LEP bound $M_{Z^{\\prime}}/g_{BL} \\gtrsim 7$ TeV, we include often ignored LHC bounds using 13 TeV dilepton (dimuon+dielectron) data at next-to-leading order plus next-to-leading logarithmic accuracy. We show that, for gauge couplings smaller than $0.4$, the LHC gives rise to the strongest collider limit. In particular, we find $M_{Z^{\\prime}}/g_{BL} > 8.7$ TeV f...
Wang, Chong; Cooper, Nigel R.; Halperin, Bertrand I.; Stern, Ady
2017-07-01
It is well known that there is a particle-hole symmetry for spin-polarized electrons with two-body interactions in a partially filled Landau level, which becomes exact in the limit where the cyclotron energy is large compared to the interaction strength; thus, one can ignore mixing between Landau levels. This symmetry is explicit in the description of a half-filled Landau level recently introduced by Son, using Dirac fermions, but it was thought to be absent in the older fermion-Chern-Simons approach, developed by Halperin, Lee, and Read (HLR) and subsequent authors. We show here, however, that when properly evaluated, the HLR theory gives results for long-wavelength low-energy physical properties—including the Hall conductance in the presence of impurities and the positions of minima in the magnetoroton spectra for fractional quantized Hall states close to half-filling—that are identical to predictions of the Dirac formulation. In fact, the HLR theory predicts an emergent particle-hole symmetry near half-filling, even when the cyclotron energy is finite.
One-loop renormalization of fermionic currents with the overlap-Dirac operator
Alexandrou, C; Panagopoulos, H; Vicari, E
2000-01-01
We compute the one-loop lattice renormalization of the two-quark operators$\\bar{\\psi} \\Gamma \\psi$, where $\\Gamma$ denotes the generic Dirac matrix, forthe lattice formulation of QCD using the overlap-Dirac operator. We also study the renormalization of quark bilinears which are more extendedand have better chiral properties. Finally, we present improved estimates of these renormalization constants,coming from cactus resummation and from mean field perturbation theory.
Fermion-induced quantum critical points.
Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong
2017-08-22
A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such type of Landau-forbidden quantum critical points are induced by gapless fermions, we call them fermion-induced quantum critical points. We further introduce a microscopic model of SU(N) fermions on the honeycomb lattice featuring a transition between Dirac semimetals and Kekule valence bond solids. Remarkably, our large-scale sign-problem-free Majorana quantum Monte Carlo simulations show convincing evidences of a fermion-induced quantum critical points for N = 2, 3, 4, 5 and 6, consistent with the renormalization group analysis. We finally discuss possible experimental realizations of the fermion-induced quantum critical points in graphene and graphene-like materials.Quantum phase transitions are governed by Landau-Ginzburg theory and the exceptions are rare. Here, Li et al. propose a type of Landau-forbidden quantum critical points induced by gapless fermions in two-dimensional Dirac semimetals.
Fermions as generalized Ising models
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-04-01
Full Text Available We establish a general map between Grassmann functionals for fermions and probability or weight distributions for Ising spins. The equivalence between the two formulations is based on identical transfer matrices and expectation values of products of observables. The map preserves locality properties and can be realized for arbitrary dimensions. We present a simple example where a quantum field theory for free massless Dirac fermions in two-dimensional Minkowski space is represented by an asymmetric Ising model on a euclidean square lattice.
Arciniaga, Michael; Peterson, Michael R.
2016-07-01
We derive the single-particle eigenenergies and eigenfunctions for massless Dirac fermions confined to the surface of a sphere in the presence of a magnetic monopole, i.e., we solve the Landau level problem for electrons in graphene on the Haldane sphere. With the single-particle eigenfunctions and eigenenergies we calculate the Haldane pseudopotentials for the Coulomb interaction in the second Landau level and calculate the effective pseudopotentials characterizing an effective Landau level mixing Hamiltonian entirely in the spherical geometry to be used in theoretical studies of the fractional quantum Hall effect in graphene. Our treatment is analogous to the formalism in the planar geometry and reduces to the planar results in the thermodynamic limit.
NLO+NLL collider bounds, Dirac fermion and scalar dark matter in the B-L model
Energy Technology Data Exchange (ETDEWEB)
Klasen, Michael [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Theoretische Physik, Muenster (Germany); Lyonnet, Florian [Southern Methodist University, Dallas, TX (United States); Queiroz, Farinaldo S. [Max-Planck-Institut fuer Kernphysik, Particle and Astroparticle Physics Division, Heidelberg (Germany)
2017-05-15
Baryon and lepton numbers being accidental global symmetries of the Standard Model (SM), it is natural to promote them to local symmetries. However, to preserve anomaly-freedom, only combinations of B-L are viable. In this spirit, we investigate possible dark matter realizations in the context of the U(1){sub B-L} model: (i) Dirac fermion with unbroken B-L; (ii) Dirac fermion with broken B-L; (iii) scalar dark matter; (iv) two-component dark matter. We compute the relic abundance, direct and indirect detection observables and confront them with recent results from Planck, LUX-2016, and Fermi-LAT and prospects from XENON1T. In addition to the well-known LEP bound M{sub Z}{sup {sub '}}/g{sub BL} >or similar 7 TeV, we include often ignored LHC bounds using 13 TeV dilepton (dimuon + dielectron) data at next-to-leading order plus next-to-leading logarithmic accuracy. We show that, for gauge couplings smaller than 0.4, the LHC gives rise to the strongest collider limit. In particular, we find M{sub Z}{sup {sub '}}/g{sub BL} > 8.7 TeV for g{sub BL} = 0.3. We conclude that the NLO+NLL corrections improve the dilepton bounds on the Z{sup '} mass and that both dark matter candidates are only viable in the Z{sup '} resonance region, with the parameter space for scalar dark matter being fully probed by XENON1T. Lastly, we show that one can successfully have a minimal two-component dark matter model. (orig.)
石墨烯中Dirac费米子量子输运特性研究%Study on quantum transport properties of graphene Dirac fermions
Institute of Scientific and Technical Information of China (English)
杨军; 蒋开明; 武文远; 陈磊; 任星海
2013-01-01
We studied the graphene Dirac fermions barrier-dependence transport properties by using tight-bind-ing model method. Taking account of graphene Dirac fermions incident angle, incident energy and the barrier height or barrier thickness, we analyzed the graphene Dirac fermions transmission coefficient of the barrier. Theoretical analysis and numerical calculations show that the tunneling coefficient of Dirac fermions in graphene appears a clear oscillation effect with height and thickness of the square barrier varing, and the dependence of tunneling coefficient and incident angle confirms Klein effects. Dirac fermions barrier transmission rate vaies form 0 to 1 with certain parameters as Dirac fermions of the incident energy changes. The change of conductance appears good "conductance switching effect", and this effect will have a good application prospect on microelec-tronic devices.%利用紧束缚模型的方法研究了石墨烯中Dirac费米子的势垒相关输运特性,分析了石墨烯中Dirac费米子的势垒透射率与其入射角度、入射能量、势垒高度和势垒厚度等对应关系.通过理论分析和数值计算表明,石墨烯中Dirac费米子的隧穿系数随矩形势垒的高度和厚度的变化都呈现出明显的振荡效应,隧穿系数与入射角度依赖关系证实了Klein效应.在一定参数下,Dirac费米子的势垒透射率随Dirac费米子入射能量的变化经历从“0”～“1”的突变,显示良好的“电导开关效应”,该效应在微电子器件中将有很好的应用前景.
Stochastic calculation of the QCD Dirac operator spectrum with Mobius domain-wall fermion
Cossu, G; Hashimoto, S; Kaneko, T; Noaki, J
2016-01-01
We calculate the spectral function of the QCD Dirac operator using the four-dimensional effective operator constructed from the Mobius domain-wall implementation. We utilize the eigenvalue filtering technique combined with the stochastic estimate of the mode number. The spectrum in the entire eigenvalue range is obtained with a single set of measurements. Results on 2+1-flavor ensembles with Mobius domain-wall sea quarks at lattice spacing ~ 0.08 fm are shown.
First results for SU(2) Yang-Mills with one adjoint Dirac Fermion
Athenodorou, Andreas; Bergner, Georg; Lucini, Biagio; Patella, Agostino
2013-01-01
We present a first exploratory study of SU(2) gauge theory with one Dirac flavour in the adjoint representation. We provide initial results for the spectroscopy and the anomalous dimension for the chiral condensate. Our investigation indicates that the theory is conformal or near-conformal, with an anomalous dimension of order one. A discussion of the relevance of these findings in relation to walking technicolor scenarios is also presented.
Conformal QED in two-dimensional topological insulators
Menezes, N; Smith, C Morais
2016-01-01
It has been shown recently that local four-fermion interactions on the edges of two-dimensional time-reversal-invariant topological insulators give rise to a new non-Fermi-liquid phase, called helical Luttinger liquid (HLL). In this work, we provide a first-principle derivation of this non-Fermi-liquid phase based on the gauge-theory approach. Firstly, we derive a gauge theory for the edge states by simply assuming that the interactions between the Dirac fermions at the edge are mediated by a quantum dynamical electromagnetic field. Here, the massless Dirac fermions are confined to live on the one-dimensional boundary, while the (virtual) photons of the U(1) gauge field are free to propagate in all the three spatial dimensions that represent the physical space where the topological insulator is embedded. We then determine the effective 1+1-dimensional conformal field theory (CFT) given by the conformal quantum electrodynamics (CQED). By integrating out the gauge field in the corresponding partition function, ...
Minář, Jiří; Grémaud, Benoît
2015-04-01
In this paper we show that a Dirac Hamiltonian in a curved background spacetime can be interpreted, when discretized, as a tight-binding Hamiltonian with non-unitary tunneling amplitudes. We find the form of the non-unitary tunneling matrices in terms of the metric tensor. The main motivation behind this exercise is the feasibility of such Hamiltonians by means of laser-assisted tunnelings in cold atomic experiments. The mapping thus provides a physical interpretation of such Hamiltonians. We demonstrate the use of the mapping on the example of a time-dependent metric in 2+1 dimensions. Studying the spin dynamics, we find qualitative agreement with known theoretical predictions, namely particle pair creation in an expanding Universe.
Scars in Dirac fermion systems: the influence of an Aharonov-Bohm flux
Wang, Cheng-Zhen; Huang, Liang; Chang, Kai
2017-01-01
Time-reversal ({ T }-) symmetry is fundamental to many physical processes. Typically, { T }-breaking for microscopic processes requires the presence of magnetic field. However, for 2D massless Dirac billiards, { T }-symmetry is broken automatically by the mass confinement, leading to chiral quantum scars. In this paper, we investigate the mechanism of { T }-breaking by analyzing the local current of the scarring eigenstates and their magnetic response to an Aharonov-Bohm flux. Our results unveil the complete understanding of the subtle { T }-breaking phenomena from both the semiclassical formula of chiral scars and the microscopic current and spin reflection at the boundaries, leading to a controlling scheme to change the chirality of the relativistic quantum scars. Our findings not only have significant implications on the transport behavior and spin textures of the relativistic pseudoparticles, but also add basic knowledge to relativistic quantum chaos.
Dynamics of a Dirac fermion in the presence of spin noncommutativity
Energy Technology Data Exchange (ETDEWEB)
Ferrari, A.F., E-mail: alysson.ferrari@ufabc.edu.br [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Rua Santa Adelia, 166, 09210-170, Santo Andre, SP (Brazil); Gomes, M., E-mail: mgomes@fma.if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo, SP (Brazil); Kupriyanov, V.G., E-mail: vladislav.kupriyanov@gmail.com [Universidade Federal do ABC, Centro de Matematica, Computacao e Cognicao, Rua Santa Adelia, 166, 09210-170, Santo Andre, SP (Brazil); Stechhahn, C.A., E-mail: carlos@fma.if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo, SP (Brazil)
2013-01-29
In this work, we gain further insight in the physical aspects of the spin noncommutativity, which mix spacetime and spin degrees of freedom in a noncommutative scenario, in a Lorentz invariant way. Due to the combination of noncommutativity and Lorentz invariance, time also becomes nonlocal so the modified Dirac equation in general contains an infinite tower of time derivatives. Nevertheless, we prove the existence of a conserved probability current in any order in the noncommutativity parameter and for any background field A{sub {mu}}. Finally, we study the Landau problem in the presence of spin noncommutativity. In this case, we are able to derive a simple Hermitean noncommutative correction to the Hamiltonian operator. We show that the degeneracy of the excited states is lifted by the noncommutativity at the second order of perturbation theory. This is to be contrasted to the case of canonical noncommutativity, where these corrections are of the first order, imposing much stronger restrictions to the noncommutativity.
The doublet of Dirac fermions in the field of the non-Abelian monopole and parity selection rules
Redkov, V M
1998-01-01
The paper concerns a problem of Dirac fermion doublet in the external monopole potential arisen out of embedding the Abelian monopole solution in the non-Abe- lian scheme. In this particular case, the Hamiltonian is invariant under some symmetry operations consisting of an Abelian subgroup in the complex rotational group SO(3.C). This symmetry results in a certain (A)-freedom in choosing a discrete operator entering the complete set {H, j^{2}, j_{3}, N(A), K} . The same complex number A represents a parameter of the wave functions constructed. The generalized inversion-like operator N(A) implies its own (A-dependent) de- finition for scalar and pseudoscalar, and further affords some generalized N(A)-parity selection rules. It is shown that all different sets of basis func- tions Psi(A) determine the same Hilbert space. In particular, the functions Psi(A) decompose into linear combinations of Psi(A=0). However, the bases con- sidered turn out to be nonorthogonal ones when A is not real number; the latter corre...
Dirac-fermions in graphene d-wave superconducting heterojunction with the spin orbit interaction
Wang, Juntao; Wang, Andong; Zhang, Rui; Sun, Deng; Yang, Yanling
2017-09-01
In this study, based on the Dirac-Bogoliubov-de Gennes equation, we theoretically investigate the interaction effect between the anisotropic d-wave pairing symmetry and the spin orbit interaction (the Rashba spin orbit interaction (RSOI) and the Dresselhaus spin orbit interaction (DSOI)) in a graphene superconducting heterojunction. We find that the spin orbit interaction (SOI) plays a critical role on the tunneling conductance in the pristine case, but minimally affecting the tunneling conductance in the heavily doped case. As for the zero bias state, in contrast to the keep intact feature in the heavily doped case, it exhibits a distinct dependence on the RSOI and the DSOI in the pristine case. In particular, the damage of the zero bias state with a slight DSOI results in the disappearance of the zero bias conductance peak. Moreover, the tunneling conductances also show a qualitative difference with respect to the RSOI when both the RSOI and the DSOI are finite. These remarkable results suggest that the SOI and the anisotropic superconducting gap can be regarded as a key tool for diagnosing the specular Andreev reflection.
Dirac fermions in strong electric field and quantum transport in graphene
Gavrilov, S P; Yokomizo, N
2012-01-01
Our previous results on the nonperturbative calculations of the mean current and of the energy-momentum tensor in QED with the T-constant electric field are generalized to arbitrary dimensions. The renormalized mean values are found; the vacuum polarization and particle creation contributions to these mean values are isolated in the large T-limit, the vacuum polarization contributions being related to the one-loop effective Euler-Heisenberg Lagrangian. Peculiarities in odd dimensions are considered in detail. We adapt general results obtained in 2+1 dimensions to the conditions which are realized in the Dirac model for graphene. We study the quantum electronic and energy transport in the graphene at low carrier density and low temperatures when quantum interference effects are important. Our description of the quantum transport in the graphene is based on the so-called generalized Furry picture in QED where the strong external field is taken into account nonperturbatively; this approach is not restricted to a...
$D$-dimensions Dirac fermions BEC-BCS cross-over thermodynamics with Lorentz violation
Chen, J
2006-01-01
An analytical attempt is made with an effective Proca Lagrangian action to address the vector condensation Lorentz violation effects on the equation of state of strongly interacting fermions. The in-medium many-body renormalization effect is introduced as an external field approximation through a fictive generalized Thomson Problem background. The expressions for the $d$-dimensions thermodynamics are given with finite $S$-wave scattering length. In the non-relativistic limit for $d=3$, universal coefficient $\\xi ={4/9}$ and energy gap $\\Delta ={5/18}\\epsilon_f $ are reasonably consistent with the existed theoretical and experimental results. In the unitary limit for $d=2$ and T=0, the universal dimensionless coefficient can even approach the extreme occasion $\\xi=0$ corresponding to $m^*=\\infty$ which can be mapped to the strongly coupled two-dimensions electrons and is quite similar to the 3-dimensions Bose-Einstein Condensation of ideal boson gas. Instead, for $d=1$, the universal coefficient $\\xi$ is negat...
Discrete Dirac equation on a finite half-integer lattice
Smalley, L. L.
1986-01-01
The formulation of the Dirac equation on a discrete lattice with half-integer spacing and periodic boundary conditions is investigated analytically. The importance of lattice formulations for problems in field theory and quantum mechanics is explained; the concept of half-integer Fourier representation is introduced; the discrete Dirac equation for the two-dimensional case is derived; dispersion relations for the four-dimensional case are developed; and the spinor formulation for the Dirac fields on the half-integer lattice and the discrete time variable for the four-dimensional time-dependent Dirac equation are obtained. It is argued that the half-integer lattice, because it takes the Dirac Lagrangian into account, is more than a mere relabeling of the integer lattice and may have fundamental physical meaning (e.g., for the statistics of fermions). It is noted that the present formulation does not lead to species doubling, except in the continuum limit.
The Fermionic Signature Operator and Quantum States in Rindler Space-Time
Finster, Felix; Röken, Christian
2016-01-01
The fermionic signature operator is constructed in Rindler space-time. It is shown to be an unbounded self-adjoint operator on the Hilbert space of solutions of the massive Dirac equation. In two-dimensional Rindler space-time, we prove that the resulting fermionic projector state coincides with the Fulling-Rindler vacuum. Moreover, the fermionic signature operator gives a covariant construction of general thermal states, in particular of the Unruh state. The fermionic signature operator is shown to be well-defined in asymptotically Rindler space-times. In four-dimensional Rindler space-time, our construction gives rise to new quantum states.
Institute of Scientific and Technical Information of China (English)
张中杰; 沈义峰; 赵浩
2015-01-01
利用偶然简并方法在二维正方格子介质环形柱结构光子晶体中成功实现了Dirac点，并利用平面波展开法对实现Dirac点的过程进行了研究.研究结果表明，对于二维正方格子介质环形柱结构光子晶体，在一定的外径RO范围内(0.37a1.4)，介质环内径RI与外径RO满足一个不随介质环折射率n变化的恒定关系式.同时， Dirac点对应的光子约化频率f随折射率n及外径RO的增大而减小.利用所得的关系式对特定介质环折射率n条件下能实现Dirac点的环形光子晶体进行了预判设计.%The Dirac cones in photonic crystals have aroused much interest in the last few years. Annular photonic crystals have also been well studied for designing and controlling the band gap because they have more parameters than usual photonic crystal. In this paper, we study a two-dimensional square lattice dielectric annular photonic crystal to explore the formation of the photonic Dirac cone by the accidental degeneracy method. The theoretical tool is the plane wave expansion method. The results show that this system can provide a Dirac point in the center of the Brillouin-zone in the photonic band if both the outer radius and the inner radius of each scatterer are chosen to be appreciate values when the dielectric refractive index of the annular rod is fixed. For example, there is a Dirac point at the photonic normalized frequency f = 0.438(c/a) when n = 3.4, RO = 0.42a, RI = 0.305a, where f is the frequency, c is the light speed in vacuum, a is the lattice constant, n is the refractive index, RO is the outer radius, and RI is the inner radius. It is also found that within a confined region of outer radius RO(0.37a 1.4), the inner radius RI and the outer radius RO obey a relation of RI =−1.104+8.167RO+(−11.439)R2O, which is unrelated to the refractive index n of the dielectric annular rod. If n is less than 1.4, this rule is not valid. At the same time, the normalized
Matsuno, Genki; Omori, Yukiko; Eguchi, Takaaki; Kobayashi, Akito
2016-09-01
The topological domain wall and valley Hall effect are theoretically investigated in the molecular conductor α-(BEDT-TTF)2I3. By using the mean-field theory in an extended Hubbard model, it is demonstrated under a cylinder boundary condition that a domain wall emerges in the charge ordered phase, and exhibits a topological nature near the phase transition to the massless Dirac Fermion phase. The topological nature is well characterized by the Berry curvature, which has opposite signs in two charge ordered phases divided by the domain wall, and gives rise to the valley Hall conductivity with opposite signs, enabling these phases to be distinguished. It is also found that the valley Hall conductivity in the tilted Dirac cones exhibits a characteristic double-peak structure as a function of chemical potential using the semi classical formalism.
Sierra, German
2014-01-01
We construct a Hamiltonian H whose discrete spectrum contains, in a certain limit, the Riemann zeros. H is derived from the action of a massless Dirac fermion living in a domain of Rindler spacetime, in 1+1 dimensions, that has a boundary given by the world line of a uniformly accelerated observer. The action contains a sum of delta function potentials that can be viewed as partially reflecting moving mirrors. An appropriate choice of the accelerations of the mirrors, provide primitive periodic orbits associated to the prime numbers $p$, whose periods, measured by the observer's clock, are log p. Acting on the chiral components of the fermion, H becomes the Berry-Keating Hamiltonian (x p + p x)/2, where x is identified with the Rindler spatial coordinate and p with the conjugate momentum. The delta function potentials give the matching conditions of the fermion wave functions on both sides of the mirrors. There is also a phase shift for the reflection of the fermions at the boundary where the observer sits. T...
Energy Technology Data Exchange (ETDEWEB)
Cornelius, A. L.; Arko, A. J.; Sarrao, J. L.; Hundley, M. F.; Fisk, Z.
2000-12-01
We have used high pulsed magnetic fields to 50 T to observe de Haas--van Alphen oscillations in the tetragonal antiferromagnet CeRhIn{sub 5}, which has an enhanced value of the electronic specific heat coefficient {gamma}{approx}>420 mJ/molK{sup 2}. For T
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Filling-Enforced Magnetic Dirac Semimetals in Two Dimensions
Young, Steve M.; Wieder, Benjamin J.
2017-05-01
Filling-enforced Dirac semimetals, or those required at specific fillings by the combination of crystalline and time-reversal symmetries, have been proposed in numerous materials. However, Dirac points in these materials are not generally robust against breaking or modifying time-reversal symmetry. We present a new class of two-dimensional Dirac semimetal protected by the combination of crystal symmetries and a special, antiferromagnetic time-reversal symmetry. Systems in this class of magnetic layer groups, while having broken time-reversal symmetry, still respect the operation of time-reversal followed by a half-lattice translation. In contrast to 2D time-reversal-symmetric Dirac semimetal phases, this magnetic Dirac phase is capable of hosting just a single isolated Dirac point at the Fermi level, one that can be stabilized solely by symmorphic crystal symmetries. We find that this Dirac point represents a new quantum critical point, existing at the boundary between Chern insulating, antiferromagnetic topological crystalline insulating, and trivial insulating phases, and we discuss its relationship with condensed matter fermion doubling theorems. We present density functional theoretic calculations which demonstrate the presence of these 2D magnetic Dirac points in FeSe monolayers and discuss the implications for engineering quantum phase transitions in these materials.
Tkachov, Grigory; Hentschel, Martina
2009-05-01
Extended defects in graphene, such as linear edges, break the translational invariance and can also have an impact on the symmetries specific to massless Dirac-type quasiparticles in this material. The paper examines the consequences of a broken Dirac fermion parity in the framework of the effective boundary conditions varying from the Berry-Mondragon mass confinement to a zigzag edge. The parity breaking reflects the structural sublattice asymmetry of zigzag-type edges and is closely related to the previously predicted time-reversal symmetric edge states. We calculate the local and global densities of the edge states and show that they carry a specific polarization resembling to some extent that of spin-polarized materials. The lack of the parity leads to a non-analytical particle-hole asymmetry in the edge-state properties. We use our findings to interpret recently observed tunneling spectra in zigzag-terminated graphene. We also propose a graphene-based tunneling device where the particle-hole asymmetric edge states result in strongly nonlinear conductance-voltage characteristics, which could be used to manipulate the tunneling transport.
Multiple unpinned Dirac points in group-Va single-layers with phosphorene structure
Lu, Yunhao; Zhou, Di; Chang, Guoqing; Guan, Shan; Chen, Weiguang; Jiang, Yinzhu; Jiang, Jianzhong; Wang, Xue-Sen; Yang, Shengyuan A.; Feng, Yuan Ping; Kawazoe, Yoshiyuki; Lin, Hsin
2016-06-01
Emergent Dirac fermion states underlie many intriguing properties of graphene, and the search for them constitutes one strong motivation to explore two-dimensional (2D) allotropes of other elements. Phosphorene, the ultrathin layers of black phosphorous, has been a subject of intense investigations recently, and it was found that other group-Va elements could also form 2D layers with similar puckered lattice structure. Here, by a close examination of their electronic band structure evolution, we discover two types of Dirac fermion states emerging in the low-energy spectrum. One pair of (type-I) Dirac points is sitting on high-symmetry lines, while two pairs of (type-II) Dirac points are located at generic k-points, with different anisotropic dispersions determined by the reduced symmetries at their locations. Such fully-unpinned (type-II) 2D Dirac points are discovered for the first time. In the absence of spin-orbit coupling (SOC), we find that each Dirac node is protected by the sublattice symmetry from gap opening, which is in turn ensured by any one of three point group symmetries. The SOC generally gaps the Dirac nodes, and for the type-I case, this drives the system into a quantum spin Hall insulator phase. We suggest possible ways to realise the unpinned Dirac points in strained phosphorene.
DEFF Research Database (Denmark)
Hietanen, A.; Narayanan, R.
2012-01-01
operator to set a scale. We do not observe perturbative scaling in the region studied in this paper. Instead, we observe that the scale changes very slowly with the bare coupling. The lowest eigenvalue of the overlap Dirac operator is another scale that shows similar behavior as a function of the lattice...
Alexandrou, C; Panagopoulos, H; Vicari, E
2000-01-01
We compute the ratio between the scale $\\Lambda_L$ associated with a lattice formulation of QCD using the overlap-Dirac operator, and $\\Lambda_{MS-bar}$. To this end, the one-loop relation between the lattice coupling $g_0$ and the coupling renormalized in the MS-bar scheme is calculated, using the lattice background field technique. We also compute the one-loop renormalization $Z_\\Gamma$ of the two-quark operators $\\bar{\\psi} \\Gamma \\psi$, where $\\Gamma$ denotes a generic Dirac matrix. Furthermore, we study the renormalization of quark bilinears which are more extended and have better chiral properties. Finally, we present improved estimates of $Z_\\Gamma$, coming from cactus resummation and from mean field perturbation theory.
Bound states of two-dimensional relativistic harmonic oscillators
Institute of Scientific and Technical Information of China (English)
Qiang Wen-Chao
2004-01-01
We give the exact normalized bound state wavefunctions and energy expressions of the Klein-Gordon and Dirac equations with equal scalar and vector harmonic oscillator potentials in the two-dimensional space.
Fry, M. P.
2001-01-01
The current status of bounds on and limits of fermion determinants in two, three and four dimensions in QED and QCD is reviewed. A new lower bound on the two-dimensional QED determinant is derived. An outline of the demonstration of the continuity of this determinant at zero mass when the background magnetic field flux is zero is also given.
Goncalves, Bruno; Pereira, Dante Donizeti; Junior, Mario Marcio Dias
2015-01-01
In this work we focus our attention in the inconsistency that appears when the Semi-Exact Foldy-Wouthuysen transformation for the Dirac field interacting with space-time torsion field is performed. In order to solve this problem, we present a new involution operator that makes possible to perform the exact transformation when torsion field is present. Such operator has a structure, well known in the literature, composed of the product of an operator that acts in the matrices space and another one that acts in the function space. We also present the bound state of this theory and discuss the possible experimental analysis.
Slagle, Kevin
2015-03-01
Using determinant quantum Monte Carlo simulations, we demonstrate that an extended Hubbard model on a bilayer honeycomb lattice has two novel quantum phase transitions, each with connections to symmetry protected topological states. 1) The first is a continuous phase transition between the weakly interacting gapless Dirac fermion phase and a strongly interacting fully gapped and symmetric trivial phase. Because there is no spontaneous symmetry breaking, this transition cannot be described by the standard Gross-Neveu model. We argue that this phase transition is related to the Z16 classification of the topological superconductor 3He-B phase with interactions. 2) The second is a quantum critical point between a quantum spin Hall insulator with spin Sz conservation and the previously mentioned strongly interacting gapped phase. At the critical point the single particle excitations remain gapped, while spin and charge gaps close. We argue that this transition is described by a bosonic O(4) nonlinear sigma model field theory with a topological Θ-term.
Redkov, V M
1999-01-01
The paper concerns a problem of the Dirac fermion doublet in the external monopole potential obtained by embedding the Abelian monopole solution in the non-Abelian scheme. In this case, the doublet-monopole Hamiltonian is invariant under operations consisting of a complex and one parametric Abelian subgroup in S0(3.C). This symmetry results in a certain freedom in choosing a discrete operator N(A) (A is a complex number) entering the complete set of quantum variables. The same complex number A represents an additional parameter at the basis functions. The generalized inversion like operator N(A) affords certain generalized N(A)-parity selection rules. All the different sets of basis functions Psi(A) determine the same Hilbert space. The functions Psi(A) decompose into linear combinations of Psi(A=0): Psi(A) = F(A) Psi(A=0). However, the bases considered turn out to be nonorthogonal ones when A is a complex number; the latter correlates with the non-self-conjugacy of the N(A) at complex A-s. The meaning of pos...
Large linear magnetoresistance in a new Dirac material BaMnBi2
Wang, Yi-Yan; Yu, Qiao-He; Xia, Tian-Long
2016-10-01
Dirac semimetal is a class of materials that host Dirac fermions as emergent quasi-particles. Dirac cone-type band structure can bring interesting properties such as quantum linear magnetoresistance and large mobility in the materials. In this paper, we report the synthesis of high quality single crystals of BaMnBi2 and investigate the transport properties of the samples. BaMnBi2 is a metal with an antiferromagnetic transition at T N = 288 K. The temperature dependence of magnetization displays different behavior from CaMnBi2 and SrMnBi2, which suggests the possible different magnetic structure of BaMnBi2. The Hall data reveals electron-type carriers and a mobility μ(5 K) = 1500 cm2/V·s. Angle-dependent magnetoresistance reveals the quasi-two-dimensional (2D) Fermi surface in BaMnBi2. A crossover from semiclassical MR ˜ H 2 dependence in low field to MR ˜ H dependence in high field, which is attributed to the quantum limit of Dirac fermions, has been observed in magnetoresistance. Our results indicate the existence of Dirac fermions in BaMnBi2. Project supported by the National Natural Science Foundation of China (Grant No. 11574391), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 14XNLQ07).
Fermionic quantum critical point of spinless fermions on a honeycomb lattice
Wang, L.; Corboz, P.; Troyer, M.
2014-01-01
Spinless fermions on a honeycomb lattice provide a minimal realization of lattice Dirac fermions. Repulsive interactions between nearest neighbors drive a quantum phase transition from a Dirac semimetal to a charge-density-wave state through a fermionic quantum critical point, where the coupling of
Photoconductivity in Dirac materials
Directory of Open Access Journals (Sweden)
J. M. Shao
2015-11-01
Full Text Available Two-dimensional (2D Dirac materials including graphene and the surface of a three-dimensional (3D topological insulator, and 3D Dirac materials including 3D Dirac semimetal and Weyl semimetal have attracted great attention due to their linear Dirac nodes and exotic properties. Here, we use the Fermi’s golden rule and Boltzmann equation within the relaxation time approximation to study and compare the photoconductivity of Dirac materials under different far- or mid-infrared irradiation. Theoretical results show that the photoconductivity exhibits the anisotropic property under the polarized irradiation, but the anisotropic strength is different between 2D and 3D Dirac materials. The photoconductivity depends strongly on the relaxation time for different scattering mechanism, just like the dark conductivity.
Photoconductivity in Dirac materials
Energy Technology Data Exchange (ETDEWEB)
Shao, J. M.; Yang, G. W., E-mail: stsygw@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials & Engineering, School of Physics & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong (China)
2015-11-15
Two-dimensional (2D) Dirac materials including graphene and the surface of a three-dimensional (3D) topological insulator, and 3D Dirac materials including 3D Dirac semimetal and Weyl semimetal have attracted great attention due to their linear Dirac nodes and exotic properties. Here, we use the Fermi’s golden rule and Boltzmann equation within the relaxation time approximation to study and compare the photoconductivity of Dirac materials under different far- or mid-infrared irradiation. Theoretical results show that the photoconductivity exhibits the anisotropic property under the polarized irradiation, but the anisotropic strength is different between 2D and 3D Dirac materials. The photoconductivity depends strongly on the relaxation time for different scattering mechanism, just like the dark conductivity.
Energy Technology Data Exchange (ETDEWEB)
Chimento, L P; Forte, M [Physics Department, UBA, 1428 Buenos Aires (Argentina); Devecchi, F P; Kremer, G M; Ribas, M O; Samojeden, L L, E-mail: kremer@fisica.ufpr.br, E-mail: devecchi@fisica.ufpr.br, E-mail: chimento@df.uba.ar [Physics Department, UFPR, 81531-990 Curitiba (Brazil)
2011-07-08
In this work we review if fermionic sources could be responsible for accelerated periods during the evolution of a FRW universe. In a first attempt, besides the fermionic source, a matter constituent would answer for the decelerated periods. The coupled differential equations that emerge from the field equations are integrated numerically. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. It is shown that the fermionic field could behave like an inflaton field in the early universe, giving place to a transition to a matter dominated (decelerated) period. In a second formulation we turn our attention to analytical results, specifically using the idea of form-invariance transformations. These transformations can be used for obtaining accelerated cosmologies starting with conventional cosmological models. Here we reconsider the scalar field case and extend the discussion to fermionic fields. Finally we investigate the role of a Dirac field in a Brans-Dicke (BD) context. The results show that this source, in combination with the BD scalar, promote a final eternal accelerated era, after a matter dominated period.
Quasinormal frequencies of asymptotically flat two-dimensional black holes
Lopez-Ortega, A
2011-01-01
We discuss whether the minimally coupled massless Klein-Gordon and Dirac fields have well defined quasinormal modes in single horizon, asymptotically flat two-dimensional black holes. To get the result we solve the equations of motion in the massless limit and we also calculate the effective potentials of Schrodinger type equations. Furthermore we calculate exactly the quasinormal frequencies of the Dirac field propagating in the two-dimensional uncharged Witten black hole. We compare our results on its quasinormal frequencies with other already published.
Emergence of Dirac-like bands in the monolayer limit of epitaxial Ge films on Au(1 1 1)
Schröter, Niels B. M.; Watson, Matthew D.; Duffy, Liam B.; Hoesch, Moritz; Chen, Yulin; Hesjedal, Thorsten; Kim, Timur K.
2017-09-01
After the discovery of Dirac fermions in graphene, it has become a natural question to ask whether it is possible to realize Dirac fermions in other two-dimensional (2D) materials as well. In this work, we report the discovery of multiple Dirac-like electronic bands in ultrathin Ge films grown on Au(1 1 1) by angle-resolved photoelectron spectroscopy. By tuning the thickness of the films, we are able to observe the evolution of their electronic structure when passing through the monolayer limit. Our discovery may signify the synthesis of germanene, a 2D honeycomb structure made of Ge, which is a promising platform for exploring exotic topological phenomena and enabling potential applications.
Topological insulators Dirac equation in condensed matter
Shen, Shun-Qing
2017-01-01
This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field. To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already b...
Damljanović, V.; Gajić, R.
2016-03-01
We have considered non-magnetic materials with weak spin-orbit coupling, that are periodic in two non-collinear directions, and finite in the third, orthogonal direction. In some cases, the combined time-reversal and crystal symmetry of such systems, allows the existence of Dirac cones at certain points in the reciprocal space. We have investigated in a systematic way, all points of the Brillouin zone of all 80 diperiodic groups and have found sufficient conditions for the existence of s = 1/2 Dirac fermions, with symmetry-provided band touching at the vertex of the Dirac cones. Conversely, complete linear dispersion is forbidden for orbital wave functions belonging to two-dimensional (2D) irreducible representations (irreps) of little groups that do not satisfy certain group theoretical conditions given in this paper. Our results are illustrated by a tight-binding example.
Damljanović, V; Gajić, R
2016-03-02
We have considered non-magnetic materials with weak spin-orbit coupling, that are periodic in two non-collinear directions, and finite in the third, orthogonal direction. In some cases, the combined time-reversal and crystal symmetry of such systems, allows the existence of Dirac cones at certain points in the reciprocal space. We have investigated in a systematic way, all points of the Brillouin zone of all 80 diperiodic groups and have found sufficient conditions for the existence of s = 1/2 Dirac fermions, with symmetry-provided band touching at the vertex of the Dirac cones. Conversely, complete linear dispersion is forbidden for orbital wave functions belonging to two-dimensional (2D) irreducible representations (irreps) of little groups that do not satisfy certain group theoretical conditions given in this paper. Our results are illustrated by a tight-binding example.
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
Al-Hashimi, M H; Wiese, U -J
2016-01-01
Majorana fermion dynamics may arise at the edge of Kitaev wires or superconductors. Alternatively, it can be engineered by using trapped ions or ultracold atoms in an optical lattice as quantum simulators. This motivates the theoretical study of Majorana fermions confined to a finite volume, whose boundary conditions are characterized by self-adjoint extension parameters. While the boundary conditions for Dirac fermions in $(1+1)$-d are characterized by a 1-parameter family, $\\lambda = - \\lambda^*$, of self-adjoint extensions, for Majorana fermions $\\lambda$ is restricted to $\\pm i$. Based on this result, we compute the frequency spectrum of Majorana fermions confined to a 1-d interval. The boundary conditions for Dirac fermions confined to a 3-d region of space are characterized by a 4-parameter family of self-adjoint extensions, which is reduced to two distinct 1-parameter families for Majorana fermions. We also consider the problems related to the quantum mechanical interpretation of the Majorana equation ...
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
Wang, Yunhua; Liu, Yulan; Wang, Biao
2017-01-01
Periodically driven nontrivial quantum states open another door to engineer topological phases in solid systems by light. Here we show, based on the Floquet-Bloch theory, that the on-resonant linearly and circularly polarized infrared light brings in the exotic Floquet quantum spin Hall state and half-metal in two-dimensional Metal-organic frameworks (2D MOFs) because of the unbroken and broken time-reversal symmetry, respectively. We also observe that the off-resonant light triggers topological quantum phase transitions and induces semimetals with pseudospin-1 Dirac-Weyl fermions via the photon-dressed topological band structures of 2D MOFs. This work paves a way to design light-controlled spintronics and optoelectronics based on 2D MOFs. PMID:28134315
Wang, Yunhua; Liu, Yulan; Wang, Biao
2017-01-01
Periodically driven nontrivial quantum states open another door to engineer topological phases in solid systems by light. Here we show, based on the Floquet-Bloch theory, that the on-resonant linearly and circularly polarized infrared light brings in the exotic Floquet quantum spin Hall state and half-metal in two-dimensional Metal-organic frameworks (2D MOFs) because of the unbroken and broken time-reversal symmetry, respectively. We also observe that the off-resonant light triggers topological quantum phase transitions and induces semimetals with pseudospin-1 Dirac-Weyl fermions via the photon-dressed topological band structures of 2D MOFs. This work paves a way to design light-controlled spintronics and optoelectronics based on 2D MOFs.
Zero sound in a two-dimensional dipolar Fermi gas
Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.
2013-01-01
We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean-f
Energy Technology Data Exchange (ETDEWEB)
Abel, Steven [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; CERN, Geneva (Switzerland); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2011-02-15
A simple and natural model is presented that gives Dirac gauginos. The configuration is related to ''deconstructed gaugino mediation''. A high energy completion is provided based on existing ISS-like models of deconstructed gaugino mediation. This provides a complete picture of Dirac gauginos that includes the necessary extra adjoint fermions (generated as magnetic quarks of the ISS theory) and supersymmetry breaking (via the ISS mechanism). Moreover the screening of the scalar masses means that they can similar to or less than the gaugino masses, even though the supersymmetry breaking is driven by F-terms. (orig.)
Dirac neutrinos from flavor symmetry
Aranda, Alfredo; Morisi, S; Peinado, E; Valle, J W F
2013-01-01
We present a model where Majorana neutrino mass terms are forbidden by the flavor symmetry group Delta(27). Neutrinos are Dirac fermions and their masses arise in the same way as that of the charged fermions, due to very small Yukawa couplings. The model fits current neutrino oscillation data and correlates the octant of the atmospheric angle with the magnitude of the lightest neutrino mass, with maximal mixing excluded for any neutrino mass
Ultraviolet finiteness of Chiral Perturbation Theory for two-dimensional Quantum Electrodynamics
Paston, S A; Franke, V A
2003-01-01
We consider the perturbation theory in the fermion mass (chiral perturbation theory) for the two-dimensional quantum electrodynamics. With this aim, we rewrite the theory in the equivalent bosonic form in which the interaction is exponential and the fermion mass becomes the coupling constant. We reformulate the bosonic perturbation theory in the superpropagator language and analyze its ultraviolet behavior. We show that the boson Green's functions without vacuum loops remain finite in all orders of the perturbation theory in the fermion mass.
Two-dimensional superconductors with atomic-scale thickness
Uchihashi, Takashi
2017-01-01
Recent progress in two-dimensional superconductors with atomic-scale thickness is reviewed mainly from the experimental point of view. The superconducting systems treated here involve a variety of materials and forms: elemental metal ultrathin films and atomic layers on semiconductor surfaces; interfaces and superlattices of heterostructures made of cuprates, perovskite oxides, and rare-earth metal heavy-fermion compounds; interfaces of electric-double-layer transistors; graphene and atomic sheets of transition metal dichalcogenide; iron selenide and organic conductors on oxide and metal surfaces, respectively. Unique phenomena arising from the ultimate two dimensionality of the system and the physics behind them are discussed.
Magnetotransport properties near the Dirac point of Dirac semimetal Cd3As2 nanowires
Wang, Li-Xian; Wang, Shuo; Li, Jin-Guang; Li, Cai-Zhen; Xu, Jun; Yu, Dapeng; Liao, Zhi-Min
2017-02-01
Three-dimensional (3D) Dirac semimetals are featured by 3D linear energy-momentum dispersion relation, which have been proposed to be a desirable system to study Dirac fermions in 3D space and Weyl fermions in solid-state materials. Significantly, to reveal exotic transport properties of Dirac semimetals, the Fermi level should be close to the Dirac point, around which the linear dispersion is retained. Here we report the magnetotransport properties near the Dirac point in Cd3As2 nanowires, manifesting the evolution of band structure under magnetic field. Ambipolar field effect is observed with the Dirac point at V g = 3.9 V. Under high magnetic field, there is a resistivity dip in transfer curve at the Dirac point, which is caused by the Zeeman splitting enhanced density of state around the Dirac point. Furthermore, the low carrier density in the nanowires makes it feasible to enter into the quantum limit regime, resulting in the quantum linear magnetoresistance being observed even at room temperature. Besides, the dramatic reduction of bulk conductivity due to the low carrier density, together with a large surface to volume ratio of the nanowire, collectively help to reveal the Shubnikov-de Haas oscillations from the surface states. Our studies on transport properties around the Dirac point therefore provide deep insights into the emerging exotic physics of Dirac and Weyl fermions.
Three dimensional Dirac semimetals
Zaheer, Saad
We extend the physics of graphene to three dimensional systems by showing that Dirac points can exist on the Fermi surface of realistic materials in three dimensions. Many of the exotic electronic properties of graphene can be ascribed to the pseudorelativistic behavior of its charge carriers due to two dimensional Dirac points on the Fermi surface. We show that certain nonsymmorphic spacegroups exhibit Dirac points among the irreducible representations of the appropriate little group at high symmetry points on the surface of the Brillouin zone. We provide a list of all Brillouin zone momenta in the 230 spacegroups that can host Dirac points. We describe microscopic considerations necessary to design materials in one of the candidate spacegroups such that the Dirac point appears at the Fermi energy without any additional non-Dirac-like Fermi pockets. We use density functional theory based methods to propose six new Dirac semimetals: BiO 2 and SbO2 in the beta-cristobalite lattice (spacegroup 227), and BiCaSiO4, BiMgSiO4, BiAlInO 4, and BiZnSiO4 in the distorted spinels lattice (spacegroup 74). Additionally we derive effective Dirac Hamiltonians given group representative operators as well as tight binding models incorporating spin-orbit coupling. Finally we study the Fermi surface of zincblende (spacegroup 216) HgTe which is effectively point-like at Gamma in the Brillouin zone and exhibits accidental degeneracies along a threefold rotation axis. Whereas compressive strain gaps the band structure into a topological insulator, tensile strain shifts the accidental degeneracies away from Gamma and enlarges the Fermi surface. States on the Fermi surface exhibit nontrivial spin texture marked by winding of spins around the threefold rotation axis and by spin vortices indicating a change in the winding number. This is confirmed by microscopic calculations performed in tensile strained HgTe and Hg0.5Zn 0.5 Te as well as k.p theory. We conclude with a summary of recent
Correlation functions of twist fields from Ward identities in the massive Dirac theory
Doyon, Benjamin; Silk, James
2011-07-01
We derive non-linear differential equations for correlation functions of U(1) twist fields in the two-dimensional massive Dirac theory. Primary U(1) twist fields correspond to exponential fields in the sine-Gordon model at the free-fermion point, and it is well-known that their vacuum two-point functions are determined by integrable differential equations. We extend part of this result to more general quantum states (pure or mixed) and to certain descendents, showing that some two-point functions are determined by the sinh-Gordon differential equations whenever there is translation and parity invariance, and the density matrix is the exponential of a bilinear expression in fermions. We use methods involving Ward identities associated to the copy-rotation symmetry in a model with two independent, anti-commuting copies. Such methods were used in the context of the thermally perturbed Ising quantum field theory model. We show that they are applicable to the Dirac theory as well, and we suggest that they are likely to have a much wider applicability to free fermion models in general. Finally, we note that our form-factor study of descendents twist fields combined with a CFT analysis provides a new way of evaluating vacuum expectation values of primary U(1) twist fields: by deriving and solving a recursion relation.
Correlation functions of twist fields from Ward identities in the massive Dirac theory
Energy Technology Data Exchange (ETDEWEB)
Doyon, Benjamin [Department of Mathematics, King' s College London, Strand WC2R 2LS (United Kingdom); Silk, James [Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham DH1 3LE (United Kingdom)
2011-07-22
We derive non-linear differential equations for correlation functions of U(1) twist fields in the two-dimensional massive Dirac theory. Primary U(1) twist fields correspond to exponential fields in the sine-Gordon model at the free-fermion point, and it is well-known that their vacuum two-point functions are determined by integrable differential equations. We extend part of this result to more general quantum states (pure or mixed) and to certain descendents, showing that some two-point functions are determined by the sinh-Gordon differential equations whenever there is translation and parity invariance, and the density matrix is the exponential of a bilinear expression in fermions. We use methods involving Ward identities associated to the copy-rotation symmetry in a model with two independent, anti-commuting copies. Such methods were used in the context of the thermally perturbed Ising quantum field theory model. We show that they are applicable to the Dirac theory as well, and we suggest that they are likely to have a much wider applicability to free fermion models in general. Finally, we note that our form-factor study of descendents twist fields combined with a CFT analysis provides a new way of evaluating vacuum expectation values of primary U(1) twist fields: by deriving and solving a recursion relation.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...
Lin, De-Hone
2015-01-01
This paper is concerned with the application of a spacetime structure to a three-dimensional quantum system. There are three components. First, the main part of this paper presents the constraint conditions which build the relation of a spacetime structure and a form invariance solution to the covariant Dirac equation. The second is to devise a spacetime cage for fermions with chosen constraints. The third part discusses the feasibility of the cage with an experiment.
Classical behaviour of the Dirac bispinor
Bell, S B M; Díaz, B M; Bell, Sarah B. M.; Cullerne, John P.; Diaz, Bernard M.
2000-01-01
It is usually supposed that the Dirac and radiation equations predict that the phase of a fermion will rotate through half the angle through which the fermion is rotated, which means, via the measured dynamical and geometrical phase factors, that the fermion must have a half-integral spin. We demonstrate that this is not the case and that the identical relativistic quantum mechanics can also be derived with the phase of the fermion rotating through the same angle as does the fermion itself. Under spatial rotation and Lorentz transformation the bispinor transforms as a four-vector like the potential and Dirac current. Previous attempts to provide this form of transformational behaviour have foundered because a satisfactory current could not be derived.(14)
Scalar spin of elementary fermions
Energy Technology Data Exchange (ETDEWEB)
Jourjine, A., E-mail: jourjine@pks.mpg.de
2014-01-20
We show that, using the experimentally observed values of CKM and PMNS mixing matrices, all known elementary fermions can be assigned a new quantum number, the scalar spin, in a unique way. This is achieved without introduction of new degrees of freedom. The assignment implies that tau-neutrino should be an anti-Dirac spinor, while mu–tau leptons and charm–top, strange–bottom quarks form Dirac–anti-Dirac scalar spin doublets. The electron and its neutrino remain as originally described by Dirac.
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Juday, Richard D.
1992-01-01
Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.
Gravitational contribution to fermion masses
Tiemblo, A; Tiemblo, Alfredo; Tresguerres, Romualdo
2005-01-01
In the context of a nonlinear gauge theory of the Poincar\\'e group, we show that covariant derivatives of Dirac fields include a coupling to the translational connections, manifesting itself in the matter action as a universal background mass contribution to fermions.
Gravitational contribution to fermion masses
Tiemblo, Alfredo; Tresguerres, Romualdo
2005-01-01
In the context of a nonlinear gauge theory of the Poincar\\'e group, we show that covariant derivatives of Dirac fields include a coupling to the translational connections, manifesting itself in the matter action as a universal background mass contribution to fermions.
Gravitational contribution to fermion masses
Energy Technology Data Exchange (ETDEWEB)
Tiemblo, A.; Tresguerres, R. [Consejo Superior de Investigaciones Cientificas, Instituto de Matematicas y Fisica Fundamental, Madrid (Spain)
2005-08-01
In the context of a non-linear gauge theory of the Poincare group, we show that covariant derivatives of Dirac fields include a coupling to the translational connections, manifesting itself in the matter action as a universal background mass contribution to fermions. (orig.)
Zhou, Baozeng; Dong, Shengjie; Wang, Xiaocha; Zhang, Kailiang; Mi, Wenbo
2017-03-07
Graphene-like two-dimensional materials have garnered tremendous interest as emerging device materials due to their remarkable properties. However, their applications in spintronics have been limited by the lack of intrinsic magnetism. Here, we perform an ab initio simulation on the structural and electronic properties of several transition-metal (TM) monolayers (TM = Cr, Mo and W) with a honeycomb lattice on a 1/3 monolayer Cl-covered Si(111) surface. Due to the template effect from the halogenated Si substrate, the TM-layers will be maintained in an expanded lattice which is nearly 60% larger than that of the freestanding case. All these isolated TM-layers exhibit ferromagnetic coupling with kagome band structures related to sd(2) hybridization and a strong interfacial interaction may destroy the topological bands. Interestingly, the W-monolayer on the Cl-covered Si substrate shows a half-metallic behavior. A Dirac point formed at the K point in the spin-down channel is located exactly at the Fermi level which is crucial for the realization of a quantum spin Hall state. Moreover, the reconstruction process between the Dirac and kagome bands is discussed in detail, providing an interesting platform to study the interplay between massless Dirac fermions and heavy fermions.
Supersymmetry in 6d Dirac Action
Fujimoto, Yukihiro; Nishiwaki, Kenji; Sakamoto, Makoto; Tatsumi, Kentaro
2016-01-01
We investigate a 6d Dirac fermion on a rectangle. It is found that the 4d spectrum is governed by $N = 2$ supersymmetric quantum mechanics. Then we demonstrate that the supersymmetry is very useful to classify all allowed boundary conditions and to expand the 6d Dirac field in Kaluza-Klein modes. A striking feature of the model is that even though the 6d Dirac fermion has non-vanishing bulk mass, the 4d mass spectrum can contain degenerate massless chiral fermions, which may provide a hint to solve the generation problem of the quarks and leptons. It is pointed out that zero energy solutions are not affected by the presence of the boundaries, while the boundary conditions work well for determining the positive energy solutions.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...
Double Dirac cones in phononic crystals
Li, Yan
2014-07-07
A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.
Fermi-Bose duality of the Dirac equation and extended real Clifford-Dirac algebra
Directory of Open Access Journals (Sweden)
I.Yu. Krivsky
2010-01-01
Full Text Available We have proved on the basis of the symmetry analysis of the standard Dirac equation with nonzero mass that this equation may describe not only fermions of spin 1/2 but also bosons of spin 1. The new bosonic symmetries of the Dirac equation in both the Foldy-Wouthuysen and the Pauli-Dirac representations are found. Among these symmetries (together with the 32-dimensional pure matrix algebra of invariance the new, physically meaningful, spin 1 Poincare symmetry of equation under consideration is proved. In order to provide the corresponding proofs, a 64-dimensional extended real Clifford-Dirac algebra is put into consideration.
Magnetic quantum dot in two-dimensional topological insulators
Li, Guo; Zhu, Jia-Lin; Yang, Ning
2017-03-01
Magnetic quantum dots in two-dimensional band and topological insulators are studied by solving the modified Dirac model under nonuniform magnetic fields. The Landau levels split into discrete states with certain angular momentum. The states splitting from the zero Landau levels lie in the energy gap for topological insulators but are out of the gap for band insulators. It is found that the ground states oscillate between the spin-up and spin-down states when the magnetic field or the dot size changes. The oscillation manifests itself as changes of sign and strength of charge currents near the dot's edge.
Lapa, Matthew F.; Cho, Gil Young; Hughes, Taylor L.
2016-12-01
We construct a bosonic analog of a two-dimensional topological Dirac semimetal (DSM). The low-energy description of the most basic 2D DSM model consists of two Dirac cones at positions ±k0 in momentum space. The local stability of the Dirac cones is guaranteed by a composite symmetry Z2TI, where T is time reversal and I is inversion. This model also exhibits interesting time-reversal and inversion symmetry breaking electromagnetic responses. In this work we construct a bosonic version by replacing each Dirac cone with a copy of the O (4 ) nonlinear sigma model (NLSM) with topological theta term and theta angle θ =±π . One copy of this NLSM also describes the gapless surface termination of the 3D bosonic topological insulator (BTI). We compute the time-reversal and inversion symmetry breaking electromagnetic responses for our model and show that they are twice the value one gets in the DSM case matching what one might expect from, for example, a bosonic Chern insulator. We also investigate the stability of the BSM model and find that the composite Z2TI symmetry again plays an important role. Along the way we clarify many aspects of the surface theory of the BTI including the electromagnetic response, the charges and statistics of vortex excitations, and the stability to symmetry-allowed perturbations. We briefly comment on the relation between the various descriptions of the O (4 ) NLSM with θ =π used in this paper (a dual vortex description and a description in terms of four massless fermions) and the recently proposed dual description of the BTI surface in terms of 2 +1 -dimensional quantum electrodynamics with two flavors of fermion (N =2 QED3). In a set of four Appendixes we review some of the tools used in the paper and also derive some of the more technical results.
Dirac equation in gauge and affine-metric gravitation theories
Giachetta, G
1995-01-01
We show that the covariant derivative of Dirac fermion fields in the presence of a general linear connection on a world manifold is universal for Einstein's, gauge and affine-metric gravitation theories.
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Spontaneous supersymmetry breaking in the two-dimensional N=1 Wess-Zumino model
Steinhauer, Kyle
2014-01-01
We study the phase diagram of the two-dimensional N=1 Wess-Zumino model on the lattice using Wilson fermions and the fermion loop formulation. We give a complete nonperturbative determination of the ground state structure in the continuum and infinite volume limit. We also present a determination of the particle spectrum in the supersymmetric phase, in the supersymmetry broken phase and across the supersymmetry breaking phase transition. In the supersymmetry broken phase we observe the emergence of the Goldstino particle.
Quantum Monte Carlo simulation of a two-dimensional Majorana lattice model
Hayata, Tomoya; Yamamoto, Arata
2017-07-01
We study interacting Majorana fermions in two dimensions as a low-energy effective model of a vortex lattice in two-dimensional time-reversal-invariant topological superconductors. For that purpose, we implement ab initio quantum Monte Carlo simulation to the Majorana fermion system in which the path-integral measure is given by a semipositive Pfaffian. We discuss spontaneous breaking of time-reversal symmetry at finite temperatures.
Pathways to Naturally Small Dirac Neutrino Masses
Ma, Ernest
2016-01-01
If neutrinos are truly Dirac fermions, the smallness of their masses may still be natural if certain symmetries exist beyond those of the standard model of quarks and leptons. We perform a systematic study of how this may occur at tree level and in one loop. We also propose a scotogenic version of the left-right gauge model with naturally small Dirac neutrino masses in one loop.
Oh, Yun-Tak; Higashi, Yoichi; Chan, Ching-Kit; Han, Jung Hoon
2016-08-01
The Lang-Firsov Hamiltonian, a well-known solvable model of interacting fermion-boson system with sideband features in the fermion spectral weight, is generalized to have the time-dependent fermion-boson coupling constant. We show how to derive the two-time Green's function for the time-dependent problem in the adiabatic limit, defined as the slow temporal variation of the coupling over the characteristic oscillator period. The idea we use in deriving the Green's function is akin to the use of instantaneous basis states in solving the adiabatic evolution problem in quantum mechanics. With such "adiabatic Green's function" at hand we analyze the transient behavior of the spectral weight as the coupling is gradually tuned to zero. Time-dependent generalization of a related model, the spin-boson Hamiltonian, is analyzed in the same way. In both cases the sidebands arising from the fermion-boson coupling can be seen to gradually lose their spectral weights over time. Connections of our solution to the two-dimensional Dirac electrons coupled to quantized photons are discussed.
Distributions of Dirac Operator Eigenvalues
Akemann, G
2004-01-01
The distribution of individual Dirac eigenvalues is derived by relating them to the density and higher eigenvalue correlation functions. The relations are general and hold for any gauge theory coupled to fermions under certain conditions which are stated. As a special case, we give examples of the lowest-lying eigenvalue distributions for QCD-like gauge theories without making use of earlier results based on the relation to Random Matrix Theory.
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Two-dimensional capillary origami
Brubaker, N. D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
Correlation functions of twist fields from Ward identities in the massive Dirac theory
Doyon, Benjamin
2011-01-01
We derive non-linear differential equations for correlation functions of U(1) twist fields in the two-dimensional massive Dirac theory. Primary U(1) twist fields correspond to exponential fields in the sine-Gordon model at the free-fermion point, and it is well-known that their vacuum two-point functions are determined by integrable differential equations. We extend part of this result to more general quantum states (pure or mixed) and to certain descendents, showing that some two-point functions are determined by the sinh-Gordon differential equations whenever there is translation and parity invariance, and the density matrix is the exponential of a bilinear expression in fermions. We use methods involving Ward identities associated to the copy-rotation symmetry in a model with two independent, anti-commuting copies. Such methods were used in the context of the thermally perturbed Ising quantum field theory model. We show that they are applicable to the Dirac theory as well, and we suggest that they are like...
Plexciton dirac points and topological modes
Onbaşlı, Mehmet Cengiz; Yuen-Zhou, Joel; K. Saikin, Semion; Zhu, Tony; Ross, Caroline A.; Bulovic, Vladimir; Baldo, Marc A.
2016-01-01
Plexcitons are polaritonic modes that result from the strong coupling between excitons and plasmons. Here, we consider plexcitons emerging from the interaction of excitons in an organic molecular layer with surface plasmons in a metallic film. We predict the emergence of Dirac cones in the two-dimensional band-structure of plexcitons due to the inherent alignment of the excitonic transitions in the organic layer. An external magnetic field opens a gap between the Dirac cones if the plexciton ...
Tunable multiple layered Dirac cones in optical lattices.
Lan, Z; Celi, A; Lu, W; Öhberg, P; Lewenstein, M
2011-12-16
We show that multiple layered Dirac cones can emerge in the band structure of properly addressed multicomponent cold fermionic gases in optical lattices. The layered Dirac cones contain multiple copies of massless spin-1/2 Dirac fermions at the same location in momentum space, whose different Fermi velocity can be tuned at will. On-site microwave Raman transitions can further be used to mix the different Dirac species, resulting in either splitting of or preserving the Dirac point (depending on the symmetry of the on-site term). The tunability of the multiple layered Dirac cones allows us to simulate a number of fundamental phenomena in modern physics, such as neutrino oscillations and exotic particle dispersions with E~p(N) for arbitrary integer N.
Type-II Symmetry-Protected Topological Dirac Semimetals
Chang, Tay-Rong; Xu, Su-Yang; Sanchez, Daniel S.; Tsai, Wei-Feng; Huang, Shin-Ming; Chang, Guoqing; Hsu, Chuang-Han; Bian, Guang; Belopolski, Ilya; Yu, Zhi-Ming; Yang, Shengyuan A.; Neupert, Titus; Jeng, Horng-Tay; Lin, Hsin; Hasan, M. Zahid
2017-07-01
The recent proposal of the type-II Weyl semimetal state has attracted significant interest. In this Letter, we propose the concept of the three-dimensional type-II Dirac fermion and theoretically identify this new symmetry-protected topological state in the large family of transition-metal icosagenides, M A3 (M =V , Nb, Ta; A =Al , Ga, In). We show that the VAl3 family features a pair of strongly Lorentz-violating type-II Dirac nodes and that each Dirac node can be split into four type-II Weyl nodes with chiral charge ±1 via symmetry breaking. Furthermore, we predict that the Landau level spectrum arising from the type-II Dirac fermions in VAl3 is distinct from that of known Dirac or Weyl semimetals. We also demonstrate a topological phase transition from a type-II Dirac semimetal to a quadratic Weyl semimetal or a topological crystalline insulator via crystalline distortions.
Simple Evaluation of Chiral Jacobian with Overlap Dirac Operator
Suzuki, H
1999-01-01
The chiral Jacobian, which is defined with Neuberger's overlap Dirac operator of lattice fermion, is explicitly evaluated in the continuum limit without expanding it in the gauge coupling constant. Our calculational scheme is simple and straightforward. We determine a coefficient of the chiral anomaly for general value of the bare mass parameter and the Wilson parameter of the overlap Dirac operator.
Tunneling of Dirac Particles from Kaluza-Klein Black Hole
Institute of Scientific and Technical Information of China (English)
ZENG Xiao-Xiong; LI Qiang
2009-01-01
Applying the fermions tunneling method, proposed by Kerner and Mann recently, we discuss the tunneling characteristics of Dirac particles from the stationary Kaluza-Klein black hole. To choose Gamma matrix conveniently and avoid the ergosphere dragging effect, we perform it in the dragging coordinate frame. The result shows that Hawking temperature in this case also can be reproduced by the general Dirac equation.
The Dirac Operator over Abelian Finite Groups
Vaz, Jr., Jayme
1997-01-01
In this paper we show how to construct a Dirac operator on a lattice in complete analogy with the continuum. In fact we consider a more general problem, that is, the Dirac operator over an abelian finite group (for which a lattice is a particular example). Our results appear to be in direct connexion with the so called fermion doubling problem. In order to find this Dirac operator we need to introduce an algebraic structure (that generalizes the Clifford algebras) where we have quantities tha...
Parabolic metamaterials and Dirac bridges
Colquitt, D. J.; Movchan, N. V.; Movchan, A. B.
2016-10-01
A new class of multi-scale structures, referred to as `parabolic metamaterials' is introduced and studied in this paper. For an elastic two-dimensional triangular lattice, we identify dynamic regimes, which corresponds to so-called `Dirac Bridges' on the dispersion surfaces. Such regimes lead to a highly localised and focussed unidirectional beam when the lattice is excited. We also show that the flexural rigidities of elastic ligaments are essential in establishing the `parabolic metamaterial' regimes.
Schwinger pair creation in Dirac semimetals in the presence of external magnetic and electric fields
Abramchuk, R. A.; Zubkov, M. A.
2016-12-01
We discuss the Schwinger pair creation process for the system of massless Dirac fermions in the presence of constant external magnetic and electric fields. The pair production rate remains finite unlike the vacuum decay rate. In the recently discovered Dirac semimetals, where the massless Dirac fermions emerge, this pair production may be observed experimentally through the transport properties. We estimate its contribution to the ordinary conductivity of the semimetals.
Classifying Two-dimensional Hyporeductive Triple Algebras
Issa, A Nourou
2010-01-01
Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.
Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure.
He, Qing Lin; Liu, Hongchao; He, Mingquan; Lai, Ying Hoi; He, Hongtao; Wang, Gan; Law, Kam Tuen; Lortz, Rolf; Wang, Jiannong; Sou, Iam Keong
2014-06-23
The realization of superconductivity at the interface between a topological insulator and an iron-chalcogenide compound is highly attractive for exploring several recent theoretical predictions involving these two new classes of materials. Here we report transport measurements on a Bi2Te3/FeTe heterostructure fabricated via van der Waals epitaxy, which demonstrate superconductivity at the interface, which is induced by the Bi2Te3 epilayer with thickness even down to one quintuple layer, though there is no clear-cut evidence that the observed superconductivity is induced by the topological surface states. The two-dimensional nature of the observed superconductivity with the highest transition temperature around 12 K was verified by the existence of a Berezinsky-Kosterlitz-Thouless transition and the diverging ratio of in-plane to out-plane upper critical field on approaching the superconducting transition temperature. With the combination of interface superconductivity and Dirac surface states of Bi2Te3, the heterostructure studied in this work provides a novel platform for realizing Majorana fermions.
Two-dimensional function photonic crystals
Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu
2016-01-01
In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.
Integrated optical Dirac physics via inversion symmetry breaking
Collins, Matthew J.; Zhang, Fan; Bojko, Richard; Chrostowski, Lukas; Rechtsman, Mikael C.
2016-12-01
Graphene and boron nitride are two-dimensional materials whose atoms are arranged in a honeycomb lattice. Their unique properties arise because their electrons behave like relativistic particles (without and with mass, respectively)—namely, they obey the Dirac equation. Here, we use a photonic analog of boron nitride to observe Dirac physics in a silicon integrated optical platform. This will allow for photonic applications of Dirac dispersions (gapped and ungapped) to be realized in an on-chip, integrated nanophotonic platform.
Casajús Ramo, A
2006-01-01
DIRAC is the LHCb Workload and Data Management System. Based on a service-oriented architecture, it enables generic distributed computing with lightweight Agents and Clients for job execution and data transfers. DIRAC implements a client-server architecture exposing server methods through XML Remote Procedure Call (XML-RPC) protocol. DIRAC is mostly coded in python. DIRAC security infrastructure has been designed to be a completely generic XML-RPC transport over a SSL tunnel. This new security layer is able to handle standard X509 certificates as well as grid-proxies to authenticate both sides of the connection. Serve and client authentication relies over OpenSSL and py-Open SSL, but to be able to handle grid proxies some modifications have been added to those libraries. DIRAC security infrastructure handles authorization and authorization as well as provides extended capabilities like secure connection tunneling and file transfer. Using this new security infrastructure all LHCb users can safely make use o...
Dirac fermions in strong gravitational fields
Silenko, A. J.
2013-01-01
arXiv publications (http://lanl.arxiv.org) arXiv:1308.2610 Comments: 9 pages Journal-ref: JETP Letters 98, 217 (2013) Subjects: High Energy Physics - Experiment (hep-ex); Accelerator Physics (physics.acc-ph); Atomic Physics (physics.atom-ph)
Dislocations in stripes and lattice Dirac fermions
Mesaroš, Andrej
2010-01-01
The central topic in this thesis is the effect of topological defects in two distinct types of condensed matter systems. The first type consists of graphene and topological insulators. By studying the long-range effect of lattice defects (dislocations and disclinations) we find that the graphene
Dislocations in stripes and lattice Dirac fermions
Mesaroš, Andrej
2010-01-01
The central topic in this thesis is the effect of topological defects in two distinct types of condensed matter systems. The first type consists of graphene and topological insulators. By studying the long-range effect of lattice defects (dislocations and disclinations) we find that the graphene ele
On Dirac Zero Modes in Hyperdiamond Model
Drissi, Lalla Btissam
2011-01-01
Using the SU(5) symmetry of the 4D hyperdiamond and results on 4D graphene, we engineer a class of 4D lattice QCD fermions whose Dirac operators have two zero modes. We show that generally the zero modes of the Dirac operator in hyperdiamond fermions are captured by a tensor {\\Omega}_{{\\mu}}^{l} with 4\\times5 complex components linking the Euclidean SO(4) vector {\\mu}; and the 5-dimensional representation of SU(5). The Bori\\c{c}i-Creutz (BC) and the Karsten-Wilzeck (KW) models as well as their Dirac zero modes are rederived as particular realizations of {\\Omega}_{{\\mu}}^{l}. Other features are also given. Keywords: Lattice QCD, Bori\\c{c}i-Creutz and Karsten-Wilzeck models, 4D hyperdiamond, 4D graphene, SU(5) Symmetry.
Dual of QCD with One Adjoint Fermion
Mojaza, Matin; Pica, Claudio; Sannino, Francesco
2011-01-01
We construct the magnetic dual of QCD with one adjoint Weyl fermion. The dual is a consistent solution of the 't Hooft anomaly matching conditions, allows for flavor decoupling and remarkably constitutes the first nonsupersymmetric dual valid for any number of colors. The dual allows to bound the anomalous dimension of the Dirac fermion mass operator to be less than one in the conformal window.
Hadamard States and Two-dimensional Gravity
Salehi, H
2001-01-01
We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.
Topological defects in two-dimensional crystals
Chen, Yong; Qi, Wei-Kai
2008-01-01
By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.
Renormalization of fermion mixing
Energy Technology Data Exchange (ETDEWEB)
Schiopu, R.
2007-05-11
Precision measurements of phenomena related to fermion mixing require the inclusion of higher order corrections in the calculation of corresponding theoretical predictions. For this, a complete renormalization scheme for models that allow for fermion mixing is highly required. The correct treatment of unstable particles makes this task difficult and yet, no satisfactory and general solution can be found in the literature. In the present work, we study the renormalization of the fermion Lagrange density with Dirac and Majorana particles in models that involve mixing. The first part of the thesis provides a general renormalization prescription for the Lagrangian, while the second one is an application to specific models. In a general framework, using the on-shell renormalization scheme, we identify the physical mass and the decay width of a fermion from its full propagator. The so-called wave function renormalization constants are determined such that the subtracted propagator is diagonal on-shell. As a consequence of absorptive parts in the self-energy, the constants that are supposed to renormalize the incoming fermion and the outgoing antifermion are different from the ones that should renormalize the outgoing fermion and the incoming antifermion and not related by hermiticity, as desired. Instead of defining field renormalization constants identical to the wave function renormalization ones, we differentiate the two by a set of finite constants. Using the additional freedom offered by this finite difference, we investigate the possibility of defining field renormalization constants related by hermiticity. We show that for Dirac fermions, unless the model has very special features, the hermiticity condition leads to ill-defined matrix elements due to self-energy corrections of external legs. In the case of Majorana fermions, the constraints for the model are less restrictive. Here one might have a better chance to define field renormalization constants related by
Chiral Dynamics With Wilson Fermions
Splittorff, K
2012-01-01
Close to the continuum the lattice spacing affects the smallest eigenvalues of the Wilson Dirac operator in a very specific manner determined by the way in which the discretization breaks chiral symmetry. These effects can be computed analytically by means of Wilson chiral perturbation theory and Wilson random matrix theory. A number of insights on chiral Dynamics with Wilson fermions can be obtained from the computation of the microscopic spectrum of the Wilson Dirac operator. For example, the unusual volume scaling of the smallest eigenvalues observed in lattice simulations has a natural explanation. The dynamics of the eigenvalues of the Wilson Dirac operator also allow us to determine the additional low energy constants of Wilson chiral perturbation theory and to understand why the Sharpe-Singleton scenario is only realized in unquenched simulations.
Emergent elemental two-dimensional materials beyond graphene
Zhang, Yuanbo; Rubio, Angel; Le Lay, Guy
2017-02-01
Two-dimensional (2D) materials may offer the ultimate scaling beyond the 5 nm gate length. The difficulty of reliably opening a band gap in graphene has led to the search for alternative, semiconducting 2D materials. Emerging classes of elemental 2D materials stand out for their compatibility with existing technologies and/or for their diverse, tunable electronic structures. Among this group, black phosphorene has recently shown superior semiconductor performances. Silicene and germanene feature Dirac-type band dispersions, much like graphene. Calculations show that most group IV and group V elements have one or more stable 2D allotropes, with properties potentially suitable for electronic and optoelectronic applications. Here, we review the advances in these fascinating elemental 2D materials and discuss progress and challenges in their applications in future opto- and nano-electronic devices.
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
On fermion masses in a dimensional reduction scheme
Energy Technology Data Exchange (ETDEWEB)
Barnes, K.J.; Forgacs, P.; Surridge, M.; Zoupanos, G.
1987-01-01
A candidate model for Grand Unification, arising from a Coset Space Dimensional Reduction scheme based on an E(7) gauge theory, is found to have a promising set of fermionic quantum numbers. Unfortunately, these fermions all develop large (geometric) masses. We derive formulae for the square of the Dirac operator and for fermion masses for a large class of CSDR schemes, revealing this as a general feature.
Schwinger model simulations with dynamical overlap fermions
Bietenholz, W; Volkholz, J
2007-01-01
We present simulation results for the 2-flavour Schwinger model with dynamical overlap fermions. In particular we apply the overlap hypercube operator at seven light fermion masses. In each case we collect sizable statistics in the topological sectors 0 and 1. Since the chiral condensate Sigma vanishes in the chiral limit, we observe densities for the microscopic Dirac spectrum, which have not been addressed yet by Random Matrix Theory (RMT). Nevertheless, by confronting the averages of the lowest eigenvalues in different topological sectors with chiral RMT in unitary ensemble we obtain -- for the very light fermion masses -- values for $\\Sigma$ that follow closely the analytical predictions in the continuum.
Schwinger model simulations with dynamical overlap fermions
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, W. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shcheredin, S. [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Volkholz, J. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2007-11-15
We present simulation results for the 2-flavour Schwinger model with dynamical overlap fermions. In particular we apply the overlap hypercube operator at seven light fermion masses. In each case we collect sizable statistics in the topological sectors 0 and 1. Since the chiral condensate {sigma} vanishes in the chiral limit, we observe densities for the microscopic Dirac spectrum, which have not been addressed yet by Random Matrix Theory (RMT). Nevertheless, by confronting the averages of the lowest eigenvalues in different topological sectors with chiral RMT in unitary ensemble we obtain - for the very light fermion masses - values for {sigma} that follow closely the analytical predictions in the continuum. (orig.)
Band Gap Engineering of Two-Dimensional Nitrogene
Li, Jie-Sen; Wang, Wei-Liang; Yao, Dao-Xin
2016-01-01
In our previous study, we have predicted the novel two-dimensional honeycomb monolayers of pnictogen. In particular, the structure and properties of the honeycomb monolayer of nitrogen, which we call nitrogene, are very unusual. In this paper, we make an in-depth investigation of its electronic structure. We find that the band structure of nitrogene can be engineered in several ways: controlling the stacking of monolayers, application of biaxial tensile strain, and application of perpendicular electric field. The band gap of nitrogene is found to decrease with the increasing number of layers. The perpendicular electric field can also reduce the band gap when it is larger than 0.18 V/Å, and the gap closes at 0.35 V/Å. A nearly linear dependence of the gap on the electric field is found during the process. Application of biaxial strain can decrease the band gap as well, and eventually closes the gap. After the gap-closing, we find six inequivalent Dirac points in the Brillouin zone under the strain between 17% and 28%, and the nitrogene monolayer becomes a Dirac semimetal. These findings suggest that the electronic structure of nitrogene can be modified by several techniques, which makes it a promising candidate for electronic devices. PMID:27680297
Gómez, F; Afanasev, L; Benayoun, M; Brekhovskikh, V; Caragheorgheopol, G; Cechák, T; Chiba, M; Constantinescu, S; Doudarev, A; Dreossi, D; Drijard, Daniel; Ferro-Luzzi, M; Gallas, M V; Gerndt, J; Giacomich, R; Gianotti, P; Goldin, D; Gorin, A; Gortchakov, O; Guaraldo, C; Hansroul, M; Hosek, R; Iliescu, M; Jabitski, M; Kalinina, N; Karpoukhine, V; Kluson, J; Kobayshi, M; Kokkas, P; Komarov, V; Koulikov, A; Kouptsov, A; Krouglov, V; Krouglova, L; Kuroda, K I; Lanaro, A; Lapshine, B; Lednicky, R; Leruste, P; Levisandri, P; López-Aguera, A; Lucherini, V; Mäki, T; Manuilov, I; Montanet, L; Narjoux, J L; Nemenov, L; Nikitin, M; Nunez Pardo, T; Okada, K; Olchevskii, V; Pazos, A; Pentia, M; Penzo, Aldo L; Perreau, J M; Petrascu, C; Pló, M; Ponta, T; Pop, D; Riazantsev, A; Rodríguez, J M; Rodriguez Fernandez, A; Rykaline, V; Santamarina, C; Saborido, J; Schacher, J; Sidorov, A; Smolik, J; Takeutchi, F; Tarasov, A; Tauscher, L; Tobar, M J; Trusov, S; Vasquez, P; Vlachos, S; Yazkov, V; Yoshimura, Y; Zrelov, P
2001-01-01
The main objective of DIRAC experiment is the measurement of the lifetime tau of the exotic hadronic atom consisting of pi /sup +/ and pi /sup -/ mesons. The lifetime of this atom is determined by the decay mode pi /sup +/ pi /sup -/ to pi /sup 0/ pi /sup 0/ due to the strong interaction. Through the precise relationship between the lifetime and the S-wave pion-pion scattering length difference a/sub 0/-a/sub 2/ for isospin 0 and 2 (respectively), a measurement of tau with an accuracy of 10% will allow a determination of a/sub 0/-a/sub 2/at a 5% precision level. Pion-pion scattering lengths have been calculated in the framework of chiral perturbation theory with an accuracy below 5%. In this way DIRAC experiment will provide a crucial test of the chiral symmetry breaking scheme in QCD effective theories at low energies. (19 refs).
Spin from defects in two-dimensional quantum field theory
Novak, Sebastian
2015-01-01
We build two-dimensional quantum field theories on spin surfaces starting from theories on oriented surfaces with networks of topological defect lines and junctions. The construction uses a combinatorial description of the spin structure in terms of a triangulation equipped with extra data. The amplitude for the spin surfaces is defined to be the amplitude for the underlying oriented surface together with a defect network dual to the triangulation. Independence of the triangulation and of the other choices follows if the line defect and junctions are obtained from a Delta-separable Frobenius algebra with involutive Nakayama automorphism in the monoidal category of topological defects. For rational conformal field theory we can give a more explicit description of the defect category, and we work out two examples related to free fermions in detail: the Ising model and the so(n) WZW model at level 1.
Equation of State of the Two-Dimensional Hubbard Model
Cocchi, Eugenio; Miller, Luke A.; Drewes, Jan H.; Koschorreck, Marco; Pertot, Daniel; Brennecke, Ferdinand; Köhl, Michael
2016-04-01
The subtle interplay between kinetic energy, interactions, and dimensionality challenges our comprehension of strongly correlated physics observed, for example, in the solid state. In this quest, the Hubbard model has emerged as a conceptually simple, yet rich model describing such physics. Here we present an experimental determination of the equation of state of the repulsive two-dimensional Hubbard model over a broad range of interactions 0 ≲U /t ≲20 and temperatures, down to kBT /t =0.63 (2 ) using high-resolution imaging of ultracold fermionic atoms in optical lattices. We show density profiles, compressibilities, and double occupancies over the whole doping range, and, hence, our results constitute benchmarks for state-of-the-art theoretical approaches.
Induced Rigid String Action From Fermions
Parthasarathy, R
1999-01-01
From the Dirac action on the world sheet, an effective action is obtained by integrating over the 4-dimensional fermion fields pulled back to the world sheet. This action consists of the Nambu-Goto area term with right dimensionful constant in front, extrinsic curvature action and the topological Euler characteristic term.
Covariant derivative of fermions and all that
Shapiro, Ilya L
2016-01-01
We present detailed pedagogical derivation of covariant derivative of fermions and some related expressions, including commutator of covariant derivatives and energy-momentum tensor of a free Dirac field. The text represents a part of the initial chapter of a one-semester course on semiclassical gravity.
Dirac Spectrum of the Wilson Dirac Operator for QCD with Two Colors
Kieburg, Mario; Zafeiropoulos, Savvas
2015-01-01
We study the lattice artefacts of the Wilson Dirac operator for QCD with two colors and fermions in the fundamental representation from the viewpoint of chiral perturbation theory. These effects are studied with the help of the following spectral observables: the level density of the Hermitian Wilson Dirac operator, the distribution of chirality over the real eigenvalues, and the chiral condensate for the quenched as well as for the unquenched theory. We provide analytical expressions for all these quantities. Moreover we derive constraints for the level density of the real eigenvalues of the non-Hermitian Wilson Dirac operator and the number of additional real modes. The latter is a good measure for the strength of lattice artefacts. All computations are confirmed by Monte Carlo simulations of the corresponding random matrix theory which agrees with chiral perturbation theory of two color QCD with Wilson fermions.
Observation of three-component fermions in the topological semimetal molybdenum phosphide
Lv, B. Q.; Feng, Z.-L.; Xu, Q.-N.; Gao, X.; Ma, J.-Z.; Kong, L.-Y.; Richard, P.; Huang, Y.-B.; Strocov, V. N.; Fang, C.; Weng, H.-M.; Shi, Y.-G.; Qian, T.; Ding, H.
2017-06-01
In quantum field theory, Lorentz invariance leads to three types of fermion—Dirac, Weyl and Majorana. Although the existence of Weyl and Majorana fermions as elementary particles in high-energy physics is debated, all three types of fermion have been proposed to exist as low-energy, long-wavelength quasiparticle excitations in condensed-matter systems. The existence of Dirac and Weyl fermions in condensed-matter systems has been confirmed experimentally, and that of Majorana fermions is supported by various experiments. However, in condensed-matter systems, fermions in crystals are constrained by the symmetries of the 230 crystal space groups rather than by Lorentz invariance, giving rise to the possibility of finding other types of fermionic excitation that have no counterparts in high-energy physics. Here we use angle-resolved photoemission spectroscopy to demonstrate the existence of a triply degenerate point in the electronic structure of crystalline molybdenum phosphide. Quasiparticle excitations near a triply degenerate point are three-component fermions, beyond the conventional Dirac-Weyl-Majorana classification, which attributes Dirac and Weyl fermions to four- and two-fold degenerate points, respectively. We also observe pairs of Weyl points in the bulk electronic structure of the crystal that coexist with the three-component fermions. This material thus represents a platform for studying the interplay between different types of fermions. Our experimental discovery opens up a way of exploring the new physics of unconventional fermions in condensed-matter systems.
Canonical quantization of a two-dimensional model with anomalous breaking of gauge invariance
Girotti, Horacio Oscar; Rothe, Heinz J.; Rothe, Klaus D.
1986-01-01
We investigate in detail the operator quantum dynamics of a two-dimensional model exhibiting anomalous breaking of gauge invariance. The equal-time algebra is systematically obtained by using the Dirac-bracket formalism for constrained systems. For certain values of the regularization parameter the system is shown to undergo drastic changes. For the value of the parameter corresponding to the chiral Schwinger model no operator solutions are found to exist.
On t-local solvability of inverse scattering problems in two-dimensional layered media
Baev, A. V.
2015-06-01
The solvability of two-dimensional inverse scattering problems for the Klein-Gordon equation and the Dirac system in a time-local formulation is analyzed in the framework of the Galerkin method. A necessary and sufficient condition for the unique solvability of these problems is obtained in the form of an energy conservation law. It is shown that the inverse problems are solvable only in the class of potentials for which the stationary Navier-Stokes equation is solvable.
Pseudo-Dirac dark matter leaves a trace.
De Simone, Andrea; Sanz, Veronica; Sato, Hiromitsu Phil
2010-09-17
Pseudo-Dirac dark matter is a viable type of dark matter which originates from a new Dirac fermion whose two Weyl states get slightly split in mass by a small Majorana term. The decay of the heavier to the lighter state naturally occurs over a detectable length scale. Thus, whenever pseudo-Dirac dark matter is produced in a collider, it leaves a clear trace: a visible displaced vertex in association with missing energy. Moreover, pseudo-Dirac dark matter behaves Dirac-like for relic abundance and Majorana-like in direct detection experiments. We provide a general effective field theory treatment, specializing to a pseudo-Dirac bino. The dark matter mass and the mass splitting can be extracted from measurements of the decay length and the invariant mass of the products, even in the presence of missing energy.
Two Dimensional Plasmonic Cavities on Moire Surfaces
Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla
2010-03-01
We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.
Two-dimensional function photonic crystals
Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng
2017-01-01
In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.
Two-Dimensional Planetary Surface Lander
Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.
2014-06-01
A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.
Slave-Fermion Mean-Field Theory of Heisenberg Model
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A nearly half-filled two-dimensional Heisenberg model is investigated. A slave-fermion method with fermions as the charge carriers and bosons as the spin carriers is proposed. The ground state shows antiferromagnetic long range order at T = 0. The spin-spin correlation and static susceptibility are also obtained.
Acoustoelectric current for composite fermions
Bergli, J.; Galperin, Y. M.
2001-07-01
The acoustoelectric current for composite fermions in a two-dimensional electron gas (2DEG) close to the half-filled Landau level is calculated in the random phase approximation. The Boltzmann equation is used to find the nonequilibrium distribution of composite fermions to second order in the acoustic field. It is shown that the oscillating Chern-Simons field created by the induced density fluctuations in the 2DEG is important for the acoustoelectric current. This leads to a violation of the Weinreich relation between the acoustoelectric current and acoustic intensity. The deviations from the Weinreich relation can be detected by measuring the angle between the longitudinal and the Hall components of the acoustoelectric current. This departure from the Weinreich relation gives additional information on the properties of the composite fermion fluid.
Instantons and Massless Fermions in Two Dimensions
Callan, C. G. Jr.; Dashen, R.; Gross, D. J.
1977-05-01
The role of instantons in the breakdown of chiral U(N) symmetry is studied in a two dimensional model. Chiral U(1) is always destroyed by the axial vector anomaly. For N = 2 chiral SU(N) is also spontaneously broken yielding massive fermions and three (decoupled) Goldstone bosons. For N greater than or equal to 3 the fermions remain massless. Realistic four dimensional theories are believed to behave in a similar way but the critical N above which the fermions cease to be massive is not known in four dimensions.
Fermionic bound states in distinct kinklike backgrounds
Energy Technology Data Exchange (ETDEWEB)
Bazeia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Mohammadi, A. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, Paraiba (Brazil)
2017-04-15
This work deals with fermions in the background of distinct localized structures in the two-dimensional spacetime. Although the structures have a similar topological character, which is responsible for the appearance of fractionally charged excitations, we want to investigate how the geometric deformations that appear in the localized structures contribute to the change in the physical properties of the fermionic bound states. We investigate the two-kink and compact kinklike backgrounds, and we consider two distinct boson-fermion interactions, one motivated by supersymmetry and the other described by the standard Yukawa coupling. (orig.)
Fermions on the electroweak string
Moreno, J M; Quirós, Mariano; Moreno, J M; Oaknin, D H; Quiros, M
1995-01-01
We construct a simple class of exact solutions of the electroweak theory including the naked Z--string and fermion fields. It consists in the Z--string configuration (\\phi,Z_\\theta), the {\\it time} and z components of the neutral gauge bosons (Z_{0,3},A_{0,3}) and a fermion condensate (lepton or quark) zero mode. The Z--string is not altered (no feed back from the rest of fields on the Z--string) while fermion condensates are zero modes of the Dirac equation in the presence of the Z--string background (no feed back from the {\\it time} and z components of the neutral gauge bosons on the fermion fields). For the case of the n--vortex Z--string the number of zero modes found for charged leptons and quarks is (according to previous results by Jackiw and Rossi) equal to |n|, while for (massless) neutrinos is |n|-1. The presence of fermion fields in its core make the obtained configuration a superconducting string, but their presence (as well as that of Z_{0,3},A_{0,3}) does not enhance the stability of the Z--stri...
Universal relations for the two-dimensional spin-1/2 Fermi gas with contact interactions
Energy Technology Data Exchange (ETDEWEB)
Valiente, Manuel; Zinner, Nikolaj T.; Moelmer, Klaus [Lundbeck Foundation Theoretical Center for Quantum System Research, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark)
2011-12-15
We present universal relations for a two-dimensional Fermi gas with pairwise contact interactions. The derivation of these relations is made possible by obtaining the explicit form of a generalized function--selector--in the momentum representation. The selector implements the short-distance boundary condition between two fermions in a straightforward manner and leads to simple derivations of the universal relations, in the spirit of Tan's original method for the three-dimensional gas.
Weyl, Majorana and Dirac fields from a unified perspective
Aste, Andreas
2016-01-01
A self-contained derivation of the formalism describing Weyl, Majorana and Dirac fields from a unified perspective is given based on a concise description of the representation theory of the proper orthochronous Lorentz group. Lagrangian methods play no role in the present exposition, which covers several fundamental aspects of relativistic field theory which are commonly not included in introductory courses treating fermionic fields via the Dirac equation in the first place.
Weyl, Majorana and Dirac Fields from a Unified Perspective
Directory of Open Access Journals (Sweden)
Andreas Aste
2016-08-01
Full Text Available A self-contained derivation of the formalism describing Weyl, Majorana and Dirac fields from a unified perspective is given based on a concise description of the representation theory of the proper orthochronous Lorentz group. Lagrangian methods play no role in the present exposition, which covers several fundamental aspects of relativistic field theory, which are commonly not included in introductory courses when treating fermionic fields via the Dirac equation in the first place.
Peccei-Quinn symmetry for Dirac seesaw and leptogenesis
Gu, Pei-Hong
2016-01-01
We extend the DFSZ invisible axion model to simultaneously explain small Dirac neutrino masses and cosmic matter-antimatter asymmetry. After the Peccei-Quinn and electroweak symmetry breaking, the effective Yukawa couplings of the Dirac neutrinos to the standard model Higgs scalar can be highly suppressed by the ratio of the vacuum expectation value of an iso-triplet Higgs scalar over the masses of some heavy gauge-singlet fermions, iso-doublet Higgs scalars or iso-triplet fermions. The iso-triplet fields can carry a zero or nonzero hypercharge. Through the decays of the heavy gauge-singlet fermions, iso-doublet scalars or iso-triplet fermions, we can obtain a lepton asymmetry in the left-handed leptons and an opposite lepton asymmetry in the right-handed neutrinos. Since the right-handed neutrinos do not participate in the sphaleron processes, the left-handed lepton asymmetry can be partially converted to a baryon asymmetry.
A simple derivation of the Overlap Dirac Operator
Fosco, C D; Neuberger, H
2007-01-01
We derive the vector-like four dimensional overlap Dirac operator starting from a five dimensional Dirac action in the presence of a delta-function space-time defect. The effective operator is obtained by first integrating out all the fermionic modes in the fixed gauge background, and then identifying the contribution from the localized modes as the determinant of an operator in one dimension less. We define physically relevant degrees of freedom on the defect by introducing an auxiliary defect-bound fermion field and integrating out the original five dimensional bulk field.
Interpolation by two-dimensional cubic convolution
Shi, Jiazheng; Reichenbach, Stephen E.
2003-08-01
This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.
Renormalization of two-dimensional quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Casana S, Rodolfo; Dias, Sebastiao A
1997-12-01
The Schwinger model, when quantized in a gauge non-invariant way exhibits a dependence on a parameter {alpha} (the Jackiw-Rajaraman parameter) in a way which is analogous to the case involving chiral fermions (the chiral Schwinger model). For all values of a {alpha}1, there are divergences in the fermionic Green`s functions. We propose a regularization of the generating functional Z [{eta}, {eta}, J] and we use it to renormalize the theory to one loop level, in a semi-perturbative sense. At the end of the renormalization procedure we find an implicit dependence of {alpha} on the renormalization scale {mu}. (author) 26 refs.
On the trace anomaly of a Weyl fermion
Bastianelli, Fiorenzo
2016-01-01
We calculate the trace anomaly of a Weyl fermion coupled to gravity by using Fujikawa's method supplemented by a consistent regulator. The latter is constructed out of Pauli-Villars regulating fields. The motivation for presenting such a calculation stems from recent studies that suggest that the trace anomaly of chiral fermions in four dimensions might contain an imaginary part proportional to the Pontryagin density. We find that the trace anomaly of a Weyl fermion is given by half the trace anomaly of a Dirac fermion, so that no imaginary part proportional to the Pontryagin density is seen to arise.
Wilson fermions and axion electrodynamics in optical lattices.
Bermudez, A; Mazza, L; Rizzi, M; Goldman, N; Lewenstein, M; Martin-Delgado, M A
2010-11-05
We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of relativistic lattice fermions in 3+1 dimensions. By exploiting laser-assisted tunneling, we find an analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.
TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION
Energy Technology Data Exchange (ETDEWEB)
Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)
2015-11-20
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.
Two dimensional topology of cosmological reionization
Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan
2015-01-01
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.
Fermi liquid-to-Bose condensate crossover in a two-dimensional ultracold gas experiment
Barmashova, T. V.; Mart'yanov, K. A.; Makhalov, V. B.; Turlapov, A. V.
2016-02-01
By controling interparticle interactions, it is possible to transform a fermionic system into a bosonic system and vice versa, while preserving quantum degeneracy. Evidence of such a transformation may be found by monitoring the pressure and interference. The Fermi pressure is an indication of the fermion?ic character of a system, while the interference implies a nonzero order parameter and Bose condensation. Lowering from three to two spatial dimensions introduces new physics and makes the system more difficult to describe due to the increased fluctuations and the reduced applicability of mean field methods. An experiment with a two-dimensional ultracold atomic gas shows a crossover between the Bose and Fermi limits, as evident from the value of pressure and from the interference pattern, and provides data to test models of 2D Fermi and Bose systems, including the most-difficult-to-model strongly coupled systems.
Phenomenology of Dirac Neutralino Dark Matter
Energy Technology Data Exchange (ETDEWEB)
Buckley, Matthew R.; Hooper, Dan; Kumar, Jason
2013-09-01
In supersymmetric models with an unbroken R-symmetry (rather than only R-parity), the neutralinos are Dirac fermions rather than Majorana. In this article, we discuss the phenomenology of neutralino dark matter in such models, including the calculation of the thermal relic abundance, and constraints and prospects for direct and indirect searches. Due to the large elastic scattering cross sections with nuclei predicted in R-symmetric models, we are forced to consider a neutralino that is predominantly bino, with very little higgsino mixing. We find a large region of parameter space in which bino-like Dirac neutralinos with masses between 10 and 380 GeV can annihilate through slepton exchange to provide a thermal relic abundance in agreement with the observed cosmological density, without relying on coannihilations or resonant annihilations. The signatures for the indirect detection of Dirac neutralinos are very different than predicted in the Majorana case, with annihilations proceeding dominately to $\\tau^+ \\tau^-$, $\\mu^+ \\mu^-$ and $e^+ e^-$ final states, without the standard chirality suppression. And unlike Majorana dark matter candidates, Dirac neutralinos experience spin-independent scattering with nuclei through vector couplings (via $Z$ and squark exchange), leading to potentially large rates at direct detection experiments. These and other characteristics make Dirac neutralinos potentially interesting within the context of recent direct and indirect detection anomalies. We also discuss the case in which the introduction of a small Majorana mass term breaks the $R$-symmetry, splitting the Dirac neutralino into a pair of nearly degenerate Majorana states.
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong
2016-12-01
The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.
Towards two-dimensional search engines
Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...
Zhou, Jian; Jena, Puru
2017-02-01
While most of the two-dimensional (2D) topological crystalline insulators (TCIs) belong to group IV-VI narrow-band-gap semiconductors in a square lattice, in the present work we predict a TCI family based on transition metal intercalated compounds in a hexagonal lattice. First-principles calculations combined with a substrate-fixed globally optimal structural search technique show that a layer of Os prefers a uniform distribution between two graphene sheets. Band dispersion calculations reveal a Dirac point and a Dirac nodal ring near the Fermi level. The Dirac point is ascribed to the hybridization of e2 and e2* orbitals, and the Dirac ring is formed due to dispersion of s and e1* orbitals. Upon inclusion of spin-orbit coupling, these Dirac states open topologically nontrivial local band gaps, which are characterized by nonzero mirror Chern numbers. The quantum spin Hall effect is also observed by integrating the spin Berry curvature in the Brillouin zone. In contrast to the 2D group IV-VI TCIs whose band inversions at X and Y points are "locked" by C4 rotation symmetry, here the relative energy of two local band gaps can be manipulated by in-plane biaxial strains. Some other similar intercalation compounds are also shown to be topologically nontrivial. Our work extends the 2D TCI family into a hexagonal lattice composed of transition metals.
Espin, Johnny
2015-01-01
It has been proposed several times in the past that one can obtain an equivalent, but in many aspects simpler description of fermions by first reformulating their first-order (Dirac) Lagrangian in terms of two-component spinors, and then integrating out the spinors of one chirality ($e.g.$ primed or dotted). The resulting new Lagrangian is second-order in derivatives, and contains two-component spinors of only one chirality. The new second-order formulation simplifies the fermion Feynman rules of the theory considerably, $e.g.$ the propagator becomes a multiple of an identity matrix in the field space. The aim of this thesis is to work out the details of this formulation for theories such as Quantum Electrodynamics, and the Standard Model of elementary particles. After having developed the tools necessary to establish the second-order formalism as an equivalent approach to spinor field theories, we proceed with some important consistency checks that the new formulation is required to pass, namely the presence...
Amplified Fermion Production from Overpopulated Bose Fields
Berges, J; Sexty, D
2014-01-01
We study the real-time dynamics of fermions coupled to scalar fields in a linear sigma model, which is often employed in the context of preheating after inflation or as a low-energy effective model for quantum chromodynamics. We find a dramatic amplification of fermion production in the presence of highly occupied bosonic quanta for weak as well as strong couplings. For this we consider the range of validity of different methods: lattice simulations with male/female fermions, the mode functions approach and the quantum 2PI effective action with its associated kinetic theory. For strongly coupled fermions we find a rapid approach to a Fermi-Dirac distribution with time-dependent temperature and chemical potential parameters, while the bosons are still far from equilibrium.
The principle of the Fermionic projector
Finster, Felix
2006-01-01
The "principle of the fermionic projector" provides a new mathematical framework for the formulation of physical theories and is a promising approach for physics beyond the standard model. This book begins with a brief review of relativity, relativistic quantum mechanics, and classical gauge theories, emphasizing the basic physical concepts and mathematical foundations. The external field problem and Klein's paradox are discussed and then resolved by introducing the fermionic projector, a global object in space-time that generalizes the notion of the Dirac sea. At the mathematical core of the book is a precise definition of the fermionic projector and the use of methods of hyperbolic differential equations for detailed analysis. The fermionic projector makes it possible to formulate a new type of variational principle in space-time. The mathematical tools are developed for the analysis of the corresponding Euler-Lagrange equations. A particular variational principle is proposed that gives rise to an effective...
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Kronecker Product of Two-dimensional Arrays
Institute of Scientific and Technical Information of China (English)
Lei Hu
2006-01-01
Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.
Two-Dimensional Toda-Heisenberg Lattice
Directory of Open Access Journals (Sweden)
Vadim E. Vekslerchik
2013-06-01
Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.
A novel two dimensional particle velocity sensor
Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.
2013-01-01
In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Two-dimensional magma-repository interactions
Bokhove, O.
2001-01-01
Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of
Two-dimensional subwavelength plasmonic lattice solitons
Ye, F; Hu, B; Panoiu, N C
2010-01-01
We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai
Spectrum of the fixed point Dirac operator in the Schwinger model
Farchioni, F; Lang, C B; Wohlgenannt, M
1999-01-01
Recently, properties of the fixed point action for fermion theories have been pointed out indicating realization of chiral symmetry on the lattice. We check these properties by numerical analysis of the spectrum of a parametrized fixed point Dirac operator investigating also microscopic fluctuations and fermion condensation.
Fermion Dipole Moment and Holography
Kulaxizi, Manuela
2015-01-01
In the background of a charged AdS black hole, we consider a Dirac particle endowed with an arbitrary magnetic dipole moment. For non-zero charge and dipole coupling of the bulk fermion, we find that the dual boundary theory can be plagued with superluminal modes. Requiring consistency of the dual CFT amounts to constraining the strength of the dipole coupling by an upper bound. We briefly discuss the implications of our results for the physics of holographic non-Fermi liquids.
Two-dimensional Chern semimetals on the Lieb lattice
Palumbo, Giandomenico; Meichanetzidis, Konstantinos
2015-12-01
In this work we propose a simple model that supports Chern semimetals. These gapless topological phases share several properties with the Chern insulators like a well-defined Chern number associated with each band, topologically protected edge states and topological phase transitions that occur when the bands touch each, with linear dispersion around the contact points. The tight-binding model, defined on the Lieb lattice with intra-unit-cell and suitable nearest-neighbor hopping terms between three different species of spinless fermions, supports a single Dirac-like point. The dispersion relation around this point is fully relativistic and the 3 ×3 matrices in the corresponding effective Hamiltonian satisfy the Duffin-Kemmer-Petiau algebra. We show the robustness of the topologically protected edge states by employing the entanglement spectrum. Moreover, we prove that the Chern number of the lowest band is robust with respect to weak disorder. For its simplicity, our model can be naturally implemented in real physical systems like cold atoms in optical lattices.
Accelerated expansion in bosonic and fermionic 2D cosmologies with quantum effects
Samojeden, L L; Devecchi, F P
2009-01-01
In this work we analyze the effects produced by bosonic and fermionic constituents, including quantum corrections, in two-dimensional (2D) cosmological models. We focus on a gravitational theory related to the Callan-Giddings-Harvey-Strominger model, to simulate the dynamics of a young, spatially-lineal, universe. The cosmic substratum is formed by an {\\it inflaton} field plus a matter component, sources of the 2D gravitational field; the degrees of freedom also include the presence of a dilaton field. We show that this combination permits, among other scenarios, the simulation of a period of inflation, that would be followed by a (bosonic/fermionic) matter dominated era. We also analyse how quantum effects contribute to the destiny of the expansion, given the fact that in 2D we have a consistent (renormalizable) quantum theory of gravity. The dynamical behavior of the system follows from the solution of the gravitational field equations, the (Klein-Gordon and Dirac) equations for the sources and the dilaton ...
Scale Of Fermion Mass Generation
Niczyporuk, J M
2002-01-01
Unitarity of longitudinal weak vector boson scattering implies an upper bound on the scale of electroweak symmetry breaking, Λ EWSB ≡ 8pv ≈ 1 TeV. Appelquist and Chanowitz have derived an analogous upper bound on the scale of fermion mass generation, proportional to v 2/mf, by considering the scattering of same-helicity fermions into pairs of longitudinal weak vector bosons in a theory without a standard Higgs boson. We show that there is no upper bound, beyond that on the scale of electroweak symmetry breaking, in such a theory. This result is obtained by considering the same process, but with a large number of longitudinal weak vector bosons in the final state. We further argue that there is no scale of (Dirac) fermion mass generation in the standard model. In contrast, there is an upper bound on the scale of Majorana-neutrino mass generation, given by ΛMaj ≡ 4πv2/m ν. In general, the upper bound on the scale of fermion mass generation depend...
Schroedinger functional formalism with Ginsparg-Wilson fermion
Taniguchi, Y
2005-01-01
The Schroedinger functional formalism is given as a field theory in a finite volume with a Dirichlet boundary condition in temporal direction. When one tries to construct this formalism with the Ginsparg-Wilson fermion including the overlap Dirac operator and the domain-wall fermion one easily runs into difficulties. The reason is that if the Dirichlet boundary condition is simply imposed on the Wilson Dirac operator $DW$ inside of the overlap Dirac operator an exponentially small eigenvalue appears in $DW$, which affects the locality properties of the operator. In this paper we propose a new procedure to impose the Schroedinger functional Dirichlet boundary condition on the overlap Dirac operator using an orbifolding projection.
The Fermionic Signature Operator and Hadamard States in the Presence of a Plane Electromagnetic Wave
Finster, Felix
2016-01-01
We give a non-perturbative construction of a distinguished state for the quantized Dirac field in Minkowski space in the presence of a time-dependent external field of the form of a plane electromagnetic wave. By explicit computation of the fermionic signature operator, it is shown that the Dirac operator has the strong mass oscillation property. We prove that the resulting fermionic projector state is a Hadamard state.
Berry phase jumps and giant nonreciprocity in Dirac quantum dots
Rodriguez-Nieva, Joaquin F.; Levitov, Leonid S.
2016-12-01
We predict that a strong nonreciprocity in the resonance spectra of Dirac quantum dots can be induced by the Berry phase. The nonreciprocity arises in relatively weak magnetic fields and is manifest in anomalously large field-induced splittings of quantum dot resonances which are degenerate at B =0 due to time-reversal symmetry. This exotic behavior, which is governed by field-induced jumps in the Berry phase of confined electronic states, is unique to quantum dots in Dirac materials and is absent in conventional quantum dots. The effect is strong for gapless Dirac particles and can overwhelm the B -induced orbital and Zeeman splittings. A finite Dirac mass suppresses the effect. The nonreciprocity, predicted for generic two-dimensional Dirac materials, is accessible through Faraday and Kerr optical rotation measurements and scanning tunneling spectroscopy.
On the integrable gravity coupled to fermions
Belinski, Vladimir A
2016-01-01
In the present paper we indicate an extension of the pure gravity inverse scattering integration technique (developed in [2]) to the case when fermions are present. With this extension the integrability of the maximal supergravity $N=16$ in two space-time dimensions constructed in [1] is revisited. In addition to the results of the article [1] the spectral linear problem proposed in the present paper covers also the Dirac-like fermionic equations of motion and is free of the second order poles with respect to the spectral parameter. The procedure of constructing the exact super-solitonic solutions is outlined.
Wilson Fermions on a Randomly Triangulated Manifold
Burda, Z; Krzywicki, A
1999-01-01
A general method of constructing the Dirac operator for a randomly triangulated manifold is proposed. The fermion field and the spin connection live, respectively, on the nodes and on the links of the corresponding dual graph. The construction is carried out explicitly in 2-d, on an arbitrary orientable manifold without boundary. It can be easily converted into a computer code. The equivalence, on a sphere, of Majorana fermions and Ising spins in 2-d is rederived. The method can, in principle, be extended to higher dimensions.
Electronics based on two-dimensional materials.
Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi
2014-10-01
The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-04-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.
Towards two-dimensional search engines
Ermann, Leonardo; Shepelyansky, Dima L
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.
Toward two-dimensional search engines
Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-07-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.
Energy Technology Data Exchange (ETDEWEB)
Karbstein, Felix
2009-07-08
We introduce a new method for dealing with fermionic quantum field theories amenable to a mean-field-type approximation. In this work we focus on the relativistic Hartree approximation. Our aim is to integrate out the Dirac sea and derive a no-sea effective theory'' with positive energy single particle states only. As the derivation of the no-sea effective theory involves only standard Feynman diagrams, our approach is quite general and not restricted to particular space-time dimensions. We develop and illustrate the approach in the ''large N'' limit of the Gross-Neveu model family in 1+1 dimensions. As the Gross-Neveu model has been intensely studied and several analytical solutions are known for this model, it is an ideal testing ground for our no-sea effective theory approach. The chiral Gross-Neveu model, also referred to as 1+1 dimensional Nambu-Jona-Lasinio model, turns out to be of particular interest. In this case, we explicitly derive a consistent effective theory featuring both elementary ''{pi} meson'' fields and (positive energy) ''quark'' fields, starting from a purely fermionic quantum field theory. In the second part of this work, we apply our approach to the Walecka model in 1+1 and 3+1 dimensions. As the Dirac sea caused considerable difficulties in attempts to base nuclear physics on field theoretic models like the Walecka model, mean-field calculations were typically done without the sea. We confront several of these mean-field theory results with our no-sea effective theory approach. The potential of our approach is twofold. While the no-sea effective theory can be utilized to provide new analytical insights in particular parameter regimes, it also sheds new light on more fundamental issues as the explicit emergence of effective, Dirac-sea induced multi-fermion interactions in an effective theory with positive energy states only. (orig.)
Two-Dimensional Scheduling: A Review
Directory of Open Access Journals (Sweden)
Zhuolei Xiao
2013-07-01
Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
String breaking in two-dimensional QCD
Hornbostel, K J
1999-01-01
I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.
Two-dimensional supramolecular electron spin arrays.
Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya
2013-05-07
A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two dimensional echocardiographic detection of intraatrial masses.
DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S
1981-11-01
With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.
Random matrix theory and the spectra of overlap fermions
Energy Technology Data Exchange (ETDEWEB)
Shcheredin, S.; Bietenholz, W.; Chiarappa, T.; Jansen, K.; Nagai, K.-I
2004-03-01
The application of Random Matrix Theory to the Dirac operator of QCD yields predictions for the probability distributions of the lowest eigenvalues. We measured Dirac operator spectra using massless overlap fermions in quenched QCD at topological charge {nu} = 0, {+-} 1 and {+-}2, and found agreement with those predictions -- at least for the first non-zero eigenvalue -- if the volume exceeds about (1.2 fm){sup 4}.
Tunnelling of scalar and Dirac particles from squashed charged rotating Kaluza-Klein black holes
Energy Technology Data Exchange (ETDEWEB)
Stetsko, M.M. [Ivan Franko National University of Lviv, Department of Theoretical Physics, Lviv (Ukraine)
2016-02-15
The thermal radiation of scalar particles and Dirac fermions from squashed charged rotating five-dimensional black holes is considered. To obtain the temperature of the black holes we use the tunnelling method. In the case of scalar particles we make use of the Hamilton-Jacobi equation. To consider tunnelling of fermions the Dirac equation was investigated. The examination shows that the radial parts of the action for scalar particles and fermions in the quasi-classical limit in the vicinity of horizon are almost the same and as a consequence it gives rise to identical expressions for the temperature in the two cases. (orig.)
Tunnelling of scalar and Dirac particles from squashed charged rotating Kaluza-Klein black holes
Stetsko, M. M.
2016-02-01
The thermal radiation of scalar particles and Dirac fermions from squashed charged rotating five-dimensional black holes is considered. To obtain the temperature of the black holes we use the tunnelling method. In the case of scalar particles we make use of the Hamilton-Jacobi equation. To consider tunnelling of fermions the Dirac equation was investigated. The examination shows that the radial parts of the action for scalar particles and fermions in the quasi-classical limit in the vicinity of horizon are almost the same and as a consequence it gives rise to identical expressions for the temperature in the two cases.
Low-lying Dirac operator eigenvalues, lattice effects and random matrix theory
Heller, Urs M
2011-01-01
Recently, random matrix theory predictions for the distribution of low-lying Dirac operator eigenvalues have been extended to include lattice effects for both staggered and Wilson fermions. We computed low-lying eigenvalues for the Hermitian Wilson-Dirac operator and for improved staggered fermions on several quenched ensembles with size $\\approx 1.5$ fm. Comparisons to the expectations from RMT with lattice effects included are made. Wilson RMT describes our Wilson data nicely. For improved staggered fermions we find strong indications that taste breaking effects on the low-lying spectrum disappear in the continuum limit, as expected from staggered RMT.
Fermions tunneling from the Horowitz-Strominger Dilaton black hole
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Based on the work of Kerner and Mann, fermions tunneling from the Horowitz-Strominger Dilaton black hole on the membrane is studied. Owing to the coupling among electromagnetic field, matter field and gravity field, the Dirac equation of charged particles is introduced, and according to that, the expected emission temperature is obtained. After the self-gravitational interaction is considered, it is found that the tunneling rate of fermions also satisfies the underlying Unitary theory as the case of scalar particles.
Implementation of the Neuberger-Dirac operator on GPUs
Walk, Bjoern; Dranischnikow, Egor; Schömer, Elmar
2010-01-01
Recent developments have shown that a lot can be gained for QCD simulations from GPU hardware. This can be exploited especially in the case of Ginsparg-Wilson fermions when the com putational costs are particularly high. In this work, we use the Neuberger-Dirac operator as our realisation of Ginsparg-Wilson fermions, which greatly facilitate lattice investigations of decays like $K \\to \\pi\\pi$. We report on the ongoing study of our GPU implementation of the Neuberger-Dirac operator including the exact treatment of the low lying eigenmodes of the Wilson-Dirac operator. Our benchmarks show that we achieve speed-up factors of around 23 and 16 in single and double precision, respectively.
Screening in two-dimensional gauge theories
Korcyl, Piotr
2012-01-01
We analyze the problem of screening in 1+1 dimensional gauge theories. Using QED2 as a warm-up for the non-abelian models we show the mechanism of the string breaking, in particular the vanishing overlap of the Wilson loops to the broken-string ground state that has been conjectured in higher-dimensional analyses. We attempt to extend our analysis to non-integer charges in the quenched and unquenched cases, in pursuit of the numerical check of a renowned result for the string tension between arbitrarily-charged fermions in the massive Schwinger model.
Screening in two-dimensional gauge theories
Energy Technology Data Exchange (ETDEWEB)
Korcyl, Piotr [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koren, Mateusz [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki
2012-12-15
We analyze the problem of screening in 1+1 dimensional gauge theories. Using QED{sub 2} as a warmup for the non-abelian models we show the mechanism of the string breaking, in particular the vanishing overlap of the Wilson loops to the broken-string ground state that has been conjectured in higher-dimensional analyses. We attempt to extend our analysis to non-integer charges in the quenched and unquenched cases, in pursuit of the numerical check of a renowned result for the string tension between arbitrarily-charged fermions in the massive Schwinger model.
Nonequilibrium fermion production in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Pruschke, Jens
2010-06-16
The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio
Overlap fermions on a twisted mass sea
Bär, O; Schäefer, S; Scorzato, L; Shindler, A
2006-01-01
We present first results of a mixed action project. We analyze gauge configurations generated with two flavors of dynamical twisted mass fermions. Neuberger's overlap Dirac operator is used for the valence sector. The various choices in the setup of the simulation are discussed. We employ chiral perturbation theory to describe the effects of using different actions in the sea and valence sector at non-zero lattice spacing.
Topological phases in the Neuberger-Dirac operator
Chiu, Ting-Wai
1999-12-01
The response of the Neuberger-Dirac fermion operator D=1+V in the topologically nontrivial background gauge field depends on the negative mass parameter m0 in the Wilson-Dirac fermion operator Dw, which enters D through the unitary operator V=Dw(D†wDw)-1/2. We classify the topological phases of D by comparing its index to the topological charge of the smooth background gauge field. An exact discrete symmetry in the topological phase diagram is proved for any gauge configurations. A formula for the index of D in each topological phase is derived by obtaining the total chiral charge of the zero modes in the exact solution of the free fermion propagator.
Wang, Zhijun; Alexandradinata, A.; Cava, Robert J.; Bernevig, B. Andrei
Spatial symmetries in crystals are distinguished by whether they preserve the spatial origin. We show how this basic geometric property gives rise to a new topology in band insulators. We study spatial symmetries that translate the origin by a fraction of the lattice period, and find that these nonsymmorphic symmetries protect a novel surface fermion whose dispersion is shaped like an hourglass; surface bands connect one hourglass to the next in an unbreakable zigzag pattern. These exotic fermions are materialized in the large-gap insulators: KHg X (X = As,Sb,Bi), which we propose as the first material class whose topology relies on nonsymmorphic symmetries. Beside the hourglass fermion, a different surface of KHg X manifests a 3D generalization of the quantum spin Hall effect. To describe the bulk topology of nonsymmorphic crystals, we propose a non-Abelian generalization of the geometric theory of polarization. Our nontrivial topology originates not from an inversion of the parity quantum numbers, but rather of the rotational quantum numbers, which we propose as a fruitful in the search for topological materials. Finally, KHg X uniquely exemplifies a cohomological insulator, a concept that we will introduce in a companion work.
Weakly disordered two-dimensional Frenkel excitons
Boukahil, A.; Zettili, Nouredine
2004-03-01
We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.
Two-dimensional photonic crystal surfactant detection.
Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A
2012-08-07
We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.
Theory of two-dimensional transformations
Kanayama, Yutaka J.; Krahn, Gary W.
1998-01-01
The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...
Two-dimensional ranking of Wikipedia articles
Zhirov, A O; Shepelyansky, D L
2010-01-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Liu, Zhirong
2016-01-01
The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Dynamics of film. [two dimensional continua theory
Zak, M.
1979-01-01
The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.
Mass anomalous dimension and running of the coupling in SU(2) with six fundamental fermions
DEFF Research Database (Denmark)
Bursa, Francis; Del Debbio, Luigi; Keegan, Liam
2010-01-01
We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. By using the Schr\\"odinger Functional method we measure the running of the coupling and the fermion mass over a wide range of length scales. We observe very slow running of the coupling and construct an estimator...
Lorentz Invariance Violation and Modified Hawking Fermions Tunneling Radiation
Directory of Open Access Journals (Sweden)
Shu-Zheng Yang
2016-01-01
Full Text Available Recently the modified Dirac equation with Lorentz invariance violation has been proposed, which would be helpful to resolve some issues in quantum gravity theory and high energy physics. In this paper, the modified Dirac equation has been generalized in curved spacetime, and then fermion tunneling of black holes is researched under this correctional Dirac field theory. We also use semiclassical approximation method to get correctional Hamilton-Jacobi equation, so that the correctional Hawking temperature and correctional black hole’s entropy are derived.
Canonical analysis of scalar fields in two-dimensional curved space
McKeon, D. G. C.; Patrushev, Alexander
2011-12-01
Scalar fields on a two-dimensional curved surface are considered and the canonical structure of this theory analyzed. Both the first- and second-order forms of the Einstein-Hilbert (EH) action for the metric are used (these being inequivalent in two dimensions). The Dirac constraint formalism is used to find the generator of the gauge transformation, using the formalisms of Henneaux, Teitelboim and Zanelli (HTZ) and of Castellani (C). The HTZ formalism is slightly modified in the case of the first-order EH action to accommodate the gauge transformation of the metric; this gauge transformation is unusual as it mixes the affine connection with the scalar field.
Optical Spectroscopy of Two Dimensional Graphene and Boron Nitride
Ju, Long
This dissertation describes the use of optical spectroscopy in studying the physical properties of two dimensional nano materials like graphene and hexagonal boron nitride. Compared to bulk materials, atomically thin two dimensional materials have a unique character that is the strong dependence of physical properties on external control. Both electronic band structure and chemical potential can be tuned in situ by electric field-which is a powerful knob in experiment. Therefore the optical study at atomic thickness scale can greatly benefit from modern micro-fabrication technique and electric control of the material properties. As will be shown in this dissertation, such control of both gemometric and physical properties enables new possibilities of optical spectroscopic measurement as well as opto-electronic studies. Other experimental techniques like electric transport and scanning tunneling microscopy and spectroscopy are also combined with optical spectroscopy to reveal the physics that is beyond the reach of each individual technique. There are three major themes in the dissertation. The first one is focused on the study of plasmon excitation of Dirac electrons in monolayer graphene. Unlike plasmons in ordinary two dimensional electron gas, plasmons of 2D electrons as in graphene obey unusual scaling laws. We fabricate graphene micro-ribbon arrays with photolithography technique and use optical absorption spectroscopy to study its absorption spectrum. The experimental result demonstrates the extraordinarily strong light-plasmon coupling and its novel dependence on both charge doping and geometric dimensions. This work provides a first glance at the fundamental properties of graphene plasmons and forms the basis of an emerging subfield of graphene research and applications such as graphene terahertz metamaterials. The second part describes the opto-electronic response of heterostructures composed of graphene and hexagonal boron nitride. We found that there is
Two-dimensional gauge theoretic supergravities
Cangemi, D.; Leblanc, M.
1994-05-01
We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
Two-dimensional shape memory graphene oxide
Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe
2016-06-01
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.
Wilson Fermions with Four Fermion Interactions
Rantaharju, Jarno; Pica, Claudio; Sannino, Francesco
2016-01-01
Four fermion interactions appear in many models of Beyond Standard Model physics. In Technicolour and composite Higgs models Standard Model fermion masses can be generated by four fermion terms. They are also expected to modify the dynamics of the new strongly interacting sector. In particular in technicolour models it has been suggested that they can be used to break infrared conformality and produce a walking theory with a large mass anomalous dimension. We study the SU(2) gauge theory with 2 adjoint fermions and a chirally symmetric four fermion term. We demonstrate chiral symmetry breaking at large four fermion coupling and study the phase diagram of the model.
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2007-01-01
Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.
Mass anomalous dimension and running of the coupling in SU(2) with six fundamental fermions
Bursa, Francis; Keegan, Liam; Pica, Claudio; Pickup, Thomas
2010-01-01
We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. By using the Schr\\"odinger Functional method we measure the running of the coupling and the fermion mass over a wide range of length scales. We observe very slow running of the coupling and construct an estimator for the fermion mass anomalous dimension giving $0.135 <\\gamma< 1.03$ in the region compatible with an IR fixed point.
Fermionic coset realization of primaries in critical statistical models
Cabra, D C; Rothe, K D
1995-01-01
We obtain a fermionic coset realization of the primaries of minimal unitary models and show how their four-point functions may be calculated by the use of a reduction formula. We illustrate the construction for the Ising model, where we obtain an explicit realization of the energy operator, Onsager fermions, as well as of the order and disorder operators realizing the dual algebra, in terms of constrained Dirac fermions. The four-point correlators of these operators are shown to agree with those obtained by other methods.
Large-N reduction with adjoint Wilson fermions
Bringoltz, Barak; Sharpe, Stephen R
2012-01-01
We analyze the large-N behavior of SU(N) lattice gauge theories with adjoint fermions by studying volume-reduced models, as pioneered by Eguchi and Kawai. We perform simulations on a single-site lattice for Nf = 1 and Nf = 2 Wilson Dirac fermions with values of N up to 53. We show for both values of Nf that in the large-N limit there is a finite region, containing both light and heavy fermions, of unbroken center symmetry where the theory exhibits volume independence. Using large-N reduction we attempt to calculate physical quantities such as the string tension and meson masses.
Multifarious topological quantum phase transitions in two-dimensional topological superconductors
Liu, Xiao-Ping; Zhou, Yuan; Wang, Yi-Fei; Gong, Chang-De
2016-06-01
We study the two-dimensional topological superconductors of spinless fermions in a checkerboard-lattice Chern-insulator model. With the short-range p-wave superconducting pairing, multifarious topological quantum phase transitions have been found and several phases with high Chern numbers have been observed. We have established a rich phase diagram for these topological superconducting states. A finite-size checkerboard-lattice cylinder with a harmonic trap potential has been further investigated. Based upon the self-consistent numerical calculations of the Bogoliubov-de Gennes equations, various phase transitions have also been identified at different regions of the system. Multiple pairs of Majorana fermions are found to be well-separated and localized at the phase boundaries between the phases characterized by different Chern numbers.
Batrouni, George
2011-03-01
I will discuss pairing in fermionic systems in one- and two-dimensional optical lattices with population imbalance. This will be done in the context of the attractive fermionic Hubbard model using the Stochastic Green Function algorithm in d=1 while for d=2 we use Determinant Quantum Monte Carlo. This is the first exact QMC study examining the effects of finite temperature which is very important in experiments on ultra-cold atoms. Our results show that, in the ground state, the dominant pairing mechanism is at nonzero center of mass momentum, i.e. FFLO. I will then discuss the effect of finite temperature in the uniform and confined systems and present finite temperature phase diagrams. The numerical results will be compared with experiments. With M. J. Wolak (CQT, National University of Singapore) and V. G. Rousseau (Department of Physics and Astronomy, Louisiana State University).
Multifarious topological quantum phase transitions in two-dimensional topological superconductors
Liu, Xiao-Ping; Zhou, Yuan; Wang, Yi-Fei; Gong, Chang-De
2016-01-01
We study the two-dimensional topological superconductors of spinless fermions in a checkerboard-lattice Chern-insulator model. With the short-range p-wave superconducting pairing, multifarious topological quantum phase transitions have been found and several phases with high Chern numbers have been observed. We have established a rich phase diagram for these topological superconducting states. A finite-size checkerboard-lattice cylinder with a harmonic trap potential has been further investigated. Based upon the self-consistent numerical calculations of the Bogoliubov-de Gennes equations, various phase transitions have also been identified at different regions of the system. Multiple pairs of Majorana fermions are found to be well-separated and localized at the phase boundaries between the phases characterized by different Chern numbers. PMID:27329219
More on two-dimensional O (N ) models with N =(0 ,1 ) supersymmetry
Peterson, Adam J.; Kurianovych, Evgeniy; Shifman, Mikhail
2016-03-01
We study the behavior of two-dimensional supersymmetric connections of n copies of O (N ) models with an N =(0 ,1 ) heterotic deformation generated by a right-moving fermion. We develop the model in analogy with the connected N =(0 ,2 ) C P (N -1 ) models for the case of a single connecting fermionic superfield. We calculate the effective potential in the large-N limit and determine the vacuum field configurations. Similarly to other supersymmetry (SUSY) connected models we find that SUSY is unbroken under certain conditions despite the vanishing of the Witten index. Specifically, this preservation of SUSY occurs when we have an even number n of O (N ) families. As in previous cases we show that this result follows from a Zn symmetry under a particular exchange of the O (N ) families. This leads to a definition of a modified Witten index, which guarantees the preservation of SUSY in this case.
Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals
Zhang, Si-Qi; Lu, Jing-Bin; Liang, Yu; Ma, Ji; Li, Hong; Li, Xue; Liu, Xiao-Jing; Wu, Xiang-Yao; Meng, Xiang-Dong
2017-02-01
Not Available Project supported by the National Natural Science Foundations of China (Grant No. 61275047), the Research Project of Chinese Ministry of Education (Grant No. 213009A), and the Scientific and Technological Development Foundation of Jilin Province, China (Grant No. 20130101031JC).
Aldaihan, S; Long, J C; Snow, W M
2016-01-01
Various theories beyond the Standard Model predict new particles with masses in the sub-eV range with very weak couplings to ordinary matter which can possess spin-dependent couplings to electrons and nucleons. Present laboratory constraints on exotic spin-dependent interactions with pseudoscalar and axial couplings for exchange boson masses between meV and eV are very poor compared to constraints on spin-independent interactions in the same mass range arising from spin-0 and spin-1 boson exchange. It is therefore interesting to analyze in a general way how one can use the strong experimental bounds on spin-independent interactions to also constrain spin-dependent interactions by considering higher-order exchange processes. The exchange of a pair of bosons between two fermions with spin-dependent couplings will possess contributions which flip spins twice and thereby generate a polarization-independent interaction energy which can add coherently between two unpolarized objects. In this paper we derive the dom...
Chiral fermion dynamics in 2d magnetic vortices: Manifestation of momentum-spin-locking
Pötz, W.; Hammer, René
2016-11-01
The electronic surface-states of a topological insulator in the presence of an in-plane magnetization vortex M (ϕ)=M (cos(Φ+νϕ), sin(Φ+νϕ)) are investigated theoretically. For a general angle of magnetization Φ∈[0 ,2 π) and topological charge ν = 1, the modifications to the zero-mass single Dirac cone dispersion are treated exactly and the spectrum of bound eigenstates which forms in the energy window ±M cos(Φ) is derived. The space-time resolved dynamics of Dirac fermions in the presence of such vortices is studied numerically using a single-cone (2 + 1)D finite-difference scheme. In the continuous spectral region, Φ-dependent scattering of Dirac fermions at the vortex is observed. Depending on the type of vortex ( Φ, ν) and the impact parameter, the propagation direction of the Dirac fermion is changed: the magnetization of the vortex exerts a torque onto the fermion spin which, by momentum-spin locking associated with the helical Dirac states, results in an in-plane rotation of the propagation direction of the scattered Dirac fermion. In head-on collisions of a Gaussian wave-packet with ν = 1 vortices a Φ-dependent lensing effect is seen in our simulations. Depending on the direction of incidence, the vortex Φ=-π/2 , ν = 2 is identified as a coherent particle-beam splitter or "condenser" in head-on collisions.
Common Origin of Neutrino Mass, Dark Matter and Dirac Leptogenesis
Borah, Debasish
2016-01-01
We study the possibility of generating tiny Dirac neutrino masses at one loop level through the \\textit{scotogenic} mechanism such that one of the particles going inside the loop can be a stable cold dark matter (DM) candidate. Majorana mass terms of singlet fermions as well as tree level Dirac neutrino masses are prevented by incorporating the presence of additional discrete symmetries in a minimal fashion, which also guarantee the stability of the dark matter candidate. Due to the absence of total lepton number violation, the observed baryon asymmetry of the Universe is generated through the mechanism of Dirac leptogenesis where an equal and opposite amount of leptonic asymmetry is generated in the left and right handed sectors which are prevented from equilibration due to tiny Dirac Yukawa couplings. Dark matter relic abundance is generated through its usual freeze-out at a temperature much below the scale of leptogenesis. We constrain the relevant parameter space from neutrino mass, baryon asymmetry, Plan...
Optimal excitation of two dimensional Holmboe instabilities
Constantinou, Navid C
2010-01-01
Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...
Phonon hydrodynamics in two-dimensional materials.
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-06
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Probabilistic Universality in two-dimensional Dynamics
Lyubich, Mikhail
2011-01-01
In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.
Two-dimensional position sensitive neutron detector
Indian Academy of Sciences (India)
A M Shaikh; S S Desai; A K Patra
2004-08-01
A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.
Two-dimensional heterostructures for energy storage
Pomerantseva, Ekaterina; Gogotsi, Yury
2017-07-01
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Rationally synthesized two-dimensional polymers.
Colson, John W; Dichtel, William R
2013-06-01
Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.
Janus Spectra in Two-Dimensional Flows
Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki
2016-09-01
In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.
Local doping of two-dimensional materials
Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.
2016-09-20
This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.
Two-dimensional fourier transform spectrometer
Energy Technology Data Exchange (ETDEWEB)
DeFlores, Lauren; Tokmakoff, Andrei
2016-10-25
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP
Institute of Scientific and Technical Information of China (English)
Chen Jiangfeng; Yuan Baozong; Pei Bingnan
2008-01-01
Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.
Equivalency of two-dimensional algebras
Energy Technology Data Exchange (ETDEWEB)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica
2011-07-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
Bose Symmetry and Chiral Decomposition of 2D Fermionic Determinants
Abreu, Everton M C; Wotzasek, C
1998-01-01
We show in a precise way, either in the fermionic or its bosonized version, that Bose symmetry provides a systematic way to carry out the chiral decomposition of the two dimensional fermionic determinant. Interpreted properly, we show that there is no obstruction of this decomposition to gauge invariance, as is usually claimed. Finally, a new way of interpreting the Polyakov-Wiegman identity is proposed.
Bose symmetry and chiral decomposition of 2D fermionic determinants
Abreu, E. M. C.; Banerjee, R.; Wotzasek, C.
1998-01-01
We show in a precise way, either in the fermionic or its bosonized version, that Bose symmetry provides a systematic way to carry out the chiral decomposition of the two-dimensional fermionic determinant. Interpreted properly, we show that there is no obstruction of this decomposition to gauge invariance, as is usually claimed. Finally, a new way of interpreting the Polyakov-Wiegman identity is proposed.
Bose symmetry and chiral decomposition of 2D fermionic determinants
Energy Technology Data Exchange (ETDEWEB)
Abreu, E.M.C.; Banerjee, R.; Wotzasek, C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica
1998-01-05
We show in a precise way, either in the fermionic or its bosonized version, that Bose symmetry provides a systematic way to carry out the chiral decomposition of the two-dimensional fermionic determinant. Interpreted properly, we show that there is no obstruction of this decomposition to gauge invariance, as is usually claimed. Finally, a new way of interpreting the Polyakov-Wiegman identity is proposed. (orig.). 17 refs.
Fermion zero modes in a $Z_2$ vortex background
Lozano, Gustavo; Schaposnik, Fidel A
2016-01-01
In this paper we study the zero energy solutions of the Dirac equation in the background of a $Z_2$ vortex of a non-Abelian gauge model with three charged scalar fields. We determine the number of the fermionic zero modes giving their explicit form for two specific Ansatze.
Relativistic bound-state equations for fermions with instantaneous interactions
Suttorp, L.G.
1979-01-01
Three types of relativistic bound-state equations for a fermion pair with instantaneous interaction are studied, viz., the instantaneous Bethe-Salpeter equation, the quasi-potential equation, and the two-particle Dirac equation. General forms for the equations describing bound states with arbitrary
Large-volume results in SU(2) with adjoint fermions
Del Debbio, Luigi; Pica, Claudio; Patella, Agostino; Rago, Antonio; Roman, Sabin
2014-01-01
Taming finite-volume effects is a crucial ingredient in order to identify the existence of IR fixed points. We present the latest results from our numerical simulations of SU(2) gauge theory with 2 Dirac fermions in the adjoint representation on large volumes. We compare with previous results, and extrapolate to thermodynamic limit when possible.
Mass anomalous dimension in SU(2) with six fundamental fermions
DEFF Research Database (Denmark)
Bursa, Francis; Del Debbio, Luigi; Keegan, Liam;
2010-01-01
We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. We measure the running of the coupling and the mass in the Schroedinger Functional scheme. We observe very slow running of the coupling constant. We measure the mass anomalous dimension gamma, and find it is between 0.13...
Large-volume results in SU(2) with adjoint fermions
DEFF Research Database (Denmark)
Del Debbio, Luigi; Lucini, Biagio; Pica, Claudio;
2013-01-01
Taming finite-volume effects is a crucial ingredient in order to identify the existence of IR fixed points. We present the latest results from our numerical simulations of SU(2) gauge theory with 2 Dirac fermions in the adjoint representation on large volumes. We compare with previous results, an...
Finite volume effects in SU(2) with two adjoint fermions
DEFF Research Database (Denmark)
Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino;
2011-01-01
Many evidences from lattice simulations support the idea that SU(2) with two Dirac flavors in the adjoint representation (also called Minimal Walking Technicolor) is IR conformal. A possible way to see this is through the behavior of the spectrum of the mass-deformed theory. When fermions are mas...
Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2
Jeon, Sangjun; Zhou, Brian B.; Gyenis, Andras; Feldman, Benjamin E.; Kimchi, Itamar; Potter, Andrew C.; Gibson, Quinn D.; Cava, Robert J.; Vishwanath, Ashvin; Yazdani, Ali
2014-09-01
Condensed-matter systems provide a rich setting to realize Dirac and Majorana fermionic excitations as well as the possibility to manipulate them for potential applications. It has recently been proposed that chiral, massless particles known as Weyl fermions can emerge in certain bulk materials or in topological insulator multilayers and give rise to unusual transport properties, such as charge pumping driven by a chiral anomaly. A pair of Weyl fermions protected by crystalline symmetry effectively forming a massless Dirac fermion has been predicted to appear as low-energy excitations in a number of materials termed three-dimensional Dirac semimetals. Here we report scanning tunnelling microscopy measurements at sub-kelvin temperatures and high magnetic fields on the II-V semiconductor Cd3As2. We probe this system down to atomic length scales, and show that defects mostly influence the valence band, consistent with the observation of ultrahigh-mobility carriers in the conduction band. By combining Landau level spectroscopy and quasiparticle interference, we distinguish a large spin-splitting of the conduction band in a magnetic field and its extended Dirac-like dispersion above the expected regime. A model band structure consistent with our experimental findings suggests that for a magnetic field applied along the axis of the Dirac points, Weyl fermions are the low-energy excitations in Cd3As2.
DIRAC distributed secure framework
Casajus, A.; Graciani, R.; LHCb DIRAC Team
2010-04-01
DIRAC, the LHCb community Grid solution, provides access to a vast amount of computing and storage resources to a large number of users. In DIRAC users are organized in groups with different needs and permissions. In order to ensure that only allowed users can access the resources and to enforce that there are no abuses, security is mandatory. All DIRAC services and clients use secure connections that are authenticated using certificates and grid proxies. Once a client has been authenticated, authorization rules are applied to the requested action based on the presented credentials. These authorization rules and the list of users and groups are centrally managed in the DIRAC Configuration Service. Users submit jobs to DIRAC using their local credentials. From then on, DIRAC has to interact with different Grid services on behalf of this user. DIRAC has a proxy management service where users upload short-lived proxies to be used when DIRAC needs to act on behalf of them. Long duration proxies are uploaded by users to a MyProxy service, and DIRAC retrieves new short delegated proxies when necessary. This contribution discusses the details of the implementation of this security infrastructure in DIRAC.
Taste breaking in staggered fermions from random matrix theory
Energy Technology Data Exchange (ETDEWEB)
Osborna, James C
2004-03-01
We discuss the construction of a chiral random matrix model for staggered fermions. This model includes O(a{sup 2}) corrections to the continuum limit of staggered fermions and is related to the zero momentum limit of the Lee-Sharpe Lagrangian for staggered fermions. The naive construction based on a specific expansion in lattice spacing (a) of the Dirac matrix produces the term which gives the dominant contribution to the observed taste splitting in the pion masses. A more careful analysis can include extra terms which are also consistent with the symmetries of staggered fermions. Lastly I will mention possible uses of the model including studies of topology and fractional powers of the fermion determinant.
Wilson Fermions with Four Fermion Interactions
DEFF Research Database (Denmark)
Rantaharju, Jarno; Drach, Vincent; Hietanen, Ari;
2015-01-01
We present a lattice study of a four fermion theory, known as Nambu Jona-Lasinio (NJL) theory, via Wilson fermions. Four fermion interactions naturally occur in several extensions of the Standard Model as a low energy parameterisation of a more fundamental theory. In models of dynamical electrowe...
New integrable system of 2dim fermions from strings on AdS{sub 5} x S{sup 5}
Energy Technology Data Exchange (ETDEWEB)
Alday, Luis Fernando [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Arutyunov, Gleb [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Frolov, Sergey [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany)
2006-01-15
We consider classical superstrings propagating on AdS{sub 5} x S{sup 5} space-time. We consistently truncate the superstring equations of motion to the so-called su(1 vertical bar 1) sector. By fixing the uniform gauge we show that physical excitations in this sector are described by two complex fermionic degrees of freedom and we obtain the corresponding lagrangian. Remarkably, this lagrangian can be cast in a two-dimensional Lorentz-invariant form. The kinetic part of the lagrangian induces a non-trivial Poisson structure while the hamiltonian is just the one of the massive Dirac fermion. We find a change of variables which brings the Poisson structure to the canonical form but makes the hamiltonian nontrivial. The hamiltonian is derived as an exact function of two parameters: the total S{sup 5} angular momentum J and string tension {lambda}; it is a polynomial in 1/J and in ({lambda}'){sup 1/2} where {lambda}' = {lambda}/J{sup 2} is the effective BMN coupling. We identify the string states dual to the gauge theory operators from the closed su(1 vertical bar 1) sector of N = 4 SYM and show that the corresponding near-plane wave energy shift computed from our hamiltonian perfectly agrees with that recently found in the literature. Finally we show that the hamiltonian is integrable by explicitly constructing the corresponding Lax representation.
Dirac neutrino masses from generalized supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Demir, D.A. [Izmir Institute of Technology, IZTECH, Izmir (Turkey). Dept. of Physics]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Everett, L.L. [University of Wisconsin, Madison, WI (United States), Dept. of Physics; Langacker, P. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences
2007-12-15
We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the Standard Model with a generalized supersymmetry breaking sector. If the usual superpotential Yukawa couplings are forbidden by the additional gauge symmetry (such as a U(1){sup '}), effective Dirac mass terms involving the ''wrong Higgs'' field can arise either at tree level due to hard supersymmetry breaking fermion Yukawa couplings, or at one-loop due to nonanalytic or ''nonholomorphic'' soft supersymmetry breaking trilinear scalar couplings. As both of these operators are naturally suppressed in generic models of supersymmetry breaking, the resulting neutrino masses are naturally in the sub-eV range. The neutrino magnetic and electric dipole moments resulting from the radiative mechanism also vanish at one-loop order. (orig.)
Quantum holographic encoding in a two-dimensional electron gas
Energy Technology Data Exchange (ETDEWEB)
Moon, Christopher
2010-05-26
The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures - 'molecular holograms' - which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as {approx}0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm{sup 2} and place tens of bits into a single fermionic state.
Semi-Dirac points in phononic crystals
Zhang, Xiujuan
2014-01-01
A semi-Dirac cone refers to a peculiar type of dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. It was originally discovered in electron systems, in which the associated quasi-particles are massless along one direction, like those in graphene, but effective-mass-like along the other. It was reported that a semi-Dirac point is associated with the topological phase transition between a semi-metallic phase and a band insulator. Very recently, the classical analogy of a semi-Dirac cone has been reported in an electromagnetic system. Here, we demonstrate that, by accidental degeneracy, two-dimensional phononic crystals consisting of square arrays of elliptical cylinders embedded in water are also able to produce the particular dispersion relation of a semi-Dirac cone in the center of the Brillouin zone. A perturbation method is used to evaluate the linear slope and to affirm that the dispersion relation is a semi-Dirac type. If the scatterers are made of rubber, in which the acoustic wave velocity is lower than that in water, the semi-Dirac dispersion can be characterized by an effective medium theory. The effective medium parameters link the semi-Dirac point to a topological transition in the iso-frequency surface of the phononic crystal, in which an open hyperbola is changed into a closed ellipse. This topological transition results in drastic change in wave manipulation. On the other hand, the theory also reveals that the phononic crystal is a double-zero-index material along the x-direction and photonic-band-edge material along the perpendicular direction (y-direction). If the scatterers are made of steel, in which the acoustic wave velocity is higher than that in water, the effective medium description fails, even though the semi-Dirac dispersion relation looks similar to that in the previous case. Therefore different wave transport behavior is expected. The semi-Dirac points in phononic crystals described in
Entanglement entropy of fermionic quadratic band touching model
Chen, Xiao; Cho, Gil Young; Fradkin, Eduardo
2014-03-01
The entanglement entropy has been proven to be a useful tool to diagnose and characterize strongly correlated systems such as topologically ordered phases and some critical points. Motivated by the successes, we study the entanglement entropy (EE) of a fermionic quadratic band touching model in (2 + 1) dimension. This is a fermionic ``spinor'' model with a finite DOS at k=0 and infinitesimal instabilities. The calculation on two-point correlation functions shows that a Dirac fermion model and the quadratic band touching model both have the asymptotically identical behavior in the long distance limit. This implies that EE for the quadratic band touching model also has an area law as the Dirac fermion. This is in contradiction with the expectation that dense fermi systems with a finite DOS should exhibit LlogL violations to the area law of entanglement entropy (L is the length of the boundary of the sub-region) by analogy with the Fermi surface. We performed numerical calculations of entanglement entropies on a torus of the lattice models for the quadratic band touching point and the Dirac fermion to confirm this. The numerical calculation shows that EE for both cases satisfy the area law. We further verify this result by the analytic calculation on the torus geometry. This work was supported in part by the NSF grant DMR-1064319.
On numerical evaluation of two-dimensional phase integrals
DEFF Research Database (Denmark)
Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans
1975-01-01
The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....
Quantum Einstein-Dirac Bianchi Universes
Damour, Thibault
2011-01-01
We study the mini--superspace quantization of spatially homogeneous (Bianchi) cosmological universes sourced by a Dirac spinor field. The quantization of the homogeneous spinor leads to a finite-dimensional fermionic Hilbert space and thereby to a multi-component Wheeler-DeWitt equation whose main features are: (i) the presence of spin-dependent Morse-type potentials, and (ii) the appearance of a q-number squared-mass term, which is of order ${\\cal O}(\\hbar^2)$, and which is affected by ordering ambiguities. We give the exact quantum solution of the Bianchi type-II system (which contains both scattering states and bound states), and discuss the main qualitative features of the quantum dynamics of the (classically chaotic) Bianchi type-IX system. We compare the exact quantum dynamics of fermionic cosmological billiards to previous works that described the spinor field as being either classical or Grassmann-valued.
Locality properties of Neuberger's lattice Dirac operator
Hernández, Pilar; Jansen, Karl; Lüscher, Martin
1999-07-01
The gauge covariant lattice Dirac operator D which has recently been proposed by Neuberger satisfies the Ginsparg-Wilson relation and thus preserves chiral symmetry. The operator also avoids a doubling of fermion species, but its locality properties are not obvious. We now prove that D is local (with exponentially decaying tails) if the gauge field is sufficiently smooth at the scale of the cutoff. Further analytic and numerical studies moreover suggest that the locality of the operator is in fact guaranteed under far more general conditions.
Floquet-Engineered Valleytronics in Dirac Systems.
Kundu, Arijit; Fertig, H A; Seradjeh, Babak
2016-01-08
Valley degrees of freedom offer a potential resource for quantum information processing if they can be effectively controlled. We discuss an optical approach to this problem in which intense light breaks electronic symmetries of a two-dimensional Dirac material. The resulting quasienergy structures may then differ for different valleys, so that the Floquet physics of the system can be exploited to produce highly polarized valley currents. This physics can be utilized to realize a valley valve whose behavior is determined optically. We propose a concrete way to achieve such valleytronics in graphene as well as in a simple model of an inversion-symmetry broken Dirac material. We study the effect numerically and demonstrate its robustness against moderate disorder and small deviations in optical parameters.
Plexciton Dirac points and topological modes
Energy Technology Data Exchange (ETDEWEB)
Yuen-Zhou, Joel [Univ. of California, San Diego, CA (United States); Saikin, Semion K. [Harvard Univ., Cambridge, MA (United States); Kazan Federal Univ. (Russia); Zhu, Tony [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Onbasli, Mehmet C. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ross, Caroline A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Bulovic, Vladimir [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Baldo, Marc A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2016-06-09
Plexcitons are polaritonic modes that result from the strong coupling between excitons and plasmons. Here, we consider plexcitons emerging from the interaction of excitons in an organic molecular layer with surface plasmons in a metallic film. We predict the emergence of Dirac cones in the two-dimensional band-structure of plexcitons due to the inherent alignment of the excitonic transitions in the organic layer. An external magnetic field opens a gap between the Dirac cones if the plexciton system is interfaced with a magneto-optical layer. The resulting energy gap becomes populated with topologically protected one-way modes, which travel at the interface of this plexcitonic system. Our theoretical proposal suggests that plexcitons are a convenient and simple platform for the exploration of exotic phases of matter and for the control of energy flow at the nanoscale.
Perspective: Two-dimensional resonance Raman spectroscopy
Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.
2016-11-01
Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.
Janus spectra in two-dimensional flows
Liu, Chien-Chia; Chakraborty, Pinaki
2016-01-01
In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...
Comparative Two-Dimensional Fluorescence Gel Electrophoresis.
Ackermann, Doreen; König, Simone
2018-01-01
Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.
Two-dimensional hexagonal semiconductors beyond graphene
Nguyen, Bich Ha; Hieu Nguyen, Van
2016-12-01
The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.
Two-Dimensional Phononic Crystals: Disorder Matters.
Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M
2016-09-14
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Photodetectors based on two dimensional materials
Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen
2016-09-01
Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Predicting Two-Dimensional Silicon Carbide Monolayers.
Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I
2015-10-27
Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.
Dirac equation on coordinate dependent noncommutative space–time
Energy Technology Data Exchange (ETDEWEB)
Kupriyanov, V.G., E-mail: vladislav.kupriyanov@gmail.com
2014-05-01
In this paper we discuss classical aspects of spinor field theory on the coordinate dependent noncommutative space–time. The noncommutative Dirac equation describing spinning particle in an external vector field and the corresponding action principle are proposed. The specific choice of a star product allows us to derive a conserved noncommutative probability current and to obtain the energy–momentum tensor for free noncommutative spinor field. Finally, we consider a free noncommutative Dirac fermion and show that if the Poisson structure is Lorentz-covariant, the standard energy–momentum dispersion relation remains valid.
Dirac equation on coordinate dependent noncommutative space-time
Kupriyanov, V. G.
2014-05-01
In this paper we discuss classical aspects of spinor field theory on the coordinate dependent noncommutative space-time. The noncommutative Dirac equation describing spinning particle in an external vector field and the corresponding action principle are proposed. The specific choice of a star product allows us to derive a conserved noncommutative probability current and to obtain the energy-momentum tensor for free noncommutative spinor field. Finally, we consider a free noncommutative Dirac fermion and show that if the Poisson structure is Lorentz-covariant, the standard energy-momentum dispersion relation remains valid.
Ambiguities and Subtleties in Fermion Mass Terms
Cheng, Yifan
2013-01-01
This is a review on structure of the fermion mass terms of the Standard Model extended with the so-called "right-handed neutrinos" or "sterile neutrinos". The review is meant to be pedagogical, with detailed mathematics presented beyond the level one can find any easily in the literature. The discussions, however, bring up important subtleties and ambiguities about the subject that may be less than well appreciated. In fact, the naive perspective of the nature and masses of fermions as one would easily drawn from the presentations of fermion fields and their equations of motion from a typical textbook on quantum field theory leads to some confusing or even wrong statements which we clarify here. In particular, we illustrate clearly that a Dirac fermion mass eigenstate is mathematically equivalent to two degenerated Majorana fermion mass eigenstates at least so long as the mass terms are concerned. There are further ambiguities and subtleties in the exact description of the eigenstate(s). For the case of the n...
Type-II Dirac semimetals in the YPd2Sn class
Guo, Peng-Jie; Yang, Huan-Cheng; Liu, Kai; Lu, Zhong-Yi
2017-04-01
Lorentz-invariance-violating Weyl and Dirac fermions have recently attracted intensive interests as new types of particles beyond high-energy physics, and they demonstrate novel physical phenomena such as angle-dependent chiral anomaly and topological Lifshitz transitions. Here, we predict the existence of Lorentz-invariance-violating Dirac fermions in the YPd2Sn class of Heusler alloys that emerge at the boundary between the electronlike and holelike pockets in the Brillouin zone, based on first-principles electronic structure calculations. In combination with the fact that this class of materials was reported to be superconductors, the YPd2Sn class provides an appropriate platform for studying exotic physical properties distinguished from conventional Dirac fermions, especially for realizing possible topological superconductivity.
Modified Dirac Hamiltonian for efficient quantum mechanical simulations of micron sized devices
Habib, K. M. Masum; Sajjad, Redwan N.; Ghosh, Avik W.
2016-03-01
Representing massless Dirac fermions on a spatial lattice poses a potential challenge known as the Fermion Doubling problem. Addition of a quadratic term to the Dirac Hamiltonian provides a possible way to circumvent this problem. We show that the modified Hamiltonian with the additional term results in a very small Hamiltonian matrix when discretized on a real space square lattice. The resulting Hamiltonian matrix is considerably more efficient for numerical simulations without sacrificing on accuracy and is several orders of magnitude faster than the atomistic tight binding model. Using this Hamiltonian and the non-equilibrium Green's function formalism, we show several transport phenomena in graphene, such as magnetic focusing, chiral tunneling in the ballistic limit, and conductivity in the diffusive limit in micron sized graphene devices. The modified Hamiltonian can be used for any system with massless Dirac fermions such as Topological Insulators, opening up a simulation domain that is not readily accessible otherwise.
Interaction of two-dimensional magnetoexcitons
Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.
2017-04-01
We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .
Two-dimensional materials and their prospects in transistor electronics.
Schwierz, F; Pezoldt, J; Granzner, R
2015-05-14
During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.
Spectroscopy of Dipolar Fermions in Layered Two-Dimensional and Three-Dimensional Lattices
2011-09-06
term. We approximate Vαβ(j,ρ) by Vαβ(j,ρ) ≈ γαβU(j,ρ) (8) and Vsf by Vsf(j,ρ) ≈ ηU(j,ρ), (9) with U(j,ρ) = δ0j 1 ρ3 + A + (1 − δ0j ) 1 − 3( ( jdl )2 ρ2... jdl )2 ) [ρ2 + ( jdl )2]3/2 , (10) where γαβ = dααdββ/(4π 0), η = | ∫ dzw∗1(z)w2(z)|2d212/(4π 0), and dl is the lattice spacing, where A ∼ 3, with...3( ( jdl )2 ρ2+( jdl )2 ) [ρ2 + ( jdl )2]3/2 ] = 2π3/2 √ m β n (γ12 − γ11 + η) (thermal), (28) 033608-5 HAZZARD, GORSHKOV, AND REY PHYSICAL REVIEW A 84
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, R. de Lima [Universidade Federal de Campina Grande (UFCG), Cuite, PB (Brazil). Centro de Tecnologia. Unidade Academica de Educacao]. E-mail: rafael@df.ufcg.edu.br; rafaelr@cbpf.br
2007-07-01
In the present work we obtain a new representation for the Dirac oscillator based on the Clifford algebra C 7. The symmetry breaking and the energy eigenvalues for our model of the Dirac oscillator are studied in the non-relativistic limit. (author)
Bubnov, Andrey; Gubina, Nadezda; Zhukovsky, Vladimir
2016-05-01
We study vacuum polarization effects in the model of Dirac fermions with additional interaction of an anomalous magnetic moment with an external magnetic field and fermion interaction with an axial-vector condensate. The proper time method is used to calculate the one-loop vacuum corrections with consideration for different configurations of the characteristic parameters of these interactions.
Spectral Gaps of Dirac Operators Describing Graphene Quantum Dots
Benguria, Rafael D.; Fournais, Søren; Stockmeyer, Edgardo; Van Den Bosch, Hanne
2017-06-01
The two-dimensional Dirac operator describes low-energy excitations in graphene. Different choices for the boundary conditions give rise to qualitative differences in the spectrum of the resulting operator. For a family of boundary conditions, we find a lower bound to the spectral gap around zero, proportional to |Ω|-1/2, where {Ω } \\subset R2 is the bounded region where the Dirac operator acts. This family contains the so-called infinite mass and armchair cases used in the physics literature for the description of graphene quantum dots.
Ultrafast two dimensional infrared chemical exchange spectroscopy
Fayer, Michael
2011-03-01
The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific
Molecular assembly on two-dimensional materials
Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter
2017-02-01
Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging
Buividovich, P V
2016-01-01
We present first results of classical-statistical real-time simulations of anomalous transport phenomena with overlap fermions. We find that even on small lattices overlap fermions reproduce the real-time anomaly equation with much better precision than Wilson-Dirac fermions on an order of magnitude larger lattices. The difference becomes much more pronounced for quickly changing electromagnetic fields, especially if one takes into account the back-reaction of fermions on electromagnetism. As test cases, we consider chirality pumping in parallel electric and magnetic fields and mixing between the plasmon and the Chiral Magnetic Wave.
Wilson, fixed point and Neuberger's lattice Dirac operator for the Schwinger model
Farchioni, F.; Hip, I.; Lang, C. B.
1998-12-01
We perform a comparison between different lattice regularizations of the Dirac operator for massless fermions in the framework of the single and two flavor Schwinger model. We consider a) the Wilson-Dirac operator at the critical value of the hopping parameter; b) Neuberger's overlap operator; c) the fixed point operator. We test chiral properties of the spectrum, dispersion relations and rotational invariance of the mesonic bound state propagators.
Fukushima, Kimichika
2015-01-01
This paper presents analytical eigenenergies for a pair of confined fundamental fermion and antifermion under a linear potential derived from the Wilson loop for the non-Abelian Yang-Mills field. We use basis functions localized in spacetime, and the Hamiltonian matrix of the Dirac equation is analytically diagonalized. The squared system eigenenergies are proportional to the string tension and the absolute value of the Dirac's relativistic quantum number related to the total angular momentum, consistent with the expectation.
The Klein-Gordon and the Dirac Oscillators in a Noncommutative Space
Institute of Scientific and Technical Information of China (English)
B. Mirza; M. Mohadesi
2004-01-01
We study the Dirac and the Klein-Gordon oscillators in a noncommutative space. It is shown that the Klein-Gordon oscillator in a noncommutative space has a similar behaviour to the dynamics ofa particle in a commutative space and in a constant magnetic field. The Dirac oscillator in a noncommutative space has a similar equation to the equation of motion for a relativistic fermion in a commutative space and in a magnetic field, however a new exotic term appears, which implies that a charged fermion in a noncommutative space has an electric dipole moment.
The Klein-Gordon and the Dirac Oscillators in a Noncommutative Space
Institute of Scientific and Technical Information of China (English)
B.Mirza; M.Mohadesi
2004-01-01
We study the Dirac and the Klein-Gordon oscillators in a noncommutative space. It is shown that the Klein-Gordon oscillator in a noncommutative space has a similar behaviour to the dynamics of a particle in a commutative space and in a constant magnetic field. The Dirac oscillator in a noncommutative space has a similar equation to the equation of motion for a relativistic fermion in a commutative space and in a magnetic field, however a new exotic term appears, which implies that a charged fermion in a noncommutative space has an electric dipole moment.
Liu, Jianbin; Zheng, Huaibin; Chen, Hui; Li, Fu-li; Xu, Zhuo
2016-01-01
Ghost imaging with thermal fermions is calculated based on two-particle interference in Feynman's path integral theory. It is found that ghost imaging with thermal fermions can be simulated by ghost imaging with thermal bosons and classical particles. Photons in pseudothermal light are employed to experimentally study fermionic ghost imaging. Ghost imaging with thermal bosons and fermions is discussed based on the point-to-point (spot) correlation between the object and image planes. The employed method offers an efficient guidance for future ghost imaging with real thermal fermions, which may also be generalized to study other second-order interference phenomena with fermions.
Observation of a pairing pseudogap in a two-dimensional Fermi gas.
Feld, Michael; Fröhlich, Bernd; Vogt, Enrico; Koschorreck, Marco; Köhl, Michael
2011-11-30
Pairing of fermions is ubiquitous in nature, underlying many phenomena. Examples include superconductivity, superfluidity of (3)He, the anomalous rotation of neutron stars, and the crossover between Bose-Einstein condensation of dimers and the BCS (Bardeen, Cooper and Schrieffer) regime in strongly interacting Fermi gases. When confined to two dimensions, interacting many-body systems show even more subtle effects, many of which are not understood at a fundamental level. Most striking is the (as yet unexplained) phenomenon of high-temperature superconductivity in copper oxides, which is intimately related to the two-dimensional geometry of the crystal structure. In particular, it is not understood how the many-body pairing is established at high temperature, and whether it precedes superconductivity. Here we report the observation of a many-body pairing gap above the superfluid transition temperature in a harmonically trapped, two-dimensional atomic Fermi gas in the regime of strong coupling. Our measurements of the spectral function of the gas are performed using momentum-resolved photoemission spectroscopy, analogous to angle-resolved photoemission spectroscopy in the solid state. Our observations mark a significant step in the emulation of layered two-dimensional strongly correlated superconductors using ultracold atomic gases.
A geometrical approach to two-dimensional Conformal Field Theory
Dijkgraaf, Robertus Henricus
1989-09-01
manifold obtained as the quotient of a smooth manifold by a discrete group. In Chapter 6 our considerations will be of a somewhat complementary nature. We will investigate models with central charge c = 1 by deformation techniques. The central charge is a fundamental parameter in any conformal invariant model, and the value c = 1 is of considerable interest, since it forms in many ways a threshold value. For c 1 is still very much terra incognita. Our results give a partial classification for the intermediate case of c = 1 models. The formulation of these c = 1 CFT's on surfaces of arbitrary topology is central in Chapter 7. Here we will provide many explicit results that provide illustrations for our more abstract discussions of higher genus quantities in Chapters 3 and 1. Unfortunately, our calculations will become at this point rather technical, since we have to make extensive use of the mathematics of Riemann surfaces and their coverings. Finally, in Chapter 8 we leave the two-dimensional point of view that we have been so loyal to up to then , and ascend to threedimensions where we meet topological gauge theories. These so-called Chern-Simons theories encode in a very economic way much of the structure of two-dimensional (rational) conformal field theories, and this direction is generally seen to be very promising. We will show in particular how many of our results of Chapter 5 have a natural interpretation in three dimensions.
Comparing lattice Dirac operators with Random Matrix Theory
Farchioni, F; Lang, C B
2000-01-01
We study the eigenvalue spectrum of different lattice Dirac operators (staggered, fixed point, overlap) and discuss their dependence on the topological sectors. Although the model is 2D (the Schwinger model with massless fermions) our observations indicate possible problems in 4D applications. In particular misidentification of the smallest eigenvalues due to non-identification of the topological sector may hinder successful comparison with Random Matrix Theory (RMT).
Microscopic Dirac Spectrum in a 2d Gauge Theory with Zero Chiral Condensate
2013-01-01
Fermionic theories with a vanishing chiral condensate (in the chiral limit) have recently attracted considerable interest; in particular variants of multi-flavour QCD are candidates for this behaviour. Here we consider the 2-flavour Schwinger model as a simple theory with this property. Based on simulations with light dynamical overlap fermions, we test the hypothesis that in such models the low lying Dirac eigenvalues could be decorrelated. That has been observed in 4d Yang-Mills theories at...
The convolution theorem for two-dimensional continuous wavelet transform
Institute of Scientific and Technical Information of China (English)
ZHANG CHI
2013-01-01
In this paper , application of two -dimensional continuous wavelet transform to image processes is studied. We first show that the convolution and correlation of two continuous wavelets satisfy the required admissibility and regularity conditions ,and then we derive the convolution and correlation theorem for two-dimensional continuous wavelet transform. Finally, we present numerical example showing the usefulness of applying the convolution theorem for two -dimensional continuous wavelet transform to perform image restoration in the presence of additive noise.
Observation of topological nodal fermion semimetal phase in ZrSiS
Neupane, Madhab; Belopolski, Ilya; Hosen, M. Mofazzel; Sanchez, Daniel S.; Sankar, Raman; Szlawska, Maria; Xu, Su-Yang; Dimitri, Klauss; Dhakal, Nagendra; Maldonado, Pablo; Oppeneer, Peter M.; Kaczorowski, Dariusz; Chou, Fangcheng; Hasan, M. Zahid; Durakiewicz, Tomasz
2016-05-01
Unveiling new topological phases of matter is one of the current objectives in condensed matter physics. Recent experimental discoveries of Dirac and Weyl semimetals prompt the search for other exotic phases of matter. Here we present a systematic angle-resolved photoemission spectroscopy study of ZrSiS, a prime topological nodal semimetal candidate. Our wider Brillouin zone (BZ) mapping shows multiple Fermi surface pockets such as the diamond-shaped Fermi surface, elliptical-shaped Fermi surface, and a small electron pocket encircling at the zone center (Γ ) point, the M point, and the X point of the BZ, respectively. We experimentally establish the spinless nodal fermion semimetal phase in ZrSiS, which is supported by our first-principles calculations. Our findings evidence that the ZrSiS-type of material family is a new platform on which to explore exotic states of quantum matter; these materials are expected to provide an avenue for engineering two-dimensional topological insulator systems.
Four-Fermion Limit of Gauge-Yukawa Theories
DEFF Research Database (Denmark)
Krog, Jens; Mojaza, Matin; Sannino, Francesco
2015-01-01
perturbative gauge-Yukawa theories can have a strongly coupled limit at high-energy, that can be mapped into a four-fermion theory. Interestingly, we are able to precisely carve out a region of the perturbative parameter space supporting such a composite limit. This has interesting implications on our current......We elucidate and extend the conditions that map gauge-Yukawa theories at low energies into time-honoured gauged four-fermion interactions at high energies. These compositeness conditions permit to investigate theories of composite dynamics through gauge-Yukawa theories. Here we investigate whether...... view on models of particle physics. As a template model we use an $SU(N_C)$ gauge theory with $N_F$ Dirac fermions transforming according to the fundamental representation of the gauge group. The fermions further interact with a gauge singlet complex $N_F\\times N_F$ Higgs that ceases to be a physical...
Monti, Dalida
1996-01-01
Relativamente poco noto al gran pubblico, il premio Nobel Paul Adrien Maurice Dirac appartiene a quel gruppo di uomini di ingegno che nei primi decenni del secolo contribuirono a dare alla nostra concezione del mondo fisico la sua impronta attuale. Assolutamente cruciali, per una valutazione dell'opera di Dirac, sono gli anni compresi tra il 1925 e il 1931: un periodo in cui il fisico fornisce la prima spiegazione chiara e coerente delle proprietà di spin dell'elettrone (equazione di Dirac) e perviene, in forza della pura deduzione matematica, alla scoperta dell'esistenza dell'elettrone positivo o positrone.
The role of spin-orbit coupling in topologically protected interface states in Dirac materials
Abergel, D. S. L.; Edge, Jonathan M.; Balatsky, Alexander V.
2014-01-01
We highlight the fact that two-dimensional materials with Dirac-like low energy band structures and spin-orbit coupling will produce linearly dispersing topologically protected Jackiw-Rebbi modes at interfaces where the Dirac mass changes sign. These modes may support persistent spin or valley currents parallel to the interface, and the exact arrangement of such topologically protected currents depends crucially on the details of the spin-orbit coupling in the material. As examples, we discus...
Silicene and transition metal based materials: prediction of a two-dimensional piezomagnet
Energy Technology Data Exchange (ETDEWEB)
Dzade, Nelson Y; Obodo, Kingsley O; Adjokatse, Sampson K; Ashu, Akosa C; Amankwah, Emmanuel; Atiso, Clement D; Bello, Abdulhakeem A; Igumbor, Emmanuel; Nzabarinda, Stany B; Obodo, Joshua T; Ogbuu, Anthony O; Femi, Olu Emmanuel; Udeigwe, Josephine O; Waghmare, Umesh V [African University of Science and Technology, Abuja (Nigeria)
2010-09-22
We use first-principles density functional theory based calculations to determine the stability and properties of silicene, a graphene-like structure made from silicon, and explore the possibilities of modifying its structure and properties through incorporation of transition metal ions (M: Ti, Nb, Ta, Cr, Mo and W) in its lattice, forming MSi{sub 2}. While pure silicene is stable in a distorted honeycomb lattice structure obtained by opposite out-of-plane displacements of the two Si sub-lattices, its electronic structure still exhibits linear dispersion with the Dirac conical feature similar to graphene. We show that incorporation of transition metal ions in its lattice results in a rich set of properties with a clear dependence on the structural changes, and that CrSi{sub 2} forms a two-dimensional magnet exhibiting a strong piezomagnetic coupling.
Huang, Xueqin; Zhang, Zhao-Qing; Chan, C T
2014-01-01
There is no assurance that interface states can be found at the boundary separating two materials. As a strong perturbation typically favors wave localization, it is natural to expect that an interface state should form more easily in the boundary that represents a strong perturbation. Here, we show on the contrary that in some two dimensional photonic crystals (PCs) with a square lattice possessing Dirac-like cone at k=0, a small perturbation guarantees the existence of interface states. More specifically, we find that single-mode localized states exist in a deterministic manner at an interface formed by two PCs each with system parameters slightly perturbed from the conical dispersion condition. The conical dispersion guarantees the existence of gaps in the projected band structure which allows interface states to form and the assured existence of interface states stems from the geometric phases of the bulk bands.
Sufficient condition for the existence of interface states in some two-dimensional photonic crystals
Huang, Xueqin; Xiao, Meng; Zhang, Zhao-Qing; Chan, C. T.
2014-08-01
There is no assurance that interface states can be found at the boundary separating two materials. While a strong perturbation typically favors wave localization, we show on the contrary that in some two-dimensional photonic crystals (PCs) possessing a Dirac-like cone at k = 0 derived from monopole and dipoles excitation, a small perturbation is sufficient to create interface states. The conical dispersion together with the flat band at the zone center generates the existence of gaps in the projected band structure and the existence of single mode interface states inside the projected band gaps stems from the geometric phases of the bulk bands. The underlying physics for the existence of an interface state is related to the sign change of the surface impedance in the gaps above and below the flat band. The established results are applicable for long wavelength regimes where there is only one propagating diffraction order for an interlayer scattering.
Magnetoelectronic transport of the two-dimensional electron gas in CdSe single quantum wells
Indian Academy of Sciences (India)
P K Ghosh; A Ghosal; D Chattopadhyay
2009-02-01
Hall mobility and magnetoresistance coefficient for the two-dimensional (2D) electron transport parallel to the heterojunction interfaces in a single quantum well of CdSe are calculated with a numerical iterative technique in the framework of Fermi–Dirac statistics. Lattice scatterings due to polar-mode longitudinal optic (LO) phonons, and acoustic phonons via deformation potential and piezoelectric couplings, are considered together with background and remote ionized impurity interactions. The parallel mode of piezoelectric scattering is found to contribute more than the perpendicular mode. We observe that the Hall mobility decreases with increasing temperature but increases with increasing channel width. The magnetoresistance coefficient is found to decrease with increasing temperature and increase with increasing magnetic field in the classical region.
Conical wave propagation and diffraction in two-dimensional hexagonally packed granular lattices.
Chong, C; Kevrekidis, P G; Ablowitz, M J; Ma, Yi-Ping
2016-01-01
Linear and nonlinear mechanisms for conical wave propagation in two-dimensional lattices are explored in the realm of phononic crystals. As a prototypical example, a statically compressed granular lattice of spherical particles arranged in a hexagonal packing configuration is analyzed. Upon identifying the dispersion relation of the underlying linear problem, the resulting diffraction properties are considered. Analysis both via a heuristic argument for the linear propagation of a wave packet and via asymptotic analysis leading to the derivation of a Dirac system suggests the occurrence of conical diffraction. This analysis is valid for strong precompression, i.e., near the linear regime. For weak precompression, conical wave propagation is still possible, but the resulting expanding circular wave front is of a nonoscillatory nature, resulting from the complex interplay among the discreteness, nonlinearity, and geometry of the packing. The transition between these two types of propagation is explored.
Topological origin of edge states in two-dimensional inversion-symmetric insulators and semimetals
van Miert, Guido; Ortix, Carmine; Morais Smith, Cristiane
2017-03-01
Symmetries play an essential role in identifying and characterizing topological states of matter. Here, we classify topologically two-dimensional (2D) insulators and semimetals with vanishing spin-orbit coupling using time-reversal ({ T }) and inversion ({ I }) symmetry. This allows us to link the presence of edge states in { I } and { T } symmetric 2D insulators, which are topologically trivial according to the Altland-Zirnbauer table, to a {{{Z}}}2 topological invariant. This invariant is directly related to the quantization of the Zak phase. It also predicts the generic presence of edge states in Dirac semimetals, in the absence of chiral symmetry. We then apply our findings to bilayer black phosphorus and show the occurrence of a gate-induced topological phase transition, where the {{{Z}}}2 invariant changes.
O(a^2) corrections to the fermion propagator and fermion bilinears
Constantinou, M; Stylianou, F
2008-01-01
We present the corrections to the fermion propagator, to second order in the lattice spacing, O(a^2), in 1-loop perturbation theory. The fermions are described by the clover action and for the gluons we use a 3-parameter family of Symanzik improved actions. Our calculation has been carried out in a general covariant gauge. The results are provided as a polynomial of the clover parameter, and are tabulated for 10 popular sets of the Symanzik coefficients (Plaquette, Tree-level Symanzik, Iwasaki, TILW and DBW2 action). We also study the O(a^2) corrections to matrix elements of fermion bilinear operators that have the form $\\bar\\Psi\\Gamma\\Psi$, where $\\Gamma$ denotes all possible distinct products of Dirac matrices. These correction terms are essential ingredients for improving, to O(a^2), the matrix elements of the fermion operators. Our results are applicable also to the case of twisted mass fermions. A longer write-up of this work, including non-perturbative results, is in preparation together with V. Gimenez...
Axial gravity, massless fermions and trace anomalies
Bonora, L.; Cvitan, M.; Prester, P. Dominis; Pereira, A. Duarte; Giaccari, S.; Štemberga, T.
2017-08-01
This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms and using dimensional regularization, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones.
Fermionic realisations of simple Lie algebras
de Azcárraga, J A
2000-01-01
We study the representation ${\\cal D}$ of a simple compact Lie algebra $\\g$ of rank l constructed with the aid of the hermitian Dirac matrices of a (${\\rm dim} \\g$)-dimensional euclidean space. The irreducible representations of $\\g$ contained in ${\\cal D}$ are found by providing a general construction on suitable fermionic Fock spaces. We give full details not only for the simplest odd and even cases, namely su(2) and su(3), but also for the next (${dim} \\g$)-even case of su(5). Our results are far reaching: they apply to any $\\g$-invariant quantum mechanical system containing ${\\rm dim} \\g$ fermions. Another reason for undertaking this study is to examine the role of the $\\g$-invariant fermionic operators that naturally arise. These are given in terms of products of an odd number of gamma matrices, and include, besides a cubic operator, (l-1) fermionic scalars of higher order. The latter are constructed from the Lie algebra cohomology cocycles, and must be considered to be of theoretical significance simila...
DIRAC Workload Management System
Paterson, S
2007-01-01
DIRAC (Distributed Infrastructure with Remote Agent Control) is the Workload and Data Management system (WMS) for the LHCb experiment. The DIRAC WMS offers a transparent way for LHCb users to submit jobs to the EGEE Grid as well as local clusters and individual PCs. This paper will describe workload management optimizations, which ensure high job efficiency and minimized job start times. The computing requirements of the LHCb experiment can only be fulfilled through the use of many distributed compute resources. DIRAC provides a robust platform to run data productions on all the resources available to LHCb including the EGEE Grid. More recently, user support was added to DIRAC that greatly simplifies the procedure of submitting, monitoring and retrieving output of Grid jobs for the LHCb user community. DIRAC submits Pilot Agents to the EGEE Grid via the gLite WMS as normal jobs. Pilot Agents then request jobs from the DIRAC Workload Management System after the local environment has been checked. Therefore DIR...
The Chandrasekhar's Equation for Two-Dimensional Hypothetical White Dwarfs
De, Sanchari
2014-01-01
In this article we have extended the original work of Chandrasekhar on the structure of white dwarfs to the two-dimensional case. Although such two-dimensional stellar objects are hypothetical in nature, we strongly believe that the work presented in this article may be prescribed as Master of Science level class problem for the students in physics.
Beginning Introductory Physics with Two-Dimensional Motion
Huggins, Elisha
2009-01-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…
Spatiotemporal surface solitons in two-dimensional photonic lattices.
Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S
2007-11-01
We analyze spatiotemporal light localization in truncated two-dimensional photonic lattices and demonstrate the existence of two-dimensional surface light bullets localized in the lattice corners or the edges. We study the families of the spatiotemporal surface solitons and their properties such as bistability and compare them with the modes located deep inside the photonic lattice.
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;
2004-01-01
Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...
Mechanics of Apparent Horizon in Two Dimensional Dilaton Gravity
Cai, Rong-Gen
2016-01-01
In this article, we give a definition of apparent horizon in a two dimensional general dilaton gravity theory. With this definition, we construct the mechanics of the apparent horizon by introducing a quasi-local energy of the theory. Our discussion generalizes the apparent horizons mechanics in general spherically symmetric spactimes in four or higher dimensions to the two dimensional dilaton gravity case.
Topological aspect of disclinations in two-dimensional crystals
Institute of Scientific and Technical Information of China (English)
Qi Wei-Kai; Zhu Tao; Chen Yong; Ren Ji-Rong
2009-01-01
By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given.
Accidental degeneracy of double Dirac cones in a phononic crystal
Chen, Ze-Guo
2014-04-09
Artificial honeycomb lattices with Dirac cone dispersion provide a macroscopic platform to study the massless Dirac quasiparticles and their novel geometric phases. In this paper, a quadruple-degenerate state is achieved at the center of the Brillouin zone in a two-dimensional honeycomb lattice phononic crystal, which is a result of accidental degeneracy of two double-degenerate states. In the vicinity of the quadruple-degenerate state, the dispersion relation is linear. Such quadruple degeneracy is analyzed by rigorous representation theory of groups. Using method, a reduced Hamiltonian is obtained to describe the linear Dirac dispersion relations of this quadruple-degenerate state, which is well consistent with the simulation results. Near such accidental degeneracy, we observe some unique properties in wave propagating, such as defect-insensitive propagating character and the Talbot effect.
Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations
Directory of Open Access Journals (Sweden)
Chunrong Zhu
2016-11-01
Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.
Manifestly Gauge Covariant Formulation of Lattice Chiral Fermions
Okuyama, K; Okuyama, Kiyoshi; Suzuki, Hiroshi
1997-01-01
We propose a new formulation of chiral fermions on a lattice, on the basis of a lattice extension of the covariant regularization scheme in continuum field theory. The species doublers do not emerge. The real part of the effective action is just one half of that of Dirac-Wilson fermion and is always gauge invariant even with a finite lattice spacing. The gauge invariance of the imaginary part, on the other hand, sets a severe constraint which is a lattice analogue of the gauge anomaly free condition. For real gauge representations, the imaginary part identically vanishes and the gauge invariance becomes exact.
Fermion localization and resonances on two-field thick branes
Almeida, C A S; Gomes, A R; Casana, R
2009-01-01
We consider $(4,1)$-dimensional branes constructed with two scalar fields $\\phi$ and $\\chi$ coupled to a Dirac spinor field by means of a general Yukawa coupling. The equation of motion for the coefficients of the chiral decomposition of the spinor in curved spacetime leads to a Sch\\"odinger-like equation whose solutions allow to obtain the masses of the fermionic modes. The simplest Yukawa coupling $\\bar\\Psi\\phi\\chi\\Psi$ is considered for the Bloch brane model and fermion localization is studied. We found resonances for both chiralities and related their appearance to branes with internal structure.
Fermion localization and resonances on two-field thick branes
Almeida, C. A. S.; Casana, R.; Ferreira, M. M., Jr.; Gomes, A. R.
2009-06-01
We consider (4, 1)-dimensional branes constructed with two scalar fields ϕ and χ coupled to a Dirac spinor field by means of a general Yukawa coupling. The equation of motion for the coefficients of the chiral decomposition of the spinor in curved spacetime leads to a Schrödinger-like equation whose solutions allow to obtain the masses of the fermionic modes. The simplest Yukawa coupling Ψ¯ϕχΨ is considered for the Bloch brane model and fermion localization is studied. We found resonances for both chiralities and related their appearance to branes with internal structure.
Fermions tunneling from the Horowitz-Strominger Dilaton black hole
Institute of Scientific and Technical Information of China (English)
LI Oiang; ZENG XiaoXiong
2009-01-01
Based on the work of Kerner and Mann, fermions tunneling from the Horowitz-Strominger Dilaton black hole on the membrane is studied. Owing to the coupling among electromagnetic field, matter field and gravity field, the Dirac equation of charged particles is introduced, and according to that, the expected emission temperature is obtained. After the self-gravitational interaction is considered, it is found that the tunneling rate of fermions also satisfies the underlying Unitary theory as the case of scalar parti-cles.
Clifford Algebras and Their Decomposition into Conjugate Fermionic Heisenberg Algebras
Catto, Sultan; Gürcan, Yasemin; Khalfan, Amish; Kurt, Levent; Kato La, V.
2016-10-01
We discuss a construction scheme for Clifford numbers of arbitrary dimension. The scheme is based upon performing direct products of the Pauli spin and identity matrices. Conjugate fermionic algebras can then be formed by considering linear combinations of the Clifford numbers and the Hermitian conjugates of such combinations. Fermionic algebras are important in investigating systems that follow Fermi-Dirac statistics. We will further comment on the applications of Clifford algebras to Fueter analyticity, twistors, color algebras, M-theory and Leech lattice as well as unification of ancient and modern geometries through them.
Dirac cones in the spectrum of bond-decorated graphenes
Energy Technology Data Exchange (ETDEWEB)
Van den Heuvel, Willem, E-mail: wvan@unimelb.edu.au; Soncini, Alessandro, E-mail: asoncini@unimelb.edu.au [School of Chemistry, The University of Melbourne, VIC 3010 (Australia)
2014-06-21
We present a two-band model based on periodic Hückel theory, which is capable of predicting the existence and position of Dirac cones in the first Brillouin zone of an infinite class of two-dimensional periodic carbon networks, obtained by systematic perturbation of the graphene connectivity by bond decoration, that is by inclusion of arbitrary π-electron Hückel networks into each of the three carbon–carbon π-bonds within the graphene unit cell. The bond decoration process can fundamentally modify the graphene unit cell and honeycomb connectivity, representing a simple and general way to describe many cases of graphene chemical functionalization of experimental interest, such as graphyne, janusgraphenes, and chlorographenes. Exact mathematical conditions for the presence of Dirac cones in the spectrum of the resulting two-dimensional π-networks are formulated in terms of the spectral properties of the decorating graphs. Our method predicts the existence of Dirac cones in experimentally characterized janusgraphenes and chlorographenes, recently speculated on the basis of density functional theory calculations. For these cases, our approach provides a proof of the existence of Dirac cones, and can be carried out at the cost of a back of the envelope calculation, bypassing any diagonalization step, even within Hückel theory.
Quantum Algorithms for Fermionic Quantum Field Theories
2014-04-28
construction that gives quasi- linear asymptotic scaling in time and the number of lattice sites, as in the bosonic case. In contrast with bosonic field...components, γ µ is a two-dimensional representation of the Dirac algebra , and ψ̄ = ψ†γ0.1 We use the Majorana representation, namely, γ0 = [ 0 −i i 0...Hilbert spaces and can therefore be efficiently decomposed into elementary gates for any constant number of particle species, N , via the Solovay
Black hole and hawking radiation by type-II Weyl fermions
Volovik, G. E.
2016-11-01
The type-II Weyl and type-II Dirac fermions may emerge behind the event horizon of black holes. Correspondingly, the black hole can be simulated by creation of the region with overtilted Weyl or Dirac cones. The filling of the electronic states inside the "black hole" is accompanied by Hawking radiation. The Hawking temperature in the Weyl semimetals can reach the room temperature, if the black hole region is sufficiently small, and thus the effective gravity at the horizon is large.
Black hole and Hawking radiation by type-II Weyl fermions
Volovik, G E
2016-01-01
The type-II Weyl and type-II Dirac fermions may emerge behind the event horizon of black holes. Correspondingly the black hole can be simulated by creation of the region with overtilted Weyl or Dirac cones. The filling of the electronic states inside the "black hole" is accompanied by Hawking radiation. The Hawking temperature in the Weyl semimetals can reach the room temperature, if the black hole region is sufficiently small, and thus the effective gravity at the horizon is large.
Quadratic band touching points and flat bands in two-dimensional topological Floquet systems
Du, Liang; Zhou, Xiaoting; Fiete, Gregory A.
2017-01-01
In this paper we theoretically study, using Floquet-Bloch theory, the influence of circularly and linearly polarized light on two-dimensional band structures with Dirac and quadratic band touching points, and flat bands, taking the nearest neighbor hopping model on the kagome lattice as an example. We find circularly polarized light can invert the ordering of this three-band model, while leaving the flat band dispersionless. We find a small gap is also opened at the quadratic band touching point by two-photon and higher order processes. By contrast, linearly polarized light splits the quadratic band touching point (into two Dirac points) by an amount that depends only on the amplitude and polarization direction of the light, independent of the frequency, and generally renders dispersion to the flat band. The splitting is perpendicular to the direction of the polarization of the light. We derive an effective low-energy theory that captures these key results. Finally, we compute the frequency dependence of the optical conductivity for this three-band model and analyze the various interband contributions of the Floquet modes. Our results suggest strategies for optically controlling band structure and interaction strength in real systems.
Thermodynamic equivalence of two-dimensional imperfect attractive Fermi and repulsive Bose gases
Napiórkowski, Marek; Piasecki, Jarosław
2017-06-01
We consider two-dimensional imperfect attractive Fermi and repulsive Bose gases consisting of spinless point particles whose total interparticle interaction energy is represented by a N2/2 V with a =-aF≤0 for fermions and a =aB≥0 for bosons. We show that, in spite of the attraction, the thermodynamics of a d =2 imperfect Fermi gas remains well defined for 0 ≤aF≤a0=h2/2 π m , and is exactly the same as the one of the repulsive imperfect Bose gas with aB=a0-aF . In particular, for aF=a0 one observes the thermodynamic equivalence of the attractive imperfect Fermi gas and the ideal Bose gas.
Phase coherence and spectral functions in the two-dimensional excitonic systems
Energy Technology Data Exchange (ETDEWEB)
Apinyan, V., E-mail: V.Apinyan@int.pan.wroc.pl; Kopeć, T.K.
2015-09-15
The nonlocal correlation mechanism between excitonic pairs is considered for a two dimensional exciton system. On the base of the unitary decomposition of the usual electron operator, we include the electron phase degrees of freedom into the problem of interacting excitons. Applying the path integral formalism, we treat the excitonic insulator state (EI) and the Bose–Einstein condensation (BEC) of preformed excitonic pairs as two independent problems. For the BEC of excitons the phase field variables play a crucial role. We derive the expression of the local EI order parameter by integrating out the phase variables. Then, considering the zero temperature limit, we obtain the excitonic BEC transition probability function, by integrating out the fermions. We calculate the normal excitonic Green functions for the conduction and valence band electrons and we derive the excitonic spectral functions, both analytically and numerically. Different values of the Coulomb interaction parameter are considered.
Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice
Institute of Scientific and Technical Information of China (English)
XU Quan; QIANG Tian
2009-01-01
We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling.Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive)and the center of the two-dimensional gap breather (on a light or a heavy atom).
Dirac-fermion-mediated ferromagnetism in a topological insulator
Checkelsky, Joseph G.; Ye, Jianting; Onose, Yoshinori; Iwasa, Yoshihiro; Tokura, Yoshinori
2012-01-01
Topological insulators are a newly discovered class of materials in which helical conducting modes exist on the surface of a bulk insulator(1-6). Recently, theoretical works have shown that breaking gauge symmetry(7) or time-reversal symmetry(8) in these materials produces exotic states that, if rea
Intertwined Rashba, Dirac, and Weyl Fermions in Hexagonal Hyperferroelectrics.
Di Sante, Domenico; Barone, Paolo; Stroppa, Alessandro; Garrity, Kevin F; Vanderbilt, David; Picozzi, Silvia
2016-08-12
By means of density functional theory based calculations, we study the role of spin-orbit coupling in the new family of ABC hyperferroelectrics [Garrity, Rabe, and Vanderbilt Phys. Rev. Lett. 112, 127601 (2014)]. We unveil an extremely rich physics strongly linked to ferroelectric properties, ranging from the electric control of bulk Rashba effect to the existence of a three-dimensional topological insulator phase, with concomitant topological surface states even in the ultrathin film limit. Moreover, we predict that the topological transition, as induced by alloying, is followed by a Weyl semimetal phase of finite concentration extension, which is robust against disorder, putting forward hyperferroelectrics as promising candidates for spin-orbitronic applications.
Scattering problems involving electrons, photons, and Dirac fermions
Snyman, Izak
2008-01-01
The theoretical foundation for the work reported here is provided by Landauer's scattering theory of electron transport. The three main ingredients of a scattering problem are (1) a set of reservoirs that emit and absorb particles, (2) the particles themselves, that propagate as waves between the re
Massive 3+1 Aharonov-Bohm fermions in an MIT cylinder
De Francia, M; Francia, Marcelo De; Kirsten, Klaus
2001-01-01
We study the effect of a background flux string on the vacuum energy of massive Dirac fermions in 3+1 dimensions confined to a finite spatial region through MIT boundary conditions. We treat two admissible self-adjoint extensions of the Hamiltonian. The external sector is also studied and unambiguous results for the Casimir energy of massive fermions in the whole space are obtained.
Wilson Fermions with Four Fermion Interactions
Rantaharju, Jarno; Hietanen, Ari; Pica, Claudio; Sannino, Francesco
2015-01-01
We present a lattice study of a four fermion theory, known as Nambu Jona-Lasinio (NJL) theory, via Wilson fermions. Four fermion interactions naturally occur in several extensions of the Standard Model as a low energy parameterisation of a more fundamental theory. In models of dynamical electroweak symmetry breaking these operators, at an effective level, are used to endow the Standard Model fermions with masses. Furthermore these operators, when sufficiently strong, can drastically modify the fundamental composite dynamics by, for example, turning a strongly coupled infrared conformal theory into a (near) conformal one with desirable features for model building. As first step, we study spontaneous chiral symmetry breaking for the lattice version of the NJL model.
Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway
2012-09-01
ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located
RESEARCH ON TWO-DIMENSIONAL LDA FOR FACE RECOGNITION
Institute of Scientific and Technical Information of China (English)
Han Ke; Zhu Xiuchang
2006-01-01
The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective.
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Directory of Open Access Journals (Sweden)
Nikola Stefanović
2007-06-01
Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.
Fermionic Particle Production by Varying Electric and Magnetic Fields
Sogut, Kenan; Yanar, Hilmi; Havare, Ali
2016-11-01
Creation of fermionic particles by a time-dependent electric field and a space-dependent magnetic field is studied with the Bogoulibov transformation method. Exact analytic solutions of the Dirac equation are obtained in terms of the Whittaker functions and the particle creation number density depending on the electric and magnetic fields is determined. Supported by the Research Fund of Mersin University in TURKEY with project number: 2016-1-AP4-1425
Mass anomalous dimension in SU(2) with six fundamental fermions
Bursa, Francis; Keegan, Liam; Pica, Claudio; Pickup, Thomas
2010-01-01
We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. We measure the running of the coupling and the mass in the Schroedinger Functional scheme. We observe very slow running of the coupling constant. We measure the mass anomalous dimension gamma, and find it is between 0.135 and 1.03 in the range of couplings consistent with the existence of an IR fixed point.