Siuly; Yin, Xiaoxia; Hadjiloucas, Sillas; Zhang, Yanchun
2016-04-01
This work provides a performance comparison of four different machine learning classifiers: multinomial logistic regression with ridge estimators (MLR) classifier, k-nearest neighbours (KNN), support vector machine (SVM) and naïve Bayes (NB) as applied to terahertz (THz) transient time domain sequences associated with pixelated images of different powder samples. The six substances considered, although have similar optical properties, their complex insertion loss at the THz part of the spectrum is significantly different because of differences in both their frequency dependent THz extinction coefficient as well as differences in their refractive index and scattering properties. As scattering can be unquantifiable in many spectroscopic experiments, classification solely on differences in complex insertion loss can be inconclusive. The problem is addressed using two-dimensional (2-D) cross-correlations between background and sample interferograms, these ensure good noise suppression of the datasets and provide a range of statistical features that are subsequently used as inputs to the above classifiers. A cross-validation procedure is adopted to assess the performance of the classifiers. Firstly the measurements related to samples that had thicknesses of 2mm were classified, then samples at thicknesses of 4mm, and after that 3mm were classified and the success rate and consistency of each classifier was recorded. In addition, mixtures having thicknesses of 2 and 4mm as well as mixtures of 2, 3 and 4mm were presented simultaneously to all classifiers. This approach provided further cross-validation of the classification consistency of each algorithm. The results confirm the superiority in classification accuracy and robustness of the MLR (least accuracy 88.24%) and KNN (least accuracy 90.19%) algorithms which consistently outperformed the SVM (least accuracy 74.51%) and NB (least accuracy 56.86%) classifiers for the same number of feature vectors across all studies
González, J. F.; Lapasset, E.
2003-06-01
We apply the two-dimensional cross-correlation technique TODCOR to derive spectroscopic orbits for the two B-type double-lined spectroscopic binaries HD 66066A and HD 315031, previously mentioned as blue straggler candidates of the open clusters NGC 2516 and NGC 6530, respectively. Reliable radial velocities for both components are measured even for orbital phases for which the separation between the spectral lines are about 0.5 times the quadratic sum of the full-width at half-maximum of the lines. Both binaries have circular orbits and the orbital periods are 1.67 and 1.38 days for HD 66066A and HD 315031, respectively. We calculate minimum masses with errors of 3-5% and obtain the projected radii from the line widths. We derive absolute stellar parameters which are consistent with the age and distance of the clusters. Both binary systems are formed by main-sequence stars and it is expected that they will experience mass-transfer between their components before the end of the core H-burning stage. HD 315031 is likely a triple system as suggested by the variation of the center-of-mass velocity. The observations presented here were obtained at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET) and the National Universities of La Plata, Córdoba and San Juan.
Chen, Yi-Hui; Tian, Hui-Lin; Li, Ji-Heng; Li, Guo-Ying
2012-06-01
The Fourier transform infrared spectroscopy and two dimensional correlation analysis method were applied to study a denaturing process of uncross-linked collagen and cross-linked collagen during varying temperature. It was found that the intensity of typically characteristic absorptions of collagen decreased and its peak shifted to low frequency, The amide II central absorbance peak moved to a lower frequency by about 10 cm(-1), which indicated that the inter-chain hydrogen bonds which stabilized the triple helix conformation of collagen were disrupted during thermal denaturation, resulting in a conformational change. The intensity of auto-peak at 1 515 cm(-1) was maximum, which suggested that the temperature had a big impact on amide II. In comparison with uncross-linked collagen, the intensity of cross-peaks of cross-linked collagen was weaker, which demonstrated that the effect of temperature on the structure of cross-linked collagen was smaller, and the thermal stability properties of collagen solution could be improved by cross-linking. While the order of second structure changes of cross-linked collagen was different. These fundamental data should provide available information for understanding the relationship between the structure and function of cross-linked collagen.
Two-dimensional Fourier transform ESR correlation spectroscopy
Gorcester, Jeff; Freed, Jack H.
1988-04-01
We describe our pulsed two-dimensional Fourier transform ESR experiment and demonstrate its applicabilty for the double resonance of motionally narrowed nitroxides. Multiple pulse irradiation of the entire nitroxide spectrum enables the correlation of two precessional periods, allowing observation of cross correlations between hyperfine lines introduced by magnetization transfer in the case of a three-pulse experiment (2D ELDOR), or coherence transfer in the case of a two-pulse experiment (COSY). Cross correlations are revealed by the presence of cross peaks which connect the autocorrelation lines appearing along the diagonal ω1=ω2. The amplitudes of these cross peaks are determined by the rates of magnetization transfer in the 2D ELDOR experiment. The density operator theory for the experiment is outlined and applied to the determination of Heisenberg exchange (HE) rates in 2,2,6,6-tetramethyl-4-piperidone-N-oxyl-d15 (PD-tempone) dissolved in toluene-d8. The quantitative accuracy of this experiment is established by comparison with the HE rate measured from the dependence of the spin echo T2 on nitroxide concentration.
Easy interpretation of optical two-dimensional correlation spectra
Lazonder, K.; Pshenichnikov, M.S.; Wiersma, D.A.
2006-01-01
We demonstrate that the value of the underlying frequency-frequency correlation function can be retrieved from a two-dimensional optical correlation spectrum through a simple relationship. The proposed method yields both intuitive clues and a quantitative measure of the dynamics of the system. The t
Level crossings in complex two-dimensional potentials
Indian Academy of Sciences (India)
Qing-Hai Wang
2009-08-01
Two-dimensional $\\mathcal{PT}$-symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both potentials respect the $\\mathcal{PT}$ symmetry, the complex energy eigenvalues appear when level crossing happens between same parity eigenstates.
Two-dimensional correlation spectroscopy in polymer study
Park, Yeonju; Noda, Isao; Jung, Young Mee
2015-01-01
This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286
Strongly correlated two-dimensional plasma explored from entropy measurements.
Kuntsevich, A Y; Tupikov, Y V; Pudalov, V M; Burmistrov, I S
2015-06-23
Charged plasma and Fermi liquid are two distinct states of electronic matter intrinsic to dilute two-dimensional electron systems at elevated and low temperatures, respectively. Probing their thermodynamics represents challenge because of lack of an adequate technique. Here, we report a thermodynamic method to measure the entropy per electron in gated structures. Our technique appears to be three orders of magnitude superior in sensitivity to a.c. calorimetry, allowing entropy measurements with only 10(8) electrons. This enables us to investigate the correlated plasma regime, previously inaccessible experimentally in two-dimensional electron systems in semiconductors. In experiments with clean two-dimensional electron system in silicon-based structures, we traced entropy evolution from the plasma to Fermi liquid regime by varying electron density. We reveal that the correlated plasma regime can be mapped onto the ordinary non-degenerate Fermi gas with an interaction-enhanced temperature-dependent effective mass. Our method opens up new horizons in studies of low-dimensional electron systems.
Crossed Andreev effects in two-dimensional quantum Hall systems
Hou, Zhe; Xing, Yanxia; Guo, Ai-Min; Sun, Qing-Feng
2016-08-01
We study the crossed Andreev effects in two-dimensional conductor/superconductor hybrid systems under a perpendicular magnetic field. Both a graphene/superconductor hybrid system and an electron gas/superconductor one are considered. It is shown that an exclusive crossed Andreev reflection, with other Andreev reflections being completely suppressed, is obtained in a high magnetic field because of the chiral edge states in the quantum Hall regime. Importantly, the exclusive crossed Andreev reflection not only holds for a wide range of system parameters, e.g., the size of system, the width of central superconductor, and the quality of coupling between the graphene and the superconductor, but also is very robust against disorder. When the applied bias is within the superconductor gap, a robust Cooper-pair splitting process with high-efficiency can be realized in this system.
Light transport and localization in two-dimensional correlated disorder
Conley, Gaurasundar M; Pratesi, Filippo; Vynck, Kevin; Wiersma, Diederik S
2013-01-01
Structural correlations in disordered media are known to affect significantly the propagation of waves. In this article, we theoretically investigate the transport and localization of light in two-dimensional photonic structures with short-range correlated disorder. The problem is tackled semi-analytically using the Baus-Colot model for the structure factor of correlated media and a modified independent scattering approximation. We find that short-range correlations make it possible to easily tune the transport mean free path by more than a factor of 2 and the related localization length over several orders of magnitude. This trend is confirmed by numerical finite-difference time-domain calculations. This study therefore shows that disorder engineering can offer fine control over light transport and localization in planar geometries, which may open new opportunities in both fundamental and applied photonics research.
Jun, Brian; Giarra, Matthew; Golz, Brian; Main, Russell; Vlachos, Pavlos
2016-11-01
We present a methodology to mitigate the major sources of error associated with two-dimensional confocal laser scanning microscopy (CLSM) images of nanoparticles flowing through a microfluidic channel. The correlation-based velocity measurements from CLSM images are subject to random error due to the Brownian motion of nanometer-sized tracer particles, and a bias error due to the formation of images by raster scanning. Here, we develop a novel ensemble phase correlation with dynamic optimal filter that maximizes the correlation strength, which diminishes the random error. In addition, we introduce an analytical model of CLSM measurement bias error correction due to two-dimensional image scanning of tracer particles. We tested our technique using both synthetic and experimental images of nanoparticles flowing through a microfluidic channel. We observed that our technique reduced the error by up to a factor of ten compared to ensemble standard cross correlation (SCC) for the images tested in the present work. Subsequently, we will assess our framework further, by interrogating nanoscale flow in the cell culture environment (transport within the lacunar-canalicular system) to demonstrate our ability to accurately resolve flow measurements in a biological system.
Two-Dimensional Correlation Method for Polymer Analysis
Energy Technology Data Exchange (ETDEWEB)
Herman, Matthew Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-06-08
Since its introduction by Noda in 1986 two-dimension correlation spectroscopy has been offering polymer scientists an opportunity to look more deeply into collected spectroscopic data. When the spectra are recorded in response to an external perturbation, it is possible to correlate the spectra and expand the information over a separate spectra axis allow for enhancement of spectral resolution, the ability to determine synchronous change, and a unique way to organize observed changes in the spectra into sequential order following a set of three simple rules. By organizing the 2D spectra into synchronous change plots and asynchronous change plots it is possible to correlate change between spectral regions and develop their temporal relationships to one another. With the introduction of moving-window correlation-spectroscopy by Thomas and Richardson in 2000, a method of binning and processing data, it became possible to directly correlate relationships generated in the spectra from the change in the perturbation variable. This method takes advantage of the added resolution of two-dimension spectroscopy and has been applied to study very week transitions found in polymer materials. Appling both of these techniques we are beginning to develop an understanding of how polymers decay under radiolytic aging, to develop a stronger understanding of changes in mechanical properties and the service capabilities of materials.
Quadrature two-dimensional correlation spectroscopy (Q-2DCOS)
Noda, Isao
2016-11-01
Quadrature 2D correlation spectroscopy (Q-2DCOS) is introduced. The technique incorporates the effect of the perturbation into the traditional 2DCOS analysis by building a multivariate model, merging the information of the perturbation variable and spectral responses. By employing factors which are 90° out of phase with each other, pertinent coincidental and sequential spectral intensity variations are adequately captured for the subsequent 2D correlation analysis. Almost complete replication of the original 2DCOS results based on such a simple rank 2 model of experimental spectra suggests that only the dominant spectral intensity variation patterns in combination with its quadrature counterpart seems to be utilized in 2DCOS analysis. Using the linear perturbation variable itself as the basis for generating the primary score vector is equivalent to the least squares fitting of a quadratic polynomial with spectral intensity variations. Q-2DCOS analysis may be displayed in terms of a graphical plot on a phase plane in the vector space, so that coincidental and sequential matching of the patterns of spectral intensity variations is represented simply by the phase angle difference between two vectors. Q-2DCOS analysis is closely related to other established ideas and practices in the 2D correlation spectroscopy field, such as dynamic 2D IR dichroism, PCA 2D, quadrature orthogonal signal correction (Q-OSC), and perturbation correlation moving window (PCMW) analyses.
Novel developments and applications of two-dimensional correlation spectroscopy
Park, Yeonju; Noda, Isao; Jung, Young Mee
2016-11-01
A comprehensive survey review of new and noteworthy developments of 2D correlation spectroscopy (2DCOS) and its applications for the last two years is compiled. This review covers not only journal articles and book chapters but also books, proceedings, and review articles published on 2DCOS, numerous significant new concepts of 2DCOS, patents and publication trends. Noteworthy experimental practices in the field of 2DCOS, including types of analytical probes employed, various perturbation methods used in experiments, and pertinent examples of fundamental and practical applications, are also reviewed.
Tan, Qing-Tian; Tian, Zhen-Hua; Li, Guo-Ying
2011-04-01
Conformational changes and specific interactions in the collagen/hyaluronic acid blends were studied by two-dimensional infrared correlation spectroscopy with the interruption of the component of hyaluronic acid in collagen/ hyaluronic acid blends. It was found that the synchronous cross-peaks, derived from stretching vibrations of C=O at 1 694 cm(-1), wagging of N-H at 1 524 cm(-1) and in-plane deformation of N-H at 1 241 cm(-1) of collagen, were indicative of local conformational changes of collagen. The synchronous negative cross-peak between stretching vibrations of C-OH of hyaluronic acid at 1 045 cm(-1) and streching vibrations of C=O of collagen at 1 694 cm(-1) suggested that the interaction of hydrogen bonding existing between O-H of HA and C=O of collagen with the content of HA varied from 0% to 50%. With the content of HA more than 50%, the cross-peak at 1 045 cm(-1) disappeared in synchronous correlation spectra while the intensity of cross-peak at (1 694, 1 524), (1 694, 1 241), (1 524, 1 241) increased, which indicated that no interaction was found between O-H of HA and collagen, however, the interactions of hydrogen bonding existed between C=O of HA and N-H of collagen, resulting in the conformational changes of collagen.
Lim, James; Ing, David J; Rosskopf, Joachim; Jeske, Jan; Cole, Jared H; Huelga, Susana F; Plenio, Martin B
2017-01-14
We investigate how correlated fluctuations affect oscillatory features in rephasing and non-rephasing two-dimensional (2D) electronic spectra of a model dimer system. Based on a beating map analysis, we show that non-secular environmental couplings induced by uncorrelated fluctuations lead to oscillations centered at both cross- and diagonal-peaks in rephasing spectra as well as in non-rephasing spectra. Using an analytical approach, we provide a quantitative description of the non-secular effects in terms of the Feynman diagrams and show that the environment-induced mixing of different inter-excitonic coherences leads to oscillations in the rephasing diagonal-peaks and non-rephasing cross-peaks. We demonstrate that as correlations in the noise increase, the lifetime of oscillatory 2D signals is enhanced at rephasing cross-peaks and non-rephasing diagonal-peaks, while the other non-secular oscillatory signals are suppressed. We discuss that the asymmetry of 2D lineshapes in the beating map provides information on the degree of correlations in environmental fluctuations. Finally we investigate how the oscillatory features in 2D spectra are affected by inhomogeneous broadening.
Lim, James; Ing, David J.; Rosskopf, Joachim; Jeske, Jan; Cole, Jared H.; Huelga, Susana F.; Plenio, Martin B.
2017-01-01
We investigate how correlated fluctuations affect oscillatory features in rephasing and non-rephasing two-dimensional (2D) electronic spectra of a model dimer system. Based on a beating map analysis, we show that non-secular environmental couplings induced by uncorrelated fluctuations lead to oscillations centered at both cross- and diagonal-peaks in rephasing spectra as well as in non-rephasing spectra. Using an analytical approach, we provide a quantitative description of the non-secular effects in terms of the Feynman diagrams and show that the environment-induced mixing of different inter-excitonic coherences leads to oscillations in the rephasing diagonal-peaks and non-rephasing cross-peaks. We demonstrate that as correlations in the noise increase, the lifetime of oscillatory 2D signals is enhanced at rephasing cross-peaks and non-rephasing diagonal-peaks, while the other non-secular oscillatory signals are suppressed. We discuss that the asymmetry of 2D lineshapes in the beating map provides information on the degree of correlations in environmental fluctuations. Finally we investigate how the oscillatory features in 2D spectra are affected by inhomogeneous broadening.
Material line fluctuations slaved to bulk correlations in two-dimensional turbulence
Odijk, Theo
2017-02-01
An analogy is pointed out between a polymer chain fluctuating in a two-dimensional nematic background and a freely floating material line buffeted by a two-dimensional turbulent fluid in the inertial (Kraichnan) regime. Under certain conditions, the back-reaction of the line on the turbulent flow may be neglected. The fractal exponent related to the size-contour relation of the material line is connected to a "nematic" correlation function in the bulk.
Two-dimensional gain cross-grating based on spatial modulation of active Raman gain
Wang, Li; Zhou, Feng-Xue; Guo, Hong-Ju; Niu, Yue-Ping; Gong, Shang-Qing
2016-11-01
Based on the spatial modulation of active Raman gain, a two-dimensional gain cross-grating is theoretically proposed. As the probe field propagates along the z direction and passes through the intersectant region of the two orthogonal standing-wave fields in the x-y plane, it can be effectively diffracted into the high-order directions, and the zero-order diffraction intensity is amplified at the same time. In comparison with the two-dimensional electromagnetically induced cross-grating based on electromagnetically induced transparency, the two-dimensional gain cross-grating has much higher diffraction intensities in the first-order and the high-order directions. Hence, it is more suitable to be utilized as all-optical switching and routing in optical networking and communication. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274112 and 11347133).
GIS-based data model and tools for creating and managing two-dimensional cross sections
Whiteaker, Timothy L.; Jones, Norm; Strassberg, Gil; Lemon, Alan; Gallup, Doug
2012-02-01
While modern Geographic Information Systems (GIS) software is robust in handling maps and data in plan view, the software generally falls short when representing features in section view. Further complicating the issue is the fact that geologic cross sections are often drawn by connecting a series of wells together that do not fall along a single straight line. In this case, the x-axis of the cross section represents the distance along the set of individual lines connecting the series of wells, effectively "flattening out" the cross section along this path to create a view of the subsurface with which geologists often work in printed folios. Even 3D-enabled GIS cannot handle this type of cross section. A GIS data model and tools for creating and working with two-dimensional cross sections are presented. The data model and tools create a framework that can be applied using ESRI's ArcGIS software, enabling users to create, edit, manage, and print two-dimensional cross sections from within one of the most well-known GIS software packages. The data model is a component of the arc hydro groundwater data model, which means all two-dimensional cross sections are inherently linked to other features in the hydrogeologic domain, including those represented by xyz coordinates in real world space. Thus, the creation of two-dimensional cross sections can be guided by or completely driven from standard GIS data, and geologic interpretations established on two-dimensional cross sections can be translated back to real world coordinates to create three-dimensional features such as fence diagrams, giving GIS users the capacity to characterize the subsurface environment in a variety of integrated views that was not possible before. A case study for the Sacramento Regional Model in California demonstrates the application of the methodology in support of a regional groundwater management plan.
Two-dimensional acoustic particle velocity sensors based on a crossing wires topology
Pjetri, O.
2016-01-01
This thesis describes the design and realization of two-dimensional acoustic particle velocity sensors based on thermal convection. The sensors are of the order of 1 mm×1 mm and consist of two crossing wires with each wire sensing the acoustic particle velocity in the direction parallel to it. Their
Correlating nuclear frequencies by two-dimensional ELDOR-detected NMR spectroscopy.
Kaminker, Ilia; Wilson, Tiffany D; Savelieff, Masha G; Hovav, Yonatan; Zimmermann, Herbert; Lu, Yi; Goldfarb, Daniella
2014-03-01
ELDOR (Electron Double Resonance)-detected NMR (EDNMR) is a pulse EPR experiment that is used to measure the transition frequencies of nuclear spins coupled to electron spins. These frequencies are further used to determine hyperfine and quadrupolar couplings, which are signatures of the electronic and spatial structures of paramagnetic centers. In recent years, EDNMR has been shown to be particularly useful at high fields/high frequencies, such as W-band (∼95 GHz, ∼3.5 T), for low γ quadrupolar nuclei. Although at high fields the nuclear Larmor frequencies are usually well resolved, the limited resolution of EDNMR still remains a major concern. In this work we introduce a two dimensional, triple resonance, correlation experiment based on the EDNMR pulse sequence, which we term 2D-EDNMR. This experiment allows circumventing the resolution limitation by spreading the signals in two dimensions and the observed correlations help in the assignment of the signals. First we demonstrate the utility of the 2D-EDNMR experiment on a nitroxide spin label, where we observe correlations between (14)N nuclear frequencies. Negative cross-peaks appear between lines belonging to different MS electron spin manifolds. We resolved two independent correlation patterns for nuclear frequencies arising from the EPR transitions corresponding to the (14)N mI=0 and mI=-1 nuclear spin states, which severely overlap in the one dimensional EDNMR spectrum. The observed correlations could be accounted for by considering changes in the populations of energy levels that S=1/2, I=1 spin systems undergo during the pulse sequence. In addition to these negative cross-peaks, positive cross-peaks appear as well. We present a theoretical model based on the Liouville equation and use it to calculate the time evolution of populations of the various energy levels during the 2D-EDNMR experiment and generated simulated 2D-EDMR spectra. These calculations show that the positive cross-peaks appear due to
Correlating nuclear frequencies by two-dimensional ELDOR-detected NMR spectroscopy
Kaminker, Ilia; Wilson, Tiffany D.; Savelieff, Masha G.; Hovav, Yonatan; Zimmermann, Herbert; Lu, Yi; Goldfarb, Daniella
2014-03-01
ELDOR (Electron Double Resonance)-detected NMR (EDNMR) is a pulse EPR experiment that is used to measure the transition frequencies of nuclear spins coupled to electron spins. These frequencies are further used to determine hyperfine and quadrupolar couplings, which are signatures of the electronic and spatial structures of paramagnetic centers. In recent years, EDNMR has been shown to be particularly useful at high fields/high frequencies, such as W-band (∼95 GHz, ∼3.5 T), for low γ quadrupolar nuclei. Although at high fields the nuclear Larmor frequencies are usually well resolved, the limited resolution of EDNMR still remains a major concern. In this work we introduce a two dimensional, triple resonance, correlation experiment based on the EDNMR pulse sequence, which we term 2D-EDNMR. This experiment allows circumventing the resolution limitation by spreading the signals in two dimensions and the observed correlations help in the assignment of the signals. First we demonstrate the utility of the 2D-EDNMR experiment on a nitroxide spin label, where we observe correlations between 14N nuclear frequencies. Negative cross-peaks appear between lines belonging to different MS electron spin manifolds. We resolved two independent correlation patterns for nuclear frequencies arising from the EPR transitions corresponding to the 14N mI = 0 and mI = -1 nuclear spin states, which severely overlap in the one dimensional EDNMR spectrum. The observed correlations could be accounted for by considering changes in the populations of energy levels that S = 1/2, I = 1 spin systems undergo during the pulse sequence. In addition to these negative cross-peaks, positive cross-peaks appear as well. We present a theoretical model based on the Liouville equation and use it to calculate the time evolution of populations of the various energy levels during the 2D-EDNMR experiment and generated simulated 2D-EDMR spectra. These calculations show that the positive cross-peaks appear due
Ballesteros, E.; Collados, M.; Bonet, J. A.; Lorenzo, F.; Viera, T.; Reyes, M.; Rodriguez Hidalgo, I.
1996-02-01
In this paper the description of the Solar Correlation Tracker prototype built by the Instituto de Astrof isica de Canarias is presented. The system is mainly conceived as a solar image tranquilizer, although a scanning utility has also been included in order to displace the image on the final focal plane with sub-arcsecond steps, thus allowing to perform two-dimensional high spatial resolution spectroscopy. The behaviour of the different elements of the tracker is shown, as well as their influence in the performance of the system. The restrictions of the Absolute Differences algorithm, used to detect image motion when granulation fields are considered, are extensively discussed. Laboratory and telescope tests have demonstrated the capabilities of the system. The electronic components have been adapted to new optics and mechanics developed at the Kiepenheuer Institut to build an Advanced Solar Correlation Tracker. The final version of the system has been installed at the German VTT of the Spanish Observatorio del Teide. The tests carried out have demonstrated that a bandwidth of about 60Hz (for an attenuation factor of two) is achieved, which is approximately four times larger than that of previous Correlation Trackers, at the same level of attenuation.
Yang, Ren-jie; Yang, Yan-rong; Dong, Gui-mei; Du, Yan-hong; Shan, Hui-yong; Zhang, Wei-yu
2014-08-01
Based on Euclidian distances between synchronous two-dimensional infrared correlation spectra, in terms of the average Euclidian distances between unknown samples and "extreme samples", and average intra- and inter-Euclidian distances of samples in the calibration set, a new method for the discrimination of adulterated milk was proposed. Sixteen pure milk samples were collected and 16 adulterated milk samples with urea (0.01-0.3 g x L(-1)), and 16 adulterated milk samples with melamine (0.01-0.3 g x L(-1)) samples were prepared, respectively. The IR absorption spectra of all samples were measured at room temperature. The synchronous two-dimensional correlation spectra were generated from concentration-dependent spectral variation of adulterant in milk. The Euclidian distances were calculated between synchronous two-dimensional infrared correlation spectra of all samples. Then, the classification models were built respectively for adulterated milk with urea, and adiulterated milk with melamine. The "extreme samples", average intra- and inter-Euclidian distances were determined. Finally, the unknown samples in prediction set were predicted using constructed models in terms of classification rules of adulterated milk. The classification accuracy rates for pure milk and adulterated milk were 100%. The effectiveness of the proposed method was verified. The results obtained in this study revealed that synchronous two-dimensional infrared correlation spectra in combination with Euclidian distance has a feasible potential to discriminate adulterated milk and pure milk.
The Application of Canonical Correlation to Two-Dimensional Contingency Tables
Directory of Open Access Journals (Sweden)
Alberto F. Restori
2010-03-01
Full Text Available This paper re-introduces and demonstrates the use of Mickeys (1970 canonical correlation method in analyzing large two-dimensional contingency tables. This method of analysis supplements the traditional analysis using the Pearson chi-square. Examples and a MATLAB source listing are provided.
Inclusive neutral current ep cross sections with HERA II and two-dimensional unfolding
Energy Technology Data Exchange (ETDEWEB)
Fischer, David-Johannes
2011-06-15
In this thesis, the inclusive neutral current ep {yields} eX cross section at small e{sup -} scattering angles has been measured using the electromagnetic SpaCal calorimeter in the backward region of the H1 detector. This calorimeter constructed of lead and scintillating fiber was designed to measure the scattered electron with high resolution in both energy and polar angle. The analysis comprises the kinematic range of 0.06 < y{sub e} < 0.6 for the inelasticity and 14 GeV{sup 2} < Q{sub e}{sup 2} < 110 GeV{sup 2} for the squared momentum exchange. The data sample consists of positron proton collisions of the years 2006 and 2007, adding up to an integrated luminosity of {proportional_to}141 pb{sup -1}. Due to the high luminosity of the HERA II run phase the accuracy is no longer limited by the data statistics but rather by the detector resolution and systematics. The migration becomes increasingly influential; an effect which leads to distortions of the measured distribution as well as to statistical correlations between adjacent data points. At this stage, the correction of detector effects as well as the precise determination of statistical correlations become important features of a rigorous error treatment. In this analysis two-dimensional unfolding has been applied. This is a novel approach to H1 inclusive cross section measurements, which are usually based on a bin-by-bin efficiency correction (bin-by-bin method). With unfolding, the detector effect to the measurements is modelled by a linear transformation (''response matrix'') which is used to correct any distortion of the data. The inclusion of off-diagonal elements results in a coherent assessment of the statistical uncertainties and correlations. The model dependence can be optimally evaluated. In this context, the bin-by-bin method can be viewed as an approximation based on a diagonal response matrix. In a scenario of limited detector resolution, the unfolded data distributions will
One and two dimensional analysis of 3$\\pi$ correlations measured in Pb+Pb interactions
Bearden, I G; Boissevain, J G; Christiansen, P; Conin, L; Dodd, J; Erazmus, B; Esumi, S C; Fabjan, Christian Wolfgang; Ferenc, D; Fields, D E; Franz, A; Gaardhøje, J J; Hansen, A G; Hansen, O; Hardtke, D; van Hecke, H; Holzer, E B; Humanic, T J; Hummel, P; Jacak, B V; Jayanti, R; Kaimi, K; Kaneta, M; Kohama, T; Kopytine, M L; Leltchouk, M; Ljubicic, A; Lörstad, B; Maeda, N; Martin, L; Medvedev, A; Murray, M; Ohnishi, H; Paic, G; Pandey, S U; Piuz, François; Pluta, J; Polychronakos, V; Potekhin, M V; Poulard, G; Reichhold, D M; Sakaguchi, A; Schmidt-Sørensen, J; Simon-Gillo, J; Sondheim, W E; Sugitate, T; Sullivan, J P; Sumi, Y; Willis, W J; Wolf, K L; Xu, N; Zachary, D S
2001-01-01
$\\pi^{-}\\pi^{-}\\pi^{-}$ correlations from Pb+Pb collisions at 158 GeV/c per nucleon are presented as measured by the focusing spectrometer of the NA44 experiment at CERN. The three-body effect is found to be stronger for PbPb than for SPb. The two-dimensional three-particle correlation function is also measured and the longitudinal extension of the source is larger than the transverse extension.
Villaeys, Albert A
2013-01-01
In the present work, the analytical description of an intermolecular vibrational energy transfer, analyzed by two dimensional infrared spectroscopy, is established. The energy transfer process takes place between the dark combination states of low frequency modes pertaining to different molecules. The appearance of the cross peaks results from coherent transfer between these combination states and an optically active state of the acceptor molecule. Such a process has recently been observed experimentally between the nitrile groups of acetonitrile-d3 and benzonitrile molecules. This molecular system will be used as a model for the simulations of their two-dimensional infrared spectra. The dependence of the cross-peak growth, which is a signature of the intermolecular energy transfer, will be discussed in detail as a function of the molecular dynamical constants.
Non-classical photon correlation in a two-dimensional photonic lattice
Gao, Jun; Lin, Xiao-Feng; Jiao, Zhi-Qiang; Feng, Zhen; Zhou, Zheng; Gao, Zhen-Wei; Xu, Xiao-Yun; Chen, Yuan; Tang, Hao; Jin, Xian-Min
2016-01-01
Quantum interference and quantum correlation, as two main features of quantum optics, play an essential role in quantum information applications, such as multi-particle quantum walk and boson sampling. While many experimental demonstrations have been done in one-dimensional waveguide arrays, it remains unexplored in higher dimensions due to tight requirement of manipulating and detecting photons in large-scale. Here, we experimentally observe non-classical correlation of two identical photons in a fully coupled two-dimensional structure, i.e. photonic lattice manufactured by three-dimensional femtosecond laser writing. Photon interference consists of 36 Hong-Ou-Mandel interference and 9 bunching. The overlap between measured and simulated distribution is up to $0.890\\pm0.001$. Clear photon correlation is observed in the two-dimensional photonic lattice. Combining with controllably engineered disorder, our results open new perspectives towards large-scale implementation of quantum simulation on integrated phot...
Ma, Q.; Boulet, C.; Tipping, R. H.
2014-01-01
The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS1 - S2 introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the ^S operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters' two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C2H2 broadened by N2. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.
Numerically exact correlations and sampling in the two-dimensional Ising spin glass.
Thomas, Creighton K; Middleton, A Alan
2013-04-01
A powerful existing technique for evaluating statistical mechanical quantities in two-dimensional Ising models is based on constructing a matrix representing the nearest-neighbor spin couplings and then evaluating the Pfaffian of the matrix. Utilizing this technique and other more recent developments in evaluating elements of inverse matrices and exact sampling, a method and computer code for studying two-dimensional Ising models is developed. The formulation of this method is convenient and fast for computing the partition function and spin correlations. It is also useful for exact sampling, where configurations are directly generated with probability given by the Boltzmann distribution. These methods apply to Ising model samples with arbitrary nearest-neighbor couplings and can also be applied to general dimer models. Example results of computations are described, including comparisons with analytic results for the ferromagnetic Ising model, and timing information is provided.
Phase correlations and quasicondensate in a two-dimensional ultracold Fermi gas
Energy Technology Data Exchange (ETDEWEB)
Tempere, J., E-mail: jacques.tempere@uantwerpen.be [Theory of Quantum and Complex Systems, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium); Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138 (United States); Klimin, S.N. [Theory of Quantum and Complex Systems, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium)
2015-02-15
The interplay between dimensionality, coherence and interaction in superfluid Fermi gases is analyzed by the phase correlation function of the field of fermionic pairs. We calculate this phase correlation function for a two-dimensional superfluid Fermi gas with s-wave interactions within the Gaussian pair fluctuation formalism. The spatial behavior of the correlation function is shown to exhibit a rapid (exponential) decay at short distances and a characteristic algebraic decay at large distances, with an exponent matching that expected from the Berezinskii–Kosterlitz–Thouless theory of 2D Bose superfluids. We conclude that the Gaussian pair fluctuation approximation is able to capture the physics of quasi-long-range order in two-dimensional Fermi gases. - Highlights: • The phase correlation functions for an ultracold Fermi gas in 2D are calculated. • The decay of the correlation functions is algebraic at long distances. • The Gaussian pair fluctuation approach is shown to capture the quasicondensate physics in 2D Fermi gases.
Two-dimensional correlation spectroscopy in protein science, a summary for past 20years.
Wu, Yuqing; Zhang, Liping; Jung, Young Mee; Ozaki, Yukihiro
2018-01-15
Two-dimensional correlation spectroscopy (2DCOS) has been widely used to Infrared, Raman, Near IR, Optical Activity (ROA), Vibrational Circular Dichroism (VCD) and Fluorescence spectroscopy. In addition, several new developments, such as 2D hetero-correlation analysis, moving-window two-dimensional (MW2D) correlation, model based correlation (βν and kν correlation analyses) have also well incorporated into protein research. They have been used to investigate secondary structure, denaturation, folding and unfolding changes of protein, and have contributed greatly to the field of protein science. This review provides an overview of the applications of 2DCOS in the field of protein science for the past 20 year, especially to memory our old friend, Dr. Boguslawa Czarnik-Matusewicz, for her great contribution in this research field. The powerful utility of 2DCOS combined with various analytical techniques in protein studies is summarized. The noteworthy developments and perspective of 2DCOS in this field are highlighted finally. Copyright © 2017 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Cheng, Y.-C.; Engel, Gregory S. [Department of Chemistry and QB3 Institute, University of California, Berkeley (United States) and Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Fleming, Graham R. [Department of Chemistry and QB3 Institute, University of California, Berkeley (United States) and Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: GRFleming@lbl.gov
2007-11-15
In this work, we perform a theoretical study on the dynamics and two-dimensional electronic spectroscopy of a model trimer system and compare the results to experimental data on the Fenna-Matthews-Olson protein. We combine a time-nonlocal quantum master equation formalism and the recently developed method for the efficient calculation of third-order photon echo polarization [M.F. Gelin, D. Egorova, W.J. Domcke, J. Chem. Phys. 123 (2005) 164112] to simulate the 2D electronic spectra of the model system, and compare the time-evolution of the amplitude of cross-peaks to the coherent relaxation dynamics of the system following the excitation by a laser pulse. We show that beats of the upper diagonal peaks in the absolute value 2D spectra provide a direct probe for the coherence dynamics in the system, and the time-evolution of the amplitude of the lower diagonal cross-peaks in the real value 2D spectra can be used to reveal the population transfer among exciton states. Our results verify the intuitive description provided by response functions and demonstrate that the full coherent dynamics in a multichromophoric system can be elucidated using two-dimensional electronic spectroscopy.
Energy Technology Data Exchange (ETDEWEB)
Sukhanov, Aleksei A.
2017-05-15
We study the energy spectra of bound states in quantum dots (QDs) formed by an electrostatic potential in two-dimensional topological insulator (TI) and their transformation with changes in QD depth and radius. It is found that, unlike a trivial insulator, the energy difference between the levels of the ground state and first excited state can decrease with decreasing the radius and increasing the depth of the QD so that these levels intersect under some critical condition. The crossing of the levels results in unusual features of optical properties caused by intraceneter electron transitions. In particular, it leads to significant changes of light absorption due to electron transitions between such levels and to the transient electroluminescence induced by electrical tuning of QD and TI parameters. In the case of magnetic TIs, the polarization direction of the absorbed or emitted circularly polarized light is changed due to the level crossing.
Xiao, Qian; Gu, Xiaohong; Tan, Suo
2014-12-01
Drying process of aqueous sodium alginate solutions at 50°C was investigated by ATR-FTIR spectroscopy and two-dimensional correlation infrared spectroscopy. Two-dimensional asynchronous spectrum at 1,800-1,350 cm(-1) wavenumber could be resolved into five separate bands, which were assigned to O-H bending vibrations in water (around 1,645 cm(-1)), antisymmetric and symmetric stretching vibrations of free and hydrogen-bonded COO(-) groups of alginate (around 1,595, 1,412, 1,572 and 1,390 cm(-1), respectively). As the drying process progressed, absorbance bands at around 1,127 and 1,035 cm(-1) significantly shifted to lower wavenumbers (1120 and 1027cm(-1), respectively). Suggesting that oxygen atoms at the 2th and 3th position in the pyranose ring might have hydrogen bonded with water or alginate chains. Further analysis using 2D asynchronous correlation spectroscopy between 1800-1500 and 1200-960 cm(-1) wavenumber regions revealed the sequence of spectral changes during the drying process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Khoo Sze-Wei
2016-09-01
Full Text Available Among the full-field optical measurement methods, the Digital Image Correlation (DIC is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.
Two-dimensional nanoscale correlations in the strong negative thermal expansion material ScF3
Handunkanda, Sahan U.; Occhialini, Connor A.; Said, Ayman H.; Hancock, Jason N.
2016-12-01
We present diffuse x-ray scattering data on the strong negative thermal expansion (NTE) material ScF3 and find that two-dimensional nanoscale correlations exist at momentum-space regions associated with possibly rigid rotations of the perovskite octahedra. We address the extent to which rigid octahedral motion describes the dynamical fluctuations behind NTE by generalizing a simple model supporting a single floppy mode that is often used to heuristically describe instances of NTE. We find this model has tendencies toward dynamic inhomogeneities and its application to recent and existing experimental data suggest an intricate link between the nanometer correlation length scale, the energy scale for octahedral tilt fluctuations, and the coefficient of thermal expansion in ScF3. We then investigate the breakdown of the rigid limit and propose a resolution to an outstanding debate concerning the role of molecular rigidity in strong NTE materials.
Correlated rotational switching in two-dimensional self-assembled molecular rotor arrays
Wasio, Natalie A.; Slough, Diana P.; Smith, Zachary C.; Ivimey, Christopher J.; Thomas, Samuel W., III; Lin, Yu-Shan; Sykes, E. Charles H.
2017-07-01
Molecular devices are capable of performing a number of functions from mechanical motion to simple computation. Their utility is somewhat limited, however, by difficulties associated with coupling them with either each other or with interfaces such as electrodes. Self-assembly of coupled molecular devices provides an option for the construction of larger entities that can more easily integrate with existing technologies. Here we demonstrate that ordered organometallic arrays can be formed spontaneously by reaction of precursor molecular rotor molecules with a metal surface. Scanning tunnelling microscopy enables individual rotors in the arrays to be switched and the resultant switches in neighbouring rotors imaged. The structure and dimensions of the ordered molecular rotor arrays dictate the correlated switching properties of the internal submolecular rotor units. Our results indicate that self-assembly of two-dimensional rotor crystals produces systems with correlated dynamics that would not have been predicted a priori.
Stochastic investigation of two-dimensional cross sections of rocks based on the climacogram
Kalamioti, Anna; Dimitriadis, Panayiotis; Tzouka, Katerina; Lerias, Eleutherios; Koutsoyiannis, Demetris
2016-04-01
The statistical properties of soil and rock formations are essential for the characterization of the porous medium geological structure as well as for the prediction of its transport properties in groundwater modelling. We investigate two-dimensional cross sections of rocks in terms of stochastic structure of its morphology quantified by the climacogram (i.e., variance of the averaged process vs. scale). The analysis is based both in microscale and macroscale data, specifically from Scanning Electron Microscope (SEM) pictures and from field photos, respectively. We identify and quantify the stochastic properties with emphasis on the large scale type of decay (exponentially or power type, else known as Hurst-Kolmogorov behaviour). Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.
[Progress in Application of Two-Dimensional Correlation Spectroscopy for Detection of Food Quality].
Yang, Ren-jie; Yang, Yan-rong; Liu, Hai-xue; Dong, Gui-mei; Du, Yan-hong; Shan, Hui-yong; Zhang, Wei-yu
2015-08-01
In recent years, the food safety and quality has always been a serious issue. Therefore, it is urgent to develop a rapid and widely available method to determine the quality of food. Due to high spectral resolution, good spectral selectivity and good ability of spectrogram analysis, the technology of two-dimensional (2D) correlation spectroscopy is an effective method for solving three major problems encountered by the conventional one-dimensional (1D) spectrum: low selectivity of the spectra, difficulty in extracting the information of the spectral feature and difficulty in spectrogram analysis. Therefore, 2D correlation spectroscopy, which is suited to distinguish similar samples hardly distinguished by the conventional 1D spectroscopy, has been successfully applied in many complex biological systems. The developmental process, the experimental way to obtain spectrum, the fundamental mathematical principle and the properties of 2D correlation spectroscopy were introduced in this paper. At the same time, it is pointed out that the origin of weak characteristic bands of substance can be verified in terms of the positive or negative corss peaks in synchronous 2D correlation spectrum combined with the existence or inexistence of corss peaks in asynchronous 2D correlation spectrum. The application of 2D near-infrared, mid-infrared, fluorescence, and raman correlation spectroscopy in the detection of food quality and adulteration, concentrated specifically on diary product, wine, oil, meat, honey, and rice were reviewed. Finally, the limitations and future development prospects were pointed out.
Energy Technology Data Exchange (ETDEWEB)
Caram, Justin R.; Lewis, Nicholas H. C.; Fidler, Andrew F.; Engel, Gregory S. [Department of Chemistry and The James Franck Institute, University of Chicago, Chicago, Illinois 60637 (United States)
2012-03-14
Long-lived excitonic coherence in photosynthetic proteins has become an exciting area of research because it may provide design principles for enhancing the efficiency of energy transfer in a broad range of materials. In this publication, we provide new evidence that long-lived excitonic coherence in the Fenna-Mathew-Olson pigment-protein (FMO) complex is consistent with the assumption of cross correlation in the site basis, indicating that each site shares bath fluctuations. We analyze the structure and character of the beating crosspeak between the two lowest energy excitons in two-dimensional (2D) electronic spectra of the FMO Complex. To isolate this dynamic signature, we use the two-dimensional linear prediction Z-transform as a platform for filtering coherent beating signatures within 2D spectra. By separating signals into components in frequency and decay rate representations, we are able to improve resolution and isolate specific coherences. This strategy permits analysis of the shape, position, character, and phase of these features. Simulations of the crosspeak between excitons 1 and 2 in FMO under different regimes of cross correlation verify that statistically independent site fluctuations do not account for the elongation and persistence of the dynamic crosspeak. To reproduce the experimental results, we invoke near complete correlation in the fluctuations experienced by the sites associated with excitons 1 and 2. This model contradicts ab initio quantum mechanic/molecular mechanics simulations that observe no correlation between the energies of individual sites. This contradiction suggests that a new physical model for long-lived coherence may be necessary. The data presented here details experimental results that must be reproduced for a physical model of quantum coherence in photosynthetic energy transfer.
Institute of Scientific and Technical Information of China (English)
何春山; 李志兵
2003-01-01
The correlation function of a two-dimensionalIsing model is calculated by the corner transfer matrix renormalization group method.We obtain the critical exponent η= 0.2496 with few computer resources.
2DCOS and I. Three decades of two-dimensional correlation spectroscopy
Noda, Isao
2016-11-01
Historical and personal accounts of the development of two-dimensional correlation spectroscopy (2DCOS) in the last 30 years are presented. 2DCOS originally started as a data sorting technique developed specifically for dynamic IR linear dichroism (DIRLD) spectra of polymers observed under a small amplitude sinusoidal strain. The concept was later generalized to provide a surprisingly versatile analytical tool to study many different types of samples under the influence of not only dynamic but also various static perturbations. Introduction of the efficient computational method based on discrete Hilbert transform and availability of software, as well as the comprehensive textbook in the field, have made the widespread and continuously growing use of 2DCOS technique possible. Evolution of the technique to incorporate new and variant forms of 2DCOS is also noted.
Ghlaifan, Abdulatef; Tounsi, Yassine; Zada, Sara; Muhire, Desire; Nassim, Abdelkrim
2016-12-01
A method for optical phase extraction based on two-dimensional discrete wavelets transform (2-DWT) decomposition is shown. From modulated fringe pattern, phase distribution is extracted by the ratio between detail and approximation. Modulation process is realized digitally by introducing high-frequency spatial carrier, and this process needs two π/2-shifted fringe patterns. We propose to use only single fringe and generate its quadrature by spiral phase transform (SPT). After validation by computer simulation, we apply the 2-DWT algorithm on experimental speckle fringe correlation taken for hard disk surface. The extracted phase using SPT quadrature was compared with that given using this time experimental quadrature, and we show a good performance by multiscale structural similarity metric.
Cross Validation Through Two-dimensional Solution Surface for Cost-Sensitive SVM.
Gu, Bin; Sheng, Victor; Tay, Keng; Romano, Walter; Li, Shuo
2016-06-08
Model selection plays an important role in cost-sensitive SVM (CS-SVM). It has been proven that the global minimum cross validation (CV) error can be efficiently computed based on the solution path for one parameter learning problems. However, it is a challenge to obtain the global minimum CV error for CS-SVM based on one-dimensional solution path and traditional grid search, because CS-SVM is with two regularization parameters. In this paper, we propose a solution and error surfaces based CV approach (CV-SES). More specifically, we first compute a two-dimensional solution surface for CS-SVM based on a bi-parameter space partition algorithm, which can fit solutions of CS-SVM for all values of both regularization parameters. Then, we compute a two-dimensional validation error surface for each CV fold, which can fit validation errors of CS-SVM for all values of both regularization parameters. Finally, we obtain the CV error surface by superposing K validation error surfaces, which can find the global minimum CV error of CS-SVM. Experiments are conducted on seven datasets for cost sensitive learning and on four datasets for imbalanced learning. Experimental results not only show that our proposed CV-SES has a better generalization ability than CS-SVM with various hybrids between grid search and solution path methods, and than recent proposed cost-sensitive hinge loss SVM with three-dimensional grid search, but also show that CV-SES uses less running time.
Two-dimensional DOA Estimation with High Accuracy for MIMO Radar Using Cross Array
Directory of Open Access Journals (Sweden)
Liang Hao
2016-06-01
Full Text Available In this study, we investigate the estimation of the Two-Dimensional (2D Direction Of Arrival (DOA in monostatic multiple-input–multiple-output radar with cross array and propose a novel, highly accurate DOA estimation method based on unitary transformation. First, we design a new unitary matrix using the central symmetry of a cross array at transmit and receive sites. Then, the rotational invariance relationships of these arrays with long and short baselines can be transformed into a real-value field via unitary transformation. In addition, non-ambiguous and highly accurate 2D DOA estimations can be obtained using a unitary dual-resolution ESPRIT algorithm. Simulations show that the proposed method can estimate 2D highly accurate spatial angles using automatic pairing without incurring the expense of array aperture and peak searching. Compared with traditional unitary transformation, the steering vectors of transmit and receive arrays can be transformed into real-value fields via the unitary matrix and the transformation method of our scheme, respectively. This effectively overcomes the problem of shift invariance factors in real-value fields that cannot be extracted using traditional algorithms. Therefore, the proposed method can absolutely compute eigenvalue decomposition and estimate parameters in a real-value field, resulting in lower computational complexity compared with traditional methods. Simulation results verify both the correctness of our theoretical analysis and the effectiveness of the proposed algorithm.
Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot
Li, Yinggang; Chen, Tianning; Wang, Xiaopeng; Yu, Kunpeng; Song, Ruifang
2015-01-01
In this paper, a novel two-dimensional phononic crystal composed of periodic Jerusalem cross slot in air matrix with a square lattice is presented. The dispersion relations and the transmission coefficient spectra are calculated by using the finite element method based on the Bloch theorem. The formation mechanisms of the band gaps are analyzed based on the acoustic mode analysis. Numerical results show that the proposed phononic crystal structure can yield large band gaps in the low-frequency range. The formation mechanism of opening the acoustic band gaps is mainly attributed to the resonance modes of the cavities inside the Jerusalem cross slot structure. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically. Results show that the band gaps can be modulated in an extremely large frequency range by the geometry parameters such as the slot length and width. These properties of acoustic waves in the proposed phononic crystals can potentially be applied to optimize band gaps and generate low-frequency filters and waveguides.
Ren, Guo-Dong; Guo, Ai-Ling; Geng, Fang; Ma, Mei-Hu; Huang, Qun; Wu, Xiao-Fen
2012-07-01
The conformation changes of Apo-Ovotransferrin and Holo-Ovotransferrin were studied with the heat treatment 25-95 degrees C by using Fourier transform infrared spectroscopy (FTIR) and two-dimensional correlation spectroscopy analyzer. The results of one-dimensional infrared spectroscopy showed that with the increase in temperature, the peak at 3 300 cm(-1) of Apo-Ovo-transferrin shifted more than that of Holo-Ovotransferrin. The peak at 3 300 cm(-1) derived from stretching vibrations of N-H and O-H indicates that iron-binding enhanced the role of hydrogen bonds and resistance to heat. The changing order of the secondary structure of ovotransferrin was determined by analyzing two-dimensional infrared spectra,witch is beta-sheet>amide II >-CH2 - bending vibration. In addition, it was found that the cross-peaks at 1 652 and 1 688 cm(-1) are different in synchronous and asynchronous counter maps by comparing Apo-Ovotransferrin with Holo-Ovotransferrin. It was suggested that the temperature made less impact on the alpha-helix in Holo-Ovotransferrin than on that in Apo-Ovotransferrin, however, the beta-turn in Holo-Ovotransferrin was more sensitive to temperature.
Phase diagram and correlation functions of the two-dimensional dissipative quantum XY model
Hou, Changtao; Varma, Chandra M.
2016-11-01
The two-dimensional quantum XY model, with a Caldeira-Leggett form of dissipation, is applicable to the quantum-critical properties of diverse experimental systems, ranging from superconductor to insulator transitions, ferromagnetic and antiferromagnetic transitions in metals, to the loop-current order transition in cuprates. We solve the reexpression of this model in terms of orthogonal topological excitations, vortices, and a variety of instantons, by renormalization group methods. The calculations explain the extraordinary properties of the model discovered in Monte Carlo calculations: the product form of the quantum-critical fluctuations in space and time, a spatial correlation length proportional to the logarithm of the temporal correlation length near the transition from a disordered to a fully ordered state, and the occurrence of a phase with spatial order without temporal order. They are intimately related to the flow of the metric of time in relation to the metric of space, i.e., of the dynamical critical exponent z . These properties appear to be essential in understanding the strange metallic phase found in a variety of quantum-critical transitions as well as the accompanying high-temperature superconductivity.
Spin dynamics and magnetic correlation length in two-dimensional quantum heisenberg antiferromagnets
Carretta; Ciabattoni; Cuccoli; Mognaschi; Rigamonti; Tognetti; Verrucchi
2000-01-10
The correlated spin dynamics and temperature dependence of the correlation length xi(T) in two-dimensional quantum (S = 1/2) Heisenberg antiferromagnets (2DQHAF) on a square lattice are discussed in light of experimental results of proton spin lattice relaxation in copper formiate tetradeuterate. In this compound the exchange constant is much smaller than the one in recently studied 2DQHAF, such as La2CuO4 and Sr2CuO2Cl2. Thus the spin dynamics can be probed in detail over a wider temperature range. The NMR relaxation rates turn out to be in excellent agreement with a theoretical mode-coupling calculation. The deduced temperature behavior of xi(T) is in agreement with high-temperature expansions, quantum Monte Carlo simulations, and the pure quantum self-consistent harmonic approximation. Contrary to the predictions of the theories based on the nonlinear sigma model, no evidence of crossover between different quantum regimes is observed.
He, Bin; Liu, Rong; Yang, Renjie; Xu, Kexin
2010-02-01
Adulteration of milk and dairy products has brought serious threats to human health as well as enormous economic losses to the food industry. Considering the diversity of adulterants possibly mixed in milk, such as melamine, urea, tetracycline, sugar/salt and so forth, a rapid, widely available, high-throughput, cost-effective method is needed for detecting each of the components in milk at once. In this paper, a method using Fourier Transform Infrared spectroscopy (FTIR) combined with two-dimensional (2D) correlation spectroscopy is established for the discriminative analysis of adulteration in milk. Firstly, the characteristic peaks of the raw milk are found in the 4000-400 cm-1 region by its original spectra. Secondly, the adulterant samples are respectively detected with the same method to establish a spectral database for subsequent comparison. Then, 2D correlation spectra of the samples are obtained which have high time resolution and can provide information about concentration-dependent intensity changes not readily accessible from one-dimensional spectra. And the characteristic peaks in the synchronous 2D correlation spectra of the suspected samples are compared with those of raw milk. The differences among their synchronous spectra imply that the suspected milk sample must contain some kinds of adulterants. Melamine, urea, tetracycline and glucose adulterants in milk are identified respectively. This nondestructive method can be used for a correct discrimination on whether the milk and dairy products are adulterated with deleterious substances and it provides a new simple and cost-effective alternative to test the components of milk.
Noda, Isao
2016-11-01
Certain techniques useful in enhancing the features of two-dimensional correlation and codistribution spectra (2DCOS and 2DCDS) are reviewed. 2DCOS sorts out the coordinated or sequential variations of spectral intensities induced by an external perturbation applied to a sample system. 2DCDS is designed to determine the order of the presence of individual species. Pareto scaling of data helps to regulate overwhelmingly strong signal contributions, which may obscure the fine features of 2DCOS and 2DCDS spectra. Pearson unit-variance scaling has some limitations by itself but is useful in some applications. Modified forms of asynchronous 2D spectrum combine the features of both synchronous and asynchronous spectra and can be used as a stand-alone 2D map for the streamlined determination of the sequential order of spectral intensity variations. Null-space projection simplifies congested 2D spectra by eliminating select features, such as contribution from a specific component. Node attenuation is a band narrowing technique suitable for 2D analysis, because it does not produce opposite-sign side lobes. Performance of each technique in enhancing the features of 2D spectra is demonstrated with a model set of experimental spectra.
Lee, Myoung-Jae; Ahn, Ji-Hoon; Sung, Ji Ho; Heo, Hoseok; Jeon, Seong Gi; Lee, Woo; Song, Jae Yong; Hong, Ki-Ha; Choi, Byeongdae; Lee, Sung-Hoon; Jo, Moon-Ho
2016-06-21
In general, in thermoelectric materials the electrical conductivity σ and thermal conductivity κ are related and thus cannot be controlled independently. Previously, to maximize the thermoelectric figure of merit in state-of-the-art materials, differences in relative scaling between σ and κ as dimensions are reduced to approach the nanoscale were utilized. Here we present an approach to thermoelectric materials using tin disulfide, SnS2, nanosheets that demonstrated a negative correlation between σ and κ. In other words, as the thickness of SnS2 decreased, σ increased whereas κ decreased. This approach leads to a thermoelectric figure of merit increase to 0.13 at 300 K, a factor ∼1,000 times greater than previously reported bulk single-crystal SnS2. The Seebeck coefficient obtained for our two-dimensional SnS2 nanosheets was 34.7 mV K(-1) for 16-nm-thick samples at 300 K.
Systematic errors in two-dimensional digital image correlation due to lens distortion
Pan, Bing; Yu, Liping; Wu, Dafang; Tang, Liqun
2013-02-01
Lens distortion practically presents in a real optical imaging system causing non-uniform geometric distortion in the recorded images, and gives rise to additional errors in the displacement and strain results measured by two-dimensional digital image correlation (2D-DIC). In this work, the systematic errors in the displacement and strain results measured by 2D-DIC due to lens distortion are investigated theoretically using the radial lens distortion model and experimentally through easy-to-implement rigid body, in-plane translation tests. Theoretical analysis shows that the displacement and strain errors at an interrogated image point are not only in linear proportion to the distortion coefficient of the camera lens used, but also depend on its distance relative to distortion center and its magnitude of displacement. To eliminate the systematic errors caused by lens distortion, a simple linear least-squares algorithm is proposed to estimate the distortion coefficient from the distorted displacement results of rigid body, in-plane translation tests, which can be used to correct the distorted displacement fields to obtain unbiased displacement and strain fields. Experimental results verify the correctness of the theoretical derivation and the effectiveness of the proposed lens distortion correction method.
Yan, Wei; Zhang, Jianfeng; Jing, Chuanyong
2013-01-15
Adsorption of Enrofloxacin (ENR) on minerals dominates the fate and transport of ENR in the environment. In this study, the sorption process of ENR on montmorillonite and the impact of dissolved organic matters (DOMs) on ENR-montmorillonite interactions were investigated using in situ ATR-FTIR spectroscopy and two-dimensional correlation analysis (2D-COS). Negative peaks were observed in the 3400-2900 cm(-1) region due to the loss of hydrated protons at montmorillonite surfaces. The primary characteristic peaks of adsorbed ENR molecules were resolved in the 1800-1100 cm(-1) range. The results of 2D-COS suggested the sorption process was initiated by the interaction of hydrated protons on montmorillonite surfaces with diverse moieties of ENR molecules depending on pH. The sorption mechanism of ENR was mainly cation exchange at acidic condition, charge neutralization at neutral condition, and proton transfer at alkaline condition. DOM could interact with piperazinyl amine groups of dissolved ENR, which changed the interaction sequence of ENR molecule with montmorillonite surfaces. Electrostatic interaction was the predominant driving force for the interaction between DOM and dissolved ENR. H-donor-acceptor interaction and π-π interaction may also be responsible to this interaction. Insights gained from this study improve our understandings on sorption mechanism of ENR and similar ionic organic pollutants in soil systems.
Li, Zhenyu; Abramavicius, Darius; Zhuang, Wei; Mukamel, Shaul
2007-11-15
The two dimensional (2D) photon echo spectrum of the amide ultraviolet (UV) bands of proteins are simulated. Two effective exciton Hamiltonian parameter sets developed by Woody and Hirst, which predict similar CD spectra, may be distinguished by their very different 2DUV spectra. These differences are enhanced in specific configurations of pulse polarizations which provide chirality-induced signals.
Institute of Scientific and Technical Information of China (English)
陈以会; 田荟琳; 李季衡; 李国英
2012-01-01
The Fourier transform infrared spectroscopy and two dimensional correlation analysis method were applied to study a denaturing process of uncross-linked collagen and cross-linked collagen during varying temperature. It was found that the intensity of typically characteristic absorptions of collagen decreased and its peak shifted to low frequency, The amide II central absor-bance peak moved to a lower frequency by about ~10 cm-1, which indicated that the inter-chain hydrogen bonds which stabilized the triple helix conformation of collagen were disrupted during thermal denaturation, resulting in a conformational change. The intensity of auto-peak at 1 515 cn-1 was maximum, which suggested that the temperature had a big impact on amide IL In comparison with uncross-linked collagen, the intensity of cross-peaks of cross-linked collagen was weaker, which demonstrated that the effect of temperature on the structure of cross-linked collagen was smaller, and the thermal stability properties of collagen solution could be improved by cross-linking. While the order of second structure changes of cross-linked collagen was different These fundamental data should provide available information for understanding the relationship between the structure and function of cross-linked collagen.%采用傅里叶红外光谱和二维相关分析研究了改性前后胶原在升温(25～115℃)过程中结构的变化.结果显示,改性前后胶原的特征吸收峰强度降低,峰值向低波数移动,其中酰胺Ⅱ带的变化最明显,降低了～10 cm-1,表明维系胶原三股螺旋结构稳定的氢键被破坏,结构发生改变.在1515 cm-1处自相关峰强度最强,说明温度对酰胺Ⅱ带的影响最大.与未改性胶原相比,改性胶原的相关程度更弱,表明改性胶原结构受温度影响要小,交联提高了胶原的热稳定性；改性后胶原结构变化的顺序也不一样.由此可见,二维红外相关分析法能提供由温度引起的胶原结构动
Directory of Open Access Journals (Sweden)
Fangqing Wen
2013-01-01
Full Text Available A low complexity monostatic cross multiple-in multiple-out (MIMO radar scheme is proposed in this paper. The minimum-redundancy linear array (MRLA is introduced in the cross radar to improve the efficiency of the array elements. The two-dimensional direction-of-arrival (DOA estimation problem links to the trilinear model, which automatically pairs the estimated two-dimensional angles, requiring neither eigenvalue decomposition of received signal covariance matrix nor spectral peak searching. The proposed scheme performs better than the uniform linear arrays (ULA configuration under the same conditions, and the proposed algorithm has less computational complexity than that of multiple signal classification (MUSIC algorithm. Simulation results show the effectiveness of our scheme.
Energy Technology Data Exchange (ETDEWEB)
Davidson, J.W.; Dudziak, D.J.; Pelloni, S.; Stepanek, J.
1988-01-01
In a recent common Los Alamos/PSI effort, a sensitivity and nuclear data uncertainty path for the modular code system AARE (Advanced Analysis for Reactor Engineering) was developed. This path includes the cross-section code TRAMIX, the one-dimensional finite difference S/sub N/-transport code ONEDANT, the two-dimensional finite element S/sub N/-transport code TRISM, and the one- and two-dimensional sensitivity and nuclear data uncertainty code SENSIBL. Within the framework of the present work a complete set of forward and adjoint two-dimensional TRISM calculations were performed both for the bare, as well as for the Pb- and Be-preceeded, LBM using MATXS8 libraries. Then a two-dimensional sensitivity and uncertainty analysis for all cases was performed. The goal of this analysis was the determination of the uncertainties of a calculated tritium production per source neutron from lithium along the central Li/sub 2/O rod in the LBM. Considered were the contributions from /sup 1/H, /sup 6/Li, /sup 7/Li, /sup 9/Be, /sup nat/C, /sup 14/N, /sup 16/O, /sup 23/Na, /sup 27/Al, /sup nat/Si, /sup nat/Cr, /sup nat/Fe, /sup nat/Ni, and /sup nat/Pb. 22 refs., 1 fig., 3 tabs.
Környei, László; Pleimling, Michel; Iglói, Ferenc
2008-01-01
The universality class, even the order of the transition, of the two-dimensional Ising model depends on the range and the symmetry of the interactions (Onsager model, Baxter-Wu model, Turban model, etc.), but the critical temperature is generally the same due to self-duality. Here we consider a sudden change in the form of the interaction and study the nonequilibrium critical dynamical properties of the nearest-neighbor model. The relaxation of the magnetization and the decay of the autocorrelation function are found to display a power law behavior with characteristic exponents that depend on the universality class of the initial state.
Zero-differential conductance of two-dimensional electrons in crossed electric and magnetic fields
Bykov, A. A.; Byrnes, Sean; Dietrich, Scott; Vitkalov, Sergey; Marchishin, I. V.; Dmitriev, D. V.
2013-02-01
An electronic state with zero-differential conductance is found in nonlinear response to an electric field E applied to two dimensional Corbino discs of highly mobile carriers placed in quantizing magnetic fields. The state occurs above a critical electric field E>Eth at low temperatures and is accompanied by an abrupt dip in the differential conductance. The proposed model considers a local instability of the electric field E as the origin of the observed phenomenon. Comparison between the observed electronic state and the state with zero differential resistance, occurring in Hall bar geometry, indicates that the nonlinear response of edge states and/or skipping orbits is not essential in the studied samples. The result confirms that quantal heating is the dominant nonlinear mechanism leading to electronic states with both zero differential resistance and conductance.
Ma, Xuekai; Malomed, Boris A; Meier, Torsten; Schumacher, Stefan
2016-01-01
We consider a two-dimensional (2D) two-component spinor system with cubic attraction between the components and intra-species self-repulsion, which may be realized in atomic Bose-Einstein condensates, as well as in a quasi-equilibrium condensate of microcavity polaritons. Including a 2D spatially periodic potential, which is necessary for the stabilization of the system against the critical collapse, we use detailed numerical calculations and an analytical variational approximation (VA) to predict the existence and stability of several types of 2D symbiotic solitons in the spinor system. Stability ranges are found for symmetric and asymmetric symbiotic fundamental solitons and vortices, including hidden-vorticity (HV) modes, with opposite vorticities in the two components. The VA produces exceptionally accurate predictions for the fundamental solitons and vortices. The fundamental solitons, both symmetric and asymmetric ones, are completely stable, in either case when they exist as gap solitons or regular one...
Molecular-scale dynamics of light-induced spin cross-over in a two-dimensional layer
Bairagi, Kaushik; Iasco, Olga; Bellec, Amandine; Kartsev, Alexey; Li, Dongzhe; Lagoute, Jérôme; Chacon, Cyril; Girard, Yann; Rousset, Sylvie; Miserque, Frédéric; Dappe, Yannick J; Smogunov, Alexander; Barreteau, Cyrille; Boillot, Marie-Laure; Mallah, Talal; Repain, Vincent
2016-01-01
Spin cross-over molecules show the unique ability to switch between two spin states when submitted to external stimuli such as temperature, light or voltage. If controlled at the molecular scale, such switches would be of great interest for the development of genuine molecular devices in spintronics, sensing and for nanomechanics. Unfortunately, up to now, little is known on the behaviour of spin cross-over molecules organized in two dimensions and their ability to show cooperative transformation. Here we demonstrate that a combination of scanning tunnelling microscopy measurements and ab initio calculations allows discriminating unambiguously between both states by local vibrational spectroscopy. We also show that a single layer of spin cross-over molecules in contact with a metallic surface displays light-induced collective processes between two ordered mixed spin-state phases with two distinct timescale dynamics. These results open a way to molecular scale control of two-dimensional spin cross-over layers. PMID:27425776
Peng, Yun; Sun, Bingjie; Wu, Peiyi
2008-03-01
Poly(vinylidene fluoride) (PVDF) converts easily into a thermo-reversible gel through crystallization by standing at room temperature in cyclohexanone. In this study, the Fourier transform infrared (FT-IR) spectra were measured continuously at room temperature during the conversion of the solution into a gel. The IR difference spectra derived from these spectra by absorbance subtraction clearly indicate the presence of PVDF alpha-crystallites in the gel due to the presence of absorption bands corresponding to the TG+TG- conformation of the alpha-phase. In the time interval from 25 to 45 min after the beginning of the experiment, the IR bands of PVDF increased dramatically, indicating the conversion of polymer chains from random statistical coils to the ordered TG+TG- conformation (alpha-form). In the time interval from 45 to 90 min, the IR bands of PVDF increased slowly, reflecting no further crystallization. Using two-dimensional (2D) IR analysis, it could be shown that the nu(C=O) absorption band of cyclohexanone changed during the gelation process. During the conformational ordering process (25-45 min), the nu(C=O) absorption band of the cyclohexanone dimer (1707 cm(-1)) decreased while the corresponding band of the monomer at 1718 cm(-1) increased. Furthermore, a new band at 1695 cm(-1) increased, which could be assigned to C=O groups of the solvent interacting with the CF2 groups in the polymer chain. The bands of the crystalline PVDF share positive cross-peaks with the bands of cyclohexanone, which indicates that the chain of PVDF changed prior to the cyclohexanone molecules during the conformational ordering process. However, these positive cross-peaks disappeared during the crystallization process, which means that the chain of PVDF changed synchronously with the solvent molecules. As for the bands of PVDF chains, the band at 762 cm(-1) varied prior to the bands at 873 cm(-1) and 796 cm(-1) during the conformational ordering process. The 762 cm(-1
Oliver, Thomas A A; Lewis, Nicholas H C; Fleming, Graham R
2014-07-15
Multidimensional nonlinear spectroscopy, in the electronic and vibrational regimes, has reached maturity. To date, no experimental technique has combined the advantages of 2D electronic spectroscopy and 2D infrared spectroscopy, monitoring the evolution of the electronic and nuclear degrees of freedom simultaneously. The interplay and coupling between the electronic state and vibrational manifold is fundamental to understanding ensuing nonradiative pathways, especially those that involve conical intersections. We have developed a new experimental technique that is capable of correlating the electronic and vibrational degrees of freedom: 2D electronic-vibrational spectroscopy (2D-EV). We apply this new technique to the study of the 4-(di-cyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H-pyran (DCM) laser dye in deuterated dimethyl sulfoxide and its excited state relaxation pathways. From 2D-EV spectra, we elucidate a ballistic mechanism on the excited state potential energy surface whereby molecules are almost instantaneously projected uphill in energy toward a transition state between locally excited and charge-transfer states, as evidenced by a rapid blue shift on the electronic axis of our 2D-EV spectra. The change in minimum energy structure in this excited state nonradiative crossing is evident as the central frequency of a specific vibrational mode changes on a many-picoseconds timescale. The underlying electronic dynamics, which occur on the hundreds of femtoseconds timescale, drive the far slower ensuing nuclear motions on the excited state potential surface, and serve as a excellent illustration for the unprecedented detail that 2D-EV will afford to photochemical reaction dynamics.
Energy Technology Data Exchange (ETDEWEB)
Nevedomskiy, V. N., E-mail: nevedom@mail.ioffe.ru; Bert, N. A.; Chaldyshev, V. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Preobrazhernskiy, V. V.; Putyato, M. A.; Semyagin, B. R. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation)
2015-12-15
A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix.
Liu, Hao; Gao, Hongbin; Qu, Lingbo; Huang, Yanping; Xiang, Bingren
2008-12-01
Four aromatic medicines (acetaminophen; niacinamide; p-aminophenol; nicotinic acid) containing nitrogen were investigated by FT-NIR (Fourier transform near-infrared) spectroscopy and generalized two-dimensional (2D) correlation spectroscopy. The FT-NIR spectra were measured over a temperature range of 30-130 °C. By combining near-infrared spectroscopy, generalized 2D correlation spectroscopy and references, the molecular structures (especially the hydrogen bond related with nitrogen) were analyzed and the NIR band assignments were performed. The results will be helpful to the understanding of aromatic medicines containing nitrogen and the utility of these substances.
Directory of Open Access Journals (Sweden)
S. Sendhil Velan; Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, U.S.A.
2008-01-01
Full Text Available Gender differences in lipid metabolism are poorly understood and difficult to study using conventional approaches. Magnetic resonance spectroscopy (MRS permits non-invasive investigation of lipid metabolism. We employed novel two- dimensional MRS techniques to quantify intramyocellular (IMCL and extramyocellular (EMCL lipid compartments and their degree of unsaturation in normal weight adult male and female subjects. Using muscle creatine (Cr for normalization, a statistically significant (p 0.05 increase in IMCL/Cr (7.8 ± 1.6 and EMCL/Cr (22.5 ± 3.6 for female subjects was observed (n = 8, as compared to IMCL/Cr (5.9 ± 1.7 and EMCL/Cr (18.4 ± 2.64 for male subjects. The degree of unsaturation within IMCL and EMCL was lower in female subjects, 1.3 ± 0.075 and 1.04 ± 0.06, respectively, as compared to that observed in males (n = 8, 1.5 ± 0.08 and 1.12 ± 0.03, respectively (p 0.05 male vs female for both comparisons. We conclude that certain salient gender differences in lipid metabolism can be assessed noninvasively by advanced MRS approaches.
Two-dimensional electromagnetically induced cross-grating in a four-level N-type atomic system
Wu, Jianchun; Ai, Baoquan
2015-06-01
We propose a scheme for a two-dimensional (2D) electromagnetically induced cross-grating (EICG) in a four-level N-type atomic system. By employing standing-wave fields interacting with the atomic system, the absorption and dispersion of the probe field will change with the spatial periodical modulation. The first-order diffraction intensity sensitively depends on the parameters (the probe detuning, and the amplitude and detuning of the standing-wave fields), and can reach its maximum on varying the system parameters. The present studies may be instructive to design new devices in all-optical switching and optical imaging.
Two-dimensional optical correlation spectroscopy applied to liquid/glass dynamics
Lazonder, Kees; Pshenichnikov, Maxim S.; Wiersma, Douwe A.; Corkum, Paul; Jonas, David M.; Miller, R.J. Dwayne.; Weiner, Andrew M.
2007-01-01
Correlation spectroscopy was used to study the effects of temperature and phase changes on liquid and glass solvent dynamics. By assessing the eccentricity of the elliptic shape of a 2D optical correlation spectrum the value of the underlying frequency-frequency correlation function can be retrieved
Energy Technology Data Exchange (ETDEWEB)
Khanin, Yu. N.; Vdovin, E. E., E-mail: vdov62@yandex.ru [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation); Makarovsky, O. [University of Nottingham, School of Physics and Astronomy (United Kingdom); Henini, M. [University of Nottingham, School of Physics and Astronomy, Nottingham Nanotechnology and Nanoscience Center (United Kingdom)
2013-09-15
Magnetotunneling between two-dimensional GaAs/InAs electron systems in vertical resonant tunneling GaAs/InAs/AlAs heterostructures is studied. A new-type of singularity in the tunneling density of states, specifically a dip at the Fermi level, is found; this feature is drastically different from that observed previously for the case of tunneling between two-dimensional GaAs tunnel systems in terms of both the kind of functional dependence and the energy and temperature parameters. As before, this effect manifests itself in the suppression of resonant tunneling in a narrow range near zero bias voltage in a high magnetic field parallel to the current direction. Magnetic-field and temperature dependences of the effect's parameters are obtained; these dependences are compared with available theoretical and experimental data. The observed effect can be caused by a high degree of disorder in two-dimensional correlated electron systems as a result of the introduction of structurally imperfect strained InAs layers.
Li, Weizhen; Wu, Peiyi
2009-08-01
The crystal structure transition of syndiotactic polystyrene film from the helical conformation to the more stable planar zigzag conformation during a heating process was studied using Fourier transform infrared (FT-IR) spectroscopy in combination with two-dimensional (2D) correlation analysis and perturbation-correlation moving-window 2D analysis. The sequence of different conformations during the transition was investigated by analyzing two-dimensional FT-IR correlation spectra in the spectral ranges of 800-700 cm(-1) and 600-500 cm(-1). It was observed that the conformation of delta helical changes prior to gamma helical, and the gamma helical phase is faster than the alpha' planar zigzag phase. By utilizing the 2D asynchronous correlation spectra, the 744 cm(-1) band, which is usually incorporated in the broad 750 cm(-1) band, can now be uniquely attributed as the alpha' zigzag configuration for the first time. Furthermore, by employing thermal perturbation, the shorter helical segments consisting of m = 7-12 and m = 12-20 monomeric units were disturbed in a shorter time than the longer helical segments m = 20-30 during the heating process.
Two-voxel localization sequence for in vivo two-dimensional homonuclear correlation spectroscopy
Delmas, F; Beloeil, JC; van der Sanden, BPJ; Nicolay, K; Gillet, B
The combination of localized 2D H-1 MR correlation spectroscopy and Hadamard encoding allows the simultaneous acquisition of multiple volumes of interest without an increase in the experimental duration, compared to single-voxel acquisition. In the present study, 2D correlation spectra were acquired
Solving the two-dimensional Fokker-Planck equation for strongly correlated neurons
Deniz, Taşkın; Rotter, Stefan
2017-01-01
Pairs of neurons in brain networks often share much of the input they receive from other neurons. Due to essential nonlinearities of the neuronal dynamics, the consequences for the correlation of the output spike trains are generally not well understood. Here we analyze the case of two leaky integrate-and-fire neurons using an approach which is nonperturbative with respect to the degree of input correlation. Our treatment covers both weakly and strongly correlated dynamics, generalizing previous results based on linear response theory.
Two-dimensional analysis of Bose-Einstein correlations in hadronic Z decays at LEP
Heister, A; Barate, R; Brunelière, R; De Bonis, I; Décamp, D; Goy, C; Jézéquel, S; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Trocmé, B; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Martínez, M; Pacheco, A; Ruiz, H; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Iaselli, G; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Barklow, T; Buchmüller, O L; Cattaneo, M; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Gianotti, F; Hansen, J B; Harvey, J; Hutchcroft, D E; Janot, P; Jost, B; Kado, M; Mato, P; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Sguazzoni, G; Teubert, F; Valassi, Andrea; Videau, I; Badaud, F; Dessagne, S; Falvard, A; Fayolle, D; Gay, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Pascolo, J M; Perret, P; Hansen, J D; Hansen, J R; Hansen, P H; Kraan, A C; Muresan, R; Nilsson, B S; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Zachariadou, K; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Videau, H L; Ciulli, V; Focardi, E; Parrini, G; Antonelli, A; Antonelli, M; Bencivenni, G; Bossi, F; Capon, G; Cerutti, F; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, G P; Passalacqua, L; Kennedy, J; Lynch, J G; Negus, P; O'Shea, V; Thompson, A S; Wasserbaech, S R; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Stenzel, H; Tittel, K; Wunsch, M; Beuselinck, R; Cameron, W; Davies, G; Dornan, P J; Girone, M; Hill, R D; Marinelli, N; Nowell, J; Rutherford, S A; Sedgbeer, J K; Thompson, J C; White, R; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Clarke, D P; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Pearson, M R; Robertson, N A; Smizanska, M; van der Aa, O; Delaere, C; Leibenguth, G; Lemaître, V; Blumenschein, U; Hölldorfer, F; Jakobs, K; Kayser, F; Kleinknecht, K; Müller, A S; Renk, B; Sander, H G; Schmeling, S; Wachsmuth, H W; Zeitnitz, C; Ziegler, T; Bonissent, A; Coyle, P; Curtil, C; Ealet, A; Fouchez, D; Payre, P; Tilquin, A; Ragusa, F; David, A; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Männer, W; Moser, H G; Settles, Ronald; Villegas, M; Wolf, G; Boucrot, J; Callot, O; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Serin, L; Veillet, J J; Azzurri, P; Bagliesi, G; Boccali, T; Foà, L; Giammanco, A; Giassi, A; Ligabue, F; Messineo, A; Palla, F; Sanguinetti, G; Sciabà, A; Spagnolo, P; Tenchini, R; Venturi, A; Verdini, P G; Awunor, O; Blair, G A; Cowan, G; García-Bellido, A; Green, M G; Medcalf, T; Misiejuk, A; Strong, J A; Teixeira-Dias, P; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Ward, J J; Bloch-Devaux, B; Boumediene, D E; Colas, P; Fabbro, B; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Tuchming, B; Vallage, B; Litke, A M; Taylor, G; Booth, C N; Cartwright, S; Combley, F; Hodgson, P N; Lehto, M H; Thompson, L F; Böhrer, A; Brandt, S; Grupen, C; Hess, J; Ngac, A; Prange, G; Borean, C; Giannini, G; He, H; Pütz, J; Rothberg, J E; Armstrong, S R; Berkelman, K; Cranmer, K; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Pan, Y B; Von Wimmersperg-Töller, J H; Wiedenmann, W; Wu, J; Wu Sau Lan; Wu, X; Zobernig, G; Aracena, I; Dissertori, G
2004-01-01
Bose-Einstein correlations are studied in pairs of charged pions from hadronic Z decays, collected by the ALEPH detector.The correlation function, measured using either the unlike-sign or the mixed reference sample, is studied in terms of the Lorentz-invariant four-momentum difference and its transverse, $Q_{\\textrm{T}}$, and longitudinal, $Q_{\\textrm{L}}$, components with respect to the longitudinal centre-of-mass system. Values for the correlation radii, $R_{\\textrm{T}}$ and $R_{\\textrm{L}}$, are obtained from the fit of the Goldhaber parametrisation.The results indicate that the correlation radii values depend on the chosen kind of reference sample and on the two-jet purity.
National Research Council Canada - National Science Library
Lee, Myoung-Jae; Ahn, Ji-Hoon; Sung, Ji Ho; Heo, Hoseok; Jeon, Seong Gi; Lee, Woo; Song, Jae Yong; Hong, Ki-Ha; Choi, Byeongdae; Lee, Sung-Hoon; Jo, Moon-Ho
2016-01-01
... as dimensions are reduced to approach the nanoscale were utilized. Here we present an approach to thermoelectric materials using tin disulfide, SnS2, nanosheets that demonstrated a negative correlation between σ and κ...
Booi, Rebecca C; Carson, Paul L; O'Donnell, Matthew; Roubidoux, Marilyn A; Hall, Anne L; Rubin, Jonathan M
2008-01-01
Although simple cysts are easily identified using sonography, description and management of nonsimple cysts remains uncertain. This study evaluated whether the correlation coefficient differences between breast tissue and lesions, obtained from 2D breast elastography, could potentially distinguish nonsimple cysts from cancers and fibroadenomas. We hypothesized that correlation coefficients in cysts would be dramatically lower than surrounding tissue because noise, imaging artifacts, and particulate matter move randomly and decorrelate quickly under compression, compared with solid tissue. For this preliminary study, 18 breast lesions (7 nonsimple cysts, 4 cancers, and 7 fibroadenomas) underwent imaging with 2D elastography at 7.5 MHz through a TPX (a polymethyl pentene copolymer) 2.5 mm mammographic paddle. Breasts were compressed similar to mammographic positioning and then further compressed for elastography by 1 to 7%. Images were correlated using 2D phase-sensitive speckle tracking algorithms and displacement estimates were accumulated. Correlation coefficient means and standard deviations were measured in the lesion and adjacent tissue, and the differential correlation coefficient (DCC) was introduced as the difference between these values normalized to the correlation coefficient of adjacent tissue. Mean DCC values in nonsimple cysts were 24.2 +/- 11.6%, 5.7 +/- 6.3% for fibroadenomas, and 3.8 +/- 2.9 % for cancers (p < 0.05). Some of the cysts appeared smaller in DCC images than gray-scale images. These encouraging results demonstrate that characterization of nonsimple breast cysts may be improved by using DCC values from 2D elastography, which could potentially change management options of these cysts from intervention to imaging follow-up. A dedicated clinical trial to fully assess the efficacy of this technique is recommended.
Cross-flow blowing of a two-dimensional stationary arc.
Bose, T. K.
1971-01-01
It is demonstrated in an analysis that the electrons emitted from the cathode undergo collisions with the heavy particles and are deflected in the flow direction by the component of a collisional force associated with the relative difference in flow velocities between electrons and heavy particles. The resultant motion of the electrons describing the arc is thus caused by a combined action of the collisional force that results from the externally applied electric field. An expression is given which enables computation of the arc shape to be made provided the velocity distribution of the cross-flow and the distribution of the externally applied electric field are prescribed.
Edén, Mattias
2010-05-01
Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Liquid state methanol and ethanol under different temperatures have been investigated by FT-NIR(Fourier transform nearinfrared) spectroscopy,generalized two-dimensional(2D) correlation spectroscopy,and PCA(principal component analysis) . First,the FT-NIR spectra were measured over a temperature range of 30-64(or 30-71) °C,and then the 2D correlation spectra were computed.Combining near-infrared spectroscopy,generalized 2D correlation spectroscopy,and references,we analyzed the molecular structures(especially the hydrogen bond) of methanol and ethanol,and performed the NIR band assignments. The PCA method was employed to verify the results of the 2D analysis.This study will be helpful to the understanding of these reagents.
Two-dimensional optical correlation spectroscopy applied to liquid/glass dynamics
Lazonder, Kees; Pshenichnikov, Maxim S.; Wiersma, Douwe A.
2006-01-01
Correlation spectroscopy was used to study the effects of temperature and phase changes on liquid and glass solvent dynamics. This method yielded both intuitive clues and a quantitative measure of the dynamics of the system. © 2006 Optical Society of America.
Curvature-induced cross-hatched order in two-dimensional semiflexible polymer networks
Vrusch, Cyril
2015-01-01
A recurring motif in the organization of biological tissues are networks of long, fibrillar protein strands effectively confined to cylindrical surfaces. Often, the fibers in such curved, quasi-2D geometries adopt a characteristic order: the fibers wrap around the central axis at an angle which varies with radius and, in several cases, is strongly bimodally distributed. In this Letter, we investigate the general problem of a 2D crosslinked network of semiflexible fibers confined to a cylindrical substrate, and demonstrate that in such systems the trade-off between bending and stretching energies, very generically, gives rise to cross-hatched order. We discuss its general dependency on the radius of the confining cylinder, and present an intuitive model that illustrates the basic physical principle of curvature-induced order. Our findings shed new light on the potential origin of some curiously universal fiber orientational distributions in tissue biology, and suggests novel ways in which synthetic polymeric s...
Wu, Wan-ye; Wu, Kun; Li, Guo-ying
2015-02-01
The synchronous fluorescence spectroscopy and two dimensional correlation analysis method were applied to study the aggregation behavior of acid-soluble collagen solutions (0.2, 0.4 and 1.6 mg x mL(-1)) during the heating process of 10-70 degrees C. It was found that the fluorescence excited at 292 and 282 nm (delta lamda=9 nm) belongs to the tyrosine (Tyr) residues which participate in forming hydrogen bonds or not, respectively. The two dimensional correlation analysis with the temperature varying showed that with the temperature increased (10-30 degrees C) hydrogen bonds among collagen molecular with Tyr residues formed in the 0.2 mg x mL(-1) collagen solution, while the higher aggregations of collagen molecular and hydrophobic micro-domains appeared in the 0.4 and 1.6 mg x mL(-1) collagen solutions. With approaching the denatured temperature of collagen (36-38 degrees C), the hydrophobic micro-domain and aggregates seemed to be broken in the 0.4 and 1.6 mg x mL(-1) collagen solutions, however the hydrogen bonds in the 0.2 mg x mL(-1) were stable. Above the denaturation temperature of collagen, the triple-helix structure of collagen molecular in solution of each concentration tended to be loose. In the heating process of 45-70 degrees C, this trend was more obvious.
Spin correlations in the two-dimensional quantum s=1/2 XY model
Sznajd, J.
1995-08-01
A quantum version of the Niemeijer-van Leeuwen real-space renormalization-group method is used to study the temperature dependence of the two- and four-spin correlations in the quantum XY model on the triangular lattice. The first-order cumulant expansion results suggest, similarly to other methods, a low-temperature phase of an essentially different kind from that predicted for the classical model. The possible explanation of the origin of the spurious 2D Heisenberg-like nontrivial fixed point in some renormalization-group calculations is also proposed.
Two-dimensional cell tracking by FPGA-optical correlation method
Solís, Iraís; Torres-Cisneros, M.; Aviña-Cervantes, J. G.; Ibarra-Manzano, O. G.; Debeir, O.; Ledesma-Orozco, S.; Pérez-Careta, E.; Sanchez-Mondragón, J. J.
2009-06-01
Our work uses 1080 images sequence obtained from "in vitro" samples taken every 4 min from a microscope under phase contrast technique. These images are in JPEG format and are 500×700 pixels size with a compression rate of 3:1. We developed an algorithm and characterize it over several image operations against the tracking effectiveness and its robustness respect mitosis and cell shape change. Image equalization, dilation and erosion were the image processing procedures founded to provide best tracking results. Equalization procedure, for example, required a time delay of 5 sec for a size target of 60×90 pixels and 9 sec for size target of 89×100 pixels. This algorithm was implemented into a FPGA which controlled our optical correlator in order to performance all Fourier operations by optical method. Our results showed that the use of the optical correlator can reduce the time consuming in the image process until for 90% which able us to track cells in vascular structure.
Gupta, Akanksha; Ganesh, Rajaraman; Joy, Ashwin
2016-11-01
In Navier-Stokes fluids, shear flows are known to become unstable leading to instability and eventually to turbulence. A class of flow namely, Kolmogorov Flows (K-Flows) exhibit such transition at low Reynolds number. Using fluid and molecular dynamics, we address the physics of transition from laminar to turbulent regime in strongly correlated-liquids such as in multi-species plasmas and also in naturally occurring plasmas with K-Flows as initial condition. A 2D phenomenological generalized hydrodynamic model is invoked wherein the effect of strong correlations is incorporated via a viscoelastic memory. To study the stability of K-Flows or in general any shear flow, a generalized eigenvalue solver has been developed along with a spectral solver for the full nonlinear set of fluid equations. A study of the linear and nonlinear features of K-Flow in incompressible and compressible limit exhibits cyclicity and nonlinear pattern formation in vorticity. A first principles based molecular dynamics simulation of particles interacting via Yukawa potential is performed with features such as configurational and kinetic thermostats for K-Flows. This work reveals several interesting similarities and differences between hydrodynamics and molecular dynamics studies.
Corner-Space Renormalization Method for Driven-Dissipative Two-Dimensional Correlated Systems.
Finazzi, S; Le Boité, A; Storme, F; Baksic, A; Ciuti, C
2015-08-21
We present a theoretical method to study driven-dissipative correlated quantum systems on lattices with two spatial dimensions (2D). The steady-state density matrix of the lattice is obtained by solving the master equation in a corner of the Hilbert space. The states spanning the corner space are determined through an iterative procedure, using eigenvectors of the density matrix of smaller lattice systems, merging in real space two lattices at each iteration and selecting M pairs of states by maximizing their joint probability. The accuracy of the results is then improved by increasing the dimension M of the corner space until convergence is reached. We demonstrate the efficiency of such an approach by applying it to the driven-dissipative 2D Bose-Hubbard model, describing lattices of coupled cavities with quantum optical nonlinearities.
Herran Cuspinera, Roxana M.; Hore, Dennis K.
2016-11-01
We highlight the potential of generalized two-dimensional correlation analysis for the fingerprinting of cell growth in solution monitored by light scattering, where the synchronous and asynchronous responses serve as a sensitive marker for the effect of growth conditions on the distribution of cell morphologies. The polarization of the scattered light varies according to the cell size distribution, and so the changes in the polarization over time are an excellent indicator of the dynamic growth conditions. However, direct comparison of the polarization-, time-, and angle-resolved signals between different experiments is hindered by the subtle changes in the data, and the inability to easily adapt models to account for these differences. Using Mie scattering simulations of different growth conditions, and some preliminary experimental data for a single set of conditions, we illustrate that correlation analysis provides rapid and sensitive qualitative markers of growth characteristics.
Fudge, Anthea L; Wilkinson, Kerry L; Ristic, Renata; Cozzolino, Daniel
2013-08-15
In this study, two-dimensional correlation spectroscopy (2D-COS) combined with mid-infrared (MIR) spectroscopy was evaluated as a novel technique for the identification of spectral regions associated with smoke-affected wine, for the purpose of screening taint arising from grapevine exposure to smoke. Smoke-affected wines obtained from experimental and industry sources were analysed using MIR spectroscopy and chemometrics, and calibration models developed. 2D-COS analysis was used to generate synchronous data maps for red and white cask wines spiked with guaiacol, a marker of smoke taint. Correlations were observed at wavelengths that could be attributable to aromatic C-C stretching, i.e., between 1400 and 1500 cm(-1), indicative of volatile phenols. These results demonstrate the potential of 2D-COS as a rapid, high-throughput technique for the preliminary screening of smoke tainted wine.
Yang, Renjie; Liu, Rong; Dong, Guimei; Xu, Kexin; Yang, Yanrong; Zhang, Weiyu
2016-03-15
A new approach for discriminant analysis of adulterated milk is proposed based on two-dimensional (2D) hetero-spectral near-infrared (NIR) and mid-infrared (IR) correlation spectroscopy along with multi-way partial least squares discriminant analysis (NPLS-DA). NIR transmittance spectra and IR attenuated total reflection spectra of pure milk and adulterated milk with level of melamine varying from 0.03 to 3 g·L(-1) were collected at room temperature. The synchronous 2D hetero-spectral IR/NIR correlation spectra of all samples were calculated to build a discriminant model to classify adulterated milk and pure milk. Also, the NPLS-DA models were built based on synchronous 2D homo-spectral NIR/NIR and IR/IR correlation spectra, respectively. Comparison results showed that the NPLS-DA model could provide better results using 2D hetero-spectral IR/NIR correlation spectra than using 2D homo-spectral NIR/NIR and 2D IR/IR correlation spectra.
Yang, Renjie; Liu, Rong; Dong, Guimei; Xu, Kexin; Yang, Yanrong; Zhang, Weiyu
2016-03-01
A new approach for discriminant analysis of adulterated milk is proposed based on two-dimensional (2D) hetero-spectral near-infrared (NIR) and mid-infrared (IR) correlation spectroscopy along with multi-way partial least squares discriminant analysis (NPLS-DA). NIR transmittance spectra and IR attenuated total reflection spectra of pure milk and adulterated milk with level of melamine varying from 0.03 to 3 g·L- 1 were collected at room temperature. The synchronous 2D hetero-spectral IR/NIR correlation spectra of all samples were calculated to build a discriminant model to classify adulterated milk and pure milk. Also, the NPLS-DA models were built based on synchronous 2D homo-spectral NIR/NIR and IR/IR correlation spectra, respectively. Comparison results showed that the NPLS-DA model could provide better results using 2D hetero-spectral IR/NIR correlation spectra than using 2D homo-spectral NIR/NIR and 2D IR/IR correlation spectra.
Popescu, Carmen-Mihaela; Gradinariu, Petronela; Popescu, Maria-Cristina
2016-11-01
The action of the white rot fungi Phanerochaete crisosporium on the structure of lime wood (Tilia cordata) has been studied. The degree of decay was determined by weight loss, which was of 37% after 110 days. The samples were further analyzed by infrared and two dimensional correlation spectroscopy. The recorded spectra for different intervals of decay indicate variations in the intensities and width or wavenumber shifts of the bands assigned, both, for lignin and carbohydrates. An increase in the intensities of the bands from the carbonyl region due to formation of new structures, accompanied by the reduction of the methoxyl and methyl/methylene groups in lignin was evidenced. Further, the differences between reference and decayed wood spectra were examined in detail using 2DCOS spectroscopy and the second derivative analysis and the sequential order of modifications were established.
Peng, Xianneng; Shao, Zhengzhong; Chen, Xin; Knight, David P; Wu, Peiyi; Vollrath, Fritz
2005-01-01
We used two-dimensional (2D) correlation infrared spectroscopy to study further the potassium-induced conformation transition in Nephila spidroin films. It provided increased resolution and important new information on the sequence of events in the conformation transition process, showing that beta-sheet formed from the helical component before they formed from random coil. It also showed more evidence that formation of the 1691 cm(-1) (turn/bend) peak did not proceed with the same kinetics as the 1620 cm(-1) (antiparallel beta-sheet component) one, so we attribute the 1691 cm(-1) peak to turns which formed with different kinetics as the antiparallel beta-sheets. We present a single coherent and detailed hypothesis for the assembly and secondary structural transition of silk proteins in vivo and in vitro based on our findings and on evidence from other laboratories.
Yu, Ge; Yang, Ren-jie; Lü, Ai-jun; Tan, En-zhong
2015-08-01
New approach for discriminant analysis of adulterated milk is proposed based on combining hetero-spectral two-dimensional (2D) near-infrared (NIR) and mid-infrared (IR) correlation spectroscopy along with multi-way partial least squares discriminant analysis (NPLS-DA). Firstly, 36 pure milk samples were collected and 36 adulterated milk with starch samples (0.01 to 1 g · L(-1)) were prepared by adding appropriate mass of starch into pure milk. Then, one-dimensional NIR transmittance spectra and IR attenuated total reflection spectra of pure milk and adulterated milk with starch were measured at room temperature. And the synchronous 2D NIR-IR (4200~4800 vs. 900~1700 cm(-1)) correlation spectra of all samples were calculated. Due to the trace of adulterants, the synchronous 2D IR-NIR correlation spectral differences between adulterated milk with starch and pure milk are very subtle. Consequently, it was impossible to directly distinguish whether the sample was pure milk or adulterated milk. Finally, 2D IR-NIR correlation spectra were to build a discriminant model to classify adulterated milk and pure milk. The classification accuracy rates of samples in calibration set and in prediction set were 95.8% and 100% respectively. Also, the NPLS-DA models were built based on 2D NIR and 2D IR correlation spectra, respectively. The classification accuracy rates of samples in prediction set were 95.8%. Comparison results showed that the NPLS-DA model could provide better results using 2D NIR-IR correlation spectra than using 2D NIR, and 2D IR correlation spectra. The proposed method can not only effectively extract the feature information of adulterants in milk, but also explores a new perspective method for detection of adulterated food.
Energy Technology Data Exchange (ETDEWEB)
Chen Jianbo [Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084 (China); Zhou Qun, E-mail: zhouqun@tsinghua.edu.cn [Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084 (China); Noda, Isao [Procter and Gamble Company, 8611 Beckett Road, West Chester, OH 45069 (United States); Sun Suqin, E-mail: sunsq@tsinghua.edu.cn [Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084 (China)
2009-09-01
It has been proved to be a very useful method to distinguish similar samples by two-dimensional correlation spectroscopy when they are hardly distinguished by the conventional one-dimensional spectroscopy. To acquire the quantitative description of the differences between samples, the similarity of the series dynamic spectra, which reflects the similarity of the samples themselves if obtained under the same perturbation condition, is evaluated by the symmetry of hetero 2DCOS map. Two parameters, the Euclidian distance and correlation coefficient between the upper left and lower right triangular parts of a hetero 2DCOS map, are introduced for the quantitative measure of the symmetry, which in turn characterizes the similarity of the responses of samples to a given perturbation. The above method is used to discriminate one genus of Astragalus from the others to ensure the medicinal efficacy and safety of the herb. Hypothesis tests show that the inter-distances between samples from different genera are significantly larger than the intra-ones within the same genera, while the inter-correlation coefficients are smaller than the intra-ones. The excellent result of the identification for all samples carried out by a t-test based on the distances indicates that this method provides an efficient technique for the quantitative evaluation of similarity between samples.
Jin, Ying; Kotula, Anthony P; Hight Walker, Angela R; Migler, Kalman B; Lee, Young Jong
2016-11-01
We use moving-window two-dimensional correlation spectroscopy (MW-2DCOS) for phase-specific Raman analysis of the n-alkane (C21H44) during melting from the crystalline solid phase to the intermediate rotator phase and to the amorphous molten phase. In MW-2DCOS, individual peak-to-peak correlation analysis within a small subset of spectra provides both temperature-resolved and spectrally disentangled Raman assignments conducive to understanding phase-specific molecular interactions and chain configurations. We demonstrate that autocorrelation MW-2DCOS can determine the phase transition temperatures with a higher resolving power than commonly-used analysis methods including individual peak intensity analysis or principal component analysis. Besides the enhanced temperature resolving power, we demonstrate that asynchronous 2DCOS near the orthorhombic-to-rotator transition temperature can spectrally resolve the two overlapping peaks embedded in the Raman CH2 twisting band in the orthorhombic phase, which had been only predicted but not observed due to thermal broadening near the melting temperature.
Fukuma, Hiroaki; Nakashima, Kenichi; Ozaki, Yukihiro; Noda, Isao
2006-11-01
Generalized two-dimensional (2D) fluorescence correlation spectroscopy has been used to resolve the fluorescence spectra of two tryptophan (Trp) residues in alcohol dehydrogenase and lysozyme. In each protein, one Trp residue is buried in a hydrophobic domain of the protein matrix and the other Trp residue is located at a hydrophilic domain close to the protein-water interface. Fluorescence quenching by iodide ion, a hydrophilic quencher, was employed as a perturbation to induce the intensity change in the spectra. The Trp residue which is located at the hydrophilic domain is effectively quenched by the quencher, while the Trp residue located at the hydrophobic domain is protected from the quenching. Therefore, the fluorescence of these two Trp residues have a different sensitivity to the quenching, showing a different response to the concentration of the quencher. Fluorescence spectra of the two Trp residues in alcohol dehydrogenase, which are heavily overlapped in conventional one-dimensional spectra, have been successfully resolved by the 2D correlation technique. From the asynchronous correlation map, it was revealed that the quenching of Trp located at the hydrophobic part was brought about after that of Trp located at the hydrophilic part. In contrast, the fluorescence spectra of the two Trp residues could not be resolved after the alcohol dehydrogenase was denatured with guanidine hydrochloride. These results are consistent with the well-known structure of alcohol dehydrogenase. Furthermore, it was elucidated that the present 2D analysis is not interfered by Raman bands of the solvent, which sometimes bring difficulty into the conventional fluorescence analysis. Fluorescence spectra of the Trp residues in lysozyme could not be resolved by the 2D correlation technique. The differences between the two proteins are attributed to the fact that the Trp residue in the hydrophobic site of lysozyme is not sufficiently protected from the quenching.
Kishimoto, Jessica; de Ribaupierre, Sandrine; Salehi, Fateme; Romano, Walter; Lee, David S C; Fenster, Aaron
2016-10-01
The aim of this study is to compare longitudinal two-dimensional (2-D) and three-dimensional (3-D) ultrasound (US) estimates of ventricle size in preterm neonates with posthemorrhagic ventricular dilatation (PHVD) using quantitative measurements of the lateral ventricles. Cranial 2-D US and 3-D US images were acquired from neonatal patients with diagnosed PHVD within 10 min of each other one to two times per week and analyzed offline. Ventricle index, anterior horn width, third ventricle width, and thalamo-occipital distance were measured on the 2-D images and ventricle volume (VV) was measured from 3-D US images. Changes in the measurements between successive image sets were also recorded. No strong correlations were found between VV and 2-D US measurements ([Formula: see text] between 0.69 and 0.36). Additionally, weak correlations were found between changes in 2-D US measurements and 3-D US VV ([Formula: see text] between 0.13 and 0.02). A trend was found between increasing 2-D US measurements and 3-D US-based VV, but this was not the case when comparing changes between 3-D US VV and 2-D US measurements. If 3-D US-based VV provides a more accurate estimate of ventricle size than 2-D US measurements, moderate-weak correlations with 3-D US suggest that monitoring preterm patients with PHVD using 2-D US measurements alone might not accurately represent whether the ventricles are progressively dilating. A volumetric measure (3-D US or MRI) could be used instead to more accurately represent changes.
Huang, Anmin; Zhou, Qun; Liu, Junliang; Fei, Benhua; Sun, Suqin
2008-07-01
Dalbergia odorifera T. Chen, Pterocarpus santalinus L.F. and Pterocarpus soyauxii are three kinds of the most valuable wood species, which are hard to distinguish. In this paper, differentiation of D. odorifera, P. santalinus and P. soyauxii was carried out by using Fourier transform infrared spectroscopy (FT-IR), second derivative IR spectra and two-dimensional correlation infrared (2D-IR) spectroscopy. The three woods have their characteristic peaks in conventional IR spectra. For example, D. odorifera has obvious absorption peaks at 1640 and 1612 cm -1; P. santalinus has only one peak at 1614 cm -1; and P. soyauxii has one peak at 1619 cm -1 and one shoulder peak at 1597 cm -1. To enhance spectrum resolution and amplify the differences between the IR spectra of different woods, the second derivative technology was adopted to examine the three wood samples. More differences could be observed in the region of 800-1700 cm -1. Then, the thermal perturbation is applied to distinguish different wood samples in an easier way, because of the spectral resolution being enhanced by the 2D correlation spectroscopy. In the region of 1300-1800 cm -1, D. odorifera has five auto-peaks at 1518, 1575, 1594, 1620 and 1667 cm -1; P. santalinus has four auto-peaks at 1469, 1518, 1627 and 1639 cm -1 and P. soyauxii has only two auto-peaks at 1627 and 1639 cm -1. It is proved that the 2D correlation IR spectroscopy can be a new method to distinguish D. odorifera, P. santalinus and P. soyauxii.
Zhang, J.; Zhao, Zh.; Wang, L.; Zhu, X.; Shen, L.; Yu, Y.
2015-05-01
Two-dimensional correlation spectroscopy (2D-COS) combined with UV absorption spectroscopy was evaluated as a technique for the identification of spectral regions associated with the residues of thiamethoxam in tea. There is only one absorption peak at 275 nm in the absorption spectrum of a mixture of thiamethoxam and tea, which is the absorption peak of tea. Based on 2D-COS, the absorption peak of thiamethoxam at 250 nm is extracted from the UV spectra of the mixture. To determine the residue of thiamethoxam in tea, 250 nm is selected as the measured wavelength, at which the fitting result is as follows: the residual sum of squares is 0.01375, standard deviation R2 is 0.99068, and F value is 426. Statistical analysis shows that there is a significant linear relationship between the concentration of thiamethoxam in tea and the absorbance at 250 nm in the UV spectra of the mixture. Moreover, the average prediction error is 0.0033 and the prediction variance is 0.1654, indicating good predictive result. Thus, the UV absorption spectrum can be used as a measurement method for rapid detection of thiamethoxam residues in tea.
Durand, Marc; Kraynik, Andrew M; van Swol, Frank; Käfer, Jos; Quilliet, Catherine; Cox, Simon; Ataei Talebi, Shirin; Graner, François
2014-06-01
Bubble monolayers are model systems for experiments and simulations of two-dimensional packing problems of deformable objects. We explore the relation between the distributions of the number of bubble sides (topology) and the bubble areas (geometry) in the low liquid fraction limit. We use a statistical model [M. Durand, Europhys. Lett. 90, 60002 (2010)] which takes into account Plateau laws. We predict the correlation between geometrical disorder (bubble size dispersity) and topological disorder (width of bubble side number distribution) over an extended range of bubble size dispersities. Extensive data sets arising from shuffled foam experiments, surface evolver simulations, and cellular Potts model simulations all collapse surprisingly well and coincide with the model predictions, even at extremely high size dispersity. At moderate size dispersity, we recover our earlier approximate predictions [M. Durand, J. Kafer, C. Quilliet, S. Cox, S. A. Talebi, and F. Graner, Phys. Rev. Lett. 107, 168304 (2011)]. At extremely low dispersity, when approaching the perfectly regular honeycomb pattern, we study how both geometrical and topological disorders vanish. We identify a crystallization mechanism and explore it quantitatively in the case of bidisperse foams. Due to the deformability of the bubbles, foams can crystallize over a larger range of size dispersities than hard disks. The model predicts that the crystallization transition occurs when the ratio of largest to smallest bubble radii is 1.4.
Verma, Gaurav; Chawla, Sanjeev; Nagarajan, Rajakumar; Iqbal, Zohaib; Albert Thomas, M.; Poptani, Harish
2017-04-01
Two-dimensional localized correlated spectroscopy (2D L-COSY) offers greater spectral dispersion than conventional one-dimensional (1D) MRS techniques, yet long acquisition times and limited post-processing support have slowed its clinical adoption. Improving acquisition efficiency and developing versatile post-processing techniques can bolster the clinical viability of 2D MRS. The purpose of this study was to implement a non-uniformly weighted sampling (NUWS) scheme for faster acquisition of 2D-MRS. A NUWS 2D L-COSY sequence was developed for 7T whole-body MRI. A phantom containing metabolites commonly observed in the brain at physiological concentrations was scanned ten times with both the NUWS scheme of 12:48 duration and a 17:04 constant eight-average sequence using a 32-channel head coil. 2D L-COSY spectra were also acquired from the occipital lobe of four healthy volunteers using both the proposed NUWS and the conventional uniformly-averaged L-COSY sequence. The NUWS 2D L-COSY sequence facilitated 25% shorter acquisition time while maintaining comparable SNR in humans (+0.3%) and phantom studies (+6.0%) compared to uniform averaging. NUWS schemes successfully demonstrated improved efficiency of L-COSY, by facilitating a reduction in scan time without affecting signal quality.
Energy Technology Data Exchange (ETDEWEB)
Al Lafi, Abdul G. [Department of Chemistry, Atomic Energy Commission, Damascus, P.O. Box 6091 (Syrian Arab Republic); Hay, James N., E-mail: cscientific9@aec.org.sy [The School of Metallurgy and Materials, College of Physical Sciences and Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)
2015-07-20
Highlights: • 2D-DSC mapping was applied to analyze the heat flow responses of hydrated crosslinked sPEEK. • Two types of loosely bond water were observed. • The first was bond to the sulfonic acid groups and increased with ion exchange capacity. • The second was attributed to the polar groups introduced by ions irradiation and increased with crosslinking degree. • DSC combined with 2D mapping provides a powerful tool for polymer structural determination. - Abstract: This paper reports the first application of two-dimensional differential scanning calorimetry correlation mapping, 2D-DSC-CM to analyze the heat flow responses of sulphonated poly(ether ether ketone), sPEEK, films having different ion exchange capacity and degrees of crosslinks. With the help of high resolution and high sensitivity of 2D-DSC-CM, it was possible to locate two types of loosely bound water within the structure of crosslinked sPEEK. The first was bound to the sulfonic acid groups and dependent on the ion exchange capacity of the sPEEK. The second was bound to other polar groups, either introduced by irradiation with ions and dependent on the crosslinking degree or present in the polymer such as the carbonyl groups or terminal units. The results suggest that the ability of the sulfonic acid groups in the crosslinked sPEEK membranes to adsorb water molecules is increased by crosslinking, probably due to the better close packing efficiency of the crosslinked samples. DSC combined with 2D correlation mapping provides a fast and powerful tool for polymer structural determination.
Adib, Adiana Mohamed; Jamaludin, Fadzureena; Kiong, Ling Sui; Hashim, Nuziah; Abdullah, Zunoliza
2014-08-05
Baeckea frutescens or locally known as Cucur atap is used as antibacterial, antidysentery, antipyretic and diuretic agent. In Malaysia and Indonesia, they are used as an ingredient of the traditional medicine given to mothers during confinement. A three-steps infra-red (IR) macro-fingerprinting method combining conventional IR spectra, and the secondary derivative spectra with two dimensional infrared correlation spectroscopy (2D-IR) have been proved to be effective methods to examine a complicated mixture such as herbal medicines. This study investigated the feasibility of employing multi-steps IR spectroscopy in order to study the main constituents of B. frutescens and its different extracts (extracted by chloroform, ethyl acetate, methanol and aqueous in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. The structural information of the samples indicated that B. frutescens and its extracts contain a large amount of flavonoids, since some characteristic absorption peaks of flavonoids, such as ∼1600cm(-1), ∼1500cm(-1), ∼1450cm(-1), and ∼1270cm(-1) can be observed. The macroscopical fingerprint characters of FT-IR and 2D-IR spectra can not only provide the information of main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. In conclusion, the multi-steps IR macro-fingerprint method is rapid, effective, visual and accurate for pharmaceutical research. Copyright © 2014 Elsevier B.V. All rights reserved.
Chinthalapalli, Srinivas; Bornet, Aurélien; Segawa, Takuya F.; Sarkar, Riddhiman; Jannin, Sami; Bodenhausen, Geoffrey
2012-07-01
A half-century quest for improving resolution in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) has enabled the study of molecular structures, biological interactions, and fine details of anatomy. This progress largely relied on the advent of sophisticated superconducting magnets that can provide stable and homogeneous fields with temporal and spatial variations below ΔB0/B0lungs, tissue-air interfaces, surgical implants, etc., lead to fluctuations and losses of local homogeneity. A new method dubbed “long-lived-coherence correlation spectroscopy” (LLC-COSY) opens the way to overcome both inhomogeneous and homogeneous broadening, which arise from local variations in static fields and fluctuating dipole-dipole interactions, respectively. LLC-COSY makes it possible to obtain ultrahigh resolution two-dimensional spectra, with linewidths on the order of Δν=0.1 to 1 Hz, even in very inhomogeneous fields (ΔB0/B0>10ppm or 5000 Hz at 9.7 T), and can improve resolution by a factor up to 9 when the homogeneous linewidths are determined by dipole-dipole interactions. The resulting LLC-COSY spectra display chemical shift differences and scalar couplings in two orthogonal dimensions, like in “J spectroscopy.” LLC-COSY does not require any sophisticated gradient switching or frequency-modulated pulses. Applications to in-cell NMR and to magnetic resonance spectroscopy (MRS) of selected volume elements in MRI appear promising, particularly when susceptibility variations tend to preclude high resolution.
Ying, Michael; Yung, Dennis M C; Ho, Karen K L
2008-01-01
This study aimed to develop a new two-dimensional (2-D) ultrasound thyroid volume estimation equation using three-dimensional (3-D) ultrasound as the standard of reference, and to compare the thyroid volume estimation accuracy of the new equation with three previously reported equations. 2-D and 3-D ultrasound examinations of the thyroid gland were performed in 150 subjects with normal serum thyrotropin (TSH, thyroid-stimulating hormone) and free thyroxine (fT4) levels (63 men and 87 women, age range: 17 to 71 y). In each subject, the volume of both thyroid lobes was measured by 3-D ultrasound. On 2-D ultrasound, the craniocaudal (CC), lateromedial (LM) and anteroposterior (AP) dimensions of the thyroid lobes were measured. The equation was derived by correlating the volume of the thyroid lobes measured with 3-D ultrasound and the product of the three dimensions measured with 2-D ultrasound using linear regression analysis, in 75 subjects without thyroid nodule. The accuracy of thyroid volume estimation of the new equation and the three previously reported equations was evaluated and compared in another 75 subjects (without thyroid nodule, n = 30; with thyroid nodule, n = 45). It is suggested that volume of thyroid lobe may be estimated as: volume of thyroid lobe = 0.38.(CC.LM.AP) + 1.76. Result showed that the new equation (16.9% to 36.1%) had a significantly smaller thyroid volume estimation error than the previously reported equations (20.8% to 54.9%) (p thyroid volume estimation error when thyroid glands with nodules were examined (p thyroid volume equation, 2-D ultrasound can be a useful alternative in thyroid volume measurement when 3-D ultrasound is not available.
Ruigrok, Elmer; Gibbons, Steven; Wapenaar, Kees
2016-10-01
An areal distribution of sensors can be used for estimating the direction of incoming waves through beamforming. Beamforming may be implemented as a phase-shifting and stacking of data recorded on the different sensors (i.e., conventional beamforming). Alternatively, beamforming can be applied to cross-correlations between the waveforms on the different sensors. We derive a kernel for beamforming cross-correlated data and call it cross-correlation beamforming (CCBF). We point out that CCBF has slightly better resolution and aliasing characteristics than conventional beamforming. When auto-correlations are added to CCBF, the array response functions are the same as for conventional beamforming. We show numerically that CCBF is more resilient to non-coherent noise. Furthermore, we illustrate that with CCBF individual receiver-pairs can be removed to improve mapping to the slowness domain. An additional flexibility of CCBF is that cross-correlations can be time-windowed prior to beamforming, e.g., to remove the directionality of a scattered wavefield. The observations on synthetic data are confirmed with field data from the SPITS array (Svalbard). Both when beamforming an earthquake arrival and when beamforming ambient noise, CCBF focuses more of the energy to a central beam. Overall, the main advantage of CCBF is noise suppression and its flexibility to remove station pairs that deteriorate the signal-related beampower.
Lü, Chengxu; Chen, Longjian; Yang, Zengling; Liu, Xian; Han, Lujia
2014-01-01
This article presents a novel method for combining auto-peak and cross-peak information for sensitive variable selection in synchronous two-dimensional correlation spectroscopy (2D-COS). This variable selection method is then applied to the case of near-infrared (NIR) microscopy discrimination of meat and bone meal (MBM). This is of important practical value because MBM is currently banned in ruminate animal compound feed. For the 2D-COS analysis, a set of NIR spectroscopy data of compound feed samples (adulterated with varying concentrations of MBM) was pretreated using standard normal variate and detrending (SNVD) and then mapped to the 2D-COS synchronous matrix. For the auto-peak analysis, 12 main sensitive variables were identified at 6852, 6388, 6320, 5788, 5600, 5244, 4900, 4768, 4572, 4336, 4256, and 4192 cm(-1). All these variables were assigned their specific spectral structure and chemical component. For the cross-peak analysis, these variables were divided into two groups, each group containing the six sensitive variables. This grouping resulted in a correlation between the spectral variables that was in accordance with the chemical-component content of the MBM and compound feed. These sensitive variables were then used to build a NIR microscopy discrimination model, which yielded a 97% correct classification. Moreover, this method detected the presence of MBM when its concentration was less than 1% in an adulterated compound feed sample. The concentration-dependent 2D-COS-based variable selection method developed in this study has the unique advantages of (1) introducing an interpretive aspect into variable selection, (2) substantially reducing the complexity of the computations, (3) enabling the transferability of the results to discriminant analysis, and (4) enabling the efficient compression of spectral data.
Institute of Scientific and Technical Information of China (English)
ZHOU Peng; MEI Hu; TIAN Feifei; WANG Jiaona; WU Shirong; LI Zhiliang
2007-01-01
Based on two-dimensional topological characters,a novel method called molecular electronegativityinteraction vector(MEIV)is proposed to parameterize molecular structures.Applying MEIV into quantitative structure-spectrometry relationship studies on ion mobility spectrometry collision cross-sections of 113 singly protonated peptides,three models were strictly obtained,with correlative coefficient r and leave-one-out cross-validation q of 0.983,0.979,0.981,0.979 and 0.980,0.978,respectively.Thus,the MEIV is confirmed to be potent to structural characterizations and property predictions for organic and biologic molecules.
Qu, Lei; Chen, Jian-bo; Zhou, Qun; Zhang, Gui-jun; Sun, Su-qin; Guo, Yi-zhen
2016-11-01
As a kind of expensive perfume and valuable herb, the commercial Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy and two-dimensional (2D) correlation analysis are employed to establish a simple and quick identification method for the authentic and adulterated ALR. In the conventional infrared spectra, the standard ALR has a strong peak at 1658 cm-1 referring to the conjugated carbonyl of resin, while this peak is absent in the adulterated samples. The position, intensity, and shape of the auto-peaks and cross-peaks of the authentic and adulterated ALR are much different in the synchronous 2D correlation spectra with thermal perturbation. In the range of 1700-1500 cm-1, the standard ALR has four obvious auto-peaks, while the strongest one is at 1659 cm-1. The adulterated sample w-1 has three obvious auto-peaks and the strongest one is at 1647 cm-1. The adulterated sample w-2 has three obvious auto-peaks and the strongest one is at 1519 cm-1. The adulterated sample w-3 has four obvious auto-peaks and the strongest one is at 1690 cm-1. The above auto-peaks confirm that the standard ALR contains a certain content of resin compounds, while the three counterfeits contain little or different resins. The results show the potential of FT-IR spectroscopy and 2D correlation analysis in the simple and quick identification of authentic and adulterated ALR.
Institute of Scientific and Technical Information of China (English)
LIN Ming-Xi; QI Sheng-Wen; LIU Yu-Liang
2006-01-01
@@ Based on a two-dimensional electron system with pure gauge field, we demonstrate that the long range order of the electron pairing order parameter can be destroyed by the gauge fluctuation for both s-wave and d-wave symmetric Cooper pair parameters, even if the pure gauge field mediates attractive interaction between the spinup and spin-down electrons, while the signal of the Meissner effect is observable. This model can be used to explain the recent experimental data of the high Tc cuprate superconductors observed.
Wang, Li-Ping; Shen, Qi-Rong; Yu, Guang-Hui; Ran, Wei; Xu, Yang-Chun
2012-02-01
Detailed knowledge of the molecular events during composting is important in improving the efficiency of this process. By combining two-dimensional Fourier transform infrared (FTIR) correlation spectroscopy and multiple fluorescent labeling, it was possible to study the degradation of biopolymers during rapeseed meal and wheat bran composting. Two-dimensional FTIR correlation spectroscopy provided structural information and was used to deconvolute overlapping bands found in the compost FTIR spectra. The degradation of biopolymers in rapeseed meal and wheat bran composts followed the sequence: cellulose, heteropolysaccharides, and proteins. Fluorescent labeling suggested that cellulose formed an intact network-like structure and the other biopolymers were embedded in the core of this structure. The sequence of degradation of biopolymers during composting was related to their distribution patterns.
Directory of Open Access Journals (Sweden)
G. Angelova
2008-07-01
Full Text Available During the preparatory work for the optical-replica synthesizer experiment in the free-electron laser FLASH at DESY, we were able to superimpose a short, approximately 200 fs long pulse from a frequency-doubled mode-locked erbium laser with titanium-sapphire amplifier and an approximately 20 ps long electron bunch in an undulator. This induces an energy modulation in a longitudinal slice of the electron bunch. A magnetic chicane downstream of the undulator converts the energy modulation into a density modulation within the slice that causes the emission of coherent optical transition radiation from a silver-coated silicon screen. Varying the relative timing between electron and laser, we use a camera to record two-dimensional images of the slices as a function of the longitudinal position within the electron bunch.
Directory of Open Access Journals (Sweden)
Tippawan Siritientong
2013-01-01
Full Text Available The genipin-cross-linked silk sericin/poly(vinyl alcohol (PVA films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds.
Energy Technology Data Exchange (ETDEWEB)
Vilardy, Juan M; Giacometto, F; Torres, C O; Mattos, L, E-mail: vilardy.juan@unicesar.edu.co [Laboratorio de Optica e Informatica, Universidad Popular del Cesar, Sede balneario Hurtado, Valledupar, Cesar (Colombia)
2011-01-01
The two-dimensional Fast Fourier Transform (FFT 2D) is an essential tool in the two-dimensional discrete signals analysis and processing, which allows developing a large number of applications. This article shows the description and synthesis in VHDL code of the FFT 2D with fixed point binary representation using the programming tool Simulink HDL Coder of Matlab; showing a quick and easy way to handle overflow, underflow and the creation registers, adders and multipliers of complex data in VHDL and as well as the generation of test bench for verification of the codes generated in the ModelSim tool. The main objective of development of the hardware architecture of the FFT 2D focuses on the subsequent completion of the following operations applied to images: frequency filtering, convolution and correlation. The description and synthesis of the hardware architecture uses the XC3S1200E family Spartan 3E FPGA from Xilinx Manufacturer.
Yang, Liping; Liu, Junliang; Zhang, Yuezhao; Wang, Wei; Yu, Deyang; Li, Xiaoxiao; Li, Xin; Zheng, Min; Ding, Baowei; Cai, Xiaohong
2017-08-01
Based on the charge-division method, a compact detector system for charged particles is constructed. The system consists of a pair of micro-channel plates, a novel two-dimensional position-sensitive cross-connected-pixels resistive anode, and specially designed front-end electronics that can directly drive analog-to-digital converters. The detector is tested with an (241)Am α-source. A position resolution of better than 0.3 mm and a maximum distortion within 0.5 mm in the active dimensions of 100 mm diameter are achieved.
Kraft, T; Xu, S.; Brenner, B; Yu, L C
1999-01-01
To study possible structural changes in weak cross-bridge attachment to actin upon activation of the thin filament, two-dimensional (2D) x-ray diffraction patterns of skinned fibers from rabbit psoas muscle were recorded at low and high calcium concentration in the presence of saturating concentrations of MgATPgammaS, a nucleotide analog for weak binding states. We also studied 2D x-ray diffraction patterns recorded under relaxing conditions at an ionic strength above and below 50 mM, because...
Yang, Liping; Liu, Junliang; Zhang, Yuezhao; Wang, Wei; Yu, Deyang; Li, Xiaoxiao; Li, Xin; Zheng, Min; Ding, Baowei; Cai, Xiaohong
2017-08-01
Based on the charge-division method, a compact detector system for charged particles is constructed. The system consists of a pair of micro-channel plates, a novel two-dimensional position-sensitive cross-connected-pixels resistive anode, and specially designed front-end electronics that can directly drive analog-to-digital converters. The detector is tested with an 241Am α-source. A position resolution of better than 0.3 mm and a maximum distortion within 0.5 mm in the active dimensions of 100 mm diameter are achieved.
de Sousa, N; García-Martín, A; Froufe-Pérez, L S; Marqués, M I
2014-01-01
The effect of spatial correlations on the Purcell effect in a bidimensional dispersion of resonant nanoparticles is analyzed. We perform extensive calculations of the fluorescence decay rate of a point emitter embedded in a system of nanoparticles statistically distributed according to a sim- ple 2D lattice-gas model near the critical point. For short range correlations (high temperature thermalization) the Purcell factors present a non-Gaussian long-tailed statistics which evolves to- wards a bimodal distribution as approaching the critical point where the spatial correlation length diverges. Our results suggest long range correlations as a possible origin of the large fluctuations of experimental decay rates in disordered metal films.
Yanagisawa, Takashi
2016-11-01
The ground state of the two-dimensional (2D) Hubbard model is investigated by adopting improved wave functions that take into account intersite electron correlation beyond the Gutzwiller ansatz. The ground-state energy is lowered considerably, giving the best estimate of the ground-state energy for the 2D Hubbard model. There is a crossover from weakly to strongly correlated regions as the on-site Coulomb interaction U increases. The antiferromagnetic correlation induced by U is reduced for hole doping when U is large, being greater than the bandwidth, thus increasing the kinetic energy gain. The spin and charge fluctuations are induced in the strongly correlated region. These antiferromagnetic and kinetic charge fluctuations induce electron pairings, which results in high-temperature superconductivity.
Bu, Gui-jun; Yu, Jing; Di, Hui-hui; Luo, Shi-jia; Zhou, Da-zhai; Xiao, Qiang
2015-02-01
The composition and structure of humic acids formed during composting play an important influence on the quality and mature of compost. In order to explore the composition and evolution mechanism, municipal solid wastes were collected to compost and humic and fulvic acids were obtained from these composted municipal solid wastes. Furthermore, fourier transform infrared spectra and two-dimensional correlation analysis were applied to study the composition and transformation of humic and fulvic acids during composting. The results from fourier transform infrared spectra showed that, the composition of humic acids was complex, and several absorbance peaks were observed at 2917-2924, 2844-2852, 2549, 1662, 1622, 1566, 1454, 1398, 1351, 990-1063, 839 and 711 cm(-1). Compared to humic acids, the composition of fulvci acids was simple, and only three peaks were detected at 1725, 1637 and 990 cm(-1). The appearance of these peaks showed that both humic and fulvic acids comprised the benzene originated from lignin and the polysaccharide. In addition, humic acids comprised a large number of aliphatic and protein which were hardly detected in fulvic acids. Aliphatic, polysaccharide, protein and lignin all were degraded during composting, however, the order of degradation was different between humic and fulvci acids. The result from two-dimensional correlation analysis showed that, organic compounds in humic acids were degraded in the following sequence: aliphatic> protein> polysaccharide and lignin, while that in fulvic acids was as following: protein> polysaccharide and aliphatic. A large number of carboxyl, alcohols and ethers were formed during the degradation process, and the carboxyl was transformed into carbonates. It can be concluded that, fourier transform infrared spectra coupled with two-dimensional correlation analysis not only can analyze the function group composition of humic substances, but also can characterize effectively the degradation sequence of these
Abreu, P; Adye, T; Adzic, P; Albrecht, Z; Alderweireld, T; Alekseev, G D; Alemany, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amapane, N; Amato, S; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbiellini, Guido; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Beillière, P; Belokopytov, Yu A; Belous, K S; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertrand, D; Besançon, M; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Blom, H M; Bonesini, M; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Bracko, M; Branchini, P; Brenner, R A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Buschbeck, Brigitte; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camporesi, T; Canale, V; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Chapkin, M M; Charpentier, P; Checchia, P; Chelkov, G A; Chierici, R; Shlyapnikov, P; Chochula, P; Chorowicz, V; Chudoba, J; Cieslik, K; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crépé, S; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Davenport, Martyn; Da Silva, W; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Dris, M; Duperrin, A; Durand, J D; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Ferrer, A; Ferrer-Ribas, E; Ferro, F; Fichet, S; Firestone, A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gamblin, S; Gandelman, M; García, C; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Geralis, T; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Gris, P; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Hansen, J; Harris, F J; Hedberg, V; Heising, S; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, Sven Olof; Holt, P J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huber, M; Huet, K; Hughes, G J; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Jeans, D; Johansson, E K; Jönsson, P E; Joram, C; Juillot, P; Jungermann, L; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Kernel, G; Kersevan, Borut P; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B J; Kinvig, A; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Kokkinias, P; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kriznic, E; Krumshtein, Z; Kubinec, P; Kurowska, J; Kurvinen, K L; Lamsa, J; Lane, D W; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liebig, W; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Maltezos, S; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Meroni, C; Meyer, W T; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Moch, M; Møller, R; Mönig, K; Monge, M R; Moraes, D; Moreau, X; Morettini, P; Morton, G A; Müller, U; Münich, K; Mulders, M; Mulet-Marquis, C; Muresan, R; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Nassiakou, M; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neufeld, N; Nicolaidou, R; Nielsen, B S; Niezurawski, P; Nikolenko, M; Nomokonov, V P; Nygren, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Pavel, T; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Ripp-Baudot, I; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Royon, C; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schwemling, P; Schwering, B; Schwickerath, U; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seibert, N; Sekulin, R L; Shellard, R C; Siebel, M; Simard, L C; Simonetto, F; Sissakian, A N; Smadja, G; Smirnova, O G; Smith, G R; Sokolov, A; Solovyanov, O; Sopczak, André; Sosnowski, R; Spassoff, Tz; Spiriti, E; Squarcia, S; Stanescu, C; Stanic, S; Stanitzki, M; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Terranova, F; Thomas, J; Timmermans, J; Tinti, N; Tkatchev, L G; Tobin, M; Todorova-Nová, S; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tortosa, P; Tranströmer, G; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Dam, P; Van den Boeck, W; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verdier, P; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Voulgaris, G; Vrba, V; Wahlen, H; Walck, C; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wolf, G; Yi, J; Yushchenko, O P; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zinchenko, A I; Zoller, P; Zucchelli, G C; Zumerle, G
2000-01-01
The study of the directional dependence of two-particle correlations in the hadronic decays of the $Z^0$ boson is performed using the data collected by the DELPHI experiment in the 1992--1995 running periods. The comparison between the transverse, $R_{\\perp}$, and longitudinal, $R_{\\parallel}$, correlation radii confirms the string model prediction that the transverse correlation length is smaller than the longitudinal one, with the measured values of $R_{\\perp}=0.53\\pm 0.08\\,\\mathrm{fm}$ and $R_{\\parallel}=0.85\\pm 0.08\\,\\mathrm{fm}$, for selected $Z^0\\rightarrow q\\bar{q}$ events.
Huizinga, Richard J.
2008-01-01
In cooperation with the Missouri Department of Transportation, the U.S. Geological Survey determined hydrologic and hydraulic parameters for the Gasconade River at the site of a proposed bridge replacement and highway realignment of State Highway 17 near Waynesville, Missouri. Information from a discontinued streamflow-gaging station on the Gasconade River near Waynesville was used to determine streamflow statistics for analysis of the 25-, 50-, 100-, and 500-year floods at the site. Analysis of the streamflow-gaging stations on the Gasconade River upstream and downstream from Waynesville indicate that flood peaks attenuate between the upstream gaging station near Hazelgreen and the Waynesville gaging station, such that the peak discharge observed on the Gasconade River near Waynesville will be equal to or only slightly greater (7 percent or less) than that observed near Hazelgreen. A flood event occurred on the Gasconade River in March 2008, and a flood measurement was obtained near the peak at State Highway 17. The elevation of high-water marks from that event indicated it was the highest measured flood on record with a measured discharge of 95,400 cubic feet per second, and a water-surface elevation of 766.18 feet near the location of the Waynesville gaging station. The measurements obtained for the March flood resulted in a shift of the original stage-discharge relation for the Waynesville gaging station, and the streamflow statistics were modified based on the new data. A two-dimensional hydrodynamic flow model was used to simulate flow conditions on the Gasconade River in the vicinity of State Highway 17. A model was developed that represents existing (2008) conditions on State Highway 17 (the 'model of existing conditions'), and was calibrated to the floods of March 20, 2008, December 4, 1982, and April 14, 1945. Modifications were made to the model of existing conditions to create a model that represents conditions along the same reach of the Gasconade
DEFF Research Database (Denmark)
Nawrocki, A; Larsen, Martin Røssel; Podtelejnikov, A V
1998-01-01
Separation of proteins on either carrier ampholyte-based or immobilized pH gradient-based two-dimensional (2-D) gels gives rise to electrophoretic patterns that are difficult to compare visually. In this paper we have used matrix-assisted laser desorption/ionization mass spectrometry (MALDI......-references demonstrated that there is no obvious pattern by which the mobility of a protein in one gel system can be used to predict its mobility in the other. Thus, as laboratories adopt the immobilized pH gradient-based 2-D gel systems, the only reliable means of translating the data gained with the carrier ampholyte......-MS) to determine the identities of 335 protein spots in these two 2-D gel systems, including a substantial number of basic proteins which had never been identified before. Proteins that were identified in both gel systems allowed us to cross-reference the gel patterns. Vector analysis of these cross...
Chatelain, Christophe
2014-03-01
The q-state Potts model with long-range correlated disorder is studied by means of large-scale Monte Carlo simulations for q=2, 4, 8, and 16. Evidence is given of the existence of a Griffiths phase, where the thermodynamic quantities display an algebraic finite-size scaling, in a finite range of temperatures. The critical exponents are shown to depend on both the temperature and the exponent of the algebraic decay of disorder correlations, but not on the number of states of the Potts model. The mechanism leading to the violation of hyperscaling relations is observed in the entire Griffiths phase.
Zhang, Shengzhao; Zhang, Linna; Li, Zhe; Li, Gang; Lin, Ling
2016-10-01
Dynamic spectrum (DS) method is one of the noninvasive approaches to measure the concentration of components in human blood based on the application of photoplethysmogram (PPG). One of the targets of the DS method is to predict the hemoglobin concentration in human blood noninvasively. In previous works, the usually used wavelength in the spectrum is 600-1100 nm which is regarded as the analysis "window" in human tissues. Optimum wavelengths for measurements of hemoglobin concentration have not been investigated yet. In order to improve the precision and reliability of hemoglobin measurements, a method for wavelength selection based on two-dimension (2D) correlation spectroscopy has been studied in this paper. By analyzing the 2D correlation spectroscopy which is generated by the DS data from subject with different blood hemoglobin concentrations, the wavelength bands which are sensible to hemoglobin concentrations in DS can be found. We developed calibration models between the DS data and hemoglobin concentration based on data from 57 subjects. The correlation coefficient is 0.68 in the test set of the model using the whole wavelength band (600-1100nm), while in the test set of the model using the selected wavelength band (850- 950nm) the correlation coefficient is 0.87. Results show the feasibility of wavelength selection utilizing 2Dcorrelation spectroscopy.
Chen, Jian-bo; Zhou, Qun; Sun, Su-qin
2016-11-01
Infrared (IR) spectroscopy is often used as a simple, fast, and green method for the adulteration screening of botanical materials for foods and herbs. However, the overlapping of absorption signals of various substances significantly decrease the sensitivity and specificity of IR spectroscopy in the detection of adulterated samples. In this research, a model-free approach is proposed for the sensitive and non-targeted screening of botanical materials adulterated by adding other plant materials. First, the spectra of the entities in the test sample are collected by near-infrared spectroscopic imaging and clustered by unsupervised pattern recognition methods. The sample may be adulterated if there are two or more clusters of the entities. Next, the entities of different clusters are characterized by mid-infrared spectroscopy to interpret the chemical compositions to determine the clustering is caused whether by adulteration or other reasons. Second derivative spectroscopy and two-dimensional correlation spectroscopy are often needed to resolve the overlapped bands mathematically or experimentally to find the characteristic signals to identify the authentic and adulterant entities. The feasibility of this approach was proved by the simulated adulterated sample of saffron. In conclusion, botanical materials adulterated by adding other plant materials can be detected by a simple, fast, sensitive, and green screening approach using IR spectroscopic imaging, two-dimensional correlation spectroscopy, and necessary chemometrics techniques.
Directory of Open Access Journals (Sweden)
Mr. Agbo Julius Amaechi
2008-07-01
Full Text Available This study was conducted with the objective to establish a nomogram for some left ventricular structures and their alterations in hypertension. Correlations between left ventricular structures and anthropometric variables in hypertension were also established. A sample of 320 normotensive and 80 hypertensive subjects were studied. Echocardiograhic end diastolic diameter, posterior wall thickness and septal wall thickness were obtained. Subject height, weight, age and blood pressures were obtained. Blood pressures were measured in sitting position. The values of left ventricular mass (LVM, left ventricular mass index (LVMI and left relative wall thickness (RWT were computed. Parametric tests were conducted. Tests were two tailed with P < 0.05 indicating statistical significance. Normal values of left ventricular structures were established; LVM: 63.72g – 336.18g, LVMI: 38.16g/m – 222.64g/m, and RWT: 0.25 – 0.52. Significant differences (P < 0.05 were established in LVM, LVMI and RWT between normotensive and hypertensive subjects. Positive and significant correlations were noted between these variables and systolic blood pressure in hypertensive subjects. A simple linear regression of RWT on Body surface area gives RWT = - 0.058 BSA + 0.475 in normotensive subjects. Normal values of left ventricular structures and a linear regression model have been established which could be used in the assessment of morbidity in hypertension.
Allerdt, Andrew; Feiguin, A. E.; Martins, G. B.
2017-07-01
We calculate exact zero-temperature real-space properties of a substitutional magnetic impurity coupled to the edge of a zigzag silicenelike nanoribbon. Using a Lanczos transformation [A. Allerdt et al., Phys. Rev. B 91, 085101 (2015), 10.1103/PhysRevB.91.085101] and the density-matrix renormalization-group method, we obtain a realistic description of stanene and germanene that includes the bulk and the edges as boundary one-dimensional helical metallic states. Our results for substitutional impurities indicate that the development of a Kondo state and the structure of the spin correlations between the impurity and the electron spins in the metallic edge state depend considerably on the location of the impurity. More specifically, our real-space resolution allows us to conclude that there is a sharp distinction between the impurity being located at a crest or a trough site at the zigzag edge. We also observe, as expected, that the spin correlations are anisotropic due to an emerging Dzyaloshinskii-Moriya interaction with the conduction electrons and that the edges scatter from the impurity and "snake" or circle around it. Our estimates for the Kondo temperature indicate that there is a very weak enhancement due to the presence of spin-orbit coupling.
Corkidi, G; Montoya, F; Hernández-Herrera, P; Ríos-Herrera, W A; Müller, M F; Treviño, C L; Darszon, A
2017-09-01
Are there intracellular Ca2+ ([Ca2+]i) oscillations correlated with flagellar beating in human sperm? The results reveal statistically significant [Ca2+]i oscillations that are correlated with the human sperm flagellar beating frequency, when measured in three-dimensions (3D). Fast [Ca2+]i oscillations that are correlated to the beating flagellar frequency of cells swimming in a restricted volume have been detected in hamster sperm. To date, such findings have not been confirmed in any other mammalian sperm species. An important question that has remained regarding these observations is whether the fast [Ca2+]i oscillations are real or might they be due to remaining defocusing effects of the Z component arising from the 3D beating of the flagella. Healthy donors whose semen samples fulfill the WHO criteria between the age of 18-28 were selected. Cells from at least six different donors were utilized for analysis. Approximately the same number of experimental and control cells were analyzed. Motile cells were obtained by the swim-up technique and were loaded with Fluo-4 (Ca2+ sensitive dye) or with Calcein (Ca2+ insensitive dye). Ni2+ was used as a non-specific plasma membrane Ca2+ channel blocker. Fluorescence data and flagella position were acquired in 3D. Each cell was recorded for up to 5.6 s within a depth of 16 microns with a high speed camera (coupled to an image intensifier) acquiring at a rate of 3000 frames per second, while an oscillating objective vibrated at 90 Hz via a piezoelectric device. From these samples, eight experimental and nine control sperm cells were analyzed in both 2D and 3D. We have implemented a new system that allows [Ca2+]i measurements of the human sperm flagellum beating in 3D. These measurements reveal statistically significant [Ca2+]i oscillations that correlate with the flagellar beating frequency. These oscillations may arise from intracellular sources and/or Ca2+ transporters, as they were insensitive to external Ni2+, a non
Shinzawa, Hideyuki; Mizukado, Junji
2016-11-01
Evolutionary change in supermolecular structure of Nylon 6 during its melt-quenched process was studied by Near-infrared (NIR) spectroscopy. Time-resolved NIR spectra was measured by taking the advantage of high-speed NIR monitoring based on an acousto-optic tunable filter (AOTF). Fine spectral features associated with the variation of crystalline and amorphous structure occurring in relatively short time scale were readily captured. For example, synchronous and asynchronous 2D correlation spectra reveal the initial decrease in the contribution of the NIR band at 1485 nm due to the amorphous structure, predominantly existing in the melt Nylon 6. This is then followed by the emerging contribution of the band intensity at 1535 nm associated with the crystalline structure. Consequently, the results clearly demonstrate a definite advantage of the high-speed NIR monitoring for analyzing fleeting phenomena.
Lei, Yu; Zhou, Qun; Zhang, Yan-ling; Chen, Jian-bo; Sun, Su-qin; Noda, Isao
2010-06-01
Infrared (IR) spectroscopy is used in combination with two-dimensional (2D) correlation IR spectroscopy to conduct rapid non-destructive quantitative research in milk powder without additional separation steps. The experiments conducted in both FT-IR and 2D FT-IR spectra suggest that characteristic spectroscopic features of milk powder containing different carbohydrate can be detected, and then determine the type of carbohydrate. To predict the approximate content of lactose while the carbohydrate is lactose, different amount of crystallized lactose has been added to the reference milk powder. The correlation coefficient could be used to determine the content of crystallized lactose in milk powder. The method provides a rapid and convenient means for assessing the quality of milk powder.
Chae, Boknam; Son, Seok Ho; Kwak, Young Jun; Jung, Young Mee; Lee, Seung Woo
2016-11-01
The pH-induced structural changes to surface immobilized poly (L-glutamic acid) (PLGA) films were examined by Fourier transform infrared (FTIR) spectroscopy and two-dimensional (2D) correlation analysis. Significant spectral changes were observed in the FTIR spectra of the surface immobilized PLGA film between pH 6 and 7. The 2D correlation spectra constructed from the pH-dependent FTIR spectra of the surface immobilized PLGA films revealed the spectral changes induced by the alternations of the protonation state of the carboxylic acid group in the PLGA side chain. When the pH was increased from 6 to 8, weak spectral changes in the secondary structure of the PLGA main chain were induced by deprotonation of the carboxylic acid side group.
Zhang, Chun-hui; Zhang, Gui-jun; Sun, Su-qin; Tu, Ya
2010-07-01
2D-IR correlation spectroscopy was used to do the research on crude and prepared drug of radix scutellariae and the extracts of them. The results show that the holistic shape of peaks among them are similar in the FTIR spectra. In second derivative spectra, the two absorption peaks: 1,745 and 1,411 cm(-1) of processed products move to the bigger wavenumber direction, while 1,357 cm(-1) of processed products moves to the smaller wavenumber direction; There are conspicuous differences in Two-dimensional infrared correlation spectroscopy among them: Four characteristic peaks are shown between 1,300 and 1,800 cm(-1). The intensity of peak at 1,575 cm(-1) is the strongest. There are three main districts about the autopeaks of sliced scutellariae. Wine-fried scutellariae has two auto-peak districts, in which all the auto-peaks are positively correlated. The FTIR spectra of total glycoside extract of different samples present characteristic peaks at 1,615, 1,585, 1,450 cm(-1) (vibration of phenyl framework) and 1,658 cm(-1) (=C-O ) respectively, therefore, the authors speculated that their mutual component is the compound of phenolic glycoside. The two-dimensional infrared correlation spectra present five automatic peaks (vibration of phenyl framework) in 800-1,800 cm(-1) (1,366, 1,420, 1,508, 1,585, 1,669 cm(-1)). So the authors can conclude that a lot of information can be provided by macro-fingerprint technology of infrared spectroscopy which can evaluate overall quality of radix scutellariae accurately and be used to study the characteristics of relevance of crude and prepared scutellariae.
Energy Technology Data Exchange (ETDEWEB)
Sun, Fusheng [Jiangsu Provincial Key Lab for Organic Solid Waste Utilization and National Engineering Research Center for Organic-Based Fertilizers, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Department of Soil Science, North Carolina State University, Raleigh, NC 27695 (United States); Polizzotto, Matthew L. [Department of Soil Science, North Carolina State University, Raleigh, NC 27695 (United States); Guan, Dongxing [Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210026 (China); Wu, Jun [College of Environment, Zhejiang University of Technology, Hangzhou 310014 (China); Shen, Qirong; Ran, Wei [Jiangsu Provincial Key Lab for Organic Solid Waste Utilization and National Engineering Research Center for Organic-Based Fertilizers, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Wang, Boren [Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Yu, Guanghui, E-mail: yuguanghui@njau.edu.cn [Jiangsu Provincial Key Lab for Organic Solid Waste Utilization and National Engineering Research Center for Organic-Based Fertilizers, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China)
2017-03-15
Highlights: • The interactions and binding between Cd and functional groups are essential for their fates. • Two-dimensional correlation spectroscopy can identify Cd binding to functional groups in soils. • Synchrotron radiation based spectromicroscopy shows the micro-scale distribution of Cd in soils. • Soil functional groups controlling Cd binding can be modified by fertilization treatments. - Abstract: Understanding how heavy metals bind and interact in soils is essential for predicting their distributions, reactions and fates in the environment. Here we propose a novel strategy, i.e., combining two-dimensional correlation spectroscopy (2D COS) and synchrotron radiation based spectromicroscopies, for identifying heavy metal binding to functional groups in soils. The results showed that although long-term (23 yrs) organic fertilization treatment caused the accumulation of Cd (over 3 times) in soils when compared to no fertilization and chemical fertilization treatments, it significantly (p < 0.05) reduced the Cd concentration in wheat grain. The 2D COS analyses demonstrated that soil functional groups controlling Cd binding were modified by fertilization treatments, providing implications for the reduced bioavailability of heavy metals in organic fertilized soils. Furthermore, correlative micro X-ray fluorescence spectromicroscopy, electron probe micro-analyzer mapping, and synchrotron-radiation-based FTIR spectromicroscopy analysis showed that Cd, minerals, and organic functional groups were heterogeneously distributed at the micro-scale in soil colloids. Only minerals, rather than organic groups, had a similar distribution pattern with Cd. Together, this strategy has a potential to explore the interactions and binding sites among heavy metals, minerals and organic components in soil.
Qin, Mingpu; Shi, Hao; Zhang, Shiwei
2017-08-01
Optical lattice experiments with ultracold fermion atoms and quantum gas microscopy have recently realized direct measurements of magnetic correlations at the site-resolved level. We calculate the short-range spin-correlation functions in the ground state of the two-dimensional repulsive Hubbard model with the auxiliary-field quantum Monte Carlo (AFQMC) method. The results are numerically exact at half filling where the fermion sign problem is absent. Away from half filling, we employ the constrained path AFQMC approach to eliminate the exponential computational scaling from the sign problem. The constraint employs unrestricted Hartree-Fock trial wave functions with an effective interaction strength U , which is optimized self-consistently within AFQMC. Large supercells are studied, with twist averaged boundary conditions as needed, to reach the thermodynamic limit. We find that the nearest-neighbor spin correlation always increases with the interaction strength U , contrary to the finite-temperature behavior where a maximum is reached at a finite U value. We also observe a change of sign in the next-nearest-neighbor spin correlation with increasing density, which is a consequence of the buildup of the long-range antiferromagnetic correlation. We expect the results presented in this paper to serve as a benchmark as lower temperatures are reached in ultracold atom experiments.
Levashov, V A; Stepanov, M G
2016-01-01
Considerations of local atomic-level stresses associated with each atom represent a particular approach to address structures of disordered materials at the atomic level. We studied structural correlations in a two-dimensional model liquid using molecular dynamics simulations in the following way. We diagonalized the atomic-level stress tensor of every atom and investigated correlations between the eigenvalues and orientations of the eigenvectors of different atoms as a function of distance between them. It is demonstrated that the suggested approach can be used to characterize structural correlations in disordered materials. In particular, we found that changes in the stress correlation functions on decrease of temperature are the most pronounced for the pairs of atoms with separation distance that corresponds to the first minimum in the pair density function. We also show that the angular dependencies of the stress correlation functions previously reported by Wu et al. [Phys. Rev. E 91, 032301 (2015)10.1103/PhysRevE.91.032301] do not represent the anisotropic Eshelby's stress fields, as it is suggested, but originate in the rotational properties of the stress tensors.
Takahashi, Kei; Kabashima, Fumie; Tsuchiya, Fumihiko
2016-03-01
Japanese sake is a traditional alcoholic beverage composed of a wide variety of metabolites, which give it many types of tastes and flavors. Previously, we have reported that medium-chain fatty acids contribute to a fatty odor in sake (Takahashi, K., et al., J. Agric. Food Chem., 62, 8478-8485, 2014). In this study, we have reanalyzed the data obtained using two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. The relationship between the chemical components in sake and specific organoleptic properties such as off-flavor and quality has been explored. This led to the identification of the type of chemical compounds present and an assessment of the numerous candidate compounds that correlate with such organoleptic properties in sake. This research provides important fundamental knowledge for the sake-brewing industry. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
This paper demonstrates the application of step-scan phase modulation Fourier transform infrared photoacoustic spectroscopy(FTIR-PAS) in non-destructively depth profiling of styrene-butadiene-styrene block copolymer/polyethylene terephthalate(SBS/PET) layered materials.The surface thicknesses of three layered samples were determined to be 1.2,4.3 and 9.4μm by using phase difference analysis,overcoming the spatial detection limits of FTIR.Combined with generalized two-dimensional(G2D) FTIR correlation analysis,the spatial origins of peaks in the SBS/PET spectrum are identified with those having overlapping peaks between different layers are resolved.
Jiang, Eric Y.; Rieppo, Jarno
2006-11-01
This paper explores a new application of two-dimensional correlation spectroscopy (2DCOS) in FTIR spectroscopic imaging analysis of biological samples. A particular example demonstrated in this paper is the characterization of concentration gradients of collagen and proteoglycans in human patellar cartilage. A focal plane array detector-based FTIR imaging system has been proven to be an efficient tool to detect early collagen and proteoglycans degradation in developing osteoarthrosis through evaluating compositional changes of osteoarthritic cartilage along the depth. However, the closely overlapped bands of collagen and proteoglycans make normal spectral and spatial analysis difficult. With 2DCOS analysis of the imaging data, it is possible to enhance the spectral resolution and reveal distinctive compositional changes that are normally hidden with conventional approaches. The combined technique, FTIR imaging enhanced with 2DCOS, provides new possibilities to solve challenging problems in the analysis of complex biological systems.
Kraft, T; Xu, S; Brenner, B; Yu, L C
1999-03-01
To study possible structural changes in weak cross-bridge attachment to actin upon activation of the thin filament, two-dimensional (2D) x-ray diffraction patterns of skinned fibers from rabbit psoas muscle were recorded at low and high calcium concentration in the presence of saturating concentrations of MgATPgammaS, a nucleotide analog for weak binding states. We also studied 2D x-ray diffraction patterns recorded under relaxing conditions at an ionic strength above and below 50 mM, because it had been proposed from solution studies that reducing ionic strength below 50 mM also induces activation of the thin filament. For this project a novel preparation had to be established that allows recording of 2D x-ray diffraction patterns from single muscle fibers instead of natural fiber bundles. This was required to minimize substrate depletion or product accumulation within the fibers. When the calcium concentration was raised, the diffraction patterns recorded with MgATPgammaS revealed small changes in meridional reflections and layer line intensities that could be attributed in part to the effects of calcium binding to the thin filament (increase in I380, decrease in first actin layer line intensity, increase in I59) and in part to small structural changes of weakly attached cross-bridges (e.g., increase in I143 and I72). Calcium-induced small-scale structural rearrangements of cross-bridges weakly attached to actin in the presence of MgATPgammaS are consistent with our previous observation of reduced rate constants for attachment and detachment of cross-bridges with MgATPgammaS at high calcium. Yet, no evidence was found that weakly attached cross-bridges change their mode of attachment toward a stereospecific conformation when the actin filament is activated by adding calcium. Similarly, reducing ionic strength to less than 50 mM does not induce a transition from nonstereospecific to stereospecific attachment.
Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing
2017-03-05
As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.
Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing
2017-03-01
As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.
Spegazzini, Nicolas; Siesler, Heinz W; Ozaki, Yukihiro
2012-10-02
A sequential identification approach by two-dimensional (2D) correlation analysis for the identification of a chemical reaction model, activation, and thermodynamic parameters is presented in this paper. The identification task is decomposed into a sequence of subproblems. The first step is the construction of a reaction model with the suggested information by model-free 2D correlation analysis using a novel technique called derivative double 2D correlation spectroscopy (DD2DCOS), which enables one to analyze intensities with nonlinear behavior and overlapped bands. The second step is a model-based 2D correlation analysis where the activation and thermodynamic parameters are estimated by an indirect implicit calibration or a calibration-free approach. In this way, a minimization process for the spectral information by sample-sample 2D correlation spectroscopy and kinetic hard modeling (using ordinary differential equations) of the chemical reaction model is carried out. The sequential identification by 2D correlation analysis is illustrated with reference to the isomeric structure of diphenylurethane synthesized from phenylisocyanate and phenol. The reaction was investigated by FT-IR spectroscopy. The activation and thermodynamic parameters of the isomeric structures of diphenylurethane linked through a hydrogen bonding equilibrium were studied by means of an integration of model-free and model-based 2D correlation analysis called a sequential identification approach. The study determined the enthalpy (ΔH = 15.25 kJ/mol) and entropy (TΔS = 13.20 kJ/mol) of C═O···H hydrogen bonding of diphenylurethane through direct calculation from the differences in the kinetic parameters (δΔ(‡)H, -TδΔ(‡)S) at equilibrium in the chemical reaction system.
Mao, J D; Xing, B; Schmidt-Rohr, K
2001-05-15
New information on the chemical structure of a peat humic acid has been obtained using a series of two-dimensional 1H-13C heteronuclear correlation solid-state NMR (HETCOR) experiments with different contact times and with spectral editing by dipolar dephasing and 13C transverse relaxation filtering. Carbon-bonded methyl groups (C-CH3) are found to be near both aliphatic and O-alkyl but not aromatic groups. The spectra prove that most OCH3 groups are connected directly with the aromatic rings, as is typical in lignin. As a result, about one-third of the aromatic C-O groups is not phenolic C-OH but C-OCH3. Both protonated and unprotonated anomeric O-C-O carbons are identified in the one- and two-dimensional spectra. COO groups are found predominantly in OCHn-COO environments, but some are also bonded to aromatic rings and aliphatic groups. All models of humic acids in the literature lack at least some of the features observed here. Compositional heterogeneity was studied by introducing 1H spin diffusion into the HETCOR experiment. Comparison with data for a synthetic polymer, polycarbonate, indicates that the separation between O-alkyl and aromatic groups in the humic acid is less than 1.5 nm. However, transverse 13C relaxation filtering under 1H decoupling reveals heterogeneity on a nanometer scale, with the slow-relaxing component being rich in lignin-like aromatic-C-O-CH3 moieties and poor in COO groups.
Energy Technology Data Exchange (ETDEWEB)
Wu, Bin; Li, Huiying; Du, Xiaoming; Zhong, Lirong; Yang, Bin; Du, Ping; Gu, Qingbao; Li, Fasheng
2016-02-01
During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significant positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well.
Ono, Junichi; Takada, Shoji; Saito, Shinji
2015-06-07
An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchical conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.
Foist, Rod B; Schulze, H Georg; Ivanov, Andre; Turner, Robin F B
2011-05-01
Two-dimensional correlation spectroscopy (2D-COS) is a powerful spectral analysis technique widely used in many fields of spectroscopy because it can reveal spectral information in complex systems that is not readily evident in the original spectral data alone. However, noise may severely distort the information and thus limit the technique's usefulness. Consequently, noise reduction is often performed before implementing 2D-COS. In general, this is implemented using one-dimensional (1D) methods applied to the individual input spectra, but, because 2D-COS is based on sets of successive spectra and produces 2D outputs, there is also scope for the utilization of 2D noise-reduction methods. Furthermore, 2D noise reduction can be applied either to the original set of spectra before performing 2D-COS ("pretreatment") or on the 2D-COS output ("post-treatment"). Very little work has been done on post-treatment; hence, the relative advantages of these two approaches are unclear. In this work we compare the noise-reduction performance on 2D-COS of pretreatment and post-treatment using 1D (wavelets) and 2D algorithms (wavelets, matrix maximum entropy). The 2D methods generally outperformed the 1D method in pretreatment noise reduction. 2D post-treatment in some cases was superior to pretreatment and, unexpectedly, also provided correlation coefficient maps that were similar to 2D correlation spectroscopy maps but with apparent better contrast.
Wu, Bin; Li, Huiying; Du, Xiaoming; Zhong, Lirong; Yang, Bin; Du, Ping; Gu, Qingbao; Li, Fasheng
2016-02-01
During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significant positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well.
Shinzawa, Hideyuki; Murakami, Takurou N.; Nishida, Masakazu; Kanematsu, Wataru; Noda, Isao
2014-07-01
Multiple-perturbation two-dimensional (2D) correlation spectroscopy was applied to sets of near-infrared (NIR) imaging data of polylactic acid (PLA) nanocomposite samples undergoing UV degradation. Incorporation of clay nanoparticles substantially lowers the surface free energy barrier for the nucleation of PLA and eventually increases the frequency of the spontaneous nucleation of PLA crystals. Thus, when exposed to external stimuli such as UV light, PLA nanocomposite may show different structure alternation depending on the clay dispersion. Multiple-perturbation 2D correlation analysis of the PLA nanocomposite samples revealed different spatial variation between crystalline and amorphous structure of PLA, and the phenomenon especially becomes acute in the region where the clay particles are coagulated. The incorporation of the clay leads to the cleavage-induced crystallization of PLA when the sample is subjected to the UV light. The additional development of the ordered crystalline structure then works favorably to restrict the initial degradation of the polymer, providing the delay in the weight loss of the PLA.
Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong
2016-01-01
As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines.
Shinzawa, Hideyuki; Awa, Kimie; Noda, Isao; Ozaki, Yukihiro
2013-02-01
Transient water absorption by cellulosic samples manufactured under varying pressure was monitored by near-infrared spectroscopy to explore the absorption behavior affected by the pressure. A substantial level of variation of the spectral features was induced by the water absorption and changes in the pressure. The detail of the spectral changes was analyzed with a multiple-perturbation, two-dimensional (2D) correlation method to determine the underlying mechanism. The 2D correlation spectra indicated that the compression of the cellulose increased the packing density of the samples, preventing the penetration of water. In addition, the compression substantially disintegrated its crystalline structure and eventually resulted in the development of inter- and intrachain hydrogen-bonded structures arising from an interaction between the water and cellulose. Consequently, the cellulose samples essentially underwent an evolutionary change in the polymer structure as well as in the packing density during the compression. This structural change, in turn, led to the seemingly complicated absorption trends, depending on the pressure.
Sun, Fusheng; Polizzotto, Matthew L; Guan, Dongxing; Wu, Jun; Shen, Qirong; Ran, Wei; Wang, Boren; Yu, Guanghui
2017-03-15
Understanding how heavy metals bind and interact in soils is essential for predicting their distributions, reactions and fates in the environment. Here we propose a novel strategy, i.e., combining two-dimensional correlation spectroscopy (2D COS) and synchrotron radiation based spectromicroscopies, for identifying heavy metal binding to functional groups in soils. The results showed that although long-term (23 yrs) organic fertilization treatment caused the accumulation of Cd (over 3 times) in soils when compared to no fertilization and chemical fertilization treatments, it significantly (pCOS analyses demonstrated that soil functional groups controlling Cd binding were modified by fertilization treatments, providing implications for the reduced bioavailability of heavy metals in organic fertilized soils. Furthermore, correlative micro X-ray fluorescence spectromicroscopy, electron probe micro-analyzer mapping, and synchrotron-radiation-based FTIR spectromicroscopy analysis showed that Cd, minerals, and organic functional groups were heterogeneously distributed at the micro-scale in soil colloids. Only minerals, rather than organic groups, had a similar distribution pattern with Cd. Together, this strategy has a potential to explore the interactions and binding sites among heavy metals, minerals and organic components in soil.
Lü, Chengxu; Chen, Longjian; Yang, Zengling; Liu, Xian; Han, Lujia
2013-12-01
The purpose of this study is to investigate the efficiency of two-dimensional correlation spectroscopy (2D-COS) in recognizing the authenticity and purity of fishmeal (FM) and meat and bone meal (MBM), which are both complex mixtures with high similarity. Twenty FM samples and 20 MBM samples were obtained and examined. Temperature-dependent near-infrared (NIR) spectra were obtained using a Spectrum 400 spectrometer from 20 °C to 60 °C with an interval of 10 °C. Wavelet transform (Daubechies 5 wavelet with five levels) and baseline correction were applied to the temperature-dependent spectra in the wave range of 6000-5400 cm(-1). A 2D-COS synchronous map was calculated and scaled to the range between -1 and 1. A correlation coefficient was employed to quantitatively evaluate the visual differences of synchronous maps. The results show minor differences in NIR spectral absorbency of FM and MBM, and such differences are caused by appropriate temperature perturbation and enlarged by the 2D-COS method. The sensitive wave range is found in the area of 5800-5400 cm(-1). FM and MBM have observable pattern differences in the synchronous maps. Further quantitative evaluation of synchronous maps confirms correct recognizing results. Temperature-dependent 2D-COS is capable of recognizing the authenticity and purity of highly similar FM and MBM samples.
Afonso, Luis; Briasoulis, Alex; Mahajan, Nitin; Kondur, Ashok; Siddiqui, Fayez; Siddiqui, Sabeeh; Alesh, Issa; Cardozo, Shaun; Kottam, Anupama
2015-12-01
Hypertrophic cardiomyopathy (HCM) affects the right ventricle (RV) because of the anatomically hypertrophied septum and plausibly by extension of the myopathic process to the RV. We sought to investigate RV strain in patients with left ventricular hypertrophy secondary to either HCM or hypertension (H-LVH). Our cross-sectional study included 32 patients with HCM, 21 patients with H-LVH, and 11 healthy subjects, who were evaluated with transthoracic echocardiography. Using a dedicated software package, bi-dimensional acquisitions were analyzed to measure segmental longitudinal strain in apical views. Right ventricular global longitudinal strain (GLS) was calculated by averaging septal and right free wall strains. The HCM and H-LVH groups were comparable for age and demographic characteristics. Right ventricular tricuspid annular plane systolic excursion was not significantly different between HCM and H-LVH subjects. Moreover, RV GLS, septal and lateral RV myocardial strain were significantly impaired in patients with HCM (all p 14.9% differentiated HCM and H-LVH with a 90% sensitivity and a 95% specificity (p < 0.001). RV strain parameters are impaired in patients with HCM. Assessment of two-dimensional RV strain parameters could help differentiate between HCM and H-LVH.
Van den Hove, L E; Meeus, P; Derom, A; Demuynck, H; Verhoef, G E; Vandenberghe, P; Boogaerts, M A
1998-06-01
The distribution of 27 T-, B-, and natural killer-cell subsets in the peripheral blood of 40 patients with multiple myeloma (MM), ten patients with monoclonal gammopathy of undetermined significance (MGUS), and 40 healthy donors was investigated by means of classical univariate statistics and advanced multivariate data-analytical techniques. The latter approach was used to describe, represent, and analyze lymphocyte subset distribution in a two-dimensional correlation biplot, allowing comparison of complex lymphocyte profiles (i.e., compound lymphocyte subset distributions) of individual subjects rather than isolated subset values of selected patient and/or donor groups. The correlation biplot revealed that, in accordance with the univariate statistics, the MM patients were characterized by marked shifts towards CD8+, CD57+, CD62L-, CD(16+56)+, and HLA-DR+ T cells, suggesting in vivo immune activation. The activation profile was most markedly observed in treated MM patients in the advanced disease stage category. The lymphocyte profiles of MGUS patients were heterogeneous, with approximately half of them located in the swarm of MM patients and the other half in the swarm of healthy donors. Although the univariate statistics revealed significant differences between MGUS patients and healthy donors only within the B-cell compartment, the correlation biplot revealed that two MGUS patients clearly had a typical T-cell activation profile similar to that of the MM patients. One MGUS patient with a T-cell activation profile progressed 13 months later to a stage IA MM and required chemotherapy. A marked lymphocyte profile shift in one MM patient was associated with terminal and aggressive disease transformation. Our study illustrates further the practical use of correlation biplots for the detection of aberrant lymphocyte profiles and/or profile shifts in individual patients.
Energy Technology Data Exchange (ETDEWEB)
Ong, R.L.; Yu, R.K.
1986-02-15
The 1H-NMR spectra of the oligosaccharide derived from monosialoganglioside GM1 (GM1 = beta-D-galactosyl-(1-3)-beta-D-N-acetylgalactosaminyl-(1-4)- (alpha-N-acetylneuraminyl-(2-3)-)-beta-D-galactosyl-(1-4)-b eta-D-glucosylceramide) (GM1OS) and its reduced form (GM1OS-R) have been obtained at 500 MHz in D2O. Through the combined use of one-dimensional and homonuclear two-dimensional spin-echo J-correlated (2D SECSY) spectra of GM1OS-R, the assignments for the ring protons of GM1OS are made. Data on chemical shifts and coupling constants of GM1OS including the alpha-linked neuraminic acid protons, in aqueous solution, are tabulated. Due to the very small coupling constants (less than 2 Hz) and the closeness in chemical shifts (less than 0.04 ppm) for the pair of correlated peaks in the two-dimensional spectrum, the information on the connectivities of the H5 ring protons of the neutral sugar residues is missing. Second-order coupling also blurs this information. Data are compared with those obtained for ganglioside GM1 in dimethyl sulfoxide (DMSO; the actual composition therein was 97% DMSO-d6 and 3% D2O) by T. A. W. Koerner, J. H. Prestegard, P. C. Demou, and R. K. Yu. While the heterogeneity of chemical shifts for the H5, H6a, and H6b protons diminishes in D2O, that for A-9a and A-9b remains. The latter suggests an intraneuraminic acid conformation involving the glycerol side chain unaffected by the solvent. Moreover, the chemical shifts of the III-1, III-2, and A-4 protons (and perhaps the II-4, IV-2, and A-8 protons) in D2O exhibit unusual upfield shifts compared with those in DMSO. This indicates that the intramolecular interactions between GalNAc residue III and neuraminic acid present in DMSO are weakened in D2O. The effect of temperature on the conformation is also examined and appears to be minimal (less than 0.02 ppm) in the range 22-50 degrees C.
Bera, A. K.; Yusuf, S. M.; Kumar, Amit; Ritter, C.
2017-03-01
The crystal structure, magnetic ground state, and the temperature-dependent microscopic spin-spin correlations of the frustrated honeycomb lattice antiferromagnet N a2C o2Te O6 have been investigated by powder neutron diffraction. A long-range antiferromagnetic (AFM) ordering has been found below TN˜24.8 K . The magnetic ground state, determined to be zigzag antiferromagnetic and characterized by a propagation vector k =(1 /2 0 0 ) , occurs due to the competing exchange interactions up to third-nearest neighbors within the honeycomb lattice. The exceptional existence of a limited magnetic correlation length along the c axis (perpendicular to the honeycomb layers in the a b planes) has been found even at 1.8 K, well below the TN˜24.8 K . The observed limited correlation along the c axis is explained by the disorder distribution of the Na ions within the intermediate layers between honeycomb planes. The reduced ordered moments mCo (1 )=2.77 (3 ) μB/C o2 + and mCo (2 )=2.45 (2 ) μB/C o2 + at 1.8 K reflect the persistence of spin fluctuations in the ordered state. Above TN˜24.8 K , the presence of short-range magnetic correlations, manifested by broad diffuse magnetic peaks in the diffraction patterns, has been found. Reverse Monte Carlo analysis of the experimental diffuse magnetic scattering data reveals that the spin correlations are mainly confined within the two-dimensional honeycomb layers (a b plane) with a correlation length of ˜12 Å at 25 K. The nature of the spin arrangements is found to be similar in both the short-range and long-range ordered magnetic states. This implies that the short-range correlation grows with decreasing temperature and leads to the zigzag AFM ordering at T ≤TN . The present study provides a comprehensive picture of the magnetic correlations over the temperature range above and below the TN and their relation to the crystal structure. The role of intermediate soft Na layers on the magnetic coupling between honeycomb planes is
Chen, Jian-bo; Sun, Su-qin; Yu, Jing; Zhou, Qun
2014-07-01
Moving-window two-dimensional correlation spectroscopy (MW2DCOS) and principal component analysis (PCA) were combined to interpret the time serial infrared spectra. The curing process of an automotive paint sample was tracked by attenuated total reflection Fourier transform infrared spectroscopy. Score plots of the first and second principal components showed that the curing process contained three stages. Meanwhile, the loading spectra indicated that the solvent was a mixture of aromatic compounds. Absorption peaks which changed significantly in each stage were revealed by auto-peak MW2DCOS. Furthermore, point-line and point-point MW2DCOS demonstrated the time-resolved relationship between absorption peaks from toluene, xylene and resin. In summary, the evaporation of toluene was the first stage of the curing process of this automotive paint sample. Next, the mixture of o-xylene, m-xylene and p-xylene began to evaporate in the second stage. After the evaporation of the solvent, the solid paint membrane was formed. For the interpretation of the time serial spectra, PCA is useful to estimate the number of significant chemical components and to find out the important turning points of the process, while MW2DCOS can show the changes of the spectral peaks and the relationship between them step by step. The combination of PCA and MW2DCOS is very interesting to extract and display the time-resolved information in the time serial spectra.
Li, Xiaoming; Shen, Qirong; Zhang, Dongqing; Mei, Xinlan; Ran, Wei; Xu, Yangchun; Yu, Guanghui
2013-01-01
While the properties of biochar are closely related to its functional groups, it is unclear under what conditions biochar develops its properties. In this study, two-dimensional (2D) (13)C nuclear magnetic resonance (NMR) correlation spectroscopy was for the first time applied to investigate the development of functional groups and establish their relationship with biochar properties. The results showed that the agricultural biomass carbonized to biochars was a dehydroxylation/dehydrogenation and aromatization process, mainly involving the cleavage of O-alkylated carbons and anomeric O-C-O carbons in addition to the production of fused-ring aromatic structures and aromatic C-O groups. With increasing charring temperature, the mass cleavage of O-alkylated groups and anomeric O-C-O carbons occurred prior to the production of fused-ring aromatic structures. The regression analysis between functional groups and biochar properties (pH and electrical conductivity) further demonstrated that the pH and electrical conductivity of rice straw derived biochars were mainly determined by fused-ring aromatic structures and anomeric O-C-O carbons, but the pH of rice bran derived biochars was determined by both fused-ring aromatic structures and aliphatic O-alkylated (HCOH) carbons. In summary, this work suggests a novel tool for characterising the development of functional groups in biochars.
Directory of Open Access Journals (Sweden)
Xiaoming Li
Full Text Available While the properties of biochar are closely related to its functional groups, it is unclear under what conditions biochar develops its properties. In this study, two-dimensional (2D (13C nuclear magnetic resonance (NMR correlation spectroscopy was for the first time applied to investigate the development of functional groups and establish their relationship with biochar properties. The results showed that the agricultural biomass carbonized to biochars was a dehydroxylation/dehydrogenation and aromatization process, mainly involving the cleavage of O-alkylated carbons and anomeric O-C-O carbons in addition to the production of fused-ring aromatic structures and aromatic C-O groups. With increasing charring temperature, the mass cleavage of O-alkylated groups and anomeric O-C-O carbons occurred prior to the production of fused-ring aromatic structures. The regression analysis between functional groups and biochar properties (pH and electrical conductivity further demonstrated that the pH and electrical conductivity of rice straw derived biochars were mainly determined by fused-ring aromatic structures and anomeric O-C-O carbons, but the pH of rice bran derived biochars was determined by both fused-ring aromatic structures and aliphatic O-alkylated (HCOH carbons. In summary, this work suggests a novel tool for characterising the development of functional groups in biochars.
Law, A D; Buzza, D M A
2009-09-07
The structure and stability of colloidal monolayers depend crucially on the effective pair potential u(r) between colloidal particles. In this paper, we develop a two-dimensional (2D) predictor-corrector method for extracting u(r) from the pair correlation function g(r) of dense colloidal monolayers. The method is based on an extension of the three-dimensional scheme of Rajagopalan and Rao [Phys. Rev. E 55, 4423 (1997)] to 2D by replacing the unknown bridge function B(r) with the hard-disk bridge function B(d)(r); the unknown hard-disk diameter d is then determined using an iterative scheme. We compare the accuracy of our predictor-corrector method to the conventional one-step inversion schemes of hypernetted chain closure (HNC) and Percus-Yevick (PY) closure. Specifically we benchmark all three schemes against g(r) data generated from Monte Carlo simulation for a range of 2D potentials: exponential decay, Stillinger-Hurd, Lennard-Jones, and Derjaguin-Landau-Verwey-Overbeek. We find that for all these potentials, the predictor-corrector method is at least as good as the most accurate one-step method for any given potential, and in most cases it is significantly better. In contrast the accuracy of the HNC and PY methods relative to each other depends on the potential studied. The proposed predictor-corrector scheme is therefore a robust and more accurate alternative to these conventional one-step inversion schemes.
Rudd, Timothy R; Macchi, Eleonora; Gardini, Cristina; Muzi, Laura; Guerrini, Marco; Yates, Edwin A; Torri, Giangiacomo
2012-08-07
Risks of contamination of the major clinical anticoagulant heparin can arise from deliberate adulteration with unnatural or natural polysaccharides, including heparin from other animal sources, other natural products, or artifacts of manufacture, and these can escape detection by conventional means. Currently, there is no generally applicable, objective test recommended by regulators that can detect these in pharmaceutical heparin, and this continues to leave heparin exposed to contamination risks. Two-dimensional correlation spectroscopic-filtering with iterative random sampling (2D-COS-firs) is reported. It employs a difference covariance matrix with iterative random sampling, and is capable of revealing contamination in pharmaceutical heparin to a high level of sensitivity irrespective of the nature of those features. The technique is suitable to any situation in which a comparison of a single entity to a family of heterogeneous entities, particularly natural products and biosimilars, needs to be made, and will find application in pharmaceutical monitoring, manufacturing quality control, materials science, biotechnology, and metabolomic investigations.
Shi, Jingya; Wu, Peiyi; Yan, Feng
2010-07-06
The intermolecular interaction and distribution of components in [Bmim][BF(4)]-based polystyrene composite membrane which is composed of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]), poly(1-(2-methyl acryloyloxyundecyl)-3-methylimidazolium bromide) (poly(MAUM-Br)) and polystyrene is investigated by in situ Fourier transform infrared spectroscopy (FTIR) and two-dimensional correlation infrared spectroscopy (2DIR) in this study. A proposed model about the structure of this composite material is presented, and a sketch map about the local distributions of components is provided. In this model, alkyl chains in [Bmim][BF(4)], poly(MAUM-Br), and polystyrene in this system were supposed to form a polymeric network through aggregation or copolymerization. Cations of ionic liquids separate into the polymer network, while anions are kept mainly through the Coulomb force and partially by the hydrogen bonding between cations and anions. To support this model, FTIR has provided some hints on the pi-pi interaction existing in this complex material between the imidazole ring of ionic liquids and the benzene ring of polystyrene, based on the discovery of the shifts of IR absorption bands assigned to the C-C stretching vibrational mode. The sequential order of the responses from different chemical groups toward the variation of temperature is calculated by 2DIR, and the results suggest how different components distributed in this [Bmim][BF(4)]-based polystyrene composite membrane.
Liu, Xin-hu; Xu, Chang-hua; Sun, Su-qin; Huang, Jian; Zhang, Ke; Li, Guo-yu; Zhu, Yun; Zhou, Qun; Zhang, Zhi-cheng; Wang, Jin-hui
2012-11-01
In this study, six varieties of Danshen from different populations and genuine ("Daodi" in Chinese transliteration) regions were discriminated and identified by a three-step infrared spectroscopy method (Fourier transform-infrared spectroscopy (FT-IR) coupled with second derivative infrared spectroscopy (SD-IR) and two dimensional correlation infrared spectroscopy (2D-IR)). Though only small differences were found among the FT-IR spectra of the six Danshen samples, the positions and intensities of peaks at 3393, 3371, 1613, 1050, and 1036 cm-1 could be considered as the key factors to discriminate them. More significant differences were exhibited in their SD-IR, particularly for the peaks around 1080, 1144, 695, 665, 800, 1610, 1510, 1450, 1117 and 1077 cm-1. The visual 2D-IR spectra provided dynamic chemical structure information of the six Danshen samples with presenting different particular auto-peak clusters, respectively. Moreover, the contents of salvianolic acid B in all samples were measured quantitatively by a validated ultra performance liquid chromatography (UPLC), which was consistent with the FT-IR findings. This study provides a promising method for characteristics and quality control of the complicated and extremely similar herbal medicine like Danshen, which is more cost effective and time saving.
Litvinov, Rustem I; Mekler, Andrey; Shuman, Henry; Bennett, Joel S; Barsegov, Valeri; Weisel, John W
2012-10-12
Using a combined experimental and theoretical approach named binding-unbinding correlation spectroscopy (BUCS), we describe the two-dimensional kinetics of interactions between fibrinogen and the integrin αIIbβ3, the ligand-receptor pair essential for platelet function during hemostasis and thrombosis. The methodology uses the optical trap to probe force-free association of individual surface-attached fibrinogen and αIIbβ3 molecules and forced dissociation of an αIIbβ3-fibrinogen complex. This novel approach combines force clamp measurements of bond lifetimes with the binding mode to quantify the dependence of the binding probability on the interaction time. We found that fibrinogen-reactive αIIbβ3 pre-exists in at least two states that differ in their zero force on-rates (k(on1) = 1.4 × 10(-4) and k(on2) = 2.3 × 10(-4) μm(2)/s), off-rates (k(off1) = 2.42 and k(off2) = 0.60 s(-1)), and dissociation constants (K(d)(1) = 1.7 × 10(4) and K(d)(2) = 2.6 × 10(3) μm(-2)). The integrin activator Mn(2+) changed the on-rates and affinities (K(d)(1) = 5 × 10(4) and K(d)(2) = 0.3 × 10(3) μm(-2)) but did not affect the off-rates. The strength of αIIbβ3-fibrinogen interactions was time-dependent due to a progressive increase in the fraction of the high affinity state of the αIIbβ3-fibrinogen complex characterized by a faster on-rate. Upon Mn(2+)-induced integrin activation, the force-dependent off-rates decrease while the complex undergoes a conformational transition from a lower to higher affinity state. The results obtained provide quantitative estimates of the two-dimensional kinetic rates for the low and high affinity αIIbβ3 and fibrinogen interactions at the single molecule level and offer direct evidence for the time- and force-dependent changes in αIIbβ3 conformation and ligand binding activity, underlying the dynamics of fibrinogen-mediated platelet adhesion and aggregation.
Magnetic noise measurements using cross-correlated Hall sensor arrays
Jung, G.; Ocio, M.; Paltiel, Y.; Shtrikman, H.; Zeldov, E.
2001-01-01
An experimental technique for measuring magnetic fluctuations by means of a double-layer Hall sensor array is described. The technique relies on cross-correlating Hall signals from two independent sensors positioned one above the other in two separate two-dimensional-electron-gas layers of a GaAs/AlGaAs heterostructure. The effectiveness of the technique is demonstrated by a reduction of the magnitude of the background noise floor of the correlated sensors with respect to the noise level of the best single sensor.
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2007-01-01
Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
Energy Technology Data Exchange (ETDEWEB)
Bian, Liang, E-mail: bianliang@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China); Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China); Dong, Fa-qin; Song, Mian-xin [Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China); Dong, Hai-liang [Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056 (United States); Li, Wei-Min [Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China); Duan, Tao; Xu, Jin-bao [Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China); Zhang, Xiao-yan [Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China); Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China)
2015-08-30
Highlights: • Effect of Pu f-shell electron on the electronic property of zircon is calculated via DFT and 2D-CA techniques. • Reasons of Pu f-shell electron influencing on electronic properties are systematically discussed. • Phase transitions are found at two point 2.8 mol% and 7.5 mol%. - Abstract: Understanding how plutonium (Pu) doping affects the crystalline zircon structure is very important for risk management. However, so far, there have been only a very limited number of reports of the quantitative simulation of the effects of the Pu charge and concentration on the phase transition. In this study, we used density functional theory (DFT), virtual crystal approximation (VCA), and two-dimensional correlation analysis (2D-CA) techniques to calculate the origins of the structural and electronic transitions of Zr{sub 1−c}Pu{sub c}SiO{sub 4} over a wide range of Pu doping concentrations (c = 0–10 mol%). The calculations indicated that the low-angular-momentum Pu-f{sub xy}-shell electron excites an inner-shell O-2s{sup 2} orbital to create an oxygen defect (V{sub O-s}) below c = 2.8 mol%. This oxygen defect then captures a low-angular-momentum Zr-5p{sup 6}5s{sup 2} electron to form an sp hybrid orbital, which exhibits a stable phase structure. When c > 2.8 mol%, each accumulated V{sub O-p} defect captures a high-angular-momentum Zr-4d{sub z} electron and two Si-p{sub z} electrons to create delocalized Si{sup 4+} → Si{sup 2+} charge disproportionation. Therefore, we suggest that the optimal amount of Pu cannot exceed 7.5 mol% because of the formation of a mixture of ZrO{sub 8} polyhedral and SiO{sub 4} tetrahedral phases with the orientation (10-1). This study offers new perspective on the development of highly stable zircon-based solid solution materials.
Institute of Scientific and Technical Information of China (English)
吴一全; 王凯; 曹鹏祥
2015-01-01
Cross entropy can measure the difference between the original image and its segmentation result .Comparedwith Shannon cross entropy , Tsallis cross entropy, in which a parameter q is introduced, provides flexibilityand universality for the segmentation of image threshold .The asymmetric Tsallis cross entropy has more concise expressionform.Therefore, a method of threshold selection is proposed based on the two -dimensional asymmetric Tsalliscross entropy using bee colony optimization.Firstly, the asymmetric Tsallis cross entropy is introduced and thethreshold selection formulae based on the two -dimensional asymmetric Tsallis cross entropy are derived .Recursivealgorithms are used to calculate the intermediate variables involved in criterion function for threshold selection and alookup table is built to eliminate the redundant operations .The optimal two-dimensional threshold is searched by thebee colony algorithm.A large number of experiment results showed that the proposed method is greatly improved interms of subjective visual effect and inter-regional contrast evaluation indicators compared to the relevant methods ,such as the two-dimensional maximum Shannon entropy method , the two-dimensional Shannon cross entropy method,the two-dimensional Tsallis entropy method, and the two-dimensional symmetrical Tsallis cross entropy method .It can segment objects more accurately and has a faster running speed .%交叉熵能够度量图像分割前后的差异，与Shannon交叉熵相比，引入参数q的Tsallis交叉熵则为图像阈值分割提供了灵活性和普适性，而非对称Tsallis交叉熵的表达形式更加简洁。由此，提出了蜂群优化的二维非对称Tsal-lis交叉熵图像阈值选取方法。首先引出了非对称Tsallis交叉熵，导出了二维非对称Tsallis交叉熵阈值选取公式，并利用递推方式计算阈值选取准则函数涉及的中间变量，建立查找表，消除冗余运算；然后采用蜂群算法搜寻最
A novel two dimensional particle velocity sensor
Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.
2013-01-01
In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica
2012-08-01
registration. Practical applications include automatic alignment of SEM stages during three-dimensional serial sectioning experiments [Groeber, 2006...transpose of A, ATAw = ATc (26) it can be seen that w = ( ATA )-1ATc (27) These equations are solved twice, first row-wise, then...of serial section image data. Modeling Simul. Mater. Sic. Eng, vol. 17. Sinha, V., Mills, M.J. & Williams, J.C., (2007) Determination of
Detrended cross-correlation analysis of electroencephalogram
Institute of Scientific and Technical Information of China (English)
Wang Jun; Zhao Da-Qing
2012-01-01
In the paper we use detrended cross-correlation analysis (DCCA) to study the electroencephalograms of healthy young subjects and healthy old subjects.It is found that the cross-correlation between different leads of a healthy young subject is larger than that of a healthy old subject.It was shown that the cross-correlation relationship decreases with the aging process and the phenomenon can help to diagnose whether the subject's brain function is healthy or not.
Energy Technology Data Exchange (ETDEWEB)
Szybisz, L. (Lab. TANDAR, Dept. de Fisica, Comision Nacional de Energia Atomica, Buenos Aires (Argentina))
1990-08-01
The ground-state wave function for a two-dimensional homogeneous liquid 4He at zero temperature is obtained from a paired-phonon analysis within the HNC/0 approximation. The long-wavelength behavior of the twobody correlation factor, u(q), is studied by following the procedure previously applied to three-dimensional bulk systems. It is shown that a cut-off law for the phonons can be determined by analyzing u(q) at small two-dimensional momenta q. The numerical results strongly support an exponential cut-off similar to that suggested by Chester and Reatto for the bulk liquid. The first-sound velocity c{sub 1} and the cut-off momentum q{sub c} are calculated at several densities in the range 0.028-0.080 A - 2. (orig.).
Modeling Complex System Correlation Using Detrended Cross-Correlation Coefficient
Directory of Open Access Journals (Sweden)
Keqiang Dong
2014-01-01
Full Text Available The understanding of complex systems has become an area of active research for physicists because such systems exhibit interesting dynamical properties such as scale invariance, volatility correlation, heavy tails, and fractality. We here focus on traffic dynamic as an example of a complex system. By applying the detrended cross-correlation coefficient method to traffic time series, we find that the traffic fluctuation time series may exhibit cross-correlation characteristic. Further, we show that two traffic speed time series derived from adjacent sections exhibit much stronger cross-correlations than the two speed series derived from adjacent lanes. Similarly, we also demonstrate that the cross-correlation property between the traffic volume variables from two adjacent sections is stronger than the cross-correlation property between the volume variables of adjacent lanes.
Energy Technology Data Exchange (ETDEWEB)
Storchi-Bergmann, Thaisa; Riffel, Rogerio; Vale, Tiberio Borges [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil); Riffel, Rogemar A.; Diniz, Marlon R. [Departamento de Fisica, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); McGregor, Peter J., E-mail: thaisa@ufrgs.br [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)
2012-08-20
We report the first two-dimensional mapping of the stellar population and non-stellar continua within the inner 180 pc (radius) of NGC 1068 at a spatial resolution of 8 pc, using integral field spectroscopy in the near-infrared. We have applied the technique of spectral synthesis to data obtained with the instrument NIFS and the adaptive optics module ALTAIR at the Gemini North Telescope. Two episodes of recent star formation are found to dominate the stellar population contribution: the first occurred 300 Myr ago, extending over most of the nuclear region; the second occurred just 30 Myr ago, in a ring-like structure at Almost-Equal-To 100 pc from the nucleus, where it is coincident with an expanding ring of H{sub 2} emission. Inside the ring, where a decrease in the stellar velocity dispersion is observed, the stellar population is dominated by the 300 Myr age component. In the inner 35 pc, the oldest age component (age {>=} 2 Gyr) dominates the mass, while the flux is dominated by blackbody components with temperatures in the range 700 K {<=} T {<=} 800 K which we attribute to the dusty torus. We also find some contribution from blackbody and power-law components beyond the nucleus which we attribute to dust emission and scattered light.
The convolution theorem for two-dimensional continuous wavelet transform
Institute of Scientific and Technical Information of China (English)
ZHANG CHI
2013-01-01
In this paper , application of two -dimensional continuous wavelet transform to image processes is studied. We first show that the convolution and correlation of two continuous wavelets satisfy the required admissibility and regularity conditions ,and then we derive the convolution and correlation theorem for two-dimensional continuous wavelet transform. Finally, we present numerical example showing the usefulness of applying the convolution theorem for two -dimensional continuous wavelet transform to perform image restoration in the presence of additive noise.
Energy Technology Data Exchange (ETDEWEB)
Korkiakoski, A.; Niinimaeki, J.; Karppinen, J.; Korpelainen, R.; Haapea, M.; Natri, A.; Tervonen, O. (Inst. of Clinical Sciences, Dept. of Physical and Rehabilitation Medicine, Univ. of Oulu, Oulu (Finland))
2009-01-15
Background: Recent studies indicate that diminished blood flow may cause low back symptoms and intervertebral disc degeneration. Purpose: To explore the association between lumbar arterial stenosis as detected by two-dimensional time-of-flight magnetic resonance angiography (2D TOF-MRA) and lumbar pain symptoms in an occupational cohort of middle-aged Finnish males. Material and Methods: 228 male subjects aged 36 to 55 years (mean 47 years) were imaged with 2D TOF-MRA. Additionally, 20 randomly selected subjects were scanned with contrast-enhanced MRA (ceMRA). In each subject, the first (L1) to fourth (L4) segmental lumbar arteries were evaluated for lumbar artery stenosis using a dichotomic scale. One subject was excluded because of poor image quality, reducing the study population to 227 subjects. Logistic regression analysis was used to evaluate the association between arterial stenosis in 2D TOF-MRA and low back pain and sciatica symptoms (intensity, duration, frequency). Results: Comparing 2D TOF-MRA and ceMRA images, the kappa value (95% confidence interval) was 0.52 (0.31-0.73). The intraobserver reliability kappa value for 2D TOF-MRA was 0.85 (0.77-0.92), and interobserver kappa was 0.57 (0.49-0.65). The sensitivity of 2D TOF-MRA in detecting stenosis was 0.58, the accuracy 0.89, and the specificity 0.94. In 97 (43%) subjects all arteries were normal, whereas 130 (57%) had at least one stenosed artery. The left L4 artery was most often affected. The degree of arterial stenosis was associated with intensity of low back and sciatic pain, and sciatica pain duration during the past 3 months. Conclusion: 2D TOF-MRA is an acceptable imaging method for arterial stenosis compared to ceMRA. Arterial stenosis was associated with subjective pain symptoms, indicating a role of decreased nutrition in spinal disorders
Zou, Changji; Larisika, Melanie; Nagy, Gabor; Srajer, Johannes; Oostenbrink, Chris; Chen, Xiaodong; Knoll, Wolfgang; Liedberg, Bo; Nowak, Christoph
2013-08-22
The heme protein cytochrome c adsorbed to a two-layer gold surface modified with a self-assembled monolayer of 2-mercaptoethanol was analyzed using a two-dimensional (2D) heterospectral correlation analysis that combined surface-enhanced infrared absorption spectroscopy (SEIRAS) and surface-enhanced Raman spectroscopy (SERS). Stepwise increasing electric potentials were applied to alter the redox state of the protein and to induce conformational changes within the protein backbone. We demonstrate herein that 2D heterospectral correlation analysis is a particularly suitable and useful technique for the study of heme-containing proteins as the two spectroscopies address different portions of the protein. Thus, by correlating SERS and SEIRAS data in a 2D plot, we can obtain a deeper understanding of the conformational changes occurring at the redox center and in the supporting protein backbone during the electron transfer process. The correlation analyses are complemented by molecular dynamics calculations to explore the intramolecular interactions.
Topological aspect of disclinations in two-dimensional crystals
Institute of Scientific and Technical Information of China (English)
Qi Wei-Kai; Zhu Tao; Chen Yong; Ren Ji-Rong
2009-01-01
By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given.
Refined Multifractal Cross-Correlation Analysis
Oświȩcimka, Paweł; Forczek, Marcin; Jadach, Stanisław; Kwapień, Jarosław
2013-01-01
We propose a modified algorithm - Multifractal Cross-Correlation Analysis (MFCCA) - that is able to consistently identify and quantify multifractal cross-correlations between two time series. Our motivation for introducing this algorithm is that the already existing methods like MF-DXA have serious limitations for most of the signals describing complex natural processes. The principal component of the related improvement is proper incorporation of the sign of fluctuations. We present a broad analysis of the model fractal stochastic processes as well as of the real-world signals and show that MFCCA is a robust tool and allows a reliable quantification of the cross-correlative structure of analyzed processes. We, in particular, analyze a relation between the generalized Hurst exponent and the MFCCA parameter $\\lambda_q$. This relation provides information about the character of potential multifractality in cross-correlations of the processes under study and thus enables selective insight into their dynamics. Us...
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...
Precise optical modeling for LED lighting verified by cross correlation in the midfield region.
Sun, Ching-Cherng; Lee, Tsung-Xian; Ma, Shih-Hsin; Lee, Ya-Luan; Huang, Shih-Ming
2006-07-15
A novel LED modeling algorithm for precise three-dimensional light pattern simulation is proposed and demonstrated. We propose to use normalized cross correlation to verify the validity of the simulation in one-dimensional intensity patterns as well as two-dimensional irradiance patterns in various midfield distances and to provide feedback to achieve a successful model. The model is demonstrated to obtain an average of 99% in normalized cross correlation between the simulation light pattern and experimental measurement for a truncated inverse pyramid LED.
Isaaz, K; Cloez, J L; Danchin, N; Marçon, F; Worms, A M; Pernot, C
1985-09-15
Evaluation of the right ventricular (RV) outflow tract in congenital heart disease is extremely important for surgical management. Therefore, the value of 2-dimensional echocardiography (2-D echo) to assess the RV outflow tract was studied using a new approach: the subcostal elongated right oblique view. Twenty normal children and 49 children with congenital heart disease, aged 1 day to 11 years, were studied. Significant pulmonary infundibular obstruction was present in 22 patients with conotruncal malformations. To obtain the subcostal elongated right oblique view from the short-axis view at the aortic valve level, the transducer was slightly rotated clockwise with an anterior angulation of about 30 degrees so that the ascending aorta was seen in its long axis, providing an image similar to that obtained by a right ventriculogram in the elongated right anterior oblique view. The deviation of infundibular septum was appreciated by measurement of the angle alpha, defined by the long axis of the infundibular septum and the plane of aortic cusps. This view could be obtained in 64 patients (92%). In correlation with angiographic or anatomic data, the subcostal elongated right oblique view permitted recognition of several types of RV outflow tract: type I--normally formed RV outflow tract; type II--disorganized RV outflow tract with obstruction (alpha less than 90 degrees); type III and IV--disorganized RV outflow tract with obstruction (alpha greater than 90 degrees). This view could visualize the crista supraventricularis in type I, but also the anatomic components of RV outflow tract that may contribute to obstruction in the other types: infundibular septum, septoparietal trabeculations and trabecula septomarginalis.(ABSTRACT TRUNCATED AT 250 WORDS)
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Juday, Richard D.
1992-01-01
Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.
Institute of Scientific and Technical Information of China (English)
刘蓉; 杨仁杰; 徐可欣
2013-01-01
20 pure milk samples and 20 adulterated milk samples with different mass concentration of melamine(0. 01～3 g/L) were prepared and their near infrared spectra were collected. The two-dimensional correlation spectra were calculated under the perturbation of adulteration concentration. The characteristics of two-dimensional correlation spectra of adulterated milk were studied. Partial least squares discriminate analysis (PLS-DA) was applied to differentiate the pure milk samples and the adulterated milk samples. The classification accuracy was 100%. At the same time, the model for quantitative analysis of melamine concentration in the adulterated milk samples was constructed by partial least square (PLS) combined with two-dimensional near infrared correction spectra. Results showed that the root mean square error of prediction (RMSEP) was 0. 18 g/L. The correlation coefficient between reference values and predicted values was 0. 98. The method does not rely on sample separation, and provides alternative way to detect the adulterant of milk.%配置合格的纯牛奶样本及含有三聚氰胺质量浓度范围为0.01 g/L～3 g/L的掺杂牛奶样本各20个,并采集其近红外光谱.以牛奶中掺杂三聚氰胺浓度为外扰,构建二维相关同步谱,研究其相关谱特性.在此基础上,结合偏最小二乘判别分析法(PLS-DA)建立定性模型,可以实现纯牛奶与掺伪牛奶的定性鉴别,正确识别率达100％.同时,将二维相关近红外同步谱矩阵与偏最小二乘法(PLS)结合起来,建立定量分析牛奶中掺杂三聚氰胺的数学模型.对未知样品的预测相关系数R达到0.98,预测均方根误差(RM-SEP)为0.18 g/L,说明基于同步相关谱矩阵建立定量分析的数学模型是可行的.该方法无需样品处理,成本低,为快速检测掺伪牛奶提供了一种新的途径.
Bhattacharjee, Suraka; Chaudhury, Ranjan
2016-11-01
The generalized spin stiffness constant for a doped quantum antiferromagnet has been investigated both analytically and numerically as a function of doping concentration at zero temperature, based on the strongly correlated t-J model on two-dimensional square lattice. The nature of the theoretical dependence of the stiffness constant on doping shows a striking similarity with that of the effective exchange constant, obtained from the combination of other theoretical and experimental techniques in the low doping region. This correspondence once again establishes that spin stiffness can very well play the role of an effective exchange constant even in the strongly correlated semi-itinerant systems. Our theoretical plot of the stiffness constant against doping concentration in the whole doping region exhibits the various characteristic features like a possible crossover in the higher doping regions and persistence of short range ordering even for very high doping with the complete vanishing of spin stiffness occurring only close to 100% doping. Our results receive very good support from various other theoretical approaches and also brings out a few limitations of some of them. Our detailed analysis highlights the crucial importance of the study of spin stiffness for the proper understanding of magnetic correlations in a semi-itinerant magnetic system described by the strongly correlated t-J model. Moreover, our basic formalism can also be utilized for determination of the effective exchange constant and magnetic correlations for itinerant magnetic systems, in general in a novel way.
Cross correlations of the cosmic infrared background
Zhang, P
2003-01-01
Cosmic infrared background (CIB) is a sensitive measure of the structure formation of the universe, especially the star formation history. But this background is overwhelmed by foregrounds. The cross correlation of CIB with galaxies is able to eliminate such foregrounds, minimize and localize several backgrounds which could bias the study of the star formation history. The cross correlation study of CIB has three advantages. (1) Combining the galaxy photometric redshift information, it directly measures the structure formation history. (2) The sky area used for CIB analysis is no long limited to the relatively clean sky. The utilization of CIB full sky data minimizes the sample variance. (3) The CIB measurement is no longer limited to several narrow frequency windows. This allows the measurement of CIB based on integrated intensity, whose theoretical prediction is based on energy conservation, thus is fairly model independent and robust. The cross correlation can be measured with 10% accuracy (statistical and...
Superfluid phase transition in two-dimensional excitonic systems
Energy Technology Data Exchange (ETDEWEB)
Apinyan, V.; Kopeć, T.K., E-mail: kopec@int.pan.wroc.pl
2014-03-01
We study the superfluid phase transition in the two-dimensional (2D) excitonic system. Employing the extended Falicov–Kimball model (EFKM) and considering the local quantum correlations in the system composed of conduction band electrons and valence band holes we demonstrate the existence of the excitonic insulator (EI) state in the system. We show that at very low temperatures, the particle phase stiffness in the pure-2D excitonic system, governed by the non-local cross correlations, is responsible for the vortex–antivortex binding phase-field state, known as the Berezinskii–Kosterlitz–Thouless (BKT) superfluid state. We demonstrate that the existence of excitonic insulator phase is a necessary prerequisite, leading to quasi-long-range order in the 2D excitonic system.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...
Cross-correlation properties of cyclotomic sequences
Cai, Kai; Zheng, Zhiming
2009-01-01
Sequences with good correlation properties are widely used in engineering applications, especially in the area of communications. Among the known sequences, cyclotomic families have the optimal autocorrelation property. In this paper, we decide the cross-correlation function of the known cyclotomic sequences completely. Moreover, to get our results, the relations between the multiplier group and the decimations of the characteristic sequence are also established for an arbitrary difference set.
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Two-dimensional capillary origami
Brubaker, N. D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
Unger, Miriam; Siesler, Heinz W
2009-12-01
In the present study, the orientation of a poly(3-hydroxybutyrate) (PHB)/poly(epsilon-caprolactone) (PCL) blend was monitored during uniaxial elongation by rheo-optical Fourier transform infrared (FT-IR) spectroscopy and analyzed by generalized two-dimensional correlation spectroscopy (2D-COS). The dichroism of the delta(CH(2)) absorption bands of PHB and PCL was employed to determine the polymer chain orientation in the PHB/PCL blend during the elongation up to 267% strain. From the PHB and PCL specific orientation functions it was derived that the PCL chains orient into the drawing direction while the PHB chains orient predominantly perpendicular to the applied strain. To extract more detailed information about the polymer orientation during uniaxial elongation, 2D-COS analysis was employed for the dichroic difference of the polarization spectra recorded during the drawing process. In the corresponding synchronous and asynchronous 2D correlation plots, absorption bands characteristic of the crystalline and amorphous regions of PHB and PCL were separated. Furthermore, the 2D-COS analysis revealed that during the mechanical treatment the PCL domains orient before the PHB domains.
Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui
2016-12-01
Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.
Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui
2016-08-01
Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.
Classifying Two-dimensional Hyporeductive Triple Algebras
Issa, A Nourou
2010-01-01
Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.
Institute of Scientific and Technical Information of China (English)
杨仁杰; 杨延荣; 董桂梅; 杜艳红; 单慧勇; 张伟玉
2014-01-01
Based on Euclidian distances between synchronous two-dimensional infrared correlation spectra,in terms of the aver-age Euclidian distances between unknown samples and “extreme samples”,and average intra- and inter- Euclidian distances of samples in the calibration set,a new method for the discrimination of adulterated milk was proposed.Sixteen pure milk samples were collected and 16 adulterated milk samples with urea (0. 01~0. 3 g·L-1 ),and 16 adulterated milk samples with melamine (0. 01~0. 3 g·L-1 )samples were prepared,respectively.The IR absorption spectra of all samples were measured at room tem-perature.The synchronous two-dimensional correlation spectra were generated from concentration-dependent spectral variation of adulterant in milk.The Euclidian distances were calculated between synchronous two-dimensional infrared correlation spectra of all samples.Then,the classification models were built respectively for adulterated milk with urea,and adulterated milk with melamine.The “extreme samples”,average intra- and inter- Euclidian distances were determined.Finally,the unknown samples in prediction set were predicted using constructed models in terms of classification rules of adulterated milk.The classification accuracy rates for pure milk and adulterated milk were 100%.The effectiveness of the proposed method was verified.The re-sults obtained in this study revealed that synchronous two-dimensional infrared correlation spectra in combination with Euclidian distance has a feasible potential to discriminate adulterated milk and pure milk.%基于纯牛奶、掺杂牛奶样品间二维红外相关谱欧氏距离，依据未知样品与校正集中“极值样品”欧氏距离平均值、组内、组间样品欧氏距离平均值，提出了一种掺杂牛奶判别的新方法。分别配置掺杂尿素牛奶（0．01～0．3 g·L-1）和掺杂三聚氰胺牛奶（0．01～0．3 g·L-1）样品各16个，采集纯牛奶及掺杂牛奶样品的红外
Two-dimensional function photonic crystals
Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu
2016-01-01
In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.
Modeling CMB lensing cross correlations with CLEFT
Modi, Chirag; White, Martin; Vlah, Zvonimir
2017-08-01
A new generation of surveys will soon map large fractions of sky to ever greater depths and their science goals can be enhanced by exploiting cross correlations between them. In this paper we study cross correlations between the lensing of the CMB and biased tracers of large-scale structure at high z. We motivate the need for more sophisticated bias models for modeling increasingly biased tracers at these redshifts and propose the use of perturbation theories, specifically Convolution Lagrangian Effective Field Theory (CLEFT). Since such signals reside at large scales and redshifts, they can be well described by perturbative approaches. We compare our model with the current approach of using scale independent bias coupled with fitting functions for non-linear matter power spectra, showing that the latter will not be sufficient for upcoming surveys. We illustrate our ideas by estimating σ8 from the auto- and cross-spectra of mock surveys, finding that CLEFT returns accurate and unbiased results at high z. We discuss uncertainties due to the redshift distribution of the tracers, and several avenues for future development.
A New Methodology of Spatial Cross-Correlation Analysis
Chen, Yanguang
2015-01-01
Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran’s index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson’s correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China’s urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes. PMID:25993120
Temporal and Cross Correlations in Business News
Mizuno, T.; Takei, K.; Ohnishi, T.; Watanabe, T.
We empirically investigate temporal and cross correlations inthe frequency of news reports on companies, using a dataset of more than 100 million news articles reported in English by around 500 press agencies worldwide for the period 2003--2009. Our first finding is that the frequency of news reports on a company does not follow a Poisson process, but instead exhibits long memory with a positive autocorrelation for longer than one year. The second finding is that there exist significant correlations in the frequency of news across companies. Specifically, on a daily time scale or longer the frequency of news is governed by external dynamics, while on a time scale of minutes it is governed by internal dynamics. These two findings indicate that the frequency of news reports on companies has statistical properties similar to trading volume or price volatility in stock markets, suggesting that the flow of information through company news plays an important role in price dynamics in stock markets.
Institute of Scientific and Technical Information of China (English)
卢明倩; 黄桂媛; 王巧贞; 许超; 黄庶识
2016-01-01
Abtract:[Objective]The aim of this study is to analyze the interaction between the different groups ofβ-carotene in the heating process.[Methods]Two-dimensional correlation spectrosco-py was applied to study the dynamic spectral changes ofβ-carotene from 30℃ to 100℃.[Re-sults]The changes of absorption characteristic peaks ofβ-carotene were inconspicuous in the conventional FTIR spectra and second derivative FTIR spectra during 30℃ to 100℃,which in-dicated that they had no oxidation reation.Two-dimensional correlation analysis showed that the changes of absorption peaks at 968 cm-1 ,1 442 cm-1 ,2 9 6 6 cm-1 and 3 0 1 2 cm-1 were more sen-sitive to temperature.Meanwhile,the order of different groups changes induced by temperature were as follows:the spectral changes of methyl-ene were faster than methyl,the spectral changes of methyl C-H symmetric stretching vibration in low wavenumber were faster than methyl anti-symmetric stretching vibration in high wavenumber,and olefin hydrocarbon symmetric stretching vibration were prior to olefin hydrocarbon anti-symmetric stretching vibration.[Con-clusion]This provides experimental basis for the mechanism of the conformational change ofβ-carotene in heating process.%【目的】了解在升温过程中β-胡萝卜素分子内不同基团之间的相互影响。【方法】采用二维相关红外光谱分析技术,研究β-胡萝卜素在30~100℃变温微扰过程中的动态光谱变化。【结果】β-胡萝卜素分子的吸收特征峰在一维红外光谱和二阶导数谱上变化不明显,表明其没有发生氧化反应。二维相关分析表明,反式共轭烯烃C—H 面外弯曲振动的968 cm-1,烯烃C—H 基团反对称弯曲振动的1442cm-1,甲基C—H 反对称伸缩振动的2966 cm-1和烯烃C—H 的对称伸缩振动的3012 cm-1,这些吸收峰的光谱变化对温度比较敏感。同时在微扰过程中,不同基团变化的先后顺序：亚甲基热运动引起的光谱变化快于
Exploiting Cross Correlations and Joint Analyses
Energy Technology Data Exchange (ETDEWEB)
Rhodes, J. [Caltech; Allen, S. [SLAC; Benson, B. A. [Chicago U., Astron. Astrophys. Ctr.; Chang, T. [Taipei, Inst. Astron. Astrophys.; de Putter, R. [Caltech; Dodelson, S. [Chicago U., Astron. Astrophys. Ctr.; Doré, O. [Caltech; Honscheid, K. [Ohio State U., CCAPP; Linder, E. [UC, Berkeley; Ménard, B. [Tokyo U., IPMU; Newman, J. [Pittsburgh U.; Nord, B. [Fermilab; Rozo, E. [SLAC; Rykoff, E. [SLAC; Vallinotto, A. [LBL, Berkeley; Weinberg, D. [Ohio State U., CCAPP
2014-02-28
In this report, we present a wide variety of ways in which information from multiple probes of dark energy may be combined to obtain additional information not accessible when they are considered separately. Fundamentally, because all major probes are affected by the underlying distribution of matter in the regions studied, there exist covariances between them that can provide information on cosmology. Combining multiple probes allows for more accurate (less contaminated by systematics) and more precise (since there is cosmological information encoded in cross-correlation statistics) measurements of dark energy. The potential of cross-correlation methods is only beginning to be realized. By bringing in information from other wavelengths, the capabilities of the existing probes of dark energy can be enhanced and systematic effects can be mitigated further. We present a mixture of work in progress and suggestions for future scientific efforts. Given the scope of future dark energy experiments, the greatest gains may only be realized with more coordination and cooperation between multiple project teams; we recommend that this interchange should begin sooner, rather than later, to maximize scientific gains.
Energy Technology Data Exchange (ETDEWEB)
Kehimkar, Benjamin; Hoggard, Jamin C.; Marney, Luke C.; Billingsley, Matthew; Fraga, Carlos G.; Bruno, Thomas J.; Synovec, Robert E.
2014-01-31
There is an increased need to more fully assess and control the composition of kerosene based rocket propulsion fuels, namely RP-1 and RP-2. In particular, it is crucial to be able to make better quantitative connections between the following three attributes: (a) fuel performance, (b) fuel properties (flash point, density, kinematic viscosity, net heat of combustion, hydrogen content, etc) and (c) the chemical composition of a given fuel (i.e., specific chemical compounds and compound classes present as a result of feedstock blending and processing). Indeed, recent efforts in predicting fuel performance through modeling put greater emphasis on detailed and accurate fuel properties and fuel compositional information. In this regard, advanced distillation curve (ADC) metrology provides improved data relative to classical boiling point and volatility curve techniques. Using ADC metrology, data obtained from RP-1 and RP-2 fuels provides compositional variation information that is directly relevant to predictive modeling of fuel performance. Often, in such studies, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is typically employed to provide chemical composition information. Building on approaches using GC-MS, but to glean substantially more chemical composition information from these complex fuels, we have recently studied the use of comprehensive two dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC - TOFMS) to provide chemical composition data that is significantly richer than that provided by GC-MS methods. In this report, by applying multivariate data analysis techniques, referred to as chemometrics, we are able to readily model (correlate) the chemical compositional information from RP-1 and RP-2 fuels provided using GC × GC - TOFMS, to the fuel property information such as that provided by the ADC method and other specification properties. We anticipate that this new chemical analysis
Kehimkar, Benjamin; Hoggard, Jamin C; Marney, Luke C; Billingsley, Matthew C; Fraga, Carlos G; Bruno, Thomas J; Synovec, Robert E
2014-01-31
There is an increased need to more fully assess and control the composition of kerosene-based rocket propulsion fuels such as RP-1. In particular, it is critical to make better quantitative connections among the following three attributes: fuel performance (thermal stability, sooting propensity, engine specific impulse, etc.), fuel properties (such as flash point, density, kinematic viscosity, net heat of combustion, and hydrogen content), and the chemical composition of a given fuel, i.e., amounts of specific chemical compounds and compound classes present in a fuel as a result of feedstock blending and/or processing. Recent efforts in predicting fuel chemical and physical behavior through modeling put greater emphasis on attaining detailed and accurate fuel properties and fuel composition information. Often, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is employed to provide chemical composition information. Building on approaches that used GC-MS, but to glean substantially more chemical information from these complex fuels, we recently studied the use of comprehensive two dimensional (2D) gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOFMS) using a "reversed column" format: RTX-wax column for the first dimension, and a RTX-1 column for the second dimension. In this report, by applying chemometric data analysis, specifically partial least-squares (PLS) regression analysis, we are able to readily model (and correlate) the chemical compositional information provided by use of GC×GC-TOFMS to RP-1 fuel property information such as density, kinematic viscosity, net heat of combustion, and so on. Furthermore, we readily identified compounds that contribute significantly to measured differences in fuel properties based on results from the PLS models. We anticipate this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an
Wen, Yongli; Li, Huan; Xiao, Jian; Wang, Chang; Shen, Qirong; Ran, Wei; He, Xinhua; Zhou, Quansuo; Yu, Guanghui
2014-09-01
Understanding the organomineral associations in soils is of great importance. Using two-dimensional correlation spectroscopy (2DCOS) and high resolution-transmission electron microscopy (HRTEM) techniques, this study compared the binding characteristics of organic ligands to Al(III) in dissolved organic matter (DOM) from soils under short-term (3-years) and long-term (22-years) fertilizations. Three fertilization treatments were examined: (i) no fertilization (Control), (ii) chemical nitrogen, phosphorus and potassium (NPK), and (iii) NPK plus swine manure (NPKM). Soil spectra detected by the 2DCOS Fourier transform infrared (FTIR) spectroscopy showed that fertilization modified the binding characteristics of organic ligands to Al(III) in soil DOM at both short- and long- term location sites. The CH deformations in aliphatic groups played an important role in binding to Al(III) but with minor differences among the Control, NPK and NPKM at the short-term site. While at the long-term site both C-O stretching of polysaccharides or polysaccharide-like substances and aliphatic O-H were bound to Al(III) under the Control, whereas only aliphatic O-H, and only polysaccharides and silicates, were bound to Al(III) under NPK and NPKM, respectively. Images from HRTEM demonstrated that crystalline nanominerals, composed of Fe and O, were predominant in soil DOM under NPK, while amorphous nanominerals, predominant in Al, Si, and O, were dominant in soil DOM under Control and NPKM. In conclusion, fertilization strategies, especially under long-term, could affect the binding of organic ligands to Al(III) in soil DOM, which resulted in alterations in the turnover, reactivity, and bioavailability of soil organic matter. Our results demonstrated that the FTIR-2DCOS combined with HRTEM techniques could enhance our understanding in the binding characteristics of DOM to Al(III) and the resulted nanominerals in soils.
Institute of Scientific and Technical Information of China (English)
周志琴; 陈斌; 颜辉
2011-01-01
Various fatty acids of edible vegetable oil are basically the same or similar, but their concentration distributions are different. The absorption peaks, absorption figures and absorption intensity of one - dimensional near infrared spectra of edible vegetable oils were similar to each other. Several kinds of edible vegetable oils, peanut oil, bean oil, rapeseed oil, sesame oil, oil - tea camellia seed oil and olive oil, were analyzed by two-dimensional correlation near - infrared spectroscopy (2D - NIR). The NIR spectra were measured over a temperature range of 50 ~ 160 ℃, with the rise of temperature, the difference was evident in the map of 2D near - infrared correlation spectroscopy in region 5 500 ~ 6 000 cm-1 . Thus, different kinds of edible vegetable oils could be distinguished directly by autopeaks and crosspeaks. The results proved that the combination of 2D correlation analysis and near - infrared spectroscopy allowed a fast and accurate approach for distinguishing edible vegetable oils.%由于食用植物油中各种脂肪酸的组成基本相同或相近,仅存在含量分布的差异,因此食用植物油的一维近红外光谱图的峰位、峰形、峰强没有明显区别.利用傅里叶变换近红外光谱( FT - NIR)结合二维相关分析技术,分析鉴别了几种不同种类的食用植物油.对花生油、大豆油、菜籽油、芝麻油、油茶籽油和橄榄油,在温度挠动(50～160℃)状态下的动态光谱进行二维相关分析,试验证明6种食用植物油随着温度升高,在5 500 ～6 000 cm-1波段范围内建立的二维相关近红外谱图差异比较明显,凭借二维相关谱图上的自动峰和交叉峰可直观地鉴别不同种类的食用植物油,从而证明了利用二维相关近红外光谱分析技术可快速准确鉴别食用植物油的种类.
Hadamard States and Two-dimensional Gravity
Salehi, H
2001-01-01
We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.
Topological defects in two-dimensional crystals
Chen, Yong; Qi, Wei-Kai
2008-01-01
By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.
World currency exchange rate cross-correlations
Droå¼dÅ¼, S.; Górski, A. Z.; Kwapień, J.
2007-08-01
World currency network constitutes one of the most complex structures that is associated with the contemporary civilization. On a way towards quantifying its characteristics we study the cross correlations in changes of the daily foreign exchange rates within the basket of 60 currencies in the period December 1998 May 2005. Such a dynamics turns out to predominantly involve one outstanding eigenvalue of the correlation matrix. The magnitude of this eigenvalue depends however crucially on which currency is used as a base currency for the remaining ones. Most prominent it looks from the perspective of a peripheral currency. This largest eigenvalue is seen to systematically decrease and thus the structure of correlations becomes more heterogeneous, when more significant currencies are used as reference. An extreme case in this later respect is the USD in the period considered. Besides providing further insight into subtle nature of complexity, these observations point to a formal procedure that in general can be used for practical purposes of measuring the relative currencies significance on various time horizons.
Institute of Scientific and Technical Information of China (English)
杨仁杰; 杨延荣; 杜艳红; 常若葵; 张志勇
2011-01-01
将红外光谱与二维相关谱技术结合起来对牛奶中掺杂的目标物三聚氰胺进行了检测。配置浓度为3g/L三聚氰胺牛奶溶液，并采集样品在不同温度下的红外光谱图。以温度为外扰，分别构建纯牛奶与掺杂三聚氰胺牛奶的二维相关谱，研究了各自的二维相关特性，并进行对比、分析。结果表明：在14001800cm-1区间内，掺杂三聚氰胺牛奶在同步图上出现3个自相关峰，分别在1448cm-1，1552cm-1和1640cm-1，这三个峰是牛奶中掺杂三聚氰胺的特征吸收。该方法可实现对纯牛奶与掺杂牛奶的正确识别，对提高乳制品的质量和保护消费者的利益具有重要的意义。%In this paper, Fourier transform infrared spectroscopy combined with two-dimensional （2D） correlation spectroscopy was used to investigate the melamine of milk. The sample adulterated with concentration of melamine （3 g/L ） was prepared and the infrared spectra were measured at different temperature. Then the 2D correlation spectroscopy was calculated under the perturbation of temperature. In the range between 1 400 and 1 800 cm-1, three autopeaks were aroused at 1 448 cm-1, 1 552 cm-2 and 1 640 cm-2 in synchronous spectrum, which are the absorbance features of melamine in milk. The method can be used for a correct discrimination on whether the milk is adulterated. The study is important to improve the quality of dairy products and to protect the benefits of consumers.
Low-frequency scattering from two-dimensional perfect conductors
DEFF Research Database (Denmark)
Hansen, Thorkild; Yaghjian, A.D
1991-01-01
Exact expressions have been obtained for the leading terms in the low-frequency expansions of the far fields scattered from three different types of two-dimensional perfect conductors: a cylinder with finite cross section, a cylindrical bump on an infinite ground plane, and a cylindrical dent...
Sidescan Sonar Image Matching Using Cross Correlation
DEFF Research Database (Denmark)
Thisen, Erik; Sørensen, Helge Bjarup Dissing; Stage, Bjarne
2003-01-01
When surveying an area for sea mines with a sidescan sonar, the ability to find the same object in two different sonar images is helpful to determine the nature of the object. The main problem with matching two sidescan sonar images is that a scene changes appearance when viewed from different...... viewpoints. This paper presents a novel approach for matching two sidescan sonar images. The method first registers the two images to ground, then uses the cross correlation of the object positions on the seabed to find the correct displacement between the two images. In order to correct any minor...... displacements of the relative objects position as a result of the ground registration, the object position is given an area of influence. The method is compared to an existing method for matching sidescan sonar images based on hypothetical reasoning. The two methods are compared on a number of real sidescan...
Institute of Scientific and Technical Information of China (English)
崔彩路; 杨仁杰; 朱文碧; 杨延荣; 董桂梅; 张伟玉
2015-01-01
The discriminant models of adulterated milk and pure milk were constructed using two-dimensional (2D) infrared correlation spectroscopy by PARAFAC and multivariable linear regression (MLR). First, a total of 96 samples including 48 pure milk samples and three types of adulterated milk (16 melamine-tainted milk, 16 urea-tainted milk, and 16 tetracycline-tainted milk) were prepared. The concentration ranges of all adulterants were 0.01~0.30 g⋅L-1. The mid-infrared spectra of all samples were measured in the regions of 900~1 700 cm-1. Then, the synchronous 2D correlation spectra of all samples were calculated in the region between 900~1 200 cm-1 and 1 200~1 700 cm-1. The 2D correlation spectra of all samples were analyzed based on trilinear decomposition using PARAFAC. Finally, the discriminant models for melamine-tainted milk, urea-tainted milk and tetracycline-tainted milk were constructed combined score matrix extracted from 2D correlation spectra using PARAFAC with MLR. The unknown samples were predicted using the constructed models in prediction set. The results show that using a combination of 2D IR correlation spectra and PARAFAC-MLR is an effective analytical method for the classification of adulterated milk and pure milk.%将二维相关红外谱与平行因子、多元线性回归方法相结合，建立了掺杂牛奶与纯牛奶的判别模型。采集48个合格牛奶样品，配置浓度范围均为0.01～0.30 g/L的掺杂三聚氰胺牛奶、掺杂尿素牛奶和掺杂四环素牛奶各16个，并在900～1700 cm-1采集各样品的常规一维谱。对各样品在900～1200 cm-1与1200～1700 cm-1进行同步二维相关计算，构建了纯牛奶与掺杂牛奶的二维红外相关谱。采用平行因子算法对所有样品二维相关谱构成的三维矩阵进行三线性分解，得到其得分矩阵。在此基础上，将其得分矩阵与多元线性回归方法相结合，分别建立了掺杂三聚氰胺牛奶、掺杂尿素牛奶、掺
Strongly interacting two-dimensional Dirac fermions
Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.
2009-01-01
We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Perspective: Two-dimensional resonance Raman spectroscopy
Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.
2016-11-01
Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.
Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis
Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J
2012-01-01
Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...
Two dimensional electron spin resonance: Structure and dynamics of biomolecules
Saxena, Sunil; Freed, Jack H.
1998-03-01
The potential of two dimensional (2D) electron spin resonance (ESR) for measuring the structural properties and slow dynamics of labeled biomolecules will be presented. Specifically, it will be shown how the recently developed method of double quantum (DQ) 2D ESR (S. Saxena and J. H. Freed, J. Chem. Phys. 107), 1317, (1997) can be used to measure large interelectron distances in bilabeled peptides. The need for DQ ESR spectroscopy, as well as the challenges and advantages of this method will be discussed. The elucidation of the slow reorientational dynamics of this peptide (S. Saxena and J. H. Freed, J. Phys. Chem. A, 101) 7998 (1997) in a glassy medium using COSY and 2D ELDOR ESR spectroscopy will be demonstrated. The contributions to the homogeneous relaxation time, T_2, from the overall and/or internal rotations of the nitroxide can be distinguished from the COSY spectrum. The growth of spectral diffusion cross-peaks^2 with mixing time in the 2D ELDOR spectra can be used to directly determine a correlation time from the experiment which can be related to the rotational correlation time.
Multifractal Detrended Cross-Correlation Analysis of agricultural futures markets
Energy Technology Data Exchange (ETDEWEB)
He Lingyun, E-mail: lyhe@amss.ac.cn [Center for Futures and Financial Derivatives, College of Economics and Management, China Agricultural University, Beijing 100083 (China); Chen Shupeng [Center for Futures and Financial Derivatives, College of Economics and Management, China Agricultural University, Beijing 100083 (China)
2011-06-15
Highlights: > We investigated cross-correlations between China's and US agricultural futures markets. > Power-law cross-correlations are found between the geographically far but correlated markets. > Multifractal features are significant in all the markets. > Cross-correlation exponent is less than averaged GHE when q < 0 and greater than the latter when q > 0. - Abstract: We investigated geographically far but temporally correlated China's and US agricultural futures markets. We found that there exists a power-law cross-correlation between them, and that multifractal features are significant in all the markets. It is very interesting that the geographically far markets show strong cross-correlations and share much of their multifractal structure. Furthermore, we found that for all the agricultural futures markets in our studies, the cross-correlation exponent is less than the averaged generalized Hurst exponents (GHE) when q < 0 and greater than the averaged GHE when q > 0.
Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting
Chen, Leiming; Lee, Chiu Fan; Toner, John
2016-07-01
Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.
The partition function of two-dimensional string theory
Dijkgraaf, Robbert; Moore, Gregory; Plesser, Ronen
1993-04-01
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c = 1 system to KP flow nd W 1 + ∞ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.
The partition function of two-dimensional string theory
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, R. (School of Natural Sciences, Inst. for Advanced Study, Princeton, NJ (United States) Dept. of Mathematics, Univ. Amsterdam (Netherlands)); Moore, G.; Plesser, R. (Dept. of Physics, Yale Univ., New Haven, CT (United States))
1993-04-12
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c=1 system to KP flow and W[sub 1+[infinity
Two-Dimensional Electronic Spectroscopy of a Model Dimer System
Directory of Open Access Journals (Sweden)
Prokhorenko V.I.
2013-03-01
Full Text Available Two-dimensional spectra of a dimer were measured to determine the timescale for electronic decoherence at room temperature. Anti-correlated beats in the crosspeaks were observed only during the period corresponding to the measured homogeneous lifetime.
Critical Behaviour of a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.
1976-01-01
A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....
Multifractal cross-correlation analysis in electricity spot market
Fan, Qingju; Li, Dan
2015-07-01
In this paper, we investigate the multiscale cross-correlations between electricity price and trading volume in Czech market based on a newly developed algorithm, called Multifractal Cross-Correlation Analysis (MFCCA). The new algorithm is a natural multifractal generalization of the Detrended Cross-Correlation Analysis (DCCA), and is sensitive to cross-correlation structure and free from limitations of other algorithms. By considering the original sign of the cross-covariance, it allows us to properly quantify and detect the subtle characteristics of two simultaneous recorded time series. First, the multifractality and the long range anti-persistent auto-correlations of price return and trading volume variation are confirmed using Multifractal Detrended Fluctuation Analysis (MF-DFA). Furthermore, we show that there exist long-range anti-persistent cross-correlations between price return and trading volume variation by MFCCA. And we also identify that the cross-correlations disappear on the level of relative small fluctuations. In order to obtain deeper insight into the dynamics of the electricity market, we analyze the relation between generalized Hurst exponent and the multifractal cross-correlation scaling exponent λq. We find that the difference between the generalized Hurst exponent and the multifractal cross-correlation scaling exponent is significantly different for smaller fluctuation, which indicates that the multifractal character of cross-correlations resembles more each other for electricity price and trading volume on the level of large fluctuations and weakens for the smaller ones.
Multiscale Detrended Cross-Correlation Analysis of STOCK Markets
Yin, Yi; Shang, Pengjian
2014-06-01
In this paper, we employ the detrended cross-correlation analysis (DCCA) to investigate the cross-correlations between different stock markets. We report the results of cross-correlated behaviors in US, Chinese and European stock markets in period 1997-2012 by using DCCA method. The DCCA shows the cross-correlated behaviors of intra-regional and inter-regional stock markets in the short and long term which display the similarities and differences of cross-correlated behaviors simply and roughly and the persistence of cross-correlated behaviors of fluctuations. Then, because of the limitation and inapplicability of DCCA method, we propose multiscale detrended cross-correlation analysis (MSDCCA) method to avoid "a priori" selecting the ranges of scales over which two coefficients of the classical DCCA method are identified, and employ MSDCCA to reanalyze these cross-correlations to exhibit some important details such as the existence and position of minimum, maximum and bimodal distribution which are lost if the scale structure is described by two coefficients only and essential differences and similarities in the scale structures of cross-correlation of intra-regional and inter-regional markets. More statistical characteristics of cross-correlation obtained by MSDCCA method help us to understand how two different stock markets influence each other and to analyze the influence from thus two inter-regional markets on the cross-correlation in detail, thus we get a richer and more detailed knowledge of the complex evolutions of dynamics of the cross-correlations between stock markets. The application of MSDCCA is important to promote our understanding of the internal mechanisms and structures of financial markets and helps to forecast the stock indices based on our current results demonstrated the cross-correlations between stock indices. We also discuss the MSDCCA methods of secant rolling window with different sizes and, lastly, provide some relevant implications and
Spectral Radiative Properties of Two-Dimensional Rough Surfaces
Xuan, Yimin; Han, Yuge; Zhou, Yue
2012-12-01
Spectral radiative properties of two-dimensional rough surfaces are important for both academic research and practical applications. Besides material properties, surface structures have impact on the spectral radiative properties of rough surfaces. Based on the finite difference time domain algorithm, this paper studies the spectral energy propagation process on a two-dimensional rough surface and analyzes the effect of different factors such as the surface structure, angle, and polarization state of the incident wave on the spectral radiative properties of the two-dimensional rough surface. To quantitatively investigate the spatial distribution of energy reflected from the rough surface, the concept of the bidirectional reflectance distribution function is introduced. Correlation analysis between the reflectance and different impact factors is conducted to evaluate the influence degree. Comparison between the theoretical and experimental data is given to elucidate the accuracy of the computational code. This study is beneficial to optimizing the surface structures of optoelectronic devices such as solar cells.
Two Dimensional Plasmonic Cavities on Moire Surfaces
Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla
2010-03-01
We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.
Two-dimensional function photonic crystals
Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng
2017-01-01
In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.
Two-Dimensional Planetary Surface Lander
Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.
2014-06-01
A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.
Institute of Scientific and Technical Information of China (English)
潘兵; 俞立平; 吴大方
2013-01-01
By comparing the two images recorded in different configurations on the same object surface, two-dimensional digital image correlation (2D-DIC) method produces full-field displacement with sub-pixel accuracy and full-field strains in the recorded images. In a practical measurement, however, various deteriorative factors, such as small out-of-plane motion of the test object surface, small out-of-plane motion of the sensor target and geometric distortion of the imaging lens may seriously impair the originally assumed linear correspondence between images displacement and object motions. In certain cases, these disadvantages may lead to significant errors in measuring displacements and strains. The measurement errors of 2D-DIC due to the above three unavoidable deteriorative factors are first described briefly. Then, the performances of three typical imaging lenses, including a standard lens, an object-side telecentric lens and a bilateral telecentric lens, against these three deteriorative factors are investigated experimentally using easy-to-implement static, out-of-plane and in-plane rigid body translation tests. A detailed examination reveals that a high-quality bilateral telecentric lens is not only insensitive to out-of-plane motions of the test object and the self-heating of a camera being used, but also demonstrates negligible lens distortion. So the bilateral lens is highly recommended for high accuracy 2D-DIC measurement.%通过比较变形前后同一平面物体表面的两幅数字图像,二维数字图像相关方法可获得亚像素精度的像面位移(以像素为单位)和应变.但在实际测量中,变形物体表面的离面位移、相机传感器平面位置的微小改变以及镜头的成像畸变,都会使原先假设的物、像面位移间的线性对应关系不再严格成立,在某些情况下会引起不能忽略的测量误差.详细分析了被测物体的离面位移、相机自热和镜头畸变对二维数字图像相关方法位
Robust Statistical Detection of Power-Law Cross-Correlation
Blythe, Duncan A. J.; Nikulin, Vadim V.; Müller, Klaus-Robert
2016-06-01
We show that widely used approaches in statistical physics incorrectly indicate the existence of power-law cross-correlations between financial stock market fluctuations measured over several years and the neuronal activity of the human brain lasting for only a few minutes. While such cross-correlations are nonsensical, no current methodology allows them to be reliably discarded, leaving researchers at greater risk when the spurious nature of cross-correlations is not clear from the unrelated origin of the time series and rather requires careful statistical estimation. Here we propose a theory and method (PLCC-test) which allows us to rigorously and robustly test for power-law cross-correlations, correctly detecting genuine and discarding spurious cross-correlations, thus establishing meaningful relationships between processes in complex physical systems. Our method reveals for the first time the presence of power-law cross-correlations between amplitudes of the alpha and beta frequency ranges of the human electroencephalogram.
Average cross-responses in correlated financial markets
Wang, Shanshan; Schäfer, Rudi; Guhr, Thomas
2016-09-01
There are non-vanishing price responses across different stocks in correlated financial markets, reflecting non-Markovian features. We further study this issue by performing different averages, which identify active and passive cross-responses. The two average cross-responses show different characteristic dependences on the time lag. The passive cross-response exhibits a shorter response period with sizeable volatilities, while the corresponding period for the active cross-response is longer. The average cross-responses for a given stock are evaluated either with respect to the whole market or to different sectors. Using the response strength, the influences of individual stocks are identified and discussed. Moreover, the various cross-responses as well as the average cross-responses are compared with the self-responses. In contrast to the short-memory trade sign cross-correlations for each pair of stocks, the sign cross-correlations averaged over different pairs of stocks show long memory.
Cross-correlations and joint gaussianity in multivariate level crossing models.
Di Bernardino, Elena; León, José; Tchumatchenko, Tatjana
2014-04-17
A variety of phenomena in physical and biological sciences can be mathematically understood by considering the statistical properties of level crossings of random Gaussian processes. Notably, a growing number of these phenomena demand a consideration of correlated level crossings emerging from multiple correlated processes. While many theoretical results have been obtained in the last decades for individual Gaussian level-crossing processes, few results are available for multivariate, jointly correlated threshold crossings. Here, we address bivariate upward crossing processes and derive the corresponding bivariate Central Limit Theorem as well as provide closed-form expressions for their joint level-crossing correlations.
Aerodynamics of two-dimensional flapping wings in tandem configuration
Lua, K. B.; Lu, H.; Zhang, X. H.; Lim, T. T.; Yeo, K. S.
2016-12-01
This paper reports a fundamental investigation on the aerodynamics of two-dimensional flapping wings in tandem configuration in forward flight. Of particular interest are the effects of phase angle (φ) and center-to-center distance (L) between the front wing and the rear wing on the aerodynamic force generation at a Reynolds number of 5000. Both experimental and numerical methods were employed. A force sensor was used to measure the time-history aerodynamic forces experienced by the two wings and digital particle image velocimetry was utilized to obtain the corresponding flow structures. Both the front wing and the rear wing executed the same simple harmonic motions with φ ranging from -180° to 180° and four values of L, i.e., 1.5c, 2c, 3c, and 4c (c is the wing chord length). Results show that at fixed L = 2c, tandem wings perform better than the sum of two single wings that flap independently in terms of thrust for phase angle approximately from -90° to 90°. The maximum thrust on the rear wing occurs during in-phase flapping (φ = 0°). Correlation of transient thrust and flow structure indicates that there are generally two types of wing-wake interactions, depending on whether the rear wing crosses the shear layer shed from the front wing. Finally, increasing wing spacing has similar effect as reducing the phase angle, and an approximate mathematical model is derived to describe the relationship between these two parameters.
Signal Digitizer and Cross-Correlation Application Specific Integrated Circuit
Baranauskas, Dalius (Inventor); Baranauskas, Gytis (Inventor); Zelenin, Denis (Inventor); Kangaslahti, Pekka (Inventor); Tanner, Alan B. (Inventor); Lim, Boon H. (Inventor)
2017-01-01
According to one embodiment, a cross-correlator comprises a plurality of analog front ends (AFEs), a cross-correlation circuit and a data serializer. Each of the AFEs comprises a variable gain amplifier (VGA) and a corresponding analog-to-digital converter (ADC) in which the VGA receives and modifies a unique analog signal associates with a measured analog radio frequency (RF) signal and the ADC produces digital data associated with the modified analog signal. Communicatively coupled to the AFEs, the cross-correlation circuit performs a cross-correlation operation on the digital data produced from different measured analog RF signals. The data serializer is communicatively coupled to the summing and cross-correlating matrix and continuously outputs a prescribed amount of the correlated digital data.
Interpolation by two-dimensional cubic convolution
Shi, Jiazheng; Reichenbach, Stephen E.
2003-08-01
This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.
TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION
Energy Technology Data Exchange (ETDEWEB)
Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)
2015-11-20
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.
Two dimensional topology of cosmological reionization
Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan
2015-01-01
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.
The influence of noise sources on cross-correlation amplitudes
Hanasoge, Shravan M
2012-01-01
We use analytical examples and asymptotic forms to examine the mathematical structure and physical meaning of the seismic cross correlation measurement. We show that in general, cross correlations are not Green's functions of medium, and may be very different depending on the source distribution. The modeling of noise sources using spatial distributions as opposed to discrete collections of sources is emphasized. When stations are illuminated by spatially complex source distributions, cross correlations show arrivals at a variety of time lags, from zero to the maximum surface-wave arrival time. Here, we demonstrate the possibility of inverting for the source distribution using the energy of the full cross-correlation waveform. The interplay between the source distribution and wave attenuation in determining the functional dependence of cross correlation energies on station-pair distance is quantified. Without question, energies contain information about wave attenuation. However, the accurate interpretation o...
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong
2016-12-01
The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.
Towards two-dimensional search engines
Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...
Cross-correlations in Warsaw Stock Exchange
Rak, R; Drozdz, S; Oswiecimka, P
2008-01-01
We study the inter-stock correlations for the largest companies listed on Warsaw Stock Exchange and included in the WIG20 index. Our results from the correlation matrix analysis indicate that the Polish stock market can be well described by a one factor model. We also show that the stock-stock correlations tend to increase with the time scale of returns and they approach a saturation level for the time scales of at least 200 min, i.e. an order of magnitude longer than in the case of some developed markets. We also show that the strength of correlations among the stocks crucially depends on their capitalization. These results combined with our earlier findings together suggest that now the Polish stock market situates itself somewhere between an emerging market phase and a mature market phase.
Thermodynamics of two-dimensional Yukawa systems across coupling regimes
Kryuchkov, Nikita P.; Khrapak, Sergey A.; Yurchenko, Stanislav O.
2017-04-01
Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crystalline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained and accurate physically motivated fits are proposed. This allows us to put forward simple practical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation method is applied to describe pair correlations and hence thermodynamic properties. It is shown that the finite-temperature effects can be accounted for by using simple correction of peaks in the pair correlation function. The corresponding correction coefficients are evaluated using MD simulation. The relevance of the obtained results in the context of colloidal systems, complex (dusty) plasmas, and ions absorbed to interfaces in electrolytes is pointed out.
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Kronecker Product of Two-dimensional Arrays
Institute of Scientific and Technical Information of China (English)
Lei Hu
2006-01-01
Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.
Two-Dimensional Toda-Heisenberg Lattice
Directory of Open Access Journals (Sweden)
Vadim E. Vekslerchik
2013-06-01
Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Two-dimensional magma-repository interactions
Bokhove, O.
2001-01-01
Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of
Two-dimensional subwavelength plasmonic lattice solitons
Ye, F; Hu, B; Panoiu, N C
2010-01-01
We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai
A two-dimensional Dirac fermion microscope
DEFF Research Database (Denmark)
Bøggild, Peter; Caridad, Jose; Stampfer, Christoph
2017-01-01
in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...
Two-dimensional capillary electrophoresis using tangentially connected capillaries.
Sahlin, Eskil
2007-06-22
A novel type of fused silica capillary system is described where channels with circular cross-sections are tangentially in contact with each other and connected through a small opening at the contact area. Since the channels are not crossing each other in the same plane, the capillaries can easily be filled with different solutions, i.e. different solutions will be in contact with each other at the contact point. The system has been used to perform different types of two-dimensional separations and the complete system is fully automated where a high voltage switch is used to control the location of the high voltage in the system. Using two model compounds it is demonstrated that a type of two-dimensional separation can be performed using capillary zone electrophoresis at two different pH values. It is also shown that a compound with acid/base properties can be concentrated using a dynamic pH junction mechanism when transferred from the first separation to the second separation. In addition, the system has been used to perform a comprehensive two-dimensional capillary electrophoresis separation of tryptic digest of bovine serum albumin using capillary zone electrophoresis followed by micellar electrokinetic chromatography.
Statistical tests for power-law cross-correlated processes.
Podobnik, Boris; Jiang, Zhi-Qiang; Zhou, Wei-Xing; Stanley, H Eugene
2011-12-01
For stationary time series, the cross-covariance and the cross-correlation as functions of time lag n serve to quantify the similarity of two time series. The latter measure is also used to assess whether the cross-correlations are statistically significant. For nonstationary time series, the analogous measures are detrended cross-correlations analysis (DCCA) and the recently proposed detrended cross-correlation coefficient, ρ(DCCA)(T,n), where T is the total length of the time series and n the window size. For ρ(DCCA)(T,n), we numerically calculated the Cauchy inequality -1 ≤ ρ(DCCA)(T,n) ≤ 1. Here we derive -1 ≤ ρ DCCA)(T,n) ≤ 1 for a standard variance-covariance approach and for a detrending approach. For overlapping windows, we find the range of ρ(DCCA) within which the cross-correlations become statistically significant. For overlapping windows we numerically determine-and for nonoverlapping windows we derive--that the standard deviation of ρ(DCCA)(T,n) tends with increasing T to 1/T. Using ρ(DCCA)(T,n) we show that the Chinese financial market's tendency to follow the U.S. market is extremely weak. We also propose an additional statistical test that can be used to quantify the existence of cross-correlations between two power-law correlated time series.
Two-dimensional hazard estimation for longevity analysis
DEFF Research Database (Denmark)
Fledelius, Peter; Guillen, M.; Nielsen, J.P.
2004-01-01
We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used...... for prediction purposes. However, we suggest that life insurance companies use the estimation technique and the cross-validation for bandwidth selection when analyzing their portfolio mortality. The non-parametric approach may give valuable information prior to developing more sophisticated prediction models...
Detrended cross-correlation analysis consistently extended to multifractality.
Oświecimka, Paweł; Drożdż, Stanisław; Forczek, Marcin; Jadach, Stanisław; Kwapień, Jarosław
2014-02-01
We propose an algorithm, multifractal cross-correlation analysis (MFCCA), which constitutes a consistent extension of the detrended cross-correlation analysis and is able to properly identify and quantify subtle characteristics of multifractal cross-correlations between two time series. Our motivation for introducing this algorithm is that the already existing methods, like multifractal extension, have at best serious limitations for most of the signals describing complex natural processes and often indicate multifractal cross-correlations when there are none. The principal component of the present extension is proper incorporation of the sign of fluctuations to their generalized moments. Furthermore, we present a broad analysis of the model fractal stochastic processes as well as of the real-world signals and show that MFCCA is a robust and selective tool at the same time and therefore allows for a reliable quantification of the cross-correlative structure of analyzed processes. In particular, it allows one to identify the boundaries of the multifractal scaling and to analyze a relation between the generalized Hurst exponent and the multifractal scaling parameter λ(q). This relation provides information about the character of potential multifractality in cross-correlations and thus enables a deeper insight into dynamics of the analyzed processes than allowed by any other related method available so far. By using examples of time series from the stock market, we show that financial fluctuations typically cross-correlate multifractally only for relatively large fluctuations, whereas small fluctuations remain mutually independent even at maximum of such cross-correlations. Finally, we indicate possible utility of MFCCA to study effects of the time-lagged cross-correlations.
Pre-Processing Noise Cross-Correlations with Equalizing the Network Covariance Matrix Eigen-Spectrum
Seydoux, L.; de Rosny, J.; Shapiro, N.
2016-12-01
Theoretically, the extraction of Green functions from noise cross-correlation requires the ambient seismic wavefield to be generated by uncorrelated sources evenly distributed in the medium. Yet, this condition is often not verified. Strong events such as earthquakes often produce highly coherent transient signals. Also, the microseismic noise is generated at specific places on the Earth's surface with source regions often very localized in space. Different localized and persistent seismic sources may contaminate the cross-correlations of continuous records resulting in spurious arrivals or asymmetry and, finally, in biased travel-time measurements. Pre-processing techniques therefore must be applied to the seismic data in order to reduce the effect of noise anisotropy and the influence of strong localized events. Here we describe a pre-processing approach that uses the covariance matrix computed from signals recorded by a network of seismographs. We extend the widely used time and spectral equalization pre-processing to the equalization of the covariance matrix spectrum (i.e., its ordered eigenvalues). This approach can be considered as a spatial equalization. This method allows us to correct for the wavefield anisotropy in two ways: (1) the influence of strong directive sources is substantially attenuated, and (2) the weakly excited modes are reinforced, allowing to partially recover the conditions required for the Green's function retrieval. We also present an eigenvector-based spatial filter used to distinguish between surface and body waves. This last filter is used together with the equalization of the eigenvalue spectrum. We simulate two-dimensional wavefield in a heterogeneous medium with strongly dominating source. We show that our method greatly improves the travel-time measurements obtained from the inter-station cross-correlation functions. Also, we apply the developed method to the USArray data and pre-process the continuous records strongly influenced
Two -Dimensional Wavelength Selective Diffraction by High-Order Three-Dimensional Composite Grating
Institute of Scientific and Technical Information of China (English)
Kohji; Furuhashi; Hideaki; Okayama; Hirochika; Nakajima
2003-01-01
We propose a wavelength selective diffraction using reflectors placed on three-dimensional grid cross points. Different wavelengths are separated into spots distributed in two-dimensional plane. Compact device with high port counts is attainable.
Antisymmetric galaxy cross-correlations as a cosmological probe
Dai, Liang; Kamionkowski, Marc; Kovetz, Ely D.; Raccanelli, Alvise; Shiraishi, Maresuke
2015-01-01
The auto-correlation between two members of a galaxy population is symmetric under the interchange of the two galaxies being correlated. The cross-correlation between two different types of galaxies, separated by a vector $\\bf{r}$, is not necessarily the same as that for a pair separated by $-\\bf{r}$. Local anisotropies in the two-point cross-correlation function may thus indicate a specific direction which when mapped as a function of position trace out a vector field. This vector field can ...
Vector Velocity Imaging Using Cross-Correlation and Virtual Sources
DEFF Research Database (Denmark)
Holfort, Iben Kraglund; Kortbek, Jacob; Jensen, Jørgen Arendt
2006-01-01
Previous investigations have shown promising results in using the directional cross-correlation method to estimate velocity vectors. The velocity vector estimate provides information on both velocity direction and magnitude. The direction is estimated by beamforming signals along directions...
Low-power Cross-Correlator ASIC Project
National Aeronautics and Space Administration — Pacific MicroCHIP Corporation offers to design an ASIC that includes a cross-correlation unit together with the interfaces to be connected to the output of the...
Improved position measurement of nanoelectromechanical systems using cross correlations
Doiron, C. B.; Trauzettel, B.; Bruder, C.
2007-11-01
We consider position measurements using the cross-correlated output of two tunnel-junction position detectors. Using a fully quantum treatment, we calculate the equation of motion for the density matrix of the coupled detector detector mechanical-oscillator system. After discussing the presence of a bound on the peak-to-background ratio in a position measurement using a single detector, we show how one can use detector cross correlations to overcome this bound. We analyze two different possible experimental realizations of the cross-correlation measurement and show that in both cases, the maximum cross-correlated output is obtained when using twin detectors and applying equal bias to each tunnel junction. Furthermore, we show how the double-detector setup can be exploited to drastically reduce the added displacement noise of the oscillator.
Electronics based on two-dimensional materials.
Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi
2014-10-01
The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-04-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.
Towards two-dimensional search engines
Ermann, Leonardo; Shepelyansky, Dima L
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.
Toward two-dimensional search engines
Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-07-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.
A two-dimensional Dirac fermion microscope
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
A two-dimensional Dirac fermion microscope.
Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-09
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
Two-Dimensional Scheduling: A Review
Directory of Open Access Journals (Sweden)
Zhuolei Xiao
2013-07-01
Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.
Two dimensional fermions in four dimensional YM
Narayanan, R
2009-01-01
Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
String breaking in two-dimensional QCD
Hornbostel, K J
1999-01-01
I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.
Two-dimensional supramolecular electron spin arrays.
Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya
2013-05-07
A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Institute of Scientific and Technical Information of China (English)
ZHANG Li; CAO Li; WU Da-Jin
2006-01-01
A two-dimensional single-mode laser model with cross-correlation between the real and imaginary parts of the colored quadric pump noise is investigated. A novel laser amplitude Langevin equation is obtained, in which the cross-correlation λp between the real and imaginary parts of the pump noise appears. The mean, variance, and skewness of first-passage-time are calculated. It is shown that the mean, variance, and skewness of first-passage-time are strongly affected by λp.
Two dimensional echocardiographic detection of intraatrial masses.
DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S
1981-11-01
With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.
The cross-correlation search for periodic gravitational waves
Dhurandhar, Sanjeev; Mukhopadhyay, Himan; Whelan, John T
2007-01-01
In this paper we study the use of cross-correlations between multiple gravitational wave (GW) data streams for detecting long-lived periodic signals. Cross-correlation searches between data from multiple detectors have traditionally been used to search for stochastic GW signals, but recently they have also been used in directed searches for periodic GWs. Here we further adapt the cross-correlation statistic for periodic GW searches by taking into account both the non-stationarity and the long term-phase coherence of the signal. We study the statistical properties and sensitivity of this search, its relation to existing periodic wave searches, and describe the precise way in which the cross-correlation statistic interpolates between semi-coherent and fully-coherent methods. Depending on the maximum duration over we wish to preserve phase coherence, the cross-correlation statistic can be tuned to go from a standard cross-correlation statistic using data from distinct detectors, to the semi-coherent time-frequen...
Two-Dimensional Identification of Fetal Tooth Germs.
Seabra, Mariana; Vaz, Paula; Valente, Francisco; Braga, Ana; Felino, António
2017-03-01
To demonstrate the efficiency and applicability of two-dimensional ultrasonography in the identification of tooth germs and in the assessment of potential pathology. Observational, descriptive, cross-sectional study. Prenatal Diagnosis Unit of Centro Hospitalar de Vila Nova de Gaia / Espinho-Empresa Pública in Portugal. A total of 157 white pregnant women (median age, 32 years; range, 14 to 47 years) undergoing routine ultrasound exams. Description of the fetal tooth germs, as visualized by two-dimensional ultrasonography, including results from prior fetal biometry and detailed screening for malformations. In the first trimester group, ultrasonography identified 10 tooth germs in the maxilla and 10 tooth germs in the mandible in all fetuses except for one who presented eight maxillary tooth germs. This case was associated with a chromosomal abnormality (trisomy 13) with a bilateral cleft palate. In the second and third trimesters group, ultrasonography identified a larger range of tooth germs: 81.2% of fetuses showed 10 tooth germs in the maxilla and 85.0% of fetuses had 10 tooth germs in the mandible. Hypodontia was more prevalent in the maxilla than in the mandible, which led us to use qualitative two-dimensional ultrasonography to analyze the possible association between hypodontia and other variables such as fetal pathology, markers, head, nuchal, face, and spine. We recommend using this method as the first exam to evaluate fetal morphology and also to help establish accurate diagnosis of abnormalities in pregnancy.
Theories on Frustrated Electrons in Two-Dimensional Organic Solids
Directory of Open Access Journals (Sweden)
Chisa Hotta
2012-08-01
Full Text Available Two-dimensional quarter-filled organic solids are a promising class of materials to realize the strongly correlated insulating states called dimer Mott insulator and charge order. In their conducting layer, the molecules form anisotropic triangular lattices, harboring geometrical frustration effect, which could give rise to many interesting states of matter in the two insulators and in the metals adjacent to them. This review is concerned with the theoretical studies on such issue over the past ten years, and provides the systematic understanding on exotic metals, dielectrics, and spin liquids, which are the consequences of the competing correlation and fluctuation under frustration.
Two-dimensional conformal field theory and the butterfly effect
Roberts, Daniel A
2014-01-01
We study chaotic dynamics in two-dimensional conformal field theory through out-of-time order thermal correlators of the form $\\langle W(t)VW(t)V\\rangle$. We reproduce bulk calculations similar to those of [1], by studying the large $c$ Virasoro identity block. The contribution of this block to the above correlation function begins to decrease exponentially after a delay of $\\sim t_* - \\frac{\\beta}{2\\pi}\\log \\beta^2E_w E_v$, where $t_*$ is the scrambling time $\\frac{\\beta}{2\\pi}\\log c$, and $E_w,E_v$ are the energy scales of the $W,V$ operators.
Cross correlation of Cosmic Microwave background and Weak Lensing
Lee, Seokcheon
2015-01-01
The integrated Sachs-Wolfe (ISW) effect and its non-linear extension Rees-Sciama (RS) effect provide us the information of the time evolution of gravitational potential. The cross-correlation between the cosmic microwave background (CMB) and the large scale structure (LSS) is known as a promising way to extract the ISW (RS) effect. It is known that the RS effect shows the unique behavior by changing the anti-correlated cross correlation between the CMB and the mass tracer into the positively correlated cross correlation compared to the linear ISW effect. We show that the dependence of this flipping scale of the cross-correlation between RS and weak lensing on dark energy models. However, there exists the degeneracy between DE and $\\Omega_{\\rm{m}0}$ which might be broken by redshift dependent observables. The cross-correlation between the momentum field and the density field might be served as the better observable to be used for this purpose.
Cross correlations of the American baby names
Barucca, Paolo; Marinari, Enzo; Parisi, Giorgio; Ricci-Tersenghi, Federico
2014-01-01
The quantitative description of cultural evolution is a challenging task. The most difficult part of the problem is probably to find the appropriate measurable quantities that can make more quantitative such evasive concepts as, for example, dynamics of cultural movements, behavior patterns and traditions of the people. A strategy to tackle this issue is to observe particular features of human activities, i.e. cultural traits, such as names given to newborns. We study the names of babies born in the United States of America from 1910 to 2012. Our analysis shows that groups of different correlated states naturally emerge in different epochs, and we are able to follow and decrypt their evolution. While these groups of states are stable across many decades, a sudden reorganization occurs in the last part of the twentieth century. We think that this kind of quantitative analysis can be possibly extended to other cultural traits: although databases covering more than one century (as the one we used) are rare, the ...
Institute of Scientific and Technical Information of China (English)
谭擎天; 田振华; 李国英
2011-01-01
Conformational changes and specific interactions in the collagen/hyaluronic acid blends were studied by two-dimensional infrared correlation spectroscopy with the interruption of the component of hyaluronic acid in collagen/ hyaluronic acid blends. It was found that the synchronous cross-peaks, derived from stretching vibrations of C=O at 1 694 cm-1, wagging of N-H at 1 524 cm-1 and in-plane deformation of N-H at 1 241 em-1 of collagen, were indicative of local conformational changes of collagen. The synchronous negative cross-peak between stretching vibrations of C-OH of hyaluronic acid at 1 045 cm-1 and streching vibrations of C=O of collagen at 1 694 cm-1 suggested that the interaction of hydrogen bonding existing between O-H of HA and C=O of collagen with the content of HA varied from 0％ to 50％. With the content of HA more than 50％, the cross-peak at 1 045 cm-1 disappeared in synchronous correlation spectra while the intensity of cross-peak at (1 694, 1 524), (1 694,1 241), (1 524, 1 241) increased, which indicated that no interaction was found between O-H of HA and collagen, however, the interactions of hydrogen bonding existed between C=O of HA and N-H of collagen, resulting in the conformational changes of collagen.%以胶原/透明质酸共混物中透明质酸的含量为外扰,利用二维红外相关光谱法研究了胶原/透明质酸共混物的构象变化及它们之间的相互作用.研究发现,1694,1524与1241 cm-1归属于胶原酰胺带的C=O对称伸缩振动、N-H摇摆与N-H面内变形振动峰之间存在同步正交叉峰,表明随着透明质酸组分的增加,胶原的链段构象发生了变化.当胶原/透明质酸共混体系中透明质酸含量由0增至50%时,1045cm-1归属于透明质酸的C-OH伸缩振动峰与1694 cm-1归属于胶原C=O对称伸缩振动峰存在同步负交叉峰,表明透明质酸的O-H与胶原分子的C=O之间形成了氢键;当透明质酸含量从50%增至90%时,1045 cm-1的
Institute of Scientific and Technical Information of China (English)
任国栋; 郭爱玲; 耿放; 马美湖; 黄群; 武小芬
2012-01-01
The conformation changes of Apo-Ovotransferrin and Holo-Ovotransferrin were studied with the heat treatment 25~ 95 ℃ by using Fourier transform infrared spectroscopy (FT1R) and two-dimensional correlation spectroscopy analyzer. The results of one-dimensional infrared spectroscopy showed that with the increase in temperature, the peak at 3 300 cm-1 of Apo-Ovotransferrin shifted more than that of Holo-Ovotransferrin. The peak at 3 300 cm-1 derived from stretching vibrations of N-H and O-H indicates that iron-binding enhanced the role of hydrogen bonds and resistance to heat The changing order of the secondary structure of ovotransferrin was determined by analyzing two-dimensional infrared spectra, witch is β-sheet＞amide Ⅱ >-CH2- bending vibratioa In addition, it was found that the cross-peaks at 1 652 and 1 688 cm-1 are different in synchronous and asynchronous counter maps by comparing Apo-Ovotransferrin with Holo-Ovotransferrin. It was suggested that the temperature made less impact on the
Testing Cross-Sectional Correlation in Large Panel Data Models with Serial Correlation
Directory of Open Access Journals (Sweden)
Badi H. Baltagi
2016-11-01
Full Text Available This paper considers the problem of testing cross-sectional correlation in large panel data models with serially-correlated errors. It finds that existing tests for cross-sectional correlation encounter size distortions with serial correlation in the errors. To control the size, this paper proposes a modification of Pesaran’s Cross-sectional Dependence (CD test to account for serial correlation of an unknown form in the error term. We derive the limiting distribution of this test as N , T → ∞ . The test is distribution free and allows for unknown forms of serial correlation in the errors. Monte Carlo simulations show that the test has good size and power for large panels when serial correlation in the errors is present.
Directory of Open Access Journals (Sweden)
Arif Billah Dar
2014-01-01
Full Text Available This paper investigates the synchronization of fixed income markets within Eurozone countries using the new wavelet based methodology. Conventional wavelet methods that use multivariate set of variables to calculate pairwise correlation and cross correlation lead to spurious correlation due to possible relationships with other variables, amplification of type-1 errors, and results, in the form of large set of erroneous graphs. Given these disadvantages of conventional wavelet based pairwise correlation and cross-correlation method, we avoid these limitations by using wavelet multiple correlation and multiple cross correlations to analyze the relationships in Eurozone fixed income markets. Our results based on this methodology indicate that Eurozone fixed income markets are highly integrated and this integration grows with timescales, and hence there is almost no scope for independent monetary policy and bond diversification in these countries.
Weakly disordered two-dimensional Frenkel excitons
Boukahil, A.; Zettili, Nouredine
2004-03-01
We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.
Two-dimensional photonic crystal surfactant detection.
Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A
2012-08-07
We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.
Theory of two-dimensional transformations
Kanayama, Yutaka J.; Krahn, Gary W.
1998-01-01
The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...
Two-dimensional ranking of Wikipedia articles
Zhirov, A O; Shepelyansky, D L
2010-01-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Liu, Zhirong
2016-01-01
The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Dynamics of film. [two dimensional continua theory
Zak, M.
1979-01-01
The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.
F2DPR: a fast and robust cross-correlation technique for volumetric PIV
Earl, Thomas; Jeon, Young Jin; Lecordier, Bertrand; David, Laurent
2016-08-01
The current state-of-the-art in cross-correlation based time-resolved particle image velocimetry (PIV) techniques are the fluid trajectory correlation, FTC (Lynch and Scarano 2013) and the fluid trajectory evaluation based on an ensemble-averaged cross-correlation, FTEE (Jeon et al 2014a). These techniques compute the velocity vector as a polynomial trajectory Γ in space and time, enabling the extraction of beneficial quantities such as material acceleration whilst significantly increasing the accuracy of the particle displacement prediction achieved by standard two-frame PIV. In the context of time-resolved volumetric PIV, the drawback of trajectory computation is the computational expense of the three-dimensional (3D) cross-correlation, exacerbated by the requirement to perform N - 1 cross-correlations, where N (for typically 5≤slant N≤slant 9 ) is the number of sequential particle volumes, for each velocity field. Therefore, the acceleration of this calculation is highly desirable. This paper re-examines the application of two-dimensional (2D) cross-correlation methods to three-dimensional (3D) datasets by Bilsky et al (2011) and the binning techniques of Discetti and Astarita (2012). A new and robust version of the 2D methods is proposed and described, called fast 2D projection—re-projection (f2dpr). Performance tests based on computational time and accuracy for both two-frame and multi-frame PIV are carried out on synthetically generated data. The cases presented herein include uniaxial uniform linear displacements and shear, and simulated turbulence data. The proposed algorithm is shown to be in the order of 10 times faster than a standard 3D FFT without loss of precision for a wide range of synthetic test cases, while combining with the binning technique can yield 50 times faster computation. The algorithm is also applied to reconstructed synthetic turbulent particle fields to investigate reconstruction noise on its performance and no
Power-law cross-correlations estimation under heavy tails
Kristoufek, Ladislav
2016-11-01
We examine the performance of six estimators of the power-law cross-correlations-the detrended cross-correlation analysis, the detrending moving-average cross-correlation analysis, the height cross-correlation analysis, the averaged periodogram estimator, the cross-periodogram estimator and the local cross-Whittle estimator-under heavy-tailed distributions. The selection of estimators allows to separate these into the time and frequency domain estimators. By varying the characteristic exponent of the α-stable distributions which controls the tails behavior, we report several interesting findings. First, the frequency domain estimators are practically unaffected by heavy tails bias-wise. Second, the time domain estimators are upward biased for heavy tails but they have lower estimator variance than the other group for short series. Third, specific estimators are more appropriate depending on distributional properties and length of the analyzed series. In addition, we provide a discussion of implications of these results for empirical applications as well as theoretical explanations.
Two-dimensional gauge theoretic supergravities
Cangemi, D.; Leblanc, M.
1994-05-01
We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
Two-dimensional shape memory graphene oxide
Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe
2016-06-01
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.
Antisymmetric galaxy cross-correlations as a cosmological probe
Dai, Liang; Kovetz, Ely D; Raccanelli, Alvise; Shiraishi, Maresuke
2016-01-01
The auto-correlation between two members of a galaxy population is symmetric under the interchange of the two galaxies being correlated. The cross-correlation between two different types of galaxies, separated by a vector $\\bf{r}$, is not necessarily the same as that for a pair separated by $-\\bf{r}$. Local anisotropies in the two-point cross-correlation function may thus indicate a specific direction which when mapped as a function of position trace out a vector field. This vector field can then be decomposed into longitudinal and transverse components, and those transverse components written as positive- and negative-helicity components. A locally asymmetric cross-correlation of the longitudinal type arises naturally in halo clustering, even with Gaussian initial conditions, and could be enhanced with local-type non-Gaussianity. Early-Universe scenarios that introduce a vector field may also give rise to such effects. These antisymmetric cross-correlations also provide a new possibility to seek a preferred ...
Absence of significant cross-correlation between WMAP and SDSS
Lopez-Corredoira, M; Betancort-Rijo, J
2010-01-01
AIMS. Recently, several authors have claimed to detect a significant cross-correlation between microwave WMAP anisotropies and the SDSS galaxy distribution. We repeat these analyses determining different cross-correlation errors: re-sampling errors, and field-to-field fluctuations. The first type of errors make use of overlapping sky regions, while the second type use non-overlapping sky regions. METHODS. For the re-sampling errors we use bootstrap and jack-knife techniques. For the field-to-field fluctuations we use three methods: 1) evaluating the dispersion of the cross-correlation when correlating separated regions of WMAP with the original region of SDSS; 2) using mock Monte Carlo WMAP maps; 3) a new method (developed herein) which gives the error as an integral of the product of the self-correlations of each map. RESULTS. The average cross-correlation for b>30 deg. is significantly larger than the re-sampling errors--both jack-knife and bootstrap give similar results--but it is of the order of the field...
Vibrational wave packet induced oscillations in two-dimensional electronic spectra. I. Experiments
Nemeth, Alexandra; Mancal, Tomas; Lukes, Vladimir; Hauer, Juergen; Kauffmann, Harald F; Sperling, Jaroslaw
2010-01-01
This is the first in a series of two papers investigating the effect of electron-phonon coupling in two-dimensional Fourier transformed electronic spectroscopy. We present a series of one- and two-dimensional nonlinear spectroscopic techniques for studying a dye molecule in solution. Ultrafast laser pulse excitation of an electronic transition coupled to vibrational modes induces a propagating vibrational wave packet that manifests itself in oscillating signal intensities and line-shapes. For the two-dimensional electronic spectra we can attribute the observed modulations to periodic enhancement and decrement of the relative amplitudes of rephasing and non-rephasing contributions to the total response. Different metrics of the two-dimensional signals are shown to relate to the frequency-frequency correlation function which provides the connection between experimentally accessible observations and the underlying microscopic molecular dynamics. A detailed theory of the time-dependent two-dimensional spectral li...
Human muscle proteins: analysis by two-dimensional electrophoresis
Energy Technology Data Exchange (ETDEWEB)
Giometti, C.S.; Danon, M.J.; Anderson, N.G.
1983-09-01
Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.
Optimal excitation of two dimensional Holmboe instabilities
Constantinou, Navid C
2010-01-01
Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...
Phonon hydrodynamics in two-dimensional materials.
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-06
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Probabilistic Universality in two-dimensional Dynamics
Lyubich, Mikhail
2011-01-01
In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.
Two-dimensional position sensitive neutron detector
Indian Academy of Sciences (India)
A M Shaikh; S S Desai; A K Patra
2004-08-01
A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.
Two-dimensional heterostructures for energy storage
Pomerantseva, Ekaterina; Gogotsi, Yury
2017-07-01
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Rationally synthesized two-dimensional polymers.
Colson, John W; Dichtel, William R
2013-06-01
Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.
Janus Spectra in Two-Dimensional Flows
Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki
2016-09-01
In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.
Local doping of two-dimensional materials
Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.
2016-09-20
This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.
Two-dimensional fourier transform spectrometer
Energy Technology Data Exchange (ETDEWEB)
DeFlores, Lauren; Tokmakoff, Andrei
2016-10-25
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP
Institute of Scientific and Technical Information of China (English)
Chen Jiangfeng; Yuan Baozong; Pei Bingnan
2008-01-01
Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.
Institute of Scientific and Technical Information of China (English)
于舸; 杨仁杰; 吕爱君; 谭恩忠
2015-01-01
New approach for discriminant analysis of adulterated milk is proposed based on combining hetero‐spectral two‐dimen‐sional (2D) near‐infrared (NIR) and mid‐infrared (IR) correlation spectroscopy along with multi‐way partial least squares dis‐criminant analysis (NPLS‐DA) .Firstly ,36 pure milk samples were collected and 36 adulterated milk with starch samples (0.01 to 1 g · L -1 ) were prepared by adding appropriate mass of starch into pure milk .Then ,one‐dimensional NIR transmittance spectra and IR attenuated total reflection spectra of pure milk and adulterated milk with starch were measured at room tempera‐ture .And the synchronous 2D NIR‐IR (4 200~4 800 vs .900~1 700 cm -1 ) correlation spectra of all samples were calculated . Due to the trace of adulterants ,the synchronous 2D IR‐NIR correlation spectral differences between adulterated milk with starch and pure milk are very subtle .Consequently ,it was impossible to directly distinguish whether the sample was pure milk or adul‐terated milk .Finally ,2D IR‐NIR correlation spectra were to build a discriminant model to classify adulterated milk and pure milk .The classification accuracy rates of samples in calibration set and in prediction set were 95.8% and 100% respectively .Al‐so ,the NPLS‐DA models were built based on 2D NIR and 2D IR correlation spectra ,respectively .The classification accuracy rates of samples in prediction set were 95.8% .Comparison results showed that the NPLS‐DA model could provide better results using 2D NIR‐IR correlation spectra than using 2D NIR ,and 2D IR correlation spectra .The proposed method can not only effec‐tively extract the feature information of adulterants in milk ,but also explores a new perspective method for detection of adultera‐ted food .%为更快、更准确的判别掺杂牛奶和纯牛奶，将二维异谱 N IR‐IR相关谱与多维偏最小二乘判别（NPLS‐DA）相结合，建立了掺杂牛奶与纯牛奶 NPLS
Equivalency of two-dimensional algebras
Energy Technology Data Exchange (ETDEWEB)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica
2011-07-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
Audio Quality Assurance : An Application of Cross Correlation
DEFF Research Database (Denmark)
Jurik, Bolette Ammitzbøll; Nielsen, Jesper Asbjørn Sindahl
2012-01-01
We describe algorithms for automated quality assurance on content of audio files in context of preservation actions and access. The algorithms use cross correlation to compare the sound waves. They are used to do overlap analysis in an access scenario, where preserved radio broadcasts are used in...
Unified Green’s Function Retrieval by Cross Correlation
Wapenaar, C.P.A.; Slob, E.C.; Snieder, R.
2006-01-01
It has been shown by many authors that the cross correlation of two recordings of a diffuse wave field at different receivers yields the Green’s function between these receivers. Recently the theory has been extended for situations where time-reversal invariance does not hold (e.g., in attenuating m
Institute of Scientific and Technical Information of China (English)
CHEN Yi-Ping; ZHANG Han-Hui; KE Da-Mei; SHEN Xiao-Min; HUANG Chang-Cang; SUN Rui-Qing
2005-01-01
A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy = bipydine),was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system, space group C2/m with a = 19.1921(5), b = 18.6931(6), c = 9.3821 (3) (A), β = 104.8020(11)°, V = 3254.22(17) (A)3, C50H51Mo8N10NaO30, Mr = 2062.52, Z = 2,F(000) = 2016,μ = 1.591 mm- 1 and Dc = 2.105 g/cm3. The final R = 0.0283 and wR = 0.0912 for 3118 observed reflections (I ＞ 2σ(Ⅰ)). Compound 1 contains the β-[Mo8O26]4- anion, sodium ion, 4,4'-bpy and lattice crystalline water molecules. The β-[Mo8O26] units link the sodium ion to form a chain structure. The infinitechains of [Na(Mo8O26)]3- blocks are surrounded by protonized 4,4'-bpy cations,4,4'-bpy and lattice crystalline water molecules. The 2D-IR correlation spectroscopy study indicates that the stretching vibrations of Mo=O occur more preferentially due to the thermal effect. The TGA analysis shows that compound 1 has high thermal stability.
Two-dimensional Fermi surfaces in Kondo insulator SmB₆.
Li, G; Xiang, Z; Yu, F; Asaba, T; Lawson, B; Cai, P; Tinsman, C; Berkley, A; Wolgast, S; Eo, Y S; Kim, Dae-Jeong; Kurdak, C; Allen, J W; Sun, K; Chen, X H; Wang, Y Y; Fisk, Z; Li, Lu
2014-12-05
In the Kondo insulator samarium hexaboride (SmB6), strong correlation and band hybridization lead to an insulating gap and a diverging resistance at low temperature. The resistance divergence ends at about 3 kelvin, a behavior that may arise from surface conductance. We used torque magnetometry to resolve the Fermi surface topology in this material. The observed oscillation patterns reveal two Fermi surfaces on the (100) surface plane and one Fermi surface on the (101) surface plane. The measured Fermi surface cross sections scale as the inverse cosine function of the magnetic field tilt angles, which demonstrates the two-dimensional nature of the conducting electronic states of SmB6. Copyright © 2014, American Association for the Advancement of Science.
New indices of coherence for one or two-dimensional fields
Lacaze, Bernard
2016-01-01
The modern definition of optical coherence highlights a frequency dependent function based on a matrix of spectra and cross-spectra. Due to general properties of matrices, such a function is invariant in changes of basis. In this article, we attempt to measure the proximity of two stationary fields by a real and positive number between 0 and 1. The extremal values will correspond to uncorrelation and linear dependence, similar to a correlation coefficient which measures linear links between random variables. We show that these "indices of coherence" are generally not symmetric, and not unique. We study and we illustrate this problem together for one-dimensional and two-dimensional fields in the framework of stationary processes.
The Atacama Cosmology Telescope: cross correlation with Planck maps
Energy Technology Data Exchange (ETDEWEB)
Louis, Thibaut; Calabrese, Erminia; Dunkley, Joanna; Næss, Sigurd [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Addison, Graeme E.; Hincks, Adam D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hasselfield, Matthew; Hlozek, Renée [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Bond, J. Richard; Hajian, Amir [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Das, Sudeep [Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439 (United States); Devlin, Mark J. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, U.S.A (United States); Dünner, Rolando; Infante, Leopoldo [Departamento de Astronomía y Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Gralla, Megan; Marriage, Tobias A. [Dept. of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Huffenberger, Kevin [Department of Physics, Florida State University, Keen Physics Building, 77 Chieftan Way, Tallahassee, Florida (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, 15260 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban, 4041 (South Africa); Niemack, Michael D., E-mail: Thibaut.Louis@astro.ox.ac.uk [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); and others
2014-07-01
We present the temperature power spectrum of the Cosmic Microwave Background obtained by cross-correlating maps from the Atacama Cosmology Telescope (ACT) at 148 and 218 GHz with maps from the Planck satellite at 143 and 217 GHz, in two overlapping regions covering 592 square degrees. We find excellent agreement between the two datasets at both frequencies, quantified using the variance of the residuals between the ACT power spectra and the ACT × Planck cross-spectra. We use these cross-correlations to measure the calibration of the ACT data at 148 and 218 GHz relative to Planck, to 0.7% and 2% precision respectively. We find no evidence for anisotropy in the calibration parameter. We compare the Planck 353 GHz power spectrum with the measured amplitudes of dust and cosmic infrared background (CIB) of ACT data at 148 and 218 GHz. We also compare planet and point source measurements from the two experiments.
The Atacama Cosmology Telescope: Cross Correlation with Planck maps
Louis, Thibaut; Hasselfield, Matthew; Bond, J Richard; Calabrese, Erminia; Das, Sudeep; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Gralla, Megan; Hajian, Amir; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin; Infante, Leopoldo; Kosowsky, Arthur; Marriage, Tobias A; Moodley, Kavilan; Næss, Sigurd; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Partridge, Bruce; Sehgal, Neelima; Sievers, Jonathan L; Spergel, David N; Staggs, Suzanne T; Walter, Benjamin Z; Wollack, Edward J
2014-01-01
We present the temperature power spectrum of the Cosmic Microwave Background obtained by cross-correlating maps from the Atacama Cosmology Telescope (ACT) at 148 and 218 GHz with maps from the Planck satellite at 143 and 217 GHz, in two overlapping regions covering 592 square degrees. We find excellent agreement between the two datasets at both frequencies, quantified using the variance of the residuals between the ACT power spectra and the ACTxPlanck cross-spectra. We use these cross-correlations to calibrate the ACT data at 148 and 218 GHz, to 0.7% and 2% precision respectively. We find no evidence for anisotropy in the calibration parameter. We compare the Planck 353 GHz power spectrum with the measured amplitudes of dust and cosmic infrared background (CIB) of ACT data at 148 and 218 GHz. We also compare planet and point source measurements from the two experiments.
Channel cross correlations in transport through complex media
Gehler, Stefan; Köber, Bernd; Celardo, Giuseppe Luca; Kuhl, Ulrich
2016-10-01
Measuring transmission between four antennas in microwave cavities, we investigate directly the channel cross correlations C of the cross sections σa b from antenna at r⃗a to antenna r⃗b. Specifically we look for the CΣ and CΛ, where the only difference is that CΛ has none of the four channels in common, whereas CΣ has exactly one channel in common. We find experimentally that these two channel cross correlations are antiphased as a function of the channel coupling strength, as predicted by theory. This anticorrelation is essential to obtain the correct values for the universal conductance fluctuations. To obtain good agreement between experiment and predictions from random matrix theory the effect of absorption has to be included.
Cross-response in correlated financial markets: individual stocks
Wang, Shanshan; Schäfer, Rudi; Guhr, Thomas
2016-04-01
Previous studies of the stock price response to trades focused on the dynamics of single stocks, i.e. they addressed the self-response. We empirically investigate the price response of one stock to the trades of other stocks in a correlated market, i.e. the cross-responses. How large is the impact of one stock on others and vice versa? - This impact of trades on the price change across stocks appears to be transient instead of permanent as we discuss from the viewpoint of market efficiency. Furthermore, we compare the self-responses on different scales and the self- and cross-responses on the same scale. We also find that the cross-correlation of the trade signs turns out to be a short-memory process.
Axion inflation with cross-correlated axion isocurvature perturbations
Energy Technology Data Exchange (ETDEWEB)
Kadota, Kenji [Center for Theoretical Physics of the Universe, Institute for Basic Science,Daejeon 305-811 (Korea, Republic of); Kobayashi, Tatsuo [Department of Physics, Hokkaido University,Sapporo 060-0810 (Japan); Otsuka, Hajime [Department of Physics, Waseda University,Tokyo 169-8555 (Japan)
2016-01-25
We study the inflation scenarios, in the framework of superstring theory, where the inflaton is an axion producing the adiabatic curvature perturbations while there exists another light axion producing the isocurvature perturbations. We discuss how the non-trivial couplings among string axions can generically arise, and calculate the consequent cross-correlations between the adiabatic and isocurvature modes through concrete examples. Based on the Planck analysis on the generally correlated isocurvature perturbations, we show that there is a preference for the existence of the correlated isocurvature modes for the axion monodromy inflation while the natural inflation disfavors such isocurvature modes.
Axion inflation with cross-correlated axion isocurvature perturbations
Kadota, Kenji; Otsuka, Hajime
2015-01-01
We study the inflation scenarios, in the framework of superstring theory, where the inflaton is an axion producing the adiabatic curvature perturbations while there exists another light axion producing the isocurvature perturbations. We discuss how the non-trivial couplings among string axions can generically arise, and calculate the consequent cross-correlations between the adiabatic and isocurvature modes through concrete examples. Based on the Planck analysis on the generally correlated isocurvature perturbations, we show that there is a preference for the existence of the correlated isocurvature modes for the axion monodromy inflation while the natural inflation disfavors such isocurvature modes.
Random matrix theory analysis of cross correlations in financial markets.
Utsugi, Akihiko; Ino, Kazusumi; Oshikawa, Masaki
2004-08-01
We confirm universal behaviors such as eigenvalue distribution and spacings predicted by random matrix theory (RMT) for the cross correlation matrix of the daily stock prices of Tokyo Stock Exchange from 1993 to 2001, which have been reported for New York Stock Exchange in previous studies. It is shown that the random part of the eigenvalue distribution of the cross correlation matrix is stable even when deterministic correlations are present. Some deviations in the small eigenvalue statistics outside the bounds of the universality class of RMT are not completely explained with the deterministic correlations as proposed in previous studies. We study the effect of randomness on deterministic correlations and find that randomness causes a repulsion between deterministic eigenvalues and the random eigenvalues. This is interpreted as a reminiscent of "level repulsion" in RMT and explains some deviations from the previous studies observed in the market data. We also study correlated groups of issues in these markets and propose a refined method to identify correlated groups based on RMT. Some characteristic differences between properties of Tokyo Stock Exchange and New York Stock Exchange are found.
Revisiting the WMAP - NVSS angular cross correlation. A skeptic view
Hernandez-Monteagudo, Carlos
2009-01-01
In the context of the study of the ISW, we revisit the angular cross correlation of WMAP CMB data with the NVSS radio survey. We compute 2-point cross functions between the two surveys in real and in Fourier space, paying particular attention on the dependence of results on the flux of NVSS radio sources, the angular scales where correlations arise and the comparison with theoretical expectations. We reproduce previous results that claim an excess of correlation in the angular correlation function (ACF), and we also find some (low significance) similarity between the CMB and radio galaxy data in the multipole range $\\el \\in $ [10, 25]. However, the S/N in the ACFs increases with higher flux thresholds for NVSS sources, but drops a $\\sim$ 30 - 50% in separations of the order of a pixel size, suggesting some residual point source contribution. When restricting our analyses to multipoles $\\el \\gt $60, we fail to find any evidence for cross correlation in the range $\\el \\in [2,10]$, where according to the model p...
On numerical evaluation of two-dimensional phase integrals
DEFF Research Database (Denmark)
Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans
1975-01-01
The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....
Two-dimensional visualization of cluster beams by microchannel plates
Khoukaz, Alfons; Grieser, Silke; Hergemöller, Ann-Katrin; Köhler, Esperanza; Täschner, Alexander
2013-01-01
An advanced technique for a two-dimensional real time visualization of cluster beams in vacuum as well as of the overlap volume of cluster beams with particle accelerator beams is presented. The detection system consists of an array of microchannel plates (MCP) in combination with a phosphor screen which is read out by a CCD camera. This setup together with the ionization of a cluster beam by an electron or ion beam allows for spatial resolved investigations of the cluster beam position, size, and intensity. Moreover, since electrically uncharged clusters remain undetected, the operation in an internal beam experiment opens the way to monitor the overlap region and thus the position and size of an accelerator beam crossing an originally electrically neutral cluster jet. The observed intensity distribution of the recorded image is directly proportional to the convolution of the spatial ion beam and cluster beam intensities and is by this a direct measure of the two-dimensional luminosity distribution. This inf...
Wang, Gang-Jin; Xie, Chi; Chen, Shou; Yang, Jiao-Jiao; Yang, Ming-Yan
2013-09-01
In this study, we first build two empirical cross-correlation matrices in the US stock market by two different methods, namely the Pearson’s correlation coefficient and the detrended cross-correlation coefficient (DCCA coefficient). Then, combining the two matrices with the method of random matrix theory (RMT), we mainly investigate the statistical properties of cross-correlations in the US stock market. We choose the daily closing prices of 462 constituent stocks of S&P 500 index as the research objects and select the sample data from January 3, 2005 to August 31, 2012. In the empirical analysis, we examine the statistical properties of cross-correlation coefficients, the distribution of eigenvalues, the distribution of eigenvector components, and the inverse participation ratio. From the two methods, we find some new results of the cross-correlations in the US stock market in our study, which are different from the conclusions reached by previous studies. The empirical cross-correlation matrices constructed by the DCCA coefficient show several interesting properties at different time scales in the US stock market, which are useful to the risk management and optimal portfolio selection, especially to the diversity of the asset portfolio. It will be an interesting and meaningful work to find the theoretical eigenvalue distribution of a completely random matrix R for the DCCA coefficient because it does not obey the Marčenko-Pastur distribution.
Janus spectra in two-dimensional flows
Liu, Chien-Chia; Chakraborty, Pinaki
2016-01-01
In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...
Comparative Two-Dimensional Fluorescence Gel Electrophoresis.
Ackermann, Doreen; König, Simone
2018-01-01
Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.
Two-dimensional hexagonal semiconductors beyond graphene
Nguyen, Bich Ha; Hieu Nguyen, Van
2016-12-01
The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.
Two-Dimensional Phononic Crystals: Disorder Matters.
Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M
2016-09-14
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Photodetectors based on two dimensional materials
Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen
2016-09-01
Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Predicting Two-Dimensional Silicon Carbide Monolayers.
Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I
2015-10-27
Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.
Structure of a financial cross-correlation matrix under attack
Lim, Gyuchang; Kim, SooYong; Kim, Junghwan; Kim, Pyungsoo; Kang, Yoonjong; Park, Sanghoon; Park, Inho; Park, Sang-Bum; Kim, Kyungsik
2009-09-01
We investigate the structure of a perturbed stock market in terms of correlation matrices. For the purpose of perturbing a stock market, two distinct methods are used, namely local and global perturbation. The former involves replacing a correlation coefficient of the cross-correlation matrix with one calculated from two Gaussian-distributed time series while the latter reconstructs the cross-correlation matrix just after replacing the original return series with Gaussian-distributed time series. Concerning the local case, it is a technical study only and there is no attempt to model reality. The term ‘global’ means the overall effect of the replacement on other untouched returns. Through statistical analyses such as random matrix theory (RMT), network theory, and the correlation coefficient distributions, we show that the global structure of a stock market is vulnerable to perturbation. However, apart from in the analysis of inverse participation ratios (IPRs), the vulnerability becomes dull under a small-scale perturbation. This means that these analysis tools are inappropriate for monitoring the whole stock market due to the low sensitivity of a stock market to a small-scale perturbation. In contrast, when going down to the structure of business sectors, we confirm that correlation-based business sectors are regrouped in terms of IPRs. This result gives a clue about monitoring the effect of hidden intentions, which are revealed via portfolios taken mostly by large investors.
Two-Dimensional Crystallization of the Ca(2+)-ATPase for Electron Crystallography.
Glaves, John Paul; Primeau, Joseph O; Young, Howard S
2016-01-01
Electron crystallography of two-dimensional crystalline arrays is a powerful alternative for the structure determination of membrane proteins. The advantages offered by this technique include a native membrane environment and the ability to closely correlate function and dynamics with crystalline preparations and structural data. Herein, we provide a detailed protocol for the reconstitution and two-dimensional crystallization of the sarcoplasmic reticulum calcium pump (also known as Ca(2+)-ATPase or SERCA) and its regulatory subunits phospholamban and sarcolipin.
Two-dimensional random arrays for real time volumetric imaging
DEFF Research Database (Denmark)
Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.
1994-01-01
Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...
Interaction of two-dimensional magnetoexcitons
Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.
2017-04-01
We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In most of real operational conditions only response data are measurable while the actual excitations are unknown, so modal parameter must be extracted only from responses. This paper gives a theoretical formulation for the cross-correlation functions and cross-power spectra between the outputs under the assumption of white-noise excitation. It widens the field of modal analysis under ambient excitation because many classical methods by impulse response functions or frequency response functions can be used easily for modal analysis under unknown excitation. The Polyreference Complex Exponential method and Eigensystem Realization Algorithm using cross-correlation functions in time domain and Orthogonal Polynomial method using cross-power spectra in frequency domain are applied to a steel frame to extract modal parameters under operational conditions. The modal properties of the steel frame from these three methods are compared with those from frequency response functions analysis. The results show that the modal analysis method using cross-correlation functions or cross-power spectra presented in this paper can extract modal parameters efficiently under unknown excitation.
Cross-correlation markers in stochastic dynamics of complex systems
Panischev, O Yu; Bhattacharya, J; 10.1016/j.physa.2010.06.026
2010-01-01
The neuromagnetic activity (magnetoencephalogram, MEG) from healthy human brain and from an epileptic patient against chromatic flickering stimuli has been earlier analyzed on the basis of a memory functions formalism (MFF). Information measures of memory as well as relaxation parameters revealed high individuality and unique features in the neuromagnetic brain responses of each subject. The current paper demonstrates new capabilities of MFF by studying cross-correlations between MEG signals obtained from multiple and distant brain regions. It is shown that the MEG signals of healthy subjects are characterized by well-defined effects of frequency synchronization and at the same time by the domination of low-frequency processes. On the contrary, the MEG of a patient is characterized by a sharp abnormality of frequency synchronization, and also by prevalence of high-frequency quasi-periodic processes. Modification of synchronization effects and dynamics of cross-correlations offer a promising method of detectin...
NIRS-BASED CORTICAL ACTIVATION ANALYSIS BY TEMPORAL CROSS CORRELATION
Directory of Open Access Journals (Sweden)
Raul Fernandez-Rojas
2016-02-01
Full Text Available In this study we present a method of signal processing to determine dominant channels in near infrared spectroscopy (NIRS. To compare measuring channels and identify delays between them, cross correlation is computed. Furthermore, to find out possible dominant channels, a visual inspection was performed. The outcomes demonstrated that the visual inspection exhibited evoked-related activations in the primary somatosensory cortex (S1 after stimulation which is consistent with comparable studies and the cross correlation study discovered dominant channels on both cerebral hemispheres. The analysis also showed a relationship between dominant channels and adjacent channels. For that reason, our results present a new method to identify dominant regions in the cerebral cortex using near-infrared spectroscopy. These findings have also implications in the decrease of channels by eliminating irrelevant channels for the experiment.
Intensity Mapping During Reionization: 21 cm and Cross-correlations
Aguirre, James E.; HERA Collaboration
2016-01-01
The first generation of 21 cm epoch of reionization (EoR) experiments are now reaching the sensitivities necessary for a detection of the power spectrum of plausible reionization models, and with the advent of next-generation capabilities (e.g. the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometer Array Phase I Low) will move beyond the power spectrum to imaging of the EoR intergalactic medium. Such datasets provide context to galaxy evolution studies for the earliest galaxies on scales of tens of Mpc, but at present wide, deep galaxy surveys are lacking, and attaining the depth to survey the bulk of galaxies responsible for reionization will be challenging even for JWST. Thus we seek useful cross-correlations with other more direct tracers of the galaxy population. I review near-term prospects for cross-correlation studies with 21 cm and CO and CII emission, as well as future far-infrared misions suchas CALISTO.
Two-dimensional materials and their prospects in transistor electronics.
Schwierz, F; Pezoldt, J; Granzner, R
2015-05-14
During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.
Audio Quality Assurance : An Application of Cross Correlation
DEFF Research Database (Denmark)
Jurik, Bolette Ammitzbøll; Nielsen, Jesper Asbjørn Sindahl
2012-01-01
We describe algorithms for automated quality assurance on content of audio files in context of preservation actions and access. The algorithms use cross correlation to compare the sound waves. They are used to do overlap analysis in an access scenario, where preserved radio broadcasts are used...... in research and annotated. They have been applied in a migration scenario, where radio broadcasts are to be migrated for long term preservation....
Probing the circumgalactic baryons through cross-correlations
Singh, Priyanka; Nath, Biman B; Refregier, Alexandre; Silk, Joseph
2015-01-01
We study the cross-correlation of distribution of galaxies, the Sunyaev-Zel'dovich (SZ) and X-ray power spectra of galaxies from current and upcoming surveys and show these to be excellent probes of the nature, i.e. extent, evolution and energetics, of the circumgalactic medium (CGM). For a flat pressure profile, the SZ cross power spectrum shows oscillations at $l$-values corresponding to the length scales smaller than $\\sim \\frac{2}{3}$ times the virial radius of the galaxy. These oscillations are sensitive to the steepness of the pressure profile of the CGM and vanish for a sufficiently steep profile. Similar oscillations are also present in the X-ray cross power spectrum which is, however, more sensitive to the density profile. We forecast the detectability of the cross-correlated galaxy distribution, SZ and X-ray signals by combining SPT-DES and eROSITA-DES/eROSITA-LSST surveys, respectively. We find that, for the SPT-DES survey, the signal-to-noise ratio (SNR) peaks at high mass and redshift with SNR $\\...
CMB lensing from SPT+Planck and cross-correlations
Omori, Yuuki; SPT Collaboration; DES Collaboration
2017-01-01
The South Pole Telescope (SPT) SZ survey has observed 2500 square degrees of the Cosmic Microwave Background (CMB) to high accuracy down to 1 arcminute resolution at 150GHz. The Planck satellite has also observed the same patch of the CMB sky at 143GHz, but the two experiments were designed to measure temperature anisotropies optimally at different angular scales. By combining data from these two experiments, we are able to produce a temperature map that has an improved signal-to-noise ratio at all scales. This combined temperature map is used to produce a CMB weak lensing map, which we use for cosmological parameter and cross-correlation analyses. In particular, the SPT footprint has significant overlap with the Dark Energy Survey (DES) observing region, which allows us to cross-correlate the CMB lensing map with galaxy density and galaxy shear measurements obtained by DES. In this talk, I will present the SPT+Planck combining procedure, the CMB lensing reconstruction pipeline, tests performed to verify the lensing map, and finally the cross-correlation measurements.
Random matrix approach to cross correlations in financial data
Plerou, Vasiliki; Gopikrishnan, Parameswaran; Rosenow, Bernd; Amaral, Luís A.; Guhr, Thomas; Stanley, H. Eugene
2002-06-01
We analyze cross correlations between price fluctuations of different stocks using methods of random matrix theory (RMT). Using two large databases, we calculate cross-correlation matrices C of returns constructed from (i) 30-min returns of 1000 US stocks for the 2-yr period 1994-1995, (ii) 30-min returns of 881 US stocks for the 2-yr period 1996-1997, and (iii) 1-day returns of 422 US stocks for the 35-yr period 1962-1996. We test the statistics of the eigenvalues λi of C against a ``null hypothesis'' - a random correlation matrix constructed from mutually uncorrelated time series. We find that a majority of the eigenvalues of C fall within the RMT bounds [λ-,λ+] for the eigenvalues of random correlation matrices. We test the eigenvalues of C within the RMT bound for universal properties of random matrices and find good agreement with the results for the Gaussian orthogonal ensemble of random matrices-implying a large degree of randomness in the measured cross-correlation coefficients. Further, we find that the distribution of eigenvector components for the eigenvectors corresponding to the eigenvalues outside the RMT bound display systematic deviations from the RMT prediction. In addition, we find that these ``deviating eigenvectors'' are stable in time. We analyze the components of the deviating eigenvectors and find that the largest eigenvalue corresponds to an influence common to all stocks. Our analysis of the remaining deviating eigenvectors shows distinct groups, whose identities correspond to conventionally identified business sectors. Finally, we discuss applications to the construction of portfolios of stocks that have a stable ratio of risk to return.
Effects of finite laser pulse width on two-dimensional electronic spectroscopy
Leng, Xuan; Yue, Shuai; Weng, Yu-Xiang; Song, Kai; Shi, Qiang
2017-01-01
We combine the hierarchical equations of motion method and the equation-of-motion phase-matching approach to calculate two-dimensional electronic spectra of model systems. When the laser pulse is short enough, the current method reproduces the results based on third-order response function calculations in the impulsive limit. Finite laser pulse width is found to affect both the peak positions and shapes, as well as the time evolution of diagonal and cross peaks. Simulations of the two-color two-dimensional electronic spectra also show that, to observe quantum beats in the diagonal and cross peaks, it is necessary to excite the related excitonic states simultaneously.
Multifractal detrending moving-average cross-correlation analysis.
Jiang, Zhi-Qiang; Zhou, Wei-Xing
2011-07-01
There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross correlations. The multifractal detrended cross-correlation analysis (MFDCCA) approaches can be used to quantify such cross correlations, such as the MFDCCA based on the detrended fluctuation analysis (MFXDFA) method. We develop in this work a class of MFDCCA algorithms based on the detrending moving-average analysis, called MFXDMA. The performances of the proposed MFXDMA algorithms are compared with the MFXDFA method by extensive numerical experiments on pairs of time series generated from bivariate fractional Brownian motions, two-component autoregressive fractionally integrated moving-average processes, and binomial measures, which have theoretical expressions of the multifractal nature. In all cases, the scaling exponents h(xy) extracted from the MFXDMA and MFXDFA algorithms are very close to the theoretical values. For bivariate fractional Brownian motions, the scaling exponent of the cross correlation is independent of the cross-correlation coefficient between two time series, and the MFXDFA and centered MFXDMA algorithms have comparative performances, which outperform the forward and backward MFXDMA algorithms. For two-component autoregressive fractionally integrated moving-average processes, we also find that the MFXDFA and centered MFXDMA algorithms have comparative performances, while the forward and backward MFXDMA algorithms perform slightly worse. For binomial measures, the forward MFXDMA algorithm exhibits the best performance, the centered MFXDMA algorithms performs worst, and the backward MFXDMA algorithm outperforms the MFXDFA algorithm when the moment order q0. We apply these algorithms to the return time series of two stock market indexes and to their volatilities. For the returns, the centered MFXDMA algorithm gives the best estimates of h(xy)(q) since its h(xy)(2) is closest to 0.5, as expected, and
Ultrafast two dimensional infrared chemical exchange spectroscopy
Fayer, Michael
2011-03-01
The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific
Molecular assembly on two-dimensional materials
Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter
2017-02-01
Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging
Bringing the cross-correlation method up to date
Statler, Thomas
1995-03-01
The cross-correlation (XC) method of Tonry & Davis (1979, AJ, 84, 1511) is generalized to arbitrary parametrized line profiles. In the new algorithm the correlation function itself, rather than the observed galaxy spectrum, is fitted by the model line profile: this removes much of the complication in the error analysis caused by template mismatch. Like the Fourier correlation quotient (FCQ) method of Bender (1990, A&A, 229, 441), the inferred line profiles are, up to a normalization constant, independent of template mismatch as long as there are no blended lines. The standard reduced chi2 is a good measure of the fit of the inferred velocity distribution, largely decoupled from the fit of the spectral template. The updated XC method performs as well as other recently developed methods, with the added virtue of conceptual simplicity.
Bringing the cross-correlation method up to date
Statler, Thomas
1995-01-01
The cross-correlation (XC) method of Tonry & Davis (1979, AJ, 84, 1511) is generalized to arbitrary parametrized line profiles. In the new algorithm the correlation function itself, rather than the observed galaxy spectrum, is fitted by the model line profile: this removes much of the complication in the error analysis caused by template mismatch. Like the Fourier correlation quotient (FCQ) method of Bender (1990, A&A, 229, 441), the inferred line profiles are, up to a normalization constant, independent of template mismatch as long as there are no blended lines. The standard reduced chi(exp 2) is a good measure of the fit of the inferred velocity distribution, largely decoupled from the fit of the spectral template. The updated XC method performs as well as other recently developed methods, with the added virtue of conceptual simplicity.
Discrete Holomorphicity at Two-Dimensional Critical Points
Cardy, John
2009-12-01
After a brief review of the historical role of analyticity in the study of critical phenomena, an account is given of recent discoveries of discretely holomorphic observables in critical two-dimensional lattice models. These are objects whose correlation functions satisfy a discrete version of the Cauchy-Riemann relations. Their existence appears to have a deep relation with the integrability of the model, and they are presumably the lattice versions of the truly holomorphic observables appearing in the conformal field theory (CFT) describing the continuum limit. This hypothesis sheds light on the connection between CFT and integrability, and, if verified, can also be used to prove that the scaling limit of certain discrete curves in these models is described by Schramm-Loewner evolution (SLE).
Oriented Two-Dimensional Porous Organic Cage Crystals.
Jiang, Shan; Song, Qilei; Massey, Alan; Chong, Samantha Y; Chen, Linjiang; Sun, Shijing; Hasell, Tom; Raval, Rasmita; Sivaniah, Easan; Cheetham, Anthony K; Cooper, Andrew I
2017-08-01
The formation of two-dimensional (2D) oriented porous organic cage crystals (consisting of imine-based tetrahedral molecules) on various substrates (such as silicon wafers and glass) by solution-processing is reported. Insight into the crystallinity, preferred orientation, and cage crystal growth was obtained by experimental and computational techniques. For the first time, structural defects in porous molecular materials were observed directly and the defect concentration could be correlated with crystal growth rate. These oriented crystals suggest potential for future applications, such as solution-processable molecular crystalline 2D membranes for molecular separations. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Nematic Equilibria on a Two-Dimensional Annulus
Lewis, A. H.
2017-01-16
We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.
Effective-range dependence of two-dimensional Fermi gases
Schonenberg, L. M.; Verpoort, P. C.; Conduit, G. J.
2017-08-01
The Feshbach resonance provides precise control over the scattering length and effective range of interactions between ultracold atoms. We propose the ultratransferable pseudopotential to model effective interaction ranges -1.5 ≤kF2Reff2≤0 , where Reff is the effective range and kF is the Fermi wave vector, describing narrow to broad Feshbach resonances. We develop a mean-field treatment and exploit the pseudopotential to perform a variational and diffusion Monte Carlo study of the ground state of the two-dimensional Fermi gas, reporting on the ground-state energy, contact, condensate fraction, momentum distribution, and pair-correlation functions as a function of the effective interaction range across the BEC-BCS crossover. The limit kF2Reff2→-∞ is a gas of bosons with zero binding energy, whereas ln(kFa )→-∞ corresponds to noninteracting bosons with infinite binding energy.
Ultrabroadband two-quantum two-dimensional electronic spectroscopy
Gellen, Tobias A.; Bizimana, Laurie A.; Carbery, William P.; Breen, Ilana; Turner, Daniel B.
2016-08-01
A recent theoretical study proposed that two-quantum (2Q) two-dimensional (2D) electronic spectroscopy should be a background-free probe of post-Hartree-Fock electronic correlations. Testing this theoretical prediction requires an instrument capable of not only detecting multiple transitions among molecular excited states but also distinguishing molecular 2Q signals from nonresonant response. Herein we describe a 2Q 2D spectrometer with a spectral range of 300 nm that is passively phase stable and uses only beamsplitters and mirrors. We developed and implemented a dual-chopping balanced-detection method to resolve the weak molecular 2Q signals. Experiments performed on cresyl violet perchlorate and rhodamine 6G revealed distinct 2Q signals convolved with nonresonant response. Density functional theory computations helped reveal the molecular origin of these signals. The experimental and computational results demonstrate that 2Q electronic spectra can provide a singular probe of highly excited electronic states.
Equation of State of the Two-Dimensional Hubbard Model
Cocchi, Eugenio; Miller, Luke A.; Drewes, Jan H.; Koschorreck, Marco; Pertot, Daniel; Brennecke, Ferdinand; Köhl, Michael
2016-04-01
The subtle interplay between kinetic energy, interactions, and dimensionality challenges our comprehension of strongly correlated physics observed, for example, in the solid state. In this quest, the Hubbard model has emerged as a conceptually simple, yet rich model describing such physics. Here we present an experimental determination of the equation of state of the repulsive two-dimensional Hubbard model over a broad range of interactions 0 ≲U /t ≲20 and temperatures, down to kBT /t =0.63 (2 ) using high-resolution imaging of ultracold fermionic atoms in optical lattices. We show density profiles, compressibilities, and double occupancies over the whole doping range, and, hence, our results constitute benchmarks for state-of-the-art theoretical approaches.
Singh, Sukhdeep; Brownstein, Joel R
2016-01-01
We present first results from cross-correlating Planck CMB lensing maps with the Sloan Digital Sky Survey (SDSS) galaxy lensing shape catalog and BOSS galaxy catalogs. For galaxy position vs. CMB lensing cross-correlations, we measure the convergence signal around the galaxies in configuration space, using the BOSS LOWZ ($z\\sim0.30$) and CMASS ($z\\sim0.57$) samples. With fixed Planck 2015 cosmology, doing a joint fit with the galaxy clustering measurement, for the LOWZ (CMASS) sample we find a galaxy bias $b_g=1.75\\pm0.04$ ($1.95\\pm 0.02$) and galaxy-matter cross-correlation coefficient $r_{cc}=1.0\\pm0.2$ ($0.8\\pm 0.1$) using $20
Singh, Sukhdeep; Mandelbaum, Rachel; Brownstein, Joel R.
2017-01-01
We present results from cross-correlating Planck cosmic microwave background (CMB) lensing maps with the Sloan Digital Sky Survey (SDSS) galaxy lensing shape catalogue and BOSS (Baryon Oscillation Spectroscopic Survey) galaxy catalogues. For galaxy position versus CMB lensing cross-correlations, we measure the convergence signal around the galaxies in configuration space, using the BOSS LOWZ (z ˜ 0.30) and CMASS (z ˜ 0.57) samples. With fixed Planck 2015 cosmology, doing a joint fit with the galaxy clustering measurement, for the LOWZ (CMASS) sample we find a galaxy bias bg = 1.75 ± 0.04 (1.95 ± 0.02) and galaxy-matter cross-correlation coefficient rcc = 1.0 ± 0.2 (0.8 ± 0.1) using 20 < rp < 70 h-1 Mpc, consistent with results from galaxy-galaxy lensing. Using the same scales and including the galaxy-galaxy lensing measurements, we constrain Ωm = 0.284 ± 0.024 and relative calibration bias between the CMB lensing and galaxy lensing to be b_γ =0.82^{+0.15}_{-0.14}. The combination of galaxy lensing and CMB lensing also allows us to measure the cosmological distance ratios (with zl ˜ 0.3, zs ˜ 0.5) R=D_s D_{l,*}/D_{* D_{l,s}}=2.68± 0.29, consistent with predictions from the Planck 2015 cosmology (R=2.35). We detect the galaxy position-CMB convergence cross-correlation at small scales, rp < 1 h-1 Mpc, and find consistency with lensing by NFW haloes of mass Mh ˜ 1013 h-1 M⊙. Finally, we measure the CMB lensing-galaxy shear cross-correlation, finding an amplitude of A = 0.76 ± 0.23 (zeff = 0.35, θ < 2°) with respect to Planck 2015 Λ cold dark matter predictions (1σ level consistency). We do not find evidence for relative systematics between the CMB and SDSS galaxy lensing.
Two-dimensional visualization of cluster beams by microchannel plates
Energy Technology Data Exchange (ETDEWEB)
Khoukaz, A., E-mail: khoukaz@uni-muenster.de; Bonaventura, D.; Grieser, S.; Hergemöller, A.-K.; Köhler, E.; Täschner, A.
2014-01-21
An advanced technique for a two-dimensional real time visualization of cluster beams in a vacuum as well as of the overlap volume of cluster beams with particle accelerator beams is presented. The detection system consists of an array of microchannel plates (MCPs) in combination with a phosphor screen which is read out by a CCD camera. This setup together with the ionization of a cluster beam by an electron or ion beam allows for spatial resolved investigations of the cluster beam position, size, and intensity. Moreover, since electrically uncharged clusters remain undetected, the operation in an internal beam experiment opens the way to monitor the overlap region and thus the position and size of an accelerator beam crossing an originally electrically neutral cluster jet. The observed intensity distribution of the recorded image is directly proportional to the convolution of the spatial ion beam and cluster beam intensities and is by this a direct measure of the two-dimensional luminosity distribution. This information can directly be used for the reconstruction of vertex positions as well as for an input for numerical simulations of the reaction zone. The spatial resolution of the images is dominated by the granularity of the complete MCP device and was found to be in the order of σ≈100μm. -- Highlights: • We present a MCP system for a 2D real time visualization of cluster target beams. • With this device the vertex region of storage ring experiments can be investigated. • Time resolved 2D information about the target thickness distribution is accessible. • A spatial resolution of the MCP device of 0.1 mm was achieved. • The presented MCP system also allows for measurements on cluster masses.
Alaniz, Alex; Kallel, Faouzi; Hungerford, Ed; Ophir, Jonathan
2002-01-01
The effects of high intensity focused ultrasound (HIFU)-induced continuously varying thermal gradients on sound ray propagation were modeled theoretically. This modeling was based on Fermat's variational principle of least time for rays propagating in a continuously varying thermal gradient described by a radially symmetric heat equation. Such thermal lenses dynamically affect HIFU beam focusing, and simultaneously create ultrasonic geometric and intensity distortions and artifacts in monitoring devices. Techniques which are based upon ultrasonic cross-correlation methods, such as elastography and two-dimensional temperature estimation, also suffer distortion effects and generate artifacts.
Fluorescence cross-correlation spectroscopy using single wavelength laser
Institute of Scientific and Technical Information of China (English)
Chao XIE; Chaoqing DONG; Jicun REN
2009-01-01
In this paper, we first introduced the basic principle of fluorescence cross-correlation spectroscopy (FCCS) and then established an FCCS setup using a single wavelength laser. We systematically optimized the setup, and the detection volume reached about 0.7 fL. The home-built setup was successfully applied for the study of the binding reaction of human immunoglobulin G with goat antihuman immunoglobulin G. Using quantum dots (745 nm emission wavelength) and Rhodamine B (580 nm emission wavelength) as labeling probes and 532 nm laser beam as an excitation source, the cross-talk effect was almost completely suppressed. The molecule numbers in a highly focused volume, the concentration, and the diffusion time and hydrodynamic radii of the reaction products can be determined by FCCS system.
Institute of Scientific and Technical Information of China (English)
张许; 刘买利
1999-01-01
It has been a continuous interest in measurement of homonuclear scalar coupling constants using two-dimensional NMR spectroscopy because large chemical shift dispersions can efficiently increase spectral resolution. Numerous methods have been developed using homo- and hetero-nuclear correlation and successfully used for a variety of samples. Here we demonstrate an alternative approach based on maximum-quantum correlation NMR spectroscopy (MAXY NMR). The new method combines the advantages of two-dimensional chemical shift dispersion and the spectral editing feature of the MAXY approach and results in separated correlations of CH, CH2, and CH3 groups in a single experiment with enhanced chemical shift resolution. The method had been tested on a middle-sized molecule, dexamethasone, and a tridecapeptide, neurotensin.%偶合常数是一个重要的NMR参数,其数值与分子中化学键的二面角有关,可以为分子结构研究提供很重要的信息.多维NMR谱由于具有较大的化学位移分辨率,因此常常被用来测定同核或异核自旋-自旋偶合常数.本文介绍了利用最高量子相关技术(MAXY)测定同核偶合常数的方法.MAXY是最近发展的一种多维NMR谱编辑技术,可以使不同官能团(CH, CH2, CH3)的相关峰分布于不同的图谱区域,因此比常规的二维谱具有更高的化学位移分辨率.而且被分离开来的NMR相关峰呈吸收性线型,能清楚地展示各自的偶合分裂特征,可以直接用于测定偶合常数.
Two-dimensional Block of Spatial Convolution Algorithm and Simulation
Mussa Mohamed Ahmed
2012-01-01
This paper proposes an algorithm based on sub image-segmentation strategy. The proposed scheme divides a grayscale image into overlapped 6×6 blocks each of which is segmented into four small 3x3 non-overlapped sub-images. A new spatial approach for efficiently computing 2-dimensional linear convolution or cross-correlation between suitable flipped and fixed filter coefficients (sub image for cross-correlation) and corresponding input sub image is presented. Computation of convolution is itera...
Directory of Open Access Journals (Sweden)
V.M. Emelyanov
2015-12-01
Full Text Available Parameters of two-dimensional analytical model of an assessment of crossing of ellipses of distribution at recognition of nanoparticles of colloidal silver are given in polyair fibers on multidimensional correlation components of the Raman ranges with control according to polarizing characteristics. Reliability of recognition of nanoparticles increased more than by 1000 times and was estimated on joint probability of normal distributions of intensivnost of the Raman spectrograms of nanoparticles of silver on polyair fibers depending on longitudinal and cross polarization of laser radiation on all range of a range with the analysis of 9 main peaks.
Bunch Length Measurements With Laser/SR Cross-Correlation
Energy Technology Data Exchange (ETDEWEB)
Miller, Timothy; /Stanford U., Phys. Dept.; Daranciang, Dan; /Stanford U., Phys. Dept.; Lindenberg, Aaron; /Stanford U., Phys. Dept.; Corbett, Jeff; /SLAC; Fisher, Alan; /SLAC; Goodfellow, John; /SLAC; Huang, Xiaobiao; /SLAC; Mok, Walter; /SLAC; Safranek, James; /SLAC; Wen, Haidan; /SLAC
2012-07-06
By operating SPEAR3 in low-{alpha} mode the storage ring can generate synchrotron radiation pulses of order 1ps. Applications include pump-probe x-ray science and the production of THz radiation in the CSR regime. Measurements of the bunch length are difficult, however, because the light intensity is low and streak cameras typically provide resolution of only a few ps. Tests are now underway to resolve the short bunch length using cross-correlation between a 60-fs Ti:Sapphire laser and the visible SR beam in a BBO crystal. In this paper we report on the experimental setup, preliminary measurements and prospects for further improvement.
Bunch Length Measurements With Laser/SR Cross-Correlation
Energy Technology Data Exchange (ETDEWEB)
Miller, Timothy; /Stanford U., Phys. Dept.; Daranciang, Dan; /Stanford U., Phys. Dept.; Lindenberg, Aaron; /Stanford U., Phys. Dept.; Corbett, Jeff; /SLAC; Fisher, Alan; /SLAC; Goodfellow, John; /SLAC; Huang, Xiaobiao; /SLAC; Mok, Walter; /SLAC; Safranek, James; /SLAC; Wen, Haidan; /SLAC
2012-07-06
By operating SPEAR3 in low-{alpha} mode the storage ring can generate synchrotron radiation pulses of order 1ps. Applications include pump-probe x-ray science and the production of THz radiation in the CSR regime. Measurements of the bunch length are difficult, however, because the light intensity is low and streak cameras typically provide resolution of only a few ps. Tests are now underway to resolve the short bunch length using cross-correlation between a 60-fs Ti:Sapphire laser and the visible SR beam in a BBO crystal. In this paper we report on the experimental setup, preliminary measurements and prospects for further improvement.
Dutta, Srimonti; Ghosh, Dipak; Chatterjee, Sucharita
2016-12-01
The manuscript studies autocorrelation and cross correlation of SENSEX fluctuations and Forex Exchange Rate in respect to Indian scenario. Multifractal detrended fluctuation analysis (MFDFA) and multifractal detrended cross correlation analysis (MFDXA) were employed to study the correlation between the two series. It was observed that the two series are strongly cross correlated. The change of degree of cross correlation with time was studied and the results are interpreted qualitatively.
Study of cross-correlation in a self-affine time series of taxi accidents
Zebende, G. F.; da Silva, P. A.; Machado Filho, A.
2011-05-01
We study in this paper the cross-correlation between self-affine time series of real variables recorded simultaneously in cases of taxi accidents. For this purpose, we apply the DCCA method and show that the cross-correlation can be divided into three distinct groups, if we look for the detrended covariance function, i.e., long-range cross-correlations, short-range cross-correlations and no cross-correlations. Finally, it will be seen that the detrended covariance function is robust, if compared with other methods, in identifying these types of cross-correlations.
Accelerating Radio Astronomy Cross-Correlation with Graphics Processing Units
Clark, M A; Greenhill, L J
2011-01-01
We present a highly parallel implementation of the cross-correlation of time-series data using graphics processing units (GPUs), which is scalable to hundreds of independent inputs and suitable for the processing of signals from "Large-N" arrays of many radio antennas. The computational part of the algorithm, the X-engine, is implementated efficiently on Nvidia's Fermi architecture, sustaining up to 79% of the peak single precision floating-point throughput. We compare performance obtained for hardware- and software-managed caches, observing significantly better performance for the latter. The high performance reported involves use of a multi-level data tiling strategy in memory and use of a pipelined algorithm with simultaneous computation and transfer of data from host to device memory. The speed of code development, flexibility, and low cost of the GPU implementations compared to ASIC and FPGA implementations have the potential to greatly shorten the cycle of correlator development and deployment, for case...
Calibrating photometric redshift distributions with cross-correlations
Schulz, A E
2009-01-01
The next generation of proposed galaxy surveys will increase the number of galaxies with photometric redshifts by two orders of magnitude, drastically expanding both redshift range and detection threshold from the current state of the art. Obtaining spectra for a fair sub-sample of this new data could be cumbersome and expensive. However, adequate calibration of the true redshift distribution of galaxies is vital to tapping the potential of these surveys. We examine a promising alternative to direct spectroscopic follow up: calibration of the redshift distribution of photometric galaxies via cross-correlation with an overlapping spectroscopic survey whose members trace the same density field. We review the theory, develop a pipeline, apply it to mock data from N-body simulations, and examine the properties of this redshift distribution estimator. We demonstrate that the method is effective, but the estimator is weakened by two factors. 1) The correlation function of the spectroscopic sample must be measured i...
Two-Dimensional Distributed Velocity Collision Avoidance
2014-02-11
trigonometry . For convex polygon agents, the tangents are found by iterating over each point, calculating the z-component of the cross product between a...the modifications to the basic VO to favor the source bot’s current velocity (i.e., encourage the bot to change course as little as possible). To...the source agent on a collision course . However, if ignore factors are used, then A2 is more important (i.e., has a lower ignore factor), and so the
Pseudo-two-dimensional random dimer lattices
Energy Technology Data Exchange (ETDEWEB)
Naether, U., E-mail: naether@unizar.es [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC – Universidad de Zaragoza, 50009 Zaragoza (Spain); Mejía-Cortés, C.; Vicencio, R.A. [Departamento de Física and MSI – Nucleus for Advanced Optics, Center for Optics and Photonics (CEFOP), Facultad de Ciencias, Universidad de Chile, Santiago (Chile)
2015-06-05
We study the long-time wave transport in correlated and uncorrelated disordered 2D arrays. When a separation of dimensions is applied to the model, we find that the previously predicted 1D random dimer phenomenology also appears in so-called pseudo-2D arrays. Therefore, a threshold behavior is observed in terms of the effective size for eigenmodes, as well as in long-time dynamics. A minimum system size is required to observe this threshold, which is very important when considering a possible experimental realization. For the long-time evolution, we find that for correlated lattices a super-diffusive long-range transport is observed. For completely uncorrelated disorder 2D transport becomes sub-diffusive within the localization length and for random binary pseudo-2D arrays localization is observed.
Volumetric and two-dimensional image interpretation show different cognitive processes in learners
van der Gijp, Anouk; Ravesloot, C.J.; van der Schaaf, Marieke F; van der Schaaf, Irene C; Huige, Josephine C B M; Vincken, Koen L; Ten Cate, Olle Th J; van Schaik, JPJ
2015-01-01
RATIONALE AND OBJECTIVES: In current practice, radiologists interpret digital images, including a substantial amount of volumetric images. We hypothesized that interpretation of a stack of a volumetric data set demands different skills than interpretation of two-dimensional (2D) cross-sectional imag
Cross-Correlating 2D and 3D Galaxy Surveys
Energy Technology Data Exchange (ETDEWEB)
Passaglia, Samuel [Chicago U., KICP; Manzotti, Alessandro [Chicago U., KICP; Dodelson, Scott [Fermilab
2017-02-09
Galaxy surveys probe both structure formation and the expansion rate, making them promising avenues for understanding the dark universe. Photometric surveys accurately map the 2D distribution of galaxy positions and shapes in a given redshift range, while spectroscopic surveys provide sparser 3D maps of the galaxy distribution. We present a way to analyse overlapping 2D and 3D maps jointly and without loss of information. We represent 3D maps using spherical Fourier-Bessel (sFB) modes, which preserve radial coverage while accounting for the spherical sky geometry, and we decompose 2D maps in a spherical harmonic basis. In these bases, a simple expression exists for the cross-correlation of the two fields. One very powerful application is the ability to simultaneously constrain the redshift distribution of the photometric sample, the sample biases, and cosmological parameters. We use our framework to show that combined analysis of DESI and LSST can improve cosmological constraints by factors of ${\\sim}1.2$ to ${\\sim}1.8$ on the region where they overlap relative to identically sized disjoint regions. We also show that in the overlap of DES and SDSS-III in Stripe 82, cross-correlating improves photo-$z$ parameter constraints by factors of ${\\sim}2$ to ${\\sim}12$ over internal photo-$z$ reconstructions.
Directionality and Resultativity: The Cross-linguistic Correlation Revisited
Directory of Open Access Journals (Sweden)
Minjeong Son
2007-12-01
Full Text Available Recent approaches to the cross-linguistic variation in the expressions of directed motion assume a tight correlation between adjectival resultative and directed motion constructions (e.g., Beck and Snyder 2001, Mateu and Rigau 2001; 2002, McIntyre 2004, Beavers et al. 2004. Beck and Snyder (2001, in particular, argue that languages that allow adjectival resultatives also allow directed motion with goal PP (or telic Path PP based on the compounding parameter proposed by Snyder (1995; 2001. This paper, however, shows that such ‘macro’-parametric approaches to the cross-linguistic variation (in directed motion fail when individual languages are investigated in detail. Based on Korean, Japanese, Hebrew, Czech, and Indonesian, I show that there is no necessary correlation between directed motion (i.e., goal PP constructions and the availability of resultative phrases, and that the previous parameter approaches face challenges in explaining the facts drawn from these languages. I further show that the variation in directed motion is better explained by careful examination of individual adpositions that differ from one language (e.g., English to another (e.g., Korean.
Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase
Lu, Jian; Hwang, Harold Y; Ofori-Okai, Benjamin K; Fleischer, Sharly; Nelson, Keith A
2016-01-01
Ultrafast two-dimensional spectroscopy utilizes correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum. Its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. Here we report ultrafast two-dimensional terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by three terahertz field-dipole interactions. The nonlinear time-domain orientation signals are mapped into the frequency domain in two-dimensional rotational spectra which reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.
Origin of the inverse energy cascade in two-dimensional quantum turbulence
Skaugen, Audun
2016-01-01
We unravel the intimate connection between fundamental characteristics of two dimensional turbulence, i.e. the large-scale coherent structures and the inverse energy cascade. We propose a driven, dissipative point vortex model that is able to capture the dynamics of two-dimensional quantum turbulence by the emergent clustering of same-sign vortices, which form a non-equilibrium analogue of Onsager vortex equilibria. The inverse energy cascade developing in a statistically neutral system originates from this clustering of co-rotating and counter-rotating vortices. The Kolmogorov energy spectrum $k^{-5/3}$ is attributed to the scale-free correlations in the vorticity field fluctuations, here measured by the weighted pair correlation function that has a power-law decay as $r^{-4/3}$ on inertial separation lengthscales $r$. This scale-invariant statistics of vorticity, attributed to a conformal symmetry of two-dimensional classical turbulence, draws further analogies between classical and quantum turbulence beyon...
The Chandrasekhar's Equation for Two-Dimensional Hypothetical White Dwarfs
De, Sanchari
2014-01-01
In this article we have extended the original work of Chandrasekhar on the structure of white dwarfs to the two-dimensional case. Although such two-dimensional stellar objects are hypothetical in nature, we strongly believe that the work presented in this article may be prescribed as Master of Science level class problem for the students in physics.
Beginning Introductory Physics with Two-Dimensional Motion
Huggins, Elisha
2009-01-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…
Spatiotemporal surface solitons in two-dimensional photonic lattices.
Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S
2007-11-01
We analyze spatiotemporal light localization in truncated two-dimensional photonic lattices and demonstrate the existence of two-dimensional surface light bullets localized in the lattice corners or the edges. We study the families of the spatiotemporal surface solitons and their properties such as bistability and compare them with the modes located deep inside the photonic lattice.
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;
2004-01-01
Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...
Mechanics of Apparent Horizon in Two Dimensional Dilaton Gravity
Cai, Rong-Gen
2016-01-01
In this article, we give a definition of apparent horizon in a two dimensional general dilaton gravity theory. With this definition, we construct the mechanics of the apparent horizon by introducing a quasi-local energy of the theory. Our discussion generalizes the apparent horizons mechanics in general spherically symmetric spactimes in four or higher dimensions to the two dimensional dilaton gravity case.
Effect of Cross-Correlation on Geomagnetic Forecast Accuracies
Kuang, Weijia; Wei, Zigang; Tangborn, Andrew
2011-01-01
Surface geomagnetic observation can determine up to degree L = 14 time-varying spherical harmonic coefficients of the poloidal magnetic field. Assimilation of these coefficients to numerical dynamo simulation could help us understand better the dynamical processes in the Earth's outer core, and to provide more accurate forecast of geomagnetic secular variations (SV). In our previous assimilation studies, only the poloidal magnetic field in the core is corrected by the observations in the analysis. Unobservable core state variables (the toroidal magnetic field and the core velocity field) are corrected via the dynamical equations of the geodynamo. Our assimilation experiments show that the assimilated core state converges near the CMB, implying that the dynamo state is strongly constrained by surface geomagnetic observations, and is pulled closer to the truth by the data. We are now carrying out an ensemble of assimilation runs with 1000 years of geomagnetic and archeo/paleo magnetic record. In these runs the cross correlation between the toroidal and the poloidal magnetic fields is incorporated into the analysis. This correlation is derived from the physical boundary conditions of the toroidal field at the core-mantle boundary (CMB). The assimilation results are then compared with those of the ensemble runs without the cross-correlation, aiming at understanding two fundamental issues: the effect of the crosscorrelation on (1) the convergence of the core state, and (2) the SV prediction accuracies. The constrained dynamo solutions will provide valuable insights on interpreting the observed SV, e.g. the near-equator magnetic flux patches, the core-mantle interactions, and possibly other geodynamic observables.
Cross-correlations between Baltic Dry Index and crude oil prices
Ruan, Qingsong; Wang, Yao; Lu, Xinsheng; Qin, Jing
2016-07-01
This paper examines the cross-correlation properties of Baltic Dry Index (BDI) and crude oil prices using cross-correlation statistics test and multifractal detrended cross-correlation analysis (MF-DCCA). The empirical results show that the cross-correlations between BDI and crude oil prices are significantly multifractal. By introducing the concept of a "crossover", we find that the cross-correlations are strongly persistent in the short term and weakly anti-persistent in the long term. Moreover, cross-correlations of all kinds of fluctuations are persistent in the short time while cross-correlations of small fluctuations are persistent and those of large fluctuations are anti-persistent in the long term. We have also verified that the multifractality of the cross-correlations of BDI and crude oil prices is both attributable to the persistence of fluctuations of time series and fat-tailed distributions.
Molecular rattling in two-dimensional fluids: Simulations and theory
Variyar, Jayasankar E.; Kivelson, Daniel; Tarjus, Gilles; Talbot, Julian
1992-01-01
We have carried out molecular dynamic simulations over a range of densities for two-dimensional fluids consisting of hard, soft, and Lennard-Jones disks. For comparison we have also carried out simulations for the corresponding systems in which all but one particle are frozen in position. We have studied the velocity autocorrelation functions and the closely related velocity-sign autocorrelation functions, and have examined the probabilities per unit time that a particle will undergo a first velocity sign reversal after an elapsed time t measured alternately from the last velocity reversal or from a given arbitrary time. At all densities studied, the first of these probabilities per unit time is zero at t=0 and rises to a maximum at a later time, but as the hardness of the disks is increased, the maximum moves in toward t→0. This maximum can be correlated with the ``negative'' dip observed in the velocity correlation functions when plotted versus time. Our conclusion is that all these phenomena can be explained qualitatively on the basis of a model where memory does not extend back beyond the last velocity reversal. However, at high density, the velocity-sign-autocorrelation function not only shows a negative dip (which is explained by the model) but also a second ``oscillation'' which is not described, even qualitatively, by the model. We conclude that the first dip in the velocity and velocity-sign correlation functions can occur even if there are no correlated or coherent librations, but the existence of a ``second'' oscillation is a better indication of such correlations.
Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations
Directory of Open Access Journals (Sweden)
Chunrong Zhu
2016-11-01
Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.
Institute of Scientific and Technical Information of China (English)
江艳; 武培怡
2008-01-01
用紫外一可见光谱(UV-Vis spectroscopy)表征载有布洛芬(ibuprofen)和吡罗昔康(piroxicam)复方药物的聚甲基丙烯酸甲酯(PMMA)膜在磷酸盐缓冲溶液(PBS)中的释放过程,观察两种药物在时间外扰下的释放情况.随着时间的推移,两种药物都保持了持久的释放.同时,通过二维紫外相关光谱(two-dimensional UV correlation spectroscopy)米进一步探究两种药物从PMMA膜内释放到缓冲溶液中的先后顺序,推断出布洛芬与PMMA之间形成了一定的氢键相互作用,导致释放速度变缓.复方载药膜的红外光谱证明了这种相互作用的存在,验证了二维紫外相关光谱在药物缓释领域的潜在应用价值.
Using waveform cross correlation for automatic recovery of aftershock sequences
Bobrov, Dmitry; Kitov, Ivan; Rozhkov, Mikhail
2017-04-01
Aftershock sequences of the largest earthquakes are difficult to recover. There can be several hundred mid-sized aftershocks per hour within a few hundred km from each other recorded by the same stations. Moreover, these events generate thousands of reflected/refracted phases having azimuth and slowness close to those from the P-waves. Therefore, aftershock sequences with thousands of events represent a major challenge for automatic and interactive processing at the International Data Centre (IDC) of the Comprehensive Nuclear-Test-Ban Organization (CTBTO). Standard methods of detection and phase association do not use all information contained in signals. As a result, wrong association of the first and later phases, both regular and site specific, produces enormous number of wrong event hypotheses and destroys valid event hypotheses in automatic IDC processing. In turn, the IDC analysts have to reject false and recreate valid hypotheses wasting precious human resources. At the current level of the IDC catalogue completeness, the method of waveform cross correlation (WCC) can resolve most of detection and association problems fully utilizing the similarity of waveforms generated by aftershocks. Array seismic stations of the International monitoring system (IMS) can enhance the performance of the WCC method: reduce station-specific detection thresholds, allow accurate estimate of signal attributes, including relative magnitude, and effectively suppress irrelevant arrivals. We have developed and tested a prototype of an aftershock tool matching all IDC processing requirements and merged it with the current IDC pipeline. This tool includes creation of master events consisting of real or synthetic waveform templates at ten and more IMS stations; cross correlation (CC) of real-time waveforms with these templates, association of arrivals detected at CC-traces in event hypotheses; building events matching the IDC quality criteria; and resolution of conflicts between events
Non-Stationary Effects and Cross Correlations in Solar Activity
Nefedyev, Yuri; Panischev, Oleg; Demin, Sergey
2016-07-01
In this paper within the framework of the Flicker-Noise Spectroscopy (FNS) we consider the dynamic properties of the solar activity by analyzing the Zurich sunspot numbers. As is well-known astrophysics objects are the non-stationary open systems, whose evolution are the quite individual and have the alternation effects. The main difference of FNS compared to other related methods is the separation of the original signal reflecting the dynamics of solar activity into three frequency bands: system-specific "resonances" and their interferential contributions at lower frequencies, chaotic "random walk" ("irregularity-jump") components at larger frequencies, and chaotic "irregularity-spike" (inertial) components in the highest frequency range. Specific parameters corresponding to each of the bands are introduced and calculated. These irregularities as well as specific resonance frequencies are considered as the information carriers on every hierarchical level of the evolution of a complex natural system with intermittent behavior, consecutive alternation of rapid chaotic changes in the values of dynamic variables on small time intervals with small variations of the values on longer time intervals ("laminar" phases). The jump and spike irregularities are described by power spectra and difference moments (transient structural functions) of the second order. FNS allows revealing the most crucial points of the solar activity dynamics by means of "spikiness" factor. It is shown that this variable behaves as the predictor of crucial changes of the sunspot number dynamics, particularly when the number comes up to maximum value. The change of averaging interval allows revealing the non-stationary effects depending by 11-year cycle and by inside processes in a cycle. To consider the cross correlations between the different variables of solar activity we use the Zurich sunspot numbers and the sequence of corona's radiation energy. The FNS-approach allows extracting the
Paul, Sudeshna; Friedman, Alan M; Bailey-Kellogg, Chris; Craig, Bruce A
2013-04-01
The interatomic distance distribution, P(r), is a valuable tool for evaluating the structure of a molecule in solution and represents the maximum structural information that can be derived from solution scattering data without further assumptions. Most current instrumentation for scattering experiments (typically CCD detectors) generates a finely pixelated two-dimensional image. In contin-uation of the standard practice with earlier one-dimensional detectors, these images are typically reduced to a one-dimensional profile of scattering inten-sities, I(q), by circular averaging of the two-dimensional image. Indirect Fourier transformation methods are then used to reconstruct P(r) from I(q). Substantial advantages in data analysis, however, could be achieved by directly estimating the P(r) curve from the two-dimensional images. This article describes a Bayesian framework, using a Markov chain Monte Carlo method, for estimating the parameters of the indirect transform, and thus P(r), directly from the two-dimensional images. Using simulated detector images, it is demonstrated that this method yields P(r) curves nearly identical to the reference P(r). Furthermore, an approach for evaluating spatially correlated errors (such as those that arise from a detector point spread function) is evaluated. Accounting for these errors further improves the precision of the P(r) estimation. Experimental scattering data, where no ground truth reference P(r) is available, are used to demonstrate that this method yields a scattering and detector model that more closely reflects the two-dimensional data, as judged by smaller residuals in cross-validation, than P(r) obtained by indirect transformation of a one-dimensional profile. Finally, the method allows concurrent estimation of the beam center and Dmax, the longest interatomic distance in P(r), as part of the Bayesian Markov chain Monte Carlo method, reducing experimental effort and providing a well defined protocol for these
Cross Correlation versus Mutual Information for Image Mosaicing
Directory of Open Access Journals (Sweden)
Sherin Ghannam
2013-12-01
Full Text Available This paper reviews the concept of image mosaicing and presents a comparison between two of the most common image mosaicing techniques. The first technique is based on normalized cross correlation (NCC for registering overlapping 2D images of a 3D scene. The second is based on mutual information (MI. The experimental results demonstrate that the two techniques have a similar performance in most cases but there are some interesting differences. The choice of a distinctive template is critical when working with NCC. On the other hand, when using MI, the registration procedure was able to provide acceptable performance even without distinctive templates. But generally the performance when using MI with large rotation angles was not accurate as with NCC.
Investigation Of The Diffuse IGM By Cross-Correlation Studies
Farnsworth, Damon; Brown, Shea; Rudnick, Lawrence
2009-12-01
We present results from the first cross-correlation search for the synchrotron component of the diffuse intergalactic medium (IGM) in filamentary large scale structure (LSS). We used the low resolution (36') Bonn survey at 21cm, with the infrared 2MASS catalog as a tracer of the LSS. Synchrotron emission likely results from LSS formation shocks and feedback from AGN and galactic winds [2]. We determined 3σ upper limits to the diffuse emission in units of flux per galaxy; these correspond to filament equipartition magnetic fields as low as 0.2 μG. The detection threshold for the average (peak) filament brightness is 1 (7) mK for 0.03Bonn survey, demonstrating the power of this technique.
Cross-correlation cosmography with HI intensity mapping
Pourtsidou, Alkistis; Crittenden, Robert
2015-01-01
The cross-correlation of a foreground density field with two different background convergence fields can be used to measure cosmographic distance ratios and constrain dark energy parameters. We investigate the possibility of performing such measurements using a combination of optical galaxy surveys and HI intensity mapping surveys, with emphasis on the performance of the planned Square Kilometre Array (SKA). Using HI intensity mapping to probe the foreground density tracer field and/or the background source fields has the advantage of excellent redshift resolution and a longer lever arm achieved by using the lensing signal from high redshift background sources. Our results show that, for our best SKA-optical configuration of surveys, a constant equation of state for dark energy can be constrained to $\\simeq 8\\%$ for a sky coverage $f_{\\rm sky}=0.5$ and assuming a $\\sigma(\\Omega_{\\rm DE})=0.03$ prior for the dark energy density parameter.
Cross-correlations of ambient noise recorded by accelerometers.
Rábade García, S. E.; Ramirez-Guzman, L.
2014-12-01
We investigate the ambient noise cross-correlations obtained by using properly corrected accelerometric recordings, and determine velocity structure in central Mexico based on a dispersion analysis. The data used comprise ten months of continuous recordings - from April 2013 to January 2014 - of ambient seismic noise at stations operated by the National Seismological Service of Mexico and the Engineering Strong Ground Motion Network of the National Autonomous University of Mexico (UNAM). The vertical component of ambient noise was base-line corrected, filtered, and properly integrated before extracting Green's functions (GF), which were compared successfully against GF obtained using recordings from broadband velocity sensors. In order to obtain dispersion curves, we estimated group and phase velocities applying the FTAN analysis technique and obtained s-wave velocity profiles at selected regions. We conclude and highlight that the use of widely deployed accelerographs to conduct regional studies using ambient noise tomography is feasible
Cross-correlation Aided Transport in Stochastically Driven Accretion Flows
Nath, Sujit Kumar
2014-01-01
Origin of linear instability resulting in rotating sheared accretion flows has remained a controversial subject for long. While some explanations of such non-normal transient growth of disturbances in the Rayleigh stable limit were available for magnetized accretion flows, similar instabilities in absence of magnetic perturbations remained unexplained. This dichotomy was resolved in two recent publications by Chattopadhyay, {\\it et al} where it was shown that such instabilities, especially for non-magnetized accretion flows, were introduced through interaction of the inherent stochastic noise in the system (even a \\enquote{cold} accretion flow at 3000K is too \\enquote{hot} in the statistical parlance and is capable of inducing strong thermal modes) with the underlying Taylor-Couette flow profiles. Both studies, however, excluded the additional energy influx (or efflux) that could result from nonzero cross-correlation of a noise perturbing the velocity flow, say, with the noise that is driving the vorticity fl...
Theory of two-dimensional ESR with nuclear modulation
Gamliel, Dan; Freed, Jack H.
A formalism for computing 2D ESR lineshapes with nuclear modulation is developed in a form which is useful for planning phase cycles for particular purposes. A simple method of processing spectra, utilizing quadrature detection, is shown to enhance the selectivity of the phase cycling techniques. Computed ESR-COSY, ESR-SECSY, and 2D ELDOR lineshapes are presented for several kinds of polycrystalline and single-crystal samples which exhibit nuclear modulation, due to one or several nuclei. The two-dimensional methods are found to give more detailed structural information than the corresponding ESEEM spectra. New phase cycles are found to eliminate completely all transverse and axial peaks in 2D ELDOR and in ESR-COSY, and at the same time eliminate all artifacts arising from incomplete image rejection. Other phase cycles are presented for selecting in those experiments only axial peaks, for measuring T1. It is also shown how selective phase cycles may help to distinguish between coherent and exchange cross peaks. In the special case of nitroxides in typical Zeeman fields, there are no significant nuclear modulation effects from the 14N nuclear spin interaction, but those from the protons (or deuterons) will, in general, be significant.
Spatial statistics of magnetic field in two-dimensional chaotic flow in the resistive growth stage
Kolokolov, I. V.
2017-03-01
The correlation tensors of magnetic field in a two-dimensional chaotic flow of conducting fluid are studied. It is shown that there is a stage of resistive evolution where the field correlators grow exponentially with time. The two- and four-point field correlation tensors are computed explicitly in this stage in the framework of Batchelor-Kraichnan-Kazantsev model. They demonstrate strong temporal intermittency of the field fluctuations and high level of non-Gaussianity in spatial field distribution.
Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice
Institute of Scientific and Technical Information of China (English)
XU Quan; QIANG Tian
2009-01-01
We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling.Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive)and the center of the two-dimensional gap breather (on a light or a heavy atom).
Are weed patches stable in location? Application of an explicitly two-dimensional methodology
Heijting, S.; Werf, van der W.; Stein, A.; Kropff, M.J.
2007-01-01
Field observations were made in three years continuous maize cultivation in the Netherlands to study the spatial pattern and stability of spatial pattern over time in agricultural weeds. Two-dimensional correlograms were made, using data from single years, to characterise spatial correlation and pat
Coherent electron dynamics in a two-dimensional random system with mobility edges
de Moura, F. A. B. F.; Lyra, M. L.; Dominguez-Adame, F.; Malyshev, V.A.
2007-01-01
We study numerically the dynamics of a one-electron wavepacket in a two-dimensional random lattice with long-range correlated diagonal disorder in the presence of a uniform electric field. The time-dependent Schrodinger equation is used for this purpose. We find that the wavepacket displays Bloch-li
Are weed patches stable in location? Application of an explicitly two-dimensional methodology
Heijting, S.; Werf, van der W.; Stein, A.; Kropff, M.J.
2007-01-01
Field observations were made in three years continuous maize cultivation in the Netherlands to study the spatial pattern and stability of spatial pattern over time in agricultural weeds. Two-dimensional correlograms were made, using data from single years, to characterise spatial correlation and
Energy Technology Data Exchange (ETDEWEB)
Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Saavedra, Joel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)
2015-02-01
We study massive charged fermionic perturbations in the background of a charged two-dimensional dilatonic black hole, and we solve the Dirac equation analytically. Then we compute the reflection and transmission coefficients and the absorption cross section for massive charged fermionic fields, and we show that the absorption cross section vanishes at the low- and high-frequency limits. However, there is a range of frequencies where the absorption cross section is not null. Furthermore, we study the effect of the mass and electric charge of the fermionic field over the absorption cross section. (orig.)
Nonlinear ultrasonic measurements based on cross-correlation filtering techniques
Yee, Andrew; Stewart, Dylan; Bunget, Gheorghe; Kramer, Patrick; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya
2017-02-01
Cyclic loading of mechanical components promotes the formation of dislocation dipoles in metals, which can serve as precursors to crack nucleation and ultimately lead to failure. In the laboratory setting, an acoustic nonlinearity parameter has been assessed as an effective indicator for characterizing the progression of fatigue damage precursors. However, the need to use monochromatic waves of medium-to-high acoustic energy has presented a constraint, making it problematic for use in field applications. This paper presents a potential approach for field measurement of acoustic nonlinearity by using general purpose ultrasonic pulser-receivers. Nonlinear ultrasonic measurements during fatigue testing were analyzed by the using contact and immersion pulse-through method. A novel cross-correlation filtering technique was developed to extract the fundamental and higher harmonic waves from the signals. As in the case of the classic harmonic generation, the nonlinearity parameters of the second and third harmonics indicate a strong correlation with fatigue cycles. Consideration was given to potential nonlinearities in the measurement system, and tests have confirmed that measured second harmonic signals exhibit a linear dependence on the input signal strength, further affirming the conclusion that this parameter relates to damage precursor formation from cyclic loading.
Blind Cartography for Side Channel Attacks: Cross-Correlation Cartography
Directory of Open Access Journals (Sweden)
Laurent Sauvage
2012-01-01
Full Text Available Side channel and fault injection attacks are major threats to cryptographic applications of embedded systems. Best performances for these attacks are achieved by focusing sensors or injectors on the sensible parts of the application, by means of dedicated methods to localise them. Few methods have been proposed in the past, and all of them aim at pinpointing the cryptoprocessor. However it could be interesting to exploit the activity of other parts of the application, in order to increase the attack's efficiency or to bypass its countermeasures. In this paper, we present a localisation method based on cross-correlation, which issues a list of areas of interest within the attacked device. It realizes an exhaustive analysis, since it may localise any module of the device, and not only those which perform cryptographic operations. Moreover, it also does not require a preliminary knowledge about the implementation, whereas some previous cartography methods require that the attacker could choose the cryptoprocessor inputs, which is not always possible. The method is experimentally validated using observations of the electromagnetic near field distribution over a Xilinx Virtex 5 FPGA. The matching between areas of interest and the application layout in the FPGA floorplan is confirmed by correlation analysis.
Imaging hemodynamic changes in preterm infant brains with two-dimensional diffuse optical tomography
Gao, Feng; Ma, Yiwen; Yang, Fang; Zhao, Huijuan; Jiang, Jingying; Kusaka, Takashi; Ueno, Masanori; Yamada, Yukio
2008-02-01
We present our preliminary results on two-dimensional (2-D) optical tomographic imaging of hemodynamic changes of two preterm infant brains in different ventilation settings conditions. The investigations use the established two-wavelength, 16-channel time-correlated single photon counting system for the detection, and the generalized pulse spectrum technique based algorithm for the image reconstruction. The experiments demonstrate that two-dimensional diffuse optical tomography may be a potent and relatively simple way of investigating the functions and neural development of infant brains in the perinatal period.
Magnetic-field-induced suppression of tunnelling into a two-dimensional electron system
Energy Technology Data Exchange (ETDEWEB)
Reker, T.; Chung, Y.C.; Im, H.; Klipstein, P.C.; Nicholas, R.J. [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford (United Kingdom); Shtrikman, Hadas [Braun Center for Submicron Research, Weizmann Institute of Science, Rehovot (Israel)
2002-06-10
Tunnelling between a three-dimensional emitter contact and a two-dimensional electron system (2DES) is studied in magnetic fields aligned perpendicular to the barriers of a double-barrier heterostructure. The differential conductance around the Fermi energy exhibits a magnetic-field-dependent pseudogap. This pseudogap is shown to be thermally activated and to depend on the two-dimensional electron density. We attribute this pseudogap to an extra energy that an electron tunnelling from the emitter into the 2DES has to overcome as a result of the correlated state of the 2DES. (author)
Further two-dimensional code development for Stirling space engine components
Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.
1990-01-01
The development of multidimensional models of Stirling engine components is described. Two-dimensional parallel plate models of an engine regenerator and a cooler were used to study heat transfer under conditions of laminar, incompressible oscillating flow. Substantial differences in the nature of the temperature variations in time over the cycle were observed for the cooler as contrasted with the regenerator. When the two-dimensional cooler model was used to calculate a heat transfer coefficient, it yields a very different result from that calculated using steady-flow correlations. Simulation results for the regenerator and the cooler are presented.
Two dimensional black-hole as a topological coset model of c=1 string theory
Mukhi, S
1993-01-01
We show that a special superconformal coset (with $\\hat c =3$) is equivalent to $c=1$ matter coupled to two dimensional gravity. This identification allows a direct computation of the correlation functions of the $c=1$ non-critical string to all genus, and at nonzero cosmological constant, directly from the continuum approach. The results agree with those of the matrix model. Moreover we connect our coset with a twisted version of a Euclidean two dimensional black hole, in which the ghost and matter systems are mixed.
Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway
2012-09-01
ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located
RESEARCH ON TWO-DIMENSIONAL LDA FOR FACE RECOGNITION
Institute of Scientific and Technical Information of China (English)
Han Ke; Zhu Xiuchang
2006-01-01
The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective.
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Directory of Open Access Journals (Sweden)
Nikola Stefanović
2007-06-01
Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.
Inter-diffusion and its correlation with dynamical cross correlation in liquid Ce80Ni20
Hu, J. L.; Zhong, L. X.; Zhu, C. A.; Zhang, B.
2017-03-01
We reported the inter-diffusion coefficients in liquid Ce_{80}Ni_{20} measured by the sliding cell technique. Combined with the self-diffusion data of Ni measured by quasi-elastic neutron scattering in the literature, it was found that the relationship between inter-diffusion and self-diffusion in liquid Ce_{80}Ni_{20} was strongly deviated from the standard Darken equation with an abnormally small dynamical cross correlation factor S (the so called Manning factor) in a range of 0.6-0.8, less than unity in standard systems. Through the calculated distinct diffusion coefficient and its deviation from the standard one, it was discovered that the small S value was directly originated from enhanced distinct diffusion between Ce and Ni atoms and reduced distinct diffusion between Ni and Ni atoms. Because the inter-atomic interaction was not considered in the standard liquids, the present small S factor and intrinsic distinct diffusion coefficients were believed to be resulted from the chemical interaction between Ce and Ni in the liquid. The results provide new evidence of the dynamic cross correlation in liquid diffusion, and thus shed light on the understanding of the correlation between dynamics and structure in liquid alloys.
Institute of Scientific and Technical Information of China (English)
HANLi-Bo; CAOLi; WUDa-Jin; WANGJun
2004-01-01
By using the linear approximation method, the intensity correlation function and the intensity correlation time are calculated in a gain-noise model of a single-mode laser driven by colored cross-correlated pump noise and quantum noise, each of which is colored. We detect that, when the cross-correlation between both noises is negative, the behavior of the intensity correlation function C(t) versus time t, in addition to decreasing monotonously, also exhibits several other cases, such as one maximum, one minimum, and two extrema (one maximum and one minimum), i.e., some parameters of the noises can greatly change the dependence of the intensity correlation function upon time. Moreover, we find that there is a minimum Tmin in the curve of the intensity correlation time versus the pump noise intensity, and the depth and position of Train strongly depend on the quantum noise self-correlation time T2 and cross-correlation time T3.
Institute of Scientific and Technical Information of China (English)
Bing Wang; Xiuqing Wu
2007-01-01
A single-mode laser system with colored cross-correlated additive and multiplicative noise terms is considered. By the means of projection operator method, we study the effects of the cross-correlation time τ and the cross-correlation intensity λ between noises on the normalized intensity correlation function C(s). It is found that if λ＞ 0 (λ＜ 0), the normalized intensity correlation function C(s) increases (decreases) with increasing the cross-correlation time τ, and at large value of τ, the variation of the normalized intensity correlation function C(s) becomes small. With the increase of the net gain a0, C(s) exhibits a maximum when λ is larger. However, a minimum and a maximum appear on C(s) curves with the increase of a0 when λ becomes smaller and smaller.
Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials.
Blonsky, Michael N; Zhuang, Houlong L; Singh, Arunima K; Hennig, Richard G
2015-10-27
Two-dimensional (2D) materials present many unique materials concepts, including material properties that sometimes differ dramatically from those of their bulk counterparts. One of these properties, piezoelectricity, is important for micro- and nanoelectromechanical systems applications. Using symmetry analysis, we determine the independent piezoelectric coefficients for four groups of predicted and synthesized 2D materials. We calculate with density-functional perturbation theory the stiffness and piezoelectric tensors of these materials. We determine the in-plane piezoelectric coefficient d11 for 37 materials within the families of 2D metal dichalcogenides, metal oxides, and III-V semiconductor materials. A majority of the structures, including CrSe2, CrTe2, CaO, CdO, ZnO, and InN, have d11 coefficients greater than 5 pm/V, a typical value for bulk piezoelectric materials. Our symmetry analysis shows that buckled 2D materials exhibit an out-of-plane coefficient d31. We find that d31 for 8 III-V semiconductors ranges from 0.02 to 0.6 pm/V. From statistical analysis, we identify correlations between the piezoelectric coefficients and the electronic and structural properties of the 2D materials that elucidate the origin of the piezoelectricity. Among the 37 2D materials, CdO, ZnO, and CrTe2 stand out for their combination of large piezoelectric coefficient and low formation energy and are recommended for experimental exploration.
Mathematical modeling of the neuron morphology using two dimensional images.
Rajković, Katarina; Marić, Dušica L; Milošević, Nebojša T; Jeremic, Sanja; Arsenijević, Valentina Arsić; Rajković, Nemanja
2016-02-01
In this study mathematical analyses such as the analysis of area and length, fractal analysis and modified Sholl analysis were applied on two dimensional (2D) images of neurons from adult human dentate nucleus (DN). Using mathematical analyses main morphological properties were obtained including the size of neuron and soma, the length of all dendrites, the density of dendritic arborization, the position of the maximum density and the irregularity of dendrites. Response surface methodology (RSM) was used for modeling the size of neurons and the length of all dendrites. However, the RSM model based on the second-order polynomial equation was only possible to apply to correlate changes in the size of the neuron with other properties of its morphology. Modeling data provided evidence that the size of DN neurons statistically depended on the size of the soma, the density of dendritic arborization and the irregularity of dendrites. The low value of mean relative percent deviation (MRPD) between the experimental data and the predicted neuron size obtained by RSM model showed that model was suitable for modeling the size of DN neurons. Therefore, RSM can be generally used for modeling neuron size from 2D images.
Two-dimensional audio watermark for MPEG AAC audio
Tachibana, Ryuki
2004-06-01
Since digital music is often stored in a compressed file, it is desirable that an audio watermarking method in a content management system handles compressed files. Using an audio watermarking method that directly manipulates compressed files makes it unnecessary to decompress the files before embedding or detection, so more files can be processed per unit time. However, it is difficult to detect a watermark in a compressed file that has been compressed after the file was watermarked. This paper proposes an MPEG Advanced Audio Coding (AAC) bitstream watermarking method using a two-dimensional pseudo-random array. Detection is done by correlating the absolute values of the recovered MDCT coefficients and the pseudo-random array. Since the embedding algorithm uses the same pseudo-random values for two adjacent overlapping frames and the detection algorithm selects the better frame in the two by comparing detected watermark strengths, it is possible to detect a watermark from a compressed file that was compressed after the watermark was embedded in the original uncompressed file. Though the watermark is not detected as clearly in this case, the watermark can still be detected even when the watermark was embedded in a compressed file and the file was then decompressed, trimmed, and compressed again.
Criticality in Two-Dimensional Quantum Systems: Tensor Network Approach
Ran, Shi-Ju; Li, Wei; Lewenstein, Maciej; Su, Gang
2016-01-01
Determination and characterization of criticality in two-dimensional (2D) quantum many-body systems belong to the most important challenges and problems of quantum physics. In this paper we propose an efficient scheme to solve this problem by utilizing the infinite projected entangled pair state (iPEPS), and tensor network (TN) representations. We show that the criticality of a 2D state is faithfully reproduced by the ground state (dubbed as boundary state) of a one-dimensional effective Hamiltonian constructed from its iPEPS representation. We demonstrate that for a critical state the correlation length and the entanglement spectrum of the boundary state are essentially different from those of a gapped iPEPS. This provides a solid indicator that allows to identify the criticality of the 2D state. Our scheme is verified on the resonating valence bond (RVB) states on kagom\\'e and square lattices, where the boundary state of the honeycomb RVB is found to be described by a $c=1$ conformal field theory. We apply ...
Cross-correlations between spot and futures markets of nonferrous metals
Liu, Li; Wang, Yudong
2014-04-01
In this paper, we investigate cross-correlations between nonferrous metal spot and futures markets using detrended cross-correlation analysis (DCCA). We find the existence of significant cross-correlations for both return and volatility series. The DCCA-based cross-correlation coefficients are very high and decrease with the futures maturity increases. Using the multifractal extension of DCCA, the multifractality in cross-correlations is revealed. We also detect the source of cross-correlations between spot and futures markets. We use the vector error correction model and bivariate BEKK-GARCH to model the interactions between returns and volatilities of spot and futures, respectively. Our findings indicate that the volatility spillover between spot and futures markets contributes major to nonlinear cross-correlation while the contribution of mean spillover is very minor.
Measured Two-Dimensional Ice-Wedge Polygon Thermal Dynamics
Cable, William; Romanovsky, Vladimir; Busey, Robert
2016-04-01
necessarily found in areas of higher MAGT. Active layer thickness does not appear to be correlated to mean annual air temperature but rather is a function of summer air temperature or thawing degree-days. While the refreezing of the active layer initiated at nearly the same time for all locations and polygons, we find differences in the proportion of top-down versus bottom-up freezing and the length of time required to complete the refreezing process. Examination of the daily temperature dynamics using interpolated two-dimensional temperature fields reveal that during the summer, the predominate temperature gradient is vertical while the isotherms tend to follow the topography. However, as the active layer begins to refreeze and snow accumulates, the thermal regime diverges. The fall shows an increased temperature gradient horizontally with landscape positions containing higher soil moisture and/or snow depth (low centers and troughs) cooling more slowly than the adjacent ground (rims and high centers). This two-dimensional effect is greatest as the active layer refreezes and persists until mid-winter, by which time the temperature gradients are again mostly vertical and the isotherms follow the topography. Our findings demonstrate the complexity and two-dimensionality of the temperature dynamics in these landscapes.
A study of two-dimensional magnetic polaron
Institute of Scientific and Technical Information of China (English)
LIU; Tao; ZHANG; Huaihong; FENG; Mang; WANG; Kelin
2006-01-01
By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.
UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS
Institute of Scientific and Technical Information of China (English)
袁光伟; 沈智军; 闫伟
2003-01-01
In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.
Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal
DEFF Research Database (Denmark)
Lebech, Bente; Bak, P.
1979-01-01
The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....
Entanglement Entropy for time dependent two dimensional holographic superconductor
Mazhari, N S; Myrzakulov, Kairat; Myrzakulov, R
2016-01-01
We studied entanglement entropy for a time dependent two dimensional holographic superconductor. We showed that the conserved charge of the system plays the role of the critical parameter to have condensation.
Decoherence in a Landau Quantized Two Dimensional Electron Gas
Directory of Open Access Journals (Sweden)
McGill Stephen A.
2013-03-01
Full Text Available We have studied the dynamics of a high mobility two-dimensional electron gas as a function of temperature. The presence of satellite reflections in the sample and magnet can be modeled in the time-domain.
Quantization of Two-Dimensional Gravity with Dynamical Torsion
Lavrov, P M
1999-01-01
We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.
Spatiotemporal dissipative solitons in two-dimensional photonic lattices.
Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S
2008-11-01
We analyze spatiotemporal dissipative solitons in two-dimensional photonic lattices in the presence of gain and loss. In the framework of the continuous-discrete cubic-quintic Ginzburg-Landau model, we demonstrate the existence of novel classes of two-dimensional spatiotemporal dissipative lattice solitons, which also include surface solitons located in the corners or at the edges of the truncated two-dimensional photonic lattice. We find the domains of existence and stability of such spatiotemporal dissipative solitons in the relevant parameter space, for both on-site and intersite lattice solitons. We show that the on-site solitons are stable in the whole domain of their existence, whereas most of the intersite solitons are unstable. We describe the scenarios of the instability-induced dynamics of dissipative solitons in two-dimensional lattices.
Bound states of two-dimensional relativistic harmonic oscillators
Institute of Scientific and Technical Information of China (English)
Qiang Wen-Chao
2004-01-01
We give the exact normalized bound state wavefunctions and energy expressions of the Klein-Gordon and Dirac equations with equal scalar and vector harmonic oscillator potentials in the two-dimensional space.
A two-dimensional polymer prepared by organic synthesis.
Kissel, Patrick; Erni, Rolf; Schweizer, W Bernd; Rossell, Marta D; King, Benjamin T; Bauer, Thomas; Götzinger, Stephan; Schlüter, A Dieter; Sakamoto, Junji
2012-02-05
Synthetic polymers are widely used materials, as attested by a production of more than 200 millions of tons per year, and are typically composed of linear repeat units. They may also be branched or irregularly crosslinked. Here, we introduce a two-dimensional polymer with internal periodicity composed of areal repeat units. This is an extension of Staudinger's polymerization concept (to form macromolecules by covalently linking repeat units together), but in two dimensions. A well-known example of such a two-dimensional polymer is graphene, but its thermolytic synthesis precludes molecular design on demand. Here, we have rationally synthesized an ordered, non-equilibrium two-dimensional polymer far beyond molecular dimensions. The procedure includes the crystallization of a specifically designed photoreactive monomer into a layered structure, a photo-polymerization step within the crystal and a solvent-induced delamination step that isolates individual two-dimensional polymers as free-standing, monolayered molecular sheets.
Second invariant for two-dimensional classical super systems
Indian Academy of Sciences (India)
S C Mishra; Roshan Lal; Veena Mishra
2003-10-01
Construction of superpotentials for two-dimensional classical super systems (for ≥ 2) is carried out. Some interesting potentials have been studied in their super form and also their integrability.
Wei, Yun-Lan; Yu, Zu-Guo; Zou, Hai-Long; Anh, Vo
2017-06-01
A new method—multifractal temporally weighted detrended cross-correlation analysis (MF-TWXDFA)—is proposed to investigate multifractal cross-correlations in this paper. This new method is based on multifractal temporally weighted detrended fluctuation analysis and multifractal cross-correlation analysis (MFCCA). An innovation of the method is applying geographically weighted regression to estimate local trends in the nonstationary time series. We also take into consideration the sign of the fluctuations in computing the corresponding detrended cross-covariance function. To test the performance of the MF-TWXDFA algorithm, we apply it and the MFCCA method on simulated and actual series. Numerical tests on artificially simulated series demonstrate that our method can accurately detect long-range cross-correlations for two simultaneously recorded series. To further show the utility of MF-TWXDFA, we apply it on time series from stock markets and find that power-law cross-correlation between stock returns is significantly multifractal. A new coefficient, MF-TWXDFA cross-correlation coefficient, is also defined to quantify the levels of cross-correlation between two time series.
Extreme paths in oriented two-dimensional percolation
Andjel, E. D.; Gray, L. F.
2016-01-01
International audience; A useful result about leftmost and rightmost paths in two dimensional bond percolation is proved. This result was introduced without proof in \\cite{G} in the context of the contact process in continuous time. As discussed here, it also holds for several related models, including the discrete time contact process and two dimensional site percolation. Among the consequences are a natural monotonicity in the probability of percolation between different sites and a somewha...
Two Dimensional Nucleation Process by Monte Carlo Simulation
T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University
1997-01-01
Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...
Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers
2016-06-15
polymers . 2. Introduction . Research objectives: This research aims to study the physical (van der Waals forces: crystal epitaxy and π-π...AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-14-1-4054 5c. PROGRAM ELEMENT
Two-Dimensional Weak Pseudomanifolds on Eight Vertices
Indian Academy of Sciences (India)
Basudeb Datta; Nandini Nilakantan
2002-05-01
We explicitly determine all the two-dimensional weak pseudomanifolds on 8 vertices. We prove that there are (up to isomorphism) exactly 95 such weak pseudomanifolds, 44 of which are combinatorial 2-manifolds. These 95 weak pseudomanifolds triangulate 16 topological spaces. As a consequence, we prove that there are exactly three 8-vertex two-dimensional orientable pseudomanifolds which allow degree three maps to the 4-vertex 2-sphere.
Dost, Michael; Vogel, Dietmar; Winkler, Thomas; Vogel, Juergen; Erb, Rolf; Kieselstein, Eva; Michel, Bernd
2003-07-01
Cross correlation analysis of digitised grey scale patterns is based on - at least - two images which are compared one to each other. Comparison is performed by means of a two-dimensional cross correlation algorithm applied to a set of local intensity submatrices taken from the pattern matrices of the reference and the comparison images in the surrounding of predefined points of interest. Established as an outstanding NDE tool for 2D and 3D deformation field analysis with a focus on micro- and nanoscale applications (microDAC and nanoDAC), the method exhibits an additional potential for far wider applications, that could be used for advancing homeland security. Cause the cross correlation algorithm in some kind seems to imitate some of the "smart" properties of human vision, this "field-of-surface-related" method can provide alternative solutions to some object and process recognition problems that are difficult to solve with more classic "object-related" image processing methods. Detecting differences between two or more images using cross correlation techniques can open new and unusual applications in identification and detection of hidden objects or objects with unknown origin, in movement or displacement field analysis and in some aspects of biometric analysis, that could be of special interest for homeland security.
Institute of Scientific and Technical Information of China (English)
肖蕾; 王玲; 闻小林; 崔亚云
2013-01-01
目的探讨二维超声心动图联合时间-空间关联成像(STIC)技术在胎儿先天性心脏病(CHD)筛查中的应用价值。方法采用多切面顺序扫查法对11036例胎儿进行心脏检查,部分胎儿进行STIC技术容积数据库采集及脱机分析,CHD胎儿引产后进行尸体解剖或出生后随访结果对照。结果单纯二维超声心动图筛查出176例胎儿先天性心脏大血管结构异常(不包括心律失常),其中97例在二维超声基础上进行 STIC 技术检查,92例两种方法检查结果一致(其中1例合并心内畸形漏诊)；检出的CHD胎儿中,87例记录二维筛查时间,平均每个胎儿心脏用时(9.68±2.13) min,79例记录STIC技术扫描时间,平均每次STIC扫描用时(7.76±2.42)min；不同孕周二维超声心动图与STIC技术各重要切面显示合格率差异无统计学意义。结论STIC技术可作为二维超声心动图的有效补充手段,二者联合可进一步提高胎儿CHD的产前诊断率。%Objective To explore the application value of two-dimensional echocardiography with spatio-temporal im-age correlation (STIC) in fetal congenital heart disease (CHD) prenatal ultrasonography. Methods 11 036 hearts of fetus were inspected by severalviews order scanning method and for STIC volume database acquisition and off-line a-nalysis congenital heart disease fetus for autopsy after induced labor or contrast the follow-up results after birth. Re-sults 97 cases with spatio-temp-oral image correlation in 176 cases congenital heart and great vessels exception (dysrhythmias not including) with simple two-dimensional echocardiography,92 cases were accordant (one case with incorporative intracardiac malformation missed diagnosis);in screened congenital heart disease fetus,STIC (n=79) and routine ultrasonography (n=87) took (7.76±2.42) min and (9.68±2.13) min per case,respectively;in dif-ferent gestational weeks,the quality of the images derived from volume datasets were comparable to
Wavelet multiple correlation and cross-correlation: A multiscale analysis of Eurozone stock markets
Fernández-Macho, Javier
2012-02-01
Statistical studies that consider multiscale relationships among several variables use wavelet correlations and cross-correlations between pairs of variables. This procedure needs to calculate and compare a large number of wavelet statistics. The analysis can then be rather confusing and even frustrating since it may fail to indicate clearly the multiscale overall relationship that might exist among the variables. This paper presents two new statistical tools that help to determine the overall correlation for the whole multivariate set on a scale-by-scale basis. This is illustrated in the analysis of a multivariate set of daily Eurozone stock market returns during a recent period. Wavelet multiple correlation analysis reveals the existence of a nearly exact linear relationship for periods longer than the year, which can be interpreted as perfect integration of these Euro stock markets at the longest time scales. It also shows that small inconsistencies between Euro markets seem to be just short within-year discrepancies possibly due to the interaction of different agents with different trading horizons.
Two-Dimensional Materials for Sensing: Graphene and Beyond
Directory of Open Access Journals (Sweden)
Seba Sara Varghese
2015-09-01
Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.
Coexistence in the two-dimensional May-Leonard model with random rates
He, Q.; Mobilia, M.; Täuber, U. C.
2011-07-01
We employ Monte Carlo simulations to numerically study the temporal evolution and transient oscillations of the population densities, the associated frequency power spectra, and the spatial correlation functions in the (quasi-) steady state in two-dimensional stochastic May-Leonard models of mobile individuals, allowing for particle exchanges with nearest-neighbors and hopping onto empty sites. We therefore consider a class of four-state three-species cyclic predator-prey models whose total particle number is not conserved. We demonstrate that quenched disorder in either the reaction or in the mobility rates hardly impacts the dynamical evolution, the emergence and structure of spiral patterns, or the mean extinction time in this system. We also show that direct particle pair exchange processes promote the formation of regular spiral structures. Moreover, upon increasing the rates of mobility, we observe a remarkable change in the extinction properties in the May-Leonard system (for small system sizes): (1) as the mobility rate exceeds a threshold that separates a species coexistence (quasi-) steady state from an absorbing state, the mean extinction time as function of system size N crosses over from a functional form ˜ e c N / N (where c is a constant) to a linear dependence; (2) the measured histogram of extinction times displays a corresponding crossover from an (approximately) exponential to a Gaussian distribution. The latter results are found to hold true also when the mobility rates are randomly distributed.
Two dimensional IR-FID-CPMG acquisition and adaptation of a maximum entropy reconstruction
Rondeau-Mouro, C.; Kovrlija, R.; Van Steenberge, E.; Moussaoui, S.
2016-04-01
By acquiring the FID signal in two-dimensional TD-NMR spectroscopy, it is possible to characterize mixtures or complex samples composed of solid and liquid phases. We have developed a new sequence for this purpose, called IR-FID-CPMG, making it possible to correlate spin-lattice T1 and spin-spin T2 relaxation times, including both liquid and solid phases in samples. We demonstrate here the potential of a new algorithm for the 2D inverse Laplace transformation of IR-FID-CPMG data based on an adapted reconstruction of the maximum entropy method, combining the standard decreasing exponential decay function with an additional term drawn from Abragam's FID function. The results show that the proposed IR-FID-CPMG sequence and its related inversion model allow accurate characterization and quantification of both solid and liquid phases in multiphasic and compartmentalized systems. Moreover, it permits to distinguish between solid phases having different T1 relaxation times or to highlight cross-relaxation phenomena.
Weisz, K; Shafer, R H; Egan, W; James, T L
1992-08-25
Phase-sensitive two-dimensional nuclear Overhauser enhancement (2D NOE) and double-quantum-filtered correlated (2QF-COSY) spectra were recorded at 500 MHz for the DNA duplex d(CATTTGCATC).d(GATGCAAATG), which contains the octamer element of immunoglobulin genes. Exchangeable and nonexchangeable proton resonances including those of the H5' and H5" protons were assigned. Overall, the decamer duplex adopts a B-type DNA conformation. Scalar coupling constants for the sugar protons were determined by quantitative simulations of 2QF-COSY cross-peaks. These couplings are consistent with a two-state dynamic equilibrium between a minor N- and a major S-type conformer for all residues. The pseudorotation phase angle P of the major conformer is in the range 117-135 degrees for nonterminal pyrimidine nucleotides and 153-162 degrees for nonterminal purine nucleotides. Except for the terminal residues, the minor conformer comprises less than 25% of the population. Distance constraints obtained by a complete relaxation matrix analysis of the 2D NOE intensities with the MARDIGRAS algorithm confirm the dependence of the sugar pucker on pyrimidine and purine bases. Averaging by fast local motions has at most small effects on the NOE-derived interproton distances.
Institute of Scientific and Technical Information of China (English)
Hongxi Yin; Wei Liang; Le Ma; Liqiao Qin
2009-01-01
A new generation algorithm of two-dimensional triple-codeweight asymmetric optical orthogonal codes for optical code division multiple access (OCDMA) networks is proposed. The code cardinality is obtained and the error-probability performance for corresponding OCDMA system is analyzed. The codes with two constraints (i.e., auto- and cross-correlation properties) being unequal are taken into account. On the premise of fixed system resources, the code cardinality can be significantly improved. By analysis of the error-probability performance, it is shown that the codes with different parameters have different performances. Therefore, this type of codes can be applied to support diverse quality of service (QoS) and satisfy the quality requirement of different multimedia or distinct users, and simultaneously make the better use of bandwidth resources in optical networks.
The effects of common risk factors on stock returns: A detrended cross-correlation analysis
Ruan, Qingsong; Yang, Bingchan
2017-10-01
In this paper, we investigate the cross-correlations between Fama and French three factors and the return of American industries on the basis of cross-correlation statistic test and multifractal detrended cross-correlation analysis (MF-DCCA). Qualitatively, we find that the return series of Fama and French three factors and American industries were overall significantly cross-correlated based on the analysis of a statistic. Quantitatively, we find that the cross-correlations between three factors and the return of American industries were strongly multifractal, and applying MF-DCCA we also investigate the cross-correlation of industry returns and residuals. We find that there exists multifractality of industry returns and residuals. The result of correlation coefficients we can verify that there exist other factors which influence the industry returns except Fama three factors.
Two-dimensional simulation of polymer electrolyte membrane fuel cells
Energy Technology Data Exchange (ETDEWEB)
Hum, B.; Li, X. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering
2002-07-01
Polymer electrolyte membrane (PEM) fuel cells have fast startup, are highly energy efficient and have high power density, rendering them very suitable for use in zero-emission vehicles and on-site power cogeneration. Before the PEM fuel cell can reach widespread commercial use, the performance has to be improved regarding the minimization of all transport resistances. This can be done by considering the electrochemical reactions in the catalyst layers along with the physical transport of reactant gas flows, product and process water, heat and the charged particles in the individual cells and stacks. This paper presents the results of a two-dimensional numerical simulation of a steady, isothermal, fully humidified PEM fuel cell which was conducted to examine what happens in the catalyst layers. The finite volume method was used together with the alternating direction implicit algorithm. It was determined that the cathode catalyst layer has more pronounced changes in potential, reaction rate and current density generation compared to the anode catalyst layer. This is because of the large cathode activation overpotential and the low diffusion coefficient of oxygen. It was demonstrated that catalyst layers, by nature, are 2 dimensional, particularly in areas of low reactant concentrations. Maximum power density is limited by the depletion of one of the reactants in the catalyst layer. Both the fuel and oxidant supply must be managed simultaneously for optimal cell performance. It was concluded that cell performance is not greatly affected by flow direction. It was noted that this analysis can also be used for more complex cell design, such as cross flow between reactant streams and practical serpentine flow channel design. 11 refs., 2 tabs., 10 figs.
Wang, Fang; Wang, Lin; Chen, Yuming
2017-08-31
In order to investigate the time-dependent cross-correlations of fine particulate (PM2.5) series among neighboring cities in Northern China, in this paper, we propose a new cross-correlation coefficient, the time-lagged q-L dependent height crosscorrelation coefficient (denoted by p q (τ, L)), which incorporates the time-lag factor and the fluctuation amplitude information into the analogous height cross-correlation analysis coefficient. Numerical tests are performed to illustrate that the newly proposed coefficient ρ q (τ, L) can be used to detect cross-correlations between two series with time lags and to identify different range of fluctuations at which two series possess cross-correlations. Applying the new coefficient to analyze the time-dependent cross-correlations of PM2.5 series between Beijing and the three neighboring cities of Tianjin, Zhangjiakou, and Baoding, we find that time lags between the PM2.5 series with larger fluctuations are longer than those between PM2.5 series withsmaller fluctuations. Our analysis also shows that cross-correlations between the PM2.5 series of two neighboring cities are significant and the time lags between two PM2.5 series of neighboring cities are significantly non-zero. These findings providenew scientific support on the view that air pollution in neighboring cities can affect one another not simultaneously but with a time lag.
Institute of Scientific and Technical Information of China (English)
Bing Wang; Xiuqing Wu
2008-01-01
@@ Considering a single-mode laser system with cross-correlated additive colored noise and multiplicative colored noise, we study the effects of correlation among noises on the normalized intensity correlation function C(s).C(s) is derived by means of the projection operator method.
Constraints on halo formation from cross-correlations with correlated variables
Castorina, Emanuele; Sheth, Ravi K
2016-01-01
Cross-correlations between biased tracers and the dark matter field encode information about the physical variables which characterize these tracers. However, if the physical variables of interest are correlated with one another, then extracting this information is not as straightforward as one might naively have thought. We show how to exploit these correlations so as to estimate scale-independent bias factors of all orders in a model-independent way. We also show that failure to account for this will lead to incorrect conclusions about which variables matter and which do not. Morever, accounting for this allows one to use the scale dependence of bias to constrain the physics of halo formation; to date the argument has been phrased the other way around. We illustrate by showing that the scale dependence of linear and nonlinear bias, measured on nonlinear scales, can be used to provide consistent estimates of how the critical density for halo formation depends on halo mass. Our methods work even when the bias...
Assessment of the Frank-Starling relationship by two-dimensional echocardiography.
Zipprich, D A; Owen, C H; Lewis, C W; Gall, S A; Davis, J W; Kisslo, J A; Glower, D D
1996-01-01
The Frank-Starling relationship between left ventricular stroke work and end-diastolic minor-axis cross-sectional area was evaluated as a load-insensitive measure of inotropic state by two-dimensional echocardiography in 10 conscious dogs. Stroke work was calculated as the product of systolic change in cross-sectional area and either (1) beat-to-beat mean arterial pressure or (2) initial systolic blood pressure. Both Frank-Starling relationships were highly linear during preload variation (mean r = 0.96), sensitive to the inotropic state (slope increase with calcium 51% +/- 43% and 62% +/- 53%, respectively), and insensitive to afterload (r < 0.4, slope or x intercept versus afterload). Thus the Frank-Starling relationships derived from two-dimensional echocardiographic images and peripheral arterial pressure may be a useful and practical means of assessing inotropic state with minimally invasive measurements.
$m$-Sequences of Different Lengths with Four-Valued Cross Correlation
Helleseth, Tor; Kholosha, Alexander; Johanssen, Aina
2007-01-01
{\\bf Abstract.} Considered is the distribution of the cross correlation between $m$-sequences of length $2^m-1$, where $m$ is even, and $m$-sequences of shorter length $2^{m/2}-1$. The infinite family of pairs of $m$-sequences with four-valued cross correlation is constructed and the complete correlation distribution of this family is determined.
Two-dimensional photonic crystals from semiconductor material with polymer filled holes
van der Heijden, Rob; Kjellander, Charlotte; Carlström, Carl-Fredrik; Snijders, Juri; van der Heijden, Rob W.; Bastiaansen, Kees; Broer, Dick; Karouta, Fouad; Nötzel, Richard; van der Drift, Emile; Salemink, Huub W. M.
2006-04-01
Polymer filling of the air holes of indiumphosphide based two-dimensional photonic crystals is reported. The filling is performed by infiltration with a liquid monomer and solidification of the infill in situ by thermal polymerization. Complete hole filling is obtained with infiltration under ambient pressure. This conclusion is based both on cross-sectional scanning electron microscope inspection of the filled samples as well as on optical transmission measurements.
Big Data Solution for CTBT Monitoring Using Global Cross Correlation
Gaillard, P.; Bobrov, D.; Dupont, A.; Grenouille, A.; Kitov, I. O.; Rozhkov, M.
2014-12-01
Due to the mismatch between data volume and the performance of the Information Technology infrastructure used in seismic data centers, it becomes more and more difficult to process all the data with traditional applications in a reasonable elapsed time. To fulfill their missions, the International Data Centre of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO/IDC) and the Département Analyse Surveillance Environnement of Commissariat à l'Energie atomique et aux énergies alternatives (CEA/DASE) collect, process and produce complex data sets whose volume is growing exponentially. In the medium term, computer architectures, data management systems and application algorithms will require fundamental changes to meet the needs. This problem is well known and identified as a "Big Data" challenge. To tackle this major task, the CEA/DASE takes part during two years to the "DataScale" project. Started in September 2013, DataScale gathers a large set of partners (research laboratories, SMEs and big companies). The common objective is to design efficient solutions using the synergy between Big Data solutions and the High Performance Computing (HPC). The project will evaluate the relevance of these technological solutions by implementing a demonstrator for seismic event detections thanks to massive waveform correlations. The IDC has developed an expertise on such techniques leading to an algorithm called "Master Event" and provides a high-quality dataset for an extensive cross correlation study. The objective of the project is to enhance the Master Event algorithm and to reanalyze 10 years of waveform data from the International Monitoring System (IMS) network thanks to a dedicated HPC infrastructure operated by the "Centre de Calcul Recherche et Technologie" at the CEA of Bruyères-le-Châtel. The dataset used for the demonstrator includes more than 300,000 seismic events, tens of millions of raw detections and more than 30 terabytes of continuous seismic data
Pasted type distributed two-dimensional fiber Bragg grating vibration sensor.
Li, Tianliang; Tan, Yuegang; Zhou, Zude; Wei, Qin
2015-07-01
A pasted type distributed two-dimensional fiber Bragg grating (FBG) vibration sensor has been proposed and studied in this paper. The optical fiber is directly considered as an elastomer. The two-dimensional vibration can be separated by subtraction/addition of two FBGs' center wavelength shift. The principle of the sensor as well as numerical simulation and experimental analyses are presented. Experimental results show that the resonant frequencies of the sensor x/y main vibration direction are separately 1300/20.51 Hz, which are consistent with the numerical simulation analysis result. The flat frequency range resides in 10-750 Hz and 3-12 Hz, respectively; dynamic range is 28.63 dB; in the x main vibration direction, the sensor's sensitivity is 32.84 pm/g, with linearity 3.91% in the range of 10-60 m/s(2), while in the y main vibration direction, the sensor's sensitivity is 451.3 pm/g, with linearity 1.92% in the range of 1.5-8 m/s(2). The cross sensitivity is 3.91%. Benefitting from the two dimensional sensing properties, it can be used in distributed two-dimensional vibration measurement.
Xie, Chi; Zhou, Yingying; Wang, Gangjin; Yan, Xinguo
We use the multifractal detrended cross-correlation analysis (MF-DCCA) method to explore the multifractal behavior of the cross-correlation between exchange rates of onshore RMB (CNY) and offshore RMB (CNH) against US dollar (USD). The empirical data are daily prices of CNY/USD and CNH/USD from May 1, 2012 to February 29, 2016. The results demonstrate that: (i) the cross-correlation between CNY/USD and CNH/USD is persistent and its fluctuation is smaller when the order of fluctuation function is negative than that when the order is positive; (ii) the multifractal behavior of the cross-correlation between CNY/USD and CNH/USD is significant during the sample period; (iii) the dynamic Hurst exponents obtained by the rolling windows analysis show that the cross-correlation is stable when the global economic situation is good and volatile in bad situation; and (iv) the non-normal distribution of original data has a greater effect on the multifractality of the cross-correlation between CNY/USD and CNH/USD than the temporary correlation.
Atmospheric stellar parameters from cross-correlation functions
Malavolta, L.; Lovis, C.; Pepe, F.; Sneden, C.; Udry, S.
2017-08-01
The increasing number of spectra gathered by spectroscopic sky surveys and transiting exoplanet follow-up has pushed the community to develop automated tools for atmospheric stellar parameters determination. Here we present a novel approach that allows the measurement of temperature (Teff), metallicity ([Fe/H]) and gravity (log g) within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, our technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. We use literature stellar parameters of high signal-to-noise (SNR), high-resolution HARPS spectra of FGK main-sequence stars to calibrate Teff, [Fe/H] and log g as a function of CCF parameters. Our technique is validated using low-SNR spectra obtained with the same instrument. For FGK stars we achieve a precision of σ _{{T_eff}} = 50 K, σlog g = 0.09 dex and σ _{{{[Fe/H]}}} =0.035 dex at SNR = 50, while the precision for observation with SNR ≳ 100 and the overall accuracy are constrained by the literature values used to calibrate the CCFs. Our approach can easily be extended to other instruments with similar spectral range and resolution or to other spectral range and stars other than FGK dwarfs if a large sample of reference stars is available for the calibration. Additionally, we provide the mathematical formulation to convert synthetic equivalent widths to CCF parameters as an alternative to direct calibration. We have made our tool publicly available.
Export Pricing and the Cross-Country Correlation of Stock Prices
Tervala, Juha
2009-01-01
This study analyses cross-country correlations of stock prices (values of firms) using the basic New Open Economy Macroeconomics model. We show that cross-country correlations of stock prices greatly depend on the currency of export pricing in the case of monetary shocks but not notably for temporary technology shocks. In the case of a money supply shock, the producer (local) currency pricing version of the model generates a negative (positive) cross-country correlation of stock prices.
Tracking dynamics of two-dimensional continuous attractor neural networks
Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si
2009-12-01
We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.
Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S
2012-11-01
The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
A two-dimensional spin liquid in quantum kagome ice.
Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G
2015-06-22
Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.
Two dimensional convolute integers for machine vision and image recognition
Edwards, Thomas R.
1988-01-01
Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.
Optical modulators with two-dimensional layered materials
Sun, Zhipei; Wang, Feng
2016-01-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.
Finite sample properties of power-law cross-correlations estimators
Kristoufek, Ladislav
2014-01-01
We study finite sample properties of estimators of power-law cross-correlations -- detrended cross-correlation analysis (DCCA), height cross-correlation analysis (HXA) and detrending moving-average cross-correlation analysis (DMCA) -- with a special focus on short-term memory bias as well as power-law coherency. Presented broad Monte Carlo simulation study focuses on different time series lengths, specific methods' parameter setting, and memory strength. We find that each method is best suited for different time series dynamics so that there is no clear winner between the three. The method selection should be then made based on observed dynamic properties of the analyzed series.
Detrended cross-correlation analysis on RMB exchange rate and Hang Seng China Enterprises Index
Ruan, Qingsong; Yang, Bingchan; Ma, Guofeng
2017-02-01
In this paper, we investigate the cross-correlations between the Hang Seng China Enterprises Index and RMB exchange markets on the basis of a cross-correlation statistic test and multifractal detrended cross-correlation analysis (MF-DCCA). MF-DCCA has, at best, serious limitations for most of the signals describing complex natural processes and often indicates multifractal cross-correlations when there are none. In order to prevent these false multifractal cross-correlations, we apply MFCCA to verify the cross-correlations. Qualitatively, we find that the return series of the Hang Seng China Enterprises Index and RMB exchange markets were, overall, significantly cross-correlated based on the statistical analysis. Quantitatively, we find that the cross-correlations between the stock index and RMB exchange markets were strongly multifractal, and the multifractal degree of the onshore RMB exchange markets was somewhat larger than the offshore RMB exchange markets. Moreover, we use the absolute return series to investigate and confirm the fact of multifractality. The results from the rolling windows show that the short-term cross-correlations between volatility series remain high.
Two-dimensional superconductors with atomic-scale thickness
Uchihashi, Takashi
2017-01-01
Recent progress in two-dimensional superconductors with atomic-scale thickness is reviewed mainly from the experimental point of view. The superconducting systems treated here involve a variety of materials and forms: elemental metal ultrathin films and atomic layers on semiconductor surfaces; interfaces and superlattices of heterostructures made of cuprates, perovskite oxides, and rare-earth metal heavy-fermion compounds; interfaces of electric-double-layer transistors; graphene and atomic sheets of transition metal dichalcogenide; iron selenide and organic conductors on oxide and metal surfaces, respectively. Unique phenomena arising from the ultimate two dimensionality of the system and the physics behind them are discussed.
TreePM Method for Two-Dimensional Cosmological Simulations
Indian Academy of Sciences (India)
Suryadeep Ray
2004-09-01
We describe the two-dimensional TreePM method in this paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle–Mesh method. We describe the splitting of force between the PM and the Tree parts. We also estimate error in force for a realistic configuration. Finally, we discuss some tests of the code.
Singular analysis of two-dimensional bifurcation system
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Bifurcation properties of two-dimensional bifurcation system are studied in this paper.Universal unfolding and transition sets of the bifurcation equations are obtained.The whole parametric plane is divided into several different persistent regions according to the type of motion,and the different qualitative bifurcation diagrams in different persistent regions are given.The bifurcation properties of the two-dimensional bifurcation system are compared with its reduced one-dimensional system.It is found that the system which is reduced to one dimension has lost many bifurcation properties.
Nonlinear excitations in two-dimensional molecular structures with impurities
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth
1995-01-01
We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....
Vortices in the Two-Dimensional Simple Exclusion Process
Bodineau, T.; Derrida, B.; Lebowitz, Joel L.
2008-06-01
We show that the fluctuations of the partial current in two dimensional diffusive systems are dominated by vortices leading to a different scaling from the one predicted by the hydrodynamic large deviation theory. This is supported by exact computations of the variance of partial current fluctuations for the symmetric simple exclusion process on general graphs. On a two-dimensional torus, our exact expressions are compared to the results of numerical simulations. They confirm the logarithmic dependence on the system size of the fluctuations of the partial flux. The impact of the vortices on the validity of the fluctuation relation for partial currents is also discussed in an Appendix.
Two-dimensional hazard estimation for longevity analysis
DEFF Research Database (Denmark)
Fledelius, Peter; Guillen, M.; Nielsen, J.P.
2004-01-01
the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used......We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... for analysis of economic implications arising from mortality changes....
Field analysis of two-dimensional focusing grating couplers
Borsboom, P.-P.; Frankena, H. J.
1995-05-01
A different technique was developed by which several two-dimensional dielectric optical gratings, consisting 100 or more corrugations, were treated in a numerical reliable approach. The numerical examples that were presented were restricted to gratings made up of sequences of waveguide sections symmetric about the x = 0 plane. The newly developed method was effectively used to investigate the field produced by a two-dimensional focusing grating coupler. Focal-region fields were determined for three symmetrical gratings with 19, 50, and 124 corrugations. For focusing grating coupler with limited length, high-frequency intensity variations were noted in the focal region.
Self-assembly of two-dimensional DNA crystals
Institute of Scientific and Technical Information of China (English)
SONG Cheng; CHEN Yaqing; WEI Shuai; YOU Xiaozeng; XIAO Shoujun
2004-01-01
Self-assembly of synthetic oligonucleotides into two-dimensional lattices presents a 'bottom-up' approach to the fabrication of devices on nanometer scale. We report the design and observation of two-dimensional crystalline forms of DNAs that are composed of twenty-one plane oligonucleotides and one phosphate-modified oligonucleotide. These synthetic sequences are designed to self-assemble into four double-crossover (DX) DNA tiles. The 'sticky ends' of these tiles that associate according to Watson-Crick's base pairing are programmed to build up specific periodic patterns upto tens of microns. The patterned crystals are visualized by the transmission electron microscopy.
Dynamics of vortex interactions in two-dimensional flows
DEFF Research Database (Denmark)
Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.
2002-01-01
a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 a(c) ...The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...
Two-dimensional assignment with merged measurements using Langrangrian relaxation
Briers, Mark; Maskell, Simon; Philpott, Mark
2004-01-01
Closely spaced targets can result in merged measurements, which complicate data association. Such merged measurements violate any assumption that each measurement relates to a single target. As a result, it is not possible to use the auction algorithm in its simplest form (or other two-dimensional assignment algorithms) to solve the two-dimensional target-to-measurement assignment problem. We propose an approach that uses the auction algorithm together with Lagrangian relaxation to incorporate the additional constraints resulting from the presence of merged measurements. We conclude with some simulated results displaying the concepts introduced, and discuss the application of this research within a particle filter context.
Two-dimensional lattice Boltzmann model for magnetohydrodynamics.
Schaffenberger, Werner; Hanslmeier, Arnold
2002-10-01
We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.
Quasinormal frequencies of asymptotically flat two-dimensional black holes
Lopez-Ortega, A
2011-01-01
We discuss whether the minimally coupled massless Klein-Gordon and Dirac fields have well defined quasinormal modes in single horizon, asymptotically flat two-dimensional black holes. To get the result we solve the equations of motion in the massless limit and we also calculate the effective potentials of Schrodinger type equations. Furthermore we calculate exactly the quasinormal frequencies of the Dirac field propagating in the two-dimensional uncharged Witten black hole. We compare our results on its quasinormal frequencies with other already published.
Spin dynamics in a two-dimensional quantum gas
DEFF Research Database (Denmark)
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank
2014-01-01
We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...
Electronic, Vibrational and Thermoelectric Properties of Two-Dimensional Materials
Wickramaratne, Darshana
The discovery of graphene's unique electronic and thermal properties has motivated the search for new two-dimensional materials. Examples of these materials include the layered two-dimensional transition metal dichalcogenides (TMDC) and metal mono-chalcogenides. The properties of the TMDCs (eg. MoS 2, WS2, TaS2, TaSe2) and the metal mono-chalcogenides (eg. GaSe, InSe, SnS) are diverse - ranging from semiconducting, semi-metallic and metallic. Many of these materials exhibit strongly correlated phenomena and exotic collective states such as exciton condensates, charge density waves, Lifshitz transitions and superconductivity. These properties change as the film thickness is reduced down to a few monolayers. We use first-principles simulations to discuss changes in the electronic and the vibrational properties of these materials as the film thickness evolves from a single atomic monolayer to the bulk limit. In the semiconducting TMDCs (MoS2, MoSe2, WS2 and WSe2) and monochalcogenides (GaS, GaSe, InS and InSe) we show confining these materials to their monolayer limit introduces large band degeneracies or non-parabolic features in the electronic structure. These changes in the electronic structure results in increases in the density of states and the number of conducting modes. Our first-principles simulations combined with a Landauer approach show these changes can lead to large enhancements up to an order of magnitude in the thermoelectric performance of these materials when compared to their bulk structure. Few monolayers of the TMDCs can be misoriented with respect to each other due to the weak van-der-Waals (vdW) force at the interface of two monolayers. Misorientation of the bilayer semiconducting TMDCs increases the interlayer van-der-Waals gap distance, reduces the interlayer coupling and leads to an increase in the magnitude of the indirect bandgap by up to 100 meV compared to the registered bilayer. In the semi-metallic and metallic TMDC compounds (TiSe2, Ta