Thermodynamics of two-dimensional Yukawa systems across coupling regimes
Kryuchkov, Nikita P.; Khrapak, Sergey A.; Yurchenko, Stanislav O.
2017-04-01
Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crystalline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained and accurate physically motivated fits are proposed. This allows us to put forward simple practical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation method is applied to describe pair correlations and hence thermodynamic properties. It is shown that the finite-temperature effects can be accounted for by using simple correction of peaks in the pair correlation function. The corresponding correction coefficients are evaluated using MD simulation. The relevance of the obtained results in the context of colloidal systems, complex (dusty) plasmas, and ions absorbed to interfaces in electrolytes is pointed out.
The XY model coupled to two-dimensional quantum gravity
Baillie, C. F.; Johnston, D. A.
1992-09-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we discovered in our earlier work on various Potts models with the same value of the central charge, c, carries over to the XY model, which has c=1.
The XY Model Coupled to Two-Dimensional Quantum Gravity
Baillie, C F; 10.1016/0370-2693(92)91037-A
2009-01-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we discovered in our earlier work on various Potts models with the same value of the central charge, $c$, carries over to the XY model, which has $c=1$.
Two-dimensional model of elastically coupled molecular motors
Institute of Scientific and Technical Information of China (English)
Zhang Hong-Wei; Wen Shu-Tang; Chen Gai-Rong; Li Yu-Xiao; Cao Zhong-Xing; Li Wei
2012-01-01
A flashing ratchet model of a two-headed molecular motor in a two-dimensional potential is proposed to simulate the hand-over-hand motion of kinesins.Extensive Langevin simulations of the model are performed.We discuss the dependences of motion and efficiency on the model parameters,including the external force and the temperature.A good qualitative agreement with the expected behavior is observed.
Multiple Potts Models Coupled to Two-Dimensional Quantum Gravity
Baillie, C F
1992-01-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of {\\it multiple} $q=2,3,4$ state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the $c>1$ region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for $c>1$. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for $c>1$.
Multiple Potts models coupled to two-dimensional quantum gravity
Baillie, C. F.; Johnston, D. A.
1992-07-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of multiple q=2, 3, 4 state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the c>1 region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for c>1. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for c>1.
Interlayer coupling in two-dimensional titanium carbide MXenes.
Hu, Tao; Hu, Minmin; Li, Zhaojin; Zhang, Hui; Zhang, Chao; Wang, Jingyang; Wang, Xiaohui
2016-07-27
Success in the exfoliation of the stacked T-functionalized titanium carbide MXenes Tin+1CnT2 (T = OH, O, and F) would potentially extend their application scope, which requires an understanding of the nature of interlayer coupling. Here, we report for the first time the intrinsic interlayer coupling in pristine MXenes on the basis of first-principles calculations by taking long-range interaction into account. It is demonstrated that the functional terminations (OH, O, and F) weaken the interlayer coupling as compared with the bare counterparts, whereas the coupling is significantly stronger than van der Waals bonding as specified by the fact that the binding energies of stacked Tin+1CnT2 are 2-6 times those of well-known graphite and MoS2 with weak interlayer coupling. With binding energies in the range of 1-3.3 J m(-2), the successful exfoliation of stacked Tin+1CnT2 into monolayers invariably requires further weakening of the interlayer coupling.
Two-Dimensional Coupling Model on Social Deprivation and Its Application
Fu, Yun
This paper qualitatively describes the deprivation under different coupling situations of two-dimensional indicators and then establishes the two-dimensional coupling model on social deprivation, using the social welfare function approach and Foster-Greer-Thorbecke P α method. Finally, this paper applies the model to evaluate the social deprivation of 31 provinces in China under the coupling state of capita disposable income and housing price.
A Solvable Model in Two-Dimensional Gravity Coupled to a Nonlinear Matter Field
Institute of Scientific and Technical Information of China (English)
YAN Jun; WANG Shun-Jin; TAO Bi-You
2001-01-01
The two-dimensional gravity model with a coupling constant k = 4 and a vanishing cosmological constant coupled to a nonlinear matter field is investigated. We found that the classical equations of motion are exactly solvable and the static solutions of the induced metric and scalar curvature can be obtained analytically. These solutions may be used to describe the naked singularity at the origin.``
Theoretical and experimental study of the normal modes in a coupled two-dimensional system
Giménez, Marcos H; Gómez-Tejedor, José Antonio; Velazquez, Luisberis; Monsoriu, Juan A
2016-01-01
In this work, the normal modes of a two-dimensional oscillating system have been studied from a theoretical and experimental point of view. The normal frequencies predicted by the Hessian matrix for a coupled two-dimensional particle system are compared to those obtained for a real system consisting of two oscillating smartphones coupled one to the other by springs. Experiments are performed on an air table in order to remove the friction forces. The oscillation data are captured by the acceleration sensor of the smartphones and exported to file for further analysis. The experimental frequencies compare reasonably well with the theoretical predictions, namely, within 1.7 % of discrepancy.
Diffusion induced by bounded noise in a two-dimensional coupled memory system
Directory of Open Access Journals (Sweden)
Pengfei Xu
2014-01-01
Full Text Available The diffusion behavior driven by bounded noise under the influence of a coupled harmonic potential is investigated in a two-dimensional coupled-damped model. With the help of the Laplace analysis we obtain exact descriptions for a particle's two-time dynamics which is subjected to a coupled harmonic potential and a coupled damping. The time lag is used to describe the velocity autocorrelation function and mean square displacement of the diffusing particle. The diffusion behavior for the time lag is also discussed with respect to the coupled items and the amplitude of bounded noise.
Use of real Dirac matrices in two-dimensional coupled linear optics
Baumgarten, C.
2011-11-01
The Courant-Snyder theory for two-dimensional coupled linear optics is presented, based on the systematic use of the real representation of the Dirac matrices. Since any real 4×4 matrix can be expressed as a linear combination of these matrices, the presented ansatz allows for a comprehensive and complete treatment of two-dimensional linear coupling. A survey of symplectic transformations in two dimensions is presented. A subset of these transformations is shown to be identical to rotations and Lorentz boosts in Minkowski space-time. The transformation properties of the classical state vector are formulated and found to be analog to those of a Dirac spinor. The equations of motion for a relativistic charged particle—the Lorentz force equations—are shown to be isomorph to envelope equations of two-dimensional linear coupled optics. A universal and straightforward method to decouple two-dimensional harmonic oscillators with constant coefficients by symplectic transformations is presented, which is based on this isomorphism. The method yields the eigenvalues (i.e., tunes) and eigenvectors and can be applied to a one-turn transfer matrix or directly to the coefficient matrix of the linear differential equation.
Repulsively interacting fermions in a two-dimensional deformed trap with spin-orbit coupling
DEFF Research Database (Denmark)
Marchukov, O. V.; Fedorov, D. V.; Jensen, A. S.
2015-01-01
We investigate a two-dimensional system of fermions with two internal (spin) degrees of freedom. It is confined by a deformed harmonic trap and subject to a Zeeman field, Rashba or Dresselhaus one-body spin-orbit couplings and two-body short range repulsion. We obtain self-consistent mean-field $...... that cold atoms may be used to study quantum chaos both in the presence and absence of interactions....
Institute of Scientific and Technical Information of China (English)
Cheng Jia; Ji Linhong; Wang Kesheng; Han Chuankun; Shi Yixiang
2013-01-01
A two-dimensional axisymmetric inductively coupled plasma (ICP) model,and its implementation in the COMSOL multiphysical software,is described.The simulations are compared with the experimental results of argon discharge from the gaseous electronics conference RF reference cell in the inductively coupled plasma mode.The general trends of the number density and temperature of electrons with radial scanning are approximately correct.Finally,we discuss the reasons why the comparisons are not in agreement,and then propose an improvement in the assumptions of the Maxwellian electron energy distribution function and reaction rate.
Ma, Q.; Boulet, C.; Tipping, R. H.
2014-01-01
The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS1 - S2 introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the ^S operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters' two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C2H2 broadened by N2. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.
Strong light-matter coupling in two-dimensional atomic crystals
Liu, Xiaoze; Sun, Zheng; Xia, Fengnian; Lin, Erh-chen; Lee, Yi-Hsien; Kéna-Cohen, Stéphane; Menon, Vinod M
2014-01-01
Two dimensional (2D) atomic crystals of graphene, and transition metal dichalcogenides have emerged as a class of materials that show strong light-matter interaction. This interaction can be further controlled by embedding such materials into optical microcavities. When the interaction is engineered to be stronger than the dissipation of light and matter entities, one approaches the strong coupling regime resulting in the formation of half-light half-matter bosonic quasiparticles called microcavity polaritons. Here we report the evidence of strong light-matter coupling and formation of microcavity polaritons in a two dimensional atomic crystal of molybdenum disulphide (MoS2) embedded inside a dielectric microcavity at room temperature. A Rabi splitting of 46 meV and highly directional emission is observed from the MoS2 microcavity owing to the coupling between the 2D excitons and the cavity photons. Realizing strong coupling effects at room temperature in a disorder free potential landscape is central to the ...
Shevyrin, A. A.; Pogosov, A. G.; Bakarov, A. K.; Shklyaev, A. A.
2016-07-01
The electrical response of a two-dimensional electron gas to vibrations of a nanomechanical cantilever containing it is studied. Vibrations of perpendicularly oriented cantilevers are experimentally shown to oppositely change the conductivity near their bases. This indicates the piezoelectric nature of electromechanical coupling. A physical model is developed, which quantitatively explains the experiment. It shows that the main origin of the conductivity change is a rapid change in the mechanical stress on the boundary between suspended and nonsuspended areas, rather than the stress itself.
Shevyrin, A. A.; Pogosov, A. G.; Bakarov, A. K.; Shklyaev, A. A.
2017-06-01
A physical model describing the piezoelectric-effect-mediated influence of bending of a thin suspended cantilever with a two-dimensional electron gas on the conductivity is proposed. The model shows that the conductivity change is almost entirely caused by the rapid change in mechanical stress near the boundary of suspended and non-suspended areas, rather than by the stress itself. An experiment confirming that the electromechanical coupling is associated with the piezoelectric effect is performed. The experimentally measured conductance sensitivity to the cantilever’s vibrations agree with the developed physical model.
Energy Technology Data Exchange (ETDEWEB)
Srivastava, Vineet K., E-mail: vineetsriiitm@gmail.com [ISRO Telemetry, Tracking and Command Network (ISTRAC), Bangalore-560058 (India); Awasthi, Mukesh K. [Department of Mathematics, University of Petroleum and Energy Studies, Dehradun-248007 (India); Singh, Sarita [Department of Mathematics, WIT- Uttarakhand Technical University, Dehradun-248007 (India)
2013-12-15
This article describes a new implicit finite-difference method: an implicit logarithmic finite-difference method (I-LFDM), for the numerical solution of two dimensional time-dependent coupled viscous Burgers’ equation on the uniform grid points. As the Burgers’ equation is nonlinear, the proposed technique leads to a system of nonlinear systems, which is solved by Newton's iterative method at each time step. Computed solutions are compared with the analytical solutions and those already available in the literature and it is clearly shown that the results obtained using the method is precise and reliable for solving Burgers’ equation.
Directory of Open Access Journals (Sweden)
Vineet K. Srivastava
2013-12-01
Full Text Available This article describes a new implicit finite-difference method: an implicit logarithmic finite-difference method (I-LFDM, for the numerical solution of two dimensional time-dependent coupled viscous Burgers’ equation on the uniform grid points. As the Burgers’ equation is nonlinear, the proposed technique leads to a system of nonlinear systems, which is solved by Newton's iterative method at each time step. Computed solutions are compared with the analytical solutions and those already available in the literature and it is clearly shown that the results obtained using the method is precise and reliable for solving Burgers’ equation.
Spin current and polarization in impure two-dimensional electron systems with spin-orbit coupling.
Mishchenko, E G; Shytov, A V; Halperin, B I
2004-11-26
We derive the transport equations for two-dimensional electron systems with Rashba spin-orbit interaction and short-range spin-independent disorder. In the limit of slow spatial variations, we obtain coupled diffusion equations for the electron density and spin. Using these equations we calculate electric-field induced spin accumulation and spin current in a finite-size sample for an arbitrary ratio between spin-orbit energy splitting Delta and elastic scattering rate tau(-1). We demonstrate that the spin-Hall conductivity vanishes in an infinite system independent of this ratio.
Two-dimensional lattice solitons in polariton condensates with spin-orbit coupling
Kartashov, Yaroslav V
2016-01-01
We study two-dimensional fundamental and vortex solitons in polariton condensates with spin-orbit coupling and Zeeman splitting evolving in square arrays of microcavity pillars. Due to repulsive excitonic nonlinearity such states are encountered in finite gaps in the spectrum of the periodic array. Spin-orbit coupling between two polarization components stemming from TE-TM energy splitting of the cavity photons acting together with Zeeman splitting lifts the degeneracy between vortex solitons with opposite topological charges and makes their density profiles different for a fixed energy. This results in formation of four distinct families of vortex solitons with topological charges m=+-1, all of which can be stable. At the same time, only two stable families of fundamental gap solitons characterized by domination of different polarization components are encountered.
Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons
Hu, Tao; Wu, Lin; Zhang, Long; Shan, Yuwei; Lu, Jian; Wang, Jun; Luo, Song; Zhang, Zhe; Liao, Liming; Wu, Shiwei; Shen, S C; Chen, Zhanghai
2016-01-01
Two dimensional (2D) semiconductor materials of transition-metal dichalcogenides (TMDCs) manifest many peculiar physical phenomena in the light-matter interaction. Due to their ultrathin property, strong interaction with light and the robust excitons at room temperature, they provide a perfect platform for studying the physics of strong coupling in low dimension and at room temperature. Here we report the strong coupling between 2D semiconductor excitons and Tamm plasmon polaritons (TPPs). We observe a Rabi splitting of about 54 meV at room temperature by measuring the angle resolved differential reflectivity spectra and simulate the theoretical results by using the transfer matrix method. Our results will promote the realization of the TPP based ultrathin polariton devices at room temperature.
Hidden long-range order in a two-dimensional spin-orbit coupled Bose gas
Su, Shih-Wei; Gou, Shih-Chuan; Liao, Renyuan; Fialko, Oleksandr; Brand, Joachim
2016-01-01
A two-dimensional spin-orbit coupled Bose gas is shown to simultaneously possess quasi and true long-range orders in the total and relative phases, respectively. The total phase undergoes a conventional Berenzinskii- Kosterlitz-Thouless transition, where an quasi long-range order is expected. Additionally, the relative phase undergoes an Ising-type transition building up true long-range order, which is induced by the anisotropic spin- orbit coupling. Based on the Bogoliubov approach, expressions for the total- and relative-phase fluctuations are derived analytically for the low temperature regime. Numerical simulations of the stochastic projected Gross- Pitaevskii equation give a good agreement with the analytical predictions.
Energy Technology Data Exchange (ETDEWEB)
Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko; Engel, Volker [Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Str. 42, Campus Nord, Am Hubland, 97074 Würzburg (Germany); Gomez, Sandra; Sola, Ignacio R. [Departamento de Quimica Fisica, Universidad Complutense, 28040 Madrid (Spain)
2015-07-28
We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.
Eremeev, Sergey V; Tsirkin, Stepan S; Nechaev, Ilya A; Echenique, Pedro M; Chulkov, Evgueni V
2015-08-04
Intriguing phenomena and novel physics predicted for two-dimensional (2D) systems formed by electrons in Dirac or Rashba states motivate an active search for new materials or combinations of the already revealed ones. Being very promising ingredients in themselves, interplaying Dirac and Rashba systems can provide a base for next generation of spintronics devices, to a considerable extent, by mixing their striking properties or by improving technically significant characteristics of each other. Here, we demonstrate that in BiTeI@PbSb2Te4 composed of a BiTeI trilayer on top of the topological insulator (TI) PbSb2Te4 weakly- and strongly-coupled Dirac-Rashba hybrid systems are realized. The coupling strength depends on both interface hexagonal stacking and trilayer-stacking order. The weakly-coupled system can serve as a prototype to examine, e.g., plasmonic excitations, frictional drag, spin-polarized transport, and charge-spin separation effect in multilayer helical metals. In the strongly-coupled regime, within ~100 meV energy interval of the bulk TI projected bandgap a helical state substituting for the TI surface state appears. This new state is characterized by a larger momentum, similar velocity, and strong localization within BiTeI. We anticipate that our findings pave the way for designing a new type of spintronics devices based on Rashba-Dirac coupled systems.
Coupled two-dimensional edge plasma and neutral gas modeling of tokamak scrape-off-layers
Energy Technology Data Exchange (ETDEWEB)
Maingi, R. [North Carolina State Univ., Raleigh, NC (United States)
1992-08-01
The objective of this study is to devise a detailed description of the tokamak scrape-off-layer (SOL), which includes the best available models of both the plasma and neutral species and the strong coupling between the two in many SOL regimes. A good estimate of both particle flux and heat flux profiles at the limiter/divertor target plates is desired. Peak heat flux is one of the limiting factors in determining the survival probability of plasma-facing-components at high power levels. Plate particle flux affects the neutral flux to the pump, which determines the particle exhaust rate. A technique which couples a two-dimensional (2-D) plasma and a 2-D neutral transport code has been developed (coupled code technique), but this procedure requires large amounts of computer time. Relevant physics has been added to an existing two-neutral-species model which takes the SOL plasma/neutral coupling into account in a simple manner (molecular physics model), and this model is compared with the coupled code technique mentioned above. The molecular physics model is benchmarked against experimental data from a divertor tokamak (DIII-D), and a similar model (single-species model) is benchmarked against data from a pump-limiter tokamak (Tore Supra). The models are then used to examine two key issues: free-streaming-limits (ion energy conduction and momentum flux) and the effects of the non-orthogonal geometry of magnetic flux surfaces and target plates on edge plasma parameter profiles.
Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities
El-Jallal, Said; Oudich, Mourad; Pennec, Yan; Djafari-Rouhani, Bahram; Laude, Vincent; Beugnot, Jean-Charles; Martínez, Alejandro; Escalante, José María; Makhoute, Abdelkader
2013-11-01
We theoretically investigate phonon-photon interaction in cavities created in a phoxonic crystal slab constituted by a two-dimensional (2D) square array of holes in a silicon membrane. The structure without defects provides 2D band gaps for both electromagnetic and elastic waves. We consider two types of cavities, namely, an L3 cavity (a row of three holes is removed) and a cross-shape cavity, which both possess highly confined phononic and photonic localized modes suitable for enhancing their interaction. In our theoretical study, we take into account two mechanisms that contribute to optomechanical interaction, namely, the photoelastic and the interface motion effects. We show that, depending on the considered pair of photonic and phononic modes, the two mechanisms can have similar or very different magnitudes, and their contributions can be either in or out of phase. We find out that only acoustic modes with a specific symmetry are allowed to couple with photonic cavity modes. The coupling strength is quantified by two different methods. In the first method, we compute a direct estimation of coupling rates by overlap integrals, while in the second one, we analyze the temporal modulation of the resonant photonic frequency by the phonon-induced acoustic vibrational motion during one acoustic period. Interestingly, we obtain high optomechanical interaction, with the coupling rate reaching more than 2.4 MHz for some specific phonon-photon pairs.
Dyer, Gregory C; Preu, Sascha; Vinh, N Q; Allen, S James; Reno, John L; Shaner, Eric A
2016-01-01
We measured a change in the current transport of an antenna-coupled, multi-gate, GaAs/AlGaAs field-effect transistor when terahertz electromagnetic waves irradiated the transistor and attribute the change to bolometric heating of the electrons in the two-dimensional electron channel. The observed terahertz absorption spectrum indicates coherence between plasmons excited under adjacent biased device gates. The experimental results agree quantitatively with a theoretical model we developed that is based on a generalized plasmonic transmission line formalism and describes an evolution of the plasmonic spectrum with increasing electron density modulation from homogeneous to the crystal limit. These results demonstrate an electronically induced and dynamically tunable plasmonic band structure.
Two-dimensional Josephson junction arrays coupled through a high-Q cavity
DEFF Research Database (Denmark)
Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.
2001-01-01
the cavity. The highly resonant cavity induces synchronized behavior, which is qualitatively different than what is familiar from other studies on nonlinear oscillator arrays, for example the Kuramoto model. We also address the effects of disorder, as well as the role of detuning between the spontaneous...... emission frequency of the junctions and the cavity resonant frequency. We show with a simple argument that we can predict the scaling behavior of disorder with the size of the array. The consequences for the design of microwave oscillators in the Gigahertz region are discussed......The problem of disordered two-dimensional arrays of underdamped Josephson junctions is addressed. Our simulations show that when coupled to a high-Q cavity, the array exhibits synchronized behavior, and the power emitted can be considerably increased once enough junctions are activated to pump...
Electron spin resonance in a two-dimensional Fermi liquid with spin-orbit coupling
Maiti, Saurabh; Imran, Muhammad; Maslov, Dmitrii L.
2016-01-01
Electron spin resonance (ESR) is usually viewed as a single-particle phenomenon protected from the effect of many-body correlations. We show that this is not the case in a two-dimensional Fermi liquid (FL) with spin-orbit coupling (SOC). Depending on whether the in-plane magnetic field is below or above some critical value, ESR in such a system probes up to three chiral-spin collective modes, augmented by the spin mode in the presence of the field, or the Silin-Leggett mode. All the modes are affected by both SOC and FL renormalizations. We argue that ESR can be used as a probe not only for SOC but also for many-body physics.
Modelling floor heating systems using a validated two-dimensional ground coupled numerical model
DEFF Research Database (Denmark)
Weitzmann, Peter; Kragh, Jesper; Roots, Peter
2005-01-01
the floor. This model can be used to design energy efficient houses with floor heating focusing on the heat loss through the floor construction and foundation. It is found that it is impor-tant to model the dynamics of the floor heating system to find the correct heat loss to the ground, and further......This paper presents a two-dimensional simulation model of the heat losses and tempera-tures in a slab on grade floor with floor heating which is able to dynamically model the floor heating system. The aim of this work is to be able to model, in detail, the influence from the floor construction...... and foundation on the performance of the floor heating sys-tem. The ground coupled floor heating model is validated against measurements from a single-family house. The simulation model is coupled to a whole-building energy simu-lation model with inclusion of heat losses and heat supply to the room above...
Two-dimensional coupled fluid and electrodynamic calculations for a MHD DCW channel with slag layers
Liu, B. L.
1982-01-01
A fully coupled, two dimensional numerical method of modeling linear, coal-fired MHD generators is developed for the case of a plasma flow bounded by a slag layer on the channel walls. The governing partial differential equations for the plasma flow, slag layer and electrodynamics are presented and their coupling discussed. An iterative, numerical procedure employing non-uniform computational meshes and appropriate tridiagonal matrix solution schemes for the equations is presented. The method permits the investigation of the mutual plasma flow-slag layer development for prescribed wall temperatures, electrode geometry, slag properties and channel loading. In particular, the slag layer-plasma interface properties which require prior specification in an uncoupled analysis comprise part of the solution in the present approach. Results are presented for a short diagonally connected generator channel and include contour plots of the electric potential and current stream function as well as transverse and axial profiles of pertinent plasma properties. The results indicate that a thin electrode slag layer can be maintained in the presence of reasonable current density levels.
Scaling behavior of the dipole-coupling energy in two-dimensional disordered magnetic nanostructures
Jensen, P. J.; Pastor, G. M.
2003-11-01
Numerical calculations of the average dipole-coupling energy Edip in two-dimensional disordered magnetic nanostructures are performed as a function of the particle coverage C. We observe that Edip scales as Edip∝Cα* with an unusually small exponent α*≃0.8 1.0 for coverages C≲20%. This behavior is shown to be primarily given by the contributions of particle pairs at short distances, which is intrinsically related to the presence of an appreciable degree of disorder. The value of α* is found to be sensitive to the magnetic arrangement within the nanostructure and to the degree of disorder. For large coverages C≳20% we obtain Edip∝Cα with α=3/2, in agreement with the straightforward scaling of the dipole coupling as in a periodic particle setup. Taking into account the effect of single-particle anisotropies, we show that the scaling exponent can be used as a criterion to distinguish between weakly interacting (α*≃1.0) and strongly interacting (α*≃0.8) particle ensembles as a function of coverage.
Institute of Scientific and Technical Information of China (English)
GONG Lun-Xun; CAO Jian-Li; PAN Jun-Ting; ZHANG Hua; JIAO Wan-Tang
2008-01-01
Based on the second integrable case of known two-dimensional Hamiltonian system with a quartic potential, we propose a 4×4 matrix spectral problem and derive a hierarchy of coupled KdV equations and their Hamiltonian structures. It is shown that solutions of the coupled KdV equations in the hierarchy are reduced to solving two compatible systems of ordinary differential equations. As an application, quite a few explicit solutions of the coupled KdV equations are obtained via using separability for the second integrable case of the two-dimensional Hamiltonian system.
A two-dimensional global simulation study of inductive-dynamic magnetosphere-ionosphere coupling
Tu, Jiannan; Song, Paul
2016-12-01
We present the numerical methods and results of a global two-dimensional multifluid-collisional-Hall magnetohydrodynamic (MHD) simulation model of the ionosphere-thermosphere system, an extension of our one-dimensional three-fluid MHD model. The model solves, self-consistently, Maxwell's equations, continuity, momentum, and energy equations for multiple ion and neutral species incorporating photochemistry, collisions among the electron, ion and neutral species, and various heating sources in the energy equations. The inductive-dynamic approach (solving self-consistently Faraday's law and retaining inertia terms in the plasma momentum equations) used in the model retains all possible MHD waves, thus providing faithful physical explanation (not merely description) of the magnetosphere-ionosphere/thermosphere (M-IT) coupling. In the present study, we simulate the dawn-dusk cross-polar cap dynamic responses of the ionosphere to imposed magnetospheric convection. It is shown that the convection velocity at the top boundary launches velocity, magnetic, and electric perturbations propagating with the Alfvén speed toward the bottom of the ionosphere. Within the system, the waves experience reflection, penetration, and rereflection because of the inhomogeneity of the plasma conditions. The reflection of the Alfvén waves may cause overshoot (stronger than the imposed magnetospheric convection) of the plasma velocity in some regions. The simulation demonstrates dynamic propagation of the field-aligned currents and ionospheric electric field carried by the Alfvén waves, as well as formation of closure horizontal currents (Pedersen currents in the E region), indicating that in the dynamic stage the M-I coupling is via the Alfvén waves instead of field-aligned currents or electric field mapping as described in convectional M-I coupling models.
Directory of Open Access Journals (Sweden)
Farideh Hosseini
2015-09-01
Full Text Available Introduction As a tumor grows, the demand for oxygen and nutrients increases and it grows further if acquires the ability to induce angiogenesis. In this study, we aimed to present a two-dimensional continuous mathematical model for avascular tumor growth, coupled with a discrete model of angiogenesis. Materials and Methods In the avascular growth model, tumor is considered as a single mass, which uptakes oxygen through diffusion and invades the extracellular matrix (ECM. After the tumor reaches its maximum size in the avascular growth phase, tumor cells may be in three different states (proliferative, quiescent and apoptotic, depending on oxygen availability. Quiescent cells are assumed to secrete tumor angiogenic factors, which diffuse into the surrounding tissue until reaching endothelial cells. The mathematical model for tumor angiogenesis is consisted of a five-point finite difference scheme to simulate the progression of endothelial cells in ECM and their penetration into the tumor. Results The morphology of produced networks was investigated, based on various ECM degradation patterns. The generated capillary networks involved the rules of microvascular branching and anastomosis. Model predictions were in qualitative agreement with experimental observations and might have implications as a supplementary model to facilitate mathematical analyses for anti-cancer therapies. Conclusion Our numerical simulations could facilitate the qualitative comparison between three layers of tumor cells, their TAF-producing abilities and subsequent penetration of micro-vessels in order to determine the dynamics of microvascular branching and anastomosis in ECM and three different parts of the tumor.
Institute of Scientific and Technical Information of China (English)
Feng shuai; Wang Yi-Quan
2011-01-01
This paper studies the propagating characteristics of the electromagnetic waves through the coupled-resonator optical waveguides based on the two-dimensional square-lattice photonic crystals by the finite-difference time-domain method. When the traditional circular rods adjacent to the centre of the cavities are replaced by the oval rods, the simulated results show that the waveguide mode region can be adjusted only by the alteration of the oval rods' obliquity.When the obliquity of the oval rods around one cavity is different from the obliquity of that around the adjacent cavities,the group velocities of the waveguide modes can be greatly reduced and the information of different frequencies can be shared and chosen at the same time by the waveguide branches with different structures. If the obliquities of the oval rods around two adjacent cavities are equal and they alternate between two values, the group velocities can be further reduced and a maximum value of 0.0008c (c is the light velocity in vacuum) can be acquired.
Plasmonic terahertz modulator based on a grating-coupled two-dimensional electron system
Huang, Y. D.; Yu, Y.; Qin, H.; Sun, J. D.; Zhang, Z. P.; Li, X. X.; Huang, J. J.; Cai, Y.
2016-11-01
Electrically driven broadband modulator with large modulation depth and high speed is in high demand to meet the technical advancing and applications in terahertz fields recently. So far, the single-particle non-resonant absorption mechanism described by the Drude conductivity has been utilized in most of the related researches but is still not efficient enough. Here we proposed and demonstrated a terahertz modulator based on the collective electron plasma excitations (plasmons) in a grating-coupled two-dimensional electron gas in GaN/AlGaN heterostructure. By switching between the resonant and non-resonant conditions of the 2D plasmon excitation enabled by applying proper gate biases, the transmission of terahertz electromagnetic waves can be efficiently manipulated. Taking advantage of its resonant characteristic combined with the strong electric field enhancement in the active region, we experimentally achieved a maximum intensity modulation depth of 93%, a 3 dB operation bandwidth of ˜400 kHz, and a small required driving voltage amplitude of 2 V at a cryogenic temperature of 8.7 K. Owing to its excellent performances, this active plasmon-based terahertz modulator may offer some promising solutions in several fields of terahertz technology in the future.
Controlling Rashba spin orbit coupling in polar two-dimensional transition metal dichalcogenide
Yao, Qun-Fang; Tong, Wen-Yi; Gong, Shi-Jing; Wang, Ji-Qing; Wan, Xian-gang; Duan, Chun-Gang; Chu, J H
2016-01-01
Monolayer transition metal dichalcogenide (TMD) group of materials MXY (M=Mo, W, X(not equal to)Y=S, Se, Te) are two-dimensional polar semiconductors with Rashba spin orbit coupling (SOC). Setting WSeTe as an example and using density functional theory calculations, we investigate the influence of biaxial strain and electric field on Rashba SOC in MXY monolayer. The orbital analysis reveals that Rashba spin splitting around Gamma point occurs mainly through the SOC matrix elements between the W-dz2 and -dxz/yz orbitals, and those between the Se-pz and -px/y orbitals. We find the change of local electric field between Se and W atoms arising from the mirror symmetry breaking plays the critical role in forming the large Rashba SOC, and through a relatively small compressive/tensile strain (from -2% to 2%), a large tunability of Rashba SOC can be obtained due to the modified W-Se bonding interaction. In addition, we also explore the influence of electric field on Rashba SOC in WSeTe, which can impact the charge d...
The influence of the Rashba spin-orbit coupling on the two-dimensional magnetoexcitons
Energy Technology Data Exchange (ETDEWEB)
Hakioglu, T [Department of Physics, Bilkent University, 06800 Ankara (Turkey); Liberman, M A [Department of Physics, Uppsala University, Box 530, SE-751 21, Uppsala (Sweden); Moskalenko, S A; Podlesny, I V [Institute of Applied Physics, Academy of Sciences of Moldova, 5, Academiei street, MD-2028, Chisinau (Moldova, Republic of)
2011-08-31
The influence of the Rashba spin-orbit coupling (RSOC) on the two-dimensional (2D) electrons and holes in a strong perpendicular magnetic field leads to different results for the Landau quantization in different spin projections. In the Landau gauge the unidimensional wave vector describing the free motion in one in-plane direction is the same for both spin projections, whereas the numbers of Landau quantization levels are different. For an electron in an s-type conduction band they differ by one, as was established earlier by Rashba (1960 Fiz. Tverd. Tela 2 1224), whereas for heavy holes in a p-type valence band influenced by the 2D symmetry of the layer they differ by three. The shifts and the rearrangements of the 2D hole Landau quantization levels on the energy scale are much larger in comparison with the case of conduction electron Landau levels. This is due to the strong influence of the magnetic field on the RSOC parameter. At sufficiently large values of this parameter the shifts and rearrangements are comparable with the hole cyclotron energy. There are two lowest spin-split Landau levels for electrons as well as four lowest ones for holes in the case of small RSOC parameters. They give rise to eight lowest energy bands of the 2D magnetoexcitons, as well as of the band-to-band quantum transitions. It is shown that three of them are dipole-active, three are quadrupole-active and two are forbidden. The optical orientation under the influence of circularly polarized light leads to optical alignment of the magnetoexcitons with different orbital momentum projections in the direction of the external magnetic field. (paper)
den Hartog, Sander; Wees, B.J. van; Nazarov, Yu.V.; Klapwijk, T.M.; Borghs, G.
1998-01-01
We first present the bias-voltage dependence of the superconducting phase-dependent reduction in the differential resistance of a disordered T-shaped two-dimensional electron gas (2DEG) coupled to two superconductors. This reduction exhibits a reentrant behavior, since it first increases upon loweri
Energy Technology Data Exchange (ETDEWEB)
He, Pei-Song, E-mail: hepeisong@th.btbu.edu.cn; Zhao, Jia; Geng, Ai-Cong; Xu, Deng-Hui; Hu, Rong
2013-11-01
We prove that in a two-dimensional homogeneous boson system with Rashba spin–orbit coupling, Bose–Einstein condensate with plane-wave order is unstable at finite temperature. The calculations are based on a nonlinear sigma model scheme. The density wave contributions to the thermal deletions are divergent in the infrared limit. The behavior of the divergence is different from that without spin–orbit coupling.
Two-dimensional coupled electron-hole layers in high magnetic fields
Parlangeli, Andrea
2000-01-01
In solids, it is nowadays possible to create structures in which electrons are confined into a two-dimensional (2D) plane. The physics of a 2D electron gas (2DEG) has proved to be very rich, in particular in the presence of a transverse magnetic field. The Quantum Hall Effect, i.e. the quantization
Directory of Open Access Journals (Sweden)
H. S. Shukla
2014-11-01
Full Text Available In this paper, a numerical solution of two dimensional nonlinear coupled viscous Burger equation is discussed with appropriate initial and boundary conditions using the modified cubic B-spline differential quadrature method. In this method, the weighting coefficients are computed using the modified cubic B-spline as a basis function in the differential quadrature method. Thus, the coupled Burger equation is reduced into a system of ordinary differential equations. An optimal five stage and fourth-order strong stability preserving Runge–Kutta scheme is applied for solving the resulting system of ordinary differential equations. The accuracy of the scheme is illustrated by taking two numerical examples. Computed results are compared with the exact solutions and other results available in literature. Obtained numerical result shows that the described method is efficient and reliable scheme for solving two dimensional coupled viscous Burger equation.
Institute of Scientific and Technical Information of China (English)
ZHANG; Jiqian; SHEN; Chuansheng; CUI; Zhifeng
2006-01-01
By the intracellular calcium ionic minimal model proposed by Berridge, we investigated the collective response of two-dimensional (N×N) coupled cell systems to the external stimulation using numerical simulation methods. With a coupled intensity fixed and an appropriate coupled cell number chosen, the kinetic system size resonance was discovered. At the same time, it was found that the system size responding to the external stimulation for different coupled intensities transferred too, especially when the coupled intensity increased, the range of the corresponding system size extended. These phenomena illustrate that the coupled cell number and the coupled intensity can play constructive roles in noisy coupled systems, by which the biology system would probably improve its capability to respond to the external stimulation.
Institute of Scientific and Technical Information of China (English)
HUANG Yin; LU Yan-Wu
2009-01-01
@@ Light propagation through a coupled-defect waveguide with a 63.5°bend in a two-dimensional (2D) photonic crystal is investigated. The waveguide modes are non-degenerate monopole state and dipole defect state of a square lattice for two different branches. To increase the transmission in the bending waveguide, we propose a method to rotate the localized state by introducing a new type defect with a sheared square rod into coupled cavity. The higher coupling efficiency and transmission in the bending waveguide are obtained with proper shear shift.
Institute of Scientific and Technical Information of China (English)
Ma Jun; Ying He-Ping; Liu Yong; Li Shi-Rong
2009-01-01
The dynamics and the transition of spiral waves in the couplcd Hindmarsh-Rose (H-R) neurons in two-dimensional space are investigated in the paper. It is found that the spiral wave can be induced and developed in the coupled HR neurons in two-dimensional space, with appropriate initial values and a parameter region given. However, the spiral wave could encounter instability when the intensity of the external current reaches a threshold value of 1.945. The transition of spiral wave is found to be affected by coupling intensity D and bifurcation parameter r. The spiral wave becomes sparse as the coupling intensity increases, while the spiral wave is eliminated and the whole neuronal system becomes homogeneous as the bifurcation parameter increases to a certain threshold value. Then the coupling action of the four sub-adjacent neurons, which is described by coupling coefficient DI, is also considered, and it is found that the spiral wave begins to breakup due to the introduced coupling action from the sub-adjacent neurons (or sites) and together with the coupling action of the nearest-neighbour neurons, which is described by the coupling intensity D.
Directory of Open Access Journals (Sweden)
U. Löw
2009-01-01
Full Text Available The magnetic properties of the two-dimensional S=1/2 (quantum antiferromagnetic Heisenberg model on a honeycomb lattice with and without interlayer coupling are studied by means of a continuous Euclidean time Quantum Monte-Carlo algorithm. The internal energy, the magnetic susceptibility and the staggered magnetization are determined in the full temperature range. For the two-dimensional system the ground-state energy/bond is found to be E0hc=-0.36303(13, and the zero temperature staggered magnetization mst=0.2681(8. For coupled planes of honeycomb systems a phase transition from an ordered phase to a disordered phase is found at T/J=0.695(10.
Resonant scattering and mode coupling in two-dimensional textured planar waveguides.
Cowan, A R; Paddon, P; Pacradouni, V; Young, J F
2001-05-01
A heuristic formalism is developed for efficiently determining the specular reflectivity spectrum of two-dimensionally textured planar waveguides. The formalism is based on a Green's function approach wherein the electric fields are assumed to vary little over the thickness of the textured part of the waveguide. Its accuracy, when the thickness of the textured region is much smaller than the wavelength of relevant radiation, is verified by comparison with a much less efficient, exact finite difference solution of Maxwell's equations. In addition to its numerical efficiency, the formalism provides an intuitive explanation of Fano-like features evident in the specular reflectivity spectrum when the incident radiation is phase matched to excite leaky electromagnetic modes attached to the waveguide. By associating various Fourier components of the scattered field with bare slab modes, the dispersion, unique polarization properties, and lifetimes of these Fano-like features are explained in terms of photonic eigenmodes that reveal the renormalization of the slab modes due to interaction with the two-dimensional grating. An application of the formalism, in the analysis of polarization-insensitive notch filters, is also discussed.
Ransom, Jonathan B.
2002-01-01
A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.
Energy Technology Data Exchange (ETDEWEB)
Inampudi, Sandeep; Nazari, Mina; Forouzmand, Ali; Mosallaei, Hossein, E-mail: hosseinm@coe.neu.edu [Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 (United States)
2016-01-14
We present a comprehensive analysis of surface plasmon polariton dispersion characteristics associated with isotropic and anisotropic two-dimensional atomically thin layered materials (2D sheets) coupled to h-BN heterostructures. A scattering matrix based approach is presented to compute the electromagnetic fields and related dispersion characteristics of stacked layered systems composed of anisotropic 2D sheets and uniaxial bulk materials. We analyze specifically the surface plasmon polariton (SPP) dispersion characteristics in case of isolated and coupled two-dimensional layers with isotropic and anisotropic conductivities. An analysis based on residue theorem is utilized to identify optimum optical parameters (surface conductivity) and geometrical parameters (separation between layers) to maximize the SPP field at a given position. The effect of type and degree of anisotropy on the shapes of iso-frequency curves and propagation characteristics is discussed in detail. The analysis presented in this paper gives an insight to identify optimum setup to enhance the SPP field at a given position and in a given direction on the surface of two-dimensional materials.
Hardhienata, Hendradi
2012-01-01
Two dimensional (2D) photonic crystals are well known for its ability to manipulate the propagation of electromagnetic wave inside the crystal. 1D and 2D photonic crystals are relatively easier to fabricate than 3D because the former work in the microwave and far infrared regions whereas the later work in the visible region and requires smaller lattice constants. In this paper, simulation for a modified 2D PC with two symmetric waveguide channels where a defect is located inside one of the channel is performed. The simulation results show that optical switching is possible by modifying the refractive index of the defect. If more than one structure is applied this feature can potentially be applied to produce a cascade optical switch.
Giberti, Claudio; Vernia, Cecilia
1994-12-01
We consider diffusively coupled logistic maps in one- and two-dimensional lattices. We investigate periodic behaviors as the coupling parameter varies, i.e., existence and bifurcations of some periodic orbits with the largest domain of attraction. Similarity and differences between the two lattices are shown. For small coupling the periodic behavior appears to be characterized by a number of periodic orbits structured in such a way to give rise to distinct, reverse period-doubling sequences. For intermediate values of the coupling a prominent role in the dynamics is played by the presence of normally attracting manifolds that contain periodic orbits. The dynamics on these manifolds is very weakly hyperbolic, which implies long transients. A detailed investigation allows the understanding of the mechanism of their formation. A complex bifurcation is found which causes an attracting manifold to become unstable.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The relationship between desert evolution and change in albedo has been investigated quasi-analytically using a zonal mean two-dimensional energy balance model which considers the radiation transmission process due to thermodynamics and bound- ary layer movement caused by kinetics. A climate state including temperature, zonal wind, meridional wind and vertical wind can be simulated according to the current zonal distribution of albedo. Given desert distribution, characterized by the value and distribution of albedo, the response of climate on albedo has been studied to analyze the evolution of desert climate. One significant result is that the simple model can reproduce mean meridional circulation. Another result indicates that climate corresponds to two equilibria. This happens when the junction temperature between vegetation and desert is higher than a certain critical value. As for the first equilibrium, the desert belt is predicted to move southward in the northern hemisphere with the increasing values of albedo, which corresponds to the current trend of climate change. For the second equilibrium, vegetation will expand northward with increasing values of albedo, which would indicate a narrowing of the desert belt. In order to determine if the two equilibria exist, new physical models are needed.
Elsner, Victoria; Laun, Sabrina; Melchior, David; Köhler, Michael; Schmitz, Oliver J
2012-12-14
A simultaneous separation of anionic (fatty alcohol sulfates, fatty alcohol ether sulfates), non-ionic (alkyl polyglucosides, fatty alcohol ethoxylates) and amphoteric (cocamidopropyl betaines) surfactants was performed by comprehensive two-dimensional liquid chromatography (LCxLC) utilizing a ZIC(®)-HILIC column in the first dimension, a Reprosphere 100 C8-Aqua column in the second dimension and a 10-port two position valve as the interface. The volume of the two sample loops were 25 or 50 μL and allow a one or two minute modulation at a 25 μL/min flow rate. In the first dimension, a gradient of acetonitrile and an ammonium acetate buffer was used to separate polyethoxylated surfactants by their degree of ethoxylation (EO number) whereas in the second dimension, a separation by alkyl chain was performed using a methanol/ammonium acetate buffer gradient. A baseline separation of the above mentioned surfactants according to both EO number and alkyl chain was achieved. The best performance was used to compare two different LCxLC-QTOF MS systems, which demonstrate that a transfer of the method from one system to a totally different system is possible. However, because of the differences in delay volume and extra-column volume between these systems the separation power is changed.
Spin-Hall effect in two-dimensional electron systems with Rashba spin-orbit coupling and disorder.
Sheng, L; Sheng, D N; Ting, C S
2005-01-14
Using the four-terminal Landauer-Bu ttiker formula and Green's function approach, we calculate numerically the spin-Hall conductance in a two-dimensional junction system with the Rashba spin-orbit (SO) coupling and disorder. We find that the spin-Hall conductance can be much greater or smaller than the universal value e/8pi, depending on the magnitude of the SO coupling, the electron Fermi energy, and the disorder strength. The spin-Hall conductance does not vanish with increasing sample size for a wide range of disorder strength. Our numerical calculation reveals that a nonzero SO coupling can induce electron delocalization for disorder strength smaller than a critical value, and the nonvanishing spin-Hall effect appears mainly in the metallic regime.
Directory of Open Access Journals (Sweden)
Kai Tsuruta
2013-05-01
Full Text Available We prove the existence of the wave operator for the Klein-Gordon-Schrodinger system with Yukawa coupling. This non-linearity type is below Strichartz scaling, and therefore classic perturbation methods will fail in any Strichartz space. Instead, we follow the "first iteration method" to handle these critical non-linearities.
Multi-scale coupling strategy for fully two-dimensional and depth-averaged models for granular flows
Pudasaini, Shiva P.; Domnik, Birte; Miller, Stephen A.
2013-04-01
We developed a full two-dimensional Coulomb-viscoplastic model and applied it for inclined channel flows of granular materials from initiation to their deposition. The model includes the basic features and observed phenomena in dense granular flows like the exhibition of a yield strength and a non-zero slip velocity. A pressure-dependent yield strength is proposed to account for the frictional nature of granular materials. The yield strength can be related to the internal friction angle of the material and plays an important role, for example, in deposition processes. The interaction of the flow with the solid boundary is modelled by a pressure and rate-dependent Coulomb-viscoplastic sliding law. We developed an innovative multi-scale strategy to couple the full two-dimensional, non depth-averaged model (N-DAM) with a one-dimensional, depth-averaged model (DAM). The coupled model reduces computational complexity dramatically by using DAM only in regions with smooth changes of flow variables. The numerics uses N-DAM in regions where depth-averaging becomes inaccurate, for instance, in the initiation and deposition regions, and (particularly) when the flow hits an obstacle or a defense structure. In these regions, momentum transfer must be, and is, considered in all directions. We observe very high coupling performance, and show that the numerical results deviate only slightly from results of the much more cumbersome full two-dimensional model. This shows that the coupled model, which retains all the basic physics of the flow, is an attractive alternative to an expensive, full two-dimensional simulations. We compare simulation results with different experimental data for shock waves appearing in rapid granular flows down inclined channels and impacting a wall. The model predicts the evolution of the strong shock wave and the impact force on a rigid wall for different inclination angles and sliding surfaces. It is demonstrated that the internal friction angle plays an
Photon-Phonon-Enhanced Infrared Rectification in a Two-Dimensional Nanoantenna-Coupled Tunnel Diode
Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Peters, David W.; Davids, Paul S.
2016-12-01
The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excite infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.
Lv, Bo; Ma, Zhongshui
2013-01-01
The negative refracted transmission and retroreflection of electrons in low-electron-density semiconductors, in the presence of spin-orbit coupling, are theoretically predicted. It is shown that negative electronic transport may occur owing to the occurrence of additional states whose wave vectors are antiparallel to their group velocities. We conclude that the transport emerges as negative in nature in the scattering process if the sign of its ray equation is reversed with respect to that of the incidence's. We demonstrate this finding in the hybrid of two-dimensional electron gases with different Rashba spin-orbit couplings. We also show that the fundamental of negative electric transport is promising to focus a divergent electronic beam in a spintronic sandwich structure with flat surfaces.
Wave mode coupling due to plasma wakes in two-dimensional plasma crystals: In-depth view
Couëdel, L; Ivlev, A V; Nosenko, V; Thomas, H M; Morfill, G E
2011-01-01
Experiments with two-dimensional (2D) plasma crystals are usually carried out in rf plasma sheaths, where the interparticle interactions are modified due to the presence of plasma wakes. The wake-mediated interactions result in the coupling between wave modes in 2D crystals, which can trigger the mode-coupling instability and cause melting. The theory predicts a number of distinct fingerprints to be observed upon the instability onset, such as the emergence of a new hybrid mode, a critical angular dependence, a mixed polarization, and distinct thresholds. In this paper we summarize these key features and provide their detailed discussion, analyze the critical dependence on experimental parameters, and highlight the outstanding issues.
Tu, J.; Song, P.
2016-12-01
We have developed a new numerical simulation model of the ionosphere/thermosphere by using an inductive-dynamic approach (including self-consistent solutions of Faraday's law and retaining inertia terms in ion momentum equations), that is, based on magnetic field B and plasma velocity v (B, v paradigm), which is distinctive from the conventional modeling based on electric field E and current j. The model solves self-consistently time-dependent continuity, momentum, and energy equations for multiple species of ions and neutrals including photochemistry, and Maxwell's equations. The governing equations solved in the model are a set of multifluid-collisional-Hall MHD equations which are one of unique features of our ionosphere/thermosphere model. With such an inductive-dynamic approach, not only sound wave mode but also all possible MHD wave modes are retained in the solutions of the governing equations so that the dynamic coupling between the magnetosphere and ionosphere and among different regions of the ionosphere can be self-consistently investigated. In the present study, we demonstrate dynamic propagation of field-aligned currents and ionospheric electric field carried by Alfven waves, as well as formation of closure horizontal currents (Pedersen currents in the E-region), indicating that the M-I coupling is via the Alfven waves instead of the field-aligned currents or electric field mapping. The simulation results also show that the Poynting flux and strongest energy dissipation in the ionosphere/thermosphere is in the regions of the largest ion velocities and not necessarily in the auroral oval where the field-aligned currents reside. The frictional heating increases plasma temperature and thus drives ion upflows. The frictional heating also increase neutral temperature and produces neutral upflows but in a much longer time scale. Furthermore, the coupling of high-to-low latitude ionosphere is investigated in terms of propagation of fast MHD waves.
Two-dimensional analysis of coupled heat and moisture transport in masonry structures
Krejčí, Tomáš
2016-06-01
Reconstruction and maintenance of historical buildings and bridges require good knowledge of temperature and moisture distribution. Sharp changes in the temperature and moisture can lead to damage. This paper describes analysis of coupled heat and moisture transfer in masonry based on two-level approach. Macro-scale level describes the whole structure while meso-scale level takes into account detailed composition of the masonry. The two-level approach is very computationally demanding and it was implemented in parallel. The two-level approach was used in analysis of temperature and moisture distribution in Charles bridge in Prague, Czech Republic.
A two-dimensional conjugated aromatic polymer via C-C coupling reaction
Liu, Wei; Luo, Xin; Bao, Yang; Liu, Yan Peng; Ning, Guo-Hong; Abdelwahab, Ibrahim; Li, Linjun; Nai, Chang Tai; Hu, Zhi Gang; Zhao, Dan; Liu, Bin; Quek, Su Ying; Loh, Kian Ping
2017-06-01
The fabrication of crystalline 2D conjugated polymers with well-defined repeating units and in-built porosity presents a significant challenge to synthetic chemists. Yet they present an appealing target because of their desirable physical and electronic properties. Here we report the preparation of a 2D conjugated aromatic polymer synthesized via C-C coupling reactions between tetrabromopolyaromatic monomers. Pre-arranged monomers in the bulk crystal undergo C-C coupling driven by endogenous solid-state polymerization to produce a crystalline polymer, which can be mechanically exfoliated into micrometre-sized lamellar sheets with a thickness of 1 nm. Isothermal gas-sorption measurements of the bulk material reveal a dominant pore size of ~0.6 nm, which indicates uniform open channels from the eclipsed stacking of the sheets. When employed as an organic anode in an ambient-temperature sodium cell, the material allows a fast charge/discharge of sodium ions, with impressive reversible capacity, rate capability and stability metrics.
Institute of Scientific and Technical Information of China (English)
MAO Xiao-Yu; YAO Di-Bi; ZHAO Ling-Yun; HUANG Yi-Dong; ZHANG Wei; PENG Jiang-De
2008-01-01
We propose an integrative biochemical sensor utilizing the dip in the transmission spectrum of a normal singleline defect photonic crystal(PC)waveguide,which has a contra-directional coupling with another PC waveguide.When the air holes in the PC slab are filled with a liquid analyte with different refractive indices,the dip has a wavelength shift.By detecting the output power variation at a certain fixed wavelength,a sensitivity of 1.2×10-4is feasible.This structure is easy for integration due to its plane waveguide structure and omissible pump source.In addition,high signal to noise ratio can be expected because signal transmits via a normal single-line defect PC waveguide instead of the PC hole area or analyte.
ONE- AND TWO-DIMENSIONAL COUPLED HYDRODYNAMICS MODEL FOR DAM BREAK FLOW
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
1-D and 2-D mathematical models for dam break flow were established and verified with the measured data in laboratory. The 1-D and 2-D models were then coupled, and used to simulate the dam break flow from the reservoir tail to the dam site, the propagation of dam break waves in the downstream channel, and the submergence of dam break flow in the downstream town with the hydrodynamics method. As a numerical example, the presented model was employed to simulate dam break flow of a hydropower station under construction. In simulation, different dam-break durations, upstream flows and water levels in front of dam were considered, and these influencing factors of dam break flow were analyzed, which could be referenced in planning and designing hydropower stations.
Ultrathin two-dimensional superconductivity with strong spin–orbit coupling
Nam, Hyoungdo; Chen, Hua; Liu, Tijiang; Kim, Jisun; Zhang, Chendong; Yong, Jie; Lemberger, Thomas R.; Kratz, Philip A.; Kirtley, John R.; Moler, Kathryn; Adams, Philip W.; MacDonald, Allan H.; Shih, Chih-Kang
2016-01-01
We report on a study of epitaxially grown ultrathin Pb films that are only a few atoms thick and have parallel critical magnetic fields much higher than the expected limit set by the interaction of electron spins with a magnetic field, that is, the Clogston–Chandrasekhar limit. The epitaxial thin films are classified as dirty-limit superconductors because their mean-free paths, which are limited by surface scattering, are smaller than their superconducting coherence lengths. The uniformity of superconductivity in these thin films is established by comparing scanning tunneling spectroscopy, scanning superconducting quantum interference device (SQUID) magnetometry, double-coil mutual inductance, and magneto-transport, data that provide average superfluid rigidity on length scales covering the range from microscopic to macroscopic. We argue that the survival of superconductivity at Zeeman energies much larger than the superconducting gap can be understood only as the consequence of strong spin–orbit coupling that, together with substrate-induced inversion-symmetry breaking, produces spin splitting in the normal-state energy bands that is much larger than the superconductor’s energy gap. PMID:27601678
Thermalization of mutual and tripartite information in strongly coupled two dimensional CFTs
Balasubramanian, V; Copland, N; Craps, B; Galli, F
2011-01-01
The mutual and tripartite information between pairs and triples of disjoint regions in a quantum field theory are sensitive probes of the spread of correlations in an equilibrating system. We compute these quantities in strongly coupled 2d CFTs with a gravity dual following the homogenous deposition of energy. The injected energy is modeled in AdS space as an infalling shell, and the information shared by disjoint intervals is computed in terms of geodesic lengths in this background. For given widths and separation of the intervals, the mutual information typically starts at its vacuum value, then increases in time to reach a maximum, and then declines to the value at thermal equilibrium. A simple causality argument qualitatively explains this behavior. The tripartite information is generically non-zero and time-dependent throughout the process. This contrasts with (but does not contradict) the time-independent tripartite information one finds after a 2d quantum quench in the limit of large time and distance ...
Ultrathin two-dimensional superconductivity with strong spin-orbit coupling.
Nam, Hyoungdo; Chen, Hua; Liu, Tijiang; Kim, Jisun; Zhang, Chendong; Yong, Jie; Lemberger, Thomas R; Kratz, Philip A; Kirtley, John R; Moler, Kathryn; Adams, Philip W; MacDonald, Allan H; Shih, Chih-Kang
2016-09-20
We report on a study of epitaxially grown ultrathin Pb films that are only a few atoms thick and have parallel critical magnetic fields much higher than the expected limit set by the interaction of electron spins with a magnetic field, that is, the Clogston-Chandrasekhar limit. The epitaxial thin films are classified as dirty-limit superconductors because their mean-free paths, which are limited by surface scattering, are smaller than their superconducting coherence lengths. The uniformity of superconductivity in these thin films is established by comparing scanning tunneling spectroscopy, scanning superconducting quantum interference device (SQUID) magnetometry, double-coil mutual inductance, and magneto-transport, data that provide average superfluid rigidity on length scales covering the range from microscopic to macroscopic. We argue that the survival of superconductivity at Zeeman energies much larger than the superconducting gap can be understood only as the consequence of strong spin-orbit coupling that, together with substrate-induced inversion-symmetry breaking, produces spin splitting in the normal-state energy bands that is much larger than the superconductor's energy gap.
Ishizaki, Akihito; Tanimura, Yoshitaka
2007-09-27
Reduced equation of motion for a multimode system coupled to multiple heat baths is constructed by extending the quantum Fokker-Planck equation with low-temperature correction terms (J. Phys. Soc. Jpn. 2005, 74, 3131). Unlike such common approaches used to describe intramolecular multimode vibration as a Bloch-Redfield theory and a stochastic theory, the present formalism is defined by the molecular coordinates. To explore the correlation among different modes through baths, we consider two cases of system-bath couplings. One is a correlated case in which two modes are coupled to a single bath, and the other is an uncorrelated case in which each mode is coupled to a different bath. We further classify the correlated case into two cases, the plus- and minus-correlated cases, according to distinct correlation manners. For these, one-dimensional and two-dimensional infrared (2D-IR) spectra are calculated numerically by solving the equation of motion. It is demonstrated that 2D-IR spectroscopy has the ability to analyze the correlation of fluctuation-dissipation processes among different modes.
Gritsenko, Marina A; Xu, Zhe; Liu, Tao; Smith, Richard D
2016-01-01
Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.
Bayer, Andreas; Unger, Andreas; Köhler, Bernd; Küster, Matthias; Dürsch, Sascha; Kissel, Heiko; Irwin, David A.; Bodem, Christian; Plappert, Nora; Kersten, Maik; Biesenbach, Jens
2016-03-01
The demand for high brightness fiber coupled diode laser devices in the multi kW power region is mainly driven by industrial applications for materials processing, like brazing, cladding and metal welding, which require a beam quality better than 30 mm x mrad and power levels above 3kW. Reliability, modularity, and cost effectiveness are key factors for success in the market. We have developed a scalable and modular diode laser architecture that fulfills these requirements through use of a simple beam shaping concept based on two dimensional stacking of tailored diode bars mounted on specially designed, tap water cooled heat sinks. The base element of the concept is a tailored diode laser bar with an epitaxial and lateral structure designed such that the desired beam quality in slow-axis direction can be realized without using sophisticated beam shaping optics. The optical design concept is based on fast-axis collimator (FAC) and slow-axis collimator (SAC) lenses followed by only one additional focusing optic for efficient coupling into a 400 μm fiber with a numerical aperture (NA) of 0.12. To fulfill the requirements of scalability and modularity, four tailored bars are populated on a reduced size, tap water cooled heat sink. The diodes on these building blocks are collimated simply via FAC and SAC. The building blocks can be stacked vertically resulting in a two-dimensional diode stack, which enables a compact design of the laser source with minimum beam path length. For a single wavelength, up to eight of these building blocks, implying a total of 32 tailored bars, can be stacked into a submodule, polarization multiplexed, and coupled into a 400 μm, 0.12NA fiber. Scalability into the multi kW region is realized by wavelength combining of replaceable submodules in the spectral range from 900 - 1100 nm. We present results of a laser source based on this architecture with an output power of more than 4 kW and a beam quality of 25 mm x mrad.
Blomberg, Jan; Riemersma, Toby; van Zuijlen, Manfred; Chaabani, Hassan
2004-09-24
Within the petrochemical industry, there has been a growing interest in methods capable of providing detailed information on the distribution of sulphur-containing compounds in various product streams, going down to the level of separating and quantifying individual sulphur species. Since no single capillary gas chromatographic column is able to perform this separation, a refuge to multi-dimensional separation techniques has to be taken. In this respect, comprehensive two-dimensional gas chromatography (GC x GC) coupled with sulphur chemiluminescence detection (SCD) has shown to be highly promising. It has been suggested, however, that the detector volume of an SCD restricts its potential to keep up with the fast second-dimension separations of contemporary GC x GC. In this paper, we will demonstrate that the lack of speed of the SCD does not originate from its physical dimensions, but is largely determined by the speed of the electronics used. Additionally, some typical examples will be presented to illustrate the potential of GC x GC coupled with fast SCD.
Brézin, E
1992-01-01
In the usual matrix-model approach to random discretized two-dimensional manifolds, one introduces n Ising spins on each cell, i.e. a discrete version of 2D quantum gravity coupled to matter with a central charge n/2. The matrix-model consists then of an integral over $2^{n}$ matrices, which we are unable to solve for $n>1$. However for a fixed genus we can expand in the cosmological constant g for arbitrary values of n, and a simple minded analysis of the series yields for n=0,1 and 2 the expected results for the exponent $\\gamma_{string}$ with an amazing precision given the small number of terms that we considered. We then proceed to larger values of n. Simple tests of universality are successfully applied; for instance we obtain the same exponents for n=3 or for one Ising model coupled to a one dimensional target space. The calculations are easily extended to states Potts models, through an integration over $q^{n}$ matrices. We see no sign of the tachyonic instability of the theory, but we have only consid...
Su, Ying; Wang, C.; Avishai, Y.; Meir, Yigal; Wang, X. R.
2016-09-01
The one-parameter scaling theory of localization predicts that all states in a disordered two-dimensional system with broken time reversal symmetry are localized even in the presence of strong spin-orbit coupling. While at constant strong magnetic fields this paradigm fails (recall the quantum Hall effect), it is believed to hold at weak magnetic fields. Here we explore the nature of quantum states at weak magnetic field and strongly fluctuating spin-orbit coupling, employing highly accurate numerical procedure based on level spacing distribution and transfer matrix technique combined with one parameter finite-size scaling hypothesis. Remarkably, the metallic phase, (known to exist at zero magnetic field), persists also at finite (albeit weak) magnetic fields, and eventually crosses over into a critical phase, which has already been confirmed at high magnetic fields. A schematic phase diagram drawn in the energy-magnetic field plane elucidates the occurrence of localized, metallic and critical phases. In addition, it is shown that nearest-level statistics is determined solely by the symmetry parameter β and follows the Wigner surmise irrespective of whether states are metallic or critical.
Interplay between Rashba spin-orbit coupling and adiabatic rotation in a two-dimensional Fermi gas
Doko, E.; Subaşı, A. L.; Iskin, M.
2017-01-01
We explore the trap profiles of a two-dimensional atomic Fermi gas in the presence of a Rashba spin-orbit coupling and under an adiabatic rotation. We first consider a noninteracting gas and show that the competition between the effects of Rashba coupling on the local density of single-particle states and the Coriolis effects caused by rotation gives rise to a characteristic ring-shaped density profile that survives at experimentally accessible temperatures. Furthermore, Rashba splitting of the Landau levels gives the density profiles a ziggurat shape in the rapid-rotation limit. We then consider an interacting gas under the BCS mean-field approximation for local pairing, and study the pair-breaking mechanism that is induced by the Coriolis effects on superfluidity, where we calculate the critical rotation frequencies both for the onset of pair breaking and for the complete destruction of superfluidity in the system. In particular, by comparing the results of a fully-quantum-mechanical Bogoliubov-de Gennes approach with those of a semiclassical local-density approximation, we construct extensive phase diagrams for a wide range of parameter regimes in the trap where the aforementioned competition may, e.g., favor an outer normal edge that is completely phase separated from the central superfluid core by vacuum.
One- and two-dimensional solitons in PT-symmetric systems emulating the spin-orbit coupling
Sakaguchi, Hidetsugu
2016-01-01
We introduce a two-dimensional (2D) system, which can be implemented in dual-core planar optical couplers with the Kerr nonlinearity in its cores, making it possible to blend effects of the PT symmetry, represented by the balanced linear gain and loss in the two cores, and spin-orbit coupling (SOC), emulated by a spatially biased coupling between the cores. Families of 1D and 2D solitons and their stability boundaries are identified. In the 1D setting, the addition of the SOC terms leads, at first, to shrinkage of the stability area for PT-symmetric solitons, which is followed by its rapid expansion. 2D solitons have their stability region too, in spite of the simultaneous action of two major destabilizing factors, viz., the collapse driven by the Kerr nonlinearity, and a trend towards spontaneous breakup of the gain-loss balance. In the limit of the SOC terms dominating over the intrinsic diffraction, the 1D system gives rise to a new model for gap solitons, which admits exact analytical solutions.
Yudin, Dmitry; Shelykh, Ivan A.
2016-10-01
A nonperturbative interaction of an electronic system with a laser field can substantially modify its physical properties. In particular, in two-dimensional (2D) materials with a lack of inversion symmetry, the achievement of a regime of strong light-matter coupling allows direct optical tuning of the strength of the Rashba spin-orbit interaction (SOI). Capitalizing on these results, we build a theory of the dynamical conductivity of a 2D electron gas with both Rashba and Dresselhaus SOIs coupled to an off-resonant high-frequency electromagnetic wave. We argue that strong light-matter coupling modifies qualitatively the dispersion of the electrons and can be used as a powerful tool to probe and manipulate the coupling strengths and adjust the frequency range where optical conductivity is essentially nonzero.
DEFF Research Database (Denmark)
Nielsen, Morten; Miao, Ling; Ipsen, John Hjorth;
1996-01-01
In this work we concentrate on phase equilibria in two-dimensional condensed systems of particles where both translational and internal degrees of freedom are present and coupled through microscopic interactions, with a focus on the manner of the macroscopic coupling between the two types...
Directory of Open Access Journals (Sweden)
Zahra Yousefi
2012-10-01
Full Text Available
The secretome of cancer cells is a valuable source of biomarkers that can ultimately reach the serum or other body fluids. Cancer biomarkers can facilitate early diagnosis and monitoring of the disease, contribute to our understanding of tumor biology, and support the development of more efficient therapies. Recently, high-throughput proteomic analysis of the conditioned media of cancer cell lines has shown potential to identify novel biomarkers in cancer. We used two-dimensional gel electrophoresis coupled to liquid chromatography tandem mass spectrometry to identify the secretome of the large cell lung cancer cell lines QU-DB and Mehr-80, which they were established from a Canadian and a Persian patient, respectively. A total of 130 distinct protein species were identified. Of these, 124 were previously found in serum or other body fluids, the membrane compartment or conditioned media of other cancer cell lines. Some of the proteins that we identified, e.g. IL-6, triosephosphate isomerase, PGP9.5, α-enolase, Dickkopf-1, and peroxiredoxin-1 are known putative serum markers for lung cancer, whereas others might be candidate markers for further validation in lung cancer body fluids such as IL-25, stathmin, vimentin, peptidyl-prolyl cis-trans isomerase A, transgelin-2, and chloride intracellular channel protein 4.
Energy Technology Data Exchange (ETDEWEB)
Gritsenko, Marina A.; Xu, Zhe; Liu, Tao; Smith, Richard D.
2016-02-12
Comprehensive, quantitative information on abundances of proteins and their post-translational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labelling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples, and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.
Wulf, Volker; Wienand, Nils; Wirtz, Michaela; Kling, Hans-Willi; Gäb, Siegmar; Schmitz, Oliver J
2010-01-29
Multidimensional gas-chromatographic analyses of olesochemically based nonionic, anionic and several cationic surfactants in industrial cleaners are demonstrated. Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry allows the simultaneous determination of fatty alcohols, fatty alcohol sulphates and alkyl polyglucosides. In addition, the determination of fatty alcohol ethoxylates up to C(10)EO(8) (highest degree of ethoxylation) and C(18)EO(5) (longest C-chain at an ethoxylation degree of five) and the analysis of fatty alcohol alkoxylates that contain ethoxy (EO) and propoxy (PO) groups could be realized. Because of decomposition in the injector and a weak EI-fragmentation, cationic surfactants such as alkyl benzyl dimethyl ammonium chloride could also be identified by their characteristic fragments. Thermogravimetric analyses confirmed that the temperature in a normal GC injector is not high enough to cause thermal decomposition of esterquats. However, we could demonstrate that a modified silylation procedure forms decomposition products of esterquats in the GC injector which are detectable by GCxGC-(TOF)MS and allows the identification of such GC-atypical analytes.
Ghosh, Samiran
2014-09-01
The propagation of a nonlinear low-frequency mode in two-dimensional (2D) monolayer hexagonal dusty plasma crystal in presence of external magnetic field and dust-neutral collision is investigated. The standard perturbative approach leads to a 2D Korteweg-de Vries (KdV) soliton for the well-known dust-lattice mode. However, the Coriolis force due to crystal rotation and Lorentz force due to magnetic field on dust particles introduce a linear forcing term, whereas dust-neutral drag introduce the usual damping term in the 2D KdV equation. This new nonlinear equation is solved both analytically and numerically to show the competition between the linear forcing and damping in the formation of quasilongitudinal soliton in a 2D strongly coupled complex (dusty) plasma. Numerical simulation on the basis of the typical experimental plasma parameters and the analytical solution reveal that the neutral drag force is responsible for the usual exponential decay of the soliton, whereas Coriolis and/or Lorentz force is responsible for the algebraic decay as well as the oscillating tail formation of the soliton. The results are discussed in the context of the plasma crystal experiment.
Toraman, Hilal E; Dijkmans, Thomas; Djokic, Marko R; Van Geem, Kevin M; Marin, Guy B
2014-09-12
The detailed compositional characterization of plastic waste pyrolysis oil was performed with comprehensive two-dimensional GC (GC×GC) coupled to four different detectors: a flame ionization detector (FID), a sulfur chemiluminescence detector (SCD), a nitrogen chemiluminescence detector (NCD) and a time of flight mass spectrometer (TOF-MS). The performances of different column combinations were assessed in normal i.e. apolar/mid-polar and reversed configurations for the GC×GC-NCD and GC×GC-SCD analyses. The information obtained from the four detectors and the use of internal standards, i.e. 3-chlorothiophene for the FID and the SCD and 2-chloropyridine for the NCD analysis, enabled the identification and quantification of the pyrolysis oil in terms of both group type and carbon number: hydrocarbon groups (n-paraffins, iso-paraffins, olefins and naphthenes, monoaromatics, naphthenoaromatics, diaromatics, naphthenodiaromatics, triaromatics, naphthenotriaromatics and tetra-aromatics), nitrogen (nitriles, pyridines, quinolines, indole, caprolactam, etc.), sulfur (thiols/sulfides, thiophenes/disulfides, benzothiophenes, dibenzothiophenes, etc.) and oxygen containing compounds (ketones, phenols, aldehydes, ethers, etc.). Quantification of trace impurities is illustrated for indole and caprolactam. The analyzed pyrolysis oil included a significant amount of nitrogen containing compounds (6.4wt%) and to a lesser extent sulfur containing compounds (0.6wt%). These nitrogen and sulfur containing compounds described approximately 80% of the total peak volume for respectively the NCD and SCD analysis. TOF-MS indicated the presence of the oxygen containing compounds. However only a part of the oxygen containing compounds (2.5wt%) was identified because of their low concentrations and possible overlap with the complex hydrocarbon matrix as no selective detector or preparative separation for oxygen compounds was used.
Coupling Navier-stokes and Cahn-hilliard Equations in a Two-dimensional Annular flow Configuration
Vignal, Philippe
2015-06-01
In this work, we present a novel isogeometric analysis discretization for the Navier-Stokes- Cahn-Hilliard equation, which uses divergence-conforming spaces. Basis functions generated with this method can have higher-order continuity, and allow to directly discretize the higher- order operators present in the equation. The discretization is implemented in PetIGA-MF, a high-performance framework for discrete differential forms. We present solutions in a two- dimensional annulus, and model spinodal decomposition under shear flow.
Guo, Kun; Zhou, Jian; Liu, Zelong
2012-02-01
An analytical method for separating and identifying the aromatic hydrocarbons in heavy gas oil using comprehensive two-dimensional gas chromatography (GC x GC) coupled to time-of-flight mass spectrometry (TOF MS) was established. The two-dimensional distribution by ring number of the aromatic hydrocarbons was obtained. Besides phenanthrene and methyl-phenanthrene, many other polycyclic aromatic hydrocarbons (PAHs) such as pyrene and benzo [a] anthracene were identified by using the retention times, standard mass spectra or literature reports. The method was successfully applied to the hydrotreating process of heavy gas oil and the hydrotreated products of phenanthrene, pyrene were identified. This method provided technical support for the characterization of aromatic hydrocarbons in heavy gas oil and the investigation of hydrogenation mechanism of polycyclic aromatic hydrocarbons. Compared with the conventional method, gas chromatography coupled to mass spectrometry (GC-MS), the GC x GC-TOF MS method illustrated the obvious advantages for heavy gas oil analysis.
Sakaguchi, Hidetsugu; Malomed, Boris A
2016-01-01
We present an analysis of two-dimensional (2D) matter-wave solitons, governed by the pseudo-spinor system of Gross-Pitaevskii equations with self- and cross-attraction, which includes the spin-orbit coupling (SOC) in the general Rashba-Dresselhaus form, and, separately, the Rashba coupling and the Zeeman splitting. Families of semi-vortex (SV) and mixed-mode (MM) solitons are constructed, which exist and are stable in free space, as the SOC terms prevent the onset of the critical collapse and create the otherwise missing ground states in the form of the solitons. The Dresselhaus SOC produces a destructive effect on the vortex solitons, while the Zeeman term tends to convert the MM states into the SV ones, which eventually suffer delocalization. Existence domains and stability boundaries are identified for the soliton families. For physically relevant parameters of the SOC system, the number of atoms in the 2D solitons is limited by $\\sim 1.5\\times 10^{4}$. The results are obtained by means of combined analyti...
Sakaguchi, Hidetsugu; Sherman, E. Ya.; Malomed, Boris A.
2016-09-01
We present an analysis of two-dimensional (2D) matter-wave solitons, governed by the pseudospinor system of Gross-Pitaevskii equations with self- and cross attraction, which includes the spin-orbit coupling (SOC) in the general Rashba-Dresselhaus form, and, separately, the Rashba coupling and the Zeeman splitting. Families of semivortex (SV) and mixed-mode (MM) solitons are constructed, which exist and are stable in free space, as the SOC terms prevent the onset of the critical collapse and create the otherwise missing ground states in the form of the solitons. The Dresselhaus SOC produces a destructive effect on the vortex solitons, while the Zeeman term tends to convert the MM states into the SV ones, which eventually suffer delocalization. Existence domains and stability boundaries are identified for the soliton families. For physically relevant parameters of the SOC system, the number of atoms in the 2D solitons is limited by ˜1.5 ×104 . The results are obtained by means of combined analytical and numerical methods.
Markos, Peter
2016-01-01
Frequency and transmission spectrum of two-dimensional array of metallic rods is investigated numerically. Based on the recent analysis of the band structure of two-dimensional photonic crystal with dielectric rods [P. Marko\\v{s}, Phys. Rev. A 92 043814 (2015)] we identify two types of bands in the frequency spectrum: Bragg (P) bands resulting from a periodicity and Fano (F) bands which arise from Fano resonances associated with each of the cylinders within the periodic structure. It is shown that the existence of Fano band in a certain frequency range is manifested by a Fano resonance in the transmittance. In particular, we re-examine the symmetry properties of the H- polarized band structure in the frequency range where the spectrum consists of the localized modes associated with the single scatterer resonances and we explore process of formation of Fano bands by identifying individual terms in the expansion of the LCAO states. We demonstrate how the interplay between the two scattering mechanisms affects p...
Yamada, Hirofumi
2012-01-01
Based on the strong coupling expansion, we reinvestigate the scaling behavior of the susceptibility chi of two-dimensional O(N) sigma model on the square lattice by the use of Pade-Borel approximants. To exploit the Borel transform, we express the bare coupling g in series expansion in chi. At large N, Pade-Borel approximants exhibit the scaling behavior at the four-loop level. Then, the estimation of the non-perturbative constant associated with the susceptibility is performed for N>=3 and the results are compared with the available theoretical results and Monte Carlo data.
Biswas, Tutul; Ghosh, Tarun Kanti
2013-01-23
We study the interaction between electron and acoustic phonons in a Rashba spin-orbit coupled two-dimensional electron gas using Boltzmann transport theory. Both the deformation potential and piezoelectric scattering mechanisms are considered in the Bloch-Grüneisen (BG) regime as well as in the equipartition (EP) regime. The effect of the Rashba spin-orbit interaction on the temperature dependence of the resistivity in the BG and EP regimes is discussed. We find that the effective exponent of the temperature dependence of the resistivity in the BG regime decreases due to spin-orbit coupling.
Institute of Scientific and Technical Information of China (English)
XIONG Jian-Wen; HU Liang-Bin; ZHANG Zhen-Xi
2006-01-01
@@ Based on the Heisenberg equations of motion for the electron orbital and spin degrees of freedom in two-dimensional electronic systems with both Rashba and Dresselhaus spin-orbit couplings, we show that an ac electric field can cause an ac spin Hall current in such a system. In contrast to some previous theoretical prediction, the spin Hall current will be suppressed completely in the dc limit. We argue that the suppression of dc spin Hall currents in such a system is actually a much natural result of the dynamic spin evolution due to the combined action of a dc external electric field and the intrinsic spin-orbit coupling.
Directory of Open Access Journals (Sweden)
L.-L. Wang
2011-08-01
Full Text Available Due to the specific characteristics of semi-arid catchments, this paper aims to establish a grid-and-Green-Ampt-and-two-dimensional-kinematic-wave-based distributed hydrological physical model (Grid-GA-2D model coupling Green-Ampt infiltration method and two dimensional overland flow routing model based on kinematic wave theory for flood simulation and forecasting with using GIS technology and digital elevation model (DEM. Taking into consideration the soil moisture redistribution at hillslope, Green-Ampt infiltration physical method is applied for grid-based runoff generation and two-dimensional implicit finite difference kinematic wave model is introduced to solve depressions water storing for grid-based overland flow concentration routing in the Grid-GA-2D model. The Grid-GA-2D model, the Grid-GA model with coupling Green-Ampt infiltration method and one-dimension kinematic wave theory, and Shanbei model were employed to the upper Kongjiapo catchment in Qin River, a tributary of the Yellow River, with an area of 1454 km^{2} for flood simulation. Results show that two grid-based distributed hydrological models perform better in flood simulation and can be used for flood forecasting in semi-arid catchments. Comparing with the Grid-GA model, the flood peak simulation accuracy of the newly developed model is higher.
Wang, L.-L.; Chen, D.-H.; Li, Z.-J.; Zhao, L.-N.
2011-08-01
Due to the specific characteristics of semi-arid catchments, this paper aims to establish a grid-and-Green-Ampt-and-two-dimensional-kinematic-wave-based distributed hydrological physical model (Grid-GA-2D model) coupling Green-Ampt infiltration method and two dimensional overland flow routing model based on kinematic wave theory for flood simulation and forecasting with using GIS technology and digital elevation model (DEM). Taking into consideration the soil moisture redistribution at hillslope, Green-Ampt infiltration physical method is applied for grid-based runoff generation and two-dimensional implicit finite difference kinematic wave model is introduced to solve depressions water storing for grid-based overland flow concentration routing in the Grid-GA-2D model. The Grid-GA-2D model, the Grid-GA model with coupling Green-Ampt infiltration method and one-dimension kinematic wave theory, and Shanbei model were employed to the upper Kongjiapo catchment in Qin River, a tributary of the Yellow River, with an area of 1454 km2 for flood simulation. Results show that two grid-based distributed hydrological models perform better in flood simulation and can be used for flood forecasting in semi-arid catchments. Comparing with the Grid-GA model, the flood peak simulation accuracy of the newly developed model is higher.
Coupled One and Two Dimensional Model for River Network Flow and Sediment Transport%一二维耦合河网水沙模型研究
Institute of Scientific and Technical Information of China (English)
吕文丽; 张旭
2011-01-01
Based on previous research, a new one and two-dimensional coupled model of river water and sediment was proposed.With reference to the three-level solution for one-dimensional river network water mode, the two-dimensional river section will be generalized to river section within the river network.One and two dimensional coupled river network sediment model will be established with the balance of flow amount and sediment transport.The model sets up the chasing relationship between variables of water level and sediment content at the end and first section to further establish matrix equations of the whole one and two-dimensional river network node water level and sediment content.Though the verification and calculation for generalized river network from Datong to Zhenjiang in the lower reaches of the Yangtze River, it is found that the model is of great practical value.%借鉴河网水流的三级解法,将二维河段概化为河网内部河段,通过河网节点流量和输沙量的平衡,建立一二维耦合河网水沙模型.模型采用全隐式方法建立二维河段以首末断面的水位和含沙量为中间变量的矩阵追赶关系,进而建立整个一二维河网的节点水位及含沙量的矩阵方程组.对方程组的求解,可实现一二维水沙模型的耦合求解.通过对长江下游大通至镇江概化河网的验证计算,表明模型具有很好的实用价值.
Energy Technology Data Exchange (ETDEWEB)
Ma, Tian-Xue [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Wang, Yue-Sheng, E-mail: yswang@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Chuanzeng [Department of Civil Engineering, University of Siegen, D-57068 Siegen (Germany)
2017-01-30
A phoxonic crystal is a periodically patterned material that can simultaneously localize optical and acoustic modes. The acousto-optical coupling in two-dimensional air-slot phoxonic crystal cavities is investigated numerically. The photons can be well confined in the slot owing to the large electric field discontinuity at the air/dielectric interfaces. Besides, the surface acoustic modes lead to the localization of the phonons near the air-slot. The high overlap of the photonic and phononic cavity modes near the slot results in a significant enhancement of the moving interface effect, and thus strengthens the total acousto-optical interaction. The results of two cavities with different slot widths show that the coupling strength is dependent on the slot width. It is expected to achieve a strong acousto-optical/optomechanical coupling in air-slot phoxonic crystal structures by utilizing surface acoustic modes. - Highlights: • Two-dimensional air-slot phoxonic crystal cavities which can confine simultaneously optical and acoustic waves are proposed. • The acoustic and optical waves are highly confined near/in the air-slot. • The high overlap of the photonic and phononic cavity modes significantly enhances the moving interface effect. • Different factors which affect the acousto-optical coupling are discussed.
Mena-Bravo, A; Priego-Capote, F; Luque de Castro, M D
2016-06-17
A method based on automated on-line solid phase extraction coupled to two-dimensional liquid chromatography with tandem mass spectrometry detection (SPE-2DLC-MS/MS) is here reported for vitamin D metabolite profiling in human serum with absolute quantitation. Two-dimensional LC was configured with two complementary analytical columns, pentafluorophenyl (PFP) and C18 phases, for determination of 25 hydroxyvitamin D3 epimers and the resting bioactive metabolites of vitamin D (D3 and D2)-25-hydroxyvitamin D2, 1,25-dihydroxyvitamin D3, 1,25-dihydroxyvitamin D2 and 24,25-dihydroxyvitamin D3. Quantitative determination was supported on the use of a stable isotopic labelled internal standard for each analyte and the resulting method was validated by analysis of a standard reference material certified by the National Institute of Standards & Technology (NIST-972a) and 5 samples provided by the vitamin D External Quality Assurance Scheme (DEQAS). The limits of detection were between 9 and 90pg/mL for the eight analytes, and precision, expressed as relative standard deviation, was lower than 11.6%. Two-dimensional LC has shown to be the key to discriminate between 25 hydroxyvitamin D3 epimers in a quantitative analysis also involving dihydroxyvitamin D metabolites.
Kapp, Thomas; Vetter, Walter
2009-11-20
High-speed counter-current chromatography (HSCCC), a separation technique based solely on the partitioning of solutes between two immiscible liquid phases, was applied for the fractionation of technical toxaphene, an organochlorine pesticide which consists of a complex mixture of structurally closely related compounds. A solvent system (n-hexane/methanol/water 34:24:1, v/v/v) was developed which allowed to separate compounds of technical toxaphene (CTTs) with excellent retention of the stationary phase (S(f) = 88%). Subsequent analysis of all HSCCC fractions by gas chromatography coupled to electron-capture negative ion mass spectrometry (GC/ECNI-MS) provided a wealth of information regarding separation characteristics of HSCCC and the composition of technical toxaphene. The visualization of the large amount of data obtained from the offline two-dimensional HSCCC-GC/ECNI-MS experiment was facilitated by the creation of a two-dimensional (2D) contour plot. The contour plot not only provided an excellent overview of the HSCCC separation progress, it also illustrated the differences in selectivity between HSCCC and GC. The results of this proof-of-concept study showed that the 2D chromatographic approach involving HSCCC facilitated the separation of CTTs that coelute in unidimensional GC. Furthermore, the creation of 2D contour plots may provide a useful means of enhancing data visualization for other offline two-dimensional separations.
Shen, SQ; Ma, X.; Hu, L.; R. Tao
2004-01-01
In a two-dimensional electron gas with Rashba spin-orbit coupling, the external electric field may cause a spin Hall current in the direction perpendicular to the electric field. This effect was called the intrinsic spin Hall effect. In this paper, we investigate the influences of spin accumulation on this intrinsic spin Hall effect. We show that due to the existence of boundaries in a real sample, the spin Hall current generated by the intrinsic spin Hall effect will cause spin accumulation ...
Teh, Hui Boon; Li, Sam Fong Yau
2015-02-27
A new, highly sensitive and reliable two-dimensional matrix elimination ion chromatography (IC) method was developed for simultaneous detection of bromate, chlorite and five haloacetic acids. This method combined the conventional IC in first dimension with capillary IC in the second dimension coupled with suppressed conductivity detection. The first dimension utilizes a high capacity column to partially resolve matrix from target analytes. By optimizing the cut window, the target analytes were selectively cut and trapped in a trap column through the use of a six-port valve, while the separated matrix were diverted to waste. The trapped target analytes were delivered on to the capillary column for further separation and detection. Temperature programming was used to improve selectivity in second dimension column to obtain complete resolution of the target analytes. Compared to the performance of one-dimensional IC, the two-dimensional approach resulted in a significant increase in sensitivity for all target analytes with limit of detection ranging from 0.30 to 0.64μg/L and provided more reliable analysis due to second column confirmation. Good linearity was obtained for all the target analytes with correlation coefficients >0.998. The proposed method was successfully applied to the determination of oxyhalides and haloacetic acids in various matrices with recoveries ranging from 90 to 116% and RSD less than 6.1%. The method allows direct injection of samples and the use of columns with different selectivity, thus significantly reduces the level of false positive results. The method is fully automated and simple, making it practical for routine monitoring of water quality. The satisfactory results also demonstrated that the two-dimensional matrix elimination method coupled with capillary IC is a promising approach for detection of trace substances in complex matrices.
Tongne, A.; Robe, H.; Desrayaud, C.; Jahazi, M.; Feulvarch, E.
2016-10-01
A finite element model has been developed by means of a coupled Eulerian-Lagrangian approach. The banded structure which is related to the periodical material deposition is predicted in two dimensions as the experimental investigation shows that, during FSW with trigonal tool, the material flow operates mainly in the welded plates plan.
Julka, Samir; Cortes, Hernan; Harfmann, Robert; Bell, Bruce; Schweizer-Theobaldt, Andreas; Pursch, Matthias; Mondello, Luigi; Maynard, Shawn; West, David
2009-06-01
A comprehensive multidimensional liquid chromatography system coupled to Electrospray Ionization-Mass Spectrometry (LCxLC-ESI-MS) was developed for detailed characterization and quantitation of solid epoxy resin components. The two orthogonal modes of separation selected were size exclusion chromatography (SEC) in the first dimension and liquid chromatography at critical conditions (LCCC) in the second dimension. Different components present in the solid epoxy resins were separated and quantitated for the first time based on the functional groups and molecular weight heterogeneity. Coupling LCxLC separations with mass spectrometry enabled the identification of components resolved in the two-dimensional space. Several different functional group families of compounds were separated and identified, including epoxy-epoxy and epoxy-alpha-glycol functional oligomers, and their individual molecular weight ranges were determined. Repeatability obtained ranged from 0.5% for the main product to 21% for oligomers at the 0.4% concentration level.
Bu, Gui-jun; Yu, Jing; Di, Hui-hui; Luo, Shi-jia; Zhou, Da-zhai; Xiao, Qiang
2015-02-01
The composition and structure of humic acids formed during composting play an important influence on the quality and mature of compost. In order to explore the composition and evolution mechanism, municipal solid wastes were collected to compost and humic and fulvic acids were obtained from these composted municipal solid wastes. Furthermore, fourier transform infrared spectra and two-dimensional correlation analysis were applied to study the composition and transformation of humic and fulvic acids during composting. The results from fourier transform infrared spectra showed that, the composition of humic acids was complex, and several absorbance peaks were observed at 2917-2924, 2844-2852, 2549, 1662, 1622, 1566, 1454, 1398, 1351, 990-1063, 839 and 711 cm(-1). Compared to humic acids, the composition of fulvci acids was simple, and only three peaks were detected at 1725, 1637 and 990 cm(-1). The appearance of these peaks showed that both humic and fulvic acids comprised the benzene originated from lignin and the polysaccharide. In addition, humic acids comprised a large number of aliphatic and protein which were hardly detected in fulvic acids. Aliphatic, polysaccharide, protein and lignin all were degraded during composting, however, the order of degradation was different between humic and fulvci acids. The result from two-dimensional correlation analysis showed that, organic compounds in humic acids were degraded in the following sequence: aliphatic> protein> polysaccharide and lignin, while that in fulvic acids was as following: protein> polysaccharide and aliphatic. A large number of carboxyl, alcohols and ethers were formed during the degradation process, and the carboxyl was transformed into carbonates. It can be concluded that, fourier transform infrared spectra coupled with two-dimensional correlation analysis not only can analyze the function group composition of humic substances, but also can characterize effectively the degradation sequence of these
Institute of Scientific and Technical Information of China (English)
YUE ZhiYuan; CAO ZhiXian; LI Xin; CHE Tao
2008-01-01
Alluvial rivers may experience intense sediment transport and rapid bed evolution under a high flow regime, for which traditional decoupled mathematical river mod-els based on simplified conservation equations are not applicable. A two-dimen-sional coupled mathematical model is presented, which is generally applicable to the fluvial processes with either intense or weak sediment transport. The governing equations of the model comprise the complete shallow water hydrodynamic equa-tions closed with Manning roughness for boundary resistance and empirical rela-tionships for sediment exchange with the erodible bed. The second-order Total-Variation-Diminishing version of the Weighted-Average-Flux method, along with the HLLC approximate Riemann Solver, is adapted to solve the governing equations, which can properly resolve shock waves and contact discontinuities. The model is applied to the pilot study of the flooding due to a sudden outburst of a real glacial-lake.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Alluvial rivers may experience intense sediment transport and rapid bed evolution under a high flow regime,for which traditional decoupled mathematical river mod-els based on simplified conservation equations are not applicable. A two-dimen-sional coupled mathematical model is presented,which is generally applicable to the fluvial processes with either intense or weak sediment transport. The governing equations of the model comprise the complete shallow water hydrodynamic equa-tions closed with Manning roughness for boundary resistance and empirical rela-tionships for sediment exchange with the erodible bed. The second-order Total-Variation-Diminishing version of the Weighted-Average-Flux method,along with the HLLC approximate Riemann Solver,is adapted to solve the governing equations,which can properly resolve shock waves and contact discontinuities. The model is applied to the pilot study of the flooding due to a sudden outburst of a real glacial-lake.
Takahashi, Kei; Kabashima, Fumie; Tsuchiya, Fumihiko
2016-03-01
Japanese sake is a traditional alcoholic beverage composed of a wide variety of metabolites, which give it many types of tastes and flavors. Previously, we have reported that medium-chain fatty acids contribute to a fatty odor in sake (Takahashi, K., et al., J. Agric. Food Chem., 62, 8478-8485, 2014). In this study, we have reanalyzed the data obtained using two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. The relationship between the chemical components in sake and specific organoleptic properties such as off-flavor and quality has been explored. This led to the identification of the type of chemical compounds present and an assessment of the numerous candidate compounds that correlate with such organoleptic properties in sake. This research provides important fundamental knowledge for the sake-brewing industry. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Mohammadkhani, R., E-mail: rmkhani@znu.ac.ir; Hassanloo, Gh.
2014-11-01
We have studied the tunneling conductance of a clean two dimensional electron gas/p- wave superconductor junction with Rashba spin–orbit coupling (RSOC) which is present in the normal layer and at the interface. Using the extended Blonder–Tinkham–Klapwijk formalism we have found that the subgap conductance peaks are shifted to a nonzero bias by RSOC at the interface which are the same as Ref. [1]. It is shown that for low insulating barrier and in the absence of the interface RSOC, the tunneling conductance decreases within energy gap with increasing of the RSOC in the normal layer while for high insulating barrier it enhances by increase of the RSOC. We have also shown that the RSOC inside the normal cannot affect the location of the subgap conductance peaks shifted by the interface RSOC.
Hadamard States and Two-dimensional Gravity
Salehi, H
2001-01-01
We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.
Ono, Junichi; Takada, Shoji; Saito, Shinji
2015-06-07
An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchical conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.
Montero, Lidia; Ibáñez, Elena; Russo, Mariateresa; di Sanzo, Rosa; Rastrelli, Luca; Piccinelli, Anna Lisa; Celano, Rita; Cifuentes, Alejandro; Herrero, Miguel
2016-03-24
Profiling of the main metabolites from several licorice (Glycyrrhiza glabra) samples collected at different locations is carried out in this work by using comprehensive two-dimensional liquid chromatography (LC × LC) coupled to diode array (DAD) and mass spectrometry (MS) detectors. The optimized method was based on the application of a HILIC-based separation in the first dimension combined with fast RP-based second dimension separation. This set-up was shown to possess powerful separation capabilities allowing separating as much as 89 different metabolites in a single sample. Identification and grouping of metabolites according to their chemical class were achieved using the DAD, MS and MS/MS data. Triterpene saponins were the most abundant metabolites followed by glycosylated flavanones and chalcones, whereas glycyrrhizic acid, as expected, was confirmed as the main component in all the studied samples. LC × LC-DAD-MS/MS was able to resolve these complex licorice samples providing with specific metabolite profiles to the different licorice samples depending on their geographical origin. Namely, from 19 to 50 specific compounds were exclusively determined in the 2D-chromatograms from the different licorice samples depending on their geographical origin, which can be used as a typical pattern that could potentially be related to their geographical location and authentication.
Brambleby, J.; Goddard, P. A.; Singleton, J.; Jaime, M.; Lancaster, T.; Huang, L.; Wosnitza, J.; Topping, C. V.; Carreiro, K. E.; Tran, H. E.; Manson, Z. E.; Manson, J. L.
2017-01-01
We present the magnetic and thermal properties of the bosonic-superfluid phase in a spin-dimer network using both quasistatic and rapidly changing pulsed magnetic fields. The entropy derived from a heat-capacity study reveals that the pulsed-field measurements are strongly adiabatic in nature and are responsible for the onset of a significant magnetocaloric effect (MCE). In contrast to previous predictions we show that the MCE is not just confined to the critical regions, but occurs for all fields greater than zero at sufficiently low temperatures. We explain the MCE using a model of the thermal occupation of exchange-coupled dimer spin states and highlight that failure to take this effect into account inevitably leads to incorrect interpretations of experimental results. In addition, the heat capacity in our material is suggestive of an extraordinary contribution from zero-point fluctuations and appears to indicate universal behavior with different critical exponents at the two field-induced critical points. The data at the upper critical point, combined with the layered structure of the system, are consistent with a two-dimensional nature of spin excitations in the system.
Luo, Wen-Yu; Yu, Xiao-Lin; Yang, Xue-Feng; Zhang, Ze-Zhong; Zhang, Ren-He
2016-12-01
This paper presents a three-dimensional (3D) coupled-mode model using the direct-global-matrix technique as well as Fourier synthesis. This model is a full wave, two-way three-dimensional model, and is therefore capable of providing accurate acoustic field solutions. Because the problem of sound propagation excited by a point source in an ideal wedge with perfectly reflecting boundaries is one of a few three-dimensional problems with analytical solutions, the ideal wedge problem is chosen in this work to validate the presented three-dimensional model. Numerical results show that the field results by analytical solutions and those by the presented model are in excellent agreement, indicating that the presented model can serve as a benchmark model for three-dimensional sound propagation problems involving a planar two-dimensional geometry as well as a point source. Project supported by the National Natural Science Foundation of China (Grant Nos. 11125420, 11434012, and 41561144006) and the Knowledge Innovation Program of the Chinese Academy of Sciences.
Zhou, Zhilei; Liu, Shuangping; Kong, Xiangwei; Ji, Zhongwei; Han, Xiao; Wu, Jianfeng; Mao, Jian
2017-03-03
In this work, a method to characterize the aroma compounds of Zhenjiang aromatic vinegar (ZAV) was developed using comprehensive two dimensional gas chromatography (GC×GC) coupled with time-of-flight mass spectrometry (TOFMS) and gas chromatography olfactometry (GC-O). The column combination was optimized and good separation was achieved. Structured chromatograms of furans and pyrazines were obtained and discussed. A total of 360 compounds were tentatively identified based on mass spectrum match factors, structured chromatogram and linear retention indices comparison. The most abundant class in number was ketones. A large number of esters, furans and derivatives, aldehydes and alcohols were also detected. The odor-active components were identified by comparison of the reported odor of the identified compounds with the odor of corresponding GC-O region. The odorants of methanethiol, 2-methyl-propanal, 2-methyl-butanal/3-methyl-butanal, octanal, 1-octen-3-one, dimethyl trisulfide, trimethyl-pyrazine, acetic acid, 3-(methylthio)-propanal, furfural, benzeneacetaldehyde, 3-methyl-butanoic acid/2-methyl-butanoic acid and phenethyl acetate were suspected to be the most potent. About half of them were identified as significant aroma constituents in ZAV for the first time. Their contribution to specific sensory attribute of ZAJ was also studied. The results indicated that the presented method is suitable for characterization of ZAV aroma constituents. This study also enriches our knowledge on the components and aroma of ZAV.
Directory of Open Access Journals (Sweden)
Liming He
2015-09-01
Full Text Available Mapping deformation field time-series, including vertical and horizontal motions, is vital for landslide monitoring and slope safety assessment. However, the conventional differential synthetic aperture radar interferometry (DInSAR technique can only detect the displacement component in the satellite-to-ground direction, i.e., line-of-sight (LOS direction displacement. To overcome this constraint, a new method was developed to obtain the displacement field time series of a slope by coupling DInSAR based small baseline subset approach (DInSAR-SBAS with multiple-aperture InSAR (MAI based small baseline subset approach (MAI-SBAS. This novel method has been applied to a set of 11 observations from the phased array type L-band synthetic aperture radar (PALSAR sensor onboard the advanced land observing satellite (ALOS, spanning from 2007 to 2011, of two large-scale north–south slopes of the largest Asian open-pit mine in the Northeast of China. The retrieved displacement time series showed that the proposed method can detect and measure the large displacements that occurred along the north–south direction, and the gradually changing two-dimensional displacement fields. Moreover, we verified this new method by comparing the displacement results to global positioning system (GPS measurements.
Avila, Bárbara M F; Pereira, Ricardo; Gomes, Alexandre O; Azevedo, Débora A
2011-05-27
Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) was used for the characterization of aromatic compounds present in extra heavy gas oil (EHGO) from Brazil. Individual identification of EHGO compounds was successfully achieved in addition to group-type separation on the chromatographic plane. Many aromatic hydrocarbons, especially polycyclic aromatic hydrocarbons and sulfur compounds, were detected and identified, such as chrysenes, phenanthrenes, perylenes, benzonaphthothiophenes and alkylbenzonaphthothiophenes. In addition, triaromatic steroids, methyl-triaromatic steroids, tetrahydrochrysenes and tetraromatic pentacyclic compounds were present in the EHGO aromatic fractions. Considering the roof-tile effect observed for many of these compound classes and the high number of individual compounds identified, GC×GC-TOFMS is an excellent technique to characterize the molecular composition of the aromatic fraction from EHGO samples. Moreover, data processing allowed the quantification of aromatic compounds, in class and individually, using external standards. EHGO data were obtained in μgg(-1), e.g., benzo[a]pyrene were in the range 351 to 1164μgg(-1). Thus, GC×GC-TOFMS was successfully applied in EHGO quantitative analysis.
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2007-01-01
Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.
Hang, Da-Ren; Sharma, Krishna Hari; Chen, Chun-Hu; Islam, Sk Emdadul
2016-08-26
We exploit the utilization of two-dimensional (2D) molybdenum oxide nanoflakes as a co-catalyst for ZnO nanorods (NRs) to enhance their photocatalytic performance. The 2D nanoflakes of orthorhombic α-MoO3 were synthesized through a sonication-aided exfoliation technique. The 2D MoO3 nanoflakes can be further converted to substoichiometric quasi-metallic MoO3-x by using UV irradiation. Subsequently, 1D-2D MoO3 /ZnO NR and MoO3-x /ZnO NR composite photocatalysts have been successfully synthesized. The photocatalytic performances of the novel nanosystems in the decomposition of methylene blue are studied by using UV- and visible-illumination setup. The incorporated 2D nanoflakes show a positive influence on the photocatalytic activity of the ZnO. The obtained rate constant values follow the order of pristine ZnO NR
Freye, Chris E; Fitz, Brian D; Billingsley, Matthew C; Synovec, Robert E
2016-06-01
The chemical composition and several physical properties of RP-1 fuels were studied using comprehensive two-dimensional (2D) gas chromatography (GC×GC) coupled with flame ionization detection (FID). A "reversed column" GC×GC configuration was implemented with a RTX-wax column on the first dimension ((1)D), and a RTX-1 as the second dimension ((2)D). Modulation was achieved using a high temperature diaphragm valve mounted directly in the oven. Using leave-one-out cross-validation (LOOCV), the summed GC×GC-FID signal of three compound-class selective 2D regions (alkanes, cycloalkanes, and aromatics) was regressed against previously measured ASTM derived values for these compound classes, yielding root mean square errors of cross validation (RMSECV) of 0.855, 0.734, and 0.530mass%, respectively. For comparison, using partial least squares (PLS) analysis with LOOCV, the GC×GC-FID signal of the entire 2D separations was regressed against the same ASTM values, yielding a linear trend for the three compound classes (alkanes, cycloalkanes, and aromatics), yielding RMSECV values of 1.52, 2.76, and 0.945 mass%, respectively. Additionally, a more detailed PLS analysis was undertaken of the compounds classes (n-alkanes, iso-alkanes, mono-, di-, and tri-cycloalkanes, and aromatics), and of physical properties previously determined by ASTM methods (such as net heat of combustion, hydrogen content, density, kinematic viscosity, sustained boiling temperature and vapor rise temperature). Results from these PLS studies using the relatively simple to use and inexpensive GC×GC-FID instrumental platform are compared to previously reported results using the GC×GC-TOFMS instrumental platform.
Tong, Ting; Zhang, Wanfeng; Li, Donghao; Zhao, Jinhua; Chang, Zhenyang; Gao, Xuanbo; Dai, Wei; He, Sheng; Zhu, Shukui
2014-10-01
A novel sample pretreatment method, gas purge micro-syringe extraction (GP- MSE), coupled to comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC x GC/TOFMS) has been developed for the characterization of volatile and semi-volatile compounds in crude oils. In the sample pretreatment process, the analytes were carried to the microsyringe barrel by inert gas, and at the same time, trapped by an organic solvent. The whole process of extraction takes less than 10 min, and only 20 μL of organic solvent was needed. Using two custom standard solutions containing alkanes and polycyclic aromatic hydrocarbons (PAHs), the influences of the extraction conditions were investigated. The optimized conditions were as follows: 5 mg crude oil, 20 μL hexane (extraction solvent), extraction for 3 min at 300 °C, condensation temperature set at -2 °C, gas flow rate set at 2 mL/min. Under the optimized conditions, a real crude oil sample was extracted and then analyzed in detail. It showed that the proposed method was very effective in simultaneously analyzing the normal and branched alkanes, cycloalkanes, aromatic hydrocarbons, and biomarkers of crude oil such as steranes and terpanes. The recoveries obtained ranged from 82.0% to 107.3% and the detection limits ranged from 34 to 93 μg/L. The correlation coefficients (R2) were more than 0.99. The relative standard deviations (RSDs, n = 5) for all the analytes were below 10%. The results indicate that the proposed method is suitable for the characterization of volatile and semi-volatile compounds in crude oils with easy operation, high sensitivity and efficiency.
Liu, Qingyu; Liu, Junling; Ren, Chengda; Cai, Wenting; Wei, Qingquan; Song, Yi; Yu, Jing
2017-01-01
Background The purpose of this study was to investigate whether acupuncture is effective at treating dry eye disease among postmenopausal women and to identify the possible mechanisms. Methods Twenty-eight postmenopausal women with dry eye disease were randomly divided into two groups: an acupuncture plus artificial tears (AC + AT) group and an artificial tears (AT) only group. After baseline examination of clinical parameters and tear sample collection, each patient received the designated modality of topical therapy for 2 months. Post-treatment documentation of clinical parameters was recorded, and tear samples were collected. Tear samples from the AC + AT group were subjected to two-dimensional nano-liquid chromatography coupled with tandem mass spectrometry (2D nano-LC-MS/MS). Western blot analysis was also performed on tear samples from both groups. Results After treatment, the Ocular Surface Disease Index scores, symptom assessment scores, scores of sign assessment, and tear break-up time were significantly improved in both groups (P=0.000). Symptom assessment scores were significantly improved in the AC + AT group (P=0.000) compared with the AT group. 2D nano-LC-MS/MS identified 2,411 proteins, among which 142 were downregulated and 169 were upregulated. After combined AC + AT treatment, the abundance of secreted proteins was increased, whereas that of cytoplasmic proteins decreased (Pearson’s χ2 test, P=0.000, P=0.000, respectively). Proteins involved in immunity and regulation were also more abundant (Pearson’s χ2 test, P=0.040, P=0.016, respectively), while components and proliferation-related proteins were downregulated (Pearson’s χ2 test, P=0.003, P=0.011, respectively). Conclusion AC + AT treatment increased protein synthesis and secretion, and improved clinical symptoms. These results indicate that acupuncture may be a complimentary therapy for treating postmenopausal dry eye disease. PMID:28280333
Zhang, Caixiang; Eganhouse, Robert P.; Pontolillo, James; Cozzarelli, Isabelle M.; Wang, Yanxin
2012-01-01
4-Nonylphenols (4-NPs) are known endocrine disruptors and by-products of the microbial degradation of nonylphenol polyethoxylate surfactants. One of the challenges to understanding the toxic effects of nonylphenols is the large number of isomers that may exist in environmental samples. In order to attribute toxic effects to specific compounds, a method is needed for the separation and quantitation of individual nonylphenol isomers. The pre-concentration methods of solvent sublimation, solid-phase extraction or liquid–liquid extraction prior to chromatographic analysis can be problematic because of co-extraction of thousands of compounds typically found in complex matrices such as municipal wastewater or landfill leachate. In the present study, steam distillation extraction (SDE) was found to be an effective pre-concentration method for extraction of 4-NPs from leachate and wastewater, and comprehensive two-dimensional gas chromatography (GC × GC) coupled with fast mass spectral data acquisition by time-of-flight mass spectrometry (ToFMS) enhanced the resolution and identification of 4-NP isomers. Concentrations of eight 4-NP isomers were determined in leachate from landfill cells of different age and wastewater influent and effluent samples. 4-NP isomers were about 3 times more abundant in leachate from the younger cell than the older one, whereas concentrations in wastewater effluent were either below detection limits or <1% of influent concentrations. 4-NP isomer distribution patterns were found to have been altered following release to the environment. This is believed to reflect isomer-specific degradation and accumulation of 4-NPs in the aquatic environment.
Stoll, Dwight; Danforth, John; Zhang, Kelly; Beck, Alain
2016-10-01
The development of analytical tools for the characterization of large biomolecules is an emerging and rapidly evolving area. This development activity is motivated largely by the current trend involving the increase in development and use of large biomolecules for therapeutic uses. Given the inherent complexity of these biomolecules, which arises from their sheer size and possibilities for chemical modification as well as changes over time (e.g., through modification in solution, aggregation), two-dimensional liquid chromatography (2D-LC) has attracted considerable interest as an analytical tool to address the challenges faced in characterizing these materials. The immediate potential benefits of 2D-LC over conventional one-dimensional liquid chromatography in this context include: (1) higher overall resolving power; (2) complementary information gained from two dimensions of separation in a single analysis; and (3) enabling indirect coupling of separation modes that are inherently incompatible with mass spectrometric (MS) detection (e.g., ion-exchange, because of high-salt eluents) to MS through a more compatible second dimension separation such as reversed-phase LC. In this review we summarize the work in this area, most of which has occurred in the past five years. Although the future is bright for further development in this area, some challenges have already been addressed through new 2D-LC methods. These include: (1) deep characterization of monoclonal antibodies to understand charge heterogeneity, glycosylation patterns, and other modifications; (2) characterization of antibody-drug conjugates to understand the extent and localization of small molecule conjugation; (3) detailed study of excipients in protein drug formulations; and (4) detection of host-cell proteins on biotherapeutic molecule preparations. We fully expect that in the near future we will see this list expanded, and that continued development will lead to methods with further improved
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
Wei, Fang; Ji, Shu-Xian; Hu, Na; Lv, Xin; Dong, Xu-Yan; Feng, Yu-Qi; Chen, Hong
2013-10-18
The complexity of natural triacylglycerols (TAGs) in various edible oils is high because of the hundreds of TAG compositions, which makes the profiling of TAGs quite difficult. In this investigation, a rapid and high-throughput method for online profiling of TAGs in plant oils by two-dimensional (2D) liquid chromatography using a single column coupled with atmospheric pressure chemical ionization (APCI) mass spectrometry was reported. A novel mixed-mode 2D chromatographic column packed with silver-ion-modified octyl and sulfonic co-bonded silica was employed in this online 2D separation system. This novel 2D column combined the features of C8 column and silver-ion. In comparison with the traditional C18 column and silver-ion column, which are the two main columns used for the separation of complex TAGs in natural oil samples, this novel 2D column, could provide hydrophobic interactions as well as π-complexation interactions. It exhibited much higher selectivity for the separation of TAGs, and the separation was rapid. This online 2D separation system was successful in the separation of a large number of TAG solutes, and the TAG structures were evaluated by analyzing their APCI mass spectra information. This system was applied for the profiling of TAGs in peanut oils, corn oils, and soybean oils. 30 TAGs in peanut oils, 18 TAGs in corn oils, and 21 TAGs in soybean oils were determined and quantified. The highest relative content of TAGs was LLL, which was found in corn oil with the relative content up to 45.43 (%, w/w), and the lowest relative content of TAGs was LLS and OSS, which was found in soybean oil and corn oil respectively, with the relative content only 0.01 (%, w/w). In addition, the TAG data were analyzed by principal component analysis (PCA). Results of PCA enabled a clear identification of different plant oils. This method provided an efficient and convenient chromatographic technology for the fast characterization and quantification of complex TAGs
Gauchotte-Lindsay, Caroline; McGregor, Laura; Richards, Phil; Kerr, Stephanie; Glenn, Aliyssa; Thomas, Russell; Kalin, Robert
2013-04-01
Comprehensive two-dimensional gas chromatography (GCxGC) is a recently developed analytical technique in which two capillary columns with different stationary phases are placed in series enabling planar resolution of the analytes. The resolution power of GCxGC is one order of magnitude higher than that of one dimension gas chromatography. Because of its high resolution capacity, the use of GCxGC for complex environmental samples such as crude oils, petroleum derivatives and polychlorinated biphenyls mixtures has rapidly grown in recent years. We developed a one-step method for the forensic analysis of coal tar dense non-aqueous phase liquids (DNAPLs) from former manufactured gas plant (FMGP) sites. Coal tar is the by-product of the gasification of coal for heating and lighting and it is composed of thousands of organic and inorganic compounds. Before the boom of natural gases and oils, most towns and cities had one or several manufactured gas plants that have, in many cases, left a devastating environmental print due to coal tar contamination. The fate of coal tar DNAPLs, which can persist in the environment for more than a hundred years, is therefore of crucial interest. The presented analytical method consists of a unique clean-up/ extraction stage by pressurized liquid extraction and a single analysis of its organic chemical composition using GCxGC coupled with time of flight mass spectrometry (TOFMS). The chemical fingerprinting is further improved by derivatisation by N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) of the tar compounds containing -OH functions such as alcohols and carboxylic acids. We present here how, using the logical order of elution in GCxGC-TOFMS system, 1) the identification of never before observed -OH containing compounds is possible and 2) the isomeric selectivity of an oxidation reaction on a DNAPL sample can be revealed. Using samples collected at various FMGP sites, we demonstrate how this GCxGC method enables the simultaneous
Energy Technology Data Exchange (ETDEWEB)
Garcia-Sartal, Cristina; Barciela-Alonso, Maria del Carmen; Bermejo-Barrera, Pilar [University of Santiago de Compostela, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Santiago de Compostela (Spain); Taebunpakul, Sutthinun [LGC Limited, Teddington, Middlesex (United Kingdom); Imperial College of Science, Technology and Medicine, South Kensington, Department of Materials, London (United Kingdom); National Institute of Metrology (Thailand), Pathumthani (Thailand); Stokes, Emma; Goenaga-Infante, Heidi [LGC Limited, Teddington, Middlesex (United Kingdom)
2012-04-15
Edible seaweed consumption is a route of exposure to arsenic. However, little attention has been paid to estimate the bioaccessibility and/or bioavailability of arsenosugars in edible seaweed and their possible degradation products during gastrointestinal digestion. This work presents first use of combined inductively coupled plasma mass spectroscopy (ICP-MS) with electrospray ionization tandem mass spectrometry (ESI-MS/MS) with two-dimensional HPLC (size exclusion followed by anion exchange) to compare the qualitative and quantitative arsenosugars speciation of different edible seaweed with that of their bioavailable fraction as obtained using an in vitro gastrointestinal digestion procedure. Optimal extraction conditions for As species from four seaweed namely kombu, wakame, nori and sea lettuce were selected as a compromise between As extraction efficiency and preservation of compound identity. For most investigated samples, the use of ammonium acetate buffer as extractant and 1 h sonication in a water bath followed by HPLC-ICP-MS resulted in 40-61% of the total As to be found in the buffered aqueous extract, of which 86-110% was present as arsenosugars (glycerol sugar, phosphate sugar and sulfonate sugar for wakame and kombu and glycerol sugar and phosphate sugar for nori). The exception was sea lettuce, for which the arsenosugar fraction (glycerol sugar, phosphate sugar) only comprised 44% of the total extracted As. Interestingly, the ratio of arsenobetaine and dimethylarsinic acid to arsenosugars in sea lettuce extracts seemed higher than that for the rest of investigated samples. After in vitro gastrointestinal digestion, approximately 11-16% of the total As in the solid sample was found in the dialyzates with arsenosugars comprising 93-120% and 41% of the dialyzable As fraction for kombu, wakame, nori and sea lettuce, respectively. Moreover, the relative As species distribution in seaweed-buffered extracts and dialyzates was found to be very similar
Weldegergis, B.T.; Villiers, de A.; McNeish, C.; Seethapathy, S.; Mostafa, A.; Górecki, T.; Crouch, A.M.
2011-01-01
As part of the ongoing research into the chemical composition of the uniquely South African wine cultivar Pinotage, the volatile composition of nine young wines of this cultivar was investigated using comprehensive two-dimensional gas chromatography (GC × GC) in combination with time-of-flight mass
Weldegergis, B.T.; Villiers, de A.; McNeish, C.; Seethapathy, S.; Mostafa, A.; Górecki, T.; Crouch, A.M.
2011-01-01
As part of the ongoing research into the chemical composition of the uniquely South African wine cultivar Pinotage, the volatile composition of nine young wines of this cultivar was investigated using comprehensive two-dimensional gas chromatography (GC × GC) in combination with time-of-flight mass
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
Zheng, Binxing; Liu, Yanhua; Li, Dan; Chai, Yifeng; Lu, Feng; Xu, Jiyang
2015-08-01
Hydrophobic-hydrophilic monolithic dual-phase plates have been prepared by a two-step polymerization method for two-dimensional thin-layer chromatography of low-molecular-weight compounds, namely, several dyes. The thin 200 μm poly(glycidyl methacrylate-co-ethylene dimethacrylate) layers attached to microscope glass plates were prepared using a UV-initiated polymerization method within a simple glass mold. After cutting and cleaning the specific area of the layer, the reassembled mold was filled with a polymerization mixture of butyl methacrylate and ethylene dimethacrylate and subsequently irradiated with UV light. During the second polymerization process, the former layer was protected from the UV light with a UV mask. After extracting the porogens and hydrolyzing the poly(glycidyl methacrylate-co-ethylene dimethacrylate) area, these two-dimensional layers were used to separate a mixture of dyes with great difference in their polarity using reversed-phase chromatography mode within the hydrophobic layer and then hydrophilic interaction chromatography mode along the hydrophilic area. In the latter dimension only the specific spot was developed further. Detection of the separated dyes could be achieved with surface-enhanced Raman spectroscopy.
Visioli, Giovanna; Marmiroli, Marta; Marmiroli, Nelson
2010-01-01
Plants are useful in studies of metal toxicity, because their physiological responses to different metals are correlated with the metal exposure dose and chemical state. Moreover a network of proteins and biochemical cascades that may lead to a controlled homeostasis of metals has been identified in many plant species. This paper focuses on the global protein variations that occur in a Populus nigra spp. clone (Poli) that has an exceptional tolerance to the presence of cadmium. Protein separation was based on a two-dimensional liquid chromatography technique. A subset of 20 out of 126 peaks were identified as being regulated differently under cadmium stress and were fingerprinted by MALDI-TOF. Proteins that were more abundant in the treated samples were located in the chloroplast and in the mitochondrion, suggesting the importance of these organelles in the response and adaptation to metal stress.
Directory of Open Access Journals (Sweden)
Giovanna Visioli
2010-01-01
Full Text Available Plants are useful in studies of metal toxicity, because their physiological responses to different metals are correlated with the metal exposure dose and chemical state. Moreover a network of proteins and biochemical cascades that may lead to a controlled homeostasis of metals has been identified in many plant species. This paper focuses on the global protein variations that occur in a Populus nigra spp. clone (Poli that has an exceptional tolerance to the presence of cadmium. Protein separation was based on a two-dimensional liquid chromatography technique. A subset of 20 out of 126 peaks were identified as being regulated differently under cadmium stress and were fingerprinted by MALDI-TOF. Proteins that were more abundant in the treated samples were located in the chloroplast and in the mitochondrion, suggesting the importance of these organelles in the response and adaptation to metal stress.
Hallock, Ashley K.; Polzin, Kurt A.
2011-01-01
A two-dimensional semi-empirical model of pulsed inductive thrust efficiency is developed to predict the effect of such a geometry on thrust efficiency. The model includes electromagnetic and gas-dynamic forces but excludes energy conversion from radial motion to axial motion, with the intention of characterizing thrust efficiency loss mechanisms that result from a conical versus a at inductive coil geometry. The range of conical pulsed inductive thruster geometries to which this model can be applied is explored with the use of finite element analysis. A semi-empirical relation for inductance as a function of current sheet radial and axial position is the limiting feature of the model, restricting the applicability as a function of half cone angle to a range from ten degrees to about 60 degrees. The model is nondimensionalized, yielding a set of dimensionless performance scaling parameters. Results of the model indicate that radial current sheet motion changes the axial dynamic impedance parameter at which thrust efficiency is maximized. This shift indicates that when radial current sheet motion is permitted in the model longer characteristic circuit timescales are more efficient, which can be attributed to a lower current sheet axial velocity as the plasma more rapidly decouples from the coil through radial motion. Thrust efficiency is shown to increase monotonically for decreasing values of the radial dynamic impedance parameter. This trend indicates that to maximize the radial decoupling timescale should be long compared to the characteristic circuit timescale.
Pandohee, Jessica; Holland, Brendan J; Li, Bingshan; Tsuzuki, Takuya; Stevenson, Paul G; Barnett, Neil W; Pearson, James R; Jones, Oliver A H; Conlan, Xavier A
2015-06-01
Widely known for its recreational use, the cannabis plant also has the potential to act as an antibacterial agent in the medicinal field. The analysis of cannabis plants/products in both pharmacological and forensic studies often requires the separation of compounds of interest and/or accurate identification of the whole cannabinoid profile. In order to provide a complete separation and detection of cannabinoids, a new two-dimensional liquid chromatography method has been developed using acidic potassium permanganate chemiluminescence detection, which has been shown to be selective for cannabinoids. This was carried out using a Luna 100 Å CN column and a Poroshell 120 EC-C18 column in the first and second dimensions, respectively. The method has utilized a large amount of the available separation space with a spreading angle of 48.4° and a correlation of 0.66 allowing the determination of more than 120 constituents and mass spectral identification of ten cannabinoids in a single analytical run. The method has the potential to improve research involved in the characterization of sensitive, complex matrices.
Hasei, Tomohiro; Nakanishi, Haruka; Toda, Yumiko; Watanabe, Tetsushi
2012-08-31
3-Nitrobenzanthrone (3-NBA) is an extremely strong mutagen and carcinogen in rats inducing squamous cell carcinoma and adenocarcinoma. We developed a new sensitive analytical method, a two-dimensional HPLC system coupled with on-line reduction, to quantify non-fluorescent 3-NBA as fluorescent 3-aminobenzanthrone (3-ABA). The two-dimensional HPLC system consisted of reversed-phase HPLC and normal-phase HPLC, which were connected with a switch valve. 3-NBA was purified by reversed-phase HPLC and reduced to 3-ABA with a catalyst column, packed with alumina coated with platinum, in ethanol. An alcoholic solvent is necessary for reduction of 3-NBA, but 3-ABA is not fluorescent in the alcoholic solvent. Therefore, 3-ABA was separated from alcohol and impurities by normal-phase HPLC and detected with a fluorescence detector. Extracts from surface soil, airborne particles, classified airborne particles, and incinerator dust were applied to the two-dimensional HPLC system after clean-up with a silica gel column. 3-NBA, detected as 3-ABA, in the extracts was found as a single peak on the chromatograms without any interfering peaks. 3-NBA was detected in 4 incinerator dust samples (n=5). When classified airborne particles, that is, those 7.0 μm in size, were applied to the two-dimensional HPLC system after purified using a silica gel column, 3-NBA was detected in those particles with particle sizes NBA in airborne particles and the detection of 3-NBA in incinerator dust. Copyright © 2012 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Jian Zhou
2016-09-01
Full Text Available Hydraulic fracturing is a useful tool for enhancing rock mass permeability for shale gas development, enhanced geothermal systems, and geological carbon sequestration by the high-pressure injection of a fracturing fluid into tight reservoir rocks. Although significant advances have been made in hydraulic fracturing theory, experiments, and numerical modeling, when it comes to the complexity of geological conditions knowledge is still limited. Mechanisms of fluid injection-induced fracture initiation and propagation should be better understood to take full advantage of hydraulic fracturing. This paper presents the development and application of discrete particle modeling based on two-dimensional particle flow code (PFC2D. Firstly, it is shown that the modeled value of the breakdown pressure for the hydraulic fracturing process is approximately equal to analytically calculated values under varied in situ stress conditions. Furthermore, a series of simulations for hydraulic fracturing in competent rock was performed to examine the influence of the in situ stress ratio, fluid injection rate, and fluid viscosity on the borehole pressure history, the geometry of hydraulic fractures, and the pore-pressure field, respectively. It was found that the hydraulic fractures in an isotropic medium always propagate parallel to the orientation of the maximum principal stress. When a high fluid injection rate is used, higher breakdown pressure is needed for fracture propagation and complex geometries of fractures can develop. When a low viscosity fluid is used, fluid can more easily penetrate from the borehole into the surrounding rock, which causes a reduction of the effective stress and leads to a lower breakdown pressure. Moreover, the geometry of the fractures is not particularly sensitive to the fluid viscosity in the approximate isotropic model.
Institute of Scientific and Technical Information of China (English)
FENG Shuai; LI Yu-xi; AO Ling; REN Cheng
2011-01-01
The light propagation characteristics through the annular coupled-resonator cavity waveguides are systematically analyzed by the finite-difference time-domain (FDTD) method. It is found that this kind of waveguide has more minbands owing to the increasing of the cavity's size, compared with the traditional line-typed coupled-resonator waveguide. The group velocity of light propagation can be reduced for a further degree when the adjacent annular cavities are interlaced in the perpendicular direction, and a group velocity about 0.00067c (c is the light speed in vacuum) can be obtained.
Takayama, Tomohiro; Matsumoto, Akiyo; Jackeli, George; Takagi, Hidenori
2016-12-01
We report the analysis of magnetic susceptibility χ (T ) of Sr2IrO4 single crystal in the paramagnetic phase. We formulate the theoretical susceptibility based on isotropic Heisenberg antiferromagnetism incorporating the Dzyaloshinsky-Moriya interaction exactly, and include the interlayer couplings in a mean-field approximation. χ (T ) above TN was found to be well described by the model, indicating the predominant Heisenberg exchange consistent with the microscopic theory. The analysis points to a competition of nearest and next-nearest-neighbor interlayer couplings, which results in the up-up-down-down configuration of the in-plane canting moments identified by the diffraction experiments.
Hobley, Daniel E. J.; Adams, Jordan M.; Nudurupati, Sai Siddhartha; Hutton, Eric W. H.; Gasparini, Nicole M.; Istanbulluoglu, Erkan; Tucker, Gregory E.
2017-01-01
The ability to model surface processes and to couple them to both subsurface and atmospheric regimes has proven invaluable to research in the Earth and planetary sciences. However, creating a new model typically demands a very large investment of time, and modifying an existing model to address a new problem typically means the new work is constrained to its detriment by model adaptations for a different problem. Landlab is an open-source software framework explicitly designed to accelerate the development of new process models by providing (1) a set of tools and existing grid structures - including both regular and irregular grids - to make it faster and easier to develop new process components, or numerical implementations of physical processes; (2) a suite of stable, modular, and interoperable process components that can be combined to create an integrated model; and (3) a set of tools for data input, output, manipulation, and visualization. A set of example models built with these components is also provided. Landlab's structure makes it ideal not only for fully developed modelling applications but also for model prototyping and classroom use. Because of its modular nature, it can also act as a platform for model intercomparison and epistemic uncertainty and sensitivity analyses. Landlab exposes a standardized model interoperability interface, and is able to couple to third-party models and software. Landlab also offers tools to allow the creation of cellular automata, and allows native coupling of such models to more traditional continuous differential equation-based modules. We illustrate the principles of component coupling in Landlab using a model of landform evolution, a cellular ecohydrologic model, and a flood-wave routing model.
Ghosh, Subhasree; Talukder, Srijeeta; Sen, Shrabani; Chaudhury, Pinaki
2015-12-01
The cis-cis isomerisation motion of malonaldehyde can be modelled as a symmetric double well coupled with an asymmetric double well, which includes the effect of the cis-trans out-of-plane motion on the cis-cis motion. We have presented an effective method for having control over the tunnelling dynamics of the symmetric double well which is coupled with the asymmetric double well by monitoring tunnelling splitting. When a suitable external field is allowed to interact with the system, the tunnelling splitting gets modified. As the external time perturbation is periodic in nature, the Floquet theory can be applied to calculate the quasi-energies of the perturbed system and hence the tunnelling splitting. The Floquet analysis is coupled with a stochastic optimiser in order to minimise the tunnelling splitting, which is related to slowering of the tunnelling process. The minimisation has been done by one of the stochastic optimisers, simulated annealing. Optimisation has been performed on the parameters which define the external polychromatic field, such as intensities and frequencies of the components of the polychromatic field. With the optimised sets of parameters, we have followed the dynamics of the system and have found suppression of tunnelling which is manifested by a much higher tunnelling time.
Hu, Jun; Wei, Fang; Dong, Xu-Yan; Lv, Xin; Jiang, Mu-Lan; Li, Guang-Ming; Chen, Hong
2013-01-01
The complexity of natural triacylglycerols (TAGs) in various edible oils is prodigious due to the hundreds of set is of TAG compositions, which makes the identification of TAGs quite difficult. In this investigation, the off-line 2D system coupling of nonaqueous RP and silver-ion HPLC with atmospheric pressure chemical ionization MS detection has been applied to the identification and quantification of TAGs in peanut oil. The method was successful in the separation of a high number of TAG solutes, and the TAG structures were evaluated by analyzing their atmospheric pressure chemical ionization mass spectra information. HPLC and MS conditions have been optimized and the fragmentation mechanisms of isomers have been validated. In addition, an internal standard approach has been developed for TAG quantification. Then this system was applied in peanut oil samples and there was a total of 48 TAGs including regioisomers that have been determined and quantified.
Prebihalo, Sarah; Brockman, Adrienne; Cochran, Jack; Dorman, Frank L
2015-11-06
An analytical method for identification of emerging contaminants of concern, such as pesticides and organohalogens has been developed and utilized for true discovery-based analysis. In order to achieve the level of sensitivity and selectivity necessary for detecting compounds in complex samples, comprehensive gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS) was utilized to analyze wastewater samples obtained from the Pennsylvania State University wastewater treatment facility (WWTF). Determination of emerging contaminants through a process of combining samples which represent "normal background" and comparing this to new samples was developed. Results show the presence of halogenated benzotriazoles in wastewater samples as well as soil samples from Pennsylvania State University agricultural fields. The trace levels of chlorinated benzotriazoles observed in the monitoring wells present on the property indicate likely environmental degradation of the chlorinated benzotriazoles. Preliminary investigation of environmental fate of the substituted benzotriazoles indicates their likely degradation into phenol; an Environmental Protection Agency (USEPA) priority pollutant.
Zushi, Yasuyuki; Hashimoto, Shunji; Tamada, Masafumi; Masunaga, Shigeki; Kanai, Yutaka; Tanabe, Kiyoshi
2014-04-18
Data processing tools for non-target analysis using comprehensive two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry (GC×GC-HRTOFMS) were developed and applied to a sediment core in Tokyo Bay, focusing on chlorinated compounds in this study. The processing tools were classified in two different methods: (1) the consecutive use of mass defect filter followed by artificial neutral loss scan (MDF/artificial NLS) as a qualitative non-target screening method and (2) Entire Domain Combined Spectra Extraction and Integration Program (ComSpec) and two-dimensional peak sentinel (T-SEN) as a semi-quantitative target screening method. MDF/artificial NLS as a non-target screening approach revealed that PCBs, followed by octachlorodibenzo dioxin (OCDD), were the main chlorinated compounds present in all sediment layers. Furthermore, unknown peaks thought to be chlorinated compounds were found in increasing numbers, some in increasing amounts. T-SEN and ComSpec as a target screening approach were adapted for automatic semi-quantitative analysis showed that, in decreasing concentration order, PCBs, OCDD, and dichlorodiphenyltrichloroethane and its metabolites (DDEs, DDDs) were the main chlorinated pollutants in the sediments. The complementary use of both techniques allows us to extract significant chlorinated pollutants, including non-targeted compounds. This retrospective analysis by this approach performed well even on matrix-rich sediment samples and provided us an interesting insight of historical trends of pollution in Tokyo Bay.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Numerical investigation using SIMPLE algorithm with QUICK scheme for natural convection and heat transfer in the enclosure bounded by a solid wall and with heat transfer and radiation coupled in natural convection has been conducted.The various parameters are:Rayleigh number(from 103 to 105),dimensionless conductivity of bounding wall(from 0 to 100),dimensionless wall thickness(from 0 to 0.6) and radiation emissivity of all surfaces(from 0 to 1).The results suggest that flow and heat transfer are influenced by radiation.Radiation is a dominant action on flow and heat transfer.With increase of the thermal conductivity of wall,flow and heat transfer turn stronger.The temperature distribution changes obviously.When the thermal conductivity of wall is over a certain critical number,the increasing trend of flow and heat transfer may disappear.With increase of enclosure wall thickness,flow and heat transfer turn slighter.When the enclosure wall thickness is over a certain critical number,the flow and heat transfer will turn slow.
Xu, Dan-Dan; Deng, Dan-Feng; Li, Xiang; Wei, Li-Liang; Li, Yan-Yuan; Yang, Xiu-Yun; Yu, Wei; Wang, Chong; Jiang, Ting-Ting; Li, Zhong-Jie; Chen, Zhong-Liang; Zhang, Xing; Liu, Ji-Yan; Ping, Ze-Peng; Qiu, Yun-Qing; Li, Ji-Cheng
2014-02-01
Pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis is a chronic disease. Currently, there are no sufficiently validated biomarkers for early diagnosis of TB infection. In this study, a panel of potential serum biomarkers was identified between patients with pulmonary TB and healthy controls by using iTRAQ-coupled 2D LC-MS/MS technique. Among 100 differentially expressed proteins screened, 45 proteins were upregulated (>1.25-fold at p HABP2), and retinol-binding protein 4 (RBP4) was further confirmed using immunoblotting and ELISA analysis. By forward stepwise multivariate regression analysis, a panel of serum biomarkers including APOCII, CD5L, and RBP4 was obtained to form the disease diagnostic model. The receiver operation characteristic curve of the diagnostic model was 0.98 (sensitivity = 93.42%, specificity = 92.86%). In conclusion, APOCII, CD5L, HABP2, and RBP4 may be potential protein biomarkers of pulmonary TB. Our research provides useful data for early diagnosis of TB.
Bai, Hsin-Yu; Lin, Shu-Ling; Chan, Shen-An; Fuh, Ming-Ren
2010-10-01
Microfluidic chip-based high-performance-liquid-chromatography coupled to mass spectrometry (chip-HPLC-MS) has been widely used in proteomic research due to its enhanced sensitivity. We employed a chip-HPLC-MS system for determining small molecules such as drug metabolites in biological fluids. This chip-HPLC-MS system integrates a microfluidic switch, a 2-dimensional column design including an enrichment column (160 nL) for sample pre-concentration and an analytical column for chromatographic separation, as well as a nanospray emitter on a single polyimide chip. In this study, a relatively large sample volume (500 nL) was injected into the enrichment column for pre-concentration and an additional 4 μL of the initial mobile phase was applied to remove un-retained components from the sample matrix prior to chromatographic separation. The 2-dimensional column design provides the advantages of online sample concentration and reducing matrix influence on MS detection. 7-Aminoflunitrazepam (7-aminoFM2), a major metabolite of flunitrazepam (FM2), was determined in urine samples using the integrated chip-HPLC-MS system. The linear range was 0.1-10 ng mL(-1) and the method detection limit (signal-to-noise ratio of 3) was 0.05 ng mL(-1) for 7-aminoFM2. After consecutive liquid-liquid extraction (LLE) and solid-phase extraction (SPE), the chip-HPLC-MS exhibited high correlation between 7-aminoFM2 spiked Milli-Q water and 7-aminoFM2 spiked urine samples. This system also showed good precision (n = 5) and recovery for spiked urine samples at the levels of 0.1, 1.0, and 10 ng mL(-1). Intra-day and inter-day precision were 2.0-7.1% and 4.3-6.0%, respectively. Clinical urine samples were also analyzed by this chip-HPLC-MS system and acceptable relative differences (-1.3 to -13.0%) compared with the results using a GC-MC method were determined. Due to its high sensitivity and ease of operation, the chip-HPLC-MS system can be utilized for the determination of small molecules such
Institute of Scientific and Technical Information of China (English)
Liu Song; Yan Yu-Zhen; Hu Liang-Bin
2012-01-01
The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic,extrinsic and external electric-field induced spin-orbit coupling were investigated theoretically.Based on a unified semiclassical theoretical approach,it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin-orbit interactions,namely an intrinsic contribution determined by the Berry curvature in the momentum space,an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin-orbit-dependent impurity scattering.The characteristics of these competing contributions are discussed in detail in the paper.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Juday, Richard D.
1992-01-01
Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.
Li, Xiu-Mei; Luo, Xue-Gang; Zhang, Chao-Zheng; Wang, Nan; Zhang, Tong-Cun
2015-02-01
In this paper, a heart-cutting two-dimensional high-performance liquid chromatography coupled with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was established for controlling the quality of different batches of Hypericum ascyron extract for the first time. In comparison with the common one-dimensional fingerprint, the second-dimensional fingerprint compiled additional spectral data and was hence more informative. The quality of H. ascyron extract was further evaluated by similarity measures and the same results were achieved, the correlation coefficients of the similarity of ten batches of H. ascyron extract were ＞0.99. Furthermore, we also evaluated the quality of the ten batches of H. ascyron extract by antibacterial activity. The result demonstrated that the quality of the ten batches of H. ascyron extract was not significantly different by MTT. Finally, we demonstrated that the second-dimensional fingerprint coupled with the MTT method was a more powerful tool to characterize the quality of samples of batch to batch. Therefore the proposed method could be used to comprehensively conduct the quality control of traditional Chinese medicines.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...
Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice
Institute of Scientific and Technical Information of China (English)
XU Quan; QIANG Tian
2009-01-01
We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling.Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive)and the center of the two-dimensional gap breather (on a light or a heavy atom).
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Tran, Diem Hong; Shishido, Yuji; Chung, Seong Pil; Trinh, Huong Thi Thanh; Yorita, Kazuko; Sakai, Takashi; Fukui, Kiyoshi
2015-12-10
D-Amino acid oxidase (DAO) is a flavoenzyme that metabolizes D-amino acids and is expected to be a promising therapeutic target of schizophrenia and glioblastoma. The study of DNA-binding proteins has yielded much information in the regulation of transcription and other biological processes. However, proteins interacting with DAO gene have not been elucidated. Our assessment of human DAO promoter activity using luciferase reporter system indicated the 5'-flanking region of this gene (-4289 bp from transcription initiation site) has a regulatory sequence for gene expression, which is regulated by multi-protein complexes interacting with this region. By using pull-down assay coupled with two-dimensional gel electrophoresis and mass spectrometry, we identified six proteins binding to the 5'-flanking region of the human DAO gene (zinc finger C2HC domain-containing protein 1A; histidine-tRNA ligase, cytoplasmic; molybdenum cofactor biosynthesis protein; 60S ribosomal protein L37; calponin-1; calmodulin binding protein and heterogeneous nuclear ribonucleoprotein A2/B1). These preliminary results will contribute to the advance in the understanding of the potential factors associated with the regulatory mechanism of DAO expression.
Machado, Maria Elisabete; Fontanive, Fernando Cappelli; de Oliveira, José Vladimir; Caramão, Elina Bastos; Zini, Cláudia Alcaraz
2011-11-01
The determination of organic sulfur compounds (OSC) in coal is of great interest. Technically and operationally these compounds are not easily removed and promote corrosion of equipment. Environmentally, the burning of sulfur compounds leads to the emission of SO(x) gases, which are major contributors to acid rain. Health-wise, it is well known that these compounds have mutagenic and carcinogenic properties. Bitumen can be extracted from coal by different techniques, and use of gas chromatography coupled to mass spectrometric detection enables identification of compounds present in coal extracts. The OSC from three different bitumens were tentatively identified by use of three different extraction techniques: accelerated solvent extraction (ASE), ultrasonic extraction (UE), and supercritical-fluid extraction (SFE). Results obtained from one-dimensional gas chromatography (1D GC) coupled to quadrupole mass spectrometric detection (GC-qMS) and from two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC × GC-TOFMS) were compared. By use of 2D GC, a greater number of OSC were found in ASE bitumen than in SFE and UE bitumens. No OSC were identified with 1D GC-qMS, although some benzothiophenes and dibenzothiophenes were detected by use of EIM and SIM modes. GC × GC-TOFMS applied to investigation of OSC in bitumens resulted in analytical improvement, as more OSC classes and compounds were identified (thiols, sulfides, thiophenes, naphthothiophenes, benzothiophenes, and benzonaphthothiophenes). The roof-tile effect was observed for OSC and PAH in all bitumens. Several co-elutions among analytes and with matrix interferents were solved by use of GC × GC.
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Two-dimensional capillary origami
Brubaker, N. D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
Two-dimensional static black holes with pointlike sources
Melis, M
2004-01-01
We study the static black hole solutions of generalized two-dimensional dilaton-gravity theories generated by pointlike mass sources, in the hypothesis that the matter is conformally coupled. We also discuss the motion of test particles. Due to conformal coupling, these follow the geodesics of a metric obtained by rescaling the canonical metric with the dilaton.
Ballesteros-Gómez, Ana; de Boer, Jacob; Leonards, Pim E G
2013-10-15
In this study, we assess the applicability of different analytical techniques, namely, direct probe (DP), gas chromatography (GC), and comprehensive two-dimensional gas chromatography (GC × GC) coupled to atmospheric pressure chemical ionization (APCI) with a high resolution (HR)-time-of-flight (TOF)-mass spectrometry (MS) for the analysis of flame retardants and plasticizers in electronic waste and car interiors. APCI-HRTOFMS is a combination scarcely exploited yet with GC or with a direct probe for screening purposes and to the best of our knowledge, never with GC × GC to provide comprehensive information. Because of the increasing number of flame retardants and questions about their environmental fate, there is a need for the development of wider target and untargeted screening techniques to assess human exposure to these compounds. With the use of the APCI source, we took the advantage of using a soft ionization technique that provides mainly molecular ions, in addition to the accuracy of HRMS for identification. The direct probe provided a very easy and inexpensive method for the identification of flame retardants without any sample preparation. This technique seems extremely useful for the screening of solid materials such as electrical devices, electronics and other waste. GC-APCI-HRTOF-MS appeared to be more sensitive compared to liquid chromatography (LC)-APCI/atmospheric pressure photoionization (APPI)-HRTOF-MS for a wider range of flame retardants with absolute detection limits in the range of 0.5-25 pg. A variety of tri- to decabromodiphenyl ethers, phosphorus flame retardants and new flame retardants were found in the samples at levels from microgram per gram to milligram per gram levels.
Classifying Two-dimensional Hyporeductive Triple Algebras
Issa, A Nourou
2010-01-01
Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.
A study of two-dimensional magnetic polaron
Institute of Scientific and Technical Information of China (English)
LIU; Tao; ZHANG; Huaihong; FENG; Mang; WANG; Kelin
2006-01-01
By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.
Two-dimensional fourier transform spectrometer
Energy Technology Data Exchange (ETDEWEB)
DeFlores, Lauren; Tokmakoff, Andrei
2016-10-25
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional function photonic crystals
Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu
2016-01-01
In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.
Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis
Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J
2012-01-01
Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...
Energy Technology Data Exchange (ETDEWEB)
Parsons, Brendon A.; Pinkerton, David K.; Wright, Bob W.; Synovec, Robert E.
2016-04-01
The illicit chemical alteration of petroleum fuels is of scientific interest, particularly to regulatory agencies which set fuel specifications, or excises based on those specifications. One type of alteration is the reaction of diesel fuel with concentrated sulfuric acid. Such reactions are known to subtly alter the chemical composition of the fuel, particularly the aromatic species native to the fuel. Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC–TOFMS) is ideally suited for the analysis of diesel fuel, but may provide the analyst with an overwhelming amount of data, particularly in sample-class comparison experiments comprised of many samples. The tile-based Fisher-ratio (F-ratio) method reduces the abundance of data in a GC × GC–TOFMS experiment to only the peaks which significantly distinguish the unaltered and acid altered sample classes. Three samples of diesel fuel from different filling stations were each altered to discover chemical features, i.e., analyte peaks, which were consistently changed by the acid reaction. Using different fuels prioritizes the discovery of features which are likely to be robust to the variation present between fuel samples and which will consequently be useful in determining whether an unknown sample has been acid altered. The subsequent analysis confirmed that aromatic species are removed by the acid alteration, with the degree of removal consistent with predicted reactivity toward electrophilic aromatic sulfonation. Additionally, we observed that alkenes and alkynes were also removed from the fuel, and that sulfur dioxide or compounds that degrade to sulfur dioxide are generated by the acid alteration. In addition to applying the previously reported tile-based F-ratio method, this report also expands null distribution analysis to algorithmically determine an F-ratio threshold to confidently select only the features which are sufficiently class-distinguishing. When
Weldegergis, B.T.; Crouch, A.M.; Górecki, T.; Villiers, de A.
2011-01-01
Comprehensive two-dimensional gas chromatography in combination with time-of-flight mass spectrometry (GC × GC–TOFMS) has been applied for the analysis of volatile compounds in three young South African red wines. In spite of the significant benefits offered by GC × GC–TOFMS for the separation and
Topological defects in two-dimensional crystals
Chen, Yong; Qi, Wei-Kai
2008-01-01
By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.
Spin-orbit torques in two-dimensional Rashba ferromagnets
Qaiumzadeh, A.; Duine, R. A.|info:eu-repo/dai/nl/304830127; Titov, M.
2015-01-01
Magnetization dynamics in single-domain ferromagnets can be triggered by a charge current if the spin-orbit coupling is sufficiently strong. We apply functional Keldysh theory to investigate spin-orbit torques in metallic two-dimensional Rashba ferromagnets in the presence of spin-dependent
Arias-Borrego, Ana; García-Barrera, Tamara; Gómez-Ariza, José L
2008-10-01
Advances in analytical methodology for speciation of manganese in pine nuts are presented in this work. The approach is based on the use of orthogonal chromatographic systems, namely size-exclusion chromatography (SEC) of the extracts and strong anion exchange (IEC) of the fractions collected by the first column. In both columns, manganese elution is first monitored by a quadrupole inductively coupled plasma mass spectrometry (ICP-MS) instrument equipped with an octopole reaction cell and an ultraviolet (UV) detector. SEC is performed by using two columns covering the molecular weight range from pine nuts samples and the presence of Mn-citrate is confirmed by nanoelectrospray ionization quadrupole time-of-flight mass spectrometry (nESI-QqTOF-MS). In the same fraction, a third Mn-containing peak is detected in the IEC-UV-ICP-MS chromatogram. This peak corresponds to a protein containing Mn that was later submitted to a tryptic digestion and analyzed by nESI-QqTOF. The MS/MS data of a doubly charged peptide are used to obtain the sequence of the protein with the Mascot search engine. The peak turned out to be isocitrate dehydrogenase, a protein commonly associated with Mn.
Quasinormal frequencies of asymptotically flat two-dimensional black holes
Lopez-Ortega, A
2011-01-01
We discuss whether the minimally coupled massless Klein-Gordon and Dirac fields have well defined quasinormal modes in single horizon, asymptotically flat two-dimensional black holes. To get the result we solve the equations of motion in the massless limit and we also calculate the effective potentials of Schrodinger type equations. Furthermore we calculate exactly the quasinormal frequencies of the Dirac field propagating in the two-dimensional uncharged Witten black hole. We compare our results on its quasinormal frequencies with other already published.
Thermal diode from two-dimensional asymmetrical Ising lattices.
Wang, Lei; Li, Baowen
2011-06-01
Two-dimensional asymmetrical Ising models consisting of two weakly coupled dissimilar segments, coupled to heat baths with different temperatures at the two ends, are studied by Monte Carlo simulations. The heat rectifying effect, namely asymmetric heat conduction, is clearly observed. The underlying mechanisms are the different temperature dependencies of thermal conductivity κ at two dissimilar segments and the match (mismatch) of flipping frequencies of the interface spins.
Strongly interacting two-dimensional Dirac fermions
Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.
2009-01-01
We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Institute of Scientific and Technical Information of China (English)
A.S.J.AL-SAIF; 朱正佑
2003-01-01
The traditional differential quadrature method was improved by using the upwind difference scheme for the convectiveterms to solve the coupled two-dimensional incompressible Navier-stokes equations and heat equation. The new method was comparedwith the conventional differential quadrature method in the aspects of convergence and accuracy. The results show that the newmethod is more accurate, and has better convergence than the conventional differential quadrature method for numerically computingthe steady-state solution.
Institute of Scientific and Technical Information of China (English)
李未; 陈小玲
2011-01-01
利用二维三角晶格介质柱光子晶体TE偏振的禁带与介质柱半径的变化关系,分析了二维光子晶体的带隙分布及斜边耦合特性.结果表明,光子禁带的大小受到构成光子晶体的介电材料的空间排列分布以及介质柱半径大小的影响;束缚在光子晶体中的光波可以在波导和谐振腔中进行传输,达到选择输出光波的目的.%The paper study the relation between two dimensional triangular lattice photonic crystal band gap for TE polarizationand dielectric cylinder radius, and study distribution of two dimensional photonic crystal defect state. Results show, the photonic crystal band gaps were distributed by dielectric material space distribution and medium size of the radius; Tied in the photon crystals of light waves can transmission in waveguides and resonator cavity to select the output of light waves.
Two Dimensional Plasmonic Cavities on Moire Surfaces
Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla
2010-03-01
We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.
Two-dimensional function photonic crystals
Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng
2017-01-01
In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.
Two-Dimensional Planetary Surface Lander
Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.
2014-06-01
A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.
Complex Saddles in Two-dimensional Gauge Theory
Buividovich, P V; Valgushev, S N
2015-01-01
We study numerically the saddle point structure of two-dimensional (2D) lattice gauge theory, represented by the Gross-Witten-Wadia unitary matrix model. The saddle points are in general complex-valued, even though the original integration variables and action are real. We confirm the trans-series/instanton gas structure in the weak-coupling phase, and identify a new complex-saddle interpretation of non-perturbative effects in the strong-coupling phase. In both phases, eigenvalue tunneling refers to eigenvalues moving off the real interval, into the complex plane, and the weak-to-strong coupling phase transition is driven by saddle condensation.
Interaction of two-dimensional magnetoexcitons
Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.
2017-04-01
We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .
Spirals and Skyrmions in two dimensional oxide heterostructures.
Li, Xiaopeng; Liu, W Vincent; Balents, Leon
2014-02-14
We construct the general free energy governing long-wavelength magnetism in two dimensional oxide heterostructures, which applies irrespective of the microscopic mechanism for magnetism. This leads, in the relevant regime of weak but non-negligible spin-orbit coupling, to a rich phase diagram containing in-plane ferromagnetic, spiral, cone, and Skyrmion lattice phases, as well as a nematic state stabilized by thermal fluctuations.
Interpolation by two-dimensional cubic convolution
Shi, Jiazheng; Reichenbach, Stephen E.
2003-08-01
This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.
TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION
Energy Technology Data Exchange (ETDEWEB)
Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)
2015-11-20
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.
Two dimensional topology of cosmological reionization
Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan
2015-01-01
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong
2016-12-01
The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.
Towards two-dimensional search engines
Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...
Xu, Junyan; Zhang, Xiuli; Guo, Zhimou; Yan, Jingyu; Yu, Long; Li, Xiuling; Xue, Xingya; Liang, Xinmiao
2013-03-21
Peptide components of scorpion venom have been employed as useful pharmacological tools in the study of ion channel function. The isolation of individual components is necessary for determination of their biological significance. Here, we have described a novel reversed phase (RP)/ion exchange stationary phase, Click oligo ethylene glycol (Click OEG), and the chromatographic efficiency of its mixed-mode sorbent in peptide separation experiments. The Click OEG presents a mixed-mode RP/weak anion-exchange type stationary phase at pH 3.5 and mixed-mode RP/weak cation-exchange type stationary phase at pH 6.0, and it was suitable for separation of long-chain peptides in scorpion venom. Subsequently, a two dimensional mixed-mode RP-RP system based Click OEG and C18 with different pH values in two dimensions was developed for orthogonal separation of scorpion venom. Furthermore, two fractions were analyzed in depth, and 11 long-chain peptides were purified and sequences were identified by using tandem mass spectrometry incorporating the tryptic approach. Among these, we isolated six novel peptides including one peptide with a new sequence and five transcript-level peptides, and speculated on their possible bioactivities.
Qiao, Xue; Song, Wei; Ji, Shuai; Wang, Qi; Guo, De-an; Ye, Min
2015-07-10
Licorice is one of the most popular herbal medicines worldwide. It contains a big array of phenolic compounds (flavonoids, coumarins, and diphenylethanones). Due to high structural diversity, low abundance, and co-elution with licorice saponins, these phenolic compounds are difficult to be separated by conventional chromatography. In this study, a mobile phase-dependent reversed-phase×reversed phase comprehensive two-dimensional liquid chromatography (RP×RP 2DLC) method was established to separate phenolic compounds in licorice (the roots of Glycyrrhiza uralensis). Organic solvents in the mobile phase were optimized to improve orthogonality of the first and second dimensions, and a synchronized gradient mode was used to improve chromatographic resolution. Finally, licorice extracts were eluted with methanol/water/formic acid in the first dimension (Acquity CSH C18 column), and acetonitrile/water/formic acid in the second dimension (Poroshell Phenyl-Hexyl column). By using this 2DLC system, a total of 311 compounds were detected within 40min. The practical and effective peak capacity was 1329 and 524, respectively, and the orthogonality was 79.8%. The structures of 21 selected unknown compounds were tentatively characterized by mass spectrometry, and 8 of them were discovered from G. uralensis for the first time. The mobile phase-dependent 2DLC/MS system could benefit the separation and characterization of natural products in complicated herbal extracts.
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Kronecker Product of Two-dimensional Arrays
Institute of Scientific and Technical Information of China (English)
Lei Hu
2006-01-01
Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.
Two-Dimensional Toda-Heisenberg Lattice
Directory of Open Access Journals (Sweden)
Vadim E. Vekslerchik
2013-06-01
Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.
A novel two dimensional particle velocity sensor
Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.
2013-01-01
In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Two-dimensional magma-repository interactions
Bokhove, O.
2001-01-01
Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of
Two-dimensional subwavelength plasmonic lattice solitons
Ye, F; Hu, B; Panoiu, N C
2010-01-01
We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai
A two-dimensional Dirac fermion microscope
DEFF Research Database (Denmark)
Bøggild, Peter; Caridad, Jose; Stampfer, Christoph
2017-01-01
in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...
Entanglement Entropy in Two-Dimensional String Theory.
Hartnoll, Sean A; Mazenc, Edward A
2015-09-18
To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.
Vibrational wave packet induced oscillations in two-dimensional electronic spectra. I. Experiments
Nemeth, Alexandra; Mancal, Tomas; Lukes, Vladimir; Hauer, Juergen; Kauffmann, Harald F; Sperling, Jaroslaw
2010-01-01
This is the first in a series of two papers investigating the effect of electron-phonon coupling in two-dimensional Fourier transformed electronic spectroscopy. We present a series of one- and two-dimensional nonlinear spectroscopic techniques for studying a dye molecule in solution. Ultrafast laser pulse excitation of an electronic transition coupled to vibrational modes induces a propagating vibrational wave packet that manifests itself in oscillating signal intensities and line-shapes. For the two-dimensional electronic spectra we can attribute the observed modulations to periodic enhancement and decrement of the relative amplitudes of rephasing and non-rephasing contributions to the total response. Different metrics of the two-dimensional signals are shown to relate to the frequency-frequency correlation function which provides the connection between experimentally accessible observations and the underlying microscopic molecular dynamics. A detailed theory of the time-dependent two-dimensional spectral li...
Sun, Wanyang; Tong, Ling; Miao, Jingzhuo; Huang, Jingyi; Li, Dongxiang; Li, Yunfei; Xiao, Hongting; Sun, Henry; Bi, Kaishun
2016-01-29
Salvia miltiorrhiza (SM) is one of the most widely used Traditional Chinese Medicine. Active constituents of SM mainly contain hydrophilic phenolic acids (PAs) and lipophilic tanshinones. However, due to the existing of multiple ester bonds and unsaturated bonds in the structures, PAs have numerous chemical conversion products. Many of them are so low-abundant that hard to be separated using conventional methods. In this study, an off-line two-dimensional liquid chromatography (2D-LC) method was developed to separate PAs in SM and its related preparations. In the first dimension, samples were fractionated by hydrophilic interaction chromatography (HILIC) (Acchrom×Amide, 4.6×250mm, 5μm) mainly based on the hydrogen bonding effects. The fractions were then separated on reversed-phase liquid chromatography (RP-LC) (Acquity HSS T3, 2.1×50mm, 1.7μm) according to hydrophobicity. For the selective identification of PAs, diode array detector (DAD) and electrospray ionization tandem ion trap time-of-flight mass spectrometry (ESI-IT-TOF-MS) were employed. Practical and effective peak capacities of all the samples were greater than 2046 and 1130, respectively, with the orthogonalities ranged from 69.7% to 92.8%, which indicated the high efficiency and versatility of this method. By utilizing the data post-processing techniques, including mass defect filter, neutral loss filter and product ion filter, a total of 265 compounds comprising 196 potentially new PAs were tentatively characterized. Twelve kinds of derivatives, mainly including glycosylated compounds, O-alkylated compounds, condensed compounds and hydrolyzed compounds, constituted the novelty of the newly identified PAs. The HILIC×RP-LC/TOF-MS system expanded our understanding on PAs of S. miltiorrhiza and its related preparations, which could also benefit the separation and characterization of polar constituents in complicated herbal extracts.
Cheng, Cheanyeh; Wu, Shing-Chen
2011-05-20
An innovative two-dimensional high-performance liquid chromatography system was developed for the simultaneous analysis of aspartame and its hydrolysis products of Coca-Cola Zero. A C8 reversed-phase chromatographic column with ultraviolet detection was used as the first dimension for the determination of aspartame, and a ligand-exchange chromatographic column with on-line postcolumn derivation fluorescence detection was employed as the second dimension for the analysis of amino acid enantiomers. The fluorimetric derivative reagent of amino acid enantiomers was o-phthaldialdehyde. The hydrolysis of aspartame in Coca-Cola Zero was induced by electric-heating or microwave heating. Aspartame was quantified by the matrix matched external standard calibration curve with a linear concentration range of 0-50 μg mL(-1) (r(2)=0.9984). The limit of detection (LOD) and the limit of quantification (LOQ) were 1.3 μg mL(-1) and 4.3 μg mL(-1), respectively. The amino acid enantiomers was analyzed by the matrix matched internal standard calibration method (D-leucine as the internal standard) with a linear concentration range of 0-10 μg mL(-1) (r(2)=0.9988-0.9997). The LODs and LOQs for L- and D-aspartic acid and L- and D-phenylalanine were 0.16-0.17 μg mL(-1) and 0.52-0.55 μg mL(-1), respectively, that was 12-13 times more sensitive than ultraviolet detection. The overall analysis accuracy for aspartame and amino acid enantiomers was 90.2-99.2% and 90.4-96.2%, respectively. The overall analysis precision for aspartame and amino acid enantiomers was 0.1-1.7% and 0.5-6.7%, respectively. Generally, the extent of aspartame hydrolysis increases with the increase of electro-thermal temperature, microwave power, and the duration of hydrolysis time. D-aspartic acid and D-phenylalanine can be observed with the electro-thermal racemization at the hydrolysis temperature 120°C for 1 day and only D-aspartic acid can be observed at the hydrolysis temperature 90°C for 2 and 3 days. For
Institute of Scientific and Technical Information of China (English)
乌云其木格; 辛伟; 额尔敦朝鲁
2016-01-01
在考虑Rashba自旋-轨道耦合效应下，基于Lee-Low-Pines变换，采用Pekar型变分法研究了量子点中双极化子的基态性质。数值结果表明，在电子-声子强耦合(耦合常数α>6)条件下，量子点中形成稳定双极化子结构的条件(结合能Eb >0)自然满足；双极化子的结合能Eb随量子点受限强度ω0、介质的介电常数比η和电子-声子耦合强度α的增大而增加，随Rashba自旋-轨道耦合常数αR 的增加表现为直线增加和减小两种截然相反的情形；Rashba效应使双极化子的基态能量分裂为E (↑↑)， E (↓↓)和E (↑↓)三条能级，分别对应两电子的自旋取向为“向上”、“向下”和“反平行”三种情形；基态能量的绝对值|E|随η和α的增加而增大，随αR 的增加表现为直线增加和减小两种截然相反的情形；在双极化子的基态能量E 中，电子-声子耦合能所占据的比例明显大于Rashba自旋-轨道耦合能所占比例，但电子-声子耦合与Rashba自旋-轨道耦合间相互渗透、彼此影响显著。%In this paper, based on the Lee-Low-Pines transformation, the ground-state properties of the bipolaron with the Rashba spin-orbit coupling effect in the quantum dot are studied by using the Pekar variational method. The expressions for the ground-state interaction energy Eint and binding energy Eb of the bipolaron are derived. The results show that Eint is composed of four parts: the electron-longitudinal optical (LO) phonon coupling energy Ee-ph, confinement potential of the quantum dot Ecouf, Coulomb energy between two electrons Ecoul and additional term in the Rashba spin splitting energy ER-ph originating from the LO phonon, where Ecouf and Ecoul are positive definite. These indicate that Ecouf and Ecoul are the repulsive potential of the bipolaron. Generally, it is unable to form the electron-electron coupling structure in the quantum dot because two electrons repel each other
Electronics based on two-dimensional materials.
Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi
2014-10-01
The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-04-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.
Towards two-dimensional search engines
Ermann, Leonardo; Shepelyansky, Dima L
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.
Toward two-dimensional search engines
Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-07-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.
A two-dimensional Dirac fermion microscope
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
A two-dimensional Dirac fermion microscope.
Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-09
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
Two-Dimensional Scheduling: A Review
Directory of Open Access Journals (Sweden)
Zhuolei Xiao
2013-07-01
Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.
Two dimensional fermions in four dimensional YM
Narayanan, R
2009-01-01
Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
String breaking in two-dimensional QCD
Hornbostel, K J
1999-01-01
I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.
Two-dimensional supramolecular electron spin arrays.
Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya
2013-05-07
A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two dimensional echocardiographic detection of intraatrial masses.
DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S
1981-11-01
With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.
Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis
2014-01-01
Gel- based proteomics is one of the most versatile methods for fractionating protein complexes. Among these methods, two dimensional- polyacrylamide gel electrophoresis (2-DE) represents a mainstay orthogonal approach, which is popularly used to simultaneously fractionate, identify, and quantify proteins when coupled with mass spectrometric identification or other immunological tests. Although 2-DE was first introduced more than three decades ago, several challenges and limitations to its utility still exist. This review discusses the principles of 2-DE as well as both recent methodological advances and new applications. PMID:24735559
Habib, Hesham A; Sanchiz, Joaquin; Janiak, Christoph
2008-09-28
Hydrothermal reaction of Cu(NO3)(2).3H2O, Cd(OH)2 or Zn(OH)2 with benzene-1,2,3-tricarboxylic acid (H3btb, hemimellitic acid) produced the 2D coordination polymer (MOF) (infinity)(2)[Cu2(mu5-btb)(mu-OH)(mu-H2O)] (1) and the 2D hydrogen-bonded complexes [Cd(H2btb)2(H2O)4].2H2O (2) and [Zn(H2O)6](H2btb)(2).4H2O (3) which are characterized by single-crystal X-ray diffraction, X-ray powder diffraction and thermoanalysis. Magnetic susceptibility measurements between 1.9-300 K for 1 revealed three magnetic active exchange pathways that link the copper(II) ions through a long mu-aqua bridge, an anti-syn carboxylate bridge [j2 = 0.161(1) cm(-1)], and through a mixed mu-hydroxo + syn-syn carboxylate bridge [J = 83(1) cm(-1)]. At temperatures higher than 30 K the system behaves as isolated Cu2 units with strong ferromagnetic Cu-Cu coupling through the mu-hydroxo and syn-syn carboxylate bridge. The strong ferromagnetic coupling is explained with Hoffmann's approach by means of the concept of counter-complementarity introduced by Nishida et al.[Chem. Lett., 1983, 1815-1818].
Two-dimensional Insect Flight on an Air-Water Interface is a Chaotic Oscillator
Mukundarajan, Haripriya; Prakash, Manu
2014-01-01
Two-dimensional flapping wing insect flight on an air-water interface provides a successful foraging strategy to explore an ecological niche on the surface of a pond. However, the complex interplay of surface tension, aerodynamic forces, biomechanics and neural control that enables two-dimensional flight is unknown. Here we report the discovery of two-dimensional flight in the waterlily beetle Galerucella nymphaeae, which is the fastest reported propulsion mode for an insect on a fluid interface. Using kinematics derived from high-speed videography coupled with analytical models, we demonstrate that two-dimensional flight is a chaotic interfacial oscillator, thus significantly constraining the possible range of flight parameters. Discovery of this complex dynamics in two-dimensional flight on time scales similar to neural responses indicates the challenge of evolving active flight control on a fluid interface.
Weakly disordered two-dimensional Frenkel excitons
Boukahil, A.; Zettili, Nouredine
2004-03-01
We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.
Two-dimensional photonic crystal surfactant detection.
Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A
2012-08-07
We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.
Theory of two-dimensional transformations
Kanayama, Yutaka J.; Krahn, Gary W.
1998-01-01
The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...
Two-dimensional ranking of Wikipedia articles
Zhirov, A O; Shepelyansky, D L
2010-01-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Liu, Zhirong
2016-01-01
The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Dynamics of film. [two dimensional continua theory
Zak, M.
1979-01-01
The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.
Two-dimensional model and experimental comparison of an inductively coupled plasma%感应耦合等离子体二维模型与实验对比
Institute of Scientific and Technical Information of China (English)
程嘉; 季林红; 朱煜
2010-01-01
为研究感应耦合等离子体(inductively coupled plasma,ICP)的建模方法,针对GECRC(gaseous electronics conference radio frequency reference cell)标准等离子体实验平台,利用商业软件CFD-ACE+中的等离子体、电磁场及流体等模块建立了二维流体ICP模型.仿真结果与平台在ICP模式下的放电实验进行了对比分析,在等离子体参数的量级与变化趋势上均取得了较好的一致性.同时对比发现,该模型与Bukowski等(J.Appl.Phys.,1996,80(5):2614)开发的模型的仿真精度处于相同水平,均可定性表征ICP等离子体的分布特性.
Two-dimensional gauge theoretic supergravities
Cangemi, D.; Leblanc, M.
1994-05-01
We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
Two-dimensional shape memory graphene oxide
Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe
2016-06-01
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.
Comprehensive two-dimensional liquid chromatographic analysis of poloxamers.
Malik, Muhammad Imran; Lee, Sanghoon; Chang, Taihyun
2016-04-15
Poloxamers are low molar mass triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), having number of applications as non-ionic surfactants. Comprehensive one and two-dimensional liquid chromatographic (LC) analysis of these materials is proposed in this study. The separation of oligomers of both types (PEO and PPO) is demonstrated for several commercial poloxamers. This is accomplished at the critical conditions for one of the block while interaction for the other block. Reversed phase LC at CAP of PEO allowed for oligomeric separation of triblock copolymers with regard to PPO block whereas normal phase LC at CAP of PPO renders oligomeric separation with respect to PEO block. The oligomeric separation with regard to PEO and PPO are coupled online (comprehensive 2D-LC) to reveal two-dimensional contour plots by unconventional 2D IC×IC (interaction chromatography) coupling. The study provides chemical composition mapping of both PEO and PPO, equivalent to combined molar mass and chemical composition mapping for several commercial poloxamers.
Two-dimensional fluorescence spectroscopy of laser-produced plasmas
Energy Technology Data Exchange (ETDEWEB)
Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.
2016-08-01
We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrum is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.
All or nothing: On the small fluctuations of two-dimensional string theoretic black holes
Energy Technology Data Exchange (ETDEWEB)
Gilbert, Gerald [Univ. of Maryland, College Park, MD (United States); Raiten, Eric [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
1992-10-01
A comprehensive analysis of small fluctuations about two-dimensional string-theoretic and string-inspired black holes is presented. It is shown with specific examples that two-dimensional black holes behave in a radically different way from all known black holes in four dimensions. For both the SL(2,R)/U(1) black hole and the two-dimensional black hole coupled to a massive dilaton with constant field strength, it is shown that there are a {\\it continuous infinity} of solutions to the linearized equations of motion, which are such that it is impossible to ascertain the classical linear response. It is further shown that the two-dimensional black hole coupled to a massive, linear dilaton admits {\\it no small fluctuations at all}. We discuss possible implications of our results for the Callan-Giddings-Harvey-Strominger black hole.
Fermionic boundary modes in two-dimensional noncentrosymmetric superconductors
Samokhin, K. V.; Mukherjee, S. P.
2016-09-01
We calculate the spectrum of the Andreev boundary modes in a two-dimensional superconductor formed at an interface between two different nonsuperconducting materials, e.g., insulating oxides. Inversion symmetry is absent in this system, and both the electron band structure and the superconducting pairing are strongly affected by the spin-orbit coupling of the Rashba type. We consider isotropic s -wave pairing states, both with and without time-reversal symmetry breaking, as well as various d -wave states. In all cases, there exist subgap Andreev boundary states, whose properties, in particular, the number and location of the zero-energy modes, qualitatively depend on the gap symmetry and the spin-orbit coupling strength.
Collective Modes in Two Dimensional Binary Yukawa Systems
Kalman, Gabor J; Donko, Zoltan; Golden, Kenneth I; Kyrkos, Stamatios
2013-01-01
We analyze via theoretical approaches and molecular dynamics simulations the collective mode structure of strongly coupled two-dimensional binary Yukawa systems, for selected density, mass and charge ratios, both in the liquid and crystalline solid phases. Theoretically, the liquid phase is described through the Quasi-Localized Charge Approximation (QLCA) approach, while in the crystalline phase we study the centered honeycomb and the staggered rectangular crystal structures through the standard harmonic phonon approximation. We identify "longitudinal" and "transverse" acoustic and optic modes and find that the longitudinal acoustic mode evolves from its weakly coupled counterpart in a discontinuous non-perturbative fashion. The low frequency acoustic excitations are governed by the oscillation frequency of the average atom, while the high frequency optic excitation frequencies are related to the Einstein frequencies of the systems.
Optimal excitation of two dimensional Holmboe instabilities
Constantinou, Navid C
2010-01-01
Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...
Phonon hydrodynamics in two-dimensional materials.
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-06
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Probabilistic Universality in two-dimensional Dynamics
Lyubich, Mikhail
2011-01-01
In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.
Two-dimensional position sensitive neutron detector
Indian Academy of Sciences (India)
A M Shaikh; S S Desai; A K Patra
2004-08-01
A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.
Two-dimensional heterostructures for energy storage
Pomerantseva, Ekaterina; Gogotsi, Yury
2017-07-01
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Rationally synthesized two-dimensional polymers.
Colson, John W; Dichtel, William R
2013-06-01
Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.
Janus Spectra in Two-Dimensional Flows
Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki
2016-09-01
In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.
Local doping of two-dimensional materials
Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.
2016-09-20
This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.
FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP
Institute of Scientific and Technical Information of China (English)
Chen Jiangfeng; Yuan Baozong; Pei Bingnan
2008-01-01
Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.
Equivalency of two-dimensional algebras
Energy Technology Data Exchange (ETDEWEB)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica
2011-07-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
Dipolar fermions in a two-dimensional lattice at non-zero temperature
DEFF Research Database (Denmark)
Larsen, Anne-Louise G.; Bruun, Georg
2012-01-01
We examine density-ordered and superfluid phases of fermionic dipoles in a two-dimensional square lattice at nonzero temperature. The critical temperature of the density-ordered phases is determined and is shown to be proportional to the coupling strength for strong coupling. We calculate...
Interaction of a Surface Acoustic Wave with a Two-dimensional Electron Gas
Institute of Scientific and Technical Information of China (English)
YANG Shi-Jie; ZHAO Hu; YU Yue
2005-01-01
When a surface acoustic wave (SAW) propagates on the surface of a GaAs semiconductor, coupling between electrons in the two-dimensional electron gas beneath the interface and the elastic host crystal through piezoelectric interaction will attenuate the SAW. The coupling coefficient is calculated for the SAW propagating along an arbitrary direction. It is found that the coupling strength is strongly dependent on the propagating direction. When the SAW propagates along the [011] direction, the coupling becomes quite weak.
Electronic structure of boron based single and multi-layer two dimensional materials
Miyazato, Itsuki; Takahashi, Keisuke
2017-09-01
Two dimensional nanosheets based on boron and Group VA elements are designed and characterized using first principles calculations. B-N, B-P, B-As, B-Sb, and B-Bi are found to possess honeycomb structures where formation energies indicate exothermic reactions. Contrary to B-N, the cases of B-P, B-As, B-Sb, and B-Bi nanosheets are calculated to possess narrow band gaps. In addition, calculations reveal that the electronegativity difference between B and Group VA elements in the designed materials is a good indicator to predict the charge transfer and band gap of the two dimensional materials. Hydrogen adsorption over defect-free B-Sb and B-Bi results in exothermic reactions, while defect-free B-N, B-P, and B-As result in endothermic reactions. The layerability of the designed two dimensional materials is also investigated where the electronic structure of two-layered two dimensional materials is strongly coupled with how the two dimensional materials are layered. Thus, one can consider that the properties of two dimensional materials can be controlled by the composition of two dimensional materials and the structure of layers.
Confinement and dynamical regulation in two-dimensional convective turbulence
DEFF Research Database (Denmark)
Bian, N.H.; Garcia, O.E.
2003-01-01
In this work the nature of confinement improvement implied by the self-consistent generation of mean flows in two-dimensional convective turbulence is studied. The confinement variations are linked to two distinct regulation mechanisms which are also shown to be at the origin of low-frequency bur......In this work the nature of confinement improvement implied by the self-consistent generation of mean flows in two-dimensional convective turbulence is studied. The confinement variations are linked to two distinct regulation mechanisms which are also shown to be at the origin of low......-frequency bursting in the fluctuation level and the convective heat flux integral, both resulting in a state of large-scale intermittency. The first one involves the control of convective transport by sheared mean flows. This regulation relies on the conservative transfer of kinetic energy from tilted fluctuations...... to the mean component of the flow. Bursting can also result from the quasi-linear modification of the linear instability drive which is the mean pressure gradient. For each bursting process the relevant zero-dimensional model equations are given. These are finally coupled in a minimal model of convection...
Online comprehensive two-dimensional ion chromatography × capillary electrophoresis.
Ranjbar, Leila; Gaudry, Adam J; Breadmore, Michael C; Shellie, Robert A
2015-09-01
A comprehensively coupled online two-dimensional ion chromatography-capillary electrophoresis (IC × CE) system for quantitative analysis of inorganic anions and organic acids in water is introduced. The system employs an in-house built sequential injection-capillary electrophoresis instrument and a nonfocusing modulation interface comprising a tee-piece and a six-port two-position injection valve that allows comprehensive sampling of the IC effluent. High field strength (+2 kV/cm) enables rapid second-dimension separations in which each peak eluted from the first-dimension separation column is analyzed at least three times in the second dimension. The IC × CE approach has been successfully used to resolve a suite of haloacetic acids, dalapon, and common inorganic anions. Two-dimensional peak capacity for IC × CE was 498 with a peak production rate of 9 peaks/min. Linear calibration curves were obtained for all analytes from 5 to 225 ng/mL (except dibromoacetic acid (10-225 ng/mL) and tribromoacetic acid (25-225 ng/mL)). The developed approach was used to analyze a spiked tap water sample, with good measured recoveries (69-119%).
Potts models coupled to two-dimensional quantum gravity
Baillie, Clive F.
We perform Monte Carlo simulations using the Wolff cluster algorithm of the q=2 (Ising), 3 and 4 Potts models on dynamical phi-cubed graphs of spherical topology with up to 5000 nodes. We find that the measured critical exponents are in reasonable agreement with those from the exact solution of the Ising model and with those calculated from KPZ scaling for q=3,4 where no exact solution is available.
On numerical evaluation of two-dimensional phase integrals
DEFF Research Database (Denmark)
Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans
1975-01-01
The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....
Perspective: Two-dimensional resonance Raman spectroscopy
Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.
2016-11-01
Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.
Janus spectra in two-dimensional flows
Liu, Chien-Chia; Chakraborty, Pinaki
2016-01-01
In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...
Comparative Two-Dimensional Fluorescence Gel Electrophoresis.
Ackermann, Doreen; König, Simone
2018-01-01
Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.
Two-dimensional hexagonal semiconductors beyond graphene
Nguyen, Bich Ha; Hieu Nguyen, Van
2016-12-01
The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.
Two-Dimensional Phononic Crystals: Disorder Matters.
Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M
2016-09-14
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Photodetectors based on two dimensional materials
Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen
2016-09-01
Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Predicting Two-Dimensional Silicon Carbide Monolayers.
Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I
2015-10-27
Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Rasmussen, Kim
1996-01-01
The dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity and point impurities is taken into account. The stability properties...
Institute of Scientific and Technical Information of China (English)
张磊; 李辉武; 胡梁宾
2012-01-01
本文利用半经典的自旋密度矩阵方法对二维自旋轨道耦合电子气中持续自旋螺旋态的稳定性进行了一些研究，重点研究了自旋螺旋态的寿命与其波矢、载流子迁移率、温度、自旋轨道耦合强度、外电场强度等因素之间的关系，并将部分理论计算结果与最近的一些相关实验结果进行了比较，发现两者之间大致是符合的．%We study theoretically the stability of persistent spin helix in two-dimensional electron gases with spin-orbit coupling by a semi-classical spin density matrix method. The possible influences of disordering scattering, temperature, spin-orbit coupling strength and external electric field on the lifetime of persistent spin helix state are investigated. The theoretical results are found to be in agreement with some recent relevant experimental results.
Finite amplitude waves in two-dimensional lined ducts
Nayfeh, A. H.; Tsai, M.-S.
1974-01-01
A second-order uniform expansion is obtained for nonlinear wave propagation in a two-dimensional duct lined with a point-reacting acoustic material consisting of a porous sheet followed by honeycomb cavities and backed by the impervious wall of the duct. The waves in the duct are coupled with those in the porous sheet and the cavities. An analytical expression is obtained for the absorption coefficient in terms of the sound frequency, the physical properties of the porous sheet, and the geometrical parameters of the flow configuration. The results show that the nonlinearity flattens and broadens the absorption vs. frequency curve, irrespective of the geometrical dimensions or the porous material acoustic properties, in agreement with experimental observations.
Flat Chern band in a two-dimensional organometallic framework.
Liu, Zheng; Wang, Zheng-Fei; Mei, Jia-Wei; Wu, Yong-Shi; Liu, Feng
2013-03-01
By combining exotic band dispersion with nontrivial band topology, an interesting type of band structure, namely, the flat Chern band, has recently been proposed to spawn high-temperature fractional quantum Hall states. Despite the proposal of several theoretical lattice models, however, it remains doubtful whether such a "romance of flatland" could exist in a real material. Here, we present a first-principles design of a two-dimensional indium-phenylene organometallic framework that realizes a nearly flat Chern band right around the Fermi level by combining lattice geometry, spin-orbit coupling, and ferromagnetism. An effective four-band model is constructed to reproduce the first-principles results. Our design, in addition, provides a general strategy to synthesize topologically nontrivial materials by virtue of organic chemistry and nanotechnology.
Soliton nanoantennas in two-dimensional arrays of quantum dots
Gligorić, G; Hadžievski, Lj; Slepyan, G Ya; Malomed, B A
2015-01-01
We consider two-dimensional (2D) arrays of self-organized semiconductor quantum dots (QDs) strongly interacting with electromagnetic field in the regime of Rabi oscillations. The QD array built of two-level states is modelled by two coupled systems of discrete nonlinear Schr\\"{o}dinger equations. Localized modes in the form of single-peaked fundamental and vortical stationary Rabi solitons and self-trapped breathers have been found. The results for the stability, mobility and radiative properties of the Rabi modes suggest a concept of a self-assembled 2D \\textit{% soliton-based nano-antenna}, which should be stable against imperfections In particular, we discuss the implementation of such a nano-antenna in the form of surface plasmon solitons in graphene, and illustrate possibilities to control their operation by means of optical tools.
Proximity Induced Superconducting Properties in One and Two Dimensional Semiconductors
DEFF Research Database (Denmark)
Kjærgaard, Morten
a voltage is passed through the Josephson junction, we observe multiple Andreev reflections and preliminary results point to a highly transmissive interface between the 2D electron gas and the superconductor. In the theoretical section we demonstrate analytically and numerically, that in a 1D nanowire......This report is concerned with the properties of one and two dimensional semiconducting materials when brought into contact with a superconductor. Experimentally we study the 2D electron gas in an InGaAs/InAs heterostructure with aluminum grown in situ on the surface, and theoretically we show...... that a superconducting 1D nanowire can harbor Majorana bound states in the absence of spin–orbit coupling. We fabricate and measure micrometer–sized mesoscopic devices demonstrating the inheritance of superconducting properties in the 2D electron gas. By placing a quantum point contact proximal to the interface between...
Perpendicular magnetic anisotropy of two-dimensional Rashba ferromagnets
Kim, Kyoung-Whan; Lee, Kyung-Jin; Lee, Hyun-Woo; Stiles, M. D.
2016-11-01
We compute the magnetocrystalline anisotropy energy within two-dimensional Rashba models. For a ferromagnetic free-electron Rashba model, the magnetic anisotropy is exactly zero regardless of the strength of the Rashba coupling, unless only the lowest band is occupied. For this latter case, the model predicts in-plane anisotropy. For a more realistic Rashba model with finite band width, the magnetic anisotropy evolves from in-plane to perpendicular and back to in-plane as bands are progressively filled. This evolution agrees with first-principles calculations on the interfacial anisotropy, suggesting that the Rashba model captures energetics leading to anisotropy originating from the interface provided that the model takes account of the finite Brillouin zone. The results show that the electron density modulation by doping or an external voltage is more important for voltage-controlled magnetic anisotropy than the modulation of the Rashba parameter.
Intensity Coding in Two-Dimensional Excitable Neural Networks
Copelli, Mauro
2016-01-01
In the light of recent experimental findings that gap junctions are essential for low level intensity detection in the sensory periphery, the Greenberg-Hastings cellular automaton is employed to model the response of a two-dimensional sensory network to external stimuli. We show that excitable elements (sensory neurons) that have a small dynamical range are shown to give rise to a collective large dynamical range. Therefore the network transfer (gain) function (which is Hill or Stevens law-like) is an emergent property generated from a pool of small dynamical range cells, providing a basis for a "neural psychophysics". The growth of the dynamical range with the system size is approximately logarithmic, suggesting a functional role for electrical coupling. For a fixed number of neurons, the dynamical range displays a maximum as a function of the refractory period, which suggests experimental tests for the model. A biological application to ephaptic interactions in olfactory nerve fascicles is proposed.
Crossed Andreev effects in two-dimensional quantum Hall systems
Hou, Zhe; Xing, Yanxia; Guo, Ai-Min; Sun, Qing-Feng
2016-08-01
We study the crossed Andreev effects in two-dimensional conductor/superconductor hybrid systems under a perpendicular magnetic field. Both a graphene/superconductor hybrid system and an electron gas/superconductor one are considered. It is shown that an exclusive crossed Andreev reflection, with other Andreev reflections being completely suppressed, is obtained in a high magnetic field because of the chiral edge states in the quantum Hall regime. Importantly, the exclusive crossed Andreev reflection not only holds for a wide range of system parameters, e.g., the size of system, the width of central superconductor, and the quality of coupling between the graphene and the superconductor, but also is very robust against disorder. When the applied bias is within the superconductor gap, a robust Cooper-pair splitting process with high-efficiency can be realized in this system.
Two-dimensional materials and their prospects in transistor electronics.
Schwierz, F; Pezoldt, J; Granzner, R
2015-05-14
During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.
SCAPS, a two-dimensional ion detector for mass spectrometer
Yurimoto, Hisayoshi
2014-05-01
Faraday Cup (FC) and electron multiplier (EM) are of the most popular ion detector for mass spectrometer. FC is used for high-count-rate ion measurements and EM can detect from single ion. However, FC is difficult to detect lower intensities less than kilo-cps, and EM loses ion counts higher than Mega-cps. Thus, FC and EM are used complementary each other, but they both belong to zero-dimensional detector. On the other hand, micro channel plate (MCP) is a popular ion signal amplifier with two-dimensional capability, but additional detection system must be attached to detect the amplified signals. Two-dimensional readout for the MCP signals, however, have not achieve the level of FC and EM systems. A stacked CMOS active pixel sensor (SCAPS) has been developed to detect two-dimensional ion variations for a spatial area using semiconductor technology [1-8]. The SCAPS is an integrated type multi-detector, which is different from EM and FC, and is composed of more than 500×500 pixels (micro-detectors) for imaging of cm-area with a pixel of less than 20 µm in square. The SCAPS can be detected from single ion to 100 kilo-count ions per one pixel. Thus, SCAPS can be accumulated up to several giga-count ions for total pixels, i.e. for total imaging area. The SCAPS has been applied to stigmatic ion optics of secondary ion mass spectrometer, as a detector of isotope microscope [9]. The isotope microscope has capabilities of quantitative isotope images of hundred-micrometer area on a sample with sub-micrometer resolution and permil precision, and of two-dimensional mass spectrum on cm-scale of mass dispersion plane of a sector magnet with ten-micrometer resolution. The performance has been applied to two-dimensional isotope spatial distribution for mainly hydrogen, carbon, nitrogen and oxygen of natural (extra-terrestrial and terrestrial) samples and samples simulated natural processes [e.g. 10-17]. References: [1] Matsumoto, K., et al. (1993) IEEE Trans. Electron Dev. 40
Ultrafast two dimensional infrared chemical exchange spectroscopy
Fayer, Michael
2011-03-01
The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific
Molecular assembly on two-dimensional materials
Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter
2017-02-01
Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging
Institute of Scientific and Technical Information of China (English)
张许; 刘买利
1999-01-01
It has been a continuous interest in measurement of homonuclear scalar coupling constants using two-dimensional NMR spectroscopy because large chemical shift dispersions can efficiently increase spectral resolution. Numerous methods have been developed using homo- and hetero-nuclear correlation and successfully used for a variety of samples. Here we demonstrate an alternative approach based on maximum-quantum correlation NMR spectroscopy (MAXY NMR). The new method combines the advantages of two-dimensional chemical shift dispersion and the spectral editing feature of the MAXY approach and results in separated correlations of CH, CH2, and CH3 groups in a single experiment with enhanced chemical shift resolution. The method had been tested on a middle-sized molecule, dexamethasone, and a tridecapeptide, neurotensin.%偶合常数是一个重要的NMR参数,其数值与分子中化学键的二面角有关,可以为分子结构研究提供很重要的信息.多维NMR谱由于具有较大的化学位移分辨率,因此常常被用来测定同核或异核自旋-自旋偶合常数.本文介绍了利用最高量子相关技术(MAXY)测定同核偶合常数的方法.MAXY是最近发展的一种多维NMR谱编辑技术,可以使不同官能团(CH, CH2, CH3)的相关峰分布于不同的图谱区域,因此比常规的二维谱具有更高的化学位移分辨率.而且被分离开来的NMR相关峰呈吸收性线型,能清楚地展示各自的偶合分裂特征,可以直接用于测定偶合常数.
Two-dimensional multiferroics in monolayer group IV monochalcogenides
Wang, Hua; Qian, Xiaofeng
2017-03-01
Low-dimensional multiferroic materials hold great promises in miniaturized device applications such as nanoscale transducers, actuators, sensors, photovoltaics, and nonvolatile memories. Here, using first-principles theory we predict that two-dimensional (2D) monolayer group IV monochalcogenides including GeS, GeSe, SnS, and SnSe are a class of 2D semiconducting multiferroics with giant strongly-coupled in-plane spontaneous ferroelectric polarization and spontaneous ferroelastic lattice strain that are thermodynamically stable at room temperature and beyond, and can be effectively modulated by elastic strain engineering. Their optical absorption spectra exhibit strong in-plane anisotropy with visible-spectrum excitonic gaps and sizable exciton binding energies, rendering the unique characteristics of low-dimensional semiconductors. More importantly, the predicted low domain wall energy and small migration barrier together with the coupled multiferroic order and anisotropic electronic structures suggest their great potentials for tunable multiferroic functional devices by manipulating external electrical, mechanical, and optical field to control the internal responses, and enable the development of four device concepts including 2D ferroelectric memory, 2D ferroelastic memory, and 2D ferroelastoelectric nonvolatile photonic memory as well as 2D ferroelectric excitonic photovoltaics.
The convolution theorem for two-dimensional continuous wavelet transform
Institute of Scientific and Technical Information of China (English)
ZHANG CHI
2013-01-01
In this paper , application of two -dimensional continuous wavelet transform to image processes is studied. We first show that the convolution and correlation of two continuous wavelets satisfy the required admissibility and regularity conditions ,and then we derive the convolution and correlation theorem for two-dimensional continuous wavelet transform. Finally, we present numerical example showing the usefulness of applying the convolution theorem for two -dimensional continuous wavelet transform to perform image restoration in the presence of additive noise.
Calculating Two-Dimensional Spectra with the Mixed Quantum-Classical Ehrenfest Method
van der Vegte, C. P.; Dijkstra, A. G.; Knoester, J.; Jansen, T. L. C.
2013-01-01
We present a mixed quantum-classical simulation approach to calculate two-dimensional spectra of coupled two-level electronic model systems. We include the change in potential energy of the classical system due to transitions in the quantum system using the Ehrenfest method. We study how this
Two-dimensional imaging of optical emission in a multicusp-ECR microwave resonant cavity
Energy Technology Data Exchange (ETDEWEB)
Brooks, C.B.; Brake, M.L. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering
1996-02-01
Optical emission of the electron-cyclotron resonant (ECR) region of a multicusp microwave resonant cavity plasma source has been imaged onto a two-dimensional charge-coupled device (CCD) camera. The technique provides a real-time diagnostic of the plasma emission around the ECR region within a wavelength region defined by low-bandpass filters.
Continuous magnetohydrodynamic spectra of two-dimensional coronal magnetostatic flux tubes
Belien, A. J. C.; Poedts, S.; Goedbloed, J. P.
1997-01-01
In this paper we derive the equations for the continuous ideal magnetohydrodynamic (MHD) spectrum of two-dimensional coronal loops, including gravity and expansion, in general curvilinear coordinates. The equations clearly show the coupling between Alfven and slow magnetosonic continuum waves when b
Tunable secondary dimension selectivity in comprehensive two-dimensional gas chromatography
J. Mommers; G. Pluimakers; J. Knooren; T. Dutriez; S. van der Wal
2013-01-01
In this paper two tunable two-dimensional gas chromatography setups are compared and described in which the secondary dimension consists of two different capillary columns coupled in series. In the first setup the selectivity of the second dimension can be tuned by adjusting the effective column len
Topological phase transitions driven by next-nearest-neighbor hopping in two-dimensional lattices
Beugeling, W.; Everts, J.C.; de Morais Smith, C.
2012-01-01
For two-dimensional lattices in a tight-binding description, the intrinsic spin-orbit coupling, acting as a complex next-nearest-neighbor hopping, opens gaps that exhibit the quantum spin Hall effect. In this paper, we study the effect of a real next-nearest-neighbor hopping term on the band structu
Calculating Two-Dimensional Spectra with the Mixed Quantum-Classical Ehrenfest Method
van der Vegte, C. P.; Dijkstra, A. G.; Knoester, J.; Jansen, T. L. C.
2013-01-01
We present a mixed quantum-classical simulation approach to calculate two-dimensional spectra of coupled two-level electronic model systems. We include the change in potential energy of the classical system due to transitions in the quantum system using the Ehrenfest method. We study how this feedba
Signatures of beta-sheet secondary structures in linear and two-dimensional infrared spectroscopy
Cheatum, CM; Tokmakoff, A; Knoester, J
2004-01-01
Using idealized models for parallel and antiparallel beta sheets, we calculate the linear and two-dimensional infrared spectra of the amide I vibration as a function of size and secondary structure. The model assumes transition-dipole coupling between the amide I oscillators in the sheet and account
Integrability of Nonlinear Equations of Motion on Two-Dimensional World Sheet Space-Time
Institute of Scientific and Technical Information of China (English)
YAN Jun
2005-01-01
The integrability character of nonlinear equations of motion of two-dimensional gravity with dynamical torsion and bosonic string coupling is studied in this paper. The space-like and time-like first integrals of equations of motion are also found.
Optical Spectroscopy of Two Dimensional Graphene and Boron Nitride
Ju, Long
This dissertation describes the use of optical spectroscopy in studying the physical properties of two dimensional nano materials like graphene and hexagonal boron nitride. Compared to bulk materials, atomically thin two dimensional materials have a unique character that is the strong dependence of physical properties on external control. Both electronic band structure and chemical potential can be tuned in situ by electric field-which is a powerful knob in experiment. Therefore the optical study at atomic thickness scale can greatly benefit from modern micro-fabrication technique and electric control of the material properties. As will be shown in this dissertation, such control of both gemometric and physical properties enables new possibilities of optical spectroscopic measurement as well as opto-electronic studies. Other experimental techniques like electric transport and scanning tunneling microscopy and spectroscopy are also combined with optical spectroscopy to reveal the physics that is beyond the reach of each individual technique. There are three major themes in the dissertation. The first one is focused on the study of plasmon excitation of Dirac electrons in monolayer graphene. Unlike plasmons in ordinary two dimensional electron gas, plasmons of 2D electrons as in graphene obey unusual scaling laws. We fabricate graphene micro-ribbon arrays with photolithography technique and use optical absorption spectroscopy to study its absorption spectrum. The experimental result demonstrates the extraordinarily strong light-plasmon coupling and its novel dependence on both charge doping and geometric dimensions. This work provides a first glance at the fundamental properties of graphene plasmons and forms the basis of an emerging subfield of graphene research and applications such as graphene terahertz metamaterials. The second part describes the opto-electronic response of heterostructures composed of graphene and hexagonal boron nitride. We found that there is
Two dimensional black-hole as a topological coset model of c=1 string theory
Mukhi, S
1993-01-01
We show that a special superconformal coset (with $\\hat c =3$) is equivalent to $c=1$ matter coupled to two dimensional gravity. This identification allows a direct computation of the correlation functions of the $c=1$ non-critical string to all genus, and at nonzero cosmological constant, directly from the continuum approach. The results agree with those of the matrix model. Moreover we connect our coset with a twisted version of a Euclidean two dimensional black hole, in which the ghost and matter systems are mixed.
The Chandrasekhar's Equation for Two-Dimensional Hypothetical White Dwarfs
De, Sanchari
2014-01-01
In this article we have extended the original work of Chandrasekhar on the structure of white dwarfs to the two-dimensional case. Although such two-dimensional stellar objects are hypothetical in nature, we strongly believe that the work presented in this article may be prescribed as Master of Science level class problem for the students in physics.
Beginning Introductory Physics with Two-Dimensional Motion
Huggins, Elisha
2009-01-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…
Spatiotemporal surface solitons in two-dimensional photonic lattices.
Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S
2007-11-01
We analyze spatiotemporal light localization in truncated two-dimensional photonic lattices and demonstrate the existence of two-dimensional surface light bullets localized in the lattice corners or the edges. We study the families of the spatiotemporal surface solitons and their properties such as bistability and compare them with the modes located deep inside the photonic lattice.
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;
2004-01-01
Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...
Mechanics of Apparent Horizon in Two Dimensional Dilaton Gravity
Cai, Rong-Gen
2016-01-01
In this article, we give a definition of apparent horizon in a two dimensional general dilaton gravity theory. With this definition, we construct the mechanics of the apparent horizon by introducing a quasi-local energy of the theory. Our discussion generalizes the apparent horizons mechanics in general spherically symmetric spactimes in four or higher dimensions to the two dimensional dilaton gravity case.
Topological aspect of disclinations in two-dimensional crystals
Institute of Scientific and Technical Information of China (English)
Qi Wei-Kai; Zhu Tao; Chen Yong; Ren Ji-Rong
2009-01-01
By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given.
Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations
Directory of Open Access Journals (Sweden)
Chunrong Zhu
2016-11-01
Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.
Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase
Lu, Jian; Hwang, Harold Y; Ofori-Okai, Benjamin K; Fleischer, Sharly; Nelson, Keith A
2016-01-01
Ultrafast two-dimensional spectroscopy utilizes correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum. Its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. Here we report ultrafast two-dimensional terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by three terahertz field-dipole interactions. The nonlinear time-domain orientation signals are mapped into the frequency domain in two-dimensional rotational spectra which reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.
Two-dimensional ion trap lattice on a microchip for quantum simulation
Sterling, R C; Weidt, S; Lake, K; Srinivasan, P; Webster, S C; Kraft, M; Hensinger, W K
2013-01-01
Using a controllable quantum system it is possible to simulate other highly complex quantum systems efficiently overcoming an in-principle limitation of classical computing. Trapped ions constitute such a highly controllable quantum system. So far, no dedicated architectures for the simulation of two-dimensional spin lattices using trapped ions in radio-frequency ion traps have been produced, limiting the possibility of carrying out such quantum simulations on a large scale. We report the operation of a two-dimensional ion trap lattice integrated in a microchip capable of implementing quantum simulations of two-dimensional spin lattices. Our device provides a scalable microfabricated architecture for trapping such ion lattices with coupling strengths between neighbouring ions sufficient to provide a powerful platform for the implementation of quantum simulations. In order to realize this device we developed a specialist fabrication process that allows for the application of very large voltages. We fabricated ...
Directional interlayer spin-valley transfer in two-dimensional heterostructures
Schaibley, John R.; Rivera, Pasqual; Yu, Hongyi; Seyler, Kyle L.; Yan, Jiaqiang; Mandrus, David G.; Taniguchi, Takashi; Watanabe, Kenji; Yao, Wang; Xu, Xiaodong
2016-12-01
Van der Waals heterostructures formed by two different monolayer semiconductors have emerged as a promising platform for new optoelectronic and spin/valleytronic applications. In addition to its atomically thin nature, a two-dimensional semiconductor heterostructure is distinct from its three-dimensional counterparts due to the unique coupled spin-valley physics of its constituent monolayers. Here, we report the direct observation that an optically generated spin-valley polarization in one monolayer can be transferred between layers of a two-dimensional MoSe2-WSe2 heterostructure. Using non-degenerate optical circular dichroism spectroscopy, we show that charge transfer between two monolayers conserves spin-valley polarization and is only weakly dependent on the twist angle between layers. Our work points to a new spin-valley pumping scheme in nanoscale devices, provides a fundamental understanding of spin-valley transfer across the two-dimensional interface, and shows the potential use of two-dimensional semiconductors as a spin-valley generator in two-dimensional spin/valleytronic devices for storing and processing information.
Two-dimensional collective Hamiltonian for chiral and wobbling modes
Chen, Q B; Zhao, P W; Jolos, R V; Meng, J
2016-01-01
A two-dimensional collective Hamiltonian (2DCH) on both azimuth and polar motions in triaxial nuclei is proposed to investigate the chiral and wobbling modes. In the 2DCH, the collective potential and the mass parameters are determined from three-dimensional tilted axis cranking (TAC) calculations. The broken chiral and signature symmetries in the TAC solutions are restored by the 2DCH. The validity of the 2DCH is illustrated with a triaxial rotor ($\\gamma=-30^\\circ$) coupling to one $h_{11/2}$ proton particle and one $h_{11/2}$ neutron hole. By diagonalizing the 2DCH, the angular momenta and energy spectra are obtained. These results agree with the exact solutions of the particle rotor model (PRM) at high rotational frequencies. However, at low frequencies, the energies given by the 2DCH are larger than those by the PRM due to the underestimation of the mass parameters. In addition, with increasing angular momentum, the transitions from the chiral vibration to chiral rotation and further to longitudinal wobb...
Two-dimensional collective Hamiltonian for chiral and wobbling modes
Chen, Q. B.; Zhang, S. Q.; Zhao, P. W.; Jolos, R. V.; Meng, J.
2016-10-01
A two-dimensional collective Hamiltonian (2DCH) on both azimuth and polar motions in triaxial nuclei is proposed to investigate the chiral and wobbling modes. In the 2DCH, the collective potential and the mass parameters are determined from three-dimensional tilted axis cranking (TAC) calculations. The broken chiral and signature symmetries in the TAC solutions are restored by the 2DCH. The validity of the 2DCH is illustrated with a triaxial rotor (γ =-30∘ ) coupling to one h11 /2 proton particle and one h11 /2 neutron hole. By diagonalizing the 2DCH, the angular momenta and energy spectra are obtained. These results agree with the exact solutions of the particle rotor model (PRM) at high rotational frequencies. However, at low frequencies, the energies given by the 2DCH are larger than those by the PRM due to the underestimation of the mass parameters. In addition, with increasing angular momentum, the transitions from the chiral vibration to chiral rotation and further to longitudinal wobbling motion have been presented in the 2DCH.
How two-dimensional bending can extraordinarily stiffen thin sheets
Pini, V.; Ruz, J. J.; Kosaka, P. M.; Malvar, O.; Calleja, M.; Tamayo, J.
2016-07-01
Curved thin sheets are ubiquitously found in nature and manmade structures from macro- to nanoscale. Within the framework of classical thin plate theory, the stiffness of thin sheets is independent of its bending state for small deflections. This assumption, however, goes against intuition. Simple experiments with a cantilever sheet made of paper show that the cantilever stiffness largely increases with small amounts of transversal curvature. We here demonstrate by using simple geometric arguments that thin sheets subject to two-dimensional bending necessarily develop internal stresses. The coupling between the internal stresses and the bending moments can increase the stiffness of the plate by several times. We develop a theory that describes the stiffness of curved thin sheets with simple equations in terms of the longitudinal and transversal curvatures. The theory predicts experimental results with a macroscopic cantilever sheet as well as numerical simulations by the finite element method. The results shed new light on plant and insect wing biomechanics and provide an easy route to engineer micro- and nanomechanical structures based on thin materials with extraordinary stiffness tunability.
Two dimensional estimates from ocean SAR images
Directory of Open Access Journals (Sweden)
J. M. Le Caillec
1996-01-01
Full Text Available Synthetic Aperture Radar (SAR images of the ocean yield a lot of information on the sea-state surface providing that the mapping process between the surface and the image is clearly defined. However it is well known that SAR images exhibit non-gaussian statistics and that the motion of the scatterers on the surface, while the image is being formed, may yield to nonlinearities. The detection and quantification of these nonlinearities are made possible by using Higher Order Spectra (HOS methods and more specifically, bispectrum estimation. The development of the latter method allowed us to find phase relations between different parts of the image and to recognise their level of coupling, i.e. if and how waves of different wavelengths interacted nonlinearly. This information is quite important as the usual models assume strong nonlinearities when the waves are propagating in the azimuthal direction (i.e. along the satellite track and almost no nonlinearities when propagating in the range direction. In this paper, the mapping of the ocean surface to the SAR image is reinterpreted and a specific model (i.e. a Second Order Volterra Model is introduced. The nonlinearities are thus explained as either produced by a nonlinear system or due to waves propagating into selected directions (azimuth or range and interacting during image formation. It is shown that quadratic nonlinearities occur for waves propagating near the range direction while for those travelling in the azimuthal direction the nonlinearities, when present, are mostly due to wave interactions but are almost completely removed by the filtering effect coming from the surface motion itself (azimuth cut-off. An inherent quadratic interaction filtering (azimuth high pass filter is also present. But some other effects, apparently nonlinear, are not detected with the methods described here, meaning that either the usual relation developed for the Ocean-to-SAR transform is somewhat incomplete
Ullmann-like reactions for the synthesis of complex two-dimensional materials
Quardokus, Rebecca C.; Tewary, V. K.; DelRio, Frank W.
2016-11-01
Engineering two-dimensional materials through surface-confined synthetic techniques is a promising avenue for designing new materials with tailored properties. Developing and understanding reaction mechanisms for surface-confined synthesis of two-dimensional materials requires atomic-level characterization and chemical analysis. Beggan et al (2015 Nanotechnology 26 365602) used scanning tunneling microscopy and x-ray photoelectron spectroscopy to elucidate the formation mechanism of surface-confined Ullmann-like coupling of thiophene substituted porphyrins on Ag(111). Upon surface deposition, bromine is dissociated and the porphyrins couple with surface adatoms to create linear strands and hexagonally packed molecules. Annealing the sample results in covalently-bonded networks of thienylporphyrin derivatives. A deeper understanding of surface-confined Ullmann-like coupling has the potential to lead to precision-engineered nano-structures through synthetic techniques. Contribution of the National Institute of Standards and Technology, not subject to copyright in the United States of America.
Two dimensional NMR of liquids and oriented molecules
Energy Technology Data Exchange (ETDEWEB)
Gochin, M.
1987-02-01
Chapter 1 discusses the quantum mechanical formalism used for describing the interaction between magnetic dipoles that dictates the appearance of a spectrum. The NMR characteristics of liquids and liquid crystals are stressed. Chapter 2 reviews the theory of multiple quantum and two dimensional NMR. Properties of typical spectra and phase cycling procedures are discussed. Chapter 3 describes a specific application of heteronuclear double quantum coherence to the removal of inhomogeneous broadening in liquids. Pulse sequences have been devised which cancel out any contribution from this inhomogeneity to the final spectrum. An interpretation of various pulse sequences for the case of /sup 13/C and /sup 1/H is given, together with methods of spectral editing by removal or retention of the homo- or heteronuclear J coupling. The technique is applied to a demonstration of high resolution in both frequency and spatial dimensions with a surface coil. In Chapter 4, multiple quantum filtered 2-D spectroscopy is demonstrated as an effective means of studying randomly deuterated molecules dissolved in a nematic liquid crystal. Magnitudes of dipole coupling constants have been determined for benzene and hexane, and their signs and assignments found from high order multiple quantum spectra. For the first time, a realistic impression of the conformation of hexane can be estimated from these results. Chapter 5 is a technical description of the MDB DCHIB-DR11W parallel interface which has been set up to transfer data between the Data General Nova 820 minicomputer, interfaced to the 360 MHz spectrometer, and the Vax 11/730. It covers operation of the boards, physical specifications and installation, and programs for testing and running the interface.
Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway
2012-09-01
ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located
RESEARCH ON TWO-DIMENSIONAL LDA FOR FACE RECOGNITION
Institute of Scientific and Technical Information of China (English)
Han Ke; Zhu Xiuchang
2006-01-01
The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective.
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Directory of Open Access Journals (Sweden)
Nikola Stefanović
2007-06-01
Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.
UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS
Institute of Scientific and Technical Information of China (English)
袁光伟; 沈智军; 闫伟
2003-01-01
In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.
Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal
DEFF Research Database (Denmark)
Lebech, Bente; Bak, P.
1979-01-01
The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....
Entanglement Entropy for time dependent two dimensional holographic superconductor
Mazhari, N S; Myrzakulov, Kairat; Myrzakulov, R
2016-01-01
We studied entanglement entropy for a time dependent two dimensional holographic superconductor. We showed that the conserved charge of the system plays the role of the critical parameter to have condensation.
Decoherence in a Landau Quantized Two Dimensional Electron Gas
Directory of Open Access Journals (Sweden)
McGill Stephen A.
2013-03-01
Full Text Available We have studied the dynamics of a high mobility two-dimensional electron gas as a function of temperature. The presence of satellite reflections in the sample and magnet can be modeled in the time-domain.
Quantization of Two-Dimensional Gravity with Dynamical Torsion
Lavrov, P M
1999-01-01
We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.
Spatiotemporal dissipative solitons in two-dimensional photonic lattices.
Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S
2008-11-01
We analyze spatiotemporal dissipative solitons in two-dimensional photonic lattices in the presence of gain and loss. In the framework of the continuous-discrete cubic-quintic Ginzburg-Landau model, we demonstrate the existence of novel classes of two-dimensional spatiotemporal dissipative lattice solitons, which also include surface solitons located in the corners or at the edges of the truncated two-dimensional photonic lattice. We find the domains of existence and stability of such spatiotemporal dissipative solitons in the relevant parameter space, for both on-site and intersite lattice solitons. We show that the on-site solitons are stable in the whole domain of their existence, whereas most of the intersite solitons are unstable. We describe the scenarios of the instability-induced dynamics of dissipative solitons in two-dimensional lattices.
Bound states of two-dimensional relativistic harmonic oscillators
Institute of Scientific and Technical Information of China (English)
Qiang Wen-Chao
2004-01-01
We give the exact normalized bound state wavefunctions and energy expressions of the Klein-Gordon and Dirac equations with equal scalar and vector harmonic oscillator potentials in the two-dimensional space.
A two-dimensional polymer prepared by organic synthesis.
Kissel, Patrick; Erni, Rolf; Schweizer, W Bernd; Rossell, Marta D; King, Benjamin T; Bauer, Thomas; Götzinger, Stephan; Schlüter, A Dieter; Sakamoto, Junji
2012-02-05
Synthetic polymers are widely used materials, as attested by a production of more than 200 millions of tons per year, and are typically composed of linear repeat units. They may also be branched or irregularly crosslinked. Here, we introduce a two-dimensional polymer with internal periodicity composed of areal repeat units. This is an extension of Staudinger's polymerization concept (to form macromolecules by covalently linking repeat units together), but in two dimensions. A well-known example of such a two-dimensional polymer is graphene, but its thermolytic synthesis precludes molecular design on demand. Here, we have rationally synthesized an ordered, non-equilibrium two-dimensional polymer far beyond molecular dimensions. The procedure includes the crystallization of a specifically designed photoreactive monomer into a layered structure, a photo-polymerization step within the crystal and a solvent-induced delamination step that isolates individual two-dimensional polymers as free-standing, monolayered molecular sheets.
Second invariant for two-dimensional classical super systems
Indian Academy of Sciences (India)
S C Mishra; Roshan Lal; Veena Mishra
2003-10-01
Construction of superpotentials for two-dimensional classical super systems (for ≥ 2) is carried out. Some interesting potentials have been studied in their super form and also their integrability.
Extreme paths in oriented two-dimensional percolation
Andjel, E. D.; Gray, L. F.
2016-01-01
International audience; A useful result about leftmost and rightmost paths in two dimensional bond percolation is proved. This result was introduced without proof in \\cite{G} in the context of the contact process in continuous time. As discussed here, it also holds for several related models, including the discrete time contact process and two dimensional site percolation. Among the consequences are a natural monotonicity in the probability of percolation between different sites and a somewha...
Two Dimensional Nucleation Process by Monte Carlo Simulation
T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University
1997-01-01
Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...
Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers
2016-06-15
polymers . 2. Introduction . Research objectives: This research aims to study the physical (van der Waals forces: crystal epitaxy and π-π...AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-14-1-4054 5c. PROGRAM ELEMENT
Two-Dimensional Weak Pseudomanifolds on Eight Vertices
Indian Academy of Sciences (India)
Basudeb Datta; Nandini Nilakantan
2002-05-01
We explicitly determine all the two-dimensional weak pseudomanifolds on 8 vertices. We prove that there are (up to isomorphism) exactly 95 such weak pseudomanifolds, 44 of which are combinatorial 2-manifolds. These 95 weak pseudomanifolds triangulate 16 topological spaces. As a consequence, we prove that there are exactly three 8-vertex two-dimensional orientable pseudomanifolds which allow degree three maps to the 4-vertex 2-sphere.
Two-Dimensional Materials for Sensing: Graphene and Beyond
Directory of Open Access Journals (Sweden)
Seba Sara Varghese
2015-09-01
Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.
Complex Path Integrals and Saddles in Two-Dimensional Gauge Theory.
Buividovich, P V; Dunne, Gerald V; Valgushev, S N
2016-04-01
We study numerically the saddle point structure of two-dimensional lattice gauge theory, represented by the Gross-Witten-Wadia unitary matrix model. The saddle points are, in general, complex valued, even though the original integration variables and action are real. We confirm the trans-series and instanton gas structure in the weak-coupling phase, and we identify a new complex-saddle interpretation of nonperturbative effects in the strong-coupling phase. In both phases, eigenvalue tunneling refers to eigenvalues moving off the real interval, into the complex plane, and the weak-to-strong coupling phase transition is driven by saddle condensation.
Monte Carlo renormalization-group investigation of the two-dimensional O(4) sigma model
Heller, Urs M.
1988-01-01
An improved Monte Carlo renormalization-group method is used to determine the beta function of the two-dimensional O(4) sigma model. While for (inverse) couplings beta = greater than about 2.2 agreement is obtained with asymptotic scaling according to asymptotic freedom, deviations from it are obtained at smaller couplings. They are, however, consistent with the behavior of the correlation length, indicating 'scaling' according to the full beta function. These results contradict recent claims that the model has a critical point at finite coupling.
Monte Carlo renormalization-group investigation of the two-dimensional O(4) sigma model
Heller, Urs M.
1988-01-01
An improved Monte Carlo renormalization-group method is used to determine the beta function of the two-dimensional O(4) sigma model. While for (inverse) couplings beta = greater than about 2.2 agreement is obtained with asymptotic scaling according to asymptotic freedom, deviations from it are obtained at smaller couplings. They are, however, consistent with the behavior of the correlation length, indicating 'scaling' according to the full beta function. These results contradict recent claims that the model has a critical point at finite coupling.
Numerically exact correlations and sampling in the two-dimensional Ising spin glass.
Thomas, Creighton K; Middleton, A Alan
2013-04-01
A powerful existing technique for evaluating statistical mechanical quantities in two-dimensional Ising models is based on constructing a matrix representing the nearest-neighbor spin couplings and then evaluating the Pfaffian of the matrix. Utilizing this technique and other more recent developments in evaluating elements of inverse matrices and exact sampling, a method and computer code for studying two-dimensional Ising models is developed. The formulation of this method is convenient and fast for computing the partition function and spin correlations. It is also useful for exact sampling, where configurations are directly generated with probability given by the Boltzmann distribution. These methods apply to Ising model samples with arbitrary nearest-neighbor couplings and can also be applied to general dimer models. Example results of computations are described, including comparisons with analytic results for the ferromagnetic Ising model, and timing information is provided.
Scaling dimensions of manifestly generally covariant operators in two-dimensional quantum gravity
Nishimura, J; Tsuchiya, A; Jun Nishimura; Shinya Tamura; Asato Tsuchiya
1994-01-01
Using (2+$\\epsilon$)-dimensional quantum gravity recently formulated by Kawai, Kitazawa and Ninomiya, we calculate the scaling dimensions of manifestly generally covariant operators in two-dimensional quantum gravity coupled to $(p,q)$ minimal conformal matter. In the spectrum appear all the scaling dimensions of the scaling operators in the matrix model except the boundary operators, while there are also many others which have no corresponding scaling dimensions in the matrix model.
Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots
Energy Technology Data Exchange (ETDEWEB)
Cundiff, Steven T. [Univ. of Colorado, Boulder, CO (United States)
2016-05-03
This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program was to implement optical 2-dimensional Fourier transform spectroscopy and apply it to electronic excitations, including excitons, in semiconductors. Specifically of interest are quantum wells that exhibit disorder due to well width fluctuations and quantum dots. In both cases, 2-D spectroscopy will provide information regarding coupling among excitonic localization sites.
Ultraviolet finiteness of Chiral Perturbation Theory for two-dimensional Quantum Electrodynamics
Paston, S A; Franke, V A
2003-01-01
We consider the perturbation theory in the fermion mass (chiral perturbation theory) for the two-dimensional quantum electrodynamics. With this aim, we rewrite the theory in the equivalent bosonic form in which the interaction is exponential and the fermion mass becomes the coupling constant. We reformulate the bosonic perturbation theory in the superpropagator language and analyze its ultraviolet behavior. We show that the boson Green's functions without vacuum loops remain finite in all orders of the perturbation theory in the fermion mass.
Comment on "Thermal propagation in two-dimensional Josephson junction arrays"
De Leo, Cinzia
2009-01-01
In a recent paper, Filatrella et al. [Phys. Rev. B 75, 54510 (2007)] report results of numerical calculations of energy barriers for flux quanta propagation in two-dimensional arrays of Josephson junctions with finite self and mutual inductances. To avoid complex numerical calculations, they use an approximated inductance model to address the effects of the mutual couplings. Using a full inductance matrix model, we show that this approximated model cannot be used to calculate the energy barri...
Pulsating strings from two-dimensional CFT on (T4N/S(N
Directory of Open Access Journals (Sweden)
Carlos Cardona
2015-04-01
Full Text Available We propose a state from the two-dimensional conformal field theory on the orbifold (T4N/S(N as a dual description for a pulsating string moving in AdS3. We show that, up to first order in the deforming parameter, the energy in both descriptions has the same dependence on the mode number, but with a non-trivial function of the coupling.
Implementation of Two-Dimensional Polycrystalline Grains in Object Oriented Micromagnetic Framework
Directory of Open Access Journals (Sweden)
Lau, J. W.
2009-01-01
Full Text Available In response to the growing need for a more accurate micromagnetic model to understand switching phenomenon in nanoscale magnets, we developed the capability to simulate two-dimensional polycrystalline grains using the Object Oriented Micromagnetic Framework (OOMMF. This addition allows users full flexibility in determining the magnetocrystalline anisotropy and axe in each grain as well as the inter- and intragranular exchange coupling strength.
The gauging of two-dimensional bosonic sigma models on world-sheets with defects
Gawedzki, Krzysztof; Waldorf, Konrad
2013-01-01
We extend our analysis of the gauging of rigid symmetries in bosonic two-dimensional sigma models with Wess-Zumino terms in the action to the case of world-sheets with defects. A structure that permits a non-anomalous coupling of such sigma models to world-sheet gauge fields of arbitrary topology is analysed, together with obstructions to its existence, and the classification of its inequivalent choices.
Vibrational wave packet induced oscillations in two-dimensional electronic spectra. II. Theory
Mancal, Tomas; Milota, Franz; Lukes, Vladimir; Kauffmann, Harald F; Sperling, Jaroslaw
2010-01-01
We present a theory of vibrational modulation of two-dimensional coherent Fourier transformed electronic spectra. Based on an expansion of the system's energy gap correlation function in terms of Huang-Rhys factors, we explain the time-dependent oscillatory behavior of the absorptive and dispersive parts of two-dimensional spectra of a two-level electronic system, weakly coupled to intramolecular vibrational modes. The theory predicts oscillations in the relative amplitudes of the rephasing and non-rephasing parts of the two-dimensional spectra, and enables to analyze time dependent two-dimensional spectra in terms of simple elementary components whose line-shapes are dictated by the interaction of the system with the solvent only. The theory is applicable to both low and high energy (with respect to solvent induced line broadening) vibrations. The results of this paper enable to qualitatively explain experimental observations on low energy vibrations presented in the preceding paper [A. Nemeth et al, arXiv:1...
Waiting time dynamics in two-dimensional infrared spectroscopy.
Jansen, Thomas L C; Knoester, Jasper
2009-09-15
We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example, nuclear magnetic resonance spectroscopy. A large number of chemically relevant processes take place on this time scale. Such processes range from forming and breaking hydrogen bonds and proton transfer to solvent exchange and vibrational population transfer. In typical 2DIR spectra, multiple processes contribute to the waiting time dynamics and the spectra are often congested. This makes the spectra challenging to interpret, and the aid of theoretical models and simulations is often needed. To be useful, such models need to account for all dynamical processes in the sample simultaneously. The numerical integration of the Schrodinger equation (NISE) method has proven to allow for a very general treatment of the dynamical processes. It accounts for both the motional narrowing resulting from solvent-induced frequency fluctuations and population transfer between coupled vibrations. At the same time, frequency shifts arising from chemical-exchange reactions and changes of the transition dipoles because of either non-Condon effects or molecular reorientation are included in the treatment. This method therefore allows for the disentanglement of all of these processes. The NISE method has thus far been successfully applied to study chemical-exchange processes. It was demonstrated that 2DIR is not only sensitive to reaction kinetics but also to the more detailed reaction dynamics. NISE has also been applied to the study of population transfer within the amide I band (CO stretch) and between the amide I and amide II bands (CN stretch and NH bend) in polypeptides. From the amide I studies, it was found that the population transfer can be used to enhance cross-peaks that act as
Dijkstra, Arend G; Knoester, Jasper; Nelson, Keith A; Cao, Jianshu
2016-01-01
We study the excitonic coupling and homogeneous spectral line width of brick layer J-aggregate films. We begin by analysing the structural information revealed by the two-exciton states probed in two-dimensional spectra. Our first main result is that the relation between the excitonic couplings and the spectral shift in a two-dimensional structure is different (larger shift for the same nearest neighbour coupling) from that in a one-dimensional structure, which leads to an estimation of dipolar coupling in two-dimensional lattices. We next investigate the mechanisms of homogeneous broadening - population relaxation and pure dephasing - and evaluate their relative importance in linear and two-dimensional aggregates. Our second main result is that pure dephasing dominates the line width in two-dimensional systems up to a crossover temperature, which explains the linear temperature dependence of the homogeneous line width. This is directly related to the decreased density of states at the band edge when compared...
Electronic, Vibrational and Thermoelectric Properties of Two-Dimensional Materials
Wickramaratne, Darshana
The discovery of graphene's unique electronic and thermal properties has motivated the search for new two-dimensional materials. Examples of these materials include the layered two-dimensional transition metal dichalcogenides (TMDC) and metal mono-chalcogenides. The properties of the TMDCs (eg. MoS 2, WS2, TaS2, TaSe2) and the metal mono-chalcogenides (eg. GaSe, InSe, SnS) are diverse - ranging from semiconducting, semi-metallic and metallic. Many of these materials exhibit strongly correlated phenomena and exotic collective states such as exciton condensates, charge density waves, Lifshitz transitions and superconductivity. These properties change as the film thickness is reduced down to a few monolayers. We use first-principles simulations to discuss changes in the electronic and the vibrational properties of these materials as the film thickness evolves from a single atomic monolayer to the bulk limit. In the semiconducting TMDCs (MoS2, MoSe2, WS2 and WSe2) and monochalcogenides (GaS, GaSe, InS and InSe) we show confining these materials to their monolayer limit introduces large band degeneracies or non-parabolic features in the electronic structure. These changes in the electronic structure results in increases in the density of states and the number of conducting modes. Our first-principles simulations combined with a Landauer approach show these changes can lead to large enhancements up to an order of magnitude in the thermoelectric performance of these materials when compared to their bulk structure. Few monolayers of the TMDCs can be misoriented with respect to each other due to the weak van-der-Waals (vdW) force at the interface of two monolayers. Misorientation of the bilayer semiconducting TMDCs increases the interlayer van-der-Waals gap distance, reduces the interlayer coupling and leads to an increase in the magnitude of the indirect bandgap by up to 100 meV compared to the registered bilayer. In the semi-metallic and metallic TMDC compounds (TiSe2, Ta
Tracking dynamics of two-dimensional continuous attractor neural networks
Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si
2009-12-01
We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.
Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S
2012-11-01
The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
A two-dimensional spin liquid in quantum kagome ice.
Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G
2015-06-22
Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.
Spectral Radiative Properties of Two-Dimensional Rough Surfaces
Xuan, Yimin; Han, Yuge; Zhou, Yue
2012-12-01
Spectral radiative properties of two-dimensional rough surfaces are important for both academic research and practical applications. Besides material properties, surface structures have impact on the spectral radiative properties of rough surfaces. Based on the finite difference time domain algorithm, this paper studies the spectral energy propagation process on a two-dimensional rough surface and analyzes the effect of different factors such as the surface structure, angle, and polarization state of the incident wave on the spectral radiative properties of the two-dimensional rough surface. To quantitatively investigate the spatial distribution of energy reflected from the rough surface, the concept of the bidirectional reflectance distribution function is introduced. Correlation analysis between the reflectance and different impact factors is conducted to evaluate the influence degree. Comparison between the theoretical and experimental data is given to elucidate the accuracy of the computational code. This study is beneficial to optimizing the surface structures of optoelectronic devices such as solar cells.
Two dimensional convolute integers for machine vision and image recognition
Edwards, Thomas R.
1988-01-01
Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.
Optical modulators with two-dimensional layered materials
Sun, Zhipei; Wang, Feng
2016-01-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.
Two-dimensional superconductors with atomic-scale thickness
Uchihashi, Takashi
2017-01-01
Recent progress in two-dimensional superconductors with atomic-scale thickness is reviewed mainly from the experimental point of view. The superconducting systems treated here involve a variety of materials and forms: elemental metal ultrathin films and atomic layers on semiconductor surfaces; interfaces and superlattices of heterostructures made of cuprates, perovskite oxides, and rare-earth metal heavy-fermion compounds; interfaces of electric-double-layer transistors; graphene and atomic sheets of transition metal dichalcogenide; iron selenide and organic conductors on oxide and metal surfaces, respectively. Unique phenomena arising from the ultimate two dimensionality of the system and the physics behind them are discussed.
TreePM Method for Two-Dimensional Cosmological Simulations
Indian Academy of Sciences (India)
Suryadeep Ray
2004-09-01
We describe the two-dimensional TreePM method in this paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle–Mesh method. We describe the splitting of force between the PM and the Tree parts. We also estimate error in force for a realistic configuration. Finally, we discuss some tests of the code.
Singular analysis of two-dimensional bifurcation system
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Bifurcation properties of two-dimensional bifurcation system are studied in this paper.Universal unfolding and transition sets of the bifurcation equations are obtained.The whole parametric plane is divided into several different persistent regions according to the type of motion,and the different qualitative bifurcation diagrams in different persistent regions are given.The bifurcation properties of the two-dimensional bifurcation system are compared with its reduced one-dimensional system.It is found that the system which is reduced to one dimension has lost many bifurcation properties.
Critical Behaviour of a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.
1976-01-01
A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....
Nonlinear excitations in two-dimensional molecular structures with impurities
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth
1995-01-01
We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....
Vortices in the Two-Dimensional Simple Exclusion Process
Bodineau, T.; Derrida, B.; Lebowitz, Joel L.
2008-06-01
We show that the fluctuations of the partial current in two dimensional diffusive systems are dominated by vortices leading to a different scaling from the one predicted by the hydrodynamic large deviation theory. This is supported by exact computations of the variance of partial current fluctuations for the symmetric simple exclusion process on general graphs. On a two-dimensional torus, our exact expressions are compared to the results of numerical simulations. They confirm the logarithmic dependence on the system size of the fluctuations of the partial flux. The impact of the vortices on the validity of the fluctuation relation for partial currents is also discussed in an Appendix.
Two-dimensional hazard estimation for longevity analysis
DEFF Research Database (Denmark)
Fledelius, Peter; Guillen, M.; Nielsen, J.P.
2004-01-01
the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used......We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... for analysis of economic implications arising from mortality changes....
Field analysis of two-dimensional focusing grating couplers
Borsboom, P.-P.; Frankena, H. J.
1995-05-01
A different technique was developed by which several two-dimensional dielectric optical gratings, consisting 100 or more corrugations, were treated in a numerical reliable approach. The numerical examples that were presented were restricted to gratings made up of sequences of waveguide sections symmetric about the x = 0 plane. The newly developed method was effectively used to investigate the field produced by a two-dimensional focusing grating coupler. Focal-region fields were determined for three symmetrical gratings with 19, 50, and 124 corrugations. For focusing grating coupler with limited length, high-frequency intensity variations were noted in the focal region.
Self-assembly of two-dimensional DNA crystals
Institute of Scientific and Technical Information of China (English)
SONG Cheng; CHEN Yaqing; WEI Shuai; YOU Xiaozeng; XIAO Shoujun
2004-01-01
Self-assembly of synthetic oligonucleotides into two-dimensional lattices presents a 'bottom-up' approach to the fabrication of devices on nanometer scale. We report the design and observation of two-dimensional crystalline forms of DNAs that are composed of twenty-one plane oligonucleotides and one phosphate-modified oligonucleotide. These synthetic sequences are designed to self-assemble into four double-crossover (DX) DNA tiles. The 'sticky ends' of these tiles that associate according to Watson-Crick's base pairing are programmed to build up specific periodic patterns upto tens of microns. The patterned crystals are visualized by the transmission electron microscopy.
Dynamics of vortex interactions in two-dimensional flows
DEFF Research Database (Denmark)
Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.
2002-01-01
a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 a(c) ...The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...
Two-dimensional assignment with merged measurements using Langrangrian relaxation
Briers, Mark; Maskell, Simon; Philpott, Mark
2004-01-01
Closely spaced targets can result in merged measurements, which complicate data association. Such merged measurements violate any assumption that each measurement relates to a single target. As a result, it is not possible to use the auction algorithm in its simplest form (or other two-dimensional assignment algorithms) to solve the two-dimensional target-to-measurement assignment problem. We propose an approach that uses the auction algorithm together with Lagrangian relaxation to incorporate the additional constraints resulting from the presence of merged measurements. We conclude with some simulated results displaying the concepts introduced, and discuss the application of this research within a particle filter context.
Two-dimensional lattice Boltzmann model for magnetohydrodynamics.
Schaffenberger, Werner; Hanslmeier, Arnold
2002-10-01
We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.
Spin dynamics in a two-dimensional quantum gas
DEFF Research Database (Denmark)
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank
2014-01-01
We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...
Bayer, Janice I.; Varadan, V. V.; Varadan, V. K.
1991-01-01
This paper describes research into the use of discrete piezoelectric sensors and actuators for active modal control of flexible two-dimensional structures such as might be used as components for spacecraft. A dynamic coupling term is defined between the sensor/actuator and the structure in terms of structural model shapes, location and piezoelectric behavior. The relative size of the coupling term determines sensor/actuator placement. Results are shown for a clamped square plate and for a large antenna. An experiment was performed on a thin foot-square plate clamped on all sides. Sizable vibration control was achieved for first, second/third (degenerate) and fourth modes.
Molecular shear heating and vortex dynamics in thermostatted two-dimensional Yukawa liquids
Gupta, Akanksha; Joy, Ashwin
2016-01-01
It is well known that two-dimensional macroscale shear flows are susceptible to instabilities leading to macroscale vortical structures. The linear and nonlinear fate of such a macroscale flow in a strongly coupled medium is a fundamental problem. A popular example of a strongly coupled medium is a dusty plasma, often modelled as a Yukawa liquid. Recently, laboratory experiments and MD studies of shear flows in strongly coupled Yukawa liquids, indicated occurrence of strong molecular shear heating, which is found to reduce the coupling strength exponentially leading to destruction of macroscale vorticity. To understand the vortex dynamics of strongly coupled molecular fluids undergoing macroscale shear flows and molecular shear heating, MD simulation has been performed, which allows the macroscopic vortex dynamics to evolve while at the same time, "removes" the microscopically generated heat without using the velocity degrees of freedom. We demonstrate that by using a configurational thermostat in a novel way...
Institute of Scientific and Technical Information of China (English)
Xu Quan; Tian Qiang
2009-01-01
This paper discusses the two-dimensional discrete monatomic Fermi-Pasta-Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather.
Brewster Angle Microscope Investigations of Two Dimensional Phase Transitions
Schuman, Adam William
The liquid-liquid interface is investigated by microscopic and thermodynamic means to image and measure interfacial properties when the system undergoes a two-dimensional (2D) phase transition of a Gibbs monolayer by varying the sample temperature. An in-house Brewster angle microscope (BAM) is constructed to visualize the interface during this transition while a quasi-elastic light scattering technique is used to determine the interfacial tension. These results complement x-ray investigations of the same systems. Evidence of interfacial micro-separated structure, microphases, comes from observations across a hexane-water interface with the inclusion of a long-chain fluorinated alcohol surfactant into the bulk hexane. Microphases take the form of spatially modulated structure to the density of the surfactant as it spans laterally across the interface. The surfactant monolayer exhibits microphase morphology over a range of a couple degrees as the temperature of the system is scanned through the 2D gas-solid phase transition. Microphase structure was observed for heating and cooling the hexane-water system and structural comparisons are given when the temperature step and quench depth of the cooling process is varied. A complete sequence of morphological structure was observed from 2D gas to cluster to labyrinthine stripe to a 2D solid mosaic pattern. Two characteristic length scales emerge giving rise to speculation of an elastic contribution to the standard repulsive and attractive competitive forces stabilizing the microphase. The benefit of BAM to laterally image very thin films across the surface of an interface on the micrometer length scale nicely complements x-ray reflectivity methods that average structural data transverse to the liquid interface on a molecular scale. To properly analyze x-ray reflectivity data, the interface is required to be laterally homogeneous. BAM can sufficiently characterize the interface for this purpose as is done for a Langmuir
Two-Dimensional Plasmonics in Massive and Massless Electron Gases
Yoon, Hosang
Plasmonic waves in solid-state are caused by collective oscillation of mobile charges inside or at the surface of conductors. In particular, surface plasmonic waves propagating at the skin of metals have recently attracted interest, as they reduce the wavelength of electromagnetic waves coupled to them by up to ˜10 times, allowing one to create miniaturized wave devices at optical frequencies. In contrast, plasmonic waves on two-dimensional (2D) conductors appear at much lower infrared and THz-GHz frequencies, near or in the electronics regime, and can achieve far stronger wavelength reduction factor reaching well above 100. In this thesis, we study the unique machinery of 2D plasmonic waves behind this ultra-subwavelength confinement and explore how it can be used to create various interesting devices. To this end, we first develop a physically intuitive theoretical formulation of 2D plasmonic waves, whose two main components---the Coulomb restoration force and inertia of the collectively oscillating charges---are combined into a transmission-line-like model. We then use this formulation to create various ultra-subwavelength 2D plasmonic devices. For the 2D conductor, we first choose GaAs/AlGaAs heterostructure---a 2D electron gas consisting of massive (m* > 0) electrons---demonstrating plasmonic bandgap crystals, interferometers, and negatively refracting metamaterials. We then examine a 2D plasmonic device based on graphene, a 2D electron gas consisting of effectively massless (m* = 0) electrons. We theoretically show and experimentally demonstrate that the massless electrons in graphene can surprisingly exhibit a collective mass when subjected to a collective excitation, providing the inertia that is essential for the propagation of 2D plasmonic waves. Lastly, we theoretically investigate the thermal current fluctuation behaviors in massive and massless electron gases. While seemingly unrelated on first sight, we show that the thermal current fluctuation is
Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting
Chen, Leiming; Lee, Chiu Fan; Toner, John
2016-07-01
Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.
Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy
Jansen, Thomas L. C.; Knoester, Jasper
We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,
The partition function of two-dimensional string theory
Dijkgraaf, Robbert; Moore, Gregory; Plesser, Ronen
1993-04-01
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c = 1 system to KP flow nd W 1 + ∞ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.
The partition function of two-dimensional string theory
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, R. (School of Natural Sciences, Inst. for Advanced Study, Princeton, NJ (United States) Dept. of Mathematics, Univ. Amsterdam (Netherlands)); Moore, G.; Plesser, R. (Dept. of Physics, Yale Univ., New Haven, CT (United States))
1993-04-12
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c=1 system to KP flow and W[sub 1+[infinity
Two-Dimensional Electronic Spectroscopy of a Model Dimer System
Directory of Open Access Journals (Sweden)
Prokhorenko V.I.
2013-03-01
Full Text Available Two-dimensional spectra of a dimer were measured to determine the timescale for electronic decoherence at room temperature. Anti-correlated beats in the crosspeaks were observed only during the period corresponding to the measured homogeneous lifetime.
Torque magnetometry studies of two-dimensional electron systems
Schaapman, Maaike Ruth
2004-01-01
This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting
Low-frequency scattering from two-dimensional perfect conductors
DEFF Research Database (Denmark)
Hansen, Thorkild; Yaghjian, A.D
1991-01-01
Exact expressions have been obtained for the leading terms in the low-frequency expansions of the far fields scattered from three different types of two-dimensional perfect conductors: a cylinder with finite cross section, a cylindrical bump on an infinite ground plane, and a cylindrical dent...
Two-Dimensional Mesoscale-Ordered Conducting Polymers
Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang
2016-01-01
Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of assem
Piezoelectricity and Piezomagnetism: Duality in two-dimensional checkerboards
Fel, Leonid G.
2002-05-01
The duality approach in two-dimensional two-component regular checkerboards is extended to piezoelectricity and piezomagnetism. The relation between the effective piezoelectric and piezomagnetic moduli is found for a checkerboard with the p6'mm'-plane symmetry group (dichromatic triangle).
Specification of a Two-Dimensional Test Case
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm
This paper describes the geometry and other boundary conditions for a test case which can be used to test different two-dimensional CFD codes in the lEA Annex 20 work. The given supply opening is large compared with practical openings. Therefore, this geometry will reduce the need for a high number...... of grid points in the wall jet region....
Operator splitting for two-dimensional incompressible fluid equations
Holden, Helge; Karper, Trygve K
2011-01-01
We analyze splitting algorithms for a class of two-dimensional fluid equations, which includes the incompressible Navier-Stokes equations and the surface quasi-geostrophic equation. Our main result is that the Godunov and Strang splitting methods converge with the expected rates provided the initial data are sufficiently regular.
Chaotic dynamics for two-dimensional tent maps
Pumariño, Antonio; Ángel Rodríguez, José; Carles Tatjer, Joan; Vigil, Enrique
2015-02-01
For a two-dimensional extension of the classical one-dimensional family of tent maps, we prove the existence of an open set of parameters for which the respective transformation presents a strange attractor with two positive Lyapounov exponents. Moreover, periodic orbits are dense on this attractor and the attractor supports a unique ergodic invariant probability measure.
Divorticity and dihelicity in two-dimensional hydrodynamics
DEFF Research Database (Denmark)
Shivamoggi, B.K.; van Heijst, G.J.F.; Juul Rasmussen, Jens
2010-01-01
A framework is developed based on the concepts of divorticity B (≡×ω, ω being the vorticity) and dihelicity g (≡vB) for discussing the theoretical structure underlying two-dimensional (2D) hydrodynamics. This formulation leads to the global and Lagrange invariants that could impose significant...
Numerical blowup in two-dimensional Boussinesq equations
Yin, Zhaohua
2009-01-01
In this paper, we perform a three-stage numerical relay to investigate the finite time singularity in the two-dimensional Boussinesq approximation equations. The initial asymmetric condition is the middle-stage output of a $2048^2$ run, the highest resolution in our study is $40960^2$, and some signals of numerical blowup are observed.
Exact two-dimensional superconformal R symmetry and c extremization.
Benini, Francesco; Bobev, Nikolay
2013-02-08
We uncover a general principle dubbed c extremization, which determines the exact R symmetry of a two-dimensional unitary superconformal field theory with N=(0,2) supersymmetry. To illustrate its utility, we study superconformal theories obtained by twisted compactifications of four-dimensional N=4 super-Yang-Mills theory on Riemann surfaces and construct their gravity duals.
Zero sound in a two-dimensional dipolar Fermi gas
Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.
2013-01-01
We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean-f
Topology optimization of two-dimensional elastic wave barriers
DEFF Research Database (Denmark)
Van Hoorickx, C.; Sigmund, Ole; Schevenels, M.
2016-01-01
Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is insert...
Non perturbative methods in two dimensional quantum field theory
Abdalla, Elcio; Rothe, Klaus D
1991-01-01
This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.
Thermodynamics of Two-Dimensional Black-Holes
Nappi, Chiara R.; Pasquinucci, Andrea
1992-01-01
We explore the thermodynamics of a general class of two dimensional dilatonic black-holes. A simple prescription is given that allows us to compute the mass, entropy and thermodynamic potentials, with results in agreement with those obtained by other methods, when available.
Influence of index contrast in two dimensional photonic crystal lasers
DEFF Research Database (Denmark)
Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner;
2010-01-01
The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavit...
Magnetic order in two-dimensional nanoparticle assemblies
Georgescu, M
2008-01-01
This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the
Dynamical phase transitions in the two-dimensional ANNNI model
Energy Technology Data Exchange (ETDEWEB)
Barber, M.N.; Derrida, B.
1988-06-01
We study the phase diagram of the two-dimensional anisotropic next-nearest neighbor Ising (ANNNI) model by comparing the time evolution of two distinct spin configurations submitted to the same thermal noise. We clearly se several dynamical transitions between ferromagnetic, paramagnetic, antiphase, and floating phases. These dynamical transitions seem to occur rather close to the transition lines determined previously in the literature.
Magnetic order in two-dimensional nanoparticle assemblies
Georgescu, M
2008-01-01
This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the r
Two-Dimensional Chirality in Three-Dimensional Chemistry.
Wintner, Claude E.
1983-01-01
The concept of two-dimensional chirality is used to enhance students' understanding of three-dimensional stereochemistry. This chirality is used as a key to teaching/understanding such concepts as enaniotropism, diastereotopism, pseudoasymmetry, retention/inversion of configuration, and stereochemical results of addition to double bonds. (JN)
Field analysis of two-dimensional focusing grating
Borsboom, P.P.; Frankena, H.J.
1995-01-01
The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal regi
Torque magnetometry studies of two-dimensional electron systems
Schaapman, Maaike Ruth
2004-01-01
This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting
Two-Dimensional Mesoscale-Ordered Conducting Polymers
Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang
2016-01-01
Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of
Vibrations of Thin Piezoelectric Shallow Shells: Two-Dimensional Approximation
Indian Academy of Sciences (India)
N Sabu
2003-08-01
In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.
Two-dimensional effects in nonlinear Kronig-Penney models
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim
1997-01-01
An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...
Forensic potential of comprehensive two-dimensional gas chromatography
Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.
2016-01-01
In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o
Easy interpretation of optical two-dimensional correlation spectra
Lazonder, K.; Pshenichnikov, M.S.; Wiersma, D.A.
2006-01-01
We demonstrate that the value of the underlying frequency-frequency correlation function can be retrieved from a two-dimensional optical correlation spectrum through a simple relationship. The proposed method yields both intuitive clues and a quantitative measure of the dynamics of the system. The t
Two Dimensional F(R) Horava-Lifshitz Gravity
Kluson, J
2016-01-01
We study two-dimensional F(R) Horava-Lifshitz gravity from the Hamiltonian point of view. We determine constraints structure with emphasis on the careful separation of the second class constraints and global first class constraints. We determine number of physical degrees of freedom and also discuss gauge fixing of the global first class constraints.
Localization of Tight Closure in Two-Dimensional Rings
Indian Academy of Sciences (India)
Kamran Divaani-Aazar; Massoud Tousi
2005-02-01
It is shown that tight closure commutes with localization in any two-dimensional ring of prime characteristic if either is a Nagata ring or possesses a weak test element. Moreover, it is proved that tight closure commutes with localization at height one prime ideals in any ring of prime characteristic.
Cryptanalysis of the Two-Dimensional Circulation Encryption Algorithm
Directory of Open Access Journals (Sweden)
Bart Preneel
2005-07-01
Full Text Available We analyze the security of the two-dimensional circulation encryption algorithm (TDCEA, recently published by Chen et al. in this journal. We show that there are several flaws in the algorithm and describe some attacks. We also address performance issues in current cryptographic designs.
New directions in science and technology: two-dimensional crystals
Energy Technology Data Exchange (ETDEWEB)
Neto, A H Castro [Graphene Research Centre, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Novoselov, K, E-mail: phycastr@nus.edu.sg, E-mail: konstantin.novoselov@manchester.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)
2011-08-15
Graphene is possibly one of the largest and fastest growing fields in condensed matter research. However, graphene is only one example in a large class of two-dimensional crystals with unusual properties. In this paper we briefly review the properties of graphene and look at the exciting possibilities that lie ahead.
Boundary-value problems for two-dimensional canonical systems
Hassi, Seppo; De Snoo, H; Winkler, Henrik
2000-01-01
The two-dimensional canonical system Jy' = -lHy where the nonnegative Hamiltonian matrix function H(x) is trace-normed on (0,∞) has been studied in a function-theoretic way by L. de Branges. We show that the Hamiltonian system induces a closed symmetric relation which can be reduced to a, not necess
On the continua in two-dimensional nonadiabatic magnetohydrodynamic spectra
De Ploey, A.; Van der Linden, R. A. M.; Belien, A. J. C.
2000-01-01
The equations for the continuous subspectra of the linear magnetohydrodynamic (MHD) normal modes spectrum of two-dimensional (2D) plasmas are derived in general curvilinear coordinates, taking nonadiabatic effects in the energy equation into account. Previously published derivations of continuous sp
Dislocation climb in two-dimensional discrete dislocation dynamics
Davoudi, K.M.; Nicola, L.; Vlassak, J.J.
2012-01-01
In this paper, dislocation climb is incorporated in a two-dimensional discrete dislocation dynamics model. Calculations are carried out for polycrystalline thin films, passivated on one or both surfaces. Climb allows dislocations to escape from dislocation pile-ups and reduces the strain-hardening r
SAR Processing Based On Two-Dimensional Transfer Function
Chang, Chi-Yung; Jin, Michael Y.; Curlander, John C.
1994-01-01
Exact transfer function, ETF, is two-dimensional transfer function that constitutes basis of improved frequency-domain-convolution algorithm for processing synthetic-aperture-radar, SAR data. ETF incorporates terms that account for Doppler effect of motion of radar relative to scanned ground area and for antenna squint angle. Algorithm based on ETF outperforms others.
Sound waves in two-dimensional ducts with sinusoidal walls
Nayfeh, A. H.
1974-01-01
The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.
Confined two-dimensional fermions at finite density
De Francia, M; Loewe, M; Santangelo, E M; De Francia, M; Falomir, H; Loewe, M; Santangelo, E M
1995-01-01
We introduce the chemical potential in a system of two-dimensional massless fermions, confined to a finite region, by imposing twisted boundary conditions in the Euclidean time direction. We explore in this simple model the application of functional techniques which could be used in more complicated situations.
Imperfect two-dimensional topological insulator field-effect transistors
Vandenberghe, William G.; Fischetti, Massimo V.
2017-01-01
To overcome the challenge of using two-dimensional materials for nanoelectronic devices, we propose two-dimensional topological insulator field-effect transistors that switch based on the modulation of scattering. We model transistors made of two-dimensional topological insulator ribbons accounting for scattering with phonons and imperfections. In the on-state, the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the topologically protected edge states even in the presence of imperfections. In the off-state the Fermi level moves into the bandgap and electrons suffer from severe back-scattering. An off-current more than two-orders below the on-current is demonstrated and a high on-current is maintained even in the presence of imperfections. At low drain-source bias, the output characteristics are like those of conventional field-effect transistors, at large drain-source bias negative differential resistance is revealed. Complementary n- and p-type devices can be made enabling high-performance and low-power electronic circuits using imperfect two-dimensional topological insulators. PMID:28106059
Bounds on the capacity of constrained two-dimensional codes
DEFF Research Database (Denmark)
Forchhammer, Søren; Justesen, Jørn
2000-01-01
Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run...
Miniature sensor for two-dimensional magnetic field distributions
Fluitman, J.H.J.; Krabbe, H.W.
1972-01-01
Describes a simple method of production of a sensor for two-dimensional magnetic field distributions. The sensor consists of a strip of Ni-Fe(81-19), of which the magnetoresistance is utilized. Typical dimensions of the strip, placed at the edge of a glass substrate, are: length 100 mu m, width 2 or
Forensic potential of comprehensive two-dimensional gas chromatography
Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.
2016-01-01
In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o
Spontaneous emission in two-dimensional photonic crystal microcavities
DEFF Research Database (Denmark)
Søndergaard, Thomas
2000-01-01
The properties of the radiation field in a two-dimensional photonic crystal with and without a microcavity introduced are investigated through the concept of the position-dependent photon density of states. The position-dependent rate of spontaneous radiative decay for a two-level atom with random...
Linkage analysis by two-dimensional DNA typing
te Meerman, G J; Mullaart, E; van der Meulen, M A; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J
1993-01-01
In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core pro
Phase conjugated Andreev backscattering in two-dimensional ballistic cavities
Morpurgo, A.F.; Holl, S.; Wees, B.J.van; Klapwijk, T.M; Borghs, G.
1997-01-01
We have experimentally investigated transport in two-dimensional ballistic cavities connected to a point contact and to two superconducting electrodes with a tunable macroscopic phase difference. The point contact resistance oscillates as a function of the phase difference in a way which reflects
Two-dimensional manifold with point-like defects
Gani, Vakhid A; Rubin, Sergei G
2014-01-01
We study a class of two-dimensional extra spaces isomorphic to the $S^2$ sphere in the framework of the multidimensional gravitation. We show that there exists a family of stationary metrics that depend on the initial (boundary) conditions. All these geometries have a singular point. We also discuss the possibility for these deformed extra spaces to be considered as dark matter candidates.
Instability of two-dimensional heterotic stringy black holes
Azreg-Ainou, M
1999-01-01
We solve the eigenvalue problem of general relativity for the case of charged black holes in two-dimensional heterotic string theory, derived by McGuigan et al. For the case of $m^{2}>q^{2}$, we find a physically acceptable time-dependent growing mode; thus the black hole is unstable. The extremal case $m^{2}=q^{2}$ is stable.
Novel effects of strains in graphene and other two dimensional materials
Amorim, B.; Cortijo, A.; de Juan, F.; Grushin, A. G.; Guinea, F.; Gutiérrez-Rubio, A.; Ochoa, H.; Parente, V.; Roldán, R.; San-Jose, P.; Schiefele, J.; Sturla, M.; Vozmediano, M. A. H.
2016-03-01
The analysis of the electronic properties of strained or lattice deformed graphene combines ideas from classical condensed matter physics, soft matter, and geometrical aspects of quantum field theory (QFT) in curved spaces. Recent theoretical and experimental work shows the influence of strains in many properties of graphene not considered before, such as electronic transport, spin-orbit coupling, the formation of Moiré patterns and optics. There is also significant evidence of anharmonic effects, which can modify the structural properties of graphene. These phenomena are not restricted to graphene, and they are being intensively studied in other two dimensional materials, such as the transition metal dichalcogenides. We review here recent developments related to the role of strains in the structural and electronic properties of graphene and other two dimensional compounds.
Two-dimensional analysis of gold nanoparticle effects on dye molecule system
Energy Technology Data Exchange (ETDEWEB)
Qaradaghi, Vahid [School of Electrical and Computer Engineering, Tarbiat Modares University (TMU), P.O. Box 14115-194, Tehran (Iran, Islamic Republic of); Fathi, Davood, E-mail: davfathi@modares.ac.ir [School of Electrical and Computer Engineering, Tarbiat Modares University (TMU), P.O. Box 14115-194, Tehran (Iran, Islamic Republic of)
2013-01-15
This paper presents a two-dimensional analysis of a dye molecule system in the presence of a gold nanoparticle (AuNP). This configuration has been used widely for the practical applications such as optoelectronics and also the biomedical applications such as cancer. The effects of coupling between the nanoparticle (AuNP) and dye molecules around it are simulated and studied in a two-dimensional plane. The three relative momentum polarizations of dye molecule near the AuNP (perpendicular, parallel and random) are considered. With the change of nanoparticle radius and its distances from the dye molecules, the output fluorescence signal will be changed. The obtained results show that, the perpendicular polarized dye w.r.t. the AuNP surface leads to the increase of output fluorescence signal nearly 1.5 times the input intensity.
Institute of Scientific and Technical Information of China (English)
Xu Quan; Tian Qiang
2013-01-01
Using numerical method,we investigate whether periodic,quasiperiodic,and chaotic breathers are supported by the two-dimensional discrete Fermi-Pasta-Ulam (FPU) lattice with linear dispersion term.The spatial profile and time evolution of the two-dimensional discrete β-FPU lattice are segregated by the method of separation of variables,and the numerical simulations suggest that the discrete breathers (DBs) are supported by the system.By introducing a periodic interaction into the linear interaction between the atoms,we achieve the coupling of two incommensurate frequencies for a single DB,and the numerical simulations suggest that the quasiperiodic and chaotic breathers are supported by the system,too.
Non-classical photon correlation in a two-dimensional photonic lattice
Gao, Jun; Lin, Xiao-Feng; Jiao, Zhi-Qiang; Feng, Zhen; Zhou, Zheng; Gao, Zhen-Wei; Xu, Xiao-Yun; Chen, Yuan; Tang, Hao; Jin, Xian-Min
2016-01-01
Quantum interference and quantum correlation, as two main features of quantum optics, play an essential role in quantum information applications, such as multi-particle quantum walk and boson sampling. While many experimental demonstrations have been done in one-dimensional waveguide arrays, it remains unexplored in higher dimensions due to tight requirement of manipulating and detecting photons in large-scale. Here, we experimentally observe non-classical correlation of two identical photons in a fully coupled two-dimensional structure, i.e. photonic lattice manufactured by three-dimensional femtosecond laser writing. Photon interference consists of 36 Hong-Ou-Mandel interference and 9 bunching. The overlap between measured and simulated distribution is up to $0.890\\pm0.001$. Clear photon correlation is observed in the two-dimensional photonic lattice. Combining with controllably engineered disorder, our results open new perspectives towards large-scale implementation of quantum simulation on integrated phot...
Novel effects of strains in graphene and other two dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Amorim, B., E-mail: amorim.bac@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Department of Physics and Center of Physics, University of Minho, P-4710-057, Braga (Portugal); Cortijo, A. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Juan, F. de [Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States); Grushin, A.G. [Max-Planck-Institut fur Physik komplexer Systeme, 01187 Dresden (Germany); Guinea, F. [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); IMDEA Nanociencia Calle de Faraday, 9, Cantoblanco, 28049, Madrid (Spain); Donostia International Physics Center (DIPC), 20018 San Sebastián (Spain); Gutiérrez-Rubio, A. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Ochoa, H. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Donostia International Physics Center (DIPC), 20018 San Sebastián (Spain); Parente, V. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); IMDEA Nanociencia Calle de Faraday, 9, Cantoblanco, 28049, Madrid (Spain); Roldán, R.; San-Jose, P.; Schiefele, J. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Sturla, M. [IFLP-CONICET. Departamento de Física, Universidad Nacional de La Plata, (1900) La Plata (Argentina); Vozmediano, M.A.H. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain)
2016-03-03
The analysis of the electronic properties of strained or lattice deformed graphene combines ideas from classical condensed matter physics, soft matter, and geometrical aspects of quantum field theory (QFT) in curved spaces. Recent theoretical and experimental work shows the influence of strains in many properties of graphene not considered before, such as electronic transport, spin–orbit coupling, the formation of Moiré patterns and optics. There is also significant evidence of anharmonic effects, which can modify the structural properties of graphene. These phenomena are not restricted to graphene, and they are being intensively studied in other two dimensional materials, such as the transition metal dichalcogenides. We review here recent developments related to the role of strains in the structural and electronic properties of graphene and other two dimensional compounds.
Protein Conformational Change Based on a Two-dimensional Generalized Langevin Equation
Institute of Scientific and Technical Information of China (English)
Ying-xi Wang; Shuang-mu Linguang; Nan-rong Zhao; Yi-jing Yan
2011-01-01
A two-dimensional generalized Langevin equation is proposed to describe the protein conformational change,compatible to the electron transfer process governed by atomic packing density model.We assume a fractional Gaussian noise and a white noise through bond and through space coordinates respectively,and introduce the coupling effect coming from both fluctuations and equilibrium variances.The general expressions for autocorrelation functions of distance fluctuation and fluorescence lifetime variation are derived,based on which the exact conformational change dynamics can be evaluated with the aid of numerical Laplace inversion technique.We explicitly elaborate the short time and long time approximations.The relationship between the two-dimensional description and the one-dimensional theory is also discussed.
An efficient tool to calculate two-dimensional optical spectra for photoactive molecular complexes
Duan, Hong-Guang; Nalbach, Peter; Thorwart, Michael
2015-01-01
We combine the coherent modified Redfield theory (CMRT) with the equation of motion-phase matching approach (PMA) to calculate two-dimensional photon echo spectra for photoactive molecular complexes with an intermediate strength of the coupling to their environment. Both techniques are highly efficient, yet they involve approximations at different levels. By explicitly comparing with the numerically exact quasi-adiabatic path integral approach, we show for the Fenna-Matthews-Olson complex that the CMRT describes the decay rates in the population dynamics well, but final stationary populations and the oscillation frequencies differ slightly. In addition, we use the combined CMRT+PMA to calculate two-dimensional photon-echo spectra for a simple dimer model. We find excellent agreement with the exact path integral calculations at short waiting times where the dynamics is still coherent. For long waiting times, differences occur due to different final stationary states, specifically for strong system-bath couplin...
Further studies of stall flutter and nonlinear divergence of two-dimensional wings
Dugundji, J.; Chopra, I.
1975-01-01
An experimental investigation is made of the purely torsional stall flutter of a two-dimensional wing pivoted about the midchord, and also of the bending-torsion stall flutter of a two-dimensional wing pivoted about the quarterchord. For the purely torsional flutter case, large amplitude limit cycles ranging from + or - 11 to + or - 160 degrees were observed. Nondimensional harmonic coefficients were extracted from the free transient vibration tests for amplitudes up to 80 degrees. Reasonable nondimensional correlation was obtained for several wing configurations. For the bending-torsion flutter case, large amplitude coupled limit cycles were observed with torsional amplitudes as large as + or - 40 degrees. The torsion amplitudes first increased, then decreased with increasing velocity. Additionally, a small amplitude, predominantly torsional flutter was observed when the static equilibrium angle was near the stall angle.
Two-Dimensional Electronic Excitations in Self-Assembled Conjugated Polymer Nanocrystals
Österbacka, R.; An, C. P.; Jiang, X. M.; Vardeny, Z. V.
2000-02-01
Several spectroscopic methods were applied to study the characteristic properties of the electronic excitations in thin films of regioregular and regiorandom polythiophene polymers. In the regioregular polymers, which form two-dimensional lamellar structures, increased interchain coupling strongly influences the traditional one-dimensional electronic properties of the polymer chains. The photogenerated charge excitations (polarons) show two-dimensional delocalization that results in a relatively small polaronic energy, multiple absorption bands in the gap where the lowest energy band becomes dominant, and associated infrared active vibrations with reverse absorption bands caused by electron-vibration interferences. The relatively weak absorption bands of the delocalized polaron in the visible and near-infrared spectral ranges may help to achieve laser action in nanocrystalline polymer devices using current injection.
Phase diagram of a two-dimensional large- Q Potts model in an external field
Tsai, Shan-Ho; Landau, D. P.
2009-04-01
We use a two-dimensional Wang-Landau sampling algorithm to map out the phase diagram of a Q-state Potts model with Q⩽10 in an external field H that couples to one state. Finite-size scaling analyses show that for large Q the first-order phase transition point at H=0 is in fact a triple point at which three first-order phase transition lines meet. One such line is restricted to H=0; another line has H⩽0. The third line, which starts at the H=0 triple point, ends at a critical point (T,H) which needs to be located in a two-dimensional parameter space. The critical field H(Q) is positive and decreases with decreasing Q, which is in qualitative agreement with previous predictions.
Freely configurable quantum simulator based on a two-dimensional array of individually trapped ions
Mielenz, Manuel; Wittemer, Matthias; Hakelberg, Frederick; Schmied, Roman; Blain, Matthew; Maunz, Peter; Leibfried, Dietrich; Warring, Ulrich; Schaetz, Tobias
2015-01-01
A custom-built and precisely controlled quantum system may offer access to a fundamental understanding of another, less accessible system of interest. A universal quantum computer is currently out of reach, but an analog quantum simulator that makes the relevant observables, interactions, and states of a quantum model accessible could permit experimental insight into complex quantum dynamics that are intractable on conventional computers. Several platforms have been suggested and proof-of-principle experiments have been conducted. Here we characterise two-dimensional arrays of three ions trapped by radio-frequency fields in individually controlled harmonic wells forming equilateral triangles with side lengths 40 and 80 micrometer. In our approach, which is scalable to arbitrary two dimensional lattices, we demonstrate individual control of the electronic and motional degrees of freedom, preparation of a fiducial initial state with ion motion close to the ground state, as well as tuning of crucial couplings be...
Odkhuu, Dorj
2016-08-01
Exploring magnetism and magnetic anisotropy in otherwise nonmagnetic two-dimensional materials, such as graphene and transition metal dichalcogenides, is at the heart of spintronics research. Herein, using first-principles calculations we explore the possibility of reaching an atomic-scale perpendicular magnetic anisotropy by carefully exploring the large spin-orbit coupling, orbital magnetism, and ligand field in a suitable choice of a two-dimensional structure with transition metal adatoms. More specifically, we demonstrate perpendicular magnetic anisotropy energies up to an order of 100 meV per atom in individual ruthenium and osmium adatoms at a monosulfur vacancy in molybdenum disulfide. We further propose a phenomenological model where a spin state transition that involves hybridization between molybdenum a1 and adatomic e' orbitals is a possible mechanism for magnetization reversal from an in-plane to perpendicular orientation.
Institute of Scientific and Technical Information of China (English)
XIONG Lei; LI haijiao; ZHANG Lewen
2008-01-01
The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions, 4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.
Korytar, P.; Stee, van L.L.P.; Leonards, P.E.G.; Boer, de J.; Brinkman, U.A.Th.
2003-01-01
Comprehensive two-dimensional gas chromatography (GCxGC) coupled with micro electron-capture and time-of-flight mass spectrometric (TOF-MS) detection has been used to analyse technical toxaphene. An HP-1xHT-8 column combination yielded highly structured chromatograms and revealed a complex mixture o
Stress Wave Propagation in Two-dimensional Buckyball Lattice
Xu, Jun; Zheng, Bowen
2016-11-01
Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices.
The separation of whale myoglobins with two-dimensional electrophoresis.
Spicer, G S
1988-10-01
Five myoglobins (sperm whale, Sei whale, Hubbs' beaked whale, pilot whale, and Amazon River dolphin) were examined using two-dimensional electrophoresis. Previous reports indicated that none of these proteins could be separated by using denaturing (in the presence of 8-9 M urea) isoelectric focusing. This result is confirmed in the present study. However, all the proteins could be separated by using denaturing nonequilibrium pH-gradient electrophoresis in the first dimension. Additionally, all the myoglobins have characteristic mobilities in the second dimension (sodium dodecyl sulfate), but these mobilities do not correspond to the molecular weights of the proteins. We conclude that two-dimensional electrophoresis can be more sensitive to differences in primary protein structure than previous studies indicate and that the assessment seems to be incorrect that this technique can separate only proteins that have a unit charge difference.
Topological defect motifs in two-dimensional Coulomb clusters
Radzvilavičius, A; 10.1088/0953-8984/23/38/385301
2012-01-01
The most energetically favourable arrangement of low-density electrons in an infinite two-dimensional plane is the ordered triangular Wigner lattice. However, in most instances of contemporary interest one deals instead with finite clusters of strongly interacting particles localized in potential traps, for example, in complex plasmas. In the current contribution we study distribution of topological defects in two-dimensional Coulomb clusters with parabolic lateral confinement. The minima hopping algorithm based on molecular dynamics is used to efficiently locate the ground- and low-energy metastable states, and their structure is analyzed by means of the Delaunay triangulation. The size, structure and distribution of geometry-induced lattice imperfections strongly depends on the system size and the energetic state. Besides isolated disclinations and dislocations, classification of defect motifs includes defect compounds --- grain boundaries, rosette defects, vacancies and interstitial particles. Proliferatio...
The Persistence Problem in Two-Dimensional Fluid Turbulence
Perlekar, Prasad; Mitra, Dhrubaditya; Pandit, Rahul
2010-01-01
We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter {\\Lambda} to distinguish between vortical and extensional regions. We then use a direct numerical simulation (DNS) of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with a universal exponent {\\theta} = 3.1 \\pm 0.2.
On Dirichlet eigenvectors for neutral two-dimensional Markov chains
Champagnat, Nicolas; Miclo, Laurent
2012-01-01
We consider a general class of discrete, two-dimensional Markov chains modeling the dynamics of a population with two types, without mutation or immigration, and neutral in the sense that type has no influence on each individual's birth or death parameters. We prove that all the eigenvectors of the corresponding transition matrix or infinitesimal generator \\Pi\\ can be expressed as the product of "universal" polynomials of two variables, depending on each type's size but not on the specific transitions of the dynamics, and functions depending only on the total population size. These eigenvectors appear to be Dirichlet eigenvectors for \\Pi\\ on the complement of triangular subdomains, and as a consequence the corresponding eigenvalues are ordered in a specific way. As an application, we study the quasistationary behavior of finite, nearly neutral, two-dimensional Markov chains, absorbed in the sense that 0 is an absorbing state for each component of the process.
Statistical mechanics of two-dimensional and geophysical flows
Bouchet, Freddy
2011-01-01
The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter's troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. The equilibrium microcanonical measure is built from the Liouville theorem. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equi...
Two-dimensional hazard estimation for longevity analysis
DEFF Research Database (Denmark)
Fledelius, Peter; Guillen, M.; Nielsen, J.P.
2004-01-01
We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used...... for prediction purposes. However, we suggest that life insurance companies use the estimation technique and the cross-validation for bandwidth selection when analyzing their portfolio mortality. The non-parametric approach may give valuable information prior to developing more sophisticated prediction models...
Analysis of one dimensional and two dimensional fuzzy controllers
Institute of Scientific and Technical Information of China (English)
Ban Xiaojun; Gao Xiaozhi; Huang Xianlin; Wu Tianbao
2006-01-01
The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail.The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.
Extension of modified power method to two-dimensional problems
Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung
2016-09-01
In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. The stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem.
Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation
Directory of Open Access Journals (Sweden)
Panjit MUSIK
2004-01-01
Full Text Available This paper presents a simulation of incompressible viscous flow within a two-dimensional square cavity. The objective is to develop a method originated from Lattice Gas (cellular Automata (LGA, which utilises discrete lattice as well as discrete time and can be parallelised easily. Lattice Boltzmann Method (LBM, known as discrete Lattice kinetics which provide an alternative for solving the Navier–Stokes equations and are generally used for fluid simulation, is chosen for the study. A specific two-dimensional nine-velocity square Lattice model (D2Q9 Model is used in the simulation with the velocity at the top of the cavity kept fixed. LBM is an efficient method for reproducing the dynamics of cavity flow and the results which are comparable to those of previous work.
Transport behavior of water molecules through two-dimensional nanopores
Energy Technology Data Exchange (ETDEWEB)
Zhu, Chongqin; Li, Hui; Meng, Sheng, E-mail: smeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2014-11-14
Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.
Transport behavior of water molecules through two-dimensional nanopores
Zhu, Chongqin; Li, Hui; Meng, Sheng
2014-11-01
Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.
Topological states in two-dimensional hexagon lattice bilayers
Zhang, Ming-Ming; Xu, Lei; Zhang, Jun
2016-10-01
We investigate the topological states of the two-dimensional hexagon lattice bilayer. The system exhibits a quantum valley Hall (QVH) state when the interlayer interaction t⊥ is smaller than the nearest neighbor hopping energy t, and then translates to a trivial band insulator state when t⊥ / t > 1. Interestingly, the system is found to be a single-edge QVH state with t⊥ / t = 1. The topological phase transition also can be presented via changing bias voltage and sublattice potential in the system. The QVH states have different edge modes carrying valley current but no net charge current. The bias voltage and external electric field can be tuned easily in experiments, so the present results will provide potential application in valleytronics based on the two-dimensional hexagon lattice.
CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION
Directory of Open Access Journals (Sweden)
Toth Reka
2010-12-01
Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.
Two-dimensional magnetostriction under vector magnetic characteristic
Wakabayashi, D.; Enokizono, M.
2015-05-01
This paper presents two-dimensional magnetostriction of electrical steel sheet under vector magnetic characteristic. In conventional measurement method using Single Sheet Tester, the magnetic flux density, the magnetic field strength, and the magnetostriction have been measured in one direction. However, an angle between the magnetic flux density vector and the magnetic field strength vector exists because the magnetic property is vector quantity. An angle between the magnetic flux density vector and the direction of maximum magnetostriction also exists. We developed a new measurement method, which enables measurement of these angles. The vector magnetic characteristic and the two-dimensional magnetostriction have been measured using the new measurement method. The BH and Bλ curves considering the angles are shown in this paper. The analyzed results considering the angles are also made clear.
Phase separation under two-dimensional Poiseuille flow.
Kiwata, H
2001-05-01
The spinodal decomposition of a two-dimensional binary fluid under Poiseuille flow is studied by numerical simulation. We investigated time dependence of domain sizes in directions parallel and perpendicular to the flow. In an effective region of the flow, the power-law growth of a characteristic length in the direction parallel to the flow changes from the diffusive regime with the growth exponent alpha=1/3 to a new regime. The scaling invariance of the growth in the perpendicular direction is destroyed after the diffusive regime. A recurrent prevalence of thick and thin domains which determines log-time periodic oscillations has not been observed in our model. The growth exponents in the infinite system under two-dimensional Poiseuille flow are obtained by the renormalization group.
Two-dimensional localized structures in harmonically forced oscillatory systems
Ma, Y.-P.; Knobloch, E.
2016-12-01
Two-dimensional spatially localized structures in the complex Ginzburg-Landau equation with 1:1 resonance are studied near the simultaneous presence of a steady front between two spatially homogeneous equilibria and a supercritical Turing bifurcation on one of them. The bifurcation structures of steady circular fronts and localized target patterns are computed in the Turing-stable and Turing-unstable regimes. In particular, localized target patterns grow along the solution branch via ring insertion at the core in a process reminiscent of defect-mediated snaking in one spatial dimension. Stability of axisymmetric solutions on these branches with respect to axisymmetric and nonaxisymmetric perturbations is determined, and parameter regimes with stable axisymmetric oscillons are identified. Direct numerical simulations reveal novel depinning dynamics of localized target patterns in the radial direction, and of circular and planar localized hexagonal patterns in the fully two-dimensional system.
Enstrophy inertial range dynamics in generalized two-dimensional turbulence
Iwayama, Takahiro; Watanabe, Takeshi
2016-07-01
We show that the transition to a k-1 spectrum in the enstrophy inertial range of generalized two-dimensional turbulence can be derived analytically using the eddy damped quasinormal Markovianized (EDQNM) closure. The governing equation for the generalized two-dimensional fluid system includes a nonlinear term with a real parameter α . This parameter controls the relationship between the stream function and generalized vorticity and the nonlocality of the dynamics. An asymptotic analysis accounting for the overwhelming dominance of nonlocal triads allows the k-1 spectrum to be derived based upon a scaling analysis. We thereby provide a detailed analytical explanation for the scaling transition that occurs in the enstrophy inertial range at α =2 in terms of the spectral dynamics of the EDQNM closure, which extends and enhances the usual phenomenological explanations.
Folding two dimensional crystals by swift heavy ion irradiation
Energy Technology Data Exchange (ETDEWEB)
Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)
2014-12-01
Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine
2004-01-01
Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...
Conductivity of a two-dimensional guiding center plasma.
Montgomery, D.; Tappert, F.
1972-01-01
The Kubo method is used to calculate the electrical conductivity of a two-dimensional, strongly magnetized plasma. The particles interact through (logarithmic) electrostatic potentials and move with their guiding center drift velocities (Taylor-McNamara model). The thermal equilibrium dc conductivity can be evaluated analytically, but the ac conductivity involves numerical solution of a differential equation. Both conductivities fall off as the inverse first power of the magnetic field strength.
Minor magnetization loops in two-dimensional dipolar Ising model
Energy Technology Data Exchange (ETDEWEB)
Sarjala, M. [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland); Seppaelae, E.T., E-mail: eira.seppala@nokia.co [Nokia Research Center, Itaemerenkatu 11-13, FI-00180 Helsinki (Finland); Alava, M.J., E-mail: mikko.alava@tkk.f [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland)
2011-05-15
The two-dimensional dipolar Ising model is investigated for the relaxation and dynamics of minor magnetization loops. Monte Carlo simulations show that in a stripe phase an exponential decrease can be found for the magnetization maxima of the loops, M{approx}exp(-{alpha}N{sub l}) where N{sub l} is the number of loops. We discuss the limits of this behavior and its relation to the equilibrium phase diagram of the model.
Cryptography Using Multiple Two-Dimensional Chaotic Maps
Directory of Open Access Journals (Sweden)
Ibrahim S. I. Abuhaiba
2012-08-01
Full Text Available In this paper, a symmetric key block cipher cryptosystem is proposed, involving multiple two-dimensional chaotic maps and using 128-bits external secret key. Computer simulations indicate that the cipher has good diffusion and confusion properties with respect to the plaintext and the key. Moreover, it produces ciphertext with random distribution. The computation time is much less than previous related works. Theoretic analysis verifies its superiority to previous cryptosystems against different types of attacks.
A UNIVERSAL VARIATIONAL FORMULATION FOR TWO DIMENSIONAL FLUID MECHANICS
Institute of Scientific and Technical Information of China (English)
何吉欢
2001-01-01
A universal variational formulation for two dimensional fluid mechanics is obtained, which is subject to the so-called parameter-constrained equations (the relationship between parameters in two governing equations). By eliminating the constraints, the generalized variational principle (GVPs) can be readily derived from the formulation. The formulation can be applied to any conditions in case the governing equations can be converted into conservative forms. Some illustrative examples are given to testify the effectiveness and simplicity of the method.
Nonlocal bottleneck effect in two-dimensional turbulence
Biskamp, D; Schwarz, E
1998-01-01
The bottleneck pileup in the energy spectrum is investigated for several two-dimensional (2D) turbulence systems by numerical simulation using high-order diffusion terms to amplify the effect, which is weak for normal diffusion. For 2D magnetohydrodynamic (MHD) turbulence, 2D electron MHD (EMHD) turbulence and 2D thermal convection, which all exhibit direct energy cascades, a nonlocal behavior is found resulting in a logarithmic enhancement of the spectrum.
Level crossings in complex two-dimensional potentials
Indian Academy of Sciences (India)
Qing-Hai Wang
2009-08-01
Two-dimensional $\\mathcal{PT}$-symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both potentials respect the $\\mathcal{PT}$ symmetry, the complex energy eigenvalues appear when level crossing happens between same parity eigenstates.
Extraction of plant proteins for two-dimensional electrophoresis
Granier, Fabienne
1988-01-01
Three different extraction procedures for two-dimensional electrophoresis of plant proteins are compared: (i) extraction of soluble proteins with a nondenaturing Tris-buffer, (ii) denaturing extraction in presence of sodium dodecyl sulfate at elevated temperature allowing the solubilization of membrane proteins in addition to a recovery of soluble proteins, and (iii) a trichloroacetic acid-acetone procedure allowing the direct precipitation of total proteins.
Lyapunov Computational Method for Two-Dimensional Boussinesq Equation
Mabrouk, Anouar Ben
2010-01-01
A numerical method is developed leading to Lyapunov operators to approximate the solution of two-dimensional Boussinesq equation. It consists of an order reduction method and a finite difference discretization. It is proved to be uniquely solvable and analyzed for local truncation error for consistency. The stability is checked by using Lyapunov criterion and the convergence is studied. Some numerical implementations are provided at the end of the paper to validate the theoretical results.
Complex dynamical invariants for two-dimensional complex potentials
Indian Academy of Sciences (India)
J S Virdi; F Chand; C N Kumar; S C Mishra
2012-08-01
Complex dynamical invariants are searched out for two-dimensional complex potentials using rationalization method within the framework of an extended complex phase space characterized by $x = x_{1} + ip_{3}. y = x_{2} + ip_{4}, p_{x} = p_{1} + ix_{3}, p_{y} = p_{2} + ix_{4}$. It is found that the cubic oscillator and shifted harmonic oscillator admit quadratic complex invariants. THe obtained invariants may be useful for studying non-Hermitian Hamiltonian systems.
Two-dimensional hydrogen negative ion in a magnetic field
Institute of Scientific and Technical Information of China (English)
Xie Wen-Fang
2004-01-01
Making use of the adiabatic hyperspherical approach, we report a calculation for the energy spectrum of the ground and low-excited states of a two-dimensional hydrogen negative ion H- in a magnetic field. The results show that the ground and low-excited states of H- in low-dimensional space are more stable than those in three-dimensional space and there may exist more bound states.
А heuristic algorithm for two-dimensional strip packing problem
Dayong, Cao; Kotov, V.M.
2011-01-01
In this paper, we construct an improved best-fit heuristic algorithm for two-dimensional rectangular strip packing problem (2D-RSPP), and compare it with some heuristic and metaheuristic algorithms from literatures. The experimental results show that BFBCC could produce satisfied packing layouts than these methods, especially for the large problem of 50 items or more, BFBCC could get better results in shorter time.
Chronology Protection in Two-Dimensional Dilaton Gravity
Mishima, T; Mishima, Takashi; Nakamichi, Akika
1994-01-01
The global structure of 1 + 1 dimensional compact Universe is studied in two-dimensional model of dilaton gravity. First we give a classical solution corresponding to the spacetime in which a closed time-like curve appears, and show the instability of this spacetime due to the existence of matters. We also observe quantum version of such a spacetime having closed timelike curves never reappear unless the parameters are fine-tuned.
Phase Transitions in Two-Dimensional Traffic Flow Models
Cuesta, J A; Molera, J M; Cuesta, José A; Martinez, Froilán C; Molera, Juan M
1993-01-01
Abstract: We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.
Phase Transitions in Two-Dimensional Traffic Flow Models
Cuesta, José A; Molera, Juan M; Escuela, Angel Sánchez; 10.1103/PhysRevE.48.R4175
2009-01-01
We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.
SU(1,2) invariance in two-dimensional oscillator
Krivonos, Sergey
2016-01-01
Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756[hep-th], with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written it terms of the oscillator variables.
Colloidal interactions in two-dimensional nematic emulsions
Indian Academy of Sciences (India)
N M Silvestre; P Patrício; M M Telo Da Gama
2005-06-01
We review theoretical and experimental work on colloidal interactions in two-dimensional (2D) nematic emulsions. We pay particular attention to the effects of (i) the nematic elastic constants, (ii) the size of the colloids, and (iii) the boundary conditions at the particles and the container. We consider the interactions between colloids and fluid (deformable) interfaces and the shape of fluid colloids in smectic-C films.
Numerical Study of Two-Dimensional Viscous Flow over Dams
Institute of Scientific and Technical Information of China (English)
王利兵; 刘宇陆; 涂敏杰
2003-01-01
In this paper, the characteristics of two-dimensional viscous flow over two dams were numerically investigated. The results show that the behavior of the vortices is closely related to the space between two dams, water depth, Fr number and Reynolds number. In addition, the flow properties behind each dam are different, and the changes over two dams are more complex than over one dam. Finally, the relevant turbulent characteristics were analyzed.
Acoustic Bloch oscillations in a two-dimensional phononic crystal.
He, Zhaojian; Peng, Shasha; Cai, Feiyan; Ke, Manzhu; Liu, Zhengyou
2007-11-01
We report the observation of acoustic Bloch oscillations at megahertz frequency in a two-dimensional phononic crystal. By creating periodically arrayed cavities with a decreasing gradient in width along one direction in the phononic crystal, acoustic Wannier-Stark ladders are created in the frequency domain. The oscillatory motion of an incident Gaussian pulse inside the sample is demonstrated by both simulation and experiment.
Exact analytic flux distributions for two-dimensional solar concentrators.
Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M
2013-07-01
A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers.
Tricritical behavior in a two-dimensional field theory
Hamber, Herbert
1980-05-01
The critical behavior of a two-dimensional scalar Euclidean field theory with a potential term that allows for three minima is analyzed using an approximate position-space renormalization-group transformation on the equivalent quantum spin Hamiltonian. The global phase diagram shows a tricritical point separating a critical line from a line of first-order transitions. Other critical properties are examined, and good agreement is found with results on classical spin models belonging to the same universality class.
Quantum entanglement in a two-dimensional ion trap
Institute of Scientific and Technical Information of China (English)
王成志; 方卯发
2003-01-01
In this paper, we investigate the quantum entanglement in a two-dimensional ion trap system. We discuss the quantum entanglement between the ion and phonons by using reduced entropy, and that between two degrees of freedom of the vibrational motion along x and y directions by using quantum relative entropy. We discuss also the influence of initial state of the system on the quantum entanglement and the relation between two entanglements in the trapped ion system.
Coll Positioning systems: a two-dimensional approach
Ferrando, J J
2006-01-01
The basic elements of Coll positioning systems (n clocks broadcasting electromagnetic signals in a n-dimensional space-time) are presented in the two-dimensional case. This simplified approach allows us to explain and to analyze the properties and interest of these relativistic positioning systems. The positioning system defined in flat metric by two geodesic clocks is analyzed. The interest of the Coll systems in gravimetry is pointed out.
Two-dimensional correlation spectroscopy in polymer study
Park, Yeonju; Noda, Isao; Jung, Young Mee
2015-01-01
This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286
Interior design of a two-dimensional semiclassic black hole
Levanony, Dana; 10.1103/PhysRevD.80.084008
2009-01-01
We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. The field equations admit two types of singularities, and their local asymptotic structure is investigated. One of these singularities is found to develop, as a spacelike singularity, inside the black hole. We then study the internal structure of the evaporating black hole from the horizon to the singularity.
Towards a two dimensional model of surface piezoelectricity
Monge Víllora, Oscar
2016-01-01
We want to understand the behaviour of flexoelectricity and surface piezoelectricity and distinguish them in order to go deep into the controversies of the filed. This motivate the construction of a model of continuum flexoelectric theory. The model proposed is a two-dimensional model that integrates the electromechanical equations that include the elastic, dielectric, piezoelectric and flexoelectric effect on a rectangular sample. As the flexoelectric and the surface piezoelectric effects ap...
Velocity Statistics in the Two-Dimensional Granular Turbulence
Isobe, Masaharu
2003-01-01
We studied the macroscopic statistical properties on the freely evolving quasi-elastic hard disk (granular) system by performing a large-scale (up to a few million particles) event-driven molecular dynamics systematically and found that remarkably analogous to an enstrophy cascade process in the decaying two-dimensional fluid turbulence. There are four typical stages in the freely evolving inelastic hard disk system, which are homogeneous, shearing (vortex), clustering and final state. In the...
Statistical study of approximations to two dimensional inviscid turbulence
Energy Technology Data Exchange (ETDEWEB)
Glaz, H.M.
1977-09-01
A numerical technique is developed for studying the ergodic and mixing hypotheses for the dynamical systems arising from the truncated Fourier transformed two-dimensional inviscid Navier-Stokes equations. This method has the advantage of exactly conserving energy and entropy (i.e., total vorticity) in the inviscid case except for numerical error in solving the ordinary differential equations. The development of the mathematical model as an approximation to a real physical (turbulent) flow and the numerical results obtained are discussed.
Static Structure of Two-Dimensional Granular Chain
Institute of Scientific and Technical Information of China (English)
WEN Ping-Ping; LI Liang-Sheng; ZHENG Ning; SHI Qing-Fan
2010-01-01
@@ Static packing structures of two-dimensional granular chains are investigated experimentally.It is shown that the packing density approximates the saturation with the exponential law as the length of chain increases.The packing structures are globally disordered,while the local square crystallization is found by using the radial distribution function.This characteristic phase of chain packing is similar to a liquid crystal state,and has properties between a conventional liquid and solid crystal.
THE DEGENERACY PROBLEM OF TWO-DIMENSIONAL LINEAR RECURRING ARRAYS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The degeneracy degree and degeneracy position sets of a wo-dimensional linear recurrence relation set are characterized. The fact that a linear recurring array is essentially a doubly periodic array is shown. By using the Grbner base theory, a calculation formula for degeneracy degree is given and the existence of a special degeneracy position set is proved. In the present paper, the degeneracy problem of the two-dimensional linear recurring arrays is completely solved.
Observation of a pairing pseudogap in a two-dimensional Fermi gas.
Feld, Michael; Fröhlich, Bernd; Vogt, Enrico; Koschorreck, Marco; Köhl, Michael
2011-11-30
Pairing of fermions is ubiquitous in nature, underlying many phenomena. Examples include superconductivity, superfluidity of (3)He, the anomalous rotation of neutron stars, and the crossover between Bose-Einstein condensation of dimers and the BCS (Bardeen, Cooper and Schrieffer) regime in strongly interacting Fermi gases. When confined to two dimensions, interacting many-body systems show even more subtle effects, many of which are not understood at a fundamental level. Most striking is the (as yet unexplained) phenomenon of high-temperature superconductivity in copper oxides, which is intimately related to the two-dimensional geometry of the crystal structure. In particular, it is not understood how the many-body pairing is established at high temperature, and whether it precedes superconductivity. Here we report the observation of a many-body pairing gap above the superfluid transition temperature in a harmonically trapped, two-dimensional atomic Fermi gas in the regime of strong coupling. Our measurements of the spectral function of the gas are performed using momentum-resolved photoemission spectroscopy, analogous to angle-resolved photoemission spectroscopy in the solid state. Our observations mark a significant step in the emulation of layered two-dimensional strongly correlated superconductors using ultracold atomic gases.
Directory of Open Access Journals (Sweden)
Hsu Kimberly K
2005-06-01
Full Text Available Abstract Background The analysis of hydrophobic membrane proteins by two-dimensional gel electrophoresis has long been hampered by the concept of inherent difficulty due to solubility issues. We have optimized extraction protocols by varying the detergent composition of the solubilization buffer with a variety of commercially available non-ionic and zwitterionic detergents and detergent-like phospholipids. Results After initial analyses by one-dimensional SDS-PAGE, quantitative two-dimensional analyses of human erythrocyte membranes, mouse liver membranes, and mouse brain membranes, extracted with buffers that included the zwitterionic detergent MEGA 10 (decanoyl-N-methylglucamide and the zwitterionic lipid LPC (1-lauroyl lysophosphatidylcholine, showed selective improvement over extraction with the common 2-DE detergent CHAPS (3 [(3-cholamidopropyldimethylammonio]-1-propanesulfonate. Mixtures of the three detergents showed additive improvements in spot number, density, and resolution. Substantial improvements in the analysis of a brain membrane proteome were observed. Conclusion This study demonstrates that an optimized detergent mix, coupled with rigorous sample handling and electrophoretic protocols, enables simple and effective analysis of membrane proteomes using two-dimensional electrophoresis.
Two-Dimensional Identification of Fetal Tooth Germs.
Seabra, Mariana; Vaz, Paula; Valente, Francisco; Braga, Ana; Felino, António
2017-03-01
To demonstrate the efficiency and applicability of two-dimensional ultrasonography in the identification of tooth germs and in the assessment of potential pathology. Observational, descriptive, cross-sectional study. Prenatal Diagnosis Unit of Centro Hospitalar de Vila Nova de Gaia / Espinho-Empresa Pública in Portugal. A total of 157 white pregnant women (median age, 32 years; range, 14 to 47 years) undergoing routine ultrasound exams. Description of the fetal tooth germs, as visualized by two-dimensional ultrasonography, including results from prior fetal biometry and detailed screening for malformations. In the first trimester group, ultrasonography identified 10 tooth germs in the maxilla and 10 tooth germs in the mandible in all fetuses except for one who presented eight maxillary tooth germs. This case was associated with a chromosomal abnormality (trisomy 13) with a bilateral cleft palate. In the second and third trimesters group, ultrasonography identified a larger range of tooth germs: 81.2% of fetuses showed 10 tooth germs in the maxilla and 85.0% of fetuses had 10 tooth germs in the mandible. Hypodontia was more prevalent in the maxilla than in the mandible, which led us to use qualitative two-dimensional ultrasonography to analyze the possible association between hypodontia and other variables such as fetal pathology, markers, head, nuchal, face, and spine. We recommend using this method as the first exam to evaluate fetal morphology and also to help establish accurate diagnosis of abnormalities in pregnancy.
Electromagnetically induced two-dimensional grating assisted by incoherent pump
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn
2017-04-25
We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.
a First Cryptosystem for Security of Two-Dimensional Data
Mishra, D. C.; Sharma, Himani; Sharma, R. K.; Kumar, Naveen
In this paper, we present a novel technique for security of two-dimensional data with the help of cryptography and steganography. The presented approach provides multilayered security of two-dimensional data. First layer security was developed by cryptography and second layer by steganography. The advantage of steganography is that the intended secret message does not attract attention to itself as an object of scrutiny. This paper proposes a novel approach for encryption and decryption of information in the form of Word Data (.doc file), PDF document (.pdf file), Text document, Gray-scale images, and RGB images, etc. by using Vigenere Cipher (VC) associated with Discrete Fourier Transform (DFT) and then hiding the data behind the RGB image (i.e. steganography). Earlier developed techniques provide security of either PDF data, doc data, text data or image data, but not for all types of two-dimensional data and existing techniques used either cryptography or steganography for security. But proposed approach is suitable for all types of data and designed for security of information by cryptography and steganography. The experimental results for Word Data, PDF document, Text document, Gray-scale images and RGB images support the robustness and appropriateness for secure transmission of these data. The security analysis shows that the presented technique is immune from cryptanalytic. This technique further provides security while decryption as a check on behind which RGB color the information is hidden.
Two-dimensional capillary electrophoresis using tangentially connected capillaries.
Sahlin, Eskil
2007-06-22
A novel type of fused silica capillary system is described where channels with circular cross-sections are tangentially in contact with each other and connected through a small opening at the contact area. Since the channels are not crossing each other in the same plane, the capillaries can easily be filled with different solutions, i.e. different solutions will be in contact with each other at the contact point. The system has been used to perform different types of two-dimensional separations and the complete system is fully automated where a high voltage switch is used to control the location of the high voltage in the system. Using two model compounds it is demonstrated that a type of two-dimensional separation can be performed using capillary zone electrophoresis at two different pH values. It is also shown that a compound with acid/base properties can be concentrated using a dynamic pH junction mechanism when transferred from the first separation to the second separation. In addition, the system has been used to perform a comprehensive two-dimensional capillary electrophoresis separation of tryptic digest of bovine serum albumin using capillary zone electrophoresis followed by micellar electrokinetic chromatography.
A Two-dimensional Magnetohydrodynamics Scheme for General Unstructured Grids
Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.
2007-05-01
We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALEs). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of divB by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for which multidimensional radiation magnetohydrodynamics (RMHD) is relevant.
Procedures for two-dimensional electrophoresis of proteins
Energy Technology Data Exchange (ETDEWEB)
Tollaksen, S.L.; Giometti, C.S.
1996-10-01
High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.
A two-dimensional analytical model of petroleum vapor intrusion
Yao, Yijun; Verginelli, Iason; Suuberg, Eric M.
2016-02-01
In this study we present an analytical solution of a two-dimensional petroleum vapor intrusion model, which incorporates a steady-state diffusion-dominated vapor transport in a homogeneous soil and piecewise first-order aerobic biodegradation limited by oxygen availability. This new model can help practitioners to easily generate two-dimensional soil gas concentration profiles for both hydrocarbons and oxygen and estimate hydrocarbon indoor air concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics and building features. The soil gas concentration profiles generated by this new model are shown in good agreement with three-dimensional numerical simulations and two-dimensional measured soil gas data from a field study. This implies that for cases involving diffusion dominated soil gas transport, steady state conditions and homogenous source and soil, this analytical model can be used as a fast and easy-to-use risk screening tool by replicating the results of 3-D numerical simulations but with much less computational effort.
Strongly correlated two-dimensional plasma explored from entropy measurements.
Kuntsevich, A Y; Tupikov, Y V; Pudalov, V M; Burmistrov, I S
2015-06-23
Charged plasma and Fermi liquid are two distinct states of electronic matter intrinsic to dilute two-dimensional electron systems at elevated and low temperatures, respectively. Probing their thermodynamics represents challenge because of lack of an adequate technique. Here, we report a thermodynamic method to measure the entropy per electron in gated structures. Our technique appears to be three orders of magnitude superior in sensitivity to a.c. calorimetry, allowing entropy measurements with only 10(8) electrons. This enables us to investigate the correlated plasma regime, previously inaccessible experimentally in two-dimensional electron systems in semiconductors. In experiments with clean two-dimensional electron system in silicon-based structures, we traced entropy evolution from the plasma to Fermi liquid regime by varying electron density. We reveal that the correlated plasma regime can be mapped onto the ordinary non-degenerate Fermi gas with an interaction-enhanced temperature-dependent effective mass. Our method opens up new horizons in studies of low-dimensional electron systems.
Augmented reality simulator for training in two-dimensional echocardiography.
Weidenbach, M; Wick, C; Pieper, S; Quast, K J; Fox, T; Grunst, G; Redel, D A
2000-02-01
In two-dimensional echocardiography the sonographer must synthesize multiple tomographic slices into a mental three-dimensional (3D) model of the heart. Computer graphics and virtual reality environments are ideal to visualize complex 3D spatial relationships. In augmented reality (AR) applications, real and virtual image data are linked, to increase the information content. In the presented AR simulator a 3D surface model of the human heart is linked with echocardiographic volume data sets. The 3D echocardiographic data sets are registered with the heart model to establish spatial and temporal congruence. The heart model, together with an animated ultrasound sector represents a reference scenario, which displays the currently selected two-dimensional echocardiographic cutting plane calculated from the volume data set. Modifications of the cutting plane within the echocardiographic data are transferred and visualized simultaneously and in real time within the reference scenario. The trainee can interactively explore the 3D heart model and the registered 3D echocardiographic data sets by an animated ultrasound probe, whose position is controlled by an electromagnetic tracking system. The tracking system is attached to a dummy transducer and placed on a plastic puppet to give a realistic impression of a two-dimensional echocardiographic examination.
Experimental realization of two-dimensional boron sheets.
Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui
2016-06-01
A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp(2) hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.
Two-dimensional oxides: multifunctional materials for advanced technologies.
Pacchioni, Gianfranco
2012-08-13
The last decade has seen spectacular progress in the design, preparation, and characterization down to the atomic scale of oxide ultrathin films of few nanometers thickness grown on a different material. This has paved the way towards several sophisticated applications in advanced technologies. By playing around with the low-dimensionality of the oxide layer, which sometimes leads to truly two-dimensional systems, one can exploit new properties and functionalities that are not present in the corresponding bulk materials or thick films. In this review we provide some clues about the most recent advances in the design of these systems based on modern electronic structure theory and on their preparation and characterization with specifically developed growth techniques and analytical methods. We show how two-dimensional oxides can be used in mature technologies by providing added value to existing materials, or in new technologies based on completely new paradigms. The fields in which two-dimensional oxides are used are classified based on the properties that are exploited, chemical or physical. With respect to chemical properties we discuss use of oxide ultrathin films in catalysis, solid oxide fuel cells, gas sensors, corrosion protection, and biocompatible materials; regarding the physical properties we discuss metal-oxide field effect transistors and memristors, spintronic devices, ferroelectrics and thermoelectrics, and solar energy materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
D. A. Fetisov
2015-01-01
Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved
Jo, Ju-Yeon; Tanimura, Yoshitaka
2016-01-01
Frequency-domain two-dimensional Raman signals, which are equivalent to coherent two-dimensional Raman scattering (COTRAS) signals, for liquid water and carbon tetrachloride were calculated using an equilibrium-nonequilibrium hybrid MD simulation algorithm. We elucidate mechanisms governing the 2D signal pro?les involving anharmonic mode-mode coupling and the nonlinearities of the polarizability for the intermolecular and intramolecular vibrational modes. The predicted signal pro?les and intensities can be utilized to analyze recently developed single-beam 2D spectra, whose signals are generated from a coherently controlled pulse, allowing the single-beam measurement to be carried out more efficiently.
Quantum State Transfer in a Two-dimensional Regular Spin Lattice of Triangular Shape
Miki, Hiroshi; Vinet, Luc; Zhedanov, Alexei
2012-01-01
Quantum state transfer in a triangular domain of a two-dimensional, equally-spaced, spin lat- tice with non-homogeneous nearest-neighbor couplings is analyzed. An exact solution of the one- excitation dynamics is provided in terms of 2-variable Krawtchouk orthogonal polynomials that have been recently defined. The probability amplitude for an excitation to transit from one site to another is given. For some values of the parameters, perfect transfer is shown to take place from the apex of the lattice to the boundary hypotenuse.
Observation of particle pairing in a two-dimensional plasma crystal
Zhdanov, S K; Nosenko, V; Thomas, H M; Morfill, G E
2013-01-01
The observation is presented of naturally occurring pairing of particles and their cooperative drift in a two-dimensional plasma crystal. A single layer of plastic microspheres was suspended in the plasma sheath of a capacitively coupled rf discharge in argon at a low pressure of 1 Pa. The particle dynamics were studied by combining the top-view and side-view imaging of the suspension. Cross analysis of the particle trajectories allowed us to identify naturally occurring metastable pairs of particles. The lifetime of pairs was long enough for their reliable identification.
Two-dimensional dynamics of a free molecular chain with a secondary structure
DEFF Research Database (Denmark)
Zolotaryuk, Alexander; Christiansen, Peter Leth; Savin, A.V.
1996-01-01
A simple two-dimensional (2D) model of an isolated (free) molecular chain with primary and secondary structures has been suggested and investigated both analytically and numerically. This model can be considered as the simplest generalization of the well-known Fermi-Pasta-Ulam model...... of an anharmonic chain in order to include transverse degrees of freedom of the chain molecules. Both the structures are provided by the first- and second-neighbor intermolecular bonds, respectively, resulting in a regular zig-zag (''20 helix'') chain on a plane. The set of two coupled nonlinear field equations...
p-wave superconductivity in a two-dimensional generalized Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Millan, J. Samuel [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70-360, 04510, Mexico D.F. (Mexico); Facultad de Ingenieria, UNACAR, 24180, Cd. de Carmen, Campeche (Mexico); Perez, Luis A. [Instituto de Fisica, UNAM, Apartado Postal 20-364, 01000, Mexico D.F. (Mexico); Wang Chumin [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70-360, 04510, Mexico D.F. (Mexico)]. E-mail: chumin@servidor.unam.mx
2005-02-21
In this Letter, we consider a two-dimensional Hubbard model that includes a second-neighbor correlated hopping interaction, and we find a triplet p-wave superconducting ground state within the BCS formalism. A small distortion of the square-lattice right angles is introduced in order to break the degeneracy of kx+/-ky oriented p-wave pairing states. For the strong coupling limit, analytical results are obtained. An analysis of the superconducting critical temperature reveals the existence of an optimal electron density and the gap ratio exhibits a non-BCS behavior. Finally, the particular case of strontium ruthenate is examined.