WorldWideScience

Sample records for two-dimensional dimerized quantum

  1. Evidence for an unconventional universality class from a two-dimensional dimerized quantum heisenberg model.

    Science.gov (United States)

    Wenzel, Sandro; Bogacz, Leszek; Janke, Wolfhard

    2008-09-19

    The two-dimensional J-J' dimerized quantum Heisenberg model is studied on the square lattice by means of (stochastic series expansion) quantum Monte Carlo simulations as a function of the coupling ratio alpha=J'/J. The critical point of the order-disorder quantum phase transition in the J-J' model is determined as alpha_c=2.5196(2) by finite-size scaling for up to approximately 10 000 quantum spins. By comparing six dimerized models we show, contrary to the current belief, that the critical exponents of the J-J' model are not in agreement with the three-dimensional classical Heisenberg universality class. This lends support to the notion of nontrivial critical excitations at the quantum critical point.

  2. Quantum Monte Carlo study on the phase transition for a generalized two-dimensional staggered dimerized Heisenberg model

    Institute of Scientific and Technical Information of China (English)

    Zheng Rui; Liu Bang-Gui

    2012-01-01

    In order to gain a deeper understanding of the quantum criticality in the explicitly staggered dimerized Heisenberg models,we study a generalized staggered dimer model named the J0 J1-J2 model,which corresponds to the staggered J J’ model on a square lattice and a honeycomb lattice when J1/J0 equals 1 and 0,respectively.Using the quantum Monte Carlo method,we investigate all the quantum critical points of these models with J1/J0 changing from 0 to 1as a function of coupling ratio α =J2/J0.We extract all the critical values of the coupling ratio αc for these models,and we also obtain the critical exponents v,β/v,and η using different finite-size scaling ans(a)tz,.All these exponents are not consistent with the three-dimensional Heisenberg universality class,indicating some unconventional quantum ciritcial points in these models.

  3. Two-dimensional quantum repeaters

    Science.gov (United States)

    Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.

    2016-11-01

    The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.

  4. Quasi-two-dimensional Bose-Einstein condensation of spin triplets in the dimerized quantum magnet Ba2CuSi2O6Cl2

    Science.gov (United States)

    Okada, Makiko; Tanaka, Hidekazu; Kurita, Nobuyuki; Johmoto, Kohei; Uekusa, Hidehiro; Miyake, Atsushi; Tokunaga, Masashi; Nishimoto, Satoshi; Nakamura, Masaaki; Jaime, Marcelo; Radtke, Guillaume; Saúl, Andrés

    2016-09-01

    We synthesized single crystals of composition Ba2CuSi2O6Cl2 and investigated their quantum magnetic properties. The crystal structure is closely related to that of the quasi-two-dimensional (2D) dimerized magnet BaCuSi2O6 also known as Han purple. Ba2CuSi2O6Cl2 has a singlet ground state with an excitation gap of Δ /kB=20.8 K. The magnetization curves for two different field directions almost perfectly coincide when normalized by the g factor except for a small jump anomaly for a magnetic field perpendicular to the c axis. The magnetization curve with a nonlinear slope above the critical field is in excellent agreement with exact-diagonalization calculations based on a 2D coupled spin-dimer model. Individual exchange constants are also evaluated using density functional theory (DFT). The DFT results demonstrate a 2D exchange network and weak frustration between interdimer exchange interactions, supported by weak spin-lattice coupling implied from our magnetostriction data. The magnetic-field-induced spin ordering in Ba2CuSi2O6Cl2 is described as the quasi-2D Bose-Einstein condensation of triplets.

  5. Pseudo-two-dimensional random dimer lattices

    Energy Technology Data Exchange (ETDEWEB)

    Naether, U., E-mail: naether@unizar.es [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC – Universidad de Zaragoza, 50009 Zaragoza (Spain); Mejía-Cortés, C.; Vicencio, R.A. [Departamento de Física and MSI – Nucleus for Advanced Optics, Center for Optics and Photonics (CEFOP), Facultad de Ciencias, Universidad de Chile, Santiago (Chile)

    2015-06-05

    We study the long-time wave transport in correlated and uncorrelated disordered 2D arrays. When a separation of dimensions is applied to the model, we find that the previously predicted 1D random dimer phenomenology also appears in so-called pseudo-2D arrays. Therefore, a threshold behavior is observed in terms of the effective size for eigenmodes, as well as in long-time dynamics. A minimum system size is required to observe this threshold, which is very important when considering a possible experimental realization. For the long-time evolution, we find that for correlated lattices a super-diffusive long-range transport is observed. For completely uncorrelated disorder 2D transport becomes sub-diffusive within the localization length and for random binary pseudo-2D arrays localization is observed.

  6. Two-Dimensional Electronic Spectroscopy of a Model Dimer System

    Directory of Open Access Journals (Sweden)

    Prokhorenko V.I.

    2013-03-01

    Full Text Available Two-dimensional spectra of a dimer were measured to determine the timescale for electronic decoherence at room temperature. Anti-correlated beats in the crosspeaks were observed only during the period corresponding to the measured homogeneous lifetime.

  7. Quantum computation with two-dimensional graphene quantum dots

    Institute of Scientific and Technical Information of China (English)

    Li Jie-Sen; Li Zhi-Bing; Yao Dao-Xin

    2012-01-01

    We study an array of graphene nano sheets that form a two-dimensional S =1/2 Kagome spin lattice used for quantum computation.The edge states of the graphene nano sheets axe used to form quantum dots to confine electrons and perform the computation.We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots.It is shown that both schemes contain a great amount of information for quantum computation.The corresponding gate operations are also proposed.

  8. A two-dimensional spin liquid in quantum kagome ice.

    Science.gov (United States)

    Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G

    2015-06-22

    Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.

  9. Quantum entanglement in a two-dimensional ion trap

    Institute of Scientific and Technical Information of China (English)

    王成志; 方卯发

    2003-01-01

    In this paper, we investigate the quantum entanglement in a two-dimensional ion trap system. We discuss the quantum entanglement between the ion and phonons by using reduced entropy, and that between two degrees of freedom of the vibrational motion along x and y directions by using quantum relative entropy. We discuss also the influence of initial state of the system on the quantum entanglement and the relation between two entanglements in the trapped ion system.

  10. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank

    2014-01-01

    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...

  11. Non perturbative methods in two dimensional quantum field theory

    CERN Document Server

    Abdalla, Elcio; Rothe, Klaus D

    1991-01-01

    This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.

  12. Two-dimensional spectroscopy of molecular excitons in a model dimer system

    Science.gov (United States)

    Halpin, Alexei

    The physics of molecular excitons has been the subject of many recent studies using electronic two-dimensional photon-echo spectroscopy (2DPE), particularly in the context of light harvesting in photosynthesis. Since the spectra for multichromophoric aggregates are congested, particularly so at room temperature, we present a study of a model dimer comprised of identical chromophores with a well defined electronic coupling strength, to provide clear signatures for coherences between vibronic excitons in 2D spectra. We begin by describing the design of a broadband passively phase-stabilized interferometer for collection of 2D spectra, which also allows for the investigation of state preparation in 2D spectroscopy by using shaped excitation pulses. In experiments on the model dimer we observe strong oscillating off-diagonal features in the 2D spectra which are present only before the onset of dephasing, which occurs in less than 100 fs due to strong system-bath coupling. This is in contrast with the parent dye, where low amplitude oscillations associated with Raman active vibrations persist for several ps following excitation. The results of this comparative study indicate that the signals observed earlier in photosynthetic proteins likely reflect vibrational motion in isolated pigments, and not delocalized quantum coherence. While long-lived vibrational coherences are of questionable biological relevance at face value, we conclude with a discussion on initial findings using coherently controlled 2D spectroscopy, where we observe long-lived signatures associated to vibronic coherences at room temperature. These results point to new directions of study using multidimensional spectroscopy to unravel the role of coherence in excitation energy transfer in molecular aggregates in an experimentally direct fashion.

  13. Quantum skyrmions in two-dimensional chiral magnets

    Science.gov (United States)

    Takashima, Rina; Ishizuka, Hiroaki; Balents, Leon

    2016-10-01

    We study the quantum mechanics of magnetic skyrmions in the vicinity of the skyrmion-crystal to ferromagnet phase boundary in two-dimensional magnets. We show that the skyrmion excitation has an energy dispersion that splits into multiple bands due to the combination of magnus force and the underlying lattice. Condensation of the skyrmions can give rise to an intermediate phase between the skyrmion crystal and ferromagnet: a quantum liquid, in which skyrmions are not spatially localized. We show that the critical behavior depends on the spin size S and the topological number of the skyrmion. Experimental signatures of quantum skyrmions in inelastic neutron-scattering measurements are also discussed.

  14. Multiple Potts Models Coupled to Two-Dimensional Quantum Gravity

    CERN Document Server

    Baillie, C F

    1992-01-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of {\\it multiple} $q=2,3,4$ state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the $c>1$ region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for $c>1$. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for $c>1$.

  15. Multiple Potts models coupled to two-dimensional quantum gravity

    Science.gov (United States)

    Baillie, C. F.; Johnston, D. A.

    1992-07-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of multiple q=2, 3, 4 state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the c>1 region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for c>1. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for c>1.

  16. Topological Quantum Optics in Two-Dimensional Atomic Arrays

    Science.gov (United States)

    Perczel, J.; Borregaard, J.; Chang, D. E.; Pichler, H.; Yelin, S. F.; Zoller, P.; Lukin, M. D.

    2017-07-01

    We demonstrate that two-dimensional atomic emitter arrays with subwavelength spacing constitute topologically protected quantum optical systems where the photon propagation is robust against large imperfections while losses associated with free space emission are strongly suppressed. Breaking time-reversal symmetry with a magnetic field results in gapped photonic bands with nontrivial Chern numbers and topologically protected, long-lived edge states. Due to the inherent nonlinearity of constituent emitters, such systems provide a platform for exploring quantum optical analogs of interacting topological systems.

  17. Entropic Barriers for Two-Dimensional Quantum Memories

    Science.gov (United States)

    Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.

    2014-03-01

    Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.

  18. Quantum creep in a highly crystalline two-dimensional superconductor

    Science.gov (United States)

    Saito, Yu; Kasahara, Yuichi; Ye, Jianting; Iwasa, Yoshihiro; Nojima, Tsutomu

    Conventional studies on quantum phase transitions, especially on superconductor-insulator or superconductor-metal-insulator transitions have been performed in deposited metallic thin films such as Bismuth or MoGe. Although the techniques of thin films deposition have been considerably improved, unintentional disorder such as impurities and deficiencies, generating the pinning centers, seems to still exist in such systems. The mechanical exfoliated highly crystalline two-dimensional material can be a good candidate to realize a less-disordered 2D superconductor with extremely weak pinning, combined with transfer method or ionic-liquid gating. We report on the quantum metal, namely, magnetic-field-induced metallic state observed in an ion-gated two-dimensional superconductor based on an ultra-highly crystalline layered band insulator, ZrNCl. We found that the superconducting state is extremely fragile against external magnetic fields; that is, zero resistance state immediately disappears, once an external magnetic field switches on. This is because the present system is relatively clean and the pinning potential is extremely weak, which cause quantum tunneling and flux flow of vortices, resulting in metallic ground state.

  19. The XY model coupled to two-dimensional quantum gravity

    Science.gov (United States)

    Baillie, C. F.; Johnston, D. A.

    1992-09-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we discovered in our earlier work on various Potts models with the same value of the central charge, c, carries over to the XY model, which has c=1.

  20. Magnetic quantum dot in two-dimensional topological insulators

    Science.gov (United States)

    Li, Guo; Zhu, Jia-Lin; Yang, Ning

    2017-03-01

    Magnetic quantum dots in two-dimensional band and topological insulators are studied by solving the modified Dirac model under nonuniform magnetic fields. The Landau levels split into discrete states with certain angular momentum. The states splitting from the zero Landau levels lie in the energy gap for topological insulators but are out of the gap for band insulators. It is found that the ground states oscillate between the spin-up and spin-down states when the magnetic field or the dot size changes. The oscillation manifests itself as changes of sign and strength of charge currents near the dot's edge.

  1. The XY Model Coupled to Two-Dimensional Quantum Gravity

    CERN Document Server

    Baillie, C F; 10.1016/0370-2693(92)91037-A

    2009-01-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we discovered in our earlier work on various Potts models with the same value of the central charge, $c$, carries over to the XY model, which has $c=1$.

  2. Spin from defects in two-dimensional quantum field theory

    CERN Document Server

    Novak, Sebastian

    2015-01-01

    We build two-dimensional quantum field theories on spin surfaces starting from theories on oriented surfaces with networks of topological defect lines and junctions. The construction uses a combinatorial description of the spin structure in terms of a triangulation equipped with extra data. The amplitude for the spin surfaces is defined to be the amplitude for the underlying oriented surface together with a defect network dual to the triangulation. Independence of the triangulation and of the other choices follows if the line defect and junctions are obtained from a Delta-separable Frobenius algebra with involutive Nakayama automorphism in the monoidal category of topological defects. For rational conformal field theory we can give a more explicit description of the defect category, and we work out two examples related to free fermions in detail: the Ising model and the so(n) WZW model at level 1.

  3. Soliton nanoantennas in two-dimensional arrays of quantum dots

    CERN Document Server

    Gligorić, G; Hadžievski, Lj; Slepyan, G Ya; Malomed, B A

    2015-01-01

    We consider two-dimensional (2D) arrays of self-organized semiconductor quantum dots (QDs) strongly interacting with electromagnetic field in the regime of Rabi oscillations. The QD array built of two-level states is modelled by two coupled systems of discrete nonlinear Schr\\"{o}dinger equations. Localized modes in the form of single-peaked fundamental and vortical stationary Rabi solitons and self-trapped breathers have been found. The results for the stability, mobility and radiative properties of the Rabi modes suggest a concept of a self-assembled 2D \\textit{% soliton-based nano-antenna}, which should be stable against imperfections In particular, we discuss the implementation of such a nano-antenna in the form of surface plasmon solitons in graphene, and illustrate possibilities to control their operation by means of optical tools.

  4. Ultrabroadband two-quantum two-dimensional electronic spectroscopy

    Science.gov (United States)

    Gellen, Tobias A.; Bizimana, Laurie A.; Carbery, William P.; Breen, Ilana; Turner, Daniel B.

    2016-08-01

    A recent theoretical study proposed that two-quantum (2Q) two-dimensional (2D) electronic spectroscopy should be a background-free probe of post-Hartree-Fock electronic correlations. Testing this theoretical prediction requires an instrument capable of not only detecting multiple transitions among molecular excited states but also distinguishing molecular 2Q signals from nonresonant response. Herein we describe a 2Q 2D spectrometer with a spectral range of 300 nm that is passively phase stable and uses only beamsplitters and mirrors. We developed and implemented a dual-chopping balanced-detection method to resolve the weak molecular 2Q signals. Experiments performed on cresyl violet perchlorate and rhodamine 6G revealed distinct 2Q signals convolved with nonresonant response. Density functional theory computations helped reveal the molecular origin of these signals. The experimental and computational results demonstrate that 2Q electronic spectra can provide a singular probe of highly excited electronic states.

  5. Crossed Andreev effects in two-dimensional quantum Hall systems

    Science.gov (United States)

    Hou, Zhe; Xing, Yanxia; Guo, Ai-Min; Sun, Qing-Feng

    2016-08-01

    We study the crossed Andreev effects in two-dimensional conductor/superconductor hybrid systems under a perpendicular magnetic field. Both a graphene/superconductor hybrid system and an electron gas/superconductor one are considered. It is shown that an exclusive crossed Andreev reflection, with other Andreev reflections being completely suppressed, is obtained in a high magnetic field because of the chiral edge states in the quantum Hall regime. Importantly, the exclusive crossed Andreev reflection not only holds for a wide range of system parameters, e.g., the size of system, the width of central superconductor, and the quality of coupling between the graphene and the superconductor, but also is very robust against disorder. When the applied bias is within the superconductor gap, a robust Cooper-pair splitting process with high-efficiency can be realized in this system.

  6. Two-dimensional lattice gauge theories with superconducting quantum circuits

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, D., E-mail: david.marcos@me.com [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Widmer, P. [Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012, Bern (Switzerland); Rico, E. [IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg (France); Hafezi, M. [Joint Quantum Institute, NIST/University of Maryland, College Park 20742 (United States); Department of Electrical Engineering and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Rabl, P. [Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien (Austria); Wiese, U.-J. [Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012, Bern (Switzerland); Zoller, P. [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria)

    2014-12-15

    A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.

  7. Quantum magnetotransport in a modulated two-dimensional electron gas

    Science.gov (United States)

    Park, Tae-ik; Gumbs, Godfrey

    1997-09-01

    Quantum mechanical calculations of the magnetotransport coefficients of a modulated two-dimensional electron gas in a perpendicular magnetic field are presented using the Kubo method. The model modulation potential used is such that the effect of the steepness of the potential and its strength on the band part of the longitudinal resistivity ρxxand the Hall resistivity ρxycould be studied. In the extreme limit of a very steep potential, a two-dimensional square array of antidots is simulated. Impurity scattering is included in the self-consistent t-matrix approximation. The results show that for a strong lateral superlattice potential, ρxyis quenched in the low magnetic field regime and as the magnetic field increases there is a large negative Hall resistivity. The intensity of this negative peak is suppressed as the strength of the modulation potential is decreased. It is also shown that the height of the negative peak depends on the steepness of the potential. The longitudinal resistivity also has some interesting features. There are Aharonov-Bohm oscillations and a double peak structure which depends on both the strength of the modulation potential as well as its slope. The numerical results show that the position and intensity of the lower peak is not very sensitive to a change in the strength of the lattice potential or its steepness. However, the upper peak is greatly reduced when the lattice potential is diminished in strength. The double peak feature in ρxxand the negative peak and quenching of the Hall effect at low magnetic fields have been observed experimentally for antidots in both the quasiclassical and quantum regimes.

  8. Criticality in Two-Dimensional Quantum Systems: Tensor Network Approach

    CERN Document Server

    Ran, Shi-Ju; Li, Wei; Lewenstein, Maciej; Su, Gang

    2016-01-01

    Determination and characterization of criticality in two-dimensional (2D) quantum many-body systems belong to the most important challenges and problems of quantum physics. In this paper we propose an efficient scheme to solve this problem by utilizing the infinite projected entangled pair state (iPEPS), and tensor network (TN) representations. We show that the criticality of a 2D state is faithfully reproduced by the ground state (dubbed as boundary state) of a one-dimensional effective Hamiltonian constructed from its iPEPS representation. We demonstrate that for a critical state the correlation length and the entanglement spectrum of the boundary state are essentially different from those of a gapped iPEPS. This provides a solid indicator that allows to identify the criticality of the 2D state. Our scheme is verified on the resonating valence bond (RVB) states on kagom\\'e and square lattices, where the boundary state of the honeycomb RVB is found to be described by a $c=1$ conformal field theory. We apply ...

  9. Quantum holographic encoding in a two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Christopher

    2010-05-26

    The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures - 'molecular holograms' - which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as {approx}0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm{sup 2} and place tens of bits into a single fermionic state.

  10. Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Cundiff, Steven T. [Univ. of Colorado, Boulder, CO (United States)

    2016-05-03

    This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program was to implement optical 2-dimensional Fourier transform spectroscopy and apply it to electronic excitations, including excitons, in semiconductors. Specifically of interest are quantum wells that exhibit disorder due to well width fluctuations and quantum dots. In both cases, 2-D spectroscopy will provide information regarding coupling among excitonic localization sites.

  11. Nonequilibrium critical dynamics of two dimensional interacting monomer-dimer model: non-Ising criticality

    Science.gov (United States)

    Nam, Keekwon; Kim, Bongsoo; Jong Lee, Sung

    2014-08-01

    We investigate the nonequilibrium relaxation dynamics of an interacting monomer-dimer model with nearest neighbor repulsion on a square lattice, which possesses two symmetric absorbing states. The model is known to exhibit two nearby continuous transitions: the Z2 symmetry-breaking order-disorder transition and the absorbing transition with directed percolation criticality. We performed a more detailed analysis of our extensive simulations on bigger lattice systems which reaffirms that the symmetry-breaking transition exhibits a non-Ising critical behavior with β ≃ 0.149(2) and η ≃ 0.30(1) that are distinct from those values of a pure two dimensional Ising model. Finite size scaling of dimer density near the symmetry breaking transition gives logarithmic scaling (α = 0.0) which is consistent with the hyperscaling relation but the corresponding exponent of νB ≃ 1.37(2) exhibits a conspicuous deviation from the pure Ising value of 1. The value of dynamic critical exponent z, however, is found to be close to that of the kinetic Ising model as 1/z ≃ 0.466(5) from the relaxation of staggered magnetization (and also similar but slightly smaller values from coarsening).

  12. Deformed oscillator algebras for two dimensional quantum superintegrable systems

    CERN Document Server

    Bonatsos, Dennis; Kokkotas, K D; Bonatsos, Dennis

    1994-01-01

    Quantum superintegrable systems in two dimensions are obtained from their classical counterparts, the quantum integrals of motion being obtained from the corresponding classical integrals by a symmetrization procedure. For each quantum superintegrable systema deformed oscillator algebra, characterized by a structure function specific for each system, is constructed, the generators of the algebra being functions of the quantum integrals of motion. The energy eigenvalues corresponding to a state with finite dimensional degeneracy can then be obtained in an economical way from solving a system of two equations satisfied by the structure function, the results being in agreement to the ones obtained from the solution of the relevant Schrodinger equation. The method shows how quantum algebraic techniques can simplify the study of quantum superintegrable systems, especially in two dimensions.

  13. Quasi-two-dimensional Dirac fermions and quantum magnetoresistance in LaAgBi$_2$

    OpenAIRE

    Wang, Kefeng; Graf, D.; Petrovic, C.

    2016-01-01

    We report quasi-two-dimensional Dirac fermions and quantum magnetoresistance in LaAgBi$_2$. The band structure shows several narrow bands with nearly linear energy dispersion and Dirac-cone-like points at the Fermi level. The quantum oscillation experiments revealed one quasi-two-dimensional Fermi pocket and another complex pocket with small cyclotron resonant mass. The in-plane transverse magnetoresistance exhibits a crossover at a critical field $B^*$ from semiclassical weak-field $B^2$ dep...

  14. Two-dimensional ion trap lattice on a microchip for quantum simulation

    CERN Document Server

    Sterling, R C; Weidt, S; Lake, K; Srinivasan, P; Webster, S C; Kraft, M; Hensinger, W K

    2013-01-01

    Using a controllable quantum system it is possible to simulate other highly complex quantum systems efficiently overcoming an in-principle limitation of classical computing. Trapped ions constitute such a highly controllable quantum system. So far, no dedicated architectures for the simulation of two-dimensional spin lattices using trapped ions in radio-frequency ion traps have been produced, limiting the possibility of carrying out such quantum simulations on a large scale. We report the operation of a two-dimensional ion trap lattice integrated in a microchip capable of implementing quantum simulations of two-dimensional spin lattices. Our device provides a scalable microfabricated architecture for trapping such ion lattices with coupling strengths between neighbouring ions sufficient to provide a powerful platform for the implementation of quantum simulations. In order to realize this device we developed a specialist fabrication process that allows for the application of very large voltages. We fabricated ...

  15. Quantum search on the two-dimensional lattice using the staggered model with Hamiltonians

    Science.gov (United States)

    Portugal, R.; Fernandes, T. D.

    2017-04-01

    Quantum search on the two-dimensional lattice with one marked vertex and cyclic boundary conditions is an important problem in the context of quantum algorithms with an interesting unfolding. It avails to test the ability of quantum walk models to provide efficient algorithms from the theoretical side and means to implement quantum walks in laboratories from the practical side. In this paper, we rigorously prove that the recent-proposed staggered quantum walk model provides an efficient quantum search on the two-dimensional lattice, if the reflection operators associated with the graph tessellations are used as Hamiltonians, which is an important theoretical result for validating the staggered model with Hamiltonians. Numerical results show that on the two-dimensional lattice staggered models without Hamiltonians are not as efficient as the one described in this paper and are, in fact, as slow as classical random-walk-based algorithms.

  16. Dipolar quantum electrodynamics of the two-dimensional electron gas

    Science.gov (United States)

    Todorov, Yanko

    2015-03-01

    Similarly to a previous work on the homogeneous electron gas [Y. Todorov, Phys. Rev. B 89, 075115 (2014), 10.1103/PhysRevB.89.075115], we apply the Power-Zienau-Wooley (PZW) formulation of the quantum electrodynamics to the case of an electron gas quantum confined by one-dimensional potential. We provide a microscopic description of all collective plasmon modes of the gas, oscillating both along and perpendicular to the direction of quantum confinement. Furthermore, we study the interaction of the collective modes with a photonic structure, planar metallic waveguide, by using the full expansion of the electromagnetic field into normal modes. We show how the boundary conditions for the electromagnetic field influence both the transverse light-matter coupling and the longitudinal particle-particle interactions. The PZW descriptions appear thus as a convenient tool to study semiconductor quantum optics in geometries where quantum-confined particles interact with strongly confined electromagnetic fields in microresonators, such as the ones used to achieve the ultrastrong light-matter coupling regime.

  17. Laser driven impurity states in two-dimensional quantum dots and quantum rings

    Science.gov (United States)

    Laroze, D.; Barseghyan, M.; Radu, A.; Kirakosyan, A. A.

    2016-11-01

    The hydrogenic donor impurity states in two-dimensional GaAs/Ga0.7Al0.3As quantum dot and quantum ring have been investigated under the action of intense laser field. A laser dressed effect on both electron confining and electron-impurity Coulomb interaction potentials has been considered. The single electron energy spectrum and wave functions have been found using the effective mass approximation and exact diagonalization technique. The accidental degeneracy of the impurity states have been observed for different positions of the impurity and versus values of the laser field parameter. The obtained theoretical results indicate a novel opportunity to tune the performance of quantum dots and quantum rings and to control their specific properties by means of laser field.

  18. Quantum vortex dynamics in two-dimensional neutral superfluids

    NARCIS (Netherlands)

    Wang, C. -C J.; Duine, R.A.; MacDonald, A.H.

    2010-01-01

    We derive an effective action for the vortex-position degree of freedom in a superfluid by integrating out condensate phase- and density-fluctuation environmental modes. When the quantum dynamics of environmental fluctuations is neglected, we confirm the occurrence of the vortex Magnus force and

  19. Dislocations and vacancies in two-dimensional mixed crystals of spheres and dimers

    KAUST Repository

    Gerbode, Sharon J.

    2010-10-15

    In colloidal crystals of spheres, dislocation motion is unrestricted. On the other hand, recent studies of relaxation in crystals of colloidal dimer particles have demonstrated that the dislocation dynamics in such crystals are reminiscent of glassy systems. The observed glassy dynamics arise as a result of dislocation cages formed by certain dimer orientations. In the current study, we use experiments and simulations to investigate the transition that arises when a pure sphere crystal is doped with an increasing concentration of dimers. Specifically, we focus on both dislocation caging and vacancy motion. Interestingly, we find that any nonzero fraction of dimers introduces finite dislocation cages, suggesting that glassy dynamics are present for any mixed crystal. However, we have also identified a vacancy-mediated uncaging mechanism for releasing dislocations from their cages. This mechanism is dependent on vacancy diffusion, which slows by orders of magnitude as the dimer concentration is increased. We propose that in mixed crystals with low dimer concentrations vacancy diffusion is fast enough to uncage dislocations and delay the onset of glassy dislocation dynamics. © 2010 The American Physical Society.

  20. Two-Dimensional Arrays of Neutral Atom Quantum Gates

    Science.gov (United States)

    2012-10-20

    Isenhower, X. Zhang, A. Gill, T. Walker, M. Saffman. Deterministic entanglement of two neutral atoms via Rydberg blockade, Physical Review A, (09 2010...squeezing of atomic ensembles by multicolor quantum nondemolition measurements, Physical Review A, (02 2009): 0. doi: 10.1103/PhysRevA.79.023831 10/19/2012...collective encoding in holmium atoms, Physical Review A, (07 2008): 0. doi: 10.1103/PhysRevA.78.012336 10/19/2012 10.00 M Saffman, X L Zhang, A T

  1. Non-linear excitation of quantum emitters in two-dimensional hexagonal boron nitride

    CERN Document Server

    Schell, Andreas W; Takashima, Hideaki; Takeuchi, Shigeki; Aharonovich, Igor

    2016-01-01

    Two-photon absorption is an important non-linear process employed for high resolution bio-imaging and non-linear optics. In this work we realize two-photon excitation of a quantum emitter embedded in a two-dimensional material. We examine defects in hexagonal boron nitride and show that the emitters exhibit similar spectral and quantum properties under one-photon and two-photon excitation. Furthermore, our findings are important to deploy two-dimensional hexagonal boron nitride for quantum non-linear photonic applications.

  2. Calculating Two-Dimensional Spectra with the Mixed Quantum-Classical Ehrenfest Method

    NARCIS (Netherlands)

    van der Vegte, C. P.; Dijkstra, A. G.; Knoester, J.; Jansen, T. L. C.

    2013-01-01

    We present a mixed quantum-classical simulation approach to calculate two-dimensional spectra of coupled two-level electronic model systems. We include the change in potential energy of the classical system due to transitions in the quantum system using the Ehrenfest method. We study how this

  3. Let Students Derive, by Themselves, Two-Dimensional Atomic and Molecular Quantum Chemistry from Scratch

    Science.gov (United States)

    Ge, Yingbin

    2016-01-01

    Hands-on exercises are designed for undergraduate physical chemistry students to derive two-dimensional quantum chemistry from scratch for the H atom and H[subscript 2] molecule, both in the ground state and excited states. By reducing the mathematical complexity of the traditional quantum chemistry teaching, these exercises can be completed…

  4. Calculating Two-Dimensional Spectra with the Mixed Quantum-Classical Ehrenfest Method

    NARCIS (Netherlands)

    van der Vegte, C. P.; Dijkstra, A. G.; Knoester, J.; Jansen, T. L. C.

    2013-01-01

    We present a mixed quantum-classical simulation approach to calculate two-dimensional spectra of coupled two-level electronic model systems. We include the change in potential energy of the classical system due to transitions in the quantum system using the Ehrenfest method. We study how this feedba

  5. Exact two-body solutions and quantum defect theory of two-dimensional dipolar quantum gas

    Science.gov (United States)

    Jie, Jianwen; Qi, Ran

    2016-10-01

    In this paper, we provide the two-body exact solutions of the two-dimensional (2D) Schrödinger equation with isotropic +/- 1/{r}3 interactions. An analytic quantum defect theory is constructed based on these solutions and it is applied to investigate the scattering properties as well as two-body bound states of an ultracold polar molecules confined in a quasi-2D geometry. Interestingly, we find that for the attractive case, the scattering resonance happens simultaneously in all partial waves, which has not been observed in other systems. The effect of this feature on the scattering phase shift across such resonances is also illustrated.

  6. A restricted dimer model on a two-dimensional random causal triangulation

    DEFF Research Database (Denmark)

    Ambjørn, Jan; Durhuus, Bergfinnur; Wheater, J. F.

    2014-01-01

    We introduce a restricted hard dimer model on a random causal triangulation that is exactly solvable and generalizes a model recently proposed by Atkin and Zohren (2012 Phys. Lett. B 712 445–50). We show that the latter model exhibits unusual behaviour at its multicritical point; in particular, its...

  7. Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin interactions.

    Science.gov (United States)

    Sandvik, Anders W

    2007-06-01

    Using ground-state projector quantum Monte Carlo simulations in the valence-bond basis, it is demonstrated that nonfrustrating four-spin interactions can destroy the Néel order of the two-dimensional S=1/2 Heisenberg antiferromagnet and drive it into a valence-bond solid (VBS) phase. Results for spin and dimer correlations are consistent with a single continuous transition, and all data exhibit finite-size scaling with a single set of exponents, z=1, nu=0.78+/-0.03, and eta=0.26+/-0.03. The unusually large eta and an emergent U(1) symmetry, detected using VBS order parameter histograms, provide strong evidence for a deconfined quantum critical point.

  8. Short-time dynamics of monomers and dimers in quasi-two-dimensional colloidal mixtures

    Science.gov (United States)

    Sarmiento-Gómez, Erick; Villanueva-Valencia, José Ramón; Herrera-Velarde, Salvador; Ruiz-Santoyo, José Arturo; Santana-Solano, Jesús; Arauz-Lara, José Luis; Castañeda-Priego, Ramón

    2016-07-01

    We report on the short-time dynamics in colloidal mixtures made up of monomers and dimers highly confined between two glass plates. At low concentrations, the experimental measurements of colloidal motion agree well with the solution of the Navier-Stokes equation at low Reynolds numbers; the latter takes into account the increase in the drag force on a colloidal particle due to wall-particle hydrodynamic forces. More importantly, we find that the ratio of the short-time diffusion coefficient of the monomer and that of the center of mass of the dimmer is almost independent of both the dimer molar fraction, xd, and the total packing fraction, ϕ , up to ϕ ≈0.5 . At higher concentrations, this ratio displays a small but systematic increase. A similar physical scenario is observed for the ratio between the parallel and the perpendicular components of the short-time diffusion coefficients of the dimer. This dynamical behavior is corroborated by means of molecular dynamics computer simulations that include explicitly the particle-particle hydrodynamic forces induced by the solvent. Our results suggest that the effects of colloid-colloid hydrodynamic interactions on the short-time diffusion coefficients are almost identical and factorable in both species.

  9. Freely configurable quantum simulator based on a two-dimensional array of individually trapped ions

    CERN Document Server

    Mielenz, Manuel; Wittemer, Matthias; Hakelberg, Frederick; Schmied, Roman; Blain, Matthew; Maunz, Peter; Leibfried, Dietrich; Warring, Ulrich; Schaetz, Tobias

    2015-01-01

    A custom-built and precisely controlled quantum system may offer access to a fundamental understanding of another, less accessible system of interest. A universal quantum computer is currently out of reach, but an analog quantum simulator that makes the relevant observables, interactions, and states of a quantum model accessible could permit experimental insight into complex quantum dynamics that are intractable on conventional computers. Several platforms have been suggested and proof-of-principle experiments have been conducted. Here we characterise two-dimensional arrays of three ions trapped by radio-frequency fields in individually controlled harmonic wells forming equilateral triangles with side lengths 40 and 80 micrometer. In our approach, which is scalable to arbitrary two dimensional lattices, we demonstrate individual control of the electronic and motional degrees of freedom, preparation of a fiducial initial state with ion motion close to the ground state, as well as tuning of crucial couplings be...

  10. Emergent topology and dynamical quantum phase transitions in two-dimensional closed quantum systems

    Science.gov (United States)

    Bhattacharya, Utso; Dutta, Amit

    2017-07-01

    Dynamical quantum phase transitions (DQPTs) manifested in the nonanalyticities in the temporal evolution of a closed quantum system generated by the time-independent final Hamiltonian, following a quench (or ramping) of a parameter of the Hamiltonian, is an emerging frontier of nonequilibrium quantum dynamics. We, here, introduce the notion of a dynamical topological order parameter (DTOP) that characterizes these DQPTs occurring in quenched (or ramped) two-dimensional closed quantum systems; this is quite a nontrivial generalization of the notion of DTOP introduced in Budich and Heyl [Phys. Rev. B 93, 085416 (2016), 10.1103/PhysRevB.93.085416] for one-dimensional situations. This DTOP is obtained from the "gauge-invariant" Pancharatnam phase extracted from the Loschmidt overlap, i.e., the modulus of the overlap between the initially prepared state and its time-evolved counterpart reached following a temporal evolution generated by the time-independent final Hamiltonian. This generic proposal is illustrated considering DQPTs occurring in the subsequent temporal evolution following a sudden quench of the staggered mass of the topological Haldane model on a hexagonal lattice where it stays fixed to zero or unity and makes a discontinuous jump between these two values at critical times at which DQPTs occur. What is remarkable is that while the topology of the equilibrium model is characterized by the Chern number, the emergent topology associated with the DQPTs is characterized by a generalized winding number.

  11. Shape-induced chiral ordering in two-dimensional packing of snowmanlike dimeric particles.

    Science.gov (United States)

    Han, Youngkyu; Lee, Juncheol; Choi, Siyoung Q; Choi, Myung Chul; Kim, Mahn Won

    2013-10-01

    Understanding the distinctive phase behaviors in random packing due to particle shapes is an important issue in condensed matter physics. In this paper, we investigate the random packing structure of two-dimensional (2D) snowmen via wax-snowman packing experiments and Brownian dynamics simulations. Both experiments and simulations reveal that neighboring snowmen have a strong short-range orientational correlation and consequently locally form particular conformations. A chiral conformation is dominant for high area fractions near the jamming condition (φ>0.8), and the proportion of the chiral conformation increases with γ. We also found that the attractive interaction does not have a significant impact on the results. The geometry of chirally ordered snowmen causes a mismatch with 2D crystalline symmetries and thus inhibits the development of long-range spatial order, despite the strong orientational correlation between neighbors.

  12. Origin of the inverse energy cascade in two-dimensional quantum turbulence

    CERN Document Server

    Skaugen, Audun

    2016-01-01

    We unravel the intimate connection between fundamental characteristics of two dimensional turbulence, i.e. the large-scale coherent structures and the inverse energy cascade. We propose a driven, dissipative point vortex model that is able to capture the dynamics of two-dimensional quantum turbulence by the emergent clustering of same-sign vortices, which form a non-equilibrium analogue of Onsager vortex equilibria. The inverse energy cascade developing in a statistically neutral system originates from this clustering of co-rotating and counter-rotating vortices. The Kolmogorov energy spectrum $k^{-5/3}$ is attributed to the scale-free correlations in the vorticity field fluctuations, here measured by the weighted pair correlation function that has a power-law decay as $r^{-4/3}$ on inertial separation lengthscales $r$. This scale-invariant statistics of vorticity, attributed to a conformal symmetry of two-dimensional classical turbulence, draws further analogies between classical and quantum turbulence beyon...

  13. Two-dimensional quantum compass model in a staggered field: some rigorous results

    Institute of Scientific and Technical Information of China (English)

    He Pei-Song; You Wen-Long; Tian Guang-Shan

    2011-01-01

    We study the properties of the two-dimensional quantum compass model in a staggered field. Using the PerronFr(o)enius theorem and the reflection positivity method, we rigorously determine the low energy spectrum of this model and its global ground state Ψ0. Furthermore, we show that Ψ0 has a directional long-range order.

  14. Expectation value of composite field $T{\\bar T}$ in two-dimensional quantum field theory

    OpenAIRE

    Zamolodchikov, Alexander B.

    2004-01-01

    I show that the expectation value of the composite field $T{\\bar T}$, built from the components of the energy-momentum tensor, is expressed exactly through the expectation value of the energy-momentum tensor itself. The relation is derived in two-dimensional quantum field theory under broad assumptions, and does not require integrability.

  15. Quantum computing via defect states in two-dimensional antidot lattices.

    Science.gov (United States)

    Flindt, Christian; Mortensen, Niels Asger; Jauho, Antti-Pekka

    2005-12-01

    We propose a new structure suitable for quantum computing in a solid-state environment: designed defect states in antidot lattices superimposed on a two-dimensional electron gas at a semiconductor heterostructure. State manipulation can be obtained with gate control. Model calculations indicate that it is feasible to fabricate structures whose energy level structure is robust against thermal dephasing.

  16. Scaling dimensions of manifestly generally covariant operators in two-dimensional quantum gravity

    CERN Document Server

    Nishimura, J; Tsuchiya, A; Jun Nishimura; Shinya Tamura; Asato Tsuchiya

    1994-01-01

    Using (2+$\\epsilon$)-dimensional quantum gravity recently formulated by Kawai, Kitazawa and Ninomiya, we calculate the scaling dimensions of manifestly generally covariant operators in two-dimensional quantum gravity coupled to $(p,q)$ minimal conformal matter. In the spectrum appear all the scaling dimensions of the scaling operators in the matrix model except the boundary operators, while there are also many others which have no corresponding scaling dimensions in the matrix model.

  17. Statistical transmutation in doped quantum dimer models.

    Science.gov (United States)

    Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P

    2012-07-06

    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families.

  18. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor

    Science.gov (United States)

    Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D

    2017-01-01

    An outstanding challenge in quantum photonics is scalability, which requires positioning of single quantum emitters in a deterministic fashion. Site positioning progress has been made in established platforms including defects in diamond and self-assembled quantum dots, albeit often with compromised coherence and optical quality. The emergence of single quantum emitters in layered transition metal dichalcogenide semiconductors offers new opportunities to construct a scalable quantum architecture. Here, using nanoscale strain engineering, we deterministically achieve a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. We create point-like strain perturbations in mono- and bi-layer WSe2 which locally modify the band-gap, leading to efficient funnelling of excitons towards isolated strain-tuned quantum emitters that exhibit high-purity single photon emission. We achieve near unity emitter creation probability and a mean positioning accuracy of 120±32 nm, which may be improved with further optimization of the nanopillar dimensions. PMID:28530219

  19. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor

    Science.gov (United States)

    Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D.

    2017-05-01

    An outstanding challenge in quantum photonics is scalability, which requires positioning of single quantum emitters in a deterministic fashion. Site positioning progress has been made in established platforms including defects in diamond and self-assembled quantum dots, albeit often with compromised coherence and optical quality. The emergence of single quantum emitters in layered transition metal dichalcogenide semiconductors offers new opportunities to construct a scalable quantum architecture. Here, using nanoscale strain engineering, we deterministically achieve a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. We create point-like strain perturbations in mono- and bi-layer WSe2 which locally modify the band-gap, leading to efficient funnelling of excitons towards isolated strain-tuned quantum emitters that exhibit high-purity single photon emission. We achieve near unity emitter creation probability and a mean positioning accuracy of 120+/-32 nm, which may be improved with further optimization of the nanopillar dimensions.

  20. Bipartite entanglement entropy in massive two-dimensional quantum field theory.

    Science.gov (United States)

    Doyon, Benjamin

    2009-01-23

    Recently, Cardy, Castro Alvaredo, and the author obtained the first exponential correction to saturation of the bipartite entanglement entropy at large region lengths in massive two-dimensional integrable quantum field theory. It depends only on the particle content of the model, and not on the way particles scatter. Based on general analyticity arguments for form factors, we propose that this result is universal, and holds for any massive two-dimensional model (also out of integrability). We suggest a link of this result with counting pair creations far in the past.

  1. A two-dimensional algebraic quantum liquid produced by an atomic simulator of the quantum Lifshitz model.

    Science.gov (United States)

    Po, Hoi Chun; Zhou, Qi

    2015-08-13

    Bosons have a natural instinct to condense at zero temperature. It is a long-standing challenge to create a high-dimensional quantum liquid that does not exhibit long-range order at the ground state, as either extreme experimental parameters or sophisticated designs of microscopic Hamiltonians are required for suppressing the condensation. Here we show that synthetic gauge fields for ultracold atoms, using either the Raman scheme or shaken lattices, provide physicists a simple and practical scheme to produce a two-dimensional algebraic quantum liquid at the ground state. This quantum liquid arises at a critical Lifshitz point, where a two-dimensional quartic dispersion emerges in the momentum space, and many fundamental properties of two-dimensional bosons are changed in its proximity. Such an ideal simulator of the quantum Lifshitz model allows experimentalists to directly visualize and explore the deconfinement transition of topological excitations, an intriguing phenomenon that is difficult to access in other systems.

  2. Quantum Hall effect in black phosphorus two-dimensional electron system.

    Science.gov (United States)

    Li, Likai; Yang, Fangyuan; Ye, Guo Jun; Zhang, Zuocheng; Zhu, Zengwei; Lou, Wenkai; Zhou, Xiaoying; Li, Liang; Watanabe, Kenji; Taniguchi, Takashi; Chang, Kai; Wang, Yayu; Chen, Xian Hui; Zhang, Yuanbo

    2016-07-01

    The development of new, high-quality functional materials has been at the forefront of condensed-matter research. The recent advent of two-dimensional black phosphorus has greatly enriched the materials base of two-dimensional electron systems (2DESs). Here, we report the observation of the integer quantum Hall effect in a high-quality black phosphorus 2DES. The high quality is achieved by embedding the black phosphorus 2DES in a van der Waals heterostructure close to a graphite back gate; the graphite gate screens the impurity potential in the 2DES and brings the carrier Hall mobility up to 6,000 cm(2) V(-1) s(-1). The exceptional mobility enabled us to observe the quantum Hall effect and to gain important information on the energetics of the spin-split Landau levels in black phosphorus. Our results set the stage for further study on quantum transport and device application in the ultrahigh mobility regime.

  3. Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Samiran, E-mail: sran_g@yahoo.com [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700 009 (India); Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)

    2016-08-15

    The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.

  4. On Relations between One-Dimensional Quantum and Two-Dimensional Classical Spin Systems

    Directory of Open Access Journals (Sweden)

    J. Hutchinson

    2015-01-01

    Full Text Available We exploit mappings between quantum and classical systems in order to obtain a class of two-dimensional classical systems characterised by long-range interactions and with critical properties equivalent to those of the class of one-dimensional quantum systems treated by the authors in a previous publication. In particular, we use three approaches: the Trotter-Suzuki mapping, the method of coherent states, and a calculation based on commuting the quantum Hamiltonian with the transfer matrix of a classical system. This enables us to establish universality of certain critical phenomena by extension from the results in the companion paper for the classical systems identified.

  5. Energy Spectra of Vortex Distributions in Two-Dimensional Quantum Turbulence

    Directory of Open Access Journals (Sweden)

    Ashton S. Bradley

    2012-10-01

    Full Text Available We theoretically explore key concepts of two-dimensional turbulence in a homogeneous compressible superfluid described by a dissipative two-dimensional Gross-Pitaeveskii equation. Such a fluid supports quantized vortices that have a size characterized by the healing length ξ. We show that, for the divergence-free portion of the superfluid velocity field, the kinetic-energy spectrum over wave number k may be decomposed into an ultraviolet regime (k≫ξ^{-1} having a universal k^{-3} scaling arising from the vortex core structure, and an infrared regime (k≪ξ^{-1} with a spectrum that arises purely from the configuration of the vortices. The Novikov power-law distribution of intervortex distances with exponent -1/3 for vortices of the same sign of circulation leads to an infrared kinetic-energy spectrum with a Kolmogorov k^{-5/3} power law, which is consistent with the existence of an inertial range. The presence of these k^{-3} and k^{-5/3} power laws, together with the constraint of continuity at the smallest configurational scale k≈ξ^{-1}, allows us to derive a new analytical expression for the Kolmogorov constant that we test against a numerical simulation of a forced homogeneous, compressible, two-dimensional superfluid. The numerical simulation corroborates our analysis of the spectral features of the kinetic-energy distribution, once we introduce the concept of a clustered fraction consisting of the fraction of vortices that have the same sign of circulation as their nearest neighboring vortices. Our analysis presents a new approach to understanding two-dimensional quantum turbulence and interpreting similarities and differences with classical two-dimensional turbulence, and suggests new methods to characterize vortex turbulence in two-dimensional quantum fluids via vortex position and circulation measurements.

  6. Interactions of a Charged Particle with Parallel Two-Dimensional Quantum Electron Gases

    Institute of Scientific and Technical Information of China (English)

    LI Chun-Zhi; SONG Yuan-Hong; WANG You-Nian

    2008-01-01

    @@ By using the linearized quantum hydrodynamic (QHD) theory, electronic excitations induced by a charged particle moving between or over two parallel two-dimensional quantum electron gases (2DQEG) are investigated. The calculation shows that the influence of the quantum effects on the interaction process should be taken into account. Including the quantum statistical and quantum diffraction effects, the general expressions of the induced potential and the stopping power are obtained. Our simulation results indicate that a V-shaped oscillatory wake potential exists in the electron gases during the test charge intrusion. Meanwhile, double peaks will occur in the stopping power when the distance of two surfaces is smaller and the test charge gets closer to any one of the two sheets.

  7. Ultraviolet finiteness of Chiral Perturbation Theory for two-dimensional Quantum Electrodynamics

    CERN Document Server

    Paston, S A; Franke, V A

    2003-01-01

    We consider the perturbation theory in the fermion mass (chiral perturbation theory) for the two-dimensional quantum electrodynamics. With this aim, we rewrite the theory in the equivalent bosonic form in which the interaction is exponential and the fermion mass becomes the coupling constant. We reformulate the bosonic perturbation theory in the superpropagator language and analyze its ultraviolet behavior. We show that the boson Green's functions without vacuum loops remain finite in all orders of the perturbation theory in the fermion mass.

  8. Quantum Monte Carlo simulation of a two-dimensional Majorana lattice model

    Science.gov (United States)

    Hayata, Tomoya; Yamamoto, Arata

    2017-07-01

    We study interacting Majorana fermions in two dimensions as a low-energy effective model of a vortex lattice in two-dimensional time-reversal-invariant topological superconductors. For that purpose, we implement ab initio quantum Monte Carlo simulation to the Majorana fermion system in which the path-integral measure is given by a semipositive Pfaffian. We discuss spontaneous breaking of time-reversal symmetry at finite temperatures.

  9. Hadamard NMR spectroscopy for two-dimensional quantum information processing and parallel search algorithms.

    Science.gov (United States)

    Gopinath, T; Kumar, Anil

    2006-12-01

    Hadamard spectroscopy has earlier been used to speed-up multi-dimensional NMR experiments. In this work, we speed-up the two-dimensional quantum computing scheme, by using Hadamard spectroscopy in the indirect dimension, resulting in a scheme which is faster and requires the Fourier transformation only in the direct dimension. Two and three qubit quantum gates are implemented with an extra observer qubit. We also use one-dimensional Hadamard spectroscopy for binary information storage by spatial encoding and implementation of a parallel search algorithm.

  10. Quantum spin-glass transition in the two-dimensional electron gas

    Indian Academy of Sciences (India)

    Subir Sachdev

    2002-02-01

    We discuss the possibility of spin-glass order in the vicinity of the unexpected metallic state of the two-dimensional electron gas in zero applied magnetic field. An average ferromagnetic moment may also be present, and the spin-glass order then resides in the plane orthogonal to the ferromagnetic moment. We argue that a quantum transition involving the destruction of the spin-glass order in an applied in-plane magnetic field offers a natural explanation of some features of recent magnetoconductance measurements. We present a quantum field theory for such a transition and compute its mean field properties.

  11. Unconventional critical activated scaling of two-dimensional quantum spin glasses

    Science.gov (United States)

    Matoz-Fernandez, D. A.; Romá, F.

    2016-07-01

    We study the critical behavior of two-dimensional short-range quantum spin glasses by numerical simulations. Using a parallel tempering algorithm, we calculate the Binder cumulant for the Ising spin glass in a transverse magnetic field with two different short-range bond distributions, the bimodal and the Gaussian ones. Through an exhaustive finite-size analysis, we show that the cumulant probably follows an unconventional activated scaling, which we interpret as new evidence supporting the hypothesis that the quantum critical behavior is governed by an infinite randomness fixed point.

  12. Two-dimensional distributed-phase-reference protocol for quantum key distribution

    DEFF Research Database (Denmark)

    Bacco, Davide; Christensen, Jesper Bjerge; Usuga Castaneda, Mario A.;

    2016-01-01

    Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last...... 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak...

  13. Three-body recombination in a quasi-two-dimensional quantum gas

    Science.gov (United States)

    Huang, Bo; Zenesini, Alessandro; Grimm, Rudolf

    2016-05-01

    Quantum three-body recombination in three-dimensional systems is influenced by a series of weakly bound trimers known as Efimov states, which are induced by short-range interactions and exhibit a discrete scaling symmetry. On the other hand, two-dimensional systems with contact interactions are characterized by continuous scale invariance and support no Efimov physics. This raises questions about the behaviour of three-body recombination in the transition from three to two dimensions. We use ultracold caesium atoms trapped in anisotropic potentials formed by a pair of counter-propagating laser beams to experimentally investigate three-body recombination in quasi-two-dimensional systems with tunable confinement and tunable interactions. In our recent experiments, we observed a smooth transition of the three-body recombination rate coefficient from a three-dimensional to a deeply quasi-two-dimensional system. A comparison between the results obtained near two Feshbach resonances indicates a universal behaviour of three-body recombination in the quasi-two-dimensional regime. Austrian Science Fund FWF within project P23106.

  14. Quantum dimer model for the pseudogap metal

    Science.gov (United States)

    Punk, Matthias; Allais, Andrea; Sachdev, Subir

    2015-01-01

    We propose a quantum dimer model for the metallic state of the hole-doped cuprates at low hole density, p. The Hilbert space is spanned by spinless, neutral, bosonic dimers and spin S=1/2, charge +e fermionic dimers. The model realizes a “fractionalized Fermi liquid” with no symmetry breaking and small hole pocket Fermi surfaces enclosing a total area determined by p. Exact diagonalization, on lattices of sizes up to 8×8, shows anisotropic quasiparticle residue around the pocket Fermi surfaces. We discuss the relationship to experiments. PMID:26195771

  15. Quantum dimer model for the pseudogap metal.

    Science.gov (United States)

    Punk, Matthias; Allais, Andrea; Sachdev, Subir

    2015-08-04

    We propose a quantum dimer model for the metallic state of the hole-doped cuprates at low hole density, p. The Hilbert space is spanned by spinless, neutral, bosonic dimers and spin S = 1/2, charge +e fermionic dimers. The model realizes a "fractionalized Fermi liquid" with no symmetry breaking and small hole pocket Fermi surfaces enclosing a total area determined by p. Exact diagonalization, on lattices of sizes up to 8 × 8, shows anisotropic quasiparticle residue around the pocket Fermi surfaces. We discuss the relationship to experiments.

  16. Two-Dimensional Electronic Spectroscopy of Benzene, Phenol, and Their Dimer: An Efficient First-Principles Simulation Protocol.

    Science.gov (United States)

    Nenov, Artur; Mukamel, Shaul; Garavelli, Marco; Rivalta, Ivan

    2015-08-11

    First-principles simulations of two-dimensional electronic spectroscopy in the ultraviolet region (2DUV) require computationally demanding multiconfigurational approaches that can resolve doubly excited and charge transfer states, the spectroscopic fingerprints of coupled UV-active chromophores. Here, we propose an efficient approach to reduce the computational cost of accurate simulations of 2DUV spectra of benzene, phenol, and their dimer (i.e., the minimal models for studying electronic coupling of UV-chromophores in proteins). We first establish the multiconfigurational recipe with the highest accuracy by comparison with experimental data, providing reference gas-phase transition energies and dipole moments that can be used to construct exciton Hamiltonians involving high-lying excited states. We show that by reducing the active spaces and the number of configuration state functions within restricted active space schemes, the computational cost can be significantly decreased without loss of accuracy in predicting 2DUV spectra. The proposed recipe has been successfully tested on a realistic model proteic system in water. Accounting for line broadening due to thermal and solvent-induced fluctuations allows for direct comparison with experiments.

  17. Extraordinary behaviors in a two-dimensional decoherent alternative quantum walk

    Science.gov (United States)

    Chen, Tian; Zhang, Xiangdong

    2016-07-01

    We reveal the quantum and classical behaviors of the two-dimensional (2D) alternative quantum walk (AQW) in the presence of decoherence. For different kinds of decoherence, the analytic expressions for the moments of position distribution of the AQW are obtained. Taking the broken line noise and coin decoherence as examples of decoherence, we find that when decoherence emerges in only one direction, the anisotropic position distribution pattern appears, and not all the motions of the walker exhibit the transition from quantum to classical behaviors. Considering the effect of decoherence, we reveal the anisotropic correlations between the x (y ) position of the 2D walker and the state of the coin in 2D AQWs.

  18. Tunable band topology reflected by fractional quantum Hall States in two-dimensional lattices.

    Science.gov (United States)

    Wang, Dong; Liu, Zhao; Cao, Junpeng; Fan, Heng

    2013-11-01

    Two-dimensional lattice models subjected to an external effective magnetic field can form nontrivial band topologies characterized by nonzero integer band Chern numbers. In this Letter, we investigate such a lattice model originating from the Hofstadter model and demonstrate that the band topology transitions can be realized by simply introducing tunable longer-range hopping. The rich phase diagram of band Chern numbers is obtained for the simple rational flux density and a classification of phases is presented. In the presence of interactions, the existence of fractional quantum Hall states in both |C| = 1 and |C| > 1 bands is confirmed, which can reflect the band topologies in different phases. In contrast, when our model reduces to a one-dimensional lattice, the ground states are crucially different from fractional quantum Hall states. Our results may provide insights into the study of new fractional quantum Hall states and experimental realizations of various topological phases in optical lattices.

  19. Interior design of a two-dimensional semiclassical black hole: Quantum transition across the singularity

    CERN Document Server

    Levanony, Dana

    2010-01-01

    We study the internal structure of a two-dimensional dilatonic evaporating black hole, based on the CGHS model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well-defined at the semiclassical singularity. A well-localized initial wave-packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.

  20. Evidence of two-dimensional quantum Wigner Crystal in a zero magnetic field

    Science.gov (United States)

    Huang, Jian; Pfeiffer, Loren; West, Ken

    2014-03-01

    In disorder-dominated cases, Anderson localization occurs as a result of destructive interference effects caused by (short-ranged) random disorders. On the other hand, in interaction-dominated scenarios, striking manifestations of quantum physics emerge in response to strong inter-particle Coulomb energy (EC). The most prominent interaction-driven effect is the Wigner crystallization (WC) of electrons, an electron solid made up with spatially separated charges settling in a form of a lattice. The classical version of the crystallization, with the Debye temperature ΘD two-dimensional (2D) electrons on helium surfaces (EHS). However, the more desired quantum version with the Fermi energy EF <two-dimensional hole (2DH) systems in a genuine interaction-driven regime. A high resolution dc VI measurement reveals a pA level threshold transport accompanied by resistivity oscillations, indicating the coexistence of a pinned quantum WC with discrete edge filaments of unpinned carriers. NSF DMR 1105183

  1. Test of quantum thermalization in the two-dimensional transverse-field Ising model

    Science.gov (United States)

    Blaß, Benjamin; Rieger, Heiko

    2016-12-01

    We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems.

  2. Quantum State Transfer in a Two-dimensional Regular Spin Lattice of Triangular Shape

    CERN Document Server

    Miki, Hiroshi; Vinet, Luc; Zhedanov, Alexei

    2012-01-01

    Quantum state transfer in a triangular domain of a two-dimensional, equally-spaced, spin lat- tice with non-homogeneous nearest-neighbor couplings is analyzed. An exact solution of the one- excitation dynamics is provided in terms of 2-variable Krawtchouk orthogonal polynomials that have been recently defined. The probability amplitude for an excitation to transit from one site to another is given. For some values of the parameters, perfect transfer is shown to take place from the apex of the lattice to the boundary hypotenuse.

  3. Modeling A.C. Electronic Transport through a Two-Dimensional Quantum Point Contact

    Energy Technology Data Exchange (ETDEWEB)

    Aronov, I.E.; Beletskii, N.N.; Berman, G.P.; Campbell, D.K.; Doolen, G.D.; Dudiy, S.V.

    1998-12-07

    We present the results on the a.c. transport of electrons moving through a two-dimensional (2D) semiconductor quantum point contact (QPC). We concentrate our attention on the characteristic properties of the high frequency admittance ({omega}{approximately}0 - 50 GHz), and on the oscillations of the admittance in the vicinity of the separatrix (when a channel opens or closes), in presence of the relaxation effects. The experimental verification of such oscillations in the admittance would be a strong confirmation of the semi-classical approach to the a.c. transport in a QPC, in the separatrix region.

  4. Effect of Quantum Fluctuation on Two-Dimensional Spatially Anisotropic Heisenberg Antiferromagnet with Integer Spin

    Institute of Scientific and Technical Information of China (English)

    JI An-Chun; TIAN Guang-Shan

    2006-01-01

    In the present paper, we calculate the Gaussian correction to the critical value Jc⊥ caused by quantum spin fluctuation in a two-dimensional spatially anisotropic Heisenberg antiferromagnet with integer spin S. Previously, someauthors computed this quantity by the mean-field theory based on the Schwinger boson representation of spin operators.However, for S = 1, their result is much less than the one derived by numerical calculations. By taking the effect ofquantum spin fluctuation into consideration, we are able to produce a greatly improved result.

  5. Entanglement and decoherence in a quantum dimer

    Institute of Scientific and Technical Information of China (English)

    Hou Xi-Wen; Hui Zi; Ding Rui-Min; Chen Xiao-Yang; Gao Yu

    2006-01-01

    The dynamical properties of quantum entanglement in an integrable quantum dimer are studied in terms of the reduced-density linear entropy with various coupling parameters and total boson numbers. The characteristic time of decoherence process in the early-time evolution of the linear entropy is obtained, indicating that the characteristic time and the corresponding entropy exhibit a maximum near the position of the corresponding classical separatrix energy.

  6. Characterizing classical periodic orbits from quantum Green's functions in two-dimensional integrable systems: Harmonic oscillators and quantum billiards

    Science.gov (United States)

    Chen, Y. F.; Tung, J. C.; Tuan, P. H.; Yu, Y. T.; Liang, H. C.; Huang, K. F.

    2017-01-01

    A general method is developed to characterize the family of classical periodic orbits from the quantum Green's function for the two-dimensional (2D) integrable systems. A decomposing formula related to the beta function is derived to link the quantum Green's function with the individual classical periodic orbits. The practicality of the developed formula is demonstrated by numerically analyzing the 2D commensurate harmonic oscillators and integrable quantum billiards. Numerical analyses reveal that the emergence of the classical features in quantum Green's functions principally comes from the superposition of the degenerate states for 2D harmonic oscillators. On the other hand, the damping factor in quantum Green's functions plays a critical role to display the classical features in mesoscopic regime for integrable quantum billiards, where the physical function of the damping factor is to lead to the coherent superposition of the nearly degenerate eigenstates.

  7. Nonequilibrium Phase Transition in a Two-Dimensional Driven Open Quantum System

    Directory of Open Access Journals (Sweden)

    G. Dagvadorj

    2015-11-01

    Full Text Available The Berezinskii-Kosterlitz-Thouless mechanism, in which a phase transition is mediated by the proliferation of topological defects, governs the critical behavior of a wide range of equilibrium two-dimensional systems with a continuous symmetry, ranging from spin systems to superconducting thin films and two-dimensional Bose fluids, such as liquid helium and ultracold atoms. We show here that this phenomenon is not restricted to thermal equilibrium, rather it survives more generally in a dissipative highly nonequilibrium system driven into a steady state. By considering a quantum fluid of polaritons of an experimentally relevant size, in the so-called optical parametric oscillator regime, we demonstrate that it indeed undergoes a phase transition associated with a vortex binding-unbinding mechanism. Yet, the exponent of the power-law decay of the first-order correlation function in the (algebraically ordered phase can exceed the equilibrium upper limit: this shows that the ordered phase of driven-dissipative systems can sustain a higher level of collective excitations before the order is destroyed by topological defects. Our work suggests that the macroscopic coherence phenomena, observed recently in interacting two-dimensional light-matter systems, result from a nonequilibrium phase transition of the Berezinskii-Kosterlitz-Thouless rather than the Bose-Einstein condensation type.

  8. Numerical study for the c-dependence of fractal dimension in two-dimensional quantum gravity

    CERN Document Server

    Kawamoto, N; Kawamoto, Noboru; Yotsuji, Kenji

    2002-01-01

    We numerically investigate the fractal structure of two-dimensional quantum gravity coupled to matter central charge c for $-2 \\leq c \\leq 1$. We reformulate Q-state Potts model into the model which can be identified as a weighted percolation cluster model and can make continuous change of Q, which relates c, on the dynamically triangulated lattice. The c-dependence of the critical coupling is measured from the percolation probability and susceptibility. The c-dependence of the string susceptibility of the quantum surface is evaluated and has very good agreement with the theoretical predictions. The c-dependence of the fractal dimension based on the finite size scaling hypothesis is measured and has excellent agreement with one of the theoretical predictions previously proposed except for the region near $c\\approx 1$.

  9. Bound states in optical absorption of semiconductor quantum wells containing a two-dimensional electron Gas

    Science.gov (United States)

    Huard; Cox; Saminadayar; Arnoult; Tatarenko

    2000-01-01

    The dependence of the optical absorption spectrum of a semiconductor quantum well on two-dimensional electron concentration n(e) is studied using CdTe samples. The trion peak (X-) seen at low n(e) evolves smoothly into the Fermi edge singularity at high n(e). The exciton peak (X) moves off to high energy, weakens, and disappears. The X,X- splitting is linear in n(e) and closely equal to the Fermi energy plus the trion binding energy. For Cd0.998Mn0.002Te quantum wells in a magnetic field, the X,X- splitting reflects unequal Fermi energies for M = +/-1/2 electrons. The data are explained by Hawrylak's theory of the many-body optical response including spin effects.

  10. Entanglement at a two-dimensional quantum critical point: a numerical linked-cluster expansion study.

    Science.gov (United States)

    Kallin, Ann B; Hyatt, Katharine; Singh, Rajiv R P; Melko, Roger G

    2013-03-29

    We develop a method to calculate the bipartite entanglement entropy of quantum models, in the thermodynamic limit, using a numerical linked-cluster expansion (NLCE) involving only rectangular clusters. It is based on exact diagonalization of all n×m rectangular clusters at the interface between entangled subsystems A and B. We use it to obtain the Renyi entanglement entropy of the two-dimensional transverse field Ising model, for arbitrary real Renyi index α. Extrapolating these results as a function of the order of the calculation, we obtain universal pieces of the entanglement entropy associated with lines and corners at the quantum critical point. They show NLCE to be one of the few methods capable of accurately calculating universal properties of arbitrary Renyi entropies at higher dimensional critical points.

  11. Two-dimensional distributed-phase-reference protocol for quantum key distribution

    Science.gov (United States)

    Bacco, Davide; Christensen, Jesper Bjerge; Castaneda, Mario A. Usuga; Ding, Yunhong; Forchhammer, Søren; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2016-12-01

    Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable.

  12. Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas.

    Science.gov (United States)

    Smolka, Stephan; Wuester, Wolf; Haupt, Florian; Faelt, Stefan; Wegscheider, Werner; Imamoglu, Ataç

    2014-10-17

    Light-matter interaction has played a central role in understanding as well as engineering new states of matter. Reversible coupling of excitons and photons enabled groundbreaking results in condensation and superfluidity of nonequilibrium quasiparticles with a photonic component. We investigated such cavity-polaritons in the presence of a high-mobility two-dimensional electron gas, exhibiting strongly correlated phases. When the cavity was on resonance with the Fermi level, we observed previously unknown many-body physics associated with a dynamical hole-scattering potential. In finite magnetic fields, polaritons show distinct signatures of integer and fractional quantum Hall ground states. Our results lay the groundwork for probing nonequilibrium dynamics of quantum Hall states and exploiting the electron density dependence of polariton splitting so as to obtain ultrastrong optical nonlinearities.

  13. Phase diagram and correlation functions of the two-dimensional dissipative quantum XY model

    Science.gov (United States)

    Hou, Changtao; Varma, Chandra M.

    2016-11-01

    The two-dimensional quantum XY model, with a Caldeira-Leggett form of dissipation, is applicable to the quantum-critical properties of diverse experimental systems, ranging from superconductor to insulator transitions, ferromagnetic and antiferromagnetic transitions in metals, to the loop-current order transition in cuprates. We solve the reexpression of this model in terms of orthogonal topological excitations, vortices, and a variety of instantons, by renormalization group methods. The calculations explain the extraordinary properties of the model discovered in Monte Carlo calculations: the product form of the quantum-critical fluctuations in space and time, a spatial correlation length proportional to the logarithm of the temporal correlation length near the transition from a disordered to a fully ordered state, and the occurrence of a phase with spatial order without temporal order. They are intimately related to the flow of the metric of time in relation to the metric of space, i.e., of the dynamical critical exponent z . These properties appear to be essential in understanding the strange metallic phase found in a variety of quantum-critical transitions as well as the accompanying high-temperature superconductivity.

  14. Spin dynamics and magnetic correlation length in two-dimensional quantum heisenberg antiferromagnets

    Science.gov (United States)

    Carretta; Ciabattoni; Cuccoli; Mognaschi; Rigamonti; Tognetti; Verrucchi

    2000-01-10

    The correlated spin dynamics and temperature dependence of the correlation length xi(T) in two-dimensional quantum (S = 1/2) Heisenberg antiferromagnets (2DQHAF) on a square lattice are discussed in light of experimental results of proton spin lattice relaxation in copper formiate tetradeuterate. In this compound the exchange constant is much smaller than the one in recently studied 2DQHAF, such as La2CuO4 and Sr2CuO2Cl2. Thus the spin dynamics can be probed in detail over a wider temperature range. The NMR relaxation rates turn out to be in excellent agreement with a theoretical mode-coupling calculation. The deduced temperature behavior of xi(T) is in agreement with high-temperature expansions, quantum Monte Carlo simulations, and the pure quantum self-consistent harmonic approximation. Contrary to the predictions of the theories based on the nonlinear sigma model, no evidence of crossover between different quantum regimes is observed.

  15. Epitaxial superconductor-semiconductor two-dimensional systems: platforms for quantum circuits (Conference Presentation)

    Science.gov (United States)

    Shabani, Javad

    2016-10-01

    Theory suggests that the interface between a one-dimensional semiconductor (Sm) with strong spin-orbit coupling and a superconductor (S) hosts Majorana modes with nontrivial topological properties. A key challenge in fabrication of such hybrid devices is forming highly transparent contacts between the active electrons in the semiconductor and the superconducting metal. Recently, it has been shown that a near perfect interface and a highly transparent contact can be achieved using epitaxial growth of aluminum on InAs nanowires. In this work, we present the first two-dimensional epitaxial superconductor-semiconductor material system that can serve as a platform for topological superconductivity. We show that our material system, Al-InAs, satisfies all the requirements necessary to reach into the topological superconducting regime by individual characterization of the semiconductor two dimensional electron system, superconductivity of Al and performance of S-Sm-S junctions. This exciting development might lead to a number of useful applications ranging from spintronics to quantum computing.

  16. Multifarious topological quantum phase transitions in two-dimensional topological superconductors

    Science.gov (United States)

    Liu, Xiao-Ping; Zhou, Yuan; Wang, Yi-Fei; Gong, Chang-De

    2016-06-01

    We study the two-dimensional topological superconductors of spinless fermions in a checkerboard-lattice Chern-insulator model. With the short-range p-wave superconducting pairing, multifarious topological quantum phase transitions have been found and several phases with high Chern numbers have been observed. We have established a rich phase diagram for these topological superconducting states. A finite-size checkerboard-lattice cylinder with a harmonic trap potential has been further investigated. Based upon the self-consistent numerical calculations of the Bogoliubov-de Gennes equations, various phase transitions have also been identified at different regions of the system. Multiple pairs of Majorana fermions are found to be well-separated and localized at the phase boundaries between the phases characterized by different Chern numbers.

  17. Theory of the vortex-clustering transition in a confined two-dimensional quantum fluid

    CERN Document Server

    Yu, Xiaoquan; Nian, Jun; Reeves, Matthew T; Bradley, Ashton S

    2016-01-01

    Clustering of like-sign vortices in a planar bounded domain is known to occur at negative temperature, a phenomenon that Onsager demonstrated to be a consequence of bounded phase space. In a confined superfluid, quantized vortices can support such an ordered phase, provided they evolve as an almost isolated subsystem containing sufficient energy. A detailed theoretical understanding of the statistical mechanics of such states thus requires a microcanonical approach. Here we develop an analytical theory of the vortex clustering transition in a neutral system of quantum vortices confined to a two-dimensional disk geometry, within the microcanonical ensemble. As the system energy increases above a critical value, the system develops global order via the emergence of a macroscopic dipole structure from the homogeneous phase of vortices, spontaneously breaking the Z2 symmetry associated with invariance under vortex circulation exchange, and the rotational SO(2) symmetry due to the disk geometry. The dipole structu...

  18. One- and Two-Dimensional Nuclear Magnetic Resonance Spectroscopy with a Diamond Quantum Sensor

    Science.gov (United States)

    Boss, J. M.; Chang, K.; Armijo, J.; Cujia, K.; Rosskopf, T.; Maze, J. R.; Degen, C. L.

    2016-05-01

    We report on Fourier spectroscopy experiments performed with near-surface nitrogen-vacancy centers in a diamond chip. By detecting the free precession of nuclear spins rather than applying a multipulse quantum sensing protocol, we are able to unambiguously identify the NMR species devoid of harmonics. We further show that, by engineering different Hamiltonians during free precession, the hyperfine coupling parameters as well as the nuclear Larmor frequency can be selectively measured with up to five digits of precision. The protocols can be combined to demonstrate two-dimensional Fourier spectroscopy. Presented techniques will be useful for mapping nuclear coordinates in molecules deposited on diamond sensor chips, en route to imaging their atomic structure.

  19. Magnetoelectronic transport of the two-dimensional electron gas in CdSe single quantum wells

    Indian Academy of Sciences (India)

    P K Ghosh; A Ghosal; D Chattopadhyay

    2009-02-01

    Hall mobility and magnetoresistance coefficient for the two-dimensional (2D) electron transport parallel to the heterojunction interfaces in a single quantum well of CdSe are calculated with a numerical iterative technique in the framework of Fermi–Dirac statistics. Lattice scatterings due to polar-mode longitudinal optic (LO) phonons, and acoustic phonons via deformation potential and piezoelectric couplings, are considered together with background and remote ionized impurity interactions. The parallel mode of piezoelectric scattering is found to contribute more than the perpendicular mode. We observe that the Hall mobility decreases with increasing temperature but increases with increasing channel width. The magnetoresistance coefficient is found to decrease with increasing temperature and increase with increasing magnetic field in the classical region.

  20. Donor-bound electron states in a two-dimensional quantum ring under uniform magnetic field

    Institute of Scientific and Technical Information of China (English)

    Jia Bo-Yong; Yu Zhong-Yuan; Liu Yu-Min; Han Li-Hong; Yao Wen-Jie; Feng Hao; Ye Han

    2011-01-01

    The electron states in a two-dimensional GaAs/AlGaAs quantum ring are theoretically studied in effective mass approximation. On-centre donor impurity and uniform magnetic field perpendicular to the ring plane are taken into account. The energy spectrum with different angular momentum changes dramatically with the geometry of the ring.The donor impurity reduces the energies with an almost fixed value; however, the magnetic field alters energies in a more complex way. For example, energy levels under magnetic field will cross each other when increasing the inner radius and outer radius of the ring, leading to the fact that the arrangement of energy levels is distinct in certain geometry of the ring. Moreover, energy levels with negative angular momentum exhibit the non-monotonous dependence on the increasing magnetic field.

  1. Properties of two-dimensional electron gas containing self-organized quantum antidots

    Science.gov (United States)

    Vasilyev, Yu.; Suchalkin, S.; Zundel, M.; Heisenberg, D.; Eberl, K.; von Klitzing, K.

    1999-11-01

    A nonuniform two-dimensional electron gas in a heterojunction with inserted self-organized electrically inactive dots (acting as antidots) has been fabricated by molecular-beam epitaxy of AlGaAs/AlInAs/GaAs layer sequences. Transport measurements give the ratio of the transport mobility to the quantum mobility less than four, which suggests that the dominant scattering at low magnetic fields is the short-range scattering from the lateral potential of the antidots. Far-infrared cyclotron resonance (CR) spectra show an absorption mode as narrow as 0.5 cm-1 at high magnetic fields associated with the high-mobility electron gas formed between the antidot islands and confined in the lateral directions. The confinement energy of 14 cm-1 is derived from the CR spectra.

  2. Unbinding of mutually avoiding random walks and two-dimensional quantum gravity

    Science.gov (United States)

    Carlon, Enrico; Baiesi, Marco

    2004-12-01

    We analyze the unbinding transition for a two-dimensional lattice polymer in which the constituent strands are mutually avoiding random walks. At low temperatures the strands are bound and form a single self-avoiding walk. We show that unbinding in this model is a strong first order transition. The entropic exponents associated with denaturated loops and end-segment distributions show sharp differences at the transition point and in the high temperature phase. Their values can be deduced from some exact arguments relying on a conformal mapping of copolymer networks into a fluctuating geometry, i.e., in the presence of quantum gravity. An excellent agreement between analytical and numerical estimates is observed for all cases analyzed.

  3. Reflectance measurement of two-dimensional photonic crystal nanocavities with embedded quantum dots

    CERN Document Server

    Stumpf, Wolfgang C; Kojima, Takanori; Fujita, Masayuki; Tanaka, Yoshinori; Noda, Susumu

    2010-01-01

    The spectra of two-dimensional photonic crystal slab nanocavities with embedded InAs quantum dots are measured by photoluminescence and reflectance. In comparing the spectra taken by these two different methods, consistency with the nanocavities' resonant wavelengths is found. Furthermore, it is shown that the reflectance method can measure both active and passive cavities. Q-factors of nanocavities, whose resonant wavelengths range from 1280 to 1620 nm, are measured by the reflectance method in cross polarization. Experimentally, Q-factors decrease for longer wavelengths and the intensity, reflected by the nanocavities on resonance, becomes minimal around 1360 nm. The trend of the Q-factors is explained by the change of the slab thickness relative to the resonant wavelength, showing a good agreement between theory and experiment. The trend of reflected intensity by the nanocavities on resonance can be understood as effects that originate from the PC slab and the underlying air cladding thickness. In addition...

  4. Quantum Phase Transition in the Two-Dimensional Random Transverse-Field Ising Model

    Science.gov (United States)

    Pich, C.; Young, A. P.

    1998-03-01

    We study the quantum phase transition in the random transverse-field Ising model by Monte Carlo simulations. In one-dimension it has been established that this system has the following striking behavior: (i) the dynamical exponent is infinite, and (ii) the exponents for the divergence of the average and typical correlation lengths are different. An important issue is whether this behavior is special to one-dimension or whether similar behavior persists in higher dimensions. Here we attempt to answer this question by studies of the two-dimensional model. Our simulations use the Wolff cluster algorithm and the results are analyzed by anisotropic finite size scaling, paying particular attention to the Binder ratio of moments of the order parameter distribution and the distribution of the spin-spin correlation functions for various distances.

  5. Multifarious topological quantum phase transitions in two-dimensional topological superconductors

    Science.gov (United States)

    Liu, Xiao-Ping; Zhou, Yuan; Wang, Yi-Fei; Gong, Chang-De

    2016-01-01

    We study the two-dimensional topological superconductors of spinless fermions in a checkerboard-lattice Chern-insulator model. With the short-range p-wave superconducting pairing, multifarious topological quantum phase transitions have been found and several phases with high Chern numbers have been observed. We have established a rich phase diagram for these topological superconducting states. A finite-size checkerboard-lattice cylinder with a harmonic trap potential has been further investigated. Based upon the self-consistent numerical calculations of the Bogoliubov-de Gennes equations, various phase transitions have also been identified at different regions of the system. Multiple pairs of Majorana fermions are found to be well-separated and localized at the phase boundaries between the phases characterized by different Chern numbers. PMID:27329219

  6. Measurement of the quantum capacitance of two-dimensional vanadium dioxide films

    Science.gov (United States)

    Wu, Zhe; Knighton, Talbot; Tarquini, Vinicio; Huang, Jian; Sepúlveda, Nelson; Department of Physics; Astronomy, Wayne State University Collaboration; Department of Electrical; Computer Engineering, Michigan State University Collaboration

    2015-03-01

    With a homebuilt ac bridge, we have performed capacitance measurement of quasi two-dimensional vanadium dioxide films grown on silicon-dioxide/p-doped silicon substrate. The out-phase-signal, which corresponds to the resistivity variation, is superior to the four-terminal measurement result of the temperature dependence of the resistivity which varies by four orders of magnitude from 360K to 310K. The hysteretic behavior shows an overlap of two distinctive features that indicate a shifted structural transition relative to the Mott transition. In addition, the quantum capacitance is obtained through the in-phase signals so that d μ/dn, the inverse of the density of states, is determined as a function of temperature. This has resulted in a diverging compressibility below the critical temperature by four orders of magnitude, consistent with a Mott transition influenced by Peierls transition.

  7. Two-dimensional topological crystalline insulator phase in quantum wells of trivial insulators

    Science.gov (United States)

    Niu, Chengwang; Buhl, Patrick M.; Bihlmayer, Gustav; Wortmann, Daniel; Blügel, Stefan; Mokrousov, Yuriy

    2016-06-01

    The realization of two-dimensional (2D) topological insulators (TIs) in HgTe/CdTe quantum wells (QWs) has generated an explosion of research on TIs and novel topologically nontrivial phases. Here we predict, based on first-principles calculations, that the newly discovered 2D topological crystalline insulators (TCIs) phase exists even in the QWs of trivial insulators, e.g. (Sn/Pb)Te and Na(Cl/Br), with mirror Chern number {n}{{M}}=-2. Tunable nontrivial energy gaps ranging from 4 to 238 meV are obtained, guaranteeing further room-temperature observations and applications. The combined effect of strain and electrostatic interaction that can be engineered by the cladding layers leads to a band inversion, resulting in the phase transition from trivial insulator to 2D TCIs. Our work provides a new strategy for engineering topological states in 2D materials.

  8. Electrically controlled crossing of energy levels in quantum dots in two-dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, Aleksei A.

    2017-05-15

    We study the energy spectra of bound states in quantum dots (QDs) formed by an electrostatic potential in two-dimensional topological insulator (TI) and their transformation with changes in QD depth and radius. It is found that, unlike a trivial insulator, the energy difference between the levels of the ground state and first excited state can decrease with decreasing the radius and increasing the depth of the QD so that these levels intersect under some critical condition. The crossing of the levels results in unusual features of optical properties caused by intraceneter electron transitions. In particular, it leads to significant changes of light absorption due to electron transitions between such levels and to the transient electroluminescence induced by electrical tuning of QD and TI parameters. In the case of magnetic TIs, the polarization direction of the absorbed or emitted circularly polarized light is changed due to the level crossing.

  9. Size Effect of a Negatively Charged Exciton in a Two-Dimensional Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    LIU Chao; XIE Wen-Fang

    2009-01-01

    In this paper we study a negatively charged exciton (NCE), which is trapped by a two-dimensional (2D) parabolic potential.By using matrix diagonalization techniques, the correlation energies of the low-lying states with L = O, 1, and 2 are calculated as a function of confinement strength.We find that the size effects of different states are different.This phenomenon can be explained as a hidden symmetry, which is originated purely from symmetry.Based on symmetry, the features of the low-lying states are discussed in the influence of the 2D parabolic potential well.It is found that the confinement may cause accidental degeneracies between levels with different low-excited states.It is shown that the effect of quantum confinement on the binding energy of the heavy hole is stronger than that of a light hole.

  10. A gate defined quantum dot on the two-dimensional transition metal dichalcogenide semiconductor WSe2.

    Science.gov (United States)

    Song, Xiang-Xiang; Liu, Di; Mosallanejad, Vahid; You, Jie; Han, Tian-Yi; Chen, Dian-Teng; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping

    2015-10-28

    Two-dimensional layered materials, such as transition metal dichalcogenides (TMDCs), are promising materials for future electronics owing to their unique electronic properties. With the presence of a band gap, atomically thin gate defined quantum dots (QDs) can be achieved on TMDCs. Herein, standard semiconductor fabrication techniques are used to demonstrate quantum confined structures on WSe2 with tunnel barriers defined by electric fields, therefore eliminating the edge states induced by etching steps, which commonly appear in gapless graphene QDs. Over 40 consecutive Coulomb diamonds with a charging energy of approximately 2 meV were observed, showing the formation of a QD, which is consistent with the simulations. The size of the QD could be tuned over a factor of 2 by changing the voltages applied to the top gates. These results shed light on a way to obtain smaller quantum dots on TMDCs with the same top gate geometry compared to traditional GaAs/AlGaAs heterostructures with further research.

  11. Two-dimensional quantum percolation with binary non-zero hopping integrals

    Science.gov (United States)

    Dillon Thomas, Brianna; Nakanishi, Hisao

    In a previous work [Dillon and Nakanishi, Eur.Phys.J B 87, 286 (2014)], we calculated the transmission coefficient of the two-dimensional quantum percolation problem and mapped out in detail the three regimes of localization, i.e., exponentially localized, power-law localized, and delocalized which had been proposed earlier [Islam and Nakanishi, Phys.Rev. E 77, 061109 (2008)]. We now consider a variation on quantum percolation in which the hopping integral (Vdiluted) associated with bonds that connect to at least one diluted site is non-zero but a fraction of the hopping integral (Vfull=1) between non-diluted sites. We study the latter model by calculating quantities such as the transmission coefficient and the inverse participation ratio and find the original quantum percolation results to be stable over a wide range of energy. In particular, except in the immediate neighborhood of the band center (where increasing Vdiluted to just 0.02*Vfull appears to eliminate localization effects), increasing Vdiluted only shifts the boundaries between the 3 regimes but does not eliminate them until the Vdiluted reaches 20

  12. Path integrals for dimerized quantum spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Foussats, Adriana, E-mail: afoussats@gmail.co [Facultad de Ciencias Exactas, Ingenieria y Agrimensura and Instituto de Fisica Rosario (UNR-CONICET), Av. Pellegrini 250, 2000 Rosario (Argentina); Greco, Andres [Facultad de Ciencias Exactas, Ingenieria y Agrimensura and Instituto de Fisica Rosario (UNR-CONICET), Av. Pellegrini 250, 2000 Rosario (Argentina); Muramatsu, Alejandro [Institut fuer Theoretische Physik III, Universitaet Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany)

    2011-01-11

    Dimerized quantum spin systems may appear under several circumstances, e.g. by a modulation of the antiferromagnetic exchange coupling in space, or in frustrated quantum antiferromagnets. In general, such systems display a quantum phase transition to a Neel state as a function of a suitable coupling constant. We present here two path-integral formulations appropriate for spin S=1/2 dimerized systems. The first one deals with a description of the dimers degrees of freedom in an SO(4) manifold, while the second one provides a path-integral for the bond-operators introduced by Sachdev and Bhatt. The path-integral quantization is performed using the Faddeev-Jackiw symplectic formalism for constrained systems, such that the measures and constraints that result from the algebra of the operators is provided in both cases. As an example we consider a spin-Peierls chain, and show how to arrive at the corresponding field-theory, starting with both an SO(4) formulation and bond-operators.

  13. Spatially correlated two-dimensional arrays of semiconductor and metal quantum dots in GaAs-based heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nevedomskiy, V. N., E-mail: nevedom@mail.ioffe.ru; Bert, N. A.; Chaldyshev, V. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Preobrazhernskiy, V. V.; Putyato, M. A.; Semyagin, B. R. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2015-12-15

    A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix.

  14. Two-dimensional hole systems in indium-based quantum well heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Loher, Josef

    2016-08-01

    The complex spin-orbit interaction (SOI) of two-dimensional hole gas (2DHG) systems - the relativistic coupling of the hole spin degree of freedom to their movement in an electric field - is of fundamental interest in spin physics due to its key role for spin manipulation in spintronic devices. In this work, we were able to evaluate the tunability of Rashba-SOI-related parameters in the 2DHG system of InAlAs/InGaAs/InAs:Mn quantum well heterostructures experimentally by analyzing the hole density evolution of quantum interference effects at low magnetic fields. We achieved to cover a significant range of hole densities by the joint action of the variation of the manganese modulation doping concentration during molecular beam epitaxy and external field-effect-mediated manipulation of the 2D carrier density in Hall bar devices by a metallic topgate. Within these magnetotransport experiments, a reproducible phenomenon of remarkable robustness emerged in the transverse Hall magnetoresistivity of the indium 2DHG systems which are grown on a special InAlAs step-graded metamorphic buffer layer structure to compensate crystal lattice mismatch. As a consequence of the strain relaxation process, these material systems are characterized by anisotropic properties along different crystallographic directions. We identify a puzzling offset phenomenon in the zero-field Hall magnetoresistance and demonstrate it to be a universal effect in systems with spatially anisotropic transport properties.

  15. Atomistic Analysis of Room Temperature Quantum Coherence in Two-Dimensional CdSe Nanostructures.

    Science.gov (United States)

    Pal, Sougata; Nijjar, Parmeet; Frauenheim, Thomas; Prezhdo, Oleg V

    2017-03-02

    Recent experiments on CdSe nanoplatelets synthesized with precisely controlled thickness that eliminates ensemble disorder have allowed accurate measurement of quantum coherence at room temperature. Matching exactly the CdSe cores of the experimentally studied particles and considering several defects, we establish the atomistic origins of the loss of coherence between heavy and light hole excitations in two-dimensional CdSe and CdSe/CdZnS core/shell structures. The coherence times obtained using molecular dynamics based on tight-binding density functional theory are in excellent agreement with the measured values. We show that a long coherence time is a consequence of both small fluctuations in the energy gap between the excited state pair, which is much less than thermal energy, and a slow decay of correlation between the energies of the two states. Anionic defects at the core/shell interface have little effect on the coherence lifetime, while cationic defects strongly perturb the electronic structure, destroying the experimentally observed coherence. By coupling to the same phonon modes, the heavy and light holes synchronize their energy fluctuations, facilitating long-lived coherence. We further demonstrate that the electronic excitations are localized close to the surface of these narrow nanoscale systems, and therefore, they couple most strongly to surface acoustic phonons. The established features of electron-phonon coupling and the influence of defects, surfaces, and core/shell interfaces provide important insights into quantum coherence in nanoscale materials in general.

  16. Excited states of two-dimensional hydrogen atom in tilted magnetic field: Quantum chaos

    Science.gov (United States)

    Koval, Eugene A.; Koval, Oksana A.

    2017-09-01

    The aim of the current work is the research of the influence of a tilted magnetic field direction on the spectrum and the energy level spacing distribution of a two-dimensional (2D) hydrogen atom and of an exciton in GaAs/Al0.33Ga0.67As quantum well. It was discovered that the quantum chaos (QC) is initiated with an increasing angle α between the magnetic field direction and the normal to the atomic plane. It is characterized by the repulsion of levels leading to the eliminating of the shell structure and by changing the spectrum statistical properties. The statement about the initiation of chaos and its dominance over regular motion with increasing angle α is confirmed by the results of our calculations of the classical dynamics presented in this paper. The evolution of the spatial distribution of the square of the absolute value of the wave function at an increasing angle α was observed. The differences of calculated dependencies of energies for various excited states on the tilt angle at a wide range of the magnetic field strength were described.

  17. Polarized heat current generated by quantum pumping in two-dimensional topological insulators

    Science.gov (United States)

    Ronetti, F.; Carrega, M.; Ferraro, D.; Rech, J.; Jonckheere, T.; Martin, T.; Sassetti, M.

    2017-03-01

    We consider the transport properties of a two-dimensional topological insulator in a double quantum point contact geometry in the presence of a time-dependent external field. In the proposed setup an external gate is placed above a single constriction and it couples only with electrons belonging to the top edge. This asymmetric configuration and the presence of an ac signal allow for a quantum pumping mechanism, which, in turn, can generate finite heat and charge currents in an unbiased device configuration. A microscopic model for coupling with the external time-dependent gate potential is developed and the induced finite heat and charge currents are investigated. We demonstrate that in the noninteracting case, heat flow is associated with a single spin component, due to the helical nature of the edge states, and therefore a finite and polarized heat current is obtained in this configuration. The presence of e -e interchannel interactions strongly affects the current signal, lowering the degree of polarization of the system. Finally, we also show that separate heat and charge flows can be achieved, varying the amplitude of the external gate.

  18. Variational tensor network renormalization in imaginary time: Two-dimensional quantum compass model at finite temperature

    Science.gov (United States)

    Czarnik, Piotr; Dziarmaga, Jacek; Oleś, Andrzej M.

    2016-05-01

    Progress in describing thermodynamic phase transitions in quantum systems is obtained by noticing that the Gibbs operator e-β H for a two-dimensional (2D) lattice system with a Hamiltonian H can be represented by a three-dimensional tensor network, the third dimension being the imaginary time (inverse temperature) β . Coarse graining the network along β results in a 2D projected entangled-pair operator (PEPO) with a finite bond dimension D . The coarse graining is performed by a tree tensor network of isometries. The isometries are optimized variationally, taking into account full tensor environment, to maximize the accuracy of the PEPO. The algorithm is applied to the isotropic quantum compass model on an infinite square lattice near a symmetry-breaking phase transition at finite temperature. From the linear susceptibility in the symmetric phase and the order parameter in the symmetry-broken phase, the critical temperature is estimated at Tc=0.0606 (4 ) J , where J is the isotropic coupling constant between S =1/2 pseudospins.

  19. Laser driven intraband optical transitions in two-dimensional quantum dots and quantum rings

    Science.gov (United States)

    Barseghyan, M. G.; Kirakosyan, A. A.; Laroze, D.

    2017-01-01

    The intraband optical absorption have been investigated in the presence of hydrogenic donor impurity in GaAs/GaAlAs quantum dot and quantum ring in the intense laser field. The single electron energy spectrum and wave functions have been found using the effective mass approximation and exact diagonalization technique. Different selection rules are obtained for intraband transitions depending on the direction of incident light polarization. Due to the accidental degeneracy of the laser dressed impurity states the crossings of the curves of the threshold energies and the dipole matrix elements on laser field parameter have been observed. The intraband absorption coefficient is calculated for different locations of hydrogenic donor impurity and different values of intense laser field parameter. The obtained results show that the absorption spectrum can exhibit either a blue- or redshift depending on the impurity location, values of the laser field parameter and direction of incident light polarization. The obtained theoretical results indicate a novel opportunity to tune the performance of new devices, based on the quantum dots and quantum rings and to control their specific properties by means of intense laser and hydrogenic donor impurity.

  20. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models.

    Science.gov (United States)

    Labuhn, Henning; Barredo, Daniel; Ravets, Sylvain; de Léséleuc, Sylvain; Macrì, Tommaso; Lahaye, Thierry; Browaeys, Antoine

    2016-06-30

    Spin models are the prime example of simplified many-body Hamiltonians used to model complex, strongly correlated real-world materials. However, despite the simplified character of such models, their dynamics often cannot be simulated exactly on classical computers when the number of particles exceeds a few tens. For this reason, quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become a very active field over the past years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own strengths and limitations. Here we report an alternative platform for the study of spin systems, using individual atoms trapped in tunable two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100 per cent. When excited to high-energy Rydberg D states, the atoms undergo strong interactions whose anisotropic character opens the way to simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of a quantum Ising-like spin-1/2 system in a transverse field with up to 30 spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects on the dynamics, we find excellent agreement with ab initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism.

  1. Electronic transport in two-dimensional systems in the quantum hall regime

    Science.gov (United States)

    Tarquini, Vinicio

    The integer and the fractional quantum Hall effects are essential to the exploration of quantum matters characterized by topological phases. A quantum Hall system hosts one-dimensional (1D) chiral edge channels that manifest zero magnetoresistance, dissipationless due to the broken time reversal symmetry, and quantized Hall resistance vhe2 with v being the topological invariant (or Chern number). The 1-1 correspondence between the conducting gapless edge channels to the gapped incompressible bulk states is a defining character of a topological insulator (TI). Understanding this correspondence in real systems, especially the origin of its robustness (in terms of the limit of breakdown), is important both fundamentally and practically (i.e. in relation to spintronics). However, the breakdown mechanism, especially in light of the edge-bulk correlation, is still an open question. We adopt GaAs two-dimensional (2D) high-mobility hole systems confined in a 20 nm wide (100)-GaAs quantum wells and have perform transport measurement for a range of charge densities between 4 and 5 x 1010 cm -2 with a carrier mobility of 2 - 4 x 106 cm 2/V·s down to millikelvin temperatures. Systematic characterization of the 2D systems through Shubnikov-de Haas (SdH) oscillations yields an effective mass between 0.30 and 0.50me, in good agreement with the cyclotron resonance results. We then modify a regular Hall bar system into a unique anti-Hall bar geometry that provides an extra set of independent chiral edge channels without altering the topological invariant. We perform systematic measurement of quantum oscillations via chiral edges while simultaneously probing the bulk dynamics, through measuring across independent edges, in respond to the edge excitations. The edge-bulk correspondence reveals a non-equilibrium dynamical development of the incompressible bulk states that leads to a novel asymmetrical 1-0 Hall potential distribution. Moreover, probing the breakdown via inner and outer

  2. Experimental study of two-dimensional quantum Wigner solid in zero magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jian [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 (United States); Pfeiffer, L. N.; West, K. W. [Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2014-03-31

    At temperatures T → 0, strongly interacting two-dimensional (2D) electron systems manifest characteristic insulating behaviors that are key for understanding the nature of the ground state in light of the interplay between disorder and electron-electron interaction. In contrast to the hopping conductance demonstrated in the insulating side of the metal-to-insulator transition, the ultra-high quality 2D systems exhibit nonactivated T-dependence of the conductivity even for dilute carrier concentrations down to 7×10{sup 8} cm{sup −2}. The apparent metal-to-insulator transition (MIT) occurs for a large r{sub s} value around 40 for which a Wigner Crystalllization is expected. The magnetoresistance for a series of carrier densities in the vicinity of the transition exhibits a characteristic sign change in weak perpendicular magnetic field. Within the Wigner Crystallization regime (with r{sub s} > 40), we report an experimental observation of a characteristic nonlinear threshold behavior from a high-resolution dc dynamical response as an evidence for aWigner crystallization in high-purity GaAs 2D hole systems in zero magnetic field. The system under an increasing current drive exhibits voltage oscillations with negative differential resistance. They confirm the coexistence of a moving crystal along with striped edge states as observed for electrons on helium surfaces. Moreover, the threshold is well below the typical classical levels due to a different pinning and depinning mechanism that is possibly related to quantum processes.

  3. Experimental study of two-dimensional quantum Wigner solid in zero magnetic field

    Science.gov (United States)

    Huang, Jian; Pfeiffer, L. N.; West, K. W.

    2014-03-01

    At temperatures T → 0, strongly interacting two-dimensional (2D) electron systems manifest characteristic insulating behaviors that are key for understanding the nature of the ground state in light of the interplay between disorder and electron-electron interaction. In contrast to the hopping conductance demonstrated in the insulating side of the metal-to-insulator transition, the ultra-high quality 2D systems exhibit nonactivated T-dependence of the conductivity even for dilute carrier concentrations down to 7×108 cm-2. The apparent metal-to-insulator transition (MIT) occurs for a large rs value around 40 for which a Wigner Crystalllization is expected. The magnetoresistance for a series of carrier densities in the vicinity of the transition exhibits a characteristic sign change in weak perpendicular magnetic field. Within the Wigner Crystallization regime (with rs > 40), we report an experimental observation of a characteristic nonlinear threshold behavior from a high-resolution dc dynamical response as an evidence for aWigner crystallization in high-purity GaAs 2D hole systems in zero magnetic field. The system under an increasing current drive exhibits voltage oscillations with negative differential resistance. They confirm the coexistence of a moving crystal along with striped edge states as observed for electrons on helium surfaces. Moreover, the threshold is well below the typical classical levels due to a different pinning and depinning mechanism that is possibly related to quantum processes.

  4. Two-dimensional topological crystalline quantum spin Hall effect in transition metal intercalated compounds

    Science.gov (United States)

    Zhou, Jian; Jena, Puru

    2017-02-01

    While most of the two-dimensional (2D) topological crystalline insulators (TCIs) belong to group IV-VI narrow-band-gap semiconductors in a square lattice, in the present work we predict a TCI family based on transition metal intercalated compounds in a hexagonal lattice. First-principles calculations combined with a substrate-fixed globally optimal structural search technique show that a layer of Os prefers a uniform distribution between two graphene sheets. Band dispersion calculations reveal a Dirac point and a Dirac nodal ring near the Fermi level. The Dirac point is ascribed to the hybridization of e2 and e2* orbitals, and the Dirac ring is formed due to dispersion of s and e1* orbitals. Upon inclusion of spin-orbit coupling, these Dirac states open topologically nontrivial local band gaps, which are characterized by nonzero mirror Chern numbers. The quantum spin Hall effect is also observed by integrating the spin Berry curvature in the Brillouin zone. In contrast to the 2D group IV-VI TCIs whose band inversions at X and Y points are "locked" by C4 rotation symmetry, here the relative energy of two local band gaps can be manipulated by in-plane biaxial strains. Some other similar intercalation compounds are also shown to be topologically nontrivial. Our work extends the 2D TCI family into a hexagonal lattice composed of transition metals.

  5. Superfluid-insulator transition in a disordered two-dimensional quantum rotor model with random on-site interactions

    Science.gov (United States)

    An, Taeyang; Cha, Min-Chul

    2013-03-01

    We study the superfluid-insulator quantum phase transition in a disordered two-dimensional quantum rotor model with random on-site interactions in the presence of particle-hole symmetry. Via worm-algorithm Monte Carlo calculations of superfluid density and compressibility, we find the dynamical critical exponent z ~ 1 . 13 (2) and the correlation length critical exponent 1 / ν ~ 1 . 1 (1) . These exponents suggest that the insulating phase is a incompressible Mott glass rather than a Bose glass.

  6. Spin transport in the two-dimensional quantum disordered anisotropic Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Lima, L.S. [Departamento de Física e Matemática, Centro Federal de Educação Tecnológica de Minas Gerais, 30510-000 Belo Horizonte, MG (Brazil); Pires, A.S.T.; Costa, B.V. [Departamento de Física ICEx, UFMG, CP 702, 31270-901 Belo Horizonte, MG (Brazil)

    2014-12-15

    We use the self consistent harmonic approximation together with the Linear Response Theory to study the effect of nonmagnetic disorder on spin transport in the quantum diluted two-dimensional anisotropic Heisenberg model with spin S=1 in a square lattice. The model has a BKT transition at zero dilution. We calculate the regular part of the spin conductivity σ{sup reg}(ω) and the Drude weight D{sub S}(T) as a function of the non-magnetic concentration, x. Our calculations show that the spin conductivity drops abruptly to zero at x{sub c}{sup SCHA}≈0.5 indicating that the system changes from an ideal spin conductor state to an insulator. This value is far above the site percolation threshold x{sub c}{sup site}≈0.41. Although the SCHA fails in determining precisely the percolation threshold, both the spin conductivity and the Drude weight show a quite regular behavior inside 0≤x≤x{sub c}{sup SCHA} indicating that the transition stays in the same universality class all along the interval. - Highlights: • The site dilution generates a large influence on regular part of the spin conductivity, σ{sup reg}(ω), and in the Drude weight, D(T). • In a concentration of impurities about x≈0.5, the regular part of the spin conductivity and the Drude weight fall to zero. • In this point we have a change in the state of the system from an ideal spin conductor to a spin insulator.

  7. Phenol-benzene complexation dynamics: quantum chemistry calculation, molecular dynamics simulations, and two dimensional IR spectroscopy.

    Science.gov (United States)

    Kwac, Kijeong; Lee, Chewook; Jung, Yousung; Han, Jaebeom; Kwak, Kyungwon; Zheng, Junrong; Fayer, M D; Cho, Minhaeng

    2006-12-28

    Molecular dynamics (MD) simulations and quantum mechanical electronic structure calculations are used to investigate the nature and dynamics of the phenol-benzene complex in the mixed solvent, benzene/CCl4. Under thermal equilibrium conditions, the complexes are continuously dissociating and forming. The MD simulations are used to calculate the experimental observables related to the phenol hydroxyl stretching mode, i.e., the two dimensional infrared vibrational echo spectrum as a function of time, which directly displays the formation and dissociation of the complex through the growth of off-diagonal peaks, and the linear absorption spectrum, which displays two hydroxyl stretch peaks, one for the complex and one for the free phenol. The results of the simulations are compared to previously reported experimental data and are found to be in quite reasonable agreement. The electronic structure calculations show that the complex is T shaped. The classical potential used for the phenol-benzene interaction in the MD simulations is in good accord with the highest level of the electronic structure calculations. A variety of other features is extracted from the simulations including the relationship between the structure and the projection of the electric field on the hydroxyl group. The fluctuating electric field is used to determine the hydroxyl stretch frequency-frequency correlation function (FFCF). The simulations are also used to examine the number distribution of benzene and CCl4 molecules in the first solvent shell around the phenol. It is found that the distribution is not that of the solvent mole fraction of benzene. There are substantial probabilities of finding a phenol in either a pure benzene environment or a pure CCl4 environment. A conjecture is made that relates the FFCF to the local number of benzene molecules in phenol's first solvent shell.

  8. Theory of the vortex-clustering transition in a confined two-dimensional quantum fluid

    Science.gov (United States)

    Yu, Xiaoquan; Billam, Thomas P.; Nian, Jun; Reeves, Matthew T.; Bradley, Ashton S.

    2016-08-01

    Clustering of like-sign vortices in a planar bounded domain is known to occur at negative temperature, a phenomenon that Onsager demonstrated to be a consequence of bounded phase space. In a confined superfluid, quantized vortices can support such an ordered phase, provided they evolve as an almost isolated subsystem containing sufficient energy. A detailed theoretical understanding of the statistical mechanics of such states thus requires a microcanonical approach. Here we develop an analytical theory of the vortex clustering transition in a neutral system of quantum vortices confined to a two-dimensional disk geometry, within the microcanonical ensemble. The choice of ensemble is essential for identifying the correct thermodynamic limit of the system, enabling a rigorous description of clustering in the language of critical phenomena. As the system energy increases above a critical value, the system develops global order via the emergence of a macroscopic dipole structure from the homogeneous phase of vortices, spontaneously breaking the Z2 symmetry associated with invariance under vortex circulation exchange, and the rotational SO (2 ) symmetry due to the disk geometry. The dipole structure emerges characterized by the continuous growth of the macroscopic dipole moment which serves as a global order parameter, resembling a continuous phase transition. The critical temperature of the transition, and the critical exponent associated with the dipole moment, are obtained exactly within mean-field theory. The clustering transition is shown to be distinct from the final state reached at high energy, known as supercondensation. The dipole moment develops via two macroscopic vortex clusters and the cluster locations are found analytically, both near the clustering transition and in the supercondensation limit. The microcanonical theory shows excellent agreement with Monte Carlo simulations, and signatures of the transition are apparent even for a modest system of 100

  9. Double-semion topological order from exactly solvable quantum dimer models

    Science.gov (United States)

    Qi, Yang; Gu, Zheng-Cheng; Yao, Hong

    2015-10-01

    We construct a generalized quantum dimer model on two-dimensional nonbipartite lattices, including the triangular lattice, the star lattice, and the kagome lattice. At the Rokhsar-Kivelson (RK) point, we obtain its exact ground states that are shown to be a fully gapped quantum spin liquid with the double-semion topological order. The ground-state wave function of such a model at the RK point is a superposition of dimer configurations with a nonlocal sign structure determined by counting the number of loops in the transition graph. We explicitly demonstrate the double-semion topological order in the ground states by showing the semionic statistics of monomer excitations. We also discuss possible implications of such double-semion resonating valence bond states to candidate quantum spin-liquid systems discovered experimentally and numerically in the past few years.

  10. Low-Lying States of the A+B-A+B- Coulomb Systems in Two-Dimensional Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Fang

    2001-01-01

    The features of the low-lying spectra of four-body A+B-A+B- systems have been deduced based on symmetry. Using the method of few-body physics, we calculate the energy spectra of A + B- A + B- systems in a harmonic quantum dot. We find that the biexciton in a two-dimensional quantum dot may have other bound excited states and the quantum mechanical symmetry plays a crucialrole in determining the energy levels and structures of the low-lying states.

  11. Degenerate ground states and multiple bifurcations in a two-dimensional q-state quantum Potts model.

    Science.gov (United States)

    Dai, Yan-Wei; Cho, Sam Young; Batchelor, Murray T; Zhou, Huan-Qiang

    2014-06-01

    We numerically investigate the two-dimensional q-state quantum Potts model on the infinite square lattice by using the infinite projected entangled-pair state (iPEPS) algorithm. We show that the quantum fidelity, defined as an overlap measurement between an arbitrary reference state and the iPEPS ground state of the system, can detect q-fold degenerate ground states for the Z_{q} broken-symmetry phase. Accordingly, a multiple bifurcation of the quantum ground-state fidelity is shown to occur as the transverse magnetic field varies from the symmetry phase to the broken-symmetry phase, which means that a multiple-bifurcation point corresponds to a critical point. A (dis)continuous behavior of quantum fidelity at phase transition points characterizes a (dis)continuous phase transition. Similar to the characteristic behavior of the quantum fidelity, the magnetizations, as order parameters, obtained from the degenerate ground states exhibit multiple bifurcation at critical points. Each order parameter is also explicitly demonstrated to transform under the Z_{q} subgroup of the symmetry group of the Hamiltonian. We find that the q-state quantum Potts model on the square lattice undergoes a discontinuous (first-order) phase transition for q=3 and q=4 and a continuous phase transition for q=2 (the two-dimensional quantum transverse Ising model).

  12. Trapping photon-dressed Dirac electrons in a quantum dot studied by coherent two dimensional photon echo spectroscopy

    Science.gov (United States)

    Roslyak, O.; Gumbs, Godfrey; Mukamel, S.

    2012-05-01

    We study the localization of dressed Dirac electrons in a cylindrical quantum dot (QD) formed on monolayer and bilayer graphene by spatially different potential profiles. Short lived excitonic states which are too broad to be resolved in linear spectroscopy are revealed by cross peaks in the photon-echo nonlinear technique. Signatures of the dynamic gap in the two-dimensional spectra are discussed. The effect of the Coulomb induced exciton-exciton scattering and the formation of biexciton molecules are demonstrated.

  13. Emergence of a two-dimensional macrospin liquid in a highly frustrated three-dimensional quantum magnet

    Science.gov (United States)

    Sikkenk, Tycho S.; Coester, Kris; Buhrandt, Stefan; Fritz, Lars; Schmidt, Kai P.

    2017-02-01

    The classical Ising model on the frustrated three-dimensional (3D) swedenborgite lattice has disordered spin liquid ground states for all ratios of inter- and intraplanar couplings. Quantum fluctuations due to a transverse field give rise to several exotic phenomena. In the limit of weakly coupled kagome layers we find a 3D version of disorder by disorder degeneracy lifting. For large out-of-plane couplings one-dimensional macrospins are formed, which realize a disordered macrospin liquid phase on an emerging two-dimensional triangular lattice. We speculate about a possibly exotic version of quantum criticality that connects the polarized phase to the macrospin liquid.

  14. Quantum mechanical treatment of a constrained particle on two dimensional sphere

    Science.gov (United States)

    Jahangiri, L.; Panahi, H.

    2016-12-01

    In this work, we study the motion of a particle on two dimensional sphere. By writing the Schrodinger equation, we obtain the wave function and energy spectra for three dimensional harmonic oscillator potential plus trigonometric Rosen-Morse non-central potential. By letting three special cases for intertwining operator, we investigate the energy spectra and wave functions for Smorodinsky-Winternitz potential model.

  15. Quantum-corrected two-dimensional Horava-Lifshitz black hole entropy

    CERN Document Server

    Anacleto, M A; Brito, F A; Mota-Silva, J C

    2015-01-01

    In this paper we focus on the Halmiton-Jacobi method to determine the temperature and the entropy of a two-dimensional Horava-Lifshitz black hole by using the generalized uncertainty principles (GUP). We also address the product of horizons, mainly concerning the event, Cauchy, cosmological and virtual horizons.

  16. Quantum-Corrected Two-Dimensional Horava-Lifshitz Black Hole Entropy

    Directory of Open Access Journals (Sweden)

    M. A. Anacleto

    2016-01-01

    Full Text Available We focus on the Hamilton-Jacobi method to determine several thermodynamic quantities such as temperature, entropy, and specific heat of two-dimensional Horava-Lifshitz black holes by using the generalized uncertainty principles (GUP. We also address the product of horizons, mainly concerning the event, Cauchy, and cosmological and virtual horizons.

  17. Coherent electron focusing with quantum point contacts in a two-dimensional electron gas

    NARCIS (Netherlands)

    Houten, H. van; Beenakker, C.W.J.; Williamson, J.G.; Broekaart, M.E.I.; Loosdrecht, P.H.M. van; Wees, B.J. van; Mooij, J.E.; Foxon, C.T.; Harris, J.J.

    1989-01-01

    Transverse electron focusing in a two-dimensional electron gas is investigated experimentally and theoretically for the first time. A split Schottky gate on top of a GaAs-AlxGa1–xAs heterostructure defines two point contacts of variable width, which are used as injector and collector of ballistic el

  18. Two new integrable cases of two-dimensional quantum mechanics with a magnetic field

    Science.gov (United States)

    Marikhin, V. G.

    2016-04-01

    Two integrable cases of two-dimensional Schrödinger equation with a magnetic field are proposed. Using the polar coordinates and the symmetrical gauge, we will obtain solutions of these equations through biconfluent and confluent Heun functions. The quantization rules will be derived for both systems under consideration.

  19. On the Lorentz symmetry breaking effects on a Dirac neutral particle inside a two-dimensional quantum ring

    Science.gov (United States)

    Bakke, K.; Belich, H.

    2014-07-01

    We study the effects of the Lorentz symmetry violation in the nonrelativistic quantum dynamics of a spin-1/2 neutral particle interacting with external fields confined to a two-dimensional quantum ring (W.-C. Tan, J.C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996)). We show a possible scenario for the Lorentz symmetry breaking that permits us to make an analogy with the Landau-Aharonov-Casher system (M. Ericsson, E. Sjöqvist, Phys. Rev. A 65, 013607 (2001)), where a change in the angular frequency characteristic of the confinement of a quantum particle to a two-dimensional ring is obtained. Then, we show that an upper bound for the Lorentz symmetry breaking parameters may be set up. Besides, we analyse another possible scenario of the Lorentz symmetry violation by showing the presence of an analogue of the Coulomb potential. We obtain the bound states solutions to the Schrödinger-Pauli equation and discuss a quantum effect characterized by the dependence of the angular frequency on the quantum numbers of the system.

  20. Adiabatic physics of an exchange-coupled spin-dimer system: Magnetocaloric effect, zero-point fluctuations, and possible two-dimensional universal behavior

    Science.gov (United States)

    Brambleby, J.; Goddard, P. A.; Singleton, J.; Jaime, M.; Lancaster, T.; Huang, L.; Wosnitza, J.; Topping, C. V.; Carreiro, K. E.; Tran, H. E.; Manson, Z. E.; Manson, J. L.

    2017-01-01

    We present the magnetic and thermal properties of the bosonic-superfluid phase in a spin-dimer network using both quasistatic and rapidly changing pulsed magnetic fields. The entropy derived from a heat-capacity study reveals that the pulsed-field measurements are strongly adiabatic in nature and are responsible for the onset of a significant magnetocaloric effect (MCE). In contrast to previous predictions we show that the MCE is not just confined to the critical regions, but occurs for all fields greater than zero at sufficiently low temperatures. We explain the MCE using a model of the thermal occupation of exchange-coupled dimer spin states and highlight that failure to take this effect into account inevitably leads to incorrect interpretations of experimental results. In addition, the heat capacity in our material is suggestive of an extraordinary contribution from zero-point fluctuations and appears to indicate universal behavior with different critical exponents at the two field-induced critical points. The data at the upper critical point, combined with the layered structure of the system, are consistent with a two-dimensional nature of spin excitations in the system.

  1. Quantum Spectra and Classical Orbits in Two-Dimensional Equilateral Triangular Billiards

    Institute of Scientific and Technical Information of China (English)

    LIN Sheng-Lu; GAO Feng; HONG Zheng-Pin; DU Meng-Li

    2005-01-01

    @@ We study the correspondence between quantum spectra and classical orbits in the equilateral triangular billiards. The eigenstates of such systems are not separable functions of two variables even though the problem is exactlysolvable. We calculate the Fourier transform of a quantum spectral function and find that the positions of thepeaks match well with the lengths of the classical orbits. This is another example showing that the quantum spectral function provides a bridge between quantum and classical mechanics.

  2. Construction of two-dimensional quantum field models through Longo-Witten endomorphisms

    CERN Document Server

    Tanimoto, Yoh

    2013-01-01

    We present a procedure to construct families of local, massive and interacting Haag-Kastler nets on the two-dimensional spacetime through an operator-algebraic method. An existence proof of local observable is given without relying on modular nuclearity. By a similar technique, another family of wedge-local nets is constructed using certain endomorphisms of conformal nets recently studied by Longo and Witten.

  3. Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs.

    Science.gov (United States)

    Edén, Mattias

    2010-05-01

    Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations.

  4. Effects of light on quantum phases and topological properties of two-dimensional Metal-organic frameworks

    Science.gov (United States)

    Wang, Yunhua; Liu, Yulan; Wang, Biao

    2017-01-01

    Periodically driven nontrivial quantum states open another door to engineer topological phases in solid systems by light. Here we show, based on the Floquet-Bloch theory, that the on-resonant linearly and circularly polarized infrared light brings in the exotic Floquet quantum spin Hall state and half-metal in two-dimensional Metal-organic frameworks (2D MOFs) because of the unbroken and broken time-reversal symmetry, respectively. We also observe that the off-resonant light triggers topological quantum phase transitions and induces semimetals with pseudospin-1 Dirac-Weyl fermions via the photon-dressed topological band structures of 2D MOFs. This work paves a way to design light-controlled spintronics and optoelectronics based on 2D MOFs. PMID:28134315

  5. Effects of light on quantum phases and topological properties of two-dimensional Metal-organic frameworks

    Science.gov (United States)

    Wang, Yunhua; Liu, Yulan; Wang, Biao

    2017-01-01

    Periodically driven nontrivial quantum states open another door to engineer topological phases in solid systems by light. Here we show, based on the Floquet-Bloch theory, that the on-resonant linearly and circularly polarized infrared light brings in the exotic Floquet quantum spin Hall state and half-metal in two-dimensional Metal-organic frameworks (2D MOFs) because of the unbroken and broken time-reversal symmetry, respectively. We also observe that the off-resonant light triggers topological quantum phase transitions and induces semimetals with pseudospin-1 Dirac-Weyl fermions via the photon-dressed topological band structures of 2D MOFs. This work paves a way to design light-controlled spintronics and optoelectronics based on 2D MOFs.

  6. Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-Two-Dimensional Core/Shell Nanoplatelets.

    Science.gov (United States)

    Ma, Xuedan; Diroll, Benjamin T; Cho, Wooje; Fedin, Igor; Schaller, Richard D; Talapin, Dmitri V; Gray, Stephen K; Wiederrecht, Gary P; Gosztola, David J

    2017-09-05

    Quasi-two-dimensional nanoplatelets (NPLs) possess fundamentally different excitonic properties from zero-dimensional quantum dots. We study lateral size-dependent photon emission statistics and carrier dynamics of individual NPLs using second-order photon correlation (g((2))(τ)) spectroscopy and photoluminescence (PL) intensity-dependent lifetime analysis. Room-temperature radiative lifetimes of NPLs can be derived from maximum PL intensity periods in PL time traces. It first decreases with NPL lateral size and then stays constant, deviating from the electric dipole approximation. Analysis of the PL time traces further reveals that the single exciton quantum yield in NPLs decreases with NPL lateral size and increases with protecting shell thickness, indicating the importance of surface passivation on NPL emission quality. Second-order photon correlation (g((2))(τ)) studies of single NPLs show that the biexciton quantum yield is strongly dependent on the lateral size and single exciton quantum yield of the NPLs. In large NPLs with unity single exciton quantum yield, the corresponding biexciton quantum yield can reach unity. These findings reveal that by careful growth control and core-shell material engineering, NPLs can be of great potential for light amplification and integrated quantum photonic applications.

  7. The quantum spectral analysis of the two-dimensional annular billiard system

    Institute of Scientific and Technical Information of China (English)

    Zhang Yan-Hui; Zhang Ji-Ouan; Xu Xue-You; Lin Sheng-Lu

    2009-01-01

    Based on the extended closed-orbit theory together with spectral analysis, this paper studies the correspondence between quantum mechanics and the classical counterpart in a two-dimeusional annular billiard. The results demonstrate that the Fourier-transformed quantum spectra are in very good accordance with the lengths of the classical ballistic trajectories, whereas spectral strength is intimately associated with the shapes of possible open orbits connecting arbitrary two points in the annular cavity. This approach facilitates an intuitive understanding of basic quantum features such as quantum interference, locations of the wavefunctions, and allows quantitative calculations in the range of high energies, where full quantum calculations may become impractical in general. This treatment provides a thread to explore the properties of microjunction transport and even quantum chaos under the much more general system.

  8. Loop equations and Virasoro constraints in non-perturbative two-dimensional quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R.; Verlinde, H. (Princeton Univ., NJ (USA). Joseph Henry Labs.); Verlinde, E. (Institute for Advanced Study, Princeton, NJ (USA). School of Natural Sciences)

    1991-01-21

    We give a derivation of the loop equation for two-dimensional gravity from the KdV equations and the string equation of the one-matrix model. We find that the loop equation is equivalent to an infinite set of linear constraints on the square root of the partition function satisfying the Virasoro algebra. We give an interpretation of these equations in topological gravity and discuss their extension to multi-matrix models. For the multi-critical models the loop equation naturally singles out the operators corresponding to the primary fields of the minimal models. (orig.).

  9. Loop Equations and Virasoro Constraints in Non-Perturbative Two-Dimensional Quantum Gravity

    Science.gov (United States)

    Dijkgraaf, Robbert; Verlinde, Herman; Verlinde, Erik

    We give a derivation of the loop equation for two-dimensional gravity from the KdV equations and the string equation of the one-matrix model. We find that the loop equation is equivalent to an infinite set of linear constraints on the square root of the partition function satisfying the Virasoro algebra. We give an interpretation of these equations in topological gravity and discuss their extension to multi-matrix models. For the multi-critical models the loop equation naturally singles out the operators corresponding to the primary fields of the minimal models.

  10. Spin-Orbit Splitting in Semiconductor Quantum Dots with a Two-Dimensional Ring Model

    Institute of Scientific and Technical Information of China (English)

    FENG Jun-Sheng; LIU Zheng

    2009-01-01

    We present a theoretical study of the energy levels with two-dimensional ring confining potential in the presence of the Rashba spin-orbit interaction.The features of some low-lying states in various strengths of the Rashba spin-orbit interaction are investigated.The Rashba spin-orbit splitting can also be influenced by the width of the potential barrier.The computed results show that the spin-polarized electronic states can be more easily achieved in a weakly confined dot when the confinement strength for the Rashba spin-orbit interaction is larger than a critical value.

  11. Plasmons in a free-standing nanorod with a two-dimensional parabolic quantum well caused bv surface states

    Institute of Scientific and Technical Information of China (English)

    Song Ya-Feng; Lü Yan-Wu; Wen Wei; Liu Xiang-Lin; Yang Shao-Yan; Zhu Qin-Sheng; Wang Zhan-Guo

    2012-01-01

    The collective charge density excitations in a free-standing nanorod with a two-dimensional parabolic quantum well are investigated within the framework of Bohm-Pine's random-phase approximation in the two-subband model.The new simplified analytical expressions of the Coulomb interaction matrix elements and dielectric functions are derived and numerically discussed.In addition,the electron density and temperature dependences of dispersion features are also investigated.We find that in the two-dimensional parabolic quantum well,the intrasubband upper branch is coupled with the intersubband mode,which is quite different from other quasi-one-dimensional systems like a cylindrical quantum wire with an infinite rectangular potential.In addition,we also find that higher temperature results in the intersubband mode(with an energy of 12 meV(~3 THz))becoming totally damped,which agrees well with the experimental results of Raman scattering in the literature.These interesting properties may provide useful references to the design of free-standing nanorod based devices.

  12. Quantum spin liquid and magnetic order in a two-dimensional nonsymmorphic lattice: Considering the distorted kagome lattice of volborthite

    Science.gov (United States)

    Chern, Li Ern; Hwang, Kyusung; Mizoguchi, Tomonari; Huh, Yejin; Kim, Yong Baek

    2017-07-01

    The Kagome-lattice-based material, volborthite, Cu3V2O7(OH) 2.2 H2O , has been considered as a promising platform for discovery of unusual quantum ground states due to the frustrated nature of spin interaction. We explore possible quantum spin liquid and magnetically ordered phases in a two-dimensional nonsymmorphic lattice, which is described by the plane group p 2 g g , consistent with the spatial anisotropy of the spin model derived from density functional theory (DFT) for volborthite. Using the projective symmetry group (PSG) analysis and Schwinger boson mean field theory, we classify possible spin liquid phases with bosonic spinons and investigate magnetically ordered phases connected to such states. It is shown, in general, that only translationally invariant mean field spin liquid ansatzes are allowed in two-dimensional nonsymmorphic lattices. We study the mean field phase diagram of the DFT-derived spin model and find that possible quantum spin liquid phases are connected to two types of magnetically ordered phases, a coplanar incommensurate (q ,0 ) spiral order as the ground state and a closely competing coplanar commensurate (π ,π ) spin density wave order. In addition, periodicity enhancement of the two-spinon continuum, a consequence of symmetry fractionalization, is found in the spin liquid state connected to the (π ,π ) spin density wave order. We discuss relevance of these results to recent and future experiments on volborthite.

  13. Topology Change and the Emergence of Geometry in Two Dimensional Causal Quantum Gravity

    NARCIS (Netherlands)

    Westra, W.

    2007-01-01

    Despite many attempts, gravity has vigorously resisted a unification with the laws of quantum mechanics. Besides a plethora of technical issues, one is also faced with many interesting conceptual problems. The study of quantum gravity in lower dimensional models ameliorates the technical difficultie

  14. Hilbert-Schmidt Geometry of n-Level Jakobczyk-Siennicki Two-Dimensional Quantum Systems

    CERN Document Server

    Slater, P B

    2005-01-01

    Jakobczyk and Siennicki studied two-dimensional sections of a set of Bloch vectors corresponding to n x n density matrices of two-qubit systems (that is, the case n=4). They found essentially five different types of (nontrivial) separability regimes. We compute the Euclidean/Hilbert-Schmidt (HS) separability probabilities assigned to these regimes, and conduct parallel two-dimensional section analyses for the cases n=6,8,9 and 10. We obtain a very wide variety of exact HS-probabilities. For n>6, the probabilities are those of having a partial positive transpose (PPT). For the n=6 case, we also obtain biseparability probabilities; in the n=8,9 instances, bi-PPT probabilities; and for n=8, tri-PPT probabilities. By far, the most frequently recorded probability for n>4 is Pi/4 = 0.785398$. We also conduct a number of related analyses, pertaining to the (one-dimensional) boundaries (both exterior and interior) of the separability and PPT domains, and discuss some exact calculations pertaining to the 9-dimensional...

  15. Lorentz contraction of the equal-time Bethe-Salpeter amplitude in two-dimensional massless quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Radozycki, Tomasz [Cardinal Stefan Wyszynski University, Faculty of Mathematics and Natural Sciences, College of Sciences, Warsaw (Poland)

    2015-09-15

    The Lorentz transformation properties of the equal-time bound-state Bethe-Salpeter amplitude in the two-dimensional massless quantum electrodynamics (the so-called Schwinger model) are considered. It is shown that while boosting a bound state (a 'meson') this amplitude is subject to approximate Lorentz contraction. The effect is exact for large separations of constituent particles ('quarks'), while for small distances the deviation is more significant. For this phenomenon to appear, the full function, i.e. with the inclusion of all instanton contributions, has to be considered. The amplitude in each separate topological sector does not exhibit such properties. (orig.)

  16. Lorentz contraction of the equal-time Bethe–Salpeter amplitude in two-dimensional massless quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Radożycki, Tomasz, E-mail: t.radozycki@uksw.edu.pl [Faculty of Mathematics and Natural Sciences, College of Sciences, Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938, Warsaw (Poland)

    2015-09-24

    The Lorentz transformation properties of the equal-time bound-state Bethe–Salpeter amplitude in the two-dimensional massless quantum electrodynamics (the so-called Schwinger model) are considered. It is shown that while boosting a bound state (a ‘meson’) this amplitude is subject to approximate Lorentz contraction. The effect is exact for large separations of constituent particles (‘quarks’), while for small distances the deviation is more significant. For this phenomenon to appear, the full function, i.e. with the inclusion of all instanton contributions, has to be considered. The amplitude in each separate topological sector does not exhibit such properties.

  17. A model of the two-dimensional quantum harmonic oscillator in an $AdS_3$ background

    CERN Document Server

    Frick, Rudolf

    2016-01-01

    In this paper we study a model of the two-dimensional quantum harmonic oscillator in a 3-dimensional anti-de Sitter background. We use a generalized Schr\\"odinger picture in which the analogs of the Schr\\"odinger operators of the particle are independent of both the time and the space coordinates in different representations. The spacetime independent operators of the particle induce the Lie algebra of Killing vector fields of the $AdS_3$ spacetime. In this picture, we have a metamorphosis of the Heisenberg's uncertainty relations.

  18. A model of the two-dimensional quantum harmonic oscillator in an AdS{sub 3} background

    Energy Technology Data Exchange (ETDEWEB)

    Frick, R. [Universitaet zu Koeln, Institut fuer Theoretische Physik, Cologne (Germany)

    2016-10-15

    In this paper we study a model of the two-dimensional quantum harmonic oscillator in a three-dimensional anti-de Sitter background. We use a generalized Schroedinger picture in which the analogs of the Schroedinger operators of the particle are independent of both the time and the space coordinates in different representations. The spacetime independent operators of the particle induce the Lie algebra of Killing vector fields of the AdS{sub 3} spacetime. In this picture, we have a metamorphosis of the Heisenberg uncertainty relations. (orig.)

  19. Quantum Phase Transition in Quasi-two-dimensional Heisenberg Antiferromagnet with Single-Ion Anisotropy

    Institute of Scientific and Technical Information of China (English)

    JI An-Chun; TIAN Guang-Shan

    2007-01-01

    In the present paper, we investigate the quantum phase transition in a spatially anisotropic antiferromagnetic Heisenberg model of S = 1 with single-ion energy anisotropy. By using the Schwinger boson representation, we calculate the Gaussian correction to the critical value Jc⊥ caused by quantum spin fluctuations. We find that, for the positive single-ion energy, a nonzero value of Jc⊥ is always needed to stabilize the antiferromagnetic long-range order in this model. It resolves a difference among literature and shows clearly that the effect of quantum fluctuations may qualitatively change a result obtained by the mean-field theories on lower-dimensional systems.

  20. Quantum Poincare Section of a Two-Dimensional hamiltonian in a Coherent State Representation

    Institute of Scientific and Technical Information of China (English)

    金迎新; 贺凯芬

    2002-01-01

    We study the quantum behaviour of a quasi-integrable Hamiltonian. The unperturbed Hamiltonian displays degeneracies of energy levels, which become avoided crossings under a nonintegrable perturbation. In this twodimensional system, the quantum Poincaré section plot is constructed in the coherent state representation with the restriction that the centres of the wavepackets are confined at the classical surface of constant energy. It is found that the quantum Poincaré section plot obtained in this way provides an evident counterpart of the classical system.

  1. Deep Learning the Quantum Phase Transitions in Random Two-Dimensional Electron Systems

    Science.gov (United States)

    Ohtsuki, Tomoki; Ohtsuki, Tomi

    2016-12-01

    Random electron systems show rich phases such as Anderson insulator, diffusive metal, quantum Hall and quantum anomalous Hall insulators, Weyl semimetal, as well as strong/weak topological insulators. Eigenfunctions of each matter phase have specific features, but owing to the random nature of systems, determining the matter phase from eigenfunctions is difficult. Here, we propose the deep learning algorithm to capture the features of eigenfunctions. Localization-delocalization transition, as well as disordered Chern insulator-Anderson insulator transition, is discussed.

  2. Two-dimensional models as testing ground for principles and concepts of local quantum physics

    Science.gov (United States)

    Schroer, Bert

    2006-02-01

    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g., chiral models, factorizing models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work, I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff( S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL (2, Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular "Euclideanization" is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J.A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an "Encyclopedia of Mathematical Physics" contribution hep-th/0502125.

  3. Two-dimensional models as testing ground for principles and concepts of local quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [FU Berlin (Germany). Institut fuer Theoretische Physik

    2005-04-15

    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g. chiral models, factoring models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff(S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL(2,Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular 'Euclideanization' is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J. A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an 'Encyclopedia of Mathematical Physics' contribution hep-th/0502125. (author)

  4. Liquid-Gated High Mobility and Quantum Oscillation of the Two-Dimensional Electron Gas at an Oxide Interface.

    Science.gov (United States)

    Zeng, Shengwei; Lü, Weiming; Huang, Zhen; Liu, Zhiqi; Han, Kun; Gopinadhan, Kalon; Li, Changjian; Guo, Rui; Zhou, Wenxiong; Ma, Haijiao Harsan; Jian, Linke; Venkatesan, Thirumalai; Ariando

    2016-04-26

    Electric field effect in electronic double layer transistor (EDLT) configuration with ionic liquids as the dielectric materials is a powerful means of exploring various properties in different materials. Here, we demonstrate the modulation of electrical transport properties and extremely high mobility of two-dimensional electron gas at LaAlO3/SrTiO3 (LAO/STO) interface through ionic liquid-assisted electric field effect. With a change of the gate voltages, the depletion of charge carrier and the resultant enhancement of electron mobility up to 19 380 cm(2)/(V s) are realized, leading to quantum oscillations of the conductivity at the LAO/STO interface. The present results suggest that high-mobility oxide interfaces, which exhibit quantum phenomena, could be obtained by ionic liquid-assisted field effect.

  5. Two Dimensional Effective Electron Mass at the Fermi Level in Quantum Wells of III-V, Ternary and Quaternary Semiconductors.

    Science.gov (United States)

    Chakrabarti, S; Chatterjee, B; Debbarma, S; Ghatak, K P

    2015-09-01

    In this paper we study the influence of strong electric field on the two dimensional (2D)effective electron mass (EEM) at the Fermi level in quantum wells of III-V, ternary and quaternary semiconductors within the framework of k x p formalism by formulating a new 2D electron energy spectrum. It appears taking quantum wells of InSb, InAs, Hg(1-x)Cd(x)Te and In(1-x)Ga(x)As(1-y)P(y) lattice matched to InP as examples that the EEM increases with decreasing film thickness, increasing electric field and increases with increasing surface electron concentration exhibiting spikey oscillations because of the crossing over of the Fermi level by the quantized level in quantum wells and the quantized oscillation occurs when the Fermi energy touches the sub-band energy. The electric field makes the mass quantum number dependent and the oscillatory mass introduces quantum number dependent mass anisotropy in addition to energy. The EEM increases with decreasing alloy composition where the variations are totally band structure dependent. Under certain limiting conditions all the results for all the cases get simplified into the well-known parabolic energy bands and thus confirming the compatibility test. The content of this paper finds three applications in the fields of nano-science and technology.

  6. Quantum dots and etch-induced depletion of a silicon two-dimensional electron gas

    Science.gov (United States)

    Klein, L. J.; Lewis, K. L. M.; Slinker, K. A.; Goswami, Srijit; van der Weide, D. W.; Blick, R. H.; Mooney, P. M.; Chu, J. O.; Coppersmith, S. N.; Friesen, Mark; Eriksson, M. A.

    2006-01-01

    The controlled depletion of electrons in semiconductors is the basis for numerous devices. Reactive-ion etching provides an effective technique for fabricating both classical and quantum devices. However, Fermi-level pinning must be carefully considered in the development of small devices, such as quantum dots. Because of depletion, the electrical size of the device is reduced in comparison with its physical dimension. To investigate this issue in modulation-doped silicon single-electron transistors, we fabricate several types of devices in silicon-germanium heterostructures using two different etches, CF4 and SF6. We estimate the depletion width associated with each etch by two methods: (i) conductance measurements in etched wires of decreasing thickness (to determine the onset of depletion), and (ii) capacitance measurements of quantum dots (to estimate the size of the active region). We find that the SF6 etch causes a much smaller depletion width, making it more suitable for device fabrication.

  7. Quantum limit for two-dimensional resolution of two incoherent optical point sources

    CERN Document Server

    Ang, Shan Zheng; Tsang, Mankei

    2016-01-01

    We obtain the multiple-parameter quantum Cram\\'er-Rao bound for estimating the Cartesian components of the centroid and separation of two incoherent optical point sources using an imaging system with finite spatial bandwidth. Under quite general and realistic assumptions on the point-spread function of the imaging system, and for weak source strengths, we show that the Cram\\'er-Rao bounds for the x and y components of the separation are independent of the values of those components, which may be well-below the conventional Rayleigh resolution limit. We also propose two linear optics-based measurement methods that approach the quantum bound for the estimation of the Cartesian components of the separation once the centroid has been located. One of the methods is an interferometric scheme that approaches the quantum bound for sub-Rayleigh separations. The other method uses fiber coupling to attain the bound regardless of the distance between the two sources.

  8. Spin correlations in the two-dimensional quantum s=1/2 XY model

    Science.gov (United States)

    Sznajd, J.

    1995-08-01

    A quantum version of the Niemeijer-van Leeuwen real-space renormalization-group method is used to study the temperature dependence of the two- and four-spin correlations in the quantum XY model on the triangular lattice. The first-order cumulant expansion results suggest, similarly to other methods, a low-temperature phase of an essentially different kind from that predicted for the classical model. The possible explanation of the origin of the spurious 2D Heisenberg-like nontrivial fixed point in some renormalization-group calculations is also proposed.

  9. Two-Dimensional GaAs/AlGaAs Multiple Quantum Well Spatial Light Modulators

    Institute of Scientific and Technical Information of China (English)

    Qin Wang; Jan Borglind; Smilja Becanovic; Stéphane Junique; Daniel (A)gren; Bertrand Noharet; Linda H(o)glund; Olof (O)berg; Erik Petrini; Jan Y. Andersson; Hedda Malm

    2003-01-01

    Multiple quantum well spatial light modulators with 128x128 array in 38μm pitch are fabricated using two pproaches, one with an attachment of an optical substrate and another one without. These two fabrication processes are described and compared.

  10. Two-dimensional time-dependent quantum-mechanical scattering event

    Energy Technology Data Exchange (ETDEWEB)

    Galbraith, I.; Ching, Y.S.; Abraham, E.

    1984-01-01

    Nonrelativistic quantum-mechanical scattering in two dimensions is studied numerically by integrating the time-dependent Schroedinger equation. A partial-wave analysis is used to discuss the numerical results. A potential barrier, a square well and a single slit are considered as the scattering potentials.

  11. Quantum ratchet effects induced by terahertz radiation in GaN-based two-dimensional structures

    NARCIS (Netherlands)

    Weber, W.; Golub, L. E.; Danilov, S. N.; Karch, J.; Reitmaier, C.; Wittmann, B.; Bel' kov, V. V.; Ivchenko, E. L.; Kvon, Z. D.; Vinh, N. Q.; van der Meer, A. F. G.; Murdin, B.; Ganichev, S. D.

    2008-01-01

    Photogalvanic effects are observed and investigated in wurtzite (0001)-oriented GaN/AlGaN low-dimensional structures excited by terahertz radiation. The structures are shown to represent linear quantum ratchets. Experimental and theoretical analysis exhibits that the observed photocurrents are relat

  12. Quantum ratchet effects induced by terahertz radiation in GaN-based two-dimensional structures

    Science.gov (United States)

    Weber, W.; Golub, L. E.; Danilov, S. N.; Karch, J.; Reitmaier, C.; Wittmann, B.; Bel'Kov, V. V.; Ivchenko, E. L.; Kvon, Z. D.; Vinh, N. Q.; van der Meer, A. F. G.; Murdin, B.; Ganichev, S. D.

    2008-06-01

    Photogalvanic effects are observed and investigated in wurtzite (0001)-oriented GaN/AlGaN low-dimensional structures excited by terahertz radiation. The structures are shown to represent linear quantum ratchets. Experimental and theoretical analysis exhibits that the observed photocurrents are related to the lack of an inversion center in the GaN-based heterojunctions.

  13. Spin-zero anomaly in the magnetic quantum oscillations of a two-dimensional metal

    Energy Technology Data Exchange (ETDEWEB)

    Wosnitza, J; Ignatchik, O; Bergk, B [Hochfeld-Magnetlabor Dresden (HLD), Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Gvozdikov, V M [Max-Planck-Institut fuer Physik komplexer Systeme, D-01187 Dresden (Germany); Hagel, J [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, D-01062 Dresden (Germany); Meeson, P J [H H Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Schlueter, J A [Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Davis, H; Winter, R W; Gard, G L [Department of Chemistry, Portland State University, Portland, OR 97207 (United States)], E-mail: J.Wosnitza@fzd.de

    2008-08-15

    We report on an anomalous behavior of the spin-splitting zeros in the de Haas-van Alphen (dHvA) signal of a quasi-two-dimensional organic superconductor. The zeros as well as the angular dependence of the amplitude of the second harmonic deviate remarkably from the standard Lifshitz-Kosevich (LK) prediction. In contrast, the angular dependence of the fundamental dHvA amplitude as well as the spin-splitting zeros of the Shubnikov-de Haas (SdH) signal follow the LK theory. We can explain this behavior of the dHvA signal by small chemical-potential (CP) oscillations and find a very good agreement between theory and experiment. A detailed wave-shape analysis of the dHvA oscillations corroborates the existence of an oscillating CP. We discuss the absence of the above spin-zero effect in the SdH signal and argue that in {beta}-prime-(BEDT-TTF){sub 2}SF{sub 5}CH{sub 2}CF{sub 2}SO{sub 3} it can be explained by an incoherent variable range hopping interlayer transport which is insensitive to the small CP oscillations.

  14. Spin-zero anomaly in the magnetic quantum oscillations of a two-dimensional metal.

    Energy Technology Data Exchange (ETDEWEB)

    Wosnitza, J.; Gvozdikov, V. M.; Hagel, J.; Meeson, P. J.; Schlueter, J. A.; Ignatchick, O.; Winter, R. W.; Gard, G. L.; Davis, H.; Bergk, B.; Materials Science Division; Technische Univ. Dresden; Max-Planck Inst. Phys. Complex Systems; Univ. Bristol; Portland State Univ.

    2008-01-01

    We report on an anomalous behavior of the spin-splitting zeros in the de Haas-van Alphen (dHvA) signal of a quasi-two-dimensional organic superconductor. The zeros as well as the angular dependence of the amplitude of the second harmonic deviate remarkably from the standard Lifshitz-Kosevich (LK) prediction. In contrast, the angular dependence of the fundamental dHvA amplitude as well as the spin-splitting zeros of the Shubnikov-de Haas (SdH) signal follow the LK theory. We can explain this behavior of the dHvA signal by small chemical-potential (CP) oscillations and find a very good agreement between theory and experiment. A detailed wave-shape analysis of the dHvA oscillations corroborates the existence of an oscillating CP. We discuss the absence of the above spin-zero effect in the SdH signal and argue that in {beta}{double_prime}-(BEDT-TTF){sub 2}SF{sub 5}CH{sub 2}CF{sub 2}SO{sub 3} it can be explained by an incoherent variable range hopping interlayer transport which is insensitive to the small CP oscillations.

  15. Two-dimensional models as testing ground for principles and concepts of local quantum physics

    CERN Document Server

    Schrör, B

    2005-01-01

    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g. chiral models, factorizing models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) and a modular interpretation of the chiral model Diff(S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime. As a special case of the thermal duality, the SL(2,Z) modular Verlinde relation is thus a consequence of the principles of thermal QFT togeth...

  16. Ground-state properties of two-dimensional quantum fluid helium and hydrogen mixtures

    CERN Document Server

    Um, C I; Oh, H G

    1998-01-01

    Using a variational Jastrow wavefunction extended to include a three-body correlation function and a hypernetted chain scheme with the contributions of elementary diagrams, we analyze the ground-state energies and the structural properties of two-dimensional H- sup 4 He and H sub 2 - sup 4 He mixtures. The mixtures are in equilibrium at a lower density compared to a pure sup 4 He system because of the large zero-point energies of the hydrogen atom and molecule. We evaluate the lowering of the ground-state energies as a function of the impurity concentration and total density of mixtures. Comparing the result with boson sup 3 He- sup 4 He mixtures, we show that the shifts of energy mainly come from the difference of the zero-point energies of the impurities rather than from the interatomic potentials.We also analyze the enthalpies to study the miscibility and conclude that boson-boson mixtures are completely phase separated in their equilibria.

  17. General model for a entanglement-enhanced composed quantum game on a two-dimensional lattice

    CERN Document Server

    Miszczak, Jarosław Adam; Sładkowski, Jan

    2013-01-01

    We introduce a method of analyzing entanglement enhanced quantum games on regular lattices of agents. Our method is valid for setups with periodic and non-periodic boundary conditions. To demonstrate our approach we study two different types games, namely the prisoner's dilemma game and a cooperative Parrondo's game. In both cases we obtain results showing, that entanglement is a crucial resource necessary for the agents to achieve positive capital gain.

  18. Semi-phenomenological analysis of neutron scattering results for quasi-two dimensional quantum anti-ferromagnet

    Science.gov (United States)

    Sarkar, Subhajit; Chaudhury, Ranjan; Paul, Samir K.

    2017-01-01

    The available results from the inelastic neutron scattering experiment performed on the quasi-two dimensional spin 1/2 anti-ferromagnetic material La2CuO4 have been analysed theoretically. The formalism of ours is based on a semi-classical like treatment involving a model of an ideal gas of mobile vortices and anti-vortices built on the background of the Néel state, using the bipartite classical spin configuration corresponding to an XY-anisotropic Heisenberg anti-ferromagnet on a square lattice. The results for the integrated intensities for our spin 1/2 model corresponding to different temperatures, show occurrence of vigorous unphysical oscillations, when convoluted with a realistic spectral window function. These results indicate failure of the conventional semi-classical theoretical model of ideal vortex/anti-vortex gas arising in the Berezinskii-Kosterlitz-Thouless theory for the low spin magnetic systems. A full fledged quantum mechanical formalism and calculations seem crucial for the understanding of topological excitations in such low spin systems. Furthermore, a severe disagreement is found to occur at finite values of energy transfer between the integrated intensities obtained theoretically from the conventional formalism and those obtained experimentally. This further suggests strongly that the full quantum treatment should also incorporate the interaction between the fragile-magnons and the topological excitations. This is quite plausible in view of the recent work establishing such a process in XXZ quantum ferromagnet on 2D lattice. The high spin XXZ quasi-two dimensional antiferromagnet like MnPS3 however follows the conventional theory quite well.

  19. Quantum critical response function in quasi-two-dimensional itinerant antiferromagnets

    Science.gov (United States)

    Varma, C. M.; Zhu, Lijun; Schröder, Almut

    2015-10-01

    We reexamine the experimental results for the magnetic response function χ''(q ,E ,T ) for q around the antiferromagnetic vectors Q , in the quantum-critical region, obtained by inelastic neutron scattering, on an Fe-based superconductor and on a heavy-fermion compound. The motivation is to compare the results with a recent theory, which shows that the fluctuations in a generic antiferromagnetic model for itinerant fermions map to those in the universality class of the dissipative quantum-XY model. The quantum-critical fluctuations in this model, in a range of parameters, are given by the correlations of spatial and temporal topological defects. The theory predicts a χ''(q ,E ,T ) (i) which is a separable function of (q -Q ) and of (E ,T ) , (ii) at criticality, the energy-dependent part is ∝tanh(E /2 T ) below a cutoff energy, (iii) the correlation time departs from its infinite value at criticality on the disordered side by an essential singularity, and (iv) the correlation length depends logarithmically on the correlation time, so that the dynamical critical exponent z is ∞ . The limited existing experimental results are found to be consistent with the first two unusual predictions from which the linear dependence of the resistivity on T and the T lnT dependence of the entropy also follow. More experiments are suggested, especially to test the theory of variations on the correlation time and length on the departure from criticality.

  20. Universal Quantum Criticality in the Metal-Insulator Transition of Two-Dimensional Interacting Dirac Electrons

    Science.gov (United States)

    Otsuka, Yuichi; Yunoki, Seiji; Sorella, Sandro

    2016-01-01

    The metal-insulator transition has been a subject of intense research since Mott first proposed that the metallic behavior of interacting electrons could turn to an insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite-size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. Thereby, we find that the transition is continuous, and we determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. Furthermore, we discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: The metal-insulator transition is triggered only by the vanishing of the quasiparticle weight, not by the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture but is rather consistent with the low-energy behavior of the Gross-Neveu model.

  1. Effective mass theory of a two-dimensional quantum dot in the presence of magnetic field

    Indian Academy of Sciences (India)

    Himanshu Asnani; Raghu Mahajan; Praveen Pathak; Vijay A Singh

    2009-09-01

    The effective mass of electrons in low-dimensional semiconductors is position-dependent. The standard kinetic energy operator of quantum mechanics for this position-dependent mass is non-Hermitian and needs to be modified. This is achieved by imposing the BenDaniel–Duke (BDD) boundary condition. We have investigated the role of this boundary condition for semiconductor quantum dots (QDs) in one, two and three dimensions. In these systems the effective mass m i inside the dot of size R is different from the mass m o outside. Hence a crucial factor in determining the electronic spectrum is the mass discontinuity factor = /} . We have proposed a novel quantum scale, , which is a dimensionless parameter proportional to 220, where 0 represents the barrier height. We show both by numerical calculations and asymptotic analysis that the ground state energy and the surface charge density, (ρ()), can be large and dependent on . We also show that the dependence of the ground state energy on the size of the dot is infraquadratic. We also study the system in the presence of magnetic field . The BDD condition introduces a magnetic length-dependent term $(\\sqrt{\\hbar /eB})$ into and hence the ground state energy. We demonstrate that the significance of BDD condition is pronounced at large and large magnetic fields. In many cases the results using the BDD condition is significantly different from the non-Hermitian treatment of the problem.

  2. Efficient Blue Electroluminescence Using Quantum-Confined Two-Dimensional Perovskites.

    Science.gov (United States)

    Kumar, Sudhir; Jagielski, Jakub; Yakunin, Sergii; Rice, Peter; Chiu, Yu-Cheng; Wang, Mingchao; Nedelcu, Georgian; Kim, Yeongin; Lin, Shangchao; Santos, Elton J G; Kovalenko, Maksym V; Shih, Chih-Jen

    2016-10-03

    Solution-processed hybrid organic-inorganic lead halide perovskites are emerging as one of the most promising candidates for low-cost light-emitting diodes (LEDs). However, due to a small exciton binding energy, it is not yet possible to achieve an efficient electroluminescence within the blue wavelength region at room temperature, as is necessary for full-spectrum light sources. Here, we demonstrate efficient blue LEDs based on the colloidal, quantum-confined 2D perovskites, with precisely controlled stacking down to one-unit-cell thickness (n = 1). A variety of low-k organic host compounds are used to disperse the 2D perovskites, effectively creating a matrix of the dielectric quantum wells, which significantly boosts the exciton binding energy by the dielectric confinement effect. Through the Förster resonance energy transfer, the excitons down-convert and recombine radiatively in the 2D perovskites. We report room-temperature pure green (n = 7-10), sky blue (n = 5), pure blue (n = 3), and deep blue (n = 1) electroluminescence, with record-high external quantum efficiencies in the green-to-blue wavelength region.

  3. Universal Quantum Criticality in the Metal-Insulator Transition of Two-Dimensional Interacting Dirac Electrons

    Directory of Open Access Journals (Sweden)

    Yuichi Otsuka

    2016-03-01

    Full Text Available The metal-insulator transition has been a subject of intense research since Mott first proposed that the metallic behavior of interacting electrons could turn to an insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite-size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. Thereby, we find that the transition is continuous, and we determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. Furthermore, we discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: The metal-insulator transition is triggered only by the vanishing of the quasiparticle weight, not by the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture but is rather consistent with the low-energy behavior of the Gross-Neveu model.

  4. Solitons and nonlinear waves along quantum vortex filaments under the low-temperature two-dimensional local induction approximation

    Science.gov (United States)

    Van Gorder, Robert A.

    2016-05-01

    Very recent experimental work has demonstrated the existence of Kelvin waves along quantized vortex filaments in superfluid helium. The possible configurations and motions of such filaments is of great physical interest, and Svistunov previously obtained a Hamiltonian formulation for the dynamics of quantum vortex filaments in the low-temperature limit under the assumption that the vortex filament is essentially aligned along one axis, resulting in a two-dimensional (2D) problem. It is standard to approximate the dynamics of thin filaments by employing the local induction approximation (LIA), and we show that by putting the two-dimensional LIA into correspondence with the first equation in the integrable Wadati-Konno-Ichikawa-Schimizu (WKIS) hierarchy, we immediately obtain solutions to the two-dimensional LIA, such as helix, planar, and self-similar solutions. These solutions are obtained in a rather direct manner from the WKIS equation and then mapped into the 2D-LIA framework. Furthermore, the approach can be coupled to existing inverse scattering transform results from the literature in order to obtain solitary wave solutions including the analog of the Hasimoto one-soliton for the 2D-LIA. One large benefit of the approach is that the correspondence between the 2D-LIA and the WKIS allows us to systematically obtain vortex filament solutions directly in the Cartesian coordinate frame without the need to solve back from curvature and torsion. Implications of the results for the physics of experimentally studied solitary waves, Kelvin waves, and postvortex reconnection events are mentioned.

  5. Two-dimensional spin liquids with Z2 topological order in an array of quantum wires

    Science.gov (United States)

    Patel, Aavishkar A.; Chowdhury, Debanjan

    2016-11-01

    Insulating Z2 spin liquids are a phase of matter with bulk anyonic quasiparticle excitations and ground-state degeneracies on manifolds with nontrivial topology. We construct a time-reversal symmetric Z2 spin liquid in two spatial dimensions using an array of quantum wires. We identify the anyons as kinks in the appropriate Luttinger-liquid description, compute their mutual statistics, and construct local operators that transport these quasiparticles. We also present a construction of a fractionalized Fermi liquid (FL*) by coupling the spin sector of the Z2 spin liquid to a Fermi liquid via a Kondo-like coupling.

  6. Binding energies of trions and biexcitons in two-dimensional semiconductors from diffusion quantum Monte Carlo calculations

    Science.gov (United States)

    Szyniszewski, M.; Mostaani, E.; Drummond, N. D.; Fal'ko, V. I.

    2017-02-01

    Excitonic effects play a particularly important role in the optoelectronic behavior of two-dimensional (2D) semiconductors. To facilitate the interpretation of experimental photoabsorption and photoluminescence spectra we provide statistically exact diffusion quantum Monte Carlo binding-energy data for Mott-Wannier models of excitons, trions, and biexcitons in 2D semiconductors. We also provide contact pair densities to allow a description of contact (exchange) interactions between charge carriers using first-order perturbation theory. Our data indicate that the binding energy of a trion is generally larger than that of a biexciton in 2D semiconductors. We provide interpolation formulas giving the binding energy and contact density of 2D semiconductors as functions of the electron and hole effective masses and the in-plane polarizability.

  7. Experimental apparatus for quantum simulation with two-dimensional 9Be + Coulomb crystals

    Science.gov (United States)

    Pyka, Karsten; Ball, Harrison; McRae, Terry; Edmunds, Claire; Lee, Michael W.; Henderson, Samuel; Biercuk, Michael J.; Quantum Control Lab Team

    2015-03-01

    We report on the development of a new experimental setup designed for Quantum Simulation studies at a computationally relevant scale using laser-cooled 9Be + ion-crystals in a Penning trap. The trap geometry is optimized using numerical calculations for trapping large ion crystals with enhanced optical access and reduced anharmonic perturbations. Separate loading and spectroscopy zones prevent long term drifts of the trapping parameters due to contamination of the trap electrodes with Be deposits. Our customized superconducting magnet provides a homogenous (dB/B telecom wavelength fiber laser systems in the IR via nonlinear conversion. Our new approach employs high-efficiency telecom modulators and mode-selecting cavities to generate multiple beamlines from a single Sum-frequency-Generation step. Ultimately, this newly developed setup will allow for studies of many-body spin systems with tuneable interaction strength from infinite-range to nearest-neighbour type interaction.

  8. Two-Dimensional Dirac Fermions in a Topological Insulator: Transport in the Quantum Limit

    Energy Technology Data Exchange (ETDEWEB)

    Analytis, J.G.; /SIMES, Stanford /SLAC /Stanford U., Geballe Lab /Stanford U., Appl. Phys. Dept.; McDonald, R.D.; /Los Alamos; Riggs, S.C.; /Natl. High Mag. Field Lab.; Chu, J.-H.; /SIMES, Stanford /SLAC /Stanford U., Geballe Lab /Stanford U., Appl. Phys. Dept.; Boebinger, G.S.; /Natl. High Mag. Field Lab.; Fisher, I.R.; /SIMES, Stanford /SLAC /Stanford U., Geballe Lab /Stanford U., Appl. Phys. Dept.

    2011-08-12

    Pulsed magnetic fields of up to 55T are used to investigate the transport properties of the topological insulator Bi{sub 2}Se{sub 3} in the extreme quantum limit. For samples with a bulk carrier density of n = 2.9 x 10{sup 16} cm{sup -3}, the lowest Landau level of the bulk 3D Fermi surface is reached by a field of 4T. For fields well beyond this limit, Shubnikov-de Haas oscillations arising from quantization of the 2D surface state are observed, with the {nu} = 1 Landau level attained by a field of {approx} 35T. These measurements reveal the presence of additional oscillations which occur at fields corresponding to simple rational fractions of the integer Landau indices.

  9. Quantum anomaly, universal relations, and breathing mode of a two-dimensional Fermi gas.

    Science.gov (United States)

    Hofmann, Johannes

    2012-05-01

    In this Letter, we show that the classical SO(2,1) symmetry of a harmonically trapped Fermi gas in two dimensions is broken by quantum effects. The anomalous correction to the symmetry algebra is given by a two-body operator that is well known as the contact. Taking into account this modification, we are able to derive the virial theorem for the system and a universal relation for the pressure of a homogeneous gas. The existence of an undamped breathing mode is associated with the classical symmetry. We provide an estimate for the anomalous frequency shift of this oscillation at zero temperature and compare the result with a recent experiment by [E. Vogt et al., Phys. Rev. Lett. 108, 070404 (2012)]. Discrepancies are attributed to finite temperature effects.

  10. Shear viscosity at the Ising-nematic quantum critical point in two dimensional metals

    CERN Document Server

    Patel, Aavishkar A; Sachdev, Subir

    2016-01-01

    In a strongly interacting quantum liquid without quasiparticles, general scaling arguments imply that the dimensionless ratio $(k_B /\\hbar)\\, \\eta/s$, where $\\eta$ is the shear viscosity and $s$ is the entropy density, is a universal number. We compute the shear viscosity of the Ising-nematic critical point of metals in spatial dimension $d=2$ by an expansion below $d=5/2$. The anisotropy associated with directions parallel and normal to the Fermi surface leads to a violation of the scaling expectations: $\\eta$ scales in the same manner as a chiral conductivity, and the ratio $\\eta/s$ diverges as $T^{-2/z}$, where $z$ is the dynamic critical exponent for fermionic excitations dispersing normal to the Fermi surface.

  11. Unconventional phases in quantum spin and pseudospin systems in two dimensional and three dimensional lattices

    Science.gov (United States)

    Xu, Cenke

    Several examples of quantum spin systems and pseudo spin systems have been studied, and unconventional states of matters and phase transitions have been realized in all these systems under consideration. In the p +/- ip superconductor Josephson lattice and the p--band cold atomic system trapped in optical lattices, novel phases which behave similarly to 1+1 dimensional systems are realized, despite the fact that the real physical systems are in two or three dimensional spaces. For instance, by employing a spin-wave analysis together with a new duality transformation, we establish the existence and stability of a novel gapless "critical phase", which we refer to as a "bond algebraic liquid". This novel critical phase is analogous to the 1+1 dimensional algebraic boson liquid phase. The reason for the novel physics is that there is a quasilocal gauge symmetry in the effective low energy Hamiltonian. In a spin-1 system on the kagome lattice, and a hard-core boson system on the honeycomb lattice, the low energy physics is controlled by two components of compact U(1) gauge symmetries that emerge at low energy. Making use of the confinement nature of the 2+1 dimensional compact gauge theories and the powerful duality between gauge theories and height field theories, the crystalline phase diagrams are studied for both systems, and the transitions to other phases are also considered. These phase diagrams might be accessible in strongly correlated materials, or atomic systems in optical lattices. A novel quantum ground state of matter is realized in a bosonic model on three dimensional fcc lattice with emergent low energy excitations. The novel phase obtained is a stable gapless boson liquid phase, with algebraic boson density correlations. The stability of this phase is protected against the instanton effect and superfluidity by self-duality and large gauge symmetries on both sides of the duality. The gapless collective excitations of this phase closely resemble the

  12. High-field studies of quantum oscillations in quasi-two-dimensional organic metals

    Science.gov (United States)

    Sandhu, Pravindrajit

    frequencies in the dHvA signal is found to be a quantum mechanical effect arising from differences in field dependence of the states in the two partially occupied bands near the Fermi level.

  13. Andreev reflection and bound state formation in a ballistic two-dimensional electron gas probed by a quantum point contact

    Science.gov (United States)

    Irie, Hiroshi; Todt, Clemens; Kumada, Norio; Harada, Yuichi; Sugiyama, Hiroki; Akazaki, Tatsushi; Muraki, Koji

    2016-10-01

    We study coherent transport and bound state formation of Bogoliubov quasiparticles in a high-mobility I n0.75G a0.25As two-dimensional electron gas (2DEG) coupled to a superconducting Nb electrode by means of a quantum point contact (QPC) as a tunable single-mode probe. Below the superconducting critical temperature of Nb, the QPC shows a single-channel conductance greater than the conductance quantum 2 e2/h at zero bias, which indicates the presence of Andreev-reflected quasiparticles, time-reversed states of the injected electron, returning back through the QPC. The marked sensitivity of the conductance enhancement to voltage bias and perpendicular magnetic field suggests a mechanism analogous to reflectionless tunneling—a hallmark of phase-coherent transport, with the boundary of the 2DEG cavity playing the role of scatterers. When the QPC transmission is reduced to the tunneling regime, the differential conductance vs bias voltage probes the single-particle density of states in the proximity area. Measured conductance spectra show a double peak within the superconducting gap of Nb, demonstrating the formation of Andreev bound states in the 2DEG. Both of these results, obtained in the open and closed geometries, underpin the coherent nature of quasiparticles, i.e., phase-coherent Andreev reflection at the InGaAs/Nb interface and coherent propagation in the ballistic 2DEG.

  14. Two-dimensional double-quantum spectroscopy: peak shapes as a sensitive probe of carrier interactions in quantum wells

    CERN Document Server

    Tollerud, Jonathan O

    2016-01-01

    We identify carrier scattering at densities below which it has previously been observed in semiconductor quantum wells. These effects are evident in the peakshapes of 2D double-quantum spectra, which change as a function of excitation density. At high excitation densities ($\\geq 10^{9}$ carriers/,cm$^{-2}$) we observe untilted peaks similar to those reported in previous experiments. At low excitation densities (<$10^{8}$ carriers cm$^{-2}$) we observe narrower, tilted peaks. Using a simple simulation, we show that tilted peak-shapes are expected in double-quantum spectra when inhomogeneous broadening is much larger than homogeneous broadening, and that fast pure-decoherence of the double-quantum coherence can obscure this peak tilt. These results show that carrier interactions are important at lower densities than previously expected, and that the `natural' double-quantum peakshapes are hidden by carrier interactions at the excitation densities typically used. Furthermore, these results demonstrate that an...

  15. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins.

    Science.gov (United States)

    Britton, Joseph W; Sawyer, Brian C; Keith, Adam C; Wang, C-C Joseph; Freericks, James K; Uys, Hermann; Biercuk, Michael J; Bollinger, John J

    2012-04-25

    The presence of long-range quantum spin correlations underlies a variety of physical phenomena in condensed-matter systems, potentially including high-temperature superconductivity. However, many properties of exotic, strongly correlated spin systems, such as spin liquids, have proved difficult to study, in part because calculations involving N-body entanglement become intractable for as few as N ≈ 30 particles. Feynman predicted that a quantum simulator--a special-purpose 'analogue' processor built using quantum bits (qubits)--would be inherently suited to solving such problems. In the context of quantum magnetism, a number of experiments have demonstrated the feasibility of this approach, but simulations allowing controlled, tunable interactions between spins localized on two- or three-dimensional lattices of more than a few tens of qubits have yet to be demonstrated, in part because of the technical challenge of realizing large-scale qubit arrays. Here we demonstrate a variable-range Ising-type spin-spin interaction, J(i,j), on a naturally occurring, two-dimensional triangular crystal lattice of hundreds of spin-half particles (beryllium ions stored in a Penning trap). This is a computationally relevant scale more than an order of magnitude larger than previous experiments. We show that a spin-dependent optical dipole force can produce an antiferromagnetic interaction J(i,j) proportional variant d(-a)(i,j), where 0 ≤ a ≤ 3 and d(i,j) is the distance between spin pairs. These power laws correspond physically to infinite-range (a = 0), Coulomb-like (a = 1), monopole-dipole (a = 2) and dipole-dipole (a = 3) couplings. Experimentally, we demonstrate excellent agreement with a theory for 0.05 ≲ a ≲ 1.4. This demonstration, coupled with the high spin count, excellent quantum control and low technical complexity of the Penning trap, brings within reach the simulation of otherwise computationally intractable problems in quantum magnetism.

  16. The effects of two-dimensional bifurcations and quantum beats in a system of combined atomic force and scanning tunneling microscopes with quantum dots

    Science.gov (United States)

    Zhukovsky, V. Ch.; Krevchik, V. D.; Semenov, M. B.; Krevchik, P. V.; Zaytsev, R. V.; Egorov, I. A.

    2016-11-01

    The field and temperature dependence of the probability of two-dimensional dissipative tunneling is studied in the framework of one-instanton approximation for a model double-well oscillator potential in an external electric field at finite temperature with account for the influence of two local phonon modes for quantum dots in a system of a combined atomic force and a scanning tunneling microscope. It is demonstrated that in the mode of synchronous parallel transfer of tunneling particles from the cantilever tip to the quantum dot the two local phonon modes result in the occurrence of two stable peaks in the curve of the 2D dissipative tunneling probability as a function of the field. Qualitative comparison of the theoretical curve in the limit of weak dissociation and the experimental current-voltage characteristic for quantum dots that grow from colloidal gold under a cantilever tip at the initial stage of quantum-dot formation when the quantum dot size does not exceed 10 nm is performed. It is established that one of the two stable peaks that correspond to interaction of tunneling particles with two local phonon modes in the temperature dependence of the 2D dissipative tunneling probability can be split in two, which corresponds to the tunneling channel interference mechanism. It is found that the theoretically predicted and experimentally observed mode of quantum beats occurs near the bifurcation point.

  17. Enhanced quantum efficiency from a mosaic of two dimensional MoS2 formed onto aminosilane functionalised substrates

    Science.gov (United States)

    Wang, Yichao; Della Gaspera, Enrico; Carey, Benjamin J.; Atkin, Paul; Berean, Kyle J.; Clark, Rhiannon M.; Cole, Ivan S.; Xu, Zai-Quan; Zhang, Yupeng; Bao, Qiaoliang; Ou, Jian Zhen; Daeneke, Torben; Kalantar-Zadeh, Kourosh

    2016-06-01

    Developing scalable methods of growing two dimensional molybdenum disulphide (2D MoS2) with strong optical properties, on any desired substrates, is a necessary step towards industrial uptake of this material for optical applications. In this study, Si/SiO2 substrates were functionalised using self-assembled monolayers of three different aminosilanes with various numbers of amine groups and molecular lengths as underlayers for enhancing the adherence of the molybdenum precursor. The tetrahedral [MoS4]2- anion groups from the molybdenum precursor were bonded on these silanised Si/SiO2 substrates afterwards. The substrates were then treated with a combined thermolysis and sulphurisation step. The results showed that silanisation of the substrates using the longest chains and the largest number of amine groups provided a good foundation to grow quasi 2D MoS2 made from adjacent flakes in a mosaic formation. Microscopy and spectroscopy investigations revealed that these quasi 2D MoS2 formed using this long chain aminosilane resulted in flakes with lateral dimensions in micron and submicron ranges composed of adjoining MoS2 pieces of 20 to 60 nm in lateral dimensions, dominantly made of 3 to 5 MoS2 fundamental layers. The obtained quasi 2D MoS2 shows a high internal quantum efficiency of 2.6% associated with the quantum confinement effect and high stoichiometry of the adjoining nanoflakes that form the structure of the sheets. The synthesis technique in this study is reliable and facile and offers a procedure to form large, scalable and patternable quasi 2D MoS2 sheets on various substrates with enhanced optical properties for practical applications.Developing scalable methods of growing two dimensional molybdenum disulphide (2D MoS2) with strong optical properties, on any desired substrates, is a necessary step towards industrial uptake of this material for optical applications. In this study, Si/SiO2 substrates were functionalised using self-assembled monolayers of

  18. A naive matrix-model approach to two-dimensional quantum gravity coupled to matter of arbitrary central charge

    CERN Document Server

    Brézin, E

    1992-01-01

    In the usual matrix-model approach to random discretized two-dimensional manifolds, one introduces n Ising spins on each cell, i.e. a discrete version of 2D quantum gravity coupled to matter with a central charge n/2. The matrix-model consists then of an integral over $2^{n}$ matrices, which we are unable to solve for $n>1$. However for a fixed genus we can expand in the cosmological constant g for arbitrary values of n, and a simple minded analysis of the series yields for n=0,1 and 2 the expected results for the exponent $\\gamma_{string}$ with an amazing precision given the small number of terms that we considered. We then proceed to larger values of n. Simple tests of universality are successfully applied; for instance we obtain the same exponents for n=3 or for one Ising model coupled to a one dimensional target space. The calculations are easily extended to states Potts models, through an integration over $q^{n}$ matrices. We see no sign of the tachyonic instability of the theory, but we have only consid...

  19. Magnetic breakdown phenomenon in quasi-two-dimensional organic conductors: A quantum model inspired by a realistic band structure

    Science.gov (United States)

    Kim, Ju H.; Han, S. Y.; Brooks, J. S.

    1999-08-01

    We investigate the phenomenon of magnetic breakdown in quasi-two-dimensional organic conductors such as α-(ET)2KHg(SCN)4 and κ-(ET)2Cu(NCS)2 by constructing a tight-binding model based on a realistic band structure which is derived from the crystallographic data. We solve the model numerically to compute the magnetic field dependence of the magnetization and show that the present model accounts naturally for the experimentally observed magnetization oscillation frequencies that are forbidden in the semiclassical picture. The computed values of the fundamental and magnetic breakdown frequencies with no adjustable parameters are close to the experimentally measured values. For completeness, we carry out the computation for both canonical (fixed number of particles) and grand canonical (fixed chemical potential) ensembles, and show that the forbidden frequencies appear in both cases. Hence, the appearance of anomalous frequencies in the de Haas-van Alphen effect has a quantum-mechanical origin and arises from the interplay of electronic states from two partially occupied bands near the Fermi energy as a function of magnetic field. We also compute the temperature dependence of the magnetization and apply ad hoc the Lifshitz-Kosevich analysis to the amplitudes of the Fourier components at moderately high temperatures. This yields effective mass values for α-(ET)2KHg(SCN)4 in good agreement with experimental values.

  20. Effect of phase transition on quantum transport in group-IV two-dimensional U-shape device

    Energy Technology Data Exchange (ETDEWEB)

    Sadi, Mohammad Abdullah; Gupta, Gaurav, E-mail: a0089293@nus.edu.sg; Liang, Gengchiau [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-10-21

    The effect of phase-transition from the quantum-spin-hall to the band-insulator phase on the transport through a three-terminal U-shape spin-separator has been computationally investigated via non-equilibrium green function formalism. Two-dimensional group-IV elements have been comprehensively appraised as the device material. The device separates the unpolarized current injected at the source-terminal into nearly 100% spin-polarized currents of the opposite polarities at the two drain terminals. The phase-transition activated by the electric-field orthogonal to the device is shown to extensively influence the current magnitude and its spin-polarization, and the effect is stronger for materials with smaller intrinsic spin-orbit coupling. Moreover, the device length and the area under field are shown to critically affect the device characteristics on phase change. It is shown that the same device can be operated as a spin-filter by inducing phase-transition selectively in the channel. The results are important for designing spin-devices from Group-IV monolayers.

  1. A benchmark study of the two-dimensional Hubbard model with auxiliary-field quantum Monte Carlo method

    CERN Document Server

    Qin, Mingpu; Zhang, Shiwei

    2016-01-01

    Ground state properties of the Hubbard model on a two-dimensional square lattice are studied by the auxiliary-field quantum Monte Carlo method. Accurate results for energy, double occupancy, effective hopping, magnetization, and momentum distribution are calculated for interaction strengths of U/t from 2 to 8, for a range of densities including half-filling and n = 0.3, 0.5, 0.6, 0.75, and 0.875. At half-filling, the results are numerically exact. Away from half-filling, the constrained path Monte Carlo method is employed to control the sign problem. Our results are obtained with several advances in the computational algorithm, which are described in detail. We discuss the advantages of generalized Hartree-Fock trial wave functions and its connection to pairing wave functions, as well as the interplay with different forms of Hubbard-Stratonovich decompositions. We study the use of different twist angle sets when applying the twist averaged boundary conditions. We propose the use of quasi-random sequences, whi...

  2. Enhanced quantum efficiency from a mosaic of two dimensional MoS2 formed onto aminosilane functionalised substrates.

    Science.gov (United States)

    Wang, Yichao; Della Gaspera, Enrico; Carey, Benjamin J; Atkin, Paul; Berean, Kyle J; Clark, Rhiannon M; Cole, Ivan S; Xu, Zai-Quan; Zhang, Yupeng; Bao, Qiaoliang; Ou, Jian Zhen; Daeneke, Torben; Kalantar-Zadeh, Kourosh

    2016-06-16

    Developing scalable methods of growing two dimensional molybdenum disulphide (2D MoS2) with strong optical properties, on any desired substrates, is a necessary step towards industrial uptake of this material for optical applications. In this study, Si/SiO2 substrates were functionalised using self-assembled monolayers of three different aminosilanes with various numbers of amine groups and molecular lengths as underlayers for enhancing the adherence of the molybdenum precursor. The tetrahedral [MoS4](2-) anion groups from the molybdenum precursor were bonded on these silanised Si/SiO2 substrates afterwards. The substrates were then treated with a combined thermolysis and sulphurisation step. The results showed that silanisation of the substrates using the longest chains and the largest number of amine groups provided a good foundation to grow quasi 2D MoS2 made from adjacent flakes in a mosaic formation. Microscopy and spectroscopy investigations revealed that these quasi 2D MoS2 formed using this long chain aminosilane resulted in flakes with lateral dimensions in micron and submicron ranges composed of adjoining MoS2 pieces of 20 to 60 nm in lateral dimensions, dominantly made of 3 to 5 MoS2 fundamental layers. The obtained quasi 2D MoS2 shows a high internal quantum efficiency of 2.6% associated with the quantum confinement effect and high stoichiometry of the adjoining nanoflakes that form the structure of the sheets. The synthesis technique in this study is reliable and facile and offers a procedure to form large, scalable and patternable quasi 2D MoS2 sheets on various substrates with enhanced optical properties for practical applications.

  3. Probing quantum discord in a Heisenberg dimer compound.

    Science.gov (United States)

    Chakraborty, Tanmoy; Singh, Harkirat; Singh, Sourabh; Gopal, Radha Krishna; Mitra, Chiranjib

    2013-10-23

    A quantitative estimation of quantum discord is performed for a Heisenberg spin 1/2 dimer compound (NH4CuPO4, H2O) by means of experimental magnetic and thermal measurements. Magnetic susceptibility and specific heat data were collected for NH4CuPO4, H2O and analyzed within the framework of the Heisenberg isolated dimer model. Internal energy as a function of temperature is obtained by integrating the specific heat versus temperature data. Subsequently, quantum discord, total correlations and spin-spin correlation function are quantified from susceptibility and internal energy and plotted as a function of temperature. Violation of Bell's inequality is also tested for NH4CuPO4, H2O via both experimental susceptibility and specific heat data signifying the presence of entanglement.

  4. Renormalization of trace distance and multipartite entanglement close to the quantum phase transitions of one- and two-dimensional spin-chain systems

    Science.gov (United States)

    Wu, Wei; Xu, Jing-Bo

    2016-08-01

    We investigate the quantum phase transitions of spin systems in one and two dimensions by employing trace distance and multipartite entanglement along with the real-space quantum renormalization group method. As illustration examples, a one-dimensional and a two-dimensional XY models are considered. It is shown that the quantum phase transitions of these spin-chain systems can be revealed by the singular behaviors of the first derivatives of renormalized trace distance and multipartite entanglement in the thermodynamics limit. Moreover, we find that the renormalized trace distance and multipartite entanglement obey certain universal exponential-type scaling laws in the vicinity of the quantum critical points.

  5. Effects of anisotropy and magnetic fields on the specific heat of a quasi-two-dimensional Boltzmann gas in an elliptical parabolic quantum dot

    Institute of Scientific and Technical Information of China (English)

    Zhai Zhi-Yuan; Li Yu-Qi; Pan Xiao-Yin

    2012-01-01

    We investigate the effects due to anisotropy and magnetic field interaction for a quasi-two-dimensional Boltzmann gas in an elliptical parabolic quantum dot.The specific heat is studied with varying temperature,anisotropy,and magnetic field strength.The cases without and with the inclusion of the spin Zeeman interaction are considered.

  6. Dimer Models, Free Fermions and Super Quantum Mechanics

    CERN Document Server

    Dijkgraaf, R; Reffert, S

    2007-01-01

    This note relates topics in statistical mechanics, graph theory and combinatorics, lattice quantum field theory, super quantum mechanics and string theory. We give a precise relation between the dimer model on a graph embedded on a torus and the massless free Majorana fermion living on the same lattice. A loop expansion of the fermion determinant is performed, where the loops turn out to be compositions of two perfect matchings. These loop states are sorted into co-chain groups using categorification techniques similar to the ones used for categorifying knot polynomials. The Euler characteristic of the resulting co-chain complex recovers the Newton polynomial of the dimer model. We re-interpret this system as supersymmetric quantum mechanics, where configurations with vanishing net winding number form the ground states. Finally, we make use of the quiver gauge theory - dimer model correspondence to obtain an interpretation of the loops in terms of the physics of D-branes probing a toric Calabi-Yau singularity...

  7. Mesoscopic quantum interference experiments in InGaAs and GaAs two-dimensional systems

    Science.gov (United States)

    Ren, Shaola

    The study of quantum interference in solid-state systems yields insight in fundamental properties of mesoscopic systems. Electron quantum interference constitutes an important method to explore mesoscopic physics and quantum decoherence. This dissertation focuses on two-dimensional (2D) electron systems in delta-Si doped n-type In0:64Ga0:36As/In 0:45Al0:55As, 2D hole systems in Si-doped p-type GaAs/Al 0:35Ga0:65As and C-doped p-type GaAs/Al0:24Ga 0:76As heterostructures. The low temperature experiments study the magnetotransport of nano- and micro-scale lithographically defined devices fabricated on the heterostructures. These devices include a single ring interferometer and a ring interferometer array in 2D electron system, Hall bar geometries and narrow wires in 2D hole systems. The single ring interferometer yields pronounced Aharonov-Bohm (AB) oscillations with magnetic flux periodicity of h/e over a wide range of magnetic field. The periodicity was confirmed by Fourier transformation of the oscillations. The AB oscillation amplitude shows a quasi-periodic modulation over applied magnetic field due to local magnetic flux threading through the interferometer arms. Further study of current and temperature dependence of the amplitude of the oscillations indicates that the Thouless energy forms the measure of excitation energies giving quantum decoherence. An in-plane magnetic field was applied to the single ring interferometer to study the Berry's phase and the Aharonov-Casher effect. The ring interferometer array yields both AB oscillations and Altshuler-Aronov-Spivak (AAS) oscillations, the latter with magnetic flux periodicity of h/2e. The AAS oscillations require time-reversal symmetry and hence can be used to qualify time-reversal symmetry breaking. More importantly, the fundamental mesoscopic dephasing length associated with time-reversal symmetry breaking under applied magnetic field, an effective magnetic length, can be obtained by the analysis of the AAS

  8. Quantum and thermal phase transitions in a bosonic atom-molecule mixture in a two-dimensional optical lattice

    Science.gov (United States)

    de Forges de Parny, L.; Rousseau, V. G.

    2017-01-01

    We study the ground state and the thermal phase diagram of a two-species Bose-Hubbard model, with U(1 ) ×Z2 symmetry, describing atoms and molecules on a two-dimensional optical lattice interacting via a Feshbach resonance. Using quantum Monte Carlo simulations and mean-field theory, we show that the conversion between the two species, coherently coupling the atomic and molecular states, has a crucial impact on the Mott-superfluid transition and stabilizes an insulating phase with a gap controlled by the conversion term—the Feshbach insulator—instead of a standard Mott-insulating phase. Depending on the detuning between atoms and molecules, this model exhibits three phases: the Feshbach insulator, a molecular condensate coexisting with noncondensed atoms, and a mixed atomic-molecular condensate. Employing finite-size scaling analysis, we observe three-dimensional (3D) X Y (3D Ising) transition when U(1 ) (Z2) symmetry is broken, whereas the transition is first order when both U(1 ) and Z2 symmetries are spontaneously broken. The finite-temperature phase diagram is also discussed. The thermal disappearance of the molecular superfluid leads to a Berezinskii-Kosterlitz-Thouless transition with unusual universal jump in the superfluid density. The loss of the quasi-long-range coherence of the mixed atomic and molecular superfluid is more subtle since only atoms exhibit conventional Berezinskii-Kosterlitz-Thouless criticality. We also observe a signal compatible with a classical first-order transition between the mixed superfluid and the normal Bose liquid at low temperature.

  9. Onset of quantum criticality in the topological-to-nematic transition in a two-dimensional electron gas at filling factor ν =5 /2

    Science.gov (United States)

    Schreiber, K. A.; Samkharadze, N.; Gardner, G. C.; Biswas, Rudro R.; Manfra, M. J.; Csáthy, G. A.

    2017-07-01

    Under hydrostatic pressure, the ground state of a two-dimensional electron gas at ν =5 /2 changes from a fractional quantum Hall state to the stripe phase. By measuring the energy gap of the fractional quantum Hall state and of the onset temperature of the stripe phase, we mapped out a phase diagram of these competing phases in the pressure-temperature plane. Our data highlight the dichotomy of two descriptions of the half-filled Landau level near the quantum critical point: one based on electrons and another on composite fermions.

  10. Dimerous Electron and Quantum Interference beyond the Probability Amplitude Paradigm

    CERN Document Server

    Kassandrov, Vladimir V

    2011-01-01

    We generalize the formerly proposed relationship between a special complex geometry (originating from the structure of biquaternion algebra) and induced real geometry of (extended) space-time. The primordial dynamics in complex space allows for a new realization of the "one electron Universe" of Wheeler-Feynman (the so called "ensemble of duplicons") and leads to a radical concept of "dimerous" (consisting of two identical matter pre-elements, "duplicons") electron. Using this concept, together with an additional phase-like invariant (arising from the complex pre-geometry), we manage to give a visual classical explanation for quantum interference phenomena and, in particular, for the canonical two-slit experiment. Fundamental relativistic condition of quantum interference generalizing the de Broglie relationship is obtained, and an experimentally verifiable distinction in predictions of quantum theory and presented algebrodynamical scheme is established.

  11. Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas.

    Science.gov (United States)

    Yang, Longkun; Wang, Hancong; Fang, Yan; Li, Zhipeng

    2016-01-26

    Plasmonic antennas are able to concentrate and re-emit light in a controllable manner through strong coupling between metallic nanostructures. Only recently has it found that quantum mechanical effects can drastically change the coupling strength as the feature size approaches atomic scales. Here, we present a comprehensive experimental and theoretical study of the evolution of the resonance peak and its polarization state as the dimer-antenna gap narrows to subnanometer scale. We clearly can identify the classical plasmonic regime, a crossover regime where nonlocal screening plays an important role, and the quantum regime where a charge transfer plasmon appears due to interparticle electron tunneling. Moreover, as the gap decreases from tens of to a few nanometers, the bonding dipole mode tends to emit photons with increasing polarizability. When the gap narrows to quantum regime, a significant depolarization of the mode emission is observed due to the reduction of the charge density of coupled quantum plasmons. These results would be beneficial for the understanding of quantum effects on emitting-polarization of nanoantennas and the development of quantum-based photonic nanodevices.

  12. Translation of waves along quantum vortex filaments in the low-temperature two-dimensional local induction approximation

    Energy Technology Data Exchange (ETDEWEB)

    Van Gorder, Robert A., E-mail: Robert.VanGorder@maths.ox.ac.uk [Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG (United Kingdom)

    2015-09-15

    In a recent paper, we give a study of the purely rotational motion of general stationary states in the two-dimensional local induction approximation (2D-LIA) governing superfluid turbulence in the low-temperature limit [B. Svistunov, “Superfluid turbulence in the low-temperature limit,” Phys. Rev. B 52, 3647 (1995)]. Such results demonstrated that variety of stationary configurations are possible from vortex filaments exhibiting purely rotational motion in addition to commonly discussed configurations such as helical or planar states. However, the filaments (or, more properly, waves along these filaments) can also exhibit translational motion along the axis of orientation. In contrast to the study on vortex configurations for purely rotational stationary states, the present paper considers non-stationary states which exhibit a combination of rotation and translational motions. These solutions can essentially be described as waves or disturbances which ride along straight vortex filament lines. As expected from our previous work, there are a number of types of structures that can be obtained under the 2D-LIA. We focus on non-stationary states, as stationary states exhibiting translation will essentially take the form of solutions studied in [R. A. Van Gorder, “General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation,” Phys. Fluids 26, 065105 (2014)], with the difference being translation along the reference axis, so that qualitative appearance of the solution geometry will be the same (even if there are quantitative differences). We discuss a wide variety of general properties of these non-stationary solutions and derive cases in which they reduce to known stationary states. We obtain various routes to Kelvin waves along vortex filaments and demonstrate that if the phase and amplitude of a disturbance both propagate with the same wave speed, then Kelvin waves will result. We also consider the self

  13. Assembly and separation of semiconductor quantum dot dimers and trimers.

    Science.gov (United States)

    Xu, Xiangxing; Stöttinger, Sven; Battagliarin, Glauco; Hinze, Gerald; Mugnaioli, Enrico; Li, Chen; Müllen, Klaus; Basché, Thomas

    2011-11-16

    Repeated precipitation of colloidal semiconductor quantum dots (QD) from a good solvent by adding a poor solvent leads to an increasing number of QD oligomers after redispersion in the good solvent. By using density gradient ultracentrifugation we have been able to separate QD monomer, dimer, and trimer fractions from higher oligomers in such solutions. In the corresponding fractions QD dimers and trimers have been enriched up to 90% and 64%, respectively. Besides directly coupled oligomers, QD dimers and trimers were also assembled by linkage with a rigid terrylene diimide dye (TDI) and separated again by ultracentrifugation. High-resolution transmission electron micrographs show that the interparticle distances are clearly larger than those for directly coupled dots proving that the QDs indeed are cross-linked by the dye. Moreover, energy transfer from the QDs to the TDI "bridge" has been observed. Individual oligomers (directly coupled or dye-linked) can be readily deposited on a substrate and studied simultaneously by scanning force and optical microscopy. Our simple and effective scheme is applicable to a wide range of ligand stabilized colloidal nanoparticles and opens the way to a detailed study of electronic coupling in, e.g., QD molecules.

  14. Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle

    Energy Technology Data Exchange (ETDEWEB)

    Nakra Mohajer, Soukaina; El Harouny, El Hassan [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); El Khamkhami, Jamal [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); and others

    2016-09-15

    Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.

  15. Growth optimization and characterization of high mobility two-dimensional electron systems in AlAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Shivaji

    2009-02-15

    In this work two-dimensional electron systems (2DESs) based on AlAs/AlGaAs heterostructures doped with Si are investigated. The electrons are confined in AlAs quantum wells (QWs) sandwiched between AlGaAs buffers. Analytical calculations and simulations for AlAs QWs are presented in the first chapter. The results show a cross-over width, above which the wide (001)-oriented QWs show double valley occupancy and wide (110)-oriented QWs show single valley occupancy. We solve the Schroedinger equation analytically for anisotropic masses. The solution shows the orientation dependence of the elliptical cyclotron orbit due to the anisotropic mass. We also present an introduction to the Landau level crossings based on g{sup *}m{sup *} product. In the next chapter, we present experimental results for the double-valley (001)-oriented AlAs QWs. We present the different structures of the deep AlAs QWs along with the low temperature magnetotransport data for these QWs. Thereafter, we present the results on shallow AlAs QWs. We achieved a mobility of 4.2 x 10{sup 5} cm{sup 2}/Vs at 330 mK for the deep backside doped AlAs QW. For the shallow QWs, we achieved a mobility of2.3 x 10{sup 5} cm{sup 2}/Vs at 330 mK, for a density of 2.9 x 10{sup 11} cm{sup -2}. From the magneto-transport data, we see evidence of the double-valley occupation for the (001)-oriented AlAs wide QWs. In the next chapter, we present experimental results for the single-valley (110)-oriented AlAs QWs. We deduced the donor binding energy and the doping efficiency for this facet from a doping series of double-sided doped QWs. Thereafter, we designed different structures for the (110)-oriented AlAs QWs, which we present along with their respective low temperature magneto-transport data. We measured one of the double-sided doped AlAs QWs at very high magnetic fields and low temperatures, down to 60 mK. At the end of the chapter, we present a spike feature observed in the magneto-transport data of these QWs. This

  16. Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes

    DEFF Research Database (Denmark)

    Julsgaard, Brian; Johansen, Jeppe; Stobbe, Søren

    2008-01-01

    We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quantum dots’ spontaneous emission rates as the two-...... the bandgap in good agreement with local density of states calculations.......We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quantum dots’ spontaneous emission rates as the two...

  17. Environment-assisted quantum transport and trapping in dimers

    CERN Document Server

    Muelken, Oliver

    2010-01-01

    We study the dynamics and trapping of excitations for a dimer with an energy off-set $\\Delta$ coupled to an external environment. Using a Lindblad quantum master equation approach, we calculate the survival probability $\\Pi(t)$ of the excitation and define different lifetimes $\\tau_s$ of the excitation, corresponding to the duration of the decay of $\\Pi(t)$ in between two predefined values. We show that it is not possible to always enhance the overall decay to the trap. However, it is possible, even for not too small environmental couplings and for values of $\\Delta$ of the order ${\\cal O}(1)$, to decrease certain lifetimes $\\tau_s$, leading to faster decay of $\\Pi(t)$ in these time intervals: There is an optimal environmental coupling, leading to a maximal decay for fixed $\\Delta$.

  18. Quantum Monte Carlo study of the protonated water dimer

    CERN Document Server

    Dagrada, Mario; Saitta, Antonino M; Sorella, Sandro; Mauri, Francesco

    2013-01-01

    We report an extensive theoretical study of the protonated water dimer (Zundel ion) by means of the highly correlated variational Monte Carlo and lattice regularized Monte Carlo approaches. This system represents the simplest model for proton transfer (PT) and a correct description of its properties is essential in order to understand the PT mechanism in more complex acqueous systems. Our Jastrow correlated AGP wave function ensures an accurate treatment of electron correlations. Exploiting the advantages of contracting the primitive basis set over atomic hybrid orbitals, we are able to limit dramatically the number of variational parameters with a systematic control on the numerical precision, crucial in order to simulate larger systems. We investigate energetics and geometrical properties of the Zundel ion as a function of the oxygen-oxygen distance, taken as reaction coordinate. In both cases, our QMC results are found in excellent agreement with coupled cluster CCSD(T) technique, the quantum chemistry "go...

  19. The diagonal and off-diagonal AC conductivity of two-dimensional electron gases with contactless Corbino geometry in the quantum Hall regime

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Hansen, Ole Per

    1996-01-01

    We have investigated the AC conductivity elements in the quantum Hall regime of two-dimensional electron gases coupled capacitively to electrodes with Corbino geometry. The samples are GaAlAs/GaAs single heterostructures, and the measurements are made at low frequencies, up to 20 kHz. The diagonal...... conductivity is derived from magnetocapacitance measurements. It increases with increasing frequency according to a power law at integer filling factors. The exponent of the power law depends on both temperature and filling factor. Ratios between Hall conductivities at different filling factors are obtained...

  20. Indirect exchange interaction between magnetic impurities in the two-dimensional topological insulator based on CdTe/HgTe/CdTe quantum wells

    Science.gov (United States)

    Kurilovich, P. D.; Kurilovich, V. D.; Burmistrov, I. S.

    2016-10-01

    We study indirect exchange interaction between magnetic impurities in the (001) CdTe/HgTe/CdTe symmetric quantum well. We consider low temperatures and the case of the chemical potential placed in the energy gap of the two-dimensional quasiparticle spectrum. We find that the indirect exchange interaction is suppressed exponentially with the distance between magnetic impurities. The presence of inversion asymmetry results in oscillations of the indirect exchange interaction with the distance and generates additional terms which are noninvariant under rotations in the (001) plane. The indirect exchange interaction matrix has complicated structure with some terms proportional to the sign of the energy gap.

  1. Quantum-spin-liquid states in the two-dimensional kagome antiferromagnets ZnxCu4-x(OD)6Cl2.

    Science.gov (United States)

    Lee, S-H; Kikuchi, H; Qiu, Y; Lake, B; Huang, Q; Habicht, K; Kiefer, K

    2007-11-01

    A three-dimensional system of interacting spins typically develops static long-range order when it is cooled. If the spins are quantum (S=1/2), however, novel quantum paramagnetic states may appear. The most highly sought state among them is the resonating-valence-bond state, in which every pair of neighbouring quantum spins forms an entangled spin singlet (valence bonds) and these singlets are quantum mechanically resonating among themselves. Here we provide an experimental indication for such quantum paramagnetic states existing in frustrated antiferromagnets, Zn(x)Cu(4-x)(OD)(6)Cl(2), where the S=1/2 magnetic Cu2+ moments form layers of a two-dimensional kagome lattice. We find that in Cu(4)(OD)(6)Cl(2), where distorted kagome planes are weakly coupled, a dispersionless excitation mode appears in the magnetic excitation spectrum below approximately 20 K, whose characteristics resemble those of quantum spin singlets in a solid state, known as a valence-bond solid, that breaks translational symmetry. Doping with non-magnetic Zn2+ ions reduces the distortion of the kagome lattice, and weakens the interplane coupling but also dilutes the magnetic occupancy of the kagome lattice. The valence-bond-solid state is suppressed, and for ZnCu(3)(OD)(6)Cl(2), where the kagome planes are undistorted and 90% occupied by the Cu2+ ions, the low-energy spin fluctuations become featureless.

  2. Hadamard States and Two-dimensional Gravity

    CERN Document Server

    Salehi, H

    2001-01-01

    We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.

  3. Near-field relaxation of a quantum emitter to two-dimensional semiconductors: Surface dissipation and exciton polaritons

    Science.gov (United States)

    Karanikolas, Vasilios D.; Marocico, Cristian A.; Eastham, Paul R.; Bradley, A. Louise

    2016-11-01

    The total spontaneous emission rate of a quantum emitter in the presence of an infinite MoS2 monolayer is enhanced by several orders of magnitude, compared to its free-space value, due to the excitation of surface exciton polariton modes and lossy modes. The spectral and distance dependence of the spontaneous emission rate are analyzed and the lossy surface wave, surface exciton polariton mode and radiative contributions are identified. The transverse magnetic and transverse electric exciton polariton modes can be excited for different emission frequencies of the quantum emitter, and their contributions to the total spontaneous emission rate are different. To calculate these different decay rates we use the non-Hermitian description of light-matter interactions, employing a Green's tensor formalism. The distance dependence follows different trends depending on the emission energy of the quantum emitter. For the case of the lossy surface waves, the distance dependence follows a z-n,n =2 ,3 ,4 , trend. When transverse magnetic exciton polariton modes are excited, they dominate and characterize the distance dependence of the spontaneous emission rate of a quantum emitter in the presence of the MoS2 layers. The interaction between a quantum emitter and a MoS2 superlattice is investigated, and we observe a splitting of the modes supported by the superlattice. Moreover, a blueshift of the peak values of the spontaneous emission rate of a quantum emitter is observed as the number of layers is increased. The field distribution profiles, created by a quantum emitter, are used to explain this behavior.

  4. Distance-dependent energy transfer between CdSe/CdS quantum dots and a two-dimensional semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Goodfellow, Kenneth M.; Vamivakas, A. Nick, E-mail: nick.vamivakas@rochester.edu [Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Chakraborty, Chitraleema [Materials Science, University of Rochester, Rochester, New York 14627 (United States); Sowers, Kelly [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States); Waduge, Pradeep; Wanunu, Meni [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Krauss, Todd [Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States); Driscoll, Kristina [Department of Physics, Rochester Institute of Technology, Rochester, New York 14627 (United States)

    2016-01-11

    Atomically thin semiconductors, such as the transition metal dichalcogenides, show great potential for nanoscale photodetection, energy harvesting, and nanophotonics. Here, we investigate the efficiency of energy transfer between colloidal quantum dots with a cadmium selenide core and cadmium sulfide shell and monolayer molybdenum diselenide (MoSe{sub 2}). We show that MoSe{sub 2} effectively quenches the fluorescence of quantum dots when the two materials are in contact. We then separate the MoSe{sub 2} and quantum dots by inserting variable thickness hexagonal boron nitride (h-BN) spacers and show that the efficiency at which the MoSe{sub 2} quenches fluorescence decreases as the h-BN thickness is increased. For distances d, this trend can be modeled by a 1/d{sup 4} decay, in agreement with theory and recent studies involving graphene.

  5. Two-dimensional model colloids and nano wires: phase transitions, effects of external potentials and quantum effects

    Science.gov (United States)

    Franzrahe, K.; Henseler, P.; Ricci, A.; Strepp, W.; Sengupta, S.; Dreher, M.; Kircher, Chr.; Lohrer, M.; Quester, W.; Binder, K.; Nielaba, P.

    2005-07-01

    Quantum effects, structures and phase transitions in Nano-systems have been analyzed. An overview is given on the results of our computations on structural and elastic properties of model colloids, on phase transitions of model colloids in external fields, and on structural and electronic properties of stretched atomic wires.

  6. Two-dimensional transition metal dichalcogenides with a hexagonal lattice: Room-temperature quantum spin Hall insulators

    Science.gov (United States)

    Ma, Yandong; Kou, Liangzhi; Li, Xiao; Dai, Ying; Heine, Thomas

    2016-01-01

    So far, several transition metal dichalcogenide (TMDC)-based two-dimensional (2D) topological insulators (TIs) have been discovered, all of them based on a tetragonal lattice. However, in 2D crystals, the hexagonal rather than the tetragonal symmetry is the most common motif. Here, based on first principles calculations, we propose a class of stable 2D TMDCs of composition MX2(M =Mo ,W ;X =S ,Se ,Te ) with a hexagonal lattice. They are all in the same stability range as other 2D TMDC allotropes that have been demonstrated experimentally, and they are identified to be practical 2D TIs with large band gaps ranging from 41 to 198 meV, making them suitable for applications at room temperature. Besides, in contrast to tetragonal 2D TMDCs, their hexagonal lattice will greatly facilitate the integration of theses novel TI state van der Waals crystals with other hexagonal or honeycomb materials and thus provide a route for 2D material-based devices for wider nanoelectronic and spintronic applications. The nontrivial band gaps of both WS e2 and WT e2 2D crystals are 198 meV, which are larger than that in any previously reported TMDC-based TIs. These large band gaps entirely stem from the strong spin orbit coupling strength within the d orbitals of Mo/W atoms near the Fermi level. Our findings broaden the scientific and technological impact of both 2D TIs and TMDCs.

  7. Extracting trajectory equations of classical periodic orbits from the quantum eigenmodes in two-dimensional integrable billiards

    Science.gov (United States)

    Hsieh, Y. H.; Yu, Y. T.; Tuan, P. H.; Tung, J. C.; Huang, K. F.; Chen, Y. F.

    2017-02-01

    The trajectory equations for classical periodic orbits in the equilateral-triangular and circular billiards are systematically extracted from quantum stationary coherent states. The relationship between the phase factors of quantum stationary coherent states and the initial positions of classical periodic orbits is analytically derived. In addition, the stationary coherent states with noncoprime parametric numbers are shown to correspond to the multiple periodic orbits, which cannot be explicable in the one-particle picture. The stationary coherent states are further verified to be linked to the resonant modes that are generally observed in the experimental wave system excited by a localized and unidirectional source. The excellent agreement between the resonant modes and the stationary coherent states not only manifests the importance of classical features in experimental systems but also paves the way to manipulate the mesoscopic wave functions localized on the periodic orbits for applications.

  8. Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions.

    Science.gov (United States)

    Masuda, Hidetoshi; Sakai, Hideaki; Tokunaga, Masashi; Yamasaki, Yuichi; Miyake, Atsushi; Shiogai, Junichi; Nakamura, Shintaro; Awaji, Satoshi; Tsukazaki, Atsushi; Nakao, Hironori; Murakami, Youichi; Arima, Taka-hisa; Tokura, Yoshinori; Ishiwata, Shintaro

    2016-01-01

    For the innovation of spintronic technologies, Dirac materials, in which low-energy excitation is described as relativistic Dirac fermions, are one of the most promising systems because of the fascinating magnetotransport associated with extremely high mobility. To incorporate Dirac fermions into spintronic applications, their quantum transport phenomena are desired to be manipulated to a large extent by magnetic order in a solid. We report a bulk half-integer quantum Hall effect in a layered antiferromagnet EuMnBi2, in which field-controllable Eu magnetic order significantly suppresses the interlayer coupling between the Bi layers with Dirac fermions. In addition to the high mobility of more than 10,000 cm(2)/V s, Landau level splittings presumably due to the lifting of spin and valley degeneracy are noticeable even in a bulk magnet. These results will pave a route to the engineering of magnetically functionalized Dirac materials.

  9. Mid-Infrared Pulse Shaping and Two-Dimensional Spectroscopy of Open Quantum Systems in Liquid Solution

    Science.gov (United States)

    Ross, Matthew R.

    The primary focus of this work is the development of a mid-infrared pulse shaping system. The primary motivation for this system is for two-dimensional infrared (2DIR) spectroscopy, however, the mid-infrared pulse shaper also allows for more sophisticated spectroscopic experiments not previously attempted in the mid-infrared. Moreover, many can be implemented without changes or realignment of the optical setup. Example spectra are presented along with a discussion of capabilities and diagnostics. A second major project presented is 2DIR spectroscopy of iron pentacarbonyl, Fe(CO)5, a small metal carbonyl. This molecule undergoes Berry pseudorotation, a form of fluxtionality. This fast exchange of ligands mixes axial and equatorial modes and occurs on a timescale of picoseconds, too fast for NMR and other methods of measuring chemical structure and isomerization. Ultrafast chemical exchange spectroscopy, a measurement within 2DIR spectroscopy, is capable of resolving the time scales of this motion. We found that this process is affected by the solvent environment, specifically the solvent viscosity in alkanes and hydrogen bonding environments in alcohols. Lastly, a study is presented in which a series of synthetic metalloenzymes with a metal active site are studied by 2DIR spectroscopy. In this case a carbonyl is ligated to a copper-I atom in the active site, which then serves as our spectroscopic probe. We find, unexpectedly, that the shape of the carbonyl vibrational potential, as measured by the anharmonicity, is time-dependent. We attribute this to a geometrical rearrangement and are able to suggest that this effect is dependent on local site structure and dynamics and not significantly affected by electric potential near the peptide.

  10. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins

    CSIR Research Space (South Africa)

    Britton, JW

    2012-04-01

    Full Text Available apparatus, laser-cooled 9Be+ ions natu- rally form a stable 2D Coulomb crystal on a triangular lattice with 300 spins (Fig. 1). Each ion is spin-1/2 system (qubit) over which we exert high fidelity quantum control [26]. In this paper we demonstrate... as a function of the electric field intensity IR = ceo 2 jELj 2 = ceo2 jEU j 2 at the cen- ter of the laser beams. For qR = 4:8 and IR = 1 W/cm2 , Fo = 1:4 10 23 N. Stronger forces can be generated after experimental mod- ification to our...

  11. The Two-Dimensional MnO2/Graphene Interface: Half-metallicity and Quantum Anomalous Hall State

    KAUST Repository

    Gan, Liyong

    2015-10-07

    We explore the electronic properties of the MnO2/graphene interface by first-principles calculations, showing that MnO2 becomes half-metallic. MnO2 in the MnO2/graphene/MnO2 system provides time-reversal and inversion symmetry breaking. Spin splitting by proximity occurs at the Dirac points and a topologically nontrivial band gap is opened, enabling a quantum anomalous Hall state. The half-metallicity, spin splitting, and size of the band gap depend on the interfacial interaction, which can be tuned by strain engineering.

  12. Noncommutative perturbative quantum field theory: Wilson loop in two-dimensional Yang-Mills, and unitarity from string theory

    Science.gov (United States)

    Torrielli, Alessandro

    2003-01-01

    The results of our research on noncommutative perturbative quantum field theory and its relation to string theory are exposed with details. 1) We give an introduction to noncommutative quantum field theory and its derivation from open string theory in an antisymmetric background. 2) We perform a perturbative Wilson loop calculation for 2D NCYM. We compare the LCG results for the WML and the PV prescription. With WML the loop is well-defined and regular in the commutative limit. With PV the result is singular. This is intriguing: in the commutative theory their difference is related to topological excitations, moreover PV provides a point-like potential. 3) Commutative 2D YM exhibits an interplay between geometrical and U(N) gauge properties: in the exact expression of a Wilson loop with n windings a scaling intertwines n and N. In the NC case the interplay becomes tighter due to the merging of space-time and ``internal'' symmetries. Surprisingly, in our up to O(g^6) (and beyond) crossed graphs calculations the scaling we mentioned occurs for large n, N and theta. 4) We discuss the breakdown of perturbative unitarity of noncommutative electric-type QFT in the light of strings. We consider the analytic structure of string loop two-point functions suitably continuing them off-shell, and then study the Seiberg-Witten limit. In this way we pick up how the unphysical tachyonic branch cut appears in the NC field theory.

  13. Noncommutative perturbative quantum field theory Wilson loop in two-dimensional Yang-Mills, and unitarity from string theory

    CERN Document Server

    Torrielli, A

    2003-01-01

    The results of our research on noncommutative perturbative quantum field theory and its relation to string theory are exposed with details. 1) We give an introduction to noncommutative quantum field theory and its derivation from open string theory in an antisymmetric background. 2) We perform a perturbative Wilson loop calculation for 2D NCYM. We compare the LCG results for the WML and the PV prescription. With WML the loop is well-defined and regular in the commutative limit. With PV the result is singular. This is intriguing: in the commutative theory their difference is related to topological excitations, moreover PV provides a point-like potential. 3) Commutative 2D YM exhibits an interplay between geometrical and U(N) gauge properties: in the exact expression of a Wilson loop with n windings a scaling intertwines n and N. In the NC case the interplay becomes tighter due to the merging of space-time and ``internal'' symmetries. Surprisingly, in our up to O(g^6) (and beyond) crossed graphs calculations th...

  14. Two-dimensional rectangular tantalum carbide halides TaCX (X = Cl, Br, I): novel large-gap quantum spin Hall insulators

    Science.gov (United States)

    Zhou, Liujiang; Shi, Wujun; Sun, Yan; Shao, Bin; Felser, Claudia; Yan, Binghai; Frauenheim, Thomas

    2016-09-01

    Quantum spin Hall (QSH) insulates exist in special two-dimensional (2D) semiconductors, possessing the quantized spin-Hall conductance that are topologically protected from backscattering. Based on the first-principles calculations, we predict a novel family of QSH insulators in 2D tantalum carbide halides TaCX (X = Cl, Br, and I) with unique rectangular lattice and large direct energy gaps. The mechanism for 2D QSH effect originates from an intrinsic d-d band inversion in the process of chemical bonding. Further, stain and intrinsic electric field can be used to tune the electronic structure and enhance the energy gap. TaCX nanoribbon, which has the single-Dirac-cone edge states crossing the bulk band gap, exhibits a linear dispersion with a high Fermi velocity comparable to that of graphene. These 2D materials with considerable nontrivial gaps promise great application potential in the new generation of dissipationless electronics and spintronics.

  15. O2- -to-F- substitution on the quasi-two-dimensional quantum antiferromagnet (CuCl)LaNb2O7

    Science.gov (United States)

    Tassel, C.; Kobayashi, Y.; Mitsuoka, S.; Takeiri, F.; Ajiro, Y.; Kageyama, H.

    2011-09-01

    We present the preparation of the electron-doped quasi-two dimensional quantum antiferromagnet (CuCl)LaNb2O7 by two step-wise topochemical reactions. The first step involves a reductive fluorination of the insulating layered perovskite RbLaNb2O7 using polytetrafluoroethylene that allows electric conduction in the perovskite blocks. The product RbLaNb2O6F was then ion-exchanged with copper dichloride to yield (CuCl)LaNb2O6F. The synchrotron x-ray diffraction study indicates that the structure of the final compound is different from that of the pure (CuCl)LaNb2O7.

  16. Exchange enhancement of the electron g-factor in a two-dimensional semimetal in HgTe quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Bovkun, L. S., E-mail: bovkun@ipmras.ru; Krishtopenko, S. S.; Zholudev, M. S.; Ikonnikov, A. V.; Spirin, K. E. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Dvoretsky, S. A.; Mikhailov, N. N. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Teppe, F.; Knap, W. [Universite Montpellier II, Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB (France); Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-12-15

    The exchange enhancement of the electron g-factor in perpendicular magnetic fields to 12 T in HgTe/CdHgTe quantum wells 20 nm wide with a semimetal band structure is studied. The electron effective mass and g-factor at the Fermi level are determined by analyzing the temperature dependence of the amplitude of Shubnikov–de Haas oscillation in weak fields and near odd Landau-level filling factors ν ≤ 9. The experimental values are compared with theoretical calculations performed in the one-electron approximation using the eight-band kp Hamiltonian. The found dependence of g-factor enhancement on the electron concentration is explained by changes in the contributions of hole- and electron-like states to exchange corrections to the Landau-level energies in the conduction band.

  17. Finite-temperature scaling close to Ising-nematic quantum critical points in two-dimensional metals

    Science.gov (United States)

    Punk, Matthias

    2016-11-01

    We study finite-temperature properties of metals close to an Ising-nematic quantum critical point in two spatial dimensions. In particular we show that at any finite temperature there is a regime where order parameter fluctuations are characterized by a dynamical critical exponent z =2 , in contrast to z =3 found at zero temperature. Our results are based on a simple Eliashberg-type approach, which gives rise to a boson self-energy proportional to Ω /γ (T ) at small momenta, where γ (T ) is the temperature dependent fermion scattering rate. These findings might shed some light on recent Monte Carlo simulations at finite temperature, where results consistent with z =2 were found.

  18. Numerical study of the effect of disorder and magnetic field on the quantum transport of two-dimensional nanostructures modeled by tight-binding approximation

    Directory of Open Access Journals (Sweden)

    E Taghizdehsiskht

    2013-09-01

    Full Text Available  In recent years, semiconductor nanostructures have become the model systems of choice for investigation of electrical conduction on short length scales. Quantum transport is studied in a two dimensional electron gas because of the combination of a large Fermi wavelength and large mean free path. In the present work, a numerical method is implemented in order to contribute to the understanding of quantum transport in narrow channels in different conditions of disorder and magnetic fields. We have used an approach that has proved to be very useful in describing mesoscopic transport. We have assumed zero temperature and phase coherent transport. By using the trick that a conductor connected to infinite leads can be replaced by a finite conductor with the effect of the leads incorporated through a 'self-energy' function, a convenient method was provided for evaluating the Green's function of the whole device numerically. Then, Fisher-Lee relations was used for calculating the transmission coefficients through coherent mesoscopic conductors. Our calculations were done in a model system with Hard-wall boundary conditions in the transverse direction, and the Anderson model of disorder was used in disordered samples. We have presented the results of quantum transport for different strengths of disorder and introduced magnetic fields. Our results confirmed the Landauer formalism for calculation of electronic transport. We observed that weak localization effect can be removed by application of a weak perpendicular magnetic field. Finally, we numerically showed the transition to the integral quantum Hall effect regime through the suppression of backscattering on a disordered model system by calculating the two­ terminal conductance of a quasi-one-dimensional quantum conductor as a strong magnetic field is applied. Our results showed that this regime is entered when there is a negligible overlap between electron edge states localized at opposite sides of

  19. Magneto-thermoelectric effects in the two-dimensional electron gas of a HgTe quantum well due to THz laser heating by cyclotron resonance absorption

    Science.gov (United States)

    Pakmehr, Mehdi; Bruene, Christoph; Buhmann, Hartmut; Molenkamp, Laurens; McCombe, Bruce

    2015-03-01

    HgTe quantum wells (QWs) have shown a number of interesting phenomena over the past 20 years, most recently the first two-dimensional topological insulating state. We have studied thermoelectric photovoltages of 2D electrons in a 6.1 nm wide HgTe quantum well induced by cyclotron resonance absorption (B = 2 - 5 T) of a focused THz laser beam. We have estimated thermo-power coefficients by detailed analysis of the beam profile at the sample surface and the photovoltage signals developed across various contacts of a large Hall bar structure at a bath temperature of 1.6 K. We obtain reasonable values of the magneto-thermopower coefficients. Work at UB was supported by NSF DMR 1008138 and the Office of the Provost, and at the University of Wuerzburg by DARPA MESO Contract N6601-11-1-4105, by DFG Grant HA5893/4-1 within SPP 1666 and the Leibnitz Program, and the EU ERC-AG Program (Project 3-TOP.

  20. Fano resonance in the nonadiabatically pumped shot noise of a time-dependent quantum well in a two-dimensional electron gas and graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Rui, E-mail: rzhu@scut.edu.cn; Dai, Jiao-Hua [Department of Physics, South China University of Technology, Guangzhou 510641 (China); Guo, Yong [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2015-04-28

    Interference between different quantum paths can generate Fano resonance. One of the examples is transport through a quasibound state driven by a time-dependent scattering potential. Previously it is found that Fano resonance occurs as a result of energy matching in one-dimensional systems. In this work, we demonstrate that when transverse motion is present, Fano resonance occurs precisely at the wavevector matching situation. Using the Floquet scattering theory, we considered the transport properties of a nonadiabatic time-dependent well both in a two-dimensional electron gas and monolayer graphene structure. Dispersion of the quasibound state of a static quantum well is obtained with transverse motion present. We found that Fano resonance occurs when the wavevector in the transport direction of one of the Floquet sidebands is exactly identical to that of the quasibound state in the well at equilibrium and follows the dispersion pattern of the latter. To observe the Fano resonance phenomenon in the transmission spectrum, we also considered the pumped shot noise properties when time and spatial symmetry secures vanishing current in the considered configuration. Prominent Fano resonance is found in the differential pumped shot noise with respect to the reservoir Fermi energy.

  1. Proton transfer through hydrogen bonds in two-dimensional water layers: A theoretical study based on ab initio and quantum-classical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bankura, Arindam; Chandra, Amalendu, E-mail: amalen@iitk.ac.in [Department of Chemistry, Indian Institute of Technology, Kanpur 208016 (India)

    2015-01-28

    The dynamics of proton transfer (PT) through hydrogen bonds in a two-dimensional water layer confined between two graphene sheets at room temperature are investigated through ab initio and quantum-classical simulations. The excess proton is found to be mostly solvated as an Eigen cation where the hydronium ion donates three hydrogen bonds to the neighboring water molecules. In the solvation shell of the hydronium ion, the three coordinated water molecules with two donor hydrogen bonds are found to be properly presolvated to accept a proton. Although no hydrogen bond needs to be broken for transfer of a proton to such presolvated water molecules from the hydronium ion, the PT rate is still found to be not as fast as it is for one-dimensional chains. Here, the PT is slowed down as the probability of finding a water with two donor hydrogen bonds in the solvation shell of the hydronium ion is found to be only 25%-30%. The hydroxide ion is found to be solvated mainly as a complex anion where it accepts four H-bonds through its oxygen atom and the hydrogen atom of the hydroxide ion remains free all the time. Here, the presolvation of the hydroxide ion to accept a proton requires that one of its hydrogen bonds is broken and the proton comes from a neighboring water molecule with two acceptor and one donor hydrogen bonds. The coordination number reduction by breaking of a hydrogen bond is a slow process, and also the population of water molecules with two acceptor and one donor hydrogen bonds is only 20%-25% of the total number of water molecules. All these factors together tend to slow down the hydroxide ion migration rate in two-dimensional water layers compared to that in three-dimensional bulk water.

  2. Proton transfer through hydrogen bonds in two-dimensional water layers: A theoretical study based on ab initio and quantum-classical simulations

    Science.gov (United States)

    Bankura, Arindam; Chandra, Amalendu

    2015-01-01

    The dynamics of proton transfer (PT) through hydrogen bonds in a two-dimensional water layer confined between two graphene sheets at room temperature are investigated through ab initio and quantum-classical simulations. The excess proton is found to be mostly solvated as an Eigen cation where the hydronium ion donates three hydrogen bonds to the neighboring water molecules. In the solvation shell of the hydronium ion, the three coordinated water molecules with two donor hydrogen bonds are found to be properly presolvated to accept a proton. Although no hydrogen bond needs to be broken for transfer of a proton to such presolvated water molecules from the hydronium ion, the PT rate is still found to be not as fast as it is for one-dimensional chains. Here, the PT is slowed down as the probability of finding a water with two donor hydrogen bonds in the solvation shell of the hydronium ion is found to be only 25%-30%. The hydroxide ion is found to be solvated mainly as a complex anion where it accepts four H-bonds through its oxygen atom and the hydrogen atom of the hydroxide ion remains free all the time. Here, the presolvation of the hydroxide ion to accept a proton requires that one of its hydrogen bonds is broken and the proton comes from a neighboring water molecule with two acceptor and one donor hydrogen bonds. The coordination number reduction by breaking of a hydrogen bond is a slow process, and also the population of water molecules with two acceptor and one donor hydrogen bonds is only 20%-25% of the total number of water molecules. All these factors together tend to slow down the hydroxide ion migration rate in two-dimensional water layers compared to that in three-dimensional bulk water.

  3. Quantum Phase Transitions and Dimerized Phases in Frustrated Spin Ladder

    Institute of Scientific and Technical Information of China (English)

    WEN Rui; LIU Guang-Hua; TIAN Guang-Shan

    2011-01-01

    In this paper, we study the phase diagram of a frustrated spin ladder model by applying the bosonization technique and the density-matrix renormalization-group (DMRG) algorithm. Effect of the intra-chain next-nearestneighbor (NNN) super-exchange interaction is investigated in detail and the order parameters are calculated to detect the emergence of the dimerized phases. We find that the intra-chain NNN interaction plays a key role in inducing dimerized phases.

  4. Quantum chaos for two-dimensional Sinai billiard%二维Sinai台球系统的量子混沌研究

    Institute of Scientific and Technical Information of China (English)

    秦陈陈; 杨双波

    2014-01-01

    We study the classical and quantum correspondence for a two-dimensional Sinai billiard system. By using the Stationary state expansion method and Gutzwiller’s periodic orbit theory, we analyze the quantum length spectrum obtained through the Fourier transformation of the quantum density of state for the Sinai billiard system, and by comparing the peak position with the length of the classical periodic orbit we find their excellent correspondence. We observe that some quantum states are localized near some short period orbits, forming the quantum scarred states or superscarred states. In this paper we also investigate the nearest-neighbor spacing distribution of levels for both concentric and nonconcentric Sinai billiard systems, and find that the concentric Sinai billiard system is nearintegrable, and for the nonconcentric Sinai billiard system withϑ=3π/8 its nearest-neighbor spacing distribution of levels transits from nearintegrable to the Wigner distribution as the distance between the two centers increases.%研究了二维Sinai台球系统的经典与量子的对应关系,运用定态展开法和Gutzwiller的周期轨道理论对Sinai台球系统的态密度经傅里叶变换得到的量子长度谱进行分析,并把量子长度谱中峰的位置与其所对应的经典体系的周期轨道长度做对比,发现两者之间存在很好的对应关系。观察到了一些量子态局域在短周期轨道附近形成量子scarred态或量子superscarred态。还研究了同心与非同心Sinai台球系统的能级最近邻间距分布,发现同心Sinai台球系统是近可积的,非同心Sinai台球系统在θ=3π/8下,随两中心间距离的增加,能级最近邻间距分布将由近可积向维格那分布过渡。

  5. Spin dynamics in high-mobility two-dimensional electron systems embedded in GaAs/AlGaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Griesbeck, Michael

    2012-11-22

    Since many years there has been great effort to explore the spin dynamics in low-dimensional electron systems embedded in GaAs/AlGaAs based heterostructures for the purpose of quantum computation and spintronics applications. Advances in technology allow for the design of high quality and well-defined two-dimensional electron systems (2DES), which are perfectly suited for the study of the underlying physics that govern the dynamics of the electron spin system. In this work, spin dynamics in high-mobility 2DES is studied by means of the all-optical time-resolved Kerr/Faraday rotation technique. In (001)-grown 2DES, a strong in-plane spin dephasing anisotropy is studied, resulting from the interference of comparable Rashba and Dresselhaus contributions to the spin-orbit field (SOF). The dependence of this anisotropy on parameters like the confinement length of the 2DES, the sample temperature, as well as the electron density is demonstrated. Furthermore, coherent spin dynamics of an ensemble of ballistically moving electrons is studied without and within an applied weak magnetic field perpendicular to the sample plane, which forces the electrons to move on cyclotron orbits. Finally, strongly anisotropic spin dynamics is investigated in symmetric (110)-grown 2DES, using the resonant spin amplification method. Here, extremely long out-of-plane spin dephasing times can be achieved, in consequence of the special symmetry of the Dresselhaus SOF.

  6. Quantum-chemical analysis of thermodynamics of two-dimensional cluster formation of alpha-amino acids at the air/water interface.

    Science.gov (United States)

    Vysotsky, Yu B; Fomina, E S; Belyaeva, E A; Aksenenko, E V; Vollhardt, D; Miller, R

    2009-12-31

    The semiempirical quantum-chemical PM3 method is used to calculate the thermodynamic parameters of clusterization of the S-form of alpha-amino acids with the general composition C(n)H(2n+1)CHNH(2)COOH (n = 5-15) at 278 and 298 K. It is shown that six stable conformations of monomers exist, for which the thermodynamic parameters (enthalpy and Gibbs' energy) of the formation and absolute entropy are calculated. The correlation dependencies of the calculated parameters on the alkyl chain length are found to be linear. The structures of the monomers are used to build larger clusters (dimers, tetramers, hexamers). For all small clusters (comprised of two to six molecules), the thermodynamic parameters of formation and clusterization are calculated. It is shown that for tetramers and hexamers the enthalpy, entropy, and Gibbs' energy of clusterization are linearly dependent on the alkyl chain length, whereas for the dimers these dependencies are stepwise. The thermodynamic characteristics of clusterization of associates tilted by angles of 9 and 30 degrees with respect to the normal to the interface are calculated. It is shown that the 30 degrees angle orientation is more energetically advantageous for this class of compounds. The geometric parameters of the unit cell characteristic for the infinite 2D film which corresponds to the most advantageous conformation of the monomer were calculated using the PM3 parametrization to be a = 4.57-4.71 A and b = 5.67-5.75 A, with the angle between the axes theta = 100-103 degrees . These values agree well with the available experimental data. Spontaneous clusterization of alpha-amino acids at the air/water interface at 278 K takes place if the alkyl chain length exceeds 11-12 carbon atoms, whereas for 298 K this clusterization threshold corresponds to 13-14 carbon atoms in the alkyl chain, also in agreement with the experimental data.

  7. Quantum Transfer Energy and Nonlocal Correlation in a Dimer with Time-Dependent Coupling Effect

    Science.gov (United States)

    El-Shishtawy, Reda M.; Berrada, K.; Haddon, Robert C.; Al-Hadeethi, Yas F.; Al-Heniti, Saleh H.; Raffah, Bahaaudin M.

    2017-02-01

    The presence of coherence phenomenon due to the interference of probability amplitude terms, is one of the most important features of quantum mechanics theory. Recent experiments show the presence of quantum processes whose coherence provided over suddenly large interval-time. In particular, photosynthetic mechanisms in light-harvesting complexes provide oscillatory behaviors in quantum mechanics due to quantum coherence. In this work, we investigate the coherent quantum transfer energy for a single-excitation and nonlocal correlation in a dimer system modelled by a two-level atom system with and without time-dependent coupling effect. We analyze and explore the required conditions that are feasible with real experimental realization for optimal transfer of quantum energy and generation of nonlocal quantum correlation. We show that the enhancement of the probability for a single-excitation transfer energy is greatly benefits from the combination of the energy detuning and time-dependent coupling effect. We investigate the presence of quantum correlations in the dimer using the entanglement of formation. We also find that the entanglement between the donor and acceptor is very sensitive to the physical parameters and it can be generated during the coherent energy transfer. On the other hand, we study the dynamical behavior of the quantum variance when performing a measurement on an observable of the density matrix operator. Finally, an interesting relationship between the transfer probability, entanglement and quantum variance is explored during the time evolution in terms of the physical parameters.

  8. Classifying and assembling two-dimensional X-ray laser diffraction patterns of a single particle to reconstruct the three-dimensional diffraction intensity function: resolution limit due to the quantum noise

    Science.gov (United States)

    Tokuhisa, Atsushi; Taka, Junichiro; Kono, Hidetoshi; Go, Nobuhiro

    2012-01-01

    A new two-step algorithm is developed for reconstructing the three-dimensional diffraction intensity of a globular biological macromolecule from many experimentally measured quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The first step is classification of the two-dimensional patterns into groups according to the similarity of direction of the incident X-rays with respect to the molecule and an averaging within each group to reduce the noise. The second step is detection of common intersecting circles between the signal-enhanced two-dimensional patterns to identify their mutual location in the three-dimensional wavenumber space. The newly developed algorithm enables one to detect a signal for classification in noisy experimental photon-count data with as low as ∼0.1 photons per effective pixel. The wavenumber of such a limiting pixel determines the attainable structural resolution. From this fact, the resolution limit due to the quantum noise attainable by this new method of analysis as well as two important experimental parameters, the number of two-dimensional patterns to be measured (the load for the detector) and the number of pairs of two-dimensional patterns to be analysed (the load for the computer), are derived as a function of the incident X-ray intensity and quantities characterizing the target molecule. PMID:22514069

  9. Quantum Monte Carlo calculations of the dimerization energy of borane.

    Science.gov (United States)

    Fracchia, Francesco; Bressanini, Dario; Morosi, Gabriele

    2011-09-07

    Accurate thermodynamic data are required to improve the performance of chemical hydrides that are potential hydrogen storage materials. Boron compounds are among the most interesting candidates. However, different experimental measurements of the borane dimerization energy resulted in a rather wide range (-34.3 to -39.1) ± 2 kcal/mol. Diffusion Monte Carlo (DMC) simulations usually recover more than 95% of the correlation energy, so energy differences rely less on error cancellation than other methods. DMC energies of BH(3), B(2)H(6), BH(3)CO, CO, and BH(2)(+) allowed us to predict the borane dimerization energy, both via the direct process and indirect processes such as the dissociation of BH(3)CO. Our D(e) = -43.12(8) kcal/mol, corrected for the zero point energy evaluated by considering the anharmonic contributions, results in a borane dimerization energy of -36.59(8) kcal/mol. The process via the dissociation of BH(3)CO gives -34.5(2) kcal/mol. Overall, our values suggest a slightly less D(e) than the most recent W4 estimate D(e) = -44.47 kcal/mol [A. Karton and J. M. L. Martin, J. Phys. Chem. A 111, 5936 (2007)]. Our results show that reliable thermochemical data for boranes can be predicted by fixed node (FN)-DMC calculations.

  10. Multiplicative logarithmic corrections to quantum criticality in three-dimensional dimerized antiferromagnets

    Science.gov (United States)

    Qin, Yanqi; Normand, Bruce; Sandvik, Anders; Meng, Zi Yang

    We investigate the quantum phase transition in an S=1/2 dimerized Heisenberg antiferromagnet in three spatial dimensions. By means of quantum Monte Carlo simulations and finite-size scaling analyses, we get high-precision results for the quantum critical properties at the transition from the magnetically disordered dimer-singlet phase to the ordered Neel phase. This transition breaks O(N) symmetry with N=3 in D=3+1 dimensions. This is the upper critical dimension, where multiplicative logarithmic corrections to the leading mean-field critical properties are expected; we extract these corrections, establishing their precise forms for both the zero-temperature staggered magnetization, ms, and the Neel temperature, TN. We present a scaling ansatz for TN, including logarithmic corrections, which agrees with our data and indicates exact linearity with ms, implying a complete decoupling of quantum and thermal fluctuation effects close to the quantum critical point. These logarithmic scaling forms have not previously identified or verified by unbiased numerical methods and we discuss their relevance to experimental studies of dimerized quantum antiferromagnets such as TlCuCl3. Ref.: arXiv:1506.06073

  11. A direct proof of dimerization in a family of SU( n)-invariant quantum spin chains

    Science.gov (United States)

    Nachtergaele, Bruno; Ueltschi, Daniel

    2017-09-01

    We study the family of spin- S quantum spin chains with a nearest neighbor interaction given by the negative of the singlet projection operator. Using a random loop representation of the partition function in the limit of zero temperature and standard techniques of classical statistical mechanics, we prove dimerization for all sufficiently large values of S.

  12. A direct proof of dimerization in a family of SU(n)-invariant quantum spin chains

    Science.gov (United States)

    Nachtergaele, Bruno; Ueltschi, Daniel

    2017-05-01

    We study the family of spin-S quantum spin chains with a nearest neighbor interaction given by the negative of the singlet projection operator. Using a random loop representation of the partition function in the limit of zero temperature and standard techniques of classical statistical mechanics, we prove dimerization for all sufficiently large values of S.

  13. Chemical accuracy from quantum Monte Carlo for the Benzene Dimer

    OpenAIRE

    Azadi, Sam; Cohen, R. E

    2015-01-01

    We report an accurate study of interactions between Benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory (DFT) using different van der Waals (vdW) functionals. In our QMC calculations, we use accurate correlated trial wave functions including three-body Jastrow factors, and backflow transformations. We consider two benzene molecules in the parallel displaced (PD) geometry, and fin...

  14. Exact Realization of a Quantum-Dimer Model in Heisenberg Antiferromagnets on a Diamond-Like Decorated Lattice

    Science.gov (United States)

    Hirose, Yuhei; Oguchi, Akihide; Fukumoto, Yoshiyuki

    2016-09-01

    We study Heisenberg antiferromagnets on a diamond-like decorated square lattice perturbed by further neighbor couplings. The second-order effective Hamiltonian is calculated and the resultant Hamiltonian is found to be a square-lattice quantum-dimer model with a finite hopping amplitude and no repulsion, which suggests the stabilization of the plaquette phase. Our recipe for constructing quantum-dimer models can be adopted for other lattices and provides a route for the experimental realization of quantum-dimer models.

  15. Chemical accuracy from quantum Monte Carlo for the benzene dimer

    Energy Technology Data Exchange (ETDEWEB)

    Azadi, Sam, E-mail: s.azadi@ucl.ac.uk [Department of Earth Science and Thomas Young Centre, University College London, London WC1E 6BT (United Kingdom); Cohen, R. E. [London Centre for Nanotechnology, University College London, London WC1E 6BT, United Kingdom and Extreme Materials Initiative, Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015 (United States)

    2015-09-14

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of −2.3(4) and −2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is −2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.

  16. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  17. Two dimensional vernier

    Science.gov (United States)

    Juday, Richard D. (Inventor)

    1992-01-01

    A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.

  18. Electronic structure of alloxan and its dimers: QM/QD simulations and quantum chemical topology analysis.

    Science.gov (United States)

    Allehyani, Basmah H; Elroby, Shaaban A; Aziz, Saadalluh G; Hilal, Rifaat H

    2015-01-01

    This study aims to identify the origin of the extra stability of alloxan, a biologically active pyrimidine. To achieve this goal, detailed DFT computations and quantum dynamics simulations have been performed to establish the most stable conformation and the global minimum structure on the alloxan potential energy surface. The effects of the solvent, basis set, and DFT method have been examined to validate the theoretical model adopted throughout the work. Two non-covalent intermolecular dimers of alloxan, the H-bonded and dipolar dimers, have been investigated at the ωB97X-D and M06-2X levels of theory using the triple zeta 6-311++G** to establish their relative stability. Quantum chemical topology features and natural bond orbital analysis (NBO) have been performed to identify and characterize the forces that govern the structures and underlie the extra stability of alloxan.

  19. Chemical accuracy from quantum Monte Carlo for the Benzene Dimer

    CERN Document Server

    Azadi, Sam

    2015-01-01

    We report an accurate study of interactions between Benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory (DFT) using different van der Waals (vdW) functionals. In our QMC calculations, we use accurate correlated trial wave functions including three-body Jastrow factors, and backflow transformations. We consider two benzene molecules in the parallel displaced (PD) geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the CCSD(T)/CBS limit is -2.65(2) kcal/mol [E. Miliordos et al, J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, compar...

  20. Phase diagram of a two-dimensional liquid in GaAs/AlxGa1-xAs biased double quantum wells

    DEFF Research Database (Denmark)

    Timofeev, V. B.; Larionov, A. V.; Alessi, M. G.;

    2000-01-01

    densities, P, and temperatures, T. For increasing P or decreasing T, a sharp transition from two gases of photoexcited electrons and holes, spatially separated and confined in the two wells, to two two-dimensional (2D) liquids has been observed. The gas-to-2D-liquid transition is evidenced by a strong...

  1. Two-dimensional optical spectroscopy

    CERN Document Server

    Cho, Minhaeng

    2009-01-01

    Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.

  2. New approach to energy transfer and quantum correlations in a molecular dimer

    Science.gov (United States)

    Saberi, M.; Bagheri Harouni, M.; Roknizadeh, R.; Latifi, H.

    2016-09-01

    The dynamics of single-excitation energy transfer in a molecular dimer interacting with a phonon bath is studied. Although there are exact numerical solutions for this system, we propose an approach that provides exact analytical results with few electronic degrees of freedom. This approach is based on considering the phonon subsystem in the coherent state representation. Applying this approach, the long-lived coherence time is evaluated in the weak and strong coupling regimes. Moreover, by calculating the quantum entanglement and global quantum discord, the time evolution of quantum correlations is examined. The effects of two parameters, electronic coupling strength and bath temperature, on the energy transfer and quantum correlations are studied. It is shown, in agreement with previous results, that the long-lived coherence time in the weak coupling regime is longer than in the strong coupling regime. Also, the increasing bath temperature gives rise to faster delocalization of energy transfer. Furthermore, it is illustrated that the bath temperature has a significant effect on the quantum entanglement with respect to the global quantum discord.

  3. Spectroscopic accuracy directly from quantum chemistry: application to ground and excited states of beryllium dimer

    CERN Document Server

    Sharma, Sandeep; Booth, George H; Umrigar, C J; Chan, Garnet Kin-Lic

    2014-01-01

    We combine explicit correlation via the canonical transcorrelation approach with the density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods to compute a near-exact beryllium dimer curve, {\\it without} the use of composite methods. In particular, our direct density matrix renormalization group calculations produce a well-depth of $D_e$=931.2 cm$^{-1}$ which agrees very well with recent experimentally derived estimates $D_e$=929.7$\\pm 2$~cm$^{-1}$ [Science, 324, 1548 (2009)] and $D_e$=934.6~cm$^{-1}$ [Science, 326, 1382 (2009)

  4. Reduced density matrices and topological order in a quantum dimer model

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Shunsuke [Laboratoire de Physique Theorique de la Matiere Condensee, UMR 7600 of CNRS, Universite P et M Curie, case 121, 4 Place Jussieu, 75252 Paris Cedex (France); Misguich, Gregoire [Service de Physique Theorique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Oshikawa, Masaki [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8581 (Japan)

    2007-04-11

    Resonating valence bond (RVB) liquids in two dimensions are believed to exhibit topological order and to admit no local order parameter of any kind. This is a defining property of 'liquids', but it has been confirmed explicitly only in a few exactly solvable models. In this paper, we investigate the quantum dimer model on the triangular lattice. This possesses an RVB-type liquid phase, however, for which the absence of a local order parameter has not been proved. We examine the question numerically with a measure based on reduced density matrices. We find a scaling of the measure which strongly supports the absence of any local order parameter.

  5. Quantum transport in two dimensional electron gas/p-wave superconductor junction with Rashba spin–orbit coupling at the interface and in the normal layer

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadkhani, R., E-mail: rmkhani@znu.ac.ir; Hassanloo, Gh.

    2014-11-01

    We have studied the tunneling conductance of a clean two dimensional electron gas/p- wave superconductor junction with Rashba spin–orbit coupling (RSOC) which is present in the normal layer and at the interface. Using the extended Blonder–Tinkham–Klapwijk formalism we have found that the subgap conductance peaks are shifted to a nonzero bias by RSOC at the interface which are the same as Ref. [1]. It is shown that for low insulating barrier and in the absence of the interface RSOC, the tunneling conductance decreases within energy gap with increasing of the RSOC in the normal layer while for high insulating barrier it enhances by increase of the RSOC. We have also shown that the RSOC inside the normal cannot affect the location of the subgap conductance peaks shifted by the interface RSOC.

  6. Non-destructive quantum reflection of helium dimers and trimers from a plane ruled grating

    Science.gov (United States)

    Zhao, Bum Suk; Zhang, Weiqing; Schöllkopf, Wieland

    2013-07-01

    We report on the non-destructive scattering and diffraction of He, He2 and He3 from a plane ruled reflection grating. At grazing incidence the normal component of the particle's wave-vector is sufficiently small to allow for quantum reflection at the attractive Casimir-van der Waals particle-surface interaction potential. Quantum reflection occurs tens of nanometres in front of the surface, before the dimers and trimers reach the region where the surface-induced forces would inevitably cause the breakup of the fragile bonds. The reflected particles are identified via their mass-dependent diffraction angles and by mass spectrometry. The intensity distributions of the observed diffraction patterns are discussed in terms of the grating's blaze angle.

  7. Strong mode coupling in InP quantum dot-based GaInP microdisk cavity dimers

    Science.gov (United States)

    Witzany, M.; Liu, T.-L.; Shim, J.-B.; Hargart, F.; Koroknay, E.; Schulz, W.-M.; Jetter, M.; Hu, E.; Wiersig, J.; Michler, P.

    2013-01-01

    We report on strong mode coupling in closely spaced GaInP microdisk dimer structures including InP quantum dots as the active medium. Using electron beam lithography and a combination of dry- and wet-etch processes, dimers with inter-disk separations down to d < 100 nm have been fabricated. Applying a photo-thermal heating scheme, we overcome the spectral mode detuning due to the size mismatch between the two disks forming the dimer. We observe signatures of mode coupling in the corresponding photoluminescence spectra with coupling energies of up to 0.66 MeV. With the aid of a numerical analysis, we specify the geometrical and physical factors of the microdisk dimer precisely, and reproduce its spectrum with good agreement.

  8. Comment on “The two dimensional motion of a particle in an inverse square potential: Classical and quantum aspects” [J. Math. Phys. 54, 053509 (2013)

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, Wolfgang, E-mail: wolbi@nucleares.unam.mx; Chryssomalakos, Chryssomalis, E-mail: chryss@nucleares.unam.mx; Salgado, Marcelo, E-mail: marcelo@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, México D.F. 04510, México (Mexico)

    2015-10-15

    We comment on a fatal flaw in the analysis contained in the work of Martínez-y-Romero et al., [J. Math. Phys. 54, 053509 (2013)], which concerns the motion of a point particle in an inverse square potential, and show that most conclusions reached there are wrong. In particular, the manifestly senseless claim that, in the attractive potential case, no bounded orbits exist for negative energies, is traced to a sign error. Several more mistakes, both in the classical and the quantum cases, are pointed out.

  9. Quantum and Transport Mobilities of a Two-Dimensional Electron Gas in the Presence of the Rashba Spin-Orbit Interaction

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A systematic theoretical approach is developed to study the electronic and transport properties of a twodimensional electron gas (2DEG) in the presence of spin-orbit interactions induced by the Rashba effect. The standard random-phase approximation is employed to calculate the screening length caused by electron-electron interaction in different transition channels. The quantum and transport mobilities in different spin branches are evaluated using the momentum-balance equation derived from the Boltzmann equation,in which the electron interactions with both the remote and background impurities are taken into account in an InAlAs/InGaAs heterojunction at low-temperatures.

  10. Periodic Two-Dimensional GaAs and InGaAs Quantum Rings Grown on GaAs (001) by Droplet Epitaxy.

    Science.gov (United States)

    Tung, Kar Hoo Patrick; Huang, Jian; Danner, Aaron

    2016-06-01

    Growth of ordered GaAs and InGaAs quantum rings (QRs) in a patterned SiO2 nanohole template by molecular beam epitaxy (MBE) using droplet epitaxy (DE) process is demonstrated. DE is an MBE growth technique used to fabricate quantum nanostructures of high crystal quality by supplying group III and group V elements in separate phases. In this work, ordered QRs grown on an ordered nanohole template are compared to self-assembled QRs grown with the same DE technique without the nanohole template. This study allows us to understand and compare the surface kinetics of Ga and InGa droplets when a template is present. It is found that template-grown GaAs QRs form clustered rings which can be attributed to low mobility of Ga droplets resulting in multiple nucleation sites for QR formation when As is supplied. However, the case of template-grown InGaAs QRs only one ring is formed per nanohole; no clustering is observed. The outer QR diameter is a close match to the nanohole template diameter. This can be attributed to more mobile InGa droplets, which coalesce from an Ostwald ripening to form a single large droplet before As is supplied. Thus, well-patterned InGaAs QRs are demonstrated and the kinetics of their growth are better understood which could potentially lead to improvements in the future devices that require the unique properties of patterned QRs.

  11. Effective mass of two-dimensional electrons in InGaAsN/GaAsSb type II quantum well by Shubnikov-de Haas oscillations

    Science.gov (United States)

    Kawamata, Shuichi; Hibino, Akira; Tanaka, Sho; Kawamura, Yuichi

    2016-10-01

    In order to develop optical devices for 2-3 μm wavelength regions, the InP-based InGaAs/GaAsSb type II multiple quantum well system has been investigated. By doping nitrogen into InGaAs layers, the system becomes effective in creating the optical devices with a longer wavelength. In this report, electrical transport properties are reported on the InGaAsN/GaAsSb type II system. The epitaxial layers with the single hetero or multiple quantum well structure on InP substrates are grown by the molecular beam epitaxy. The electrical resistance of samples with different nitrogen concentrations has been measured as a function of the magnetic field up to 9 Tesla at several temperatures between 2 and 6 K. The oscillation of the resistance due to the Shubnikov-de Haas (SdH) effect has been observed at each temperature. The effective mass is obtained from the temperature dependence of the amplitude of the SdH oscillations. The value of the effective mass increases from 0.048 for N = 0.0% to 0.062 for N = 1.2 and 1.5% as the nitrogen concentration increases. The mass enhancement occurs with corresponding to the reduction of the bandgap energy. These results are consistent with the band anticrossing model.

  12. Magneto-transport Spectroscopy of the First and Second Two-dimensional Subbands in Al0.25Ga0.75N/GaN Quantum Point Contacts

    Science.gov (United States)

    Lu, Fangchao; Tang, Ning; Shang, Liangliang; Guan, Hongming; Xu, Fujun; Ge, Weikun; Shen, Bo

    2017-01-01

    Magnetic transport spectroscopy is investigated in quantum point contacts (QPCs) fabricated in Al0.25Ga0.75N/GaN heterostructures. The magnetic field perpendicular to the two-dimensional electron gas (2DEG) is shown to depopulate the quasi-one-dimensional energy levels in the first two-dimensional (2D) subband faster than those in the second one. In GaN based heterostructures, the energy levels in the second 2D subband is generally concealed in the fast course of depletion and hence rarely detected. The perpendicular magnetic field facilitates the observation of the second 2D subband, and provides a method to study the properties of these energy levels. A careful analysis on the rate of the magnetic depletion with respect to the level index and confinement is carried out, from which the profile of the lateral confinement in GaN based QPCs is found to be triangular. The stability diagram at T shows the energy separation between the first and second 2D subband to be in the range of 32 to 42 meV. PMID:28225042

  13. An Auxiliary-Field Quantum Monte Carlo Study of the Chromium Dimer

    CERN Document Server

    Purwanto, Wirawan; Krakauer, Henry

    2014-01-01

    The chromium dimer (Cr2) presents an outstanding challenge for many-body electronic structure methods. Its complicated nature of binding, with a formal sextuple bond and an unusual potential energy curve, is emblematic of the competing tendencies and delicate balance found in many strongly correlated materials. We present a near-exact calculation of the potential energy curve (PEC) and ground state properties of Cr2, using the auxiliary-field quantum Monte Carlo (AFQMC) method. Unconstrained, exact AFQMC calculations are first carried out for a medium-sized but realistic basis set. Elimination of the remaining finite-basis errors and extrapolation to the complete basis set (CBS) limit is then achieved with a combination of phaseless and exact AFQMC calculations. Final results for the PEC and spectroscopic constants are in excellent agreement with experiment.

  14. Two-Dimensional NMR Lineshape Analysis

    Science.gov (United States)

    Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John

    2016-04-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.

  15. A two-dimensional Dirac fermion microscope

    Science.gov (United States)

    Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-01

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  16. A two-dimensional Dirac fermion microscope.

    Science.gov (United States)

    Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-09

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  17. Efficient excitation of photoluminescence in a two-dimensional waveguide consisting of a quantum dot-polymer sandwich-type structure.

    Science.gov (United States)

    Suárez, I; Larrue, A; Rodríguez-Cantó, P J; Almuneau, G; Abargues, R; Chirvony, V S; Martínez-Pastor, J P

    2014-08-15

    In this Letter, we study a new kind of organic polymer waveguide numerically and experimentally by combining an ultrathin (10-50 nm) layer of compactly packed CdSe/ZnS core/shell colloidal quantum dots (QDs) sandwiched between two cladding poly(methyl methacrylate) (PMMA) layers. When a pumping laser beam is coupled into the waveguide edge, light is mostly confined around the QD layer, improving the efficiency of excitation. Moreover, the absence of losses in the claddings allows the propagation of the pumping laser beam along the entire waveguide length; hence, a high-intensity photoluminescence (PL) is produced. Furthermore, a novel fabrication technology is developed to pattern the PMMA into ridge structures by UV lithography in order to provide additional light confinement. The sandwich-type waveguide is analyzed in comparison to a similar one formed by a PMMA film homogeneously doped by the same QDs. A 100-fold enhancement in the waveguided PL is found for the sandwich-type case due to the higher concentration of QDs inside the waveguide.

  18. Quantum Oscillations in a Two-Dimensional Electron Gas at the Rocksalt/Zincblende Interface of PbTe/CdTe (111) Heterostructures.

    Science.gov (United States)

    Zhang, Bingpo; Lu, Ping; Liu, Henan; Jiao, Lin; Ye, Zhenyu; Jaime, M; Balakirev, F F; Yuan, Huiqiu; Wu, Huizhen; Pan, Wei; Zhang, Yong

    2015-07-08

    Quantum oscillations are observed in the 2DEG system at the interface of novel heterostructures, PbTe/CdTe (111), with nearly identical lattice parameters (a(PbTe) = 0.6462 nm, a(CdTe) = 0.648 nm) but very different lattice structures (PbTe: rock salt, CdTe: zinc blende). The 2DEG formation mechanism, a mismatch in the bonding configurations of the valence electrons at the interface, is uniquely different from the other known 2DEG systems. The aberration-corrected scanning transmission electron microscope (AC-STEM) characterization indicates an abrupt interface without cation interdiffusion due to a large miscibility gap between the two constituent materials. Electronic transport measurements under magnetic field up to 60 T, with the observation of Landau level filling factor ν = 1, unambiguously reveal a π Berry phase, suggesting the Dirac Fermion nature of the 2DEG at the heterostructure interface, and the PbTe/CdTe heterostructure being a new candidate for 2D topological crystalline insulators.

  19. Quantum transport through a Coulomb blockaded quantum emitter coupled to a plasmonic dimer.

    Science.gov (United States)

    Goker, A; Aksu, H

    2016-01-21

    We study the electron transmission through a Coulomb blockaded quantum emitter coupled to metal nanoparticles possessing plasmon resonances by employing the time-dependent non-crossing approximation. We find that the coupling of the nanoparticle plasmons with the excitons results in a significant enhancement of the conductance through the discrete state with higher energy beyond the unitarity limit while the other discrete state with lower energy remains Coulomb blockaded. We show that boosting the plasmon-exciton coupling well below the Kondo temperature increases the enhancement adding another quantum of counductance upon saturation. Finite bias and increasing emitter resonance energy tend to reduce this enhancement. We attribute these observations to the opening of an additional transport channel via the plasmon-exciton coupling.

  20. Quantum-chemical analysis of thermodynamics of two-dimensional cluster formation of racemic α-amino acids at the air/water interface.

    Science.gov (United States)

    Vysotsky, Yu B; Fomina, E S; Belyaeva, E A; Aksenenko, E V; Fainerman, V B; Vollhardt, D; Miller, R

    2011-03-17

    The quantum-chemical semiempiric PM3 method is used to calculate the thermodynamic parameters of clusterization for the racemic α-amino acids C(n)H(2n+1)CHNH(2)COOH with n=5-15 at 278 and 298 K. Possible relative orientations of the monomers in the heterochiral clusters are considered. It is shown that, for the racemic mixtures of α-amino acids, the formation of heterochiral 2D films is most energetically preferable with the alternating (rather than "checkered") packing of the enantiomers with opposite specific rotation. The two enantiomeric forms of α-amino acids in the heterochiral 2D clusters are tilted with respect to the normal to the q direction at angles of φ(1)=20° and φ(2) = 33°, whereas the single enantiomeric forms are oriented at an angle of δ=9° with respect to the normal to the p direction. It is shown that the heterochiral 2D film based on the α-amino acid structures oriented at the angle φ(2)=33° with respect to the normal to the q direction possesses a rectangular unit cell with the geometric parameters a = 4.62 Å and b = 10.70 Å and the tilt angle of the alkyl chain of the molecule with respect to the interface t(2)=35°, which is in good agreement with the X-ray structural data a=4.80 Å, b=9.67 Å, and t(2)=37°. The parameters of the lattice structure of monolayers formed by amphiphilic amino acids are shown to be determined by the "a" type of the intermolecular H-H interactions, whereas the tilt angle of the molecules with respect to the interface depends on the volume and the structure of the functional groups involved in the hydrophilic part of the molecule. Spontaneous clusterization of the racemic form of α-amino acids at the air/water interface at 278 K takes place if the alkyl chain length is equal or higher than 12-13 carbon atoms, whereas for 298 K this clusterization threshold corresponds to 14 carbon atoms in the hydrocarbon chain. These values agree with the experimental data. © 2011 American Chemical Society

  1. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;

    1996-01-01

    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  2. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...

  3. SU(2)-Invariant Continuum Theory for an Unconventional Phase Transition in a Three-Dimensional Classical Dimer Model

    Science.gov (United States)

    Powell, Stephen; Chalker, J. T.

    2008-10-01

    We derive a continuum theory for the phase transition in a classical dimer model on the cubic lattice, observed in recent Monte Carlo simulations. Our derivation relies on the mapping from a three-dimensional classical problem to a two-dimensional quantum problem, by which the dimer model is related to a model of hard-core bosons on the kagome lattice. The dimer-ordering transition becomes a superfluid Mott insulator quantum phase transition at fractional filling, described by an SU(2)-invariant continuum theory.

  4. Two dimensional unstable scar statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  5. Two-Dimensional Vernier Scale

    Science.gov (United States)

    Juday, Richard D.

    1992-01-01

    Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.

  6. Renormalization of two-dimensional quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Casana S, Rodolfo; Dias, Sebastiao A

    1997-12-01

    The Schwinger model, when quantized in a gauge non-invariant way exhibits a dependence on a parameter {alpha} (the Jackiw-Rajaraman parameter) in a way which is analogous to the case involving chiral fermions (the chiral Schwinger model). For all values of a {alpha}1, there are divergences in the fermionic Green`s functions. We propose a regularization of the generating functional Z [{eta}, {eta}, J] and we use it to renormalize the theory to one loop level, in a semi-perturbative sense. At the end of the renormalization procedure we find an implicit dependence of {alpha} on the renormalization scale {mu}. (author) 26 refs.

  7. A quantum Monte Carlo study of the ground state chromium dimer

    CERN Document Server

    Hongo, Kenta

    2011-01-01

    We report variational and diffusion quantum Monte Carlo (VMC and DMC) studies of the binding curve of the ground-state chromium dimer. We employed various single determinant (SD) or multi-determinant (MD) wavefunctions multiplied by a Jastrow fuctor as a trial/guiding wavefunction. The molecular orbitals (MOs) in the SD were calculated using restricted or unrestricted Hartree-Fock or density functional theory (DFT) calculations where five commonly-used local (SVWN5), semi-local (PW91PW91 and BLYP), and hybrid (B1LYP and B3LYP) functionals were examined. The MD expansions were obtained from the complete-active space SCF, generalized valence bond, and unrestricted configuration interaction methods. We also adopted the UB3LYP-MOs to construct the MD expansion (UB3LYP-MD) and optimized their coefficients at the VMC level. In addition to the wavefunction dependence, we investigated the time-step bias in the DMC calculation and the effects of pseudopotentials and backflow transformation for the UB3LYP-SD case. Some...

  8. Unique self-assembly properties of a bridge-shaped protein dimer with quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianhao; Jiang, Pengju [Changzhou University, School of Pharmaceutical Engineering and Life Science (China); Gao, Liqian; Yu, Yongsheng; Lu, Yao [The Chinese University of Hong Kong, Department of Chemistry (Hong Kong, China) (China); Qiu, Lin; Wang, Cheli [Changzhou University, School of Pharmaceutical Engineering and Life Science (China); Xia, Jiang, E-mail: jiangxia@cuhk.edu.hk [The Chinese University of Hong Kong, Department of Chemistry (Hong Kong, China) (China)

    2013-09-15

    How protein-protein interaction affects protein-nanoparticle self-assembly is the key to the understanding of biomolecular coating of nanoparticle in biological fluids. However, the relationship between protein shape and its interaction with nanoparticles is still under-exploited because of lack of a well-conceived binding system and a method to detect the subtle change in the protein-nanoparticle assemblies. Noticing this unresolved need, we cloned and expressed a His-tagged SpeA protein that adopts a bridge-shaped dimer structure, and utilized a high-resolution capillary electrophoresis method to monitor assembly formation between the protein and quantum dots (QDs, 5 nm in diameter). We observed that the bridge-shaped structure rendered a low SpeA:QD stoichiometry at saturation. Also, close monitoring of imidazole (Im) displacement of surface-bound protein revealed a unique two-step process. High-concentration Im could displace surface-bound SpeA protein and form a transient QD-protein intermediate, through a kinetically controlled displacement process. An affinity-driven equilibrium step then followed, resulting in re-assembling of the QD-protein complex in about 1 h. Through a temporarily formed intermediate, Im causes a rearrangement of His-tagged proteins on the surface. Thus, our work showcases that the synergistic interplay between QD-His-tag interaction and protein-protein interaction can result in unique properties of protein-nanoparticle assembly for the first time.

  9. Calculation of generalized spin stiffness constant of strongly correlated doped quantum antiferromagnet on two-dimensional lattice and it's application to effective exchange constant for semi-itinerant systems

    Science.gov (United States)

    Bhattacharjee, Suraka; Chaudhury, Ranjan

    2016-11-01

    The generalized spin stiffness constant for a doped quantum antiferromagnet has been investigated both analytically and numerically as a function of doping concentration at zero temperature, based on the strongly correlated t-J model on two-dimensional square lattice. The nature of the theoretical dependence of the stiffness constant on doping shows a striking similarity with that of the effective exchange constant, obtained from the combination of other theoretical and experimental techniques in the low doping region. This correspondence once again establishes that spin stiffness can very well play the role of an effective exchange constant even in the strongly correlated semi-itinerant systems. Our theoretical plot of the stiffness constant against doping concentration in the whole doping region exhibits the various characteristic features like a possible crossover in the higher doping regions and persistence of short range ordering even for very high doping with the complete vanishing of spin stiffness occurring only close to 100% doping. Our results receive very good support from various other theoretical approaches and also brings out a few limitations of some of them. Our detailed analysis highlights the crucial importance of the study of spin stiffness for the proper understanding of magnetic correlations in a semi-itinerant magnetic system described by the strongly correlated t-J model. Moreover, our basic formalism can also be utilized for determination of the effective exchange constant and magnetic correlations for itinerant magnetic systems, in general in a novel way.

  10. Vibronic phenomena and exciton–vibrational interference in two-dimensional spectra of molecular aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Butkus, Vytautas; Valkunas, Leonas [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius (Lithuania); Center for Physical Sciences and Technology, Gostauto 9, 01108 Vilnius (Lithuania); Abramavicius, Darius, E-mail: darius.abramavicius@ff.vu.lt [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius (Lithuania)

    2014-01-21

    A general theory of electronic excitations in aggregates of molecules coupled to intramolecular vibrations and the harmonic environment is developed for simulation of the third-order nonlinear spectroscopy signals. It is applied in studies of the time-resolved two-dimensional coherent spectra of four characteristic model systems: weakly/strongly vibronically coupled molecular dimers interacting with high/low frequency intramolecular vibrations. The results allow us to (i) classify and define the typical spectroscopic features of vibronically coupled molecules, (ii) separate the cases, when the long-lived quantum coherences due to vibrational lifetime borrowing should be expected, (iii) define when the complete exciton–vibrational mixing occurs, and (iv) when separation of excitonic and vibrational coherences is possible.

  11. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...

  12. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  13. Two-dimensional capillary origami

    Science.gov (United States)

    Brubaker, N. D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.

  14. Two-dimensional cubic convolution.

    Science.gov (United States)

    Reichenbach, Stephen E; Geng, Frank

    2003-01-01

    The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.

  15. Quantum Disordered State without Frustration in the Double Layer Heisenberg Antiferromagnet —Dimer Expansion and Projector Monte Carlo Study—

    Science.gov (United States)

    Hida, Kazuo

    1992-03-01

    The quantum disordered state (QDOS) of the spin 1/2 double layer square lattice Heisenberg antiferromagnet is studied. Using the dimer expansion from the limit of the large interlayer coupling J', the staggered susceptibility χ, the antiferromagnetic structure factor Sπ and the antiferromagnetic correlation length ξ are calculated up to the 6-th order in the intralayer coupling J. The ratio analysis shows that the QDOS becomes unstable against the Néel ordering at J'/J≃2.56. The critical exponents are not inconsistent with the universality class of the 3-dimensional classical Heisenberg model, suggesting that our QDOS corresponds to that expected in the 2-dimensional square lattice Heisenberg antiferromagnet with unphysically small spin (<0.276). The results of the projector Monte Carlo simulation also confirms the dimer expansion results.

  16. Prediction of large-gap quantum spin hall insulator and Rashba-Dresselhaus effect in two-dimensional g-TIA (A = N, P, As, and Sb) monolayer films

    Institute of Scientific and Technical Information of China (English)

    Xinru Li[1; Ying Dai[1; Yandong Ma[1; Wei Wei[1; Lin Yu[1; Baibiao Huang[2

    2015-01-01

    A new family of two-dimensional (2D) topological insulators (TIs) comprising g-TIA (A = N, P, As, and Sb) monolayers constructed by T1 and group-V elements is predicted by first-principles calculations and molecular-dynamics (MD) simulations. The geometric stability, band inversion, nontrivial edge states, and electric polarity are investigated to predict the large-gap quantum spin Hall insulator and Rashba-Dresselhaus effects. The MD results reveal that the g-T1A monolayers remain stable even at room temperature. The g-T1A (A = As, Sb) monolayers become TIs under the influence of strong spin-orbit couplings with large bulk bandgaps of 131 and 268 meV, respectively. A single band inversion is observed in each g-T1A (A = As, Sb) monolayer, indicating a nontrivial topological nature. Furthermore, the topological edge states are described by introducing a sufficiently wide zigzag-nanoribbon. A Dirac point in the middle of the bulk gap connects the valence- and conduction-band edges. The Fermi velocity near the Dirac point with a linear band dispersion is -0.51 × 106 m/s, which is comparable to that of many other 2D nanomaterials. More importantly, owing to the broken inversion symmetry normal to the plane of the g-T1A films, a promising Rashba-Dresselhaus effect with the parameter up to 0.85 eV-A is observed in the g-T1A (A = As, Sb) monolayers. Our findings regarding 2D topological g-T1A monolayers with room-temperature bandgaps, intriguing topological edge states, and a promising Rashba-Dresselhaus effect are of fundamental value and suggest potential applications in nanoelectronic devices.

  17. Classifying Two-dimensional Hyporeductive Triple Algebras

    CERN Document Server

    Issa, A Nourou

    2010-01-01

    Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.

  18. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  19. Asymptotics for Two-dimensional Atoms

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip

    2012-01-01

    We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....

  20. Two-dimensional function photonic crystals

    CERN Document Server

    Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu

    2016-01-01

    In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.

  1. Two-dimensional gas of massless Dirac fermions in graphene.

    Science.gov (United States)

    Novoselov, K S; Geim, A K; Morozov, S V; Jiang, D; Katsnelson, M I; Grigorieva, I V; Dubonos, S V; Firsov, A A

    2005-11-10

    Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrödinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.

  2. 大粒子数二维硬核玻色子系统的量子蒙特卡罗模拟%Simulation of two-dimensional many-particle hardcore bosons by using the quantum Monte Carlo method

    Institute of Scientific and Technical Information of China (English)

    许莹; 李晋斌

    2012-01-01

    采用随机级数展开的量子蒙特卡罗方法研究二维硬核的玻色-赫伯德模型的热力学性质.首先通过算符变换将模型映射成为二维反铁磁准海森伯模型.变换后的模型比通常的海森伯模型多一项,该项正比于系统的格点总数N,对于大粒子数的系统,该项使模拟耗时指数增加,所以难以计算大粒子数系统.采用非局域操作循环更新后,这个困难可以得到很好的解决,可使粒子数总数增大到几千个.研究结果表明,粒子数密度在0—0.5范围内增大时,能量呈递减趋势,并趋于某一定值,随着正方晶格系统尺度增大,能量也随之增大;正方晶格系统尺度一定时,能量和磁化强度随着温度的升高而增大,化学势的变化对能量和磁化强度没有影响,能量随着正方晶格系统尺度增大而增大,磁化强度却随之减小;正方晶格系统尺度一定时,化学势的增大对比热没有影响,随着温度的升高比热出现先增大后减小的趋势,最后趋于某个值,达到平衡,而正方晶格系统尺度越大,比热曲线增大部分的趋势越大,减小部分的趋势也更明显,参照朗道超流理论,本文模拟的能量和比热曲线趋势与朗道二流体模型下HeⅡ的理论研究一致;不同正方晶格系统尺度的影响不大,均匀磁化率倒数在0—0.5(J/k_B)的低温范围内有很小的波动,J为耦合能,k_B为玻尔兹曼常数,温度在0.5—2(J/k_B)的范围内,均匀磁化率的倒数随着温度的升高而增大,且曲线的趋势显示了一种类似近藤行为.%In this paper,the stochastic series expansion quantum Monte Carlo method is employed to investigate the thermodynamic properties of hardcore Bose-Hubbard model in two-dimensional space.The two-dimensional hardcore Bose-Hubbard model can be mapped into the two-dimensional antiferromagnetic quasi-Heisenberg model under transform of bosonic operators.There is an additional term which is proportional

  3. Quantum-mechanical approach to predissociation of water dimers in the vibrational adiabatic representation: Importance of channel interactions

    Science.gov (United States)

    Mineo, H.; Niu, Y. L.; Kuo, J. L.; Lin, S. H.; Fujimura, Y.

    2015-08-01

    The results of application of the quantum-mechanical adiabatic theory to vibrational predissociation (VPD) of water dimers, (H2O)2 and (D2O)2, are presented. We consider the VPD processes including the totally symmetric OH mode of the dimer and the bending mode of the fragment. The VPD in the adiabatic representation is induced by breakdown of the vibrational adiabatic approximation, and two types of nonadiabatic coupling matrix elements are involved: one provides the VPD induced by the low-frequency dissociation mode and the other provides the VPD through channel interactions induced by the low-frequency modes. The VPD rate constants were calculated using the Fermi golden rule expression. A closed form for the nonadiabatic transition matrix element between the discrete and continuum states was derived in the Morse potential model. All of the parameters used were obtained from the potential surfaces of the water dimers, which were calculated by the density functional theory procedures. The VPD rate constants for the two processes were calculated in the non-Condon scheme beyond the so-called Condon approximation. The channel interactions in and between the initial and final states were taken into account, and those are found to increase the VPD rates by 3(1) orders of magnitude for the VPD processes in (H2O)2 ((D2O)2). The fraction of the bending-excited donor fragments is larger than that of the bending-excited acceptor fragments. The results obtained by quantum-mechanical approach are compared with both experimental and quasi-classical trajectory calculation results.

  4. Tracking dynamics of two-dimensional continuous attractor neural networks

    Science.gov (United States)

    Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si

    2009-12-01

    We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.

  5. Theories on Frustrated Electrons in Two-Dimensional Organic Solids

    Directory of Open Access Journals (Sweden)

    Chisa Hotta

    2012-08-01

    Full Text Available Two-dimensional quarter-filled organic solids are a promising class of materials to realize the strongly correlated insulating states called dimer Mott insulator and charge order. In their conducting layer, the molecules form anisotropic triangular lattices, harboring geometrical frustration effect, which could give rise to many interesting states of matter in the two insulators and in the metals adjacent to them. This review is concerned with the theoretical studies on such issue over the past ten years, and provides the systematic understanding on exotic metals, dielectrics, and spin liquids, which are the consequences of the competing correlation and fluctuation under frustration.

  6. Polarons and molecules in a two-dimensional Fermi gas

    DEFF Research Database (Denmark)

    Zöllner, Sascha; Bruun, Georg Morten; Pethick, C. J.

    2011-01-01

    We study an impurity atom in a two-dimensional Fermi gas using variational wave functions for (i) an impurity dressed by particle-hole excitations (polaron) and (ii) a dimer consisting of the impurity and a majority atom. In contrast to three dimensions, where similar calculations predict a sharp...... transition to a dimer state with increasing interspecies attraction, we show that the polaron Ansatz always gives a lower energy. However, the exact solution for a heavy impurity reveals that both a two-body bound state and distortions of the Fermi sea are crucial. This reflects the importance of particle......-hole pairs in lower dimensions and makes simple variational calculations unreliable. We show that the energy of an impurity gives important information about its dressing cloud, for which both Ansätze give inaccurate results....

  7. Predicting Two-Dimensional Silicon Carbide Monolayers.

    Science.gov (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

  8. Topological defects in two-dimensional crystals

    OpenAIRE

    Chen, Yong; Qi, Wei-Kai

    2008-01-01

    By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.

  9. Bond Operator Mean Field Approach to the Magnetization Plateaux in Quantum Antiferromagnets —Application to the S=1/2 Coupled Dimerized Zigzag Heisenberg Chains—

    Science.gov (United States)

    Hida, Kazuo; Shiino, Masaru; Chen, Wei

    2004-06-01

    The magnetization plateaux in two dimensionally coupled S=1/2 dimerized zigzag Heisenberg chains are investigated by means of the bond operator mean field approximation. In the absence of the interchain coupling, this model is known to have a plateau at half of the saturation magnetization accompanied by the spontaneous translational symmetry breakdown. The parameter regime in which the plateau appears is reproduced well within the present approximation. In the presence of the interchain coupling, this plateau is shown to be suppressed. This result is also supported by the numerical diagonalization calculation.

  10. Magnons in the quantum dimer antiferromagnet Sr{sub 3}Cr{sub 2}O{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Quintero-Castro, Diana Lucia; Lake, Bella [Helmholtz Zentrum Berlin, Berlin 14109 (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Berlin, D-10623 Berlin (Germany); Wheeler, Elisa Maria; Islam, Nazmul [Helmholtz Zentrum Berlin, Berlin 14109 (Germany)

    2011-07-01

    Sr{sub 3}Cr{sub 2}O{sub 8} consists of a three-dimensional frustrated arrangement of antiferromagnetically coupled pairs of Cr ions or dimers. The Cr ions are in the unusual 5+ valence state resulting in one electron in the 3d shell and a spin value of 1/2 while a tetrahedral crystal field ensures that this electron occupies the doubly degenerate eg orbitals. Below room temperature Sr{sub 3}Cr{sub 2}O{sub 8} undergoes a cooperative Jahn Teller distortion that lifts the orbital degeneracy so that only the 3z{sup 2}-r{sup 2} orbital is occupied. The low temperature structure is characterized by monoclinic crystal symmetry and antiferro-orbital ordering. The transition also gives rise to spatially anisotropic exchange paths and results in three crystal twins. We have grown single crystals of Sr{sub 3}Cr{sub 2}O{sub 8} and have performed DC susceptibility measurements, high field magnetisation and powder and single crystal inelastic neutron scattering experiments. The data reveals a singlet ground state and gapped triplet excitations consisting of three modes, coming from the three crystal twins. Using a random phase approximation, we have extracted the magnetic exchange interactions within the dimer and between dimers. Sr{sub 3}Cr{sub 2}O{sub 8} is a candidate for the study of the critical properties in the quantum phase transition as the magnetic field can drive a Bose Einstein condensation of magnons.

  11. Level crossings in complex two-dimensional potentials

    Indian Academy of Sciences (India)

    Qing-Hai Wang

    2009-08-01

    Two-dimensional $\\mathcal{PT}$-symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both potentials respect the $\\mathcal{PT}$ symmetry, the complex energy eigenvalues appear when level crossing happens between same parity eigenstates.

  12. Chronology Protection in Two-Dimensional Dilaton Gravity

    CERN Document Server

    Mishima, T; Mishima, Takashi; Nakamichi, Akika

    1994-01-01

    The global structure of 1 + 1 dimensional compact Universe is studied in two-dimensional model of dilaton gravity. First we give a classical solution corresponding to the spacetime in which a closed time-like curve appears, and show the instability of this spacetime due to the existence of matters. We also observe quantum version of such a spacetime having closed timelike curves never reappear unless the parameters are fine-tuned.

  13. Tricritical behavior in a two-dimensional field theory

    Science.gov (United States)

    Hamber, Herbert

    1980-05-01

    The critical behavior of a two-dimensional scalar Euclidean field theory with a potential term that allows for three minima is analyzed using an approximate position-space renormalization-group transformation on the equivalent quantum spin Hamiltonian. The global phase diagram shows a tricritical point separating a critical line from a line of first-order transitions. Other critical properties are examined, and good agreement is found with results on classical spin models belonging to the same universality class.

  14. Strongly interacting two-dimensional Dirac fermions

    NARCIS (Netherlands)

    Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.

    2009-01-01

    We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature

  15. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  16. Quantum path-integral molecular dynamics calculations of the dipole-bound state of the water dimer anion

    Science.gov (United States)

    Shiga, Motoyuki; Takayanagi, Toshiyuki

    2003-09-01

    The equilibrium structure of the negatively charged water dimer (H 2O) 2- has been studied using the path-integral molecular dynamics simulation. All the atomic motions as well as the excess electron were treated quantum mechanically, employing a semi-empirical model combining a water-water interatomic potential with an electron-water pseudopotential. It is demonstrated that the molecular structure of (H 2O) 2- is more flexible than that of (H 2O) 2; both the donor switching and donor-acceptor interchange can more effectively occur in (H 2O) 2- than in (H 2O) 2. We conclude that this floppy character is a result of the breakdown of the adiabatic Born-Oppenheimer picture.

  17. Quantum Mechanics/Molecular Mechanics Free Energy Maps and Nonadiabatic Simulations for a Photochemical Reaction in DNA: Cyclobutane Thymine Dimer.

    Science.gov (United States)

    Mendieta-Moreno, Jesús I; Trabada, Daniel G; Mendieta, Jesús; Lewis, James P; Gómez-Puertas, Paulino; Ortega, José

    2016-11-03

    The absorption of ultraviolet radiation by DNA may result in harmful genetic lesions that affect DNA replication and transcription, ultimately causing mutations, cancer, and/or cell death. We analyze the most abundant photochemical reaction in DNA, the cyclobutane thymine dimer, using hybrid quantum mechanics/molecular mechanics (QM/MM) techniques and QM/MM nonadiabatic molecular dynamics. We find that, due to its double helix structure, DNA presents a free energy barrier between nonreactive and reactive conformations leading to the photolesion. Moreover, our nonadiabatic simulations show that most of the photoexcited reactive conformations return to standard B-DNA conformations after an ultrafast nonradiative decay to the ground state. This work highlights the importance of dynamical effects (free energy, excited-state dynamics) for the study of photochemical reactions in biological systems.

  18. Determination of Band-filling Change in the Two-dimensional Organic Conductor, τ-(EDO-S,S-DMEDT-TTF)2(AuBr2)1+y, (y ≤ 0.875) by the Quantum Oscillation of Magnetoresistance

    Science.gov (United States)

    Yoshino, Harukazu; Murata, Keizo; Nakanishi, Tsutomu; Li, Lin; Choi, Eun Sang; Graf, David; Brooks, James S.; Nogami, Yoshio; Papavassiliou, George C.

    2005-01-01

    The effect of thermal treatment on the transport properties is studied for a two-dimensional organic conductor τ-(EDO-S,S-DMEDT-TTF)2(AuBr2)1+y, (y ≤ 0.875). The temperature dependence of the electric resistivity below room temperature was found to be changed from metallic down to low temperature to semiconducting by heating up to 420 K. One of the two frequencies of Shubnikov--de Haas oscillations are found to be different between the non-heated and heated parts from a single crystal, while no evidence of structural change in X-ray photograph was observed. The present result clearly shows that nominal valence or band filling can be controlled by simple thermal treatment for the quasi-two-dimensional organic metal. The mechanism of the change in the band filling is discussed in terms of anion decomposition.

  19. Partial chiral symmetry-breaking as a route to spectrally isolated topological defect states in two-dimensional artificial materials

    Science.gov (United States)

    Poli, Charles; Schomerus, Henning; Bellec, Matthieu; Kuhl, Ulrich; Mortessagne, Fabrice

    2017-06-01

    Bipartite quantum systems from the chiral universality classes admit topologically protected zero modes at point defects. However, in two-dimensional systems these states can be difficult to separate from compacton-like localized states that arise from flat bands, formed if the two sublattices support a different number of sites within a unit cell. Here we identify a natural reduction of chiral symmetry, obtained by coupling sites on the majority sublattice, which gives rise to spectrally isolated point-defect states, topologically characterized as zero modes supported by the complementary minority sublattice. We observe these states in a microwave realization of a dimerized Lieb lattice with next-nearest neighbour coupling, and also demonstrate topological mode selection via sublattice-staggered absorption.

  20. Supersymmetry and the constants of motion of the two-dimensional isotropic harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Torres del Castillo, G.F. [Departamento de Fisica Matematica, Instituto de Ciencias, Universidad Autonoma de Puebla, 72570 Puebla (Mexico); Tepper G, T. [Escuela de Ciencias, Departamento de Fisica y Matematicas, Universidad de Las Americas-Puebla, Santa Catarina Martir, 72820 Cholula, Puebla (Mexico)

    2002-07-01

    It is shown that the constants of motion of the two-dimensional isotropic harmonic oscillator not related to the rotational invariance of the Hamiltonian can be derived using the ideas of supersymmetric quantum mechanics. (Author)

  1. Interaction of two-dimensional magnetoexcitons

    Science.gov (United States)

    Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.

    2017-04-01

    We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .

  2. Quasi-two-dimensional complex plasma containing spherical particles and their binary agglomerates

    CERN Document Server

    Chaudhuri, M; Nosenko, V; Thomas, H M

    2015-01-01

    A new type of quasi-two-dimensional complex plasma system was observed which consisted of monodisperse microspheres and their binary agglomerations (dimers). The particles and their dimers levitated in a plasma sheath at slightly different heights and formed two distinct sublayers. The sys- tem did not crystallize and may be characterized as disordered solid. The dimers were identified based on their characteristic appearance in defocused images, i.e., rotating interference fringe pat- terns. The in-plane and inter-plane particle separations exhibit nonmonotonic dependence on the discharge pressure which agrees well with theoretical predictions.

  3. Two Dimensional Plasmonic Cavities on Moire Surfaces

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla

    2010-03-01

    We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.

  4. Two-dimensional function photonic crystals

    Science.gov (United States)

    Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng

    2017-01-01

    In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.

  5. Two-Dimensional Planetary Surface Lander

    Science.gov (United States)

    Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.

    2014-06-01

    A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.

  6. Direct three-dimensional ordering of quasi-one-dimensional quantum dimer system near critical fields

    Science.gov (United States)

    Matsushita, Taku; Hori, Nobuyoshi; Takata, Seiya; Wada, Nobuo; Amaya, Naoki; Hosokoshi, Yuko

    2017-01-01

    Dimensionalities of X X Z spin orderings or degenerate hard-core bosons in a quasi-one-dimensional (1D) dimer system are examined by the ac susceptibility and specific heat of antiferromagnetic bond-alternating chains in pentafluorophenyl nitronyl nitroxide (F5PNN ). At intermediate fields in the gapless region, the 1D short-range order (SRO) corresponding to the Tomonaga-Luttinger liquid and three-dimensional (3D) long-range order (LRO BEC) at lower temperatures are separately observed, as expected from the small interchain interaction. In contrast, a definite region around the critical field was established where 3D LRO occurs without the development of 1D SRO at higher temperatures.

  7. Entanglement Entropy in Two-Dimensional String Theory.

    Science.gov (United States)

    Hartnoll, Sean A; Mazenc, Edward A

    2015-09-18

    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.

  8. Topological states in two-dimensional hexagon lattice bilayers

    Science.gov (United States)

    Zhang, Ming-Ming; Xu, Lei; Zhang, Jun

    2016-10-01

    We investigate the topological states of the two-dimensional hexagon lattice bilayer. The system exhibits a quantum valley Hall (QVH) state when the interlayer interaction t⊥ is smaller than the nearest neighbor hopping energy t, and then translates to a trivial band insulator state when t⊥ / t > 1. Interestingly, the system is found to be a single-edge QVH state with t⊥ / t = 1. The topological phase transition also can be presented via changing bias voltage and sublattice potential in the system. The QVH states have different edge modes carrying valley current but no net charge current. The bias voltage and external electric field can be tuned easily in experiments, so the present results will provide potential application in valleytronics based on the two-dimensional hexagon lattice.

  9. Interpolation by two-dimensional cubic convolution

    Science.gov (United States)

    Shi, Jiazheng; Reichenbach, Stephen E.

    2003-08-01

    This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.

  10. TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)

    2015-11-20

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.

  11. Two dimensional topology of cosmological reionization

    CERN Document Server

    Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan

    2015-01-01

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.

  12. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  13. Matching Two-dimensional Gel Electrophoresis' Spots

    DEFF Research Database (Denmark)

    Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza

    2012-01-01

    This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...

  14. Mobility anisotropy of two-dimensional semiconductors

    Science.gov (United States)

    Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong

    2016-12-01

    The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.

  15. Towards two-dimensional search engines

    OpenAIRE

    Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.

    2011-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...

  16. Two-dimensionally confined topological edge states in photonic crystals

    Science.gov (United States)

    Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-11-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.

  17. Two-Dimensionally Confined Topological Edge States in Photonic Crystals

    CERN Document Server

    Barik, Sabyasachi; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-01-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.

  18. Electronic Transmission Properties of Two-Dimensional Quasi-Lattice

    Institute of Scientific and Technical Information of China (English)

    侯志林; 傅秀军; 刘有延

    2002-01-01

    In the framework of the tight binding model, the electronic transmission properties of two-dimensional Penrose lattices with free boundary conditions are studied using the generalized eigenfunction method (Phys. Rev. B 60(1999)13444). The electronic transmission coefficients for Penrose lattices with different sizes and widths are calculated, and the result shows strong energy dependence because of the quasiperiodic structure and quantum coherent effect. Around the Fermi level E = 0, there is an energy region with zero transmission amplitudes,which suggests that the studied systems are insulating. The spatial distributions of several typical electronic states with different transmission coefficients are plotted to display the propagation process.

  19. Two-dimensional chiral topological superconductivity in Shiba lattices

    Science.gov (United States)

    Li, Jian; Neupert, Titus; Wang, Zhijun; MacDonald, A. H.; Yazdani, A.; Bernevig, B. Andrei

    2016-07-01

    The chiral p-wave superconductor is the archetypal example of a state of matter that supports non-Abelian anyons, a highly desired type of exotic quasiparticle. With this, it is foundational for the distant goal of building a topological quantum computer. While some candidate materials for bulk chiral superconductors exist, they are subject of an ongoing debate about their actual paring state. Here we propose an alternative route to chiral superconductivity, consisting of the surface of an ordinary superconductor decorated with a two-dimensional lattice of magnetic impurities. We furthermore identify a promising experimental platform to realize this proposal.

  20. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Kronecker Product of Two-dimensional Arrays

    Institute of Scientific and Technical Information of China (English)

    Lei Hu

    2006-01-01

    Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.

  2. Two-Dimensional Toda-Heisenberg Lattice

    Directory of Open Access Journals (Sweden)

    Vadim E. Vekslerchik

    2013-06-01

    Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.

  3. A novel two dimensional particle velocity sensor

    NARCIS (Netherlands)

    Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.

    2013-01-01

    In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica

  4. Two-dimensional microstrip detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.

  5. Two-dimensional magma-repository interactions

    NARCIS (Netherlands)

    Bokhove, O.

    2001-01-01

    Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of

  6. Two-dimensional subwavelength plasmonic lattice solitons

    CERN Document Server

    Ye, F; Hu, B; Panoiu, N C

    2010-01-01

    We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai

  7. A two-dimensional Dirac fermion microscope

    DEFF Research Database (Denmark)

    Bøggild, Peter; Caridad, Jose; Stampfer, Christoph

    2017-01-01

    in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...

  8. Two-dimensional atom localization induced by a squeezed vacuum

    Science.gov (United States)

    Wang, Fei; Xu, Jun

    2016-10-01

    A scheme of two-dimensional (2D) atom localization induced by a squeezed vacuum is proposed, in which the three-level V-type atoms interact with two classical standing-wave fields. It is found that when the environment is changed from an ordinary vacuum to a squeezed vacuum, the 2D atom localization is realized by detecting the position-dependent resonance fluorescence spectrum. For comparison, we demonstrate that the atom localization originating from the quantum interference effect is distinct from that induced by a squeezed vacuum. Furthermore, the combined effects of the squeezed vacuum and quantum interference are also discussed under appropriate conditions. The internal physical mechanism is analyzed in terms of dressed-state representation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574179 and 11204099) and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFC1148).

  9. Experimental evidence for a two-dimensional quantized Hall insulator

    Science.gov (United States)

    Hilke, M.; Shahar, D.; Song, S. H.; Tsui, D. C.; Xie, Y. H.; Monroe, Don

    1998-10-01

    The general theoretical definition of an insulator is a material in which the conductivity vanishes at the absolute zero of temperature. In classical insulators, such as materials with a band gap, vanishing conductivities lead to diverging resistivities. But other insulators can show more complex behaviour, particularly in the presence of a high magnetic field, where different components of the resistivity tensor can display different behaviours: the magnetoresistance diverges as the temperature approaches absolute zero, but the transverse (Hall) resistance remains finite. Such a system is known as a Hall insulator. Here we report experimental evidence for a quantized Hall insulator in a two-dimensional electron system-confined in a semiconductor quantum well. The Hall resistance is quantized in the quantum unit of resistance h/e2, where h is Planck's constant and e the electronic charge. At low fields, the sample reverts to being a normal Hall insulator.

  10. Molecular Orbital Rule for Quantum Interference in Weakly Coupled Dimers: Low-Energy Giant Conductivity Switching Induced by Orbital Level Crossing.

    Science.gov (United States)

    Nozaki, Daijiro; Lücke, Andreas; Schmidt, Wolf Gero

    2017-02-16

    Destructive quantum interference (QI) in molecular junctions has attracted much attention in recent years. It can tune the conductance of molecular devices dramatically, which implies numerous potential applications in thermoelectric and switching applications. There are several schemes that address and rationalize QI in single molecular devices. Dimers play a particular role in this respect because the QI signal may disappear, depending on the dislocation of monomers. We derive a simple rule that governs the occurrence of QI in weakly coupled dimer stacks of both alternant and nonalternant polyaromatic hydrocarbons (PAHs) and extends the Tada-Yoshizawa scheme. Starting from the Green's function formalism combined with the molecular orbital expansion approach, it is shown that QI-induced antiresonances and their energies can be predicted from the amplitudes of the respective monomer terminal molecular orbitals. The condition is illustrated for a toy model consisting of two hydrogen molecules and applied within density functional calculations to alternant dimers of oligo(phenylene-ethynylene) and nonalternant PAHs. Minimal dimer structure modifications that require only a few millielectronvolts and lead to an energy crossing of the essentially preserved monomer orbitals are shown to result in giant conductance switching ratios.

  11. Non-classical photon correlation in a two-dimensional photonic lattice

    CERN Document Server

    Gao, Jun; Lin, Xiao-Feng; Jiao, Zhi-Qiang; Feng, Zhen; Zhou, Zheng; Gao, Zhen-Wei; Xu, Xiao-Yun; Chen, Yuan; Tang, Hao; Jin, Xian-Min

    2016-01-01

    Quantum interference and quantum correlation, as two main features of quantum optics, play an essential role in quantum information applications, such as multi-particle quantum walk and boson sampling. While many experimental demonstrations have been done in one-dimensional waveguide arrays, it remains unexplored in higher dimensions due to tight requirement of manipulating and detecting photons in large-scale. Here, we experimentally observe non-classical correlation of two identical photons in a fully coupled two-dimensional structure, i.e. photonic lattice manufactured by three-dimensional femtosecond laser writing. Photon interference consists of 36 Hong-Ou-Mandel interference and 9 bunching. The overlap between measured and simulated distribution is up to $0.890\\pm0.001$. Clear photon correlation is observed in the two-dimensional photonic lattice. Combining with controllably engineered disorder, our results open new perspectives towards large-scale implementation of quantum simulation on integrated phot...

  12. Structural and Thermodynamic Properties of the Argon Dimer: A Computational Chemistry Exercise in Quantum and Statistical Mechanics

    Science.gov (United States)

    Halpern, Arthur M.

    2010-01-01

    Using readily available computational applications and resources, students can construct a high-level ab initio potential energy surface (PES) for the argon dimer. From this information, they can obtain detailed molecular constants of the dimer, including its dissociation energy, which compare well with experimental determinations. Using both…

  13. Quantum crystals and spin chains

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, Robbert [KdV Institute for Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam (Netherlands); Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Orlando, Domenico [Institut de Physique, Universite de Neuchatel, Rue Breguet 1, CH-2000 Neuchatel (Switzerland); Reffert, Susanne [Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)], E-mail: sreffert@gmail.com

    2009-04-21

    In this article, we discuss the quantum version of the melting crystal corner in one, two, and three dimensions, generalizing the treatment for the quantum dimer model. Using a mapping to spin chains we find that the two-dimensional case (growth of random partitions) is integrable and leads directly to the Hamiltonian of the Heisenberg XXZ ferromagnet. The three-dimensional case of the melting crystal corner is described in terms of a system of coupled XXZ spin chains. We give a conjecture for its mass gap and analyze the system numerically.

  14. Quantum crystals and spin chains

    Science.gov (United States)

    Dijkgraaf, Robbert; Orlando, Domenico; Reffert, Susanne

    2009-04-01

    In this article, we discuss the quantum version of the melting crystal corner in one, two, and three dimensions, generalizing the treatment for the quantum dimer model. Using a mapping to spin chains we find that the two-dimensional case (growth of random partitions) is integrable and leads directly to the Hamiltonian of the Heisenberg XXZ ferromagnet. The three-dimensional case of the melting crystal corner is described in terms of a system of coupled XXZ spin chains. We give a conjecture for its mass gap and analyze the system numerically.

  15. Electronics based on two-dimensional materials.

    Science.gov (United States)

    Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi

    2014-10-01

    The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.

  16. Two-dimensional ranking of Wikipedia articles

    Science.gov (United States)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  17. Towards two-dimensional search engines

    CERN Document Server

    Ermann, Leonardo; Shepelyansky, Dima L

    2011-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.

  18. Toward two-dimensional search engines

    Science.gov (United States)

    Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.

    2012-07-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.

  19. Two-Dimensional Scheduling: A Review

    Directory of Open Access Journals (Sweden)

    Zhuolei Xiao

    2013-07-01

    Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.

  20. Two dimensional fermions in four dimensional YM

    CERN Document Server

    Narayanan, R

    2009-01-01

    Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.

  1. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  2. String breaking in two-dimensional QCD

    CERN Document Server

    Hornbostel, K J

    1999-01-01

    I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.

  3. Two-dimensional supramolecular electron spin arrays.

    Science.gov (United States)

    Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya

    2013-05-07

    A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Two dimensional echocardiographic detection of intraatrial masses.

    Science.gov (United States)

    DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S

    1981-11-01

    With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.

  5. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization.

    Science.gov (United States)

    Kissel, Patrick; Murray, Daniel J; Wulftange, William J; Catalano, Vincent J; King, Benjamin T

    2014-09-01

    In contrast to the wide number and variety of available synthetic routes to conventional linear polymers, the synthesis of two-dimensional polymers and unambiguous proof of their structure remains a challenge. Two-dimensional polymers-single-layered polymers that form a tiling network in exactly two dimensions-have potential for use in nanoporous membranes and other applications. Here, we report the preparation of a fluorinated hydrocarbon two-dimensional polymer that can be exfoliated into single sheets, and its characterization by high-resolution single-crystal X-ray diffraction analysis. The procedure involves three steps: preorganization in a lamellar crystal of a rigid monomer bearing three photoreactive arms, photopolymerization of the crystalline monomers by [4 + 4] cycloaddition, and isolation of individual two-dimensional polymer sheets. This polymer is a molecularly thin (~1 nm) material that combines precisely defined monodisperse pores of ~9 Å with a high pore density of 3.3 × 10(13) pores cm(-2). Atomic-resolution single-crystal X-ray structures of the monomer, an intermediate dimer and the final crystalline two-dimensional polymer were obtained and prove the single-crystal-to-single-crystal nature and molecular precision of the two-dimensional photopolymerization.

  6. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Sergei D., E-mail: sergei.ivanov@unirostock.de; Grant, Ian M.; Marx, Dominik [Lehrstuhl für Theoretische Chemie, Ruhr–Universität Bochum, 44780 Bochum (Germany)

    2015-09-28

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.

  7. Universal Entanglement Entropy in 2D Conformal Quantum Critical Points

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Benjamin; Mulligan, Michael; Fradkin, Eduardo; Kim, Eun-Ah

    2008-12-05

    We study the scaling behavior of the entanglement entropy of two dimensional conformal quantum critical systems, i.e. systems with scale invariant wave functions. They include two-dimensional generalized quantum dimer models on bipartite lattices and quantum loop models, as well as the quantum Lifshitz model and related gauge theories. We show that, under quite general conditions, the entanglement entropy of a large and simply connected sub-system of an infinite system with a smooth boundary has a universal finite contribution, as well as scale-invariant terms for special geometries. The universal finite contribution to the entanglement entropy is computable in terms of the properties of the conformal structure of the wave function of these quantum critical systems. The calculation of the universal term reduces to a problem in boundary conformal field theory.

  8. Weakly disordered two-dimensional Frenkel excitons

    Science.gov (United States)

    Boukahil, A.; Zettili, Nouredine

    2004-03-01

    We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.

  9. Two-dimensional photonic crystal surfactant detection.

    Science.gov (United States)

    Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A

    2012-08-07

    We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.

  10. Theory of two-dimensional transformations

    OpenAIRE

    Kanayama, Yutaka J.; Krahn, Gary W.

    1998-01-01

    The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...

  11. Two-dimensional ranking of Wikipedia articles

    CERN Document Server

    Zhirov, A O; Shepelyansky, D L

    2010-01-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  12. Mobility anisotropy of two-dimensional semiconductors

    CERN Document Server

    Lang, Haifeng; Liu, Zhirong

    2016-01-01

    The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.

  13. Sums of two-dimensional spectral triples

    DEFF Research Database (Denmark)

    Christensen, Erik; Ivan, Cristina

    2007-01-01

    construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....

  14. Dynamics of film. [two dimensional continua theory

    Science.gov (United States)

    Zak, M.

    1979-01-01

    The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.

  15. Wafer-scale controlled exfoliation of metal organic vapor phase epitaxy grown InGaN/GaN multi quantum well structures using low-tack two-dimensional layered h-BN

    Energy Technology Data Exchange (ETDEWEB)

    Ayari, Taha; Li, Xin; Voss, Paul L.; Ougazzaden, Abdallah, E-mail: aougazza@georgiatech-metz.fr [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Sundaram, Suresh; El Gmili, Youssef [Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Salvestrini, Jean Paul [Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France)

    2016-04-25

    Recent advances in epitaxial growth have led to the growth of III-nitride devices on 2D layered h-BN. This advance has the potential for wafer-scale transfer to arbitrary substrates, which could improve the thermal management and would allow III-N devices to be used more flexibly in a broader range of applications. We report wafer scale exfoliation of a metal organic vapor phase epitaxy grown InGaN/GaN Multi Quantum Well (MQW) structure from a 5 nm thick h-BN layer that was grown on a 2-inch sapphire substrate. The weak van der Waals bonds between h-BN atomic layers break easily, allowing the MQW structure to be mechanically lifted off from the sapphire substrate using a commercial adhesive tape. This results in the surface roughness of only 1.14 nm on the separated surface. Structural characterizations performed before and after the lift-off confirm the conservation of structural properties after lift-off. Cathodoluminescence at 454 nm was present before lift-off and 458 nm was present after. Electroluminescence near 450 nm from the lifted-off structure has also been observed. These results show that the high crystalline quality ultrathin h-BN serves as an effective sacrificial layer—it maintains performance, while also reducing the GaN buffer thickness and temperature ramps as compared to a conventional two-step growth method. These results support the use of h-BN as a low-tack sacrificial underlying layer for GaN-based device structures and demonstrate the feasibility of large area lift-off and transfer to any template, which is important for industrial scale production.

  16. Two-dimensional gauge theoretic supergravities

    Science.gov (United States)

    Cangemi, D.; Leblanc, M.

    1994-05-01

    We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.

  17. Two-Dimensional Theory of Scientific Representation

    Directory of Open Access Journals (Sweden)

    A Yaghmaie

    2013-03-01

    Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.

  18. Two-dimensional shape memory graphene oxide

    Science.gov (United States)

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-06-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.

  19. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuanhu

    1997-09-17

    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.

  20. Unpacking of a Crumpled Wire from Two-Dimensional Cavities.

    Directory of Open Access Journals (Sweden)

    Thiago A Sobral

    Full Text Available The physics of tightly packed structures of a wire and other threadlike materials confined in cavities has been explored in recent years in connection with crumpled systems and a number of topics ranging from applications to DNA packing in viral capsids and surgical interventions with catheter to analogies with the electron gas at finite temperature and with theories of two-dimensional quantum gravity. When a long piece of wire is injected into two-dimensional cavities, it bends and originates in the jammed limit a series of closed structures that we call loops. In this work we study the extraction of a crumpled tightly packed wire from a circular cavity aiming to remove loops individually. The size of each removed loop, the maximum value of the force needed to unpack each loop, and the total length of the extracted wire were measured and related to an exponential growth and a mean field model consistent with the literature of crumpled wires. Scaling laws for this process are reported and the relationship between the processes of packing and unpacking of wire is commented upon.

  1. Unpacking of a Crumpled Wire from Two-Dimensional Cavities.

    Science.gov (United States)

    Sobral, Thiago A; Gomes, Marcelo A F; Machado, Núbia R; Brito, Valdemiro P

    2015-01-01

    The physics of tightly packed structures of a wire and other threadlike materials confined in cavities has been explored in recent years in connection with crumpled systems and a number of topics ranging from applications to DNA packing in viral capsids and surgical interventions with catheter to analogies with the electron gas at finite temperature and with theories of two-dimensional quantum gravity. When a long piece of wire is injected into two-dimensional cavities, it bends and originates in the jammed limit a series of closed structures that we call loops. In this work we study the extraction of a crumpled tightly packed wire from a circular cavity aiming to remove loops individually. The size of each removed loop, the maximum value of the force needed to unpack each loop, and the total length of the extracted wire were measured and related to an exponential growth and a mean field model consistent with the literature of crumpled wires. Scaling laws for this process are reported and the relationship between the processes of packing and unpacking of wire is commented upon.

  2. Photodetectors based on graphene, other two-dimensional materials and hybrid systems.

    Science.gov (United States)

    Koppens, F H L; Mueller, T; Avouris, Ph; Ferrari, A C; Vitiello, M S; Polini, M

    2014-10-01

    Graphene and other two-dimensional materials, such as transition metal dichalcogenides, have rapidly established themselves as intriguing building blocks for optoelectronic applications, with a strong focus on various photodetection platforms. The versatility of these material systems enables their application in areas including ultrafast and ultrasensitive detection of light in the ultraviolet, visible, infrared and terahertz frequency ranges. These detectors can be integrated with other photonic components based on the same material, as well as with silicon photonic and electronic technologies. Here, we provide an overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of different two-dimensional crystals or of two-dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides.

  3. Existence and Stability of Two-Dimensional Compact-Like Discrete Breathers in Discrete Two-Dimensional Monatomic Square Lattices

    Institute of Scientific and Technical Information of China (English)

    XU Quan; TIAN Qiang

    2007-01-01

    Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.

  4. Flat Chern band in a two-dimensional organometallic framework.

    Science.gov (United States)

    Liu, Zheng; Wang, Zheng-Fei; Mei, Jia-Wei; Wu, Yong-Shi; Liu, Feng

    2013-03-01

    By combining exotic band dispersion with nontrivial band topology, an interesting type of band structure, namely, the flat Chern band, has recently been proposed to spawn high-temperature fractional quantum Hall states. Despite the proposal of several theoretical lattice models, however, it remains doubtful whether such a "romance of flatland" could exist in a real material. Here, we present a first-principles design of a two-dimensional indium-phenylene organometallic framework that realizes a nearly flat Chern band right around the Fermi level by combining lattice geometry, spin-orbit coupling, and ferromagnetism. An effective four-band model is constructed to reproduce the first-principles results. Our design, in addition, provides a general strategy to synthesize topologically nontrivial materials by virtue of organic chemistry and nanotechnology.

  5. Superfluid phase transition in two-dimensional excitonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Apinyan, V.; Kopeć, T.K., E-mail: kopec@int.pan.wroc.pl

    2014-03-01

    We study the superfluid phase transition in the two-dimensional (2D) excitonic system. Employing the extended Falicov–Kimball model (EFKM) and considering the local quantum correlations in the system composed of conduction band electrons and valence band holes we demonstrate the existence of the excitonic insulator (EI) state in the system. We show that at very low temperatures, the particle phase stiffness in the pure-2D excitonic system, governed by the non-local cross correlations, is responsible for the vortex–antivortex binding phase-field state, known as the Berezinskii–Kosterlitz–Thouless (BKT) superfluid state. We demonstrate that the existence of excitonic insulator phase is a necessary prerequisite, leading to quasi-long-range order in the 2D excitonic system.

  6. Computationally Driven Two-Dimensional Materials Design: What Is Next?

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jie [Materials Science; Lany, Stephan [Materials Science; Qi, Yue [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States

    2017-07-17

    Two-dimensional (2D) materials offer many key advantages to innovative applications, such as spintronics and quantum information processing. Theoretical computations have accelerated 2D materials design. In this issue of ACS Nano, Kumar et al. report that ferromagnetism can be achieved in functionalized nitride MXene based on first-principles calculations. Their computational results shed light on a potentially vast group of materials for the realization of 2D magnets. In this Perspective, we briefly summarize the promising properties of 2D materials and the role theory has played in predicting these properties. In addition, we discuss challenges and opportunities to boost the power of computation for the prediction of the 'structure-property-process (synthesizability)' relationship of 2D materials.

  7. Isolated structures in two-dimensional optical superlattice

    Science.gov (United States)

    Zou, Xin-Hao; Yang, Bao-Guo; Xu, Xia; Tang, Peng-Ju; Zhou, Xiao-Ji

    2017-10-01

    Overlaying commensurate optical lattices with various configurations called superlattices can lead to exotic lattice topologies and, in turn, a discovery of novel physics. In this study, by overlapping the maxima of lattices, a new isolated structure is created, while the interference of minima can generate various "sublattice" patterns. Three different kinds of primitive lattices are used to demonstrate isolated square, triangular, and hexagonal "sublattice" structures in a two-dimensional optical superlattice, the patterns of which can be manipulated dynamically by tuning the polarization, frequency, and intensity of laser beams. In addition, we propose the method of altering the relative phase to adjust the tunneling amplitudes in "sublattices". Our configurations provide unique opportunities to study particle entanglement in "lattices" formed by intersecting wells and to implement special quantum logic gates in exotic lattice geometries.

  8. Proximity Induced Superconducting Properties in One and Two Dimensional Semiconductors

    DEFF Research Database (Denmark)

    Kjærgaard, Morten

    a voltage is passed through the Josephson junction, we observe multiple Andreev reflections and preliminary results point to a highly transmissive interface between the 2D electron gas and the superconductor. In the theoretical section we demonstrate analytically and numerically, that in a 1D nanowire......This report is concerned with the properties of one and two dimensional semiconducting materials when brought into contact with a superconductor. Experimentally we study the 2D electron gas in an InGaAs/InAs heterostructure with aluminum grown in situ on the surface, and theoretically we show...... that a superconducting 1D nanowire can harbor Majorana bound states in the absence of spin–orbit coupling. We fabricate and measure micrometer–sized mesoscopic devices demonstrating the inheritance of superconducting properties in the 2D electron gas. By placing a quantum point contact proximal to the interface between...

  9. Quasi-Two-Dimensional Magnetism in Co-Based Shandites

    Science.gov (United States)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2016-06-01

    We report quasi-two-dimensional (Q2D) itinerant electron magnetism in the layered Co-based shandites. Comprehensive magnetization measurements were performed using single crystals of Co3Sn2-xInxS2 (0 ≤ x ≤ 2) and Co3-yFeySn2S2 (0 ≤ y ≤ 0.5). The magnetic parameters of both systems; the Curie temperature TC, effective moment peff and spontaneous moment ps; exhibit almost identical variations against the In- and Fe-concentrations, indicating significance of the electron count on the magnetism in the Co-based shandite. The ferromagnetic-nonmagnetic quantum phase transition is found around xc ˜ 0.8. Analysis based on the extended Q2D spin fluctuation theory clearly reveals the highly Q2D itinerant electron character of the ferromagnetism in the Co-based shandites.

  10. Isolated Structures in Two-Dimensional Optical Superlattice

    CERN Document Server

    Zou, Xinhao; Xu, Xia; Tang, Pengju; Zhou, Xiaoji

    2016-01-01

    Overlaying commensurate optical lattices with various configurations called superlattices can lead to exotic lattice topologies and, in turn, a discovery of novel physics. In this study, by overlapping the maxima of lattices, a new isolated structure is created, while the interference of minima can generate various "sublattice" patterns. Three different kinds of primitive lattices are used to demonstrate isolated square, triangular, and hexagonal "sublattice" structures in a two-dimensional optical superlattice, the patterns of which can be manipulated dynamically by tuning the polarization, frequency, and intensity of laser beams. In addition, we propose the method of altering the relative phase to adjust the tunneling amplitudes in "sublattices." Our configurations provide unique opportunities to study particle entanglement in "lattices" formed by intersecting wells and to implement special quantum logic gates in exotic lattice geometries.

  11. Curved Two-Dimensional Electron Systems in Semiconductor Nanoscrolls

    Science.gov (United States)

    Peters, Karen; Mendach, Stefan; Hansen, Wolfgang

    The perfect control of strain and layer thickness in epitaxial semiconductor bilayers is employed to fabricate semiconductor nanoscrolls with precisely adjusted scroll diameter ranging between a few nanometers and several tens of microns. Furthermore, semiconductor heteroepitaxy allows us to incorporate quantum objects such as quantum wells, quantum dots, or modulation doped low-dimensional carrier systems into the nanoscrolls. In this review, we summarize techniques that we have developed to fabricate semiconductor nanoscrolls with well-defined location, orientation, geometry, and winding number. We focus on magneto-transport studies of curved two-dimensional electron systems in such nanoscrolls. An externally applied magnetic field results in a strongly modulated normal-to-surface component leading to magnetic barriers, reflection of edge channels, and local spin currents. The observations are compared to finite-element calculations and discussed on the basis of simple models taking into account the influence of a locally modulated state density on the conductivity. In particular, it is shown that the observations in high magnetic fields can be well described considering the transport in edge channels according to the Landauer-Büttiker model if additional magnetic field induced channels aligned along magnetic barriers are accounted for.

  12. Energy relaxation studies in In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As two-dimensional electron gases and quantum wires

    Science.gov (United States)

    Prasad, C.; Ferry, D. K.; Wieder, H. H.

    2004-04-01

    We present Joule heating measurements carried out over a wide temperature range on two-dimensional electron gases (2DEGs) and quantum wires of varying widths fabricated in an In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As heterostructure system that has a 25 nm wide In0.53Ga0.47As quantum well region. The power dissipated per electron is extracted and the electron-phonon coupling processes in these systems are studied. The temperature decay of the power loss at the 2DEG points towards unscreened piezoelectric coupling to the acoustic modes over temperatures of 1-30 K, with boundary scattering in the ohmic contacts gaining importance at very low temperatures. In the wires, we observe different behaviour and the effect of wire width and carrier density on the observed energy-loss rates. Possible phonon confinement and exponential suppression in these structures are also looked at.

  13. A neutron diffraction study from 6 to 293 K and a macroscopic-scale quantum theory of the hydrogen bonded dimers in the crystal of benzoic acid

    CERN Document Server

    Fillaux, François

    2011-01-01

    The crystal of benzoic acid is comprised of tautomeric centrosymmetric dimers linked through bistable hydrogen bonds. Statistical disorder of the bonding protons is excluded by neutron diffraction from 6 K to 293 K. In addition to diffraction data, vibrational spectra and relaxation rates measured with solid-state-NMR and quasi-elastic neutron scattering are consistent with wave-like, rather than particle-like protons. We present a macroscopic-scale quantum theory for the bonding protons represented by a periodic lattice of fermions. The adiabatic separation, the exclusion principle, and the antisymmetry postulate yield a static lattice-state immune to decoherence. According to the theory of quantum measurements, vibrational spectroscopy and relaxometry involve realizations of decoherence-free Bloch states for nonlocal symmetry species that did not exist before the measurement. The eigen states are fully determined by three temperature-independent parameters which are effectively measured: the energy differen...

  14. Two dimensional NMR of liquids and oriented molecules

    Energy Technology Data Exchange (ETDEWEB)

    Gochin, M.

    1987-02-01

    Chapter 1 discusses the quantum mechanical formalism used for describing the interaction between magnetic dipoles that dictates the appearance of a spectrum. The NMR characteristics of liquids and liquid crystals are stressed. Chapter 2 reviews the theory of multiple quantum and two dimensional NMR. Properties of typical spectra and phase cycling procedures are discussed. Chapter 3 describes a specific application of heteronuclear double quantum coherence to the removal of inhomogeneous broadening in liquids. Pulse sequences have been devised which cancel out any contribution from this inhomogeneity to the final spectrum. An interpretation of various pulse sequences for the case of /sup 13/C and /sup 1/H is given, together with methods of spectral editing by removal or retention of the homo- or heteronuclear J coupling. The technique is applied to a demonstration of high resolution in both frequency and spatial dimensions with a surface coil. In Chapter 4, multiple quantum filtered 2-D spectroscopy is demonstrated as an effective means of studying randomly deuterated molecules dissolved in a nematic liquid crystal. Magnitudes of dipole coupling constants have been determined for benzene and hexane, and their signs and assignments found from high order multiple quantum spectra. For the first time, a realistic impression of the conformation of hexane can be estimated from these results. Chapter 5 is a technical description of the MDB DCHIB-DR11W parallel interface which has been set up to transfer data between the Data General Nova 820 minicomputer, interfaced to the 360 MHz spectrometer, and the Vax 11/730. It covers operation of the boards, physical specifications and installation, and programs for testing and running the interface.

  15. Electrical Oscillations in Two-Dimensional Microtubular Structures

    Science.gov (United States)

    Cantero, María Del Rocío; Perez, Paula L.; Smoler, Mariano; Villa Etchegoyen, Cecilia; Cantiello, Horacio F.

    2016-06-01

    Microtubules (MTs) are unique components of the cytoskeleton formed by hollow cylindrical structures of αβ tubulin dimeric units. The structural wall of the MT is interspersed by nanopores formed by the lateral arrangement of its subunits. MTs are also highly charged polar polyelectrolytes, capable of amplifying electrical signals. The actual nature of these electrodynamic capabilities remains largely unknown. Herein we applied the patch clamp technique to two-dimensional MT sheets, to characterize their electrical properties. Voltage-clamped MT sheets generated cation-selective oscillatory electrical currents whose magnitude depended on both the holding potential, and ionic strength and composition. The oscillations progressed through various modes including single and double periodic regimes and more complex behaviours, being prominent a fundamental frequency at 29 Hz. In physiological K+ (140 mM), oscillations represented in average a 640% change in conductance that was also affected by the prevalent anion. Current injection induced voltage oscillations, thus showing excitability akin with action potentials. The electrical oscillations were entirely blocked by taxol, with pseudo Michaelis-Menten kinetics and a KD of ~1.29 μM. The findings suggest a functional role of the nanopores in the MT wall on the genesis of electrical oscillations that offer new insights into the nonlinear behaviour of the cytoskeleton.

  16. Two-dimensional networks of lanthanide cubane-shaped dumbbells.

    Science.gov (United States)

    Savard, Didier; Lin, Po-Heng; Burchell, Tara J; Korobkov, Ilia; Wernsdorfer, Wolfgang; Clérac, Rodolphe; Murugesu, Muralee

    2009-12-21

    The syntheses, structures, and magnetic properties are reported for three new lanthanide complexes, [Ln(III)(4)(mu(3)-OH)(2)(mu(3)-O)(2)(cpt)(6)(MeOH)(6)(H(2)O)](2) (Ln = Dy (1.15MeOH), Ho (2.14MeOH), and Tb (3.18MeOH)), based on 4-(4-carboxyphenyl)-1,2,4-triazole ligand (Hcpt). The three complexes were confirmed to be isomorphous by infrared spectroscopy and single-crystal X-ray diffraction. The crystal structure of 1 reveals that the eight-coordinate metal centers are organized in two cubane-shaped moieties composed of four Dy(III) ions each. All metal centers in the cubane core are bridged by two mu(3)-oxide and two mu(3)-hydroxide asymmetrical units. Moreover, each cubane is linked to its neighbor by two externally coordinating ligands, forming the dumbbell {Dy(III)(4)}(2) moiety. Electrostatic interactions between the ligands of the triazole-bridged dimers form an extended supramolecular two-dimensional arrangement analogous to a metal-organic framework with quadrilateral spaces occupied by ligands from axial sheets and by four solvent molecules. The magnetic properties of the three compounds have been investigated using dc and ac susceptibility measurements. For 1, the static and dynamic data corroborate the fact that the {Dy(III)(4)} cubane-shaped core exhibits slow relaxation of its magnetization below 5 K associated with a single-molecule magnet behavior.

  17. Optimal excitation of two dimensional Holmboe instabilities

    CERN Document Server

    Constantinou, Navid C

    2010-01-01

    Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...

  18. Phonon hydrodynamics in two-dimensional materials.

    Science.gov (United States)

    Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola

    2015-03-06

    The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.

  19. Probabilistic Universality in two-dimensional Dynamics

    CERN Document Server

    Lyubich, Mikhail

    2011-01-01

    In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.

  20. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    A M Shaikh; S S Desai; A K Patra

    2004-08-01

    A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.

  1. Two-dimensional heterostructures for energy storage

    Science.gov (United States)

    Pomerantseva, Ekaterina; Gogotsi, Yury

    2017-07-01

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  2. Rationally synthesized two-dimensional polymers.

    Science.gov (United States)

    Colson, John W; Dichtel, William R

    2013-06-01

    Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.

  3. Janus Spectra in Two-Dimensional Flows

    Science.gov (United States)

    Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki

    2016-09-01

    In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.

  4. Local doping of two-dimensional materials

    Science.gov (United States)

    Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.

  5. Two-dimensional fourier transform spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    DeFlores, Lauren; Tokmakoff, Andrei

    2016-10-25

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  6. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  7. FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP

    Institute of Scientific and Technical Information of China (English)

    Chen Jiangfeng; Yuan Baozong; Pei Bingnan

    2008-01-01

    Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.

  8. Equivalency of two-dimensional algebras

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica

    2011-07-01

    Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)

  9. A Direct Calculation of Critical Exponents of Two-Dimensional Anisotropic Ising Model

    Institute of Scientific and Technical Information of China (English)

    XIONG Gang; WANG Xiang-Rong

    2006-01-01

    Using an exact solution of the one-dimensional quantum transverse-field Ising model, we calculate the critical exponents of the two-dimensional anisotropic classicalIsing model (IM). We verify that the exponents are the same as those of isotropic classical IM. Our approach provides an alternative means of obtaining and verifying these well-known results.

  10. Two-dimensional coupled electron-hole layers in high magnetic fields

    NARCIS (Netherlands)

    Parlangeli, Andrea

    2000-01-01

    In solids, it is nowadays possible to create structures in which electrons are confined into a two-dimensional (2D) plane. The physics of a 2D electron gas (2DEG) has proved to be very rich, in particular in the presence of a transverse magnetic field. The Quantum Hall Effect, i.e. the quantization

  11. Numerical Studies of Collective Phenomena in Two-Dimensional Electron and Cold Atom Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rezayi, Edward

    2013-07-25

    Numerical calculations were carried out to investigate a number of outstanding questions in both two-dimensional electron and cold atom systems. These projects aimed to increase our understanding of the properties of and prospects for non-Abelian states in quantum Hall matter.

  12. Construction of exact complex dynamical invariant of a two-dimensional classical system

    Indian Academy of Sciences (India)

    Fakir Chand; S C Mishra

    2006-12-01

    We present the construction of exact complex dynamical invariant of a two-dimensional classical dynamical system on an extended complex space utilizing Lie algebraic approach. These invariants are expected to play a vital role in understanding the complex trajectories of both classical and quantum systems.

  13. Topological phase transitions driven by next-nearest-neighbor hopping in two-dimensional lattices

    NARCIS (Netherlands)

    Beugeling, W.; Everts, J.C.; de Morais Smith, C.

    2012-01-01

    For two-dimensional lattices in a tight-binding description, the intrinsic spin-orbit coupling, acting as a complex next-nearest-neighbor hopping, opens gaps that exhibit the quantum spin Hall effect. In this paper, we study the effect of a real next-nearest-neighbor hopping term on the band structu

  14. Constants of motion, ladder operators and supersymmetry of the two-dimensional isotropic harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Mota, R.D. [Unidad Profesional Interdisciplinaria de Ingenieria y Tecnologias Avanzadas, Mexico DF (Mexico)]. E-mail: mota@gina.esfm.ipn.mx; ravelo@esfm.ipn.mx; Granados, V.D.; Queijeiro, A.; Garcia, J. [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, Mexico DF (Mexico)

    2002-03-29

    For the quantum two-dimensional isotropic harmonic oscillator we show that the Infeld-Hull radial operators, as well as those of the supersymmetric approach for the radial equation, are contained in the constants of motion of the problem. (author)

  15. Path integral approach to two-dimensional QCD in the light-front frame

    Energy Technology Data Exchange (ETDEWEB)

    Gaete, P. (Instituto de Fisica, Universidade Federal do Rio de Janeiro, C.P. 68528, BR-21945, Rio de Janeiro (Brazil)); Gamboa, J. (Fachbereich 7 Physik, Universitaet Siegen, Siegen, D-57068 (Germany)); Schmidt, I. (Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Casilla 110-V, Valparaiso (Chile))

    1994-05-15

    Two-dimensional quantum chromodynamics in the light-front frame is studied following Hamiltonian methods. The theory is quantized using the path integral formalism and an effective theory similar to the Nambu--Jona-Lasinio model is obtained. Confinement in two dimensions is derived by analyzing directly the constraints in the path integral.

  16. New Methods for Two-Dimensional Schr\\"odinger Equation SUSY-separation of Variables and Shape Invariance

    CERN Document Server

    Cannata, F; Nishnianidze, D N

    2002-01-01

    Two new methods for investigation of two-dimensional quantum systems, whose Hamiltonians are not amenable to separation of variables, are proposed. 1)The first one - $SUSY-$ separation of variables - is based on the intertwining relations of Higher order SUSY Quantum Mechanics (HSUSY QM) with supercharges allowing for separation of variables. 2)The second one is a generalization of shape invariance. While in one dimension shape invariance allows to solve algebraically a class of (exactly solvable) quantum problems, its generalization to higher dimensions has not been yet explored. Here we provide a formal framework in HSUSY QM for two-dimensional quantum mechanical systems for which shape invariance holds. Given the knowledge of one eigenvalue and eigenfunction, shape invariance allows to construct a chain of new eigenfunctions and eigenvalues. These methods are applied to a two-dimensional quantum system, and partial explicit solvability is achieved in the sense that only part of the spectrum is found analyt...

  17. On numerical evaluation of two-dimensional phase integrals

    DEFF Research Database (Denmark)

    Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans

    1975-01-01

    The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....

  18. Topology in two-dimensional systems

    NARCIS (Netherlands)

    Beukman, A.J.A.

    2016-01-01

    This thesis includes two research directions both aim to discover a building block for topological quantum computing. First, in Chapter 3, a novel setup is designed, built, and tested, that can electrostatically gate a material without endangering the materials pristine quality. The setup was design

  19. Topology in two-dimensional systems

    NARCIS (Netherlands)

    Beukman, A.J.A.

    2016-01-01

    This thesis includes two research directions both aim to discover a building block for topological quantum computing. First, in Chapter 3, a novel setup is designed, built, and tested, that can electrostatically gate a material without endangering the materials pristine quality. The setup was design

  20. Supersymmetric quantum mechanics for two-dimensional disk

    Indian Academy of Sciences (India)

    Akira Suzuki; Ranabir Dutt; Rajat K Bahaduri

    2005-07-01

    The infinite square well potential in one dimension has a smooth supersymmetric partner potential which is shape invariant. In this paper, we study the generalization of this to two dimensions by constructing the supersymmetric partner of the disk billiard. We find that the property of shape invariance is lost in this case. Nevertheless, the WKB results are significantly improved when SWKB calculations are performed with the square of the superpotential. We also study the effect of inserting a singular flux line through the center of the disk.

  1. Potts models coupled to two-dimensional quantum gravity

    Science.gov (United States)

    Baillie, Clive F.

    We perform Monte Carlo simulations using the Wolff cluster algorithm of the q=2 (Ising), 3 and 4 Potts models on dynamical phi-cubed graphs of spherical topology with up to 5000 nodes. We find that the measured critical exponents are in reasonable agreement with those from the exact solution of the Ising model and with those calculated from KPZ scaling for q=3,4 where no exact solution is available.

  2. Quantum Solids of Two Dimensional Electrons in Magnetic Fields

    Science.gov (United States)

    2005-11-01

    T. Dorsey, 2005, Phys. Rev. B. 71, 155331. v. Klitzing, K., G. Dorda, and M. Pepper , 1980, Phys. Rev. Lett. 45, 494. Kosterlitz, J. M., and D. J...S. Ferguson , 2000, Phys. Rev. B. 61, 11910. Pfeiffer, L., and K. W. West, 2003, Physica E 20, 57. Ploog, K. H., 1981, Ann. Rev. Mater. Sci. 11, 171

  3. Conformal QED in two-dimensional topological insulators

    CERN Document Server

    Menezes, N; Smith, C Morais

    2016-01-01

    It has been shown recently that local four-fermion interactions on the edges of two-dimensional time-reversal-invariant topological insulators give rise to a new non-Fermi-liquid phase, called helical Luttinger liquid (HLL). In this work, we provide a first-principle derivation of this non-Fermi-liquid phase based on the gauge-theory approach. Firstly, we derive a gauge theory for the edge states by simply assuming that the interactions between the Dirac fermions at the edge are mediated by a quantum dynamical electromagnetic field. Here, the massless Dirac fermions are confined to live on the one-dimensional boundary, while the (virtual) photons of the U(1) gauge field are free to propagate in all the three spatial dimensions that represent the physical space where the topological insulator is embedded. We then determine the effective 1+1-dimensional conformal field theory (CFT) given by the conformal quantum electrodynamics (CQED). By integrating out the gauge field in the corresponding partition function, ...

  4. Gate-induced superconductivity in two-dimensional atomic crystals

    Science.gov (United States)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-09-01

    Two-dimensional (2D) crystals are attracting growing interest in condensed matter physics, since these systems exhibit not only rich electronic and photonic properties but also exotic electronic phase transitions including superconductivity and charge density wave. Moreover, owing to the recent development of transfer methods after exfoliation and electric-double-layer transistors, superconducting 2D atomic crystals, the thicknesses of which are below 1-2 nm, have been successfully obtained. Here, we present a topical review on the recent discoveries of 2D crystalline superconductors by ionic-liquid gating and a series of their novel properties. In particular, we highlight two topics; quantum metallic states (or possible metallic ground states) and superconductivity robust against in-plane magnetic fields. These phenomena can be discussed with the effects of weakened disorder and/or broken spacial inversion symmetry leading to valley-dependent spin-momentum locking (spin-valley locking). These examples suggest the superconducting 2D crystals are new platforms for investigating the intrinsic quantum phases as well as exotic nature in 2D superconductors.

  5. Perspective: Two-dimensional resonance Raman spectroscopy

    Science.gov (United States)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-11-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.

  6. Janus spectra in two-dimensional flows

    CERN Document Server

    Liu, Chien-Chia; Chakraborty, Pinaki

    2016-01-01

    In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...

  7. Comparative Two-Dimensional Fluorescence Gel Electrophoresis.

    Science.gov (United States)

    Ackermann, Doreen; König, Simone

    2018-01-01

    Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.

  8. Two-dimensional hexagonal semiconductors beyond graphene

    Science.gov (United States)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-12-01

    The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.

  9. Two-Dimensional Phononic Crystals: Disorder Matters.

    Science.gov (United States)

    Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M

    2016-09-14

    The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.

  10. Radiation effects on two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)

    2016-12-15

    The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Photodetectors based on two dimensional materials

    Science.gov (United States)

    Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen

    2016-09-01

    Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  12. Fault-tolerance in Two-dimensional Topological Systems

    Science.gov (United States)

    Anderson, Jonas T.

    This thesis is a collection of ideas with the general goal of building, at least in the abstract, a local fault-tolerant quantum computer. The connection between quantum information and topology has proven to be an active area of research in several fields. The introduction of the toric code by Alexei Kitaev demonstrated the usefulness of topology for quantum memory and quantum computation. Many quantum codes used for quantum memory are modeled by spin systems on a lattice, with operators that extract syndrome information placed on vertices or faces of the lattice. It is natural to wonder whether the useful codes in such systems can be classified. This thesis presents work that leverages ideas from topology and graph theory to explore the space of such codes. Homological stabilizer codes are introduced and it is shown that, under a set of reasonable assumptions, any qubit homological stabilizer code is equivalent to either a toric code or a color code. Additionally, the toric code and the color code correspond to distinct classes of graphs. Many systems have been proposed as candidate quantum computers. It is very desirable to design quantum computing architectures with two-dimensional layouts and low complexity in parity-checking circuitry. Kitaev's surface codes provided the first example of codes satisfying this property. They provided a new route to fault tolerance with more modest overheads and thresholds approaching 1%. The recently discovered color codes share many properties with the surface codes, such as the ability to perform syndrome extraction locally in two dimensions. Some families of color codes admit a transversal implementation of the entire Clifford group. This work investigates color codes on the 4.8.8 lattice known as triangular codes. I develop a fault-tolerant error-correction strategy for these codes in which repeated syndrome measurements on this lattice generate a three-dimensional space-time combinatorial structure. I then develop an

  13. Asymptotics for Two-dimensional Atoms

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip

    2012-01-01

    We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd...

  14. Effects of finite laser pulse width on two-dimensional electronic spectroscopy

    Science.gov (United States)

    Leng, Xuan; Yue, Shuai; Weng, Yu-Xiang; Song, Kai; Shi, Qiang

    2017-01-01

    We combine the hierarchical equations of motion method and the equation-of-motion phase-matching approach to calculate two-dimensional electronic spectra of model systems. When the laser pulse is short enough, the current method reproduces the results based on third-order response function calculations in the impulsive limit. Finite laser pulse width is found to affect both the peak positions and shapes, as well as the time evolution of diagonal and cross peaks. Simulations of the two-color two-dimensional electronic spectra also show that, to observe quantum beats in the diagonal and cross peaks, it is necessary to excite the related excitonic states simultaneously.

  15. From spin flip excitations to the spin susceptibility enhancement of a two-dimensional electron gas.

    Science.gov (United States)

    Perez, F; Aku-leh, C; Richards, D; Jusserand, B; Smith, L C; Wolverson, D; Karczewski, G

    2007-07-13

    The g-factor enhancement of the spin-polarized two-dimensional electron gas was measured directly over a wide range of spin polarizations, using spin flip resonant Raman scattering spectroscopy on two-dimensional electron gases embedded in Cd(1-x)Mn(x)Te semimagnetic quantum wells. At zero Raman transferred momentum, the single-particle spin flip excitation, energy Z*, coexists in the Raman spectrum with the spin flip wave of energy Z, the bare giant Zeeman splitting. We compare the measured g-factor enhancement with recent spin-susceptibility enhancement theories and deduce the spin-polarization dependence of the mass renormalization.

  16. Analysis of the Strength of Interfacial Hydrogen Bonds between Tubulin Dimers Using Quantum Theory of Atoms in Molecules

    OpenAIRE

    Ayoub, Ahmed T.; Craddock, Travis J.A.; Klobukowski, Mariusz; Tuszynski, Jack

    2014-01-01

    Microtubules are key structural elements that, among numerous biological functions, maintain the cytoskeleton of the cell and have a major role in cell division, which makes them important cancer chemotherapy targets. Understanding the energy balance that brings tubulin dimers, the building blocks of microtubules, together to form a microtubule is especially important for revealing the mechanism of their dynamic instability. Several studies have been conducted to estimate various contribution...

  17. Imaginary time propagation code for large-scale two-dimensional eigenvalue problems in magnetic fields

    CERN Document Server

    Luukko, P J J

    2013-01-01

    We present a code for solving the single-particle, time-independent Schr\\"odinger equation in two dimensions. Our program utilizes the imaginary time propagation (ITP) algorithm, and it includes the most recent developments in the ITP method: the arbitrary order operator factorization and the exact inclusion of a (possibly very strong) magnetic field. Our program is able to solve thousands of eigenstates of a two-dimensional quantum system in reasonable time with commonly available hardware. The main motivation behind our work is to allow the study of highly excited states and energy spectra of two-dimensional quantum dots and billiard systems with a single versatile code, e.g., in quantum chaos research. In our implementation we emphasize a modern and easily extensible design, simple and user-friendly interfaces, and an open-source development philosophy.

  18. Scalable loading of a two-dimensional trapped-ion array

    Science.gov (United States)

    Bruzewicz, Colin D.; McConnell, Robert; Chiaverini, John; Sage, Jeremy M.

    2016-09-01

    Two-dimensional arrays of trapped-ion qubits are attractive platforms for scalable quantum information processing. Sufficiently rapid reloading capable of sustaining a large array, however, remains a significant challenge. Here with the use of a continuous flux of pre-cooled neutral atoms from a remotely located source, we achieve fast loading of a single ion per site while maintaining long trap lifetimes and without disturbing the coherence of an ion quantum bit in an adjacent site. This demonstration satisfies all major criteria necessary for loading and reloading extensive two-dimensional arrays, as will be required for large-scale quantum information processing. Moreover, the already high loading rate can be increased by loading ions in parallel with only a concomitant increase in photo-ionization laser power and no need for additional atomic flux.

  19. Two-dimensional materials and their prospects in transistor electronics.

    Science.gov (United States)

    Schwierz, F; Pezoldt, J; Granzner, R

    2015-05-14

    During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.

  20. Stacked and H-Bonded Cytosine Dimers. Analysis of the Intermolecular Interaction Energies by Parallel Quantum Chemistry and Polarizable Molecular Mechanics.

    Science.gov (United States)

    Gresh, Nohad; Sponer, Judit E; Devereux, Mike; Gkionis, Konstantinos; de Courcy, Benoit; Piquemal, Jean-Philip; Sponer, Jiri

    2015-07-30

    Until now, atomistic simulations of DNA and RNA and their complexes have been executed using well calibrated but conceptually simple pair-additive empirical potentials (force fields). Although such simulations provided many valuable results, it is well established that simple force fields also introduce errors into the description, underlying the need for development of alternative anisotropic, polarizable molecular mechanics (APMM) potentials. One of the most abundant forces in all kinds of nucleic acids topologies is base stacking. Intra- and interstrand stacking is assumed to be the most essential factor affecting local conformational variations of B-DNA. However, stacking also contributes to formation of all kinds of noncanonical nucleic acids structures, such as quadruplexes or folded RNAs. The present study focuses on 14 stacked cytosine (Cyt) dimers and the doubly H-bonded dimer. We evaluate the extent to which an APMM procedure, SIBFA, could account quantitatively for the results of high-level quantum chemistry (QC) on the total interaction energies, and the individual energy contributions and their nonisotropic behaviors. Good agreements are found at both uncorrelated HF and correlated DFT and CCSD(T) levels. Resorting in SIBFA to distributed QC multipoles and to an explicit representation of the lone pairs is essential to respectively account for the anisotropies of the Coulomb and of the exchange-repulsion QC contributions.

  1. 最高量子相关谱技术在同核偶合常数测定中的应用%MEASUREMENT OF HOMONUCLEAR COUPLING CONSTANTS USING TWO-DIMENSIONAL MAXIMUM-QUANTUM CORRELATION NMR SPECTROSCOPY (MAXY-NMR)

    Institute of Scientific and Technical Information of China (English)

    张许; 刘买利

    1999-01-01

    It has been a continuous interest in measurement of homonuclear scalar coupling constants using two-dimensional NMR spectroscopy because large chemical shift dispersions can efficiently increase spectral resolution. Numerous methods have been developed using homo- and hetero-nuclear correlation and successfully used for a variety of samples. Here we demonstrate an alternative approach based on maximum-quantum correlation NMR spectroscopy (MAXY NMR). The new method combines the advantages of two-dimensional chemical shift dispersion and the spectral editing feature of the MAXY approach and results in separated correlations of CH, CH2, and CH3 groups in a single experiment with enhanced chemical shift resolution. The method had been tested on a middle-sized molecule, dexamethasone, and a tridecapeptide, neurotensin.%偶合常数是一个重要的NMR参数,其数值与分子中化学键的二面角有关,可以为分子结构研究提供很重要的信息.多维NMR谱由于具有较大的化学位移分辨率,因此常常被用来测定同核或异核自旋-自旋偶合常数.本文介绍了利用最高量子相关技术(MAXY)测定同核偶合常数的方法.MAXY是最近发展的一种多维NMR谱编辑技术,可以使不同官能团(CH, CH2, CH3)的相关峰分布于不同的图谱区域,因此比常规的二维谱具有更高的化学位移分辨率.而且被分离开来的NMR相关峰呈吸收性线型,能清楚地展示各自的偶合分裂特征,可以直接用于测定偶合常数.

  2. Numerically exact correlations and sampling in the two-dimensional Ising spin glass.

    Science.gov (United States)

    Thomas, Creighton K; Middleton, A Alan

    2013-04-01

    A powerful existing technique for evaluating statistical mechanical quantities in two-dimensional Ising models is based on constructing a matrix representing the nearest-neighbor spin couplings and then evaluating the Pfaffian of the matrix. Utilizing this technique and other more recent developments in evaluating elements of inverse matrices and exact sampling, a method and computer code for studying two-dimensional Ising models is developed. The formulation of this method is convenient and fast for computing the partition function and spin correlations. It is also useful for exact sampling, where configurations are directly generated with probability given by the Boltzmann distribution. These methods apply to Ising model samples with arbitrary nearest-neighbor couplings and can also be applied to general dimer models. Example results of computations are described, including comparisons with analytic results for the ferromagnetic Ising model, and timing information is provided.

  3. An efficient tool to calculate two-dimensional optical spectra for photoactive molecular complexes

    CERN Document Server

    Duan, Hong-Guang; Nalbach, Peter; Thorwart, Michael

    2015-01-01

    We combine the coherent modified Redfield theory (CMRT) with the equation of motion-phase matching approach (PMA) to calculate two-dimensional photon echo spectra for photoactive molecular complexes with an intermediate strength of the coupling to their environment. Both techniques are highly efficient, yet they involve approximations at different levels. By explicitly comparing with the numerically exact quasi-adiabatic path integral approach, we show for the Fenna-Matthews-Olson complex that the CMRT describes the decay rates in the population dynamics well, but final stationary populations and the oscillation frequencies differ slightly. In addition, we use the combined CMRT+PMA to calculate two-dimensional photon-echo spectra for a simple dimer model. We find excellent agreement with the exact path integral calculations at short waiting times where the dynamics is still coherent. For long waiting times, differences occur due to different final stationary states, specifically for strong system-bath couplin...

  4. Ultrafast two dimensional infrared chemical exchange spectroscopy

    Science.gov (United States)

    Fayer, Michael

    2011-03-01

    The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific

  5. Molecular assembly on two-dimensional materials

    Science.gov (United States)

    Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter

    2017-02-01

    Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging

  6. Universality in bosonic dimer-dimer scattering

    Energy Technology Data Exchange (ETDEWEB)

    Deltuva, A. [Centro de Fisica Nuclear, Universidade de Lisboa, P-1649-003 Lisboa (Portugal)

    2011-08-15

    Bosonic dimer-dimer scattering is studied near the unitary limit using momentum-space equations for the four-particle transition operators. The impact of the Efimov effect on the dimer-dimer scattering observables is explored, and a number of universal relations is established with high accuracy. The rate for the creation of Efimov trimers via dimer-dimer collisions is calculated.

  7. Competitive irreversible random one-, two-, three-, . . . point adsorption on two-dimensional lattices

    Science.gov (United States)

    Evans, J. W.; Nord, R. S.

    1985-02-01

    An analytic treatment of competitive, irreversible (immobile) random one-, two-, three-, . . . point adsorption (or monomer, dimer, trimer, . . . filling) on infinite, uniform two-dimensional lattices is provided by applying previously developed truncation schemes to the hierarchial form of the appropriate master equations. The behavior of these processes for two competing species is displayed by plotting families of ``filling trajectories'' in the partial-coverage plane for various ratios of adsorption rates. The time or coverage dependence of various subconfiguration probabilities can also be analyzed. For processes where no one-point (monomer) adsorption occurs, the lattice cannot fill completely; accurate estimates of the total (and partial) saturation coverages can be obtained.

  8. Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles.

    Science.gov (United States)

    Dallapiccola, Ramona; Gopinath, Ashwin; Stellacci, Francesco; Dal Negro, Luca

    2008-04-14

    In this paper we investigate for the first time the near-field optical behavior of two-dimensional Fibonacci plasmonic lattices fabricated by electron-beam lithography on transparent quartz substrates. In particular, by performing near-field optical microscopy measurements and three dimensional Finite Difference Time Domain simulations we demonstrate that near-field coupling of nanoparticle dimers in Fibonacci arrays results in a quasi-periodic lattice of localized nanoparticle plasmons. The possibility to accurately predict the spatial distribution of enhanced localized plasmon modes in quasi-periodic Fibonacci arrays can have a significant impact for the design and fabrication of novel nano-plasmonics devices.

  9. Influence of illumination on the quantum mobility of a two-dimensional electron gas in Si delta-doped GaAs/In sub 0 sub . sub 1 sub 5 Ga sub 0 sub . sub 8 sub 5 As quantum wells

    CERN Document Server

    Cavalheiro, A; Quivy, A A; Takahashi, E K; Martini, S; Silva, M J D; Meneses, E A; Leite, J R

    2003-01-01

    A series of GaAs/InGaAs quantum wells with a silicon delta-doped layer in the top barrier was investigated by Shubnikov-de Haas measurements as a function of the illumination time of the samples. During the illumination process strong modifications of the electronic density and the quantum mobility of each occupied subband were observed. Based on self-consistent calculations, the dominant mechanism which caused the changes in the subband quantum mobilities with illumination was elucidated.

  10. Two dimensional electron spin resonance: Structure and dynamics of biomolecules

    Science.gov (United States)

    Saxena, Sunil; Freed, Jack H.

    1998-03-01

    The potential of two dimensional (2D) electron spin resonance (ESR) for measuring the structural properties and slow dynamics of labeled biomolecules will be presented. Specifically, it will be shown how the recently developed method of double quantum (DQ) 2D ESR (S. Saxena and J. H. Freed, J. Chem. Phys. 107), 1317, (1997) can be used to measure large interelectron distances in bilabeled peptides. The need for DQ ESR spectroscopy, as well as the challenges and advantages of this method will be discussed. The elucidation of the slow reorientational dynamics of this peptide (S. Saxena and J. H. Freed, J. Phys. Chem. A, 101) 7998 (1997) in a glassy medium using COSY and 2D ELDOR ESR spectroscopy will be demonstrated. The contributions to the homogeneous relaxation time, T_2, from the overall and/or internal rotations of the nitroxide can be distinguished from the COSY spectrum. The growth of spectral diffusion cross-peaks^2 with mixing time in the 2D ELDOR spectra can be used to directly determine a correlation time from the experiment which can be related to the rotational correlation time.

  11. Tunable states of interlayer cations in two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Numata, K. [Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Dai, W. [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Hunger, M. [Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart (Germany)

    2014-03-31

    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of {sup 23}Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and {sup 23}Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed.

  12. Soluble, Exfoliated Two-Dimensional Nanosheets as Excellent Aqueous Lubricants.

    Science.gov (United States)

    Zhang, Wenling; Cao, Yanlin; Tian, Pengyi; Guo, Fei; Tian, Yu; Zheng, Wen; Ji, Xuqiang; Liu, Jingquan

    2016-11-30

    Dispersion in water of two-dimensional (2D) nanosheets is conducive to their practical applications in fundamental science communities due to their abundance, low cost, and ecofriendliness. However, it is difficult to achieve stable aqueous 2D material suspensions because of the intrinsic hydrophobic properties of the layered materials. Here, we report an effective and economic way of producing various 2D nanosheets (h-BN, MoS2, MoSe2, WS2, and graphene) as aqueous dispersions using carbon quantum dots (CQDs) as exfoliation agents and stabilizers. The dispersion was prepared through a liquid phase exfoliation. The as-synthesized stable 2D nanosheets based dispersions were characterized by UV-vis, HRTEM, AFM, Raman, XPS, and XRD. The solutions based on CQD decorated 2D nanosheets were utilized as aqueous lubricants, which realized a friction coefficient as low as 0.02 and even achieved a superlubricity under certain working conditions. The excellent lubricating properties were attributed to the synergetic effects of the 2D nanosheets and CQDs, such as good dispersion stability and easy-sliding interlayer structure. This work thus proposes a novel strategy for the design and preparation of high-performance water based green lubricants.

  13. The convolution theorem for two-dimensional continuous wavelet transform

    Institute of Scientific and Technical Information of China (English)

    ZHANG CHI

    2013-01-01

    In this paper , application of two -dimensional continuous wavelet transform to image processes is studied. We first show that the convolution and correlation of two continuous wavelets satisfy the required admissibility and regularity conditions ,and then we derive the convolution and correlation theorem for two-dimensional continuous wavelet transform. Finally, we present numerical example showing the usefulness of applying the convolution theorem for two -dimensional continuous wavelet transform to perform image restoration in the presence of additive noise.

  14. Terahertz magneto-optical spectroscopy of a two-dimensional hole gas

    Energy Technology Data Exchange (ETDEWEB)

    Kamaraju, N., E-mail: nkamaraju@lanl.gov; Taylor, A. J.; Prasankumar, R. P., E-mail: rpprasan@lanl.gov [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Pan, W.; Reno, J. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Ekenberg, U. [Semiconsultants, Brunnsgrnd 12, SE-18773 Täby (Sweden); Gvozdić, D. M. [School of Electrical Engineering, University of Belgrade, Belgrade 11120 (Serbia); Boubanga-Tombet, S. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai (Japan); Upadhya, P. C. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Laboratory for Electro-Optics Systems, Indian Space Research Organization, Bangalore 560058 (India)

    2015-01-19

    Two-dimensional hole gases (2DHGs) have attracted recent attention for their unique quantum physics and potential applications in areas including spintronics and quantum computing. However, their properties remain relatively unexplored, motivating the use of different techniques to study them. We used terahertz magneto-optical spectroscopy to investigate the cyclotron resonance frequency in a high mobility 2DHG, revealing a nonlinear dependence on the applied magnetic field. This is shown to be due to the complex non-parabolic valence band structure of the 2DHG, as verified by multiband Landau level calculations. We also find that impurity scattering dominates cyclotron resonance decay in the 2DHG, in contrast with the dominance of superradiant damping in two-dimensional electron gases. Our results shed light on the properties of 2DHGs, motivating further studies of these unique 2D nanosystems.

  15. Hidden phase in a two-dimensional Sn layer stabilized by modulation hole doping

    Science.gov (United States)

    Ming, Fangfei; Mulugeta, Daniel; Tu, Weisong; Smith, Tyler S.; Vilmercati, Paolo; Lee, Geunseop; Huang, Ying-Tzu; Diehl, Renee D.; Snijders, Paul C.; Weitering, Hanno H.

    2017-03-01

    Semiconductor surfaces and ultrathin interfaces exhibit an interesting variety of two-dimensional quantum matter phases, such as charge density waves, spin density waves and superconducting condensates. Yet, the electronic properties of these broken symmetry phases are extremely difficult to control due to the inherent difficulty of doping a strictly two-dimensional material without introducing chemical disorder. Here we successfully exploit a modulation doping scheme to uncover, in conjunction with a scanning tunnelling microscope tip-assist, a hidden equilibrium phase in a hole-doped bilayer of Sn on Si(111). This new phase is intrinsically phase separated into insulating domains with polar and nonpolar symmetries. Its formation involves a spontaneous symmetry breaking process that appears to be electronically driven, notwithstanding the lack of metallicity in this system. This modulation doping approach allows access to novel phases of matter, promising new avenues for exploring competing quantum matter phases on a silicon platform.

  16. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays

    Science.gov (United States)

    Barredo, Daniel; de Léséleuc, Sylvain; Lienhard, Vincent; Lahaye, Thierry; Browaeys, Antoine

    2016-11-01

    Large arrays of individually controlled atoms trapped in optical tweezers are a very promising platform for quantum engineering applications. However, deterministic loading of the traps is experimentally challenging. We demonstrate the preparation of fully loaded two-dimensional arrays of up to ~50 microtraps, each containing a single atom and arranged in arbitrary geometries. Starting from initially larger, half-filled matrices of randomly loaded traps, we obtain user-defined target arrays at unit filling. This is achieved with a real-time control system and a moving optical tweezers, which together enable a sequence of rapid atom moves depending on the initial distribution of the atoms in the arrays. These results open exciting prospects for quantum engineering with neutral atoms in tunable two-dimensional geometries.

  17. Two-Dimensional Electron-Spin Resonance

    Science.gov (United States)

    Freed, Jack H.

    2000-03-01

    The extension of the concepts of 2D-NMR to ESR posed significant technological challenges, especially for liquids. ESR relaxation times are very short, as low as 10-15 ns. for T_2's. Spectral bandwidths are 100-250 MHz for nitroxide spin labels. Adequate coverage is obtained with 3-5 ns. π/2 (9-17 GHz) microwave pulses into a small low Q resonator. Dead-times are currently 25-30 ns. Additional requirements are rapid phase shifting for phase cycling, nsec. data acquisition, and fast repetition rates (10-100 kHz). 2D-ELDOR (electron-electron double resonance), which is a 3-pulse 2D-exchange experiment, takes about 30 minutes with just 0.5 nanomole spin-probe in solution (SNR 200). 2D-ELDOR is very useful in studies of molecular dynamics and local structure in complex fluids. For such media, the slow rotational dynamics requires a theory based upon the stochastic Liouville equation which enables quantitative interpretation of 2D-ELDOR experiments. In studies of spin-probes in a liquid crystal new insights could be obtained on the dynamic structure in different phases. One obtains, in addition to ordering and reorientation rates of the probes, details of the local dynamic cage: its orienting potential and (slow) relaxation rate. 2D-ELDOR overcomes the loss of resolution resulting from microscopically ordered but macroscopically disordered complex fluids. This is illustrated by studies of the dynamic structure of lipid membrane vesicles, and the effects of adding a peptide. The short dead times enable the observation of both the bulk lipids and the more immobilized lipids that coat (or are trapped) by the (aggregates of) peptides. Also, new developments of multi-quantum (2D) FT-ESR from nitroxide spin labels interacting by dipolar interactions show considerable promise in measuring distances of ca. 15-70A in macromolecules.

  18. FTIR, FT-Raman, UV-Visible spectra and quantum chemical calculations of allantoin molecule and its hydrogen bonded dimers.

    Science.gov (United States)

    Alam, Mohammad Jane; Ahmad, Shabbir

    2015-02-05

    FTIR, FT-Raman and electronic spectra of allantoin molecule are recorded and investigated using DFT and MP2 methods with 6-311++G(d,p) basis set. The molecular structure, anharmonic vibrational spectra, natural atomic charges, non-linear optical properties, etc. have been computed for the ground state of allantoin. The anharmonic vibrational frequencies are calculated using PT2 algorithm (Barone method) as well as VSCF and CC-VSCF methods. These methods yield results that are in remarkable agreement with the experiment. The coupling strengths between pairs of modes are also calculated using coupling integral based on 2MR-QFF approximation. The simulations on allantoin dimers have been also performed at B3LYP/6-311++G(d,p) level of theory to investigate the effect of the intermolecular interactions on the molecular structure and vibrational frequencies of the monomer. Vibrational assignments are made with the great accuracy using PED calculations and animated modes. The combination and overtone bands have been also identified in the FTIR spectrum with the help of anharmonic computations. The electronic spectra are simulated in gas and solution at TD-B3LYP/6-311++G(d,p) level of theory. The important global quantities such as electro-negativity, electronic chemical potential, electrophilicity index, chemical hardness and softness based on HOMO, LUMO energy eigenvalues are also computed. NBO analysis has been performed for monomer and dimers of allantoin at B3LYP/6-311++G(d,p) level of theory. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Exotic versus conventional scaling and universality in a disordered bilayer quantum heisenberg antiferromagnet.

    Science.gov (United States)

    Sknepnek, Rastko; Vojta, Thomas; Vojta, Matthias

    2004-08-27

    We present Monte Carlo simulations of a two-dimensional bilayer quantum Heisenberg antiferromagnet with random dimer dilution. In contrast with exotic scaling scenarios found in other random quantum systems, the quantum phase transition in this system is characterized by a finite-disorder fixed point with power-law scaling. After accounting for corrections to scaling, with a leading irrelevant exponent of omega approximately 0.48, we find universal critical exponents z=1.310(6) and nu=1.16(3). We discuss the consequences of these findings and suggest new experiments.

  20. A geometrical approach to two-dimensional Conformal Field Theory

    Science.gov (United States)

    Dijkgraaf, Robertus Henricus

    1989-09-01

    manifold obtained as the quotient of a smooth manifold by a discrete group. In Chapter 6 our considerations will be of a somewhat complementary nature. We will investigate models with central charge c = 1 by deformation techniques. The central charge is a fundamental parameter in any conformal invariant model, and the value c = 1 is of considerable interest, since it forms in many ways a threshold value. For c 1 is still very much terra incognita. Our results give a partial classification for the intermediate case of c = 1 models. The formulation of these c = 1 CFT's on surfaces of arbitrary topology is central in Chapter 7. Here we will provide many explicit results that provide illustrations for our more abstract discussions of higher genus quantities in Chapters 3 and 1. Unfortunately, our calculations will become at this point rather technical, since we have to make extensive use of the mathematics of Riemann surfaces and their coverings. Finally, in Chapter 8 we leave the two-dimensional point of view that we have been so loyal to up to then , and ascend to threedimensions where we meet topological gauge theories. These so-called Chern-Simons theories encode in a very economic way much of the structure of two-dimensional (rational) conformal field theories, and this direction is generally seen to be very promising. We will show in particular how many of our results of Chapter 5 have a natural interpretation in three dimensions.

  1. Quasi-particle properties in a quasi-two-dimensional electron liquid

    Indian Academy of Sciences (India)

    R Asgari; B Tanatar

    2008-02-01

    We consider the quasi-particle properties such as the effective mass and spin susceptibility of quasi-two-dimensional electron systems. The finite quantum well width effects are incorporated into the local-field factors that describe the charge and spin correlations. We employ the Fermi-hypernetted chain formalism in conjunction with fluctuation-dissipation theorem to obtain the local-field factors. Our results are in good agreement with recent experiments.

  2. A New Class of Resonances at the Edge of the Two Dimensional Electron Gas

    OpenAIRE

    Zhitenev, N. B.; Brodsky, M; Ashoori, R. C.; Melloch, M. R.

    1996-01-01

    We measure the frequency dependent capacitance of a gate covering the edge and part of a two-dimensional electron gas in the quantum Hall regime. In applying a positive gate bias, we create a metallic puddle under the gate surrounded by an insulating region. Charging of the puddle occurs via electron tunneling from a metallic edge channel. Analysis of the data allows direct extraction of this tunneling conductance. Novel conductance resonances appear as a function of gate bias. Samples with g...

  3. Canonical quantization of a two-dimensional model with anomalous breaking of gauge invariance

    OpenAIRE

    Girotti, Horacio Oscar; Rothe, Heinz J.; Rothe, Klaus D.

    1986-01-01

    We investigate in detail the operator quantum dynamics of a two-dimensional model exhibiting anomalous breaking of gauge invariance. The equal-time algebra is systematically obtained by using the Dirac-bracket formalism for constrained systems. For certain values of the regularization parameter the system is shown to undergo drastic changes. For the value of the parameter corresponding to the chiral Schwinger model no operator solutions are found to exist.

  4. Repulsively interacting fermions in a two-dimensional deformed trap with spin-orbit coupling

    DEFF Research Database (Denmark)

    Marchukov, O. V.; Fedorov, D. V.; Jensen, A. S.

    2015-01-01

    We investigate a two-dimensional system of fermions with two internal (spin) degrees of freedom. It is confined by a deformed harmonic trap and subject to a Zeeman field, Rashba or Dresselhaus one-body spin-orbit couplings and two-body short range repulsion. We obtain self-consistent mean-field $...... that cold atoms may be used to study quantum chaos both in the presence and absence of interactions....

  5. Imaginary time propagation code for large-scale two-dimensional eigenvalue problems in magnetic fields

    OpenAIRE

    2013-01-01

    We present a code for solving the single-particle, time-independent Schr\\"odinger equation in two dimensions. Our program utilizes the imaginary time propagation (ITP) algorithm, and it includes the most recent developments in the ITP method: the arbitrary order operator factorization and the exact inclusion of a (possibly very strong) magnetic field. Our program is able to solve thousands of eigenstates of a two-dimensional quantum system in reasonable time with commonly available hardware. ...

  6. Interaction-induced huge magnetoresistance in a high mobility two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Bockhorn, L.; Haug, R. J. [Institut für Festkörperphysik, Leibniz Universität Hannover, D-30167 Hannover (Germany); Gornyi, I. V. [Institut für Nanotechnologie, Karlsruher Institut of Technology, D-76021 Karlsruhe (Germany); Schuh, D. [Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93053 Regensburg (Germany); Wegscheider, W. [ETH Zürich (Switzerland)

    2013-12-04

    A strong negative magnetoresistance is observed in a high-mobility two-dimensional electron gas in a GaAs/Al{sub 0.3}Ga{sub 0.7}As quantum well. We discuss that the negative magnetoresistance consists of a small peak induced by a combination of two types of disorder and a huge magnetoresistance explained by the interaction correction to the conductivity for mixed disorder.

  7. Tensor renormalization group approach to two-dimensional classical lattice models.

    Science.gov (United States)

    Levin, Michael; Nave, Cody P

    2007-09-21

    We describe a simple real space renormalization group technique for two-dimensional classical lattice models. The approach is similar in spirit to block spin methods, but at the same time it is fundamentally based on the theory of quantum entanglement. In this sense, the technique can be thought of as a classical analogue of the density matrix renormalization group method. We demonstrate the method - which we call the tensor renormalization group method - by computing the magnetization of the triangular lattice Ising model.

  8. Inflation Cosmological Solutions in Two-Dimensional Brans-Dicke Gravity Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The purpose of this paper is to study cosmological properties of two-dimensional Brans-Dicke gravity model. For massless scalar field, the new cosmological solutions are found by integration of field equation, these solutions correspond to the inflation solutions with positive cosmological constant. The result of this paper show that the inflation process of universe is controlled by the classical and quantum effect of the scalar field.

  9. The Chandrasekhar's Equation for Two-Dimensional Hypothetical White Dwarfs

    CERN Document Server

    De, Sanchari

    2014-01-01

    In this article we have extended the original work of Chandrasekhar on the structure of white dwarfs to the two-dimensional case. Although such two-dimensional stellar objects are hypothetical in nature, we strongly believe that the work presented in this article may be prescribed as Master of Science level class problem for the students in physics.

  10. Beginning Introductory Physics with Two-Dimensional Motion

    Science.gov (United States)

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  11. Spatiotemporal surface solitons in two-dimensional photonic lattices.

    Science.gov (United States)

    Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S

    2007-11-01

    We analyze spatiotemporal light localization in truncated two-dimensional photonic lattices and demonstrate the existence of two-dimensional surface light bullets localized in the lattice corners or the edges. We study the families of the spatiotemporal surface solitons and their properties such as bistability and compare them with the modes located deep inside the photonic lattice.

  12. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;

    2004-01-01

    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...

  13. Mechanics of Apparent Horizon in Two Dimensional Dilaton Gravity

    CERN Document Server

    Cai, Rong-Gen

    2016-01-01

    In this article, we give a definition of apparent horizon in a two dimensional general dilaton gravity theory. With this definition, we construct the mechanics of the apparent horizon by introducing a quasi-local energy of the theory. Our discussion generalizes the apparent horizons mechanics in general spherically symmetric spactimes in four or higher dimensions to the two dimensional dilaton gravity case.

  14. Topological aspect of disclinations in two-dimensional crystals

    Institute of Scientific and Technical Information of China (English)

    Qi Wei-Kai; Zhu Tao; Chen Yong; Ren Ji-Rong

    2009-01-01

    By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given.

  15. Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations

    Directory of Open Access Journals (Sweden)

    Chunrong Zhu

    2016-11-01

    Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.

  16. Integration of complementary circuits and two-dimensional electron gas in a Si/SiGe heterostructure

    Science.gov (United States)

    Lu, T. M.; Lee, C.-H.; Tsui, D. C.; Liu, C. W.

    2010-06-01

    We have realized complementary devices on an undoped Si/SiGe substrate where both two-dimensional electrons and holes can be induced capacitively. The design of the heterostructure and the fabrication process are reported. Magnetotransport measurements show that the induced two-dimensional electron gas exhibits the quantum Hall effect characteristics. A p-channel field-effect transistor is characterized and the operation of an inverter is demonstrated. The proof-of-principle experiment shows the feasibility of integrating complementary logic circuits with quantum devices.

  17. Spin transport of the frustrated quasi-two-dimensional XY-like antiferromagnet

    Science.gov (United States)

    Lima, L. S.

    2017-01-01

    We use the Self Consistent Harmonic Approximation together with the Kubo formalism of the Linear Response Theory to study the spin transport in the two-dimensional frustrated Heisenberg antiferromagnet in a square lattice with easy-plane ion single anisotropy. The regular part of the spin conductivity σreg(ω) is determined for several values of the critical ion single parameter Dc, that separates the low D region from the large D quantum paramagnetic phase. We have obtained an abrupt change in the spin conductivity in the discontinuity points of the graphic Dc vs. η, where the system presents a quantum phase transition.

  18. Hall Conductivity in a Quasi-Two-Dimensional Disordered Electron System

    Institute of Scientific and Technical Information of China (English)

    YANG Yong-Hong; WANG Yong-Gang; LIU Mei

    2002-01-01

    By making use of the diagrammatic techniques in perturbation theory,we have investigated the Hall effect in a quasi-two-dimensional disordered electron system.In the weakly localized regime,the analytical expression for quantum correction to Hall conductivity has been obtained using the Kubo formalism and quasiclassical approximation.The relevant dimensional crossover behavior from three dimensions to two dimensions with decreasing the interlayer hopping energy is discussed.The quantum interference effect is shown to have a vanishing correction t,o the Hall coefficient.

  19. Observation of a pairing pseudogap in a two-dimensional Fermi gas.

    Science.gov (United States)

    Feld, Michael; Fröhlich, Bernd; Vogt, Enrico; Koschorreck, Marco; Köhl, Michael

    2011-11-30

    Pairing of fermions is ubiquitous in nature, underlying many phenomena. Examples include superconductivity, superfluidity of (3)He, the anomalous rotation of neutron stars, and the crossover between Bose-Einstein condensation of dimers and the BCS (Bardeen, Cooper and Schrieffer) regime in strongly interacting Fermi gases. When confined to two dimensions, interacting many-body systems show even more subtle effects, many of which are not understood at a fundamental level. Most striking is the (as yet unexplained) phenomenon of high-temperature superconductivity in copper oxides, which is intimately related to the two-dimensional geometry of the crystal structure. In particular, it is not understood how the many-body pairing is established at high temperature, and whether it precedes superconductivity. Here we report the observation of a many-body pairing gap above the superfluid transition temperature in a harmonically trapped, two-dimensional atomic Fermi gas in the regime of strong coupling. Our measurements of the spectral function of the gas are performed using momentum-resolved photoemission spectroscopy, analogous to angle-resolved photoemission spectroscopy in the solid state. Our observations mark a significant step in the emulation of layered two-dimensional strongly correlated superconductors using ultracold atomic gases.

  20. Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice

    Institute of Scientific and Technical Information of China (English)

    XU Quan; QIANG Tian

    2009-01-01

    We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling.Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive)and the center of the two-dimensional gap breather (on a light or a heavy atom).

  1. Note: Unshielded bilateral magnetoencephalography system using two-dimensional gradiometers

    Science.gov (United States)

    Seki, Yusuke; Kandori, Akihiko; Ogata, Kuniomi; Miyashita, Tsuyoshi; Kumagai, Yukio; Ohnuma, Mitsuru; Konaka, Kuni; Naritomi, Hiroaki

    2010-09-01

    Magnetoencephalography (MEG) noninvasively measures neuronal activity with high temporal resolution. The aim of this study was to develop a new type of MEG system that can measure bilateral MEG waveforms without a magnetically shielded room, which is an obstacle to reducing both the cost and size of an MEG system. An unshielded bilateral MEG system was developed using four two-dimensional (2D) gradiometers and two symmetric cryostats. The 2D gradiometer, which is based on a low-Tc superconducting quantum interference device and wire-wound pickup coil detects a magnetic-field gradient in two orthogonal directions, or ∂/∂x(∂2Bz/∂z2), and reduces environmental magnetic-field noise by more than 50 dB. The cryostats can be symmetrically positioned in three directions: vertical, horizontal, and rotational. This makes it possible to detect bilateral neuronal activity in the cerebral cortex simultaneously. Bilateral auditory-evoked fields (AEF) of 18 elderly subjects were measured in an unshielded hospital environment using the MEG system. As a result, both the ipsilateral and the contralateral AEF component N100m, which is the magnetic counterpart of electric N100 in electroencephalography and appears about 100 ms after the onset of an auditory stimulus, were successfully detected for all the subjects. Moreover, the ipsilateral P50m and the contralateral P50m were also detected for 12 (67%) and 16 (89%) subjects, respectively. Experimental results demonstrate that the unshielded bilateral MEG system can detect MEG waveforms, which are associated with brain dysfunction such as epilepsy, Alzheimer's disease, and Down syndrome.

  2. Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway

    Science.gov (United States)

    2012-09-01

    ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located

  3. RESEARCH ON TWO-DIMENSIONAL LDA FOR FACE RECOGNITION

    Institute of Scientific and Technical Information of China (English)

    Han Ke; Zhu Xiuchang

    2006-01-01

    The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective.

  4. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  5. Two-dimensional Confinement of Heavy Fermions in Artificial Superlattices

    Science.gov (United States)

    Shishido, Hiroaki

    2011-03-01

    Low dimensionality and strong electron-electron Coulomb interactions are both key parameters for novel quantum states of condensed matter. A metallic system with the strongest electron correlations is reported in rare-earth and actinide compounds with f electrons, known as heavy-fermion compounds, where the effective mass of the conduction electrons are strikingly enhanced by the electron correlations up to some hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. We realized experimentally a two-dimensional heavy fermion system, adjusting the dimensionality in a controllable fashion. We grew artificial superlattices of CeIn 3 (m)/ LaIn 3 (n), in which m -layers of heavy-fermion antiferromagnet CeIn 3 and n -layers of a non-magnetic isostructual compound LaIn 3 are stacked alternately, by a molecular beam epitaxy. By reducing the thickness of the CeIn 3 layers, the magnetic order was suppressed and the effective electron mass was further enhanced. The Néel temperature becomes zero at around m = 2 , concomitant with striking deviations from the standard Fermi liquid low-temperature electronic properties. Standard Fermi liquid behaviors are, however, recovered under high magnetic field. These behaviors imply new ``dimensional tuning'' towards a quantum critical point. We also succeeded to fabricate artificial superlattices of a heavy fermion superconductor CeCoIn 5 and non-magnetic divalent Yb-compound YbCoIn 5 . Superconductivity survives even in CeCoIn 5 (3)/ YbCoIn 5 (5) films, while the thickness of CeCoIn 5 layer, 2.3 nm, is comparable to the c -axis coherence length ξc ~ 2 nm. This work has been done in collaboration with Y. Mizukami, S. Yasumoto, M. Shimozawa, H. Kontani, T. Shibauchi, T. Terashima and Y. Matsuda.superconductivity is realized in the artificial superlattices. This work has been done in collaboration with Y. Mizukami, S. Yasumoto, M. Shimozawa, H. Kontani, T

  6. Two Dimensional Symmetric Correlation Functions of the S Operator and Two Dimensional Fourier Transforms: Considering the Line Coupling for P and R Lines of Linear Molecules

    Science.gov (United States)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2014-01-01

    The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS1 - S2 introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the ^S operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters' two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C2H2 broadened by N2. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.

  7. A study of two-dimensional magnetic polaron

    Institute of Scientific and Technical Information of China (English)

    LIU; Tao; ZHANG; Huaihong; FENG; Mang; WANG; Kelin

    2006-01-01

    By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.

  8. UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    袁光伟; 沈智军; 闫伟

    2003-01-01

    In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.

  9. Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal

    DEFF Research Database (Denmark)

    Lebech, Bente; Bak, P.

    1979-01-01

    The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....

  10. Entanglement Entropy for time dependent two dimensional holographic superconductor

    CERN Document Server

    Mazhari, N S; Myrzakulov, Kairat; Myrzakulov, R

    2016-01-01

    We studied entanglement entropy for a time dependent two dimensional holographic superconductor. We showed that the conserved charge of the system plays the role of the critical parameter to have condensation.

  11. Decoherence in a Landau Quantized Two Dimensional Electron Gas

    Directory of Open Access Journals (Sweden)

    McGill Stephen A.

    2013-03-01

    Full Text Available We have studied the dynamics of a high mobility two-dimensional electron gas as a function of temperature. The presence of satellite reflections in the sample and magnet can be modeled in the time-domain.

  12. Quantization of Two-Dimensional Gravity with Dynamical Torsion

    CERN Document Server

    Lavrov, P M

    1999-01-01

    We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.

  13. Spatiotemporal dissipative solitons in two-dimensional photonic lattices.

    Science.gov (United States)

    Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S

    2008-11-01

    We analyze spatiotemporal dissipative solitons in two-dimensional photonic lattices in the presence of gain and loss. In the framework of the continuous-discrete cubic-quintic Ginzburg-Landau model, we demonstrate the existence of novel classes of two-dimensional spatiotemporal dissipative lattice solitons, which also include surface solitons located in the corners or at the edges of the truncated two-dimensional photonic lattice. We find the domains of existence and stability of such spatiotemporal dissipative solitons in the relevant parameter space, for both on-site and intersite lattice solitons. We show that the on-site solitons are stable in the whole domain of their existence, whereas most of the intersite solitons are unstable. We describe the scenarios of the instability-induced dynamics of dissipative solitons in two-dimensional lattices.

  14. Bound states of two-dimensional relativistic harmonic oscillators

    Institute of Scientific and Technical Information of China (English)

    Qiang Wen-Chao

    2004-01-01

    We give the exact normalized bound state wavefunctions and energy expressions of the Klein-Gordon and Dirac equations with equal scalar and vector harmonic oscillator potentials in the two-dimensional space.

  15. A two-dimensional polymer prepared by organic synthesis.

    Science.gov (United States)

    Kissel, Patrick; Erni, Rolf; Schweizer, W Bernd; Rossell, Marta D; King, Benjamin T; Bauer, Thomas; Götzinger, Stephan; Schlüter, A Dieter; Sakamoto, Junji

    2012-02-05

    Synthetic polymers are widely used materials, as attested by a production of more than 200 millions of tons per year, and are typically composed of linear repeat units. They may also be branched or irregularly crosslinked. Here, we introduce a two-dimensional polymer with internal periodicity composed of areal repeat units. This is an extension of Staudinger's polymerization concept (to form macromolecules by covalently linking repeat units together), but in two dimensions. A well-known example of such a two-dimensional polymer is graphene, but its thermolytic synthesis precludes molecular design on demand. Here, we have rationally synthesized an ordered, non-equilibrium two-dimensional polymer far beyond molecular dimensions. The procedure includes the crystallization of a specifically designed photoreactive monomer into a layered structure, a photo-polymerization step within the crystal and a solvent-induced delamination step that isolates individual two-dimensional polymers as free-standing, monolayered molecular sheets.

  16. Second invariant for two-dimensional classical super systems

    Indian Academy of Sciences (India)

    S C Mishra; Roshan Lal; Veena Mishra

    2003-10-01

    Construction of superpotentials for two-dimensional classical super systems (for ≥ 2) is carried out. Some interesting potentials have been studied in their super form and also their integrability.

  17. Field-Induced Multiple Reentrant Quantum Phase Transitions in Randomly Dimerized Antiferromagnetic S=1/2 Heisenberg Chains

    Science.gov (United States)

    Hida, Kazuo

    2006-07-01

    The multiple reentrant quantum phase transitions in the S=1/2 antiferromagnetic Heisenberg chains with random bond alternation in the magnetic field are investigated by the density matrix renormalization group method combined with interchain mean field approximation. It is assumed that odd numbered bonds are antiferromagnetic with strength J and even numbered bonds can take the values JS and JW (JS > J > JW > 0) randomly with the probabilities p and 1- p, respectively. The pure version ( p=0 and 1) of this model has a spin gap but exhibits a field-induced antiferromagnetism in the presence of interchain coupling if Zeeman energy due to the magnetic field exceeds the spin gap. For 0 < p < 1, antiferromagnetism is induced by randomness at the small field region where the ground state is disordered due to the spin gap in the pure version. At the same time, this model exhibits randomness-induced plateaus at several values of magnetization. The antiferromagnetism is destroyed on the plateaus. As a consequence, we find a series of reentrant quantum phase transitions between transverse antiferromagnetic phases and disordered plateau phases with the increase of magnetic field for a moderate strength of interchain coupling. Above the main plateaus, the magnetization curve consists of a series of small plateaus and jumps between them. It is also found that antiferromagnetism is induced by infinitesimal interchain coupling at the jumps between the small plateaus. We conclude that this antiferromagnetism is supported by the mixing of low-lying excited states by the staggered interchain mean field even though the spin correlation function is short ranged in the ground state of each chain.

  18. Extreme paths in oriented two-dimensional percolation

    OpenAIRE

    Andjel, E. D.; Gray, L. F.

    2016-01-01

    International audience; A useful result about leftmost and rightmost paths in two dimensional bond percolation is proved. This result was introduced without proof in \\cite{G} in the context of the contact process in continuous time. As discussed here, it also holds for several related models, including the discrete time contact process and two dimensional site percolation. Among the consequences are a natural monotonicity in the probability of percolation between different sites and a somewha...

  19. Two Dimensional Nucleation Process by Monte Carlo Simulation

    OpenAIRE

    T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University

    1997-01-01

    Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...

  20. Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers

    Science.gov (United States)

    2016-06-15

    polymers . 2. Introduction . Research objectives: This research aims to study the physical (van der Waals forces: crystal epitaxy and π-π...AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4054 5c.  PROGRAM ELEMENT