WorldWideScience

Sample records for two-dimensional computational fluid

  1. Two-dimensional intraventricular flow pattern visualization using the image-based computational fluid dynamics.

    Science.gov (United States)

    Doost, Siamak N; Zhong, Liang; Su, Boyang; Morsi, Yosry S

    2017-04-01

    The image-based computational fluid dynamics (IB-CFD) technique, as the combination of medical images and the CFD method, is utilized in this research to analyze the left ventricle (LV) hemodynamics. The research primarily aims to propose a semi-automated technique utilizing some freely available and commercial software packages in order to simulate the LV hemodynamics using the IB-CFD technique. In this research, moreover, two different physiological time-resolved 2D models of a patient-specific LV with two different types of aortic and mitral valves, including the orifice-type valves and integrated with rigid leaflets, are adopted to visualize the process of developing intraventricular vortex formation and propagation. The blood flow pattern over the whole cardiac cycle of two models is also compared to investigate the effect of utilizing different valve types in the process of the intraventricular vortex formation. Numerical findings indicate that the model with integrated valves can predict more complex intraventricular flow that can match better the physiological flow pattern in comparison to the orifice-type model.

  2. Calculation of wall shear stress in left coronary artery bifurcation for pulsatile flow using two-dimensional computational fluid dynamics.

    Science.gov (United States)

    Smith, Sahid; Austin, Shawn; Wesson, G Dale; Moore, Carl A

    2006-01-01

    The onset of coronary heart disease may be governed by distribution and magnitude of hemodynamic shear stress in the coronary arteries. This study numerically examines pulsatile blood flow through the left coronary artery system. A triphasic waveform is employed to simulate pulsating flow. Five non-Newtonian models, as well as the usual Newtonian model, are used to describe the viscous shear-thinning behavior of blood. It is concluded that when using computational fluid dynamics (CFD) to numerically investigate blood velocity profiles within small arteries, such the coronary artery system examined in this work, great care should be taken in choosing a blood viscosity model. It is suggested that the generalized power law model be the viscous shear thinning model of choice. When using CFD to investigate only patterns of wall shear stresses, the model selection is not as crucial and the simple Newtonian model will suffice but when the magnitude of WSS is of great importance, as in the case of the determining the development of coronary artery disease, the model selection is key.

  3. 1/f noise in two-dimensional fluids

    International Nuclear Information System (INIS)

    Cable, S.B.; Tajima, T.

    1994-10-01

    We derive an exact result on the velocity fluctuation power spectrum of an incompressible two-dimensional fluid. Employing the fluctuation-dissipation relationship and the enstrophy conversation, we obtain the frequency spectrum of a 1/f form

  4. Development of two-dimensional lattice Boltzmann code DG2LBM for computational fluid dynamic problems in nuclear reactor safety component design

    International Nuclear Information System (INIS)

    Park, Jong Woon

    2012-01-01

    A 2-dimensional computational fluid dynamic analysis program DG2LBM by using Lattice Boltzmann Equation (LBE) with momentum exchange boundary conditions is developed and it is applied to a feasibility study of nuclear reactor safety component such as a reactor building floor weir (RBFW), a simple as well as an effective option to sediment particulate materials generated after loss of coolant accident of a nuclear power plant and. The program is benchmarked against a standard problem of a flow past a cylinder at relatively low Reynolds numbers, the RBFW is simulated for diverse parametric conditions such as height, inclination angle, number of weirs (1 or 2) and the distance between two weirs. The weir performance is measured by the area of quiescent and/or downward reverse flow region where particles have more chance to sediment. It is found a wake causing reverse downward flow behind the weir mainly contributes to generating the quiescent flow region. And the most effective option in terms of particle sedimentation performance is found to be relatively tall double weirs separated by 2 weir heights. (orig.)

  5. Two-dimensional colloidal fluids exhibiting pattern formation.

    Science.gov (United States)

    Chacko, Blesson; Chalmers, Christopher; Archer, Andrew J

    2015-12-28

    Fluids with competing short range attraction and long range repulsive interactions between the particles can exhibit a variety of microphase separated structures. We develop a lattice-gas (generalised Ising) model and analyse the phase diagram using Monte Carlo computer simulations and also with density functional theory (DFT). The DFT predictions for the structures formed are in good agreement with the results from the simulations, which occur in the portion of the phase diagram where the theory predicts the uniform fluid to be linearly unstable. However, the mean-field DFT does not correctly describe the transitions between the different morphologies, which the simulations show to be analogous to micelle formation. We determine how the heat capacity varies as the model parameters are changed. There are peaks in the heat capacity at state points where the morphology changes occur. We also map the lattice model onto a continuum DFT that facilitates a simplification of the stability analysis of the uniform fluid.

  6. Quantum computation with two-dimensional graphene quantum dots

    International Nuclear Information System (INIS)

    Li Jie-Sen; Li Zhi-Bing; Yao Dao-Xin

    2012-01-01

    We study an array of graphene nano sheets that form a two-dimensional S = 1/2 Kagome spin lattice used for quantum computation. The edge states of the graphene nano sheets are used to form quantum dots to confine electrons and perform the computation. We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots. It is shown that both schemes contain a great amount of information for quantum computation. The corresponding gate operations are also proposed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Fluid dynamics of two-dimensional pollination in Ruppia maritima

    Science.gov (United States)

    Musunuri, Naga; Bunker, Daniel; Pell, Susan; Pell, Fischer; Singh, Pushpendra

    2016-11-01

    The aim of this work is to understand the physics underlying the mechanisms of two-dimensional aquatic pollen dispersal, known as hydrophily. We observed two mechanisms by which the pollen released from male inflorescences of Ruppia maritima is adsorbed on a water surface: (i) inflorescences rise above the surface and after they mature their pollen mass falls onto the surface as clumps and disperses on the surface; (ii) inflorescences remain below the surface and produce air bubbles which carry their pollen mass to the surface where it disperses. In both cases dispersed pollen masses combined under the action of capillary forces to form pollen rafts. This increases the probability of pollination since the capillary force on a pollen raft towards a stigma is much larger than on a single pollen grain. The presence of a trace amount of surfactant can disrupt the pollination process so that the pollen is not transported or captured on the water surface. National Science Foundation.

  8. Vortex Thermometry for Turbulent Two-Dimensional Fluids.

    Science.gov (United States)

    Groszek, Andrew J; Davis, Matthew J; Paganin, David M; Helmerson, Kristian; Simula, Tapio P

    2018-01-19

    We introduce a new method of statistical analysis to characterize the dynamics of turbulent fluids in two dimensions. We establish that, in equilibrium, the vortex distributions can be uniquely connected to the temperature of the vortex gas, and we apply this vortex thermometry to characterize simulations of decaying superfluid turbulence. We confirm the hypothesis of vortex evaporative heating leading to Onsager vortices proposed in Phys. Rev. Lett. 113, 165302 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.165302, and we find previously unidentified vortex power-law distributions that emerge from the dynamics.

  9. Vortex Thermometry for Turbulent Two-Dimensional Fluids

    Science.gov (United States)

    Groszek, Andrew J.; Davis, Matthew J.; Paganin, David M.; Helmerson, Kristian; Simula, Tapio P.

    2018-01-01

    We introduce a new method of statistical analysis to characterize the dynamics of turbulent fluids in two dimensions. We establish that, in equilibrium, the vortex distributions can be uniquely connected to the temperature of the vortex gas, and we apply this vortex thermometry to characterize simulations of decaying superfluid turbulence. We confirm the hypothesis of vortex evaporative heating leading to Onsager vortices proposed in Phys. Rev. Lett. 113, 165302 (2014), 10.1103/PhysRevLett.113.165302, and we find previously unidentified vortex power-law distributions that emerge from the dynamics.

  10. Computational Fluid Dynamics

    International Nuclear Information System (INIS)

    Myeong, Hyeon Guk

    1999-06-01

    This book deals with computational fluid dynamics with basic and history of numerical fluid dynamics, introduction of finite volume method using one-dimensional heat conduction equation, solution of two-dimensional heat conduction equation, solution of Navier-Stokes equation, fluid with heat transport, turbulent flow and turbulent model, Navier-Stokes solution by generalized coordinate system such as coordinate conversion, conversion of basic equation, program and example of calculation, application of abnormal problem and high speed solution of numerical fluid dynamics.

  11. Topology as fluid geometry two-dimensional spaces, volume 2

    CERN Document Server

    Cannon, James W

    2017-01-01

    This is the second of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. The second volume deals with the topology of 2-dimensional spaces. The attempts encountered in Volume 1 to understand length and area in the plane lead to examples most easily described by the methods of topology (fluid geometry): finite curves of infinite length, 1-dimensional curves of positive area, space-filling curves (Peano curves), 0-dimensional subsets of the plane through which no straight path can pass (Cantor sets), etc. Volume 2 describes such sets. All of the standard topological results about 2-dimensional spaces are then proved, such as the Fundamental Theorem of Algebra (two...

  12. Integral equation and thermodynamic perturbation theory for a two-dimensional model of dimerising fluid.

    Science.gov (United States)

    Urbic, Tomaz

    2017-02-01

    In this paper we applied an analytical theory for the two dimensional dimerising fluid. We applied Wertheims thermodynamic perturbation theory (TPT) and integral equation theory (IET) for associative liquids to the dimerising model with arbitrary position of dimerising points from center of the particles. The theory was used to study thermodynamical and structural properties. To check the accuracy of the theories we compared theoretical results with corresponding results obtained by Monte Carlo computer simulations. The theories are accurate for the different positions of patches of the model at all values of the temperature and density studied. IET correctly predicts the pair correlation function of the model. Both TPT and IET are in good agreement with the Monte Carlo values of the energy, pressure, chemical potential, compressibility and ratios of free and bonded particles.

  13. Directional change of fluid particles in two-dimensional turbulence and of football players

    Science.gov (United States)

    Kadoch, Benjamin; Bos, Wouter J. T.; Schneider, Kai

    2017-06-01

    Multiscale directional statistics are investigated in two-dimensional incompressible turbulence. It is shown that the short-time behavior of the mean angle of directional change of fluid particles is linearly dependent on the time lag and that no inertial range behavior is observed in the directional change associated with the enstrophy-cascade range. In simulations of the inverse-cascade range, the directional change shows a power law behavior at inertial range time scales. By comparing the directional change in space-periodic and wall-bounded flow, it is shown that the probability density function of the directional change at long times carries the signature of the confinement. The geometrical origin of this effect is validated by Monte Carlo simulations. The same effect is also observed in the directional statistics computed from the trajectories of football players (soccer players in American English).

  14. One- and two-dimensional fluids properties of smectic, lamellar and columnar liquid crystals

    CERN Document Server

    Jakli, Antal

    2006-01-01

    Smectic and lamellar liquid crystals are three-dimensional layered structures in which each layer behaves as a two-dimensional fluid. Because of their reduced dimensionality they have unique physical properties and challenging theoretical descriptions, and are the subject of much current research. One- and Two-Dimensional Fluids: Properties of Smectic, Lamellar and Columnar Liquid Crystals offers a comprehensive review of these phases and their applications. The book details the basic structures and properties of one- and two-dimensional fluids and the nature of phase transitions. The later chapters consider the optical, magnetic, and electrical properties of special structures, including uniformly and non-uniformly aligned anisotropic films, lyotropic lamellar systems, helical and chiral structures, and organic anisotropic materials. Topics also include typical and defective features, magnetic susceptibility, and electrical conductivity. The book concludes with a review of current and potential applications ...

  15. Semiclassical statistical mechanics of two-dimensional hard-body fluids.

    Science.gov (United States)

    Karki, Shanker S; Karki, Bimal P; Dey, Tarun K; Sinha, Suresh K

    2005-01-01

    The problem of calculating the thermodynamic properties of two-dimensional semiclassical hard-body fluids is studied. Explicit expressions are given for the first-order quantum corrections to the free energy, equation of state, and virial coefficients. The numerical results are calculated for the planar hard dumbbell fluid. Significant features are the increase in quantum corrections with increasing eta and increasing L*=L/sigma(0). (c) 2005 American Institute of Physics.

  16. A two-dimensional numerical model of two-phase heat transfer and fluid flow in a kettle reboiler

    International Nuclear Information System (INIS)

    Edwards, D.P.; Jensen, M.K.

    1991-01-01

    This paper reports on a numerical model that has been developed to predict the two-dimensional, two-phase flow in a kettle reboiler using a finite difference computer code. The effects of bundle-averaged heat flux, heat transfer mode, weir height, and reboiler size were examined. The recirculation flow rate in the kettle reboiler was found to be strongly dependent upon the bundle-averaged heat flux; the recirculating flow increased with increasing heat flux, reached a plateau, and then decreased with further increases in the heat flux. Differences between the constant wall heat flux and constant wall temperature modes of heat transfer were minimal. The model is an improvement over previous one- and two-dimensional models because; the location of the recirculation center could be predicted, the model included the horizontal flow components within the tube bundle, and the model employed a two-fluid rather than a homogeneous fluid model

  17. The planiverse computer contact with a two-dimensional world

    CERN Document Server

    Dewdney, Alexander Keewatin

    2000-01-01

    When The Planiverse ?rst appeared 16 years ago, it caught more than a few readers off guard. The line between willing suspension of dis- lief and innocent acceptance, if it exists at all, is a thin one. There were those who wanted to believe, despite the tongue-in-cheek subtext, that we had made contact with a two-dimensional world called Arde, a di- shaped planet embedded in the skin of a vast, balloon-shaped space called the planiverse. It is tempting to imagine that those who believed, as well as those who suspended disbelief, did so because of a persuasive consistency in the cosmology and physics of this in?nitesimally thin universe, and x preface to the millennium edition in its bizarre but oddly workable organisms. This was not just your r- of-the-mill universe fashioned out of the whole cloth of wish-driven imagination. The planiverse is a weirder place than that precisely - cause so much of it was “worked out” by a virtual team of scientists and technologists. Reality, even the pseudoreality of su...

  18. [Establishment of two-dimensional differential gel electrophoresis using cerebrospinal fluid from neurocysticercosis patients].

    Science.gov (United States)

    Li, Jing-Yi; Tian, Xiao-Jun; Huang, Yong; Yang, Yan-Jun; Ma, Qiao-Rong; Xue, Yan-Ping

    2008-06-30

    To establish the method of two-dimensional differential gel electrophoresis and obtain high resolution 2D images from cerebrospinal fluid (CSF) of patients with neurocysticercosis. CSF samples were collected from four patients diagnosed as neurocysticercosis clinically and by ELISA, computed tomography (CT) or magnetic resonance imaging (MRI), and from four healthy subjects without neurological disorders. The CSF samples were precipitated with cold acetone, then pooled by equal amount as patients and controls. The internal standard comprised equal amounts of proteins extracted from both groups. Internal standard, and proteins from the two groups were labeled prior to electrophoresis with spectrally resolvable fluorescent dyes, cyanein dye2 (Cy2), Cy3 and Cy5. Sodium dodecylsulfonate polyacrylamide gel chromatography (SDS-PAGE) and two-dimensional differential in-gel electrophoresis (2-D DIGE) of labeled samples were then run. The differential expressed proteins showed in the images of SDS-PAGE and 2-D DIGE gels scanned with 488 nm, 532 nm and 633 nm wavelength laser were analyzed by ImageQuant and DeCyde 5.0 respectively. Spot detection and quantification was performed for the differential in-gel analysis (DIA) module of DeCyder. Biological variation analysis (BVA) module of DeCyder was matched gel 1 and gel 2 images to provide data on differential protein expression levels between the two groups. The ImageQuant result displayed that the CSF protein was compatible with the dye, and the difference of protein amount was revealed by the difference of fluorescence intensity. DIA indicated that there were 896 and 894 protein dots on gel 1 and gel 2 respectively, and 90% of them were matched each other. BVA showed that there were 55 protein spots with different expressional level between neurocysticercosis and control groups. Protein spots with two-fold increase or decrease were 47 and 8 respectively in neurocysticercosis patients compared with healthy controls. The

  19. Multigrid Computation of Stratified Flow over Two-Dimensional Obstacles

    Science.gov (United States)

    Paisley, M. F.

    1997-09-01

    A robust multigrid method for the incompressible Navier-Stokes equations is presented and applied to the computation of viscous flow over obstacles in a bounded domain under conditions of neutral stability and stable density stratification. Two obstacle shapes have been used, namely a vertical barrier, for which the grid is Cartesian, and a smooth cosine-shaped obstacle, for which a boundary-conforming transformation is incorporated. Results are given for laminar flows at low Reynolds numbers and turbulent flows at a high Reynolds number, when a simple mixing length turbulence model is included. The multigrid algorithm is used to compute steady flows for each obstacle at low and high Reynolds numbers in conditions of weak static stability, defined byK=ND/πU≤ 1, whereU,N, andDare the upstream velocity, bouyancy frequency, and domain height respectively. Results are also presented for the vertical barrier at low and high Reynolds number in conditions of strong static stability,K> 1, when lee wave motions ensure that the flow is unsteady, and the multigrid algorithm is used to compute the flow at each timestep.

  20. Classification of integrable two-dimensional models of relativistic field theory by means of computer

    International Nuclear Information System (INIS)

    Getmanov, B.S.

    1988-01-01

    The results of classification of two-dimensional relativistic field models (1) spinor; (2) essentially-nonlinear scalar) possessing higher conservation laws using the system of symbolic computer calculations are presented shortly

  1. STRUYA a code for two-dimensional fluid flow analysis with and without structure coupling

    International Nuclear Information System (INIS)

    Katz, F.W.; Schlechtendahl, E.G.; Stoelting, K.

    1979-11-01

    STRUYA is a code for two-dimensional subsonic and supersonic flow analysis. Both Eulerian and Lagrangian grids are allowed. In the third dimension the flow domain may be bounded by a moving wall. The wall movement may be prescribed in a time-and space varying way or computed by a structural model. STRUYA offers a general scheme for adapting various structural models. As a standard feature it includes a cylindrical shell model (CYLDY2). (orig.) [de

  2. Analysis of two-dimensional flow of epoxy fluids through woven glass fabric

    International Nuclear Information System (INIS)

    Schutz, J.B.; Smith, K.B.

    1997-01-01

    Fabrication of magnet coils for the International Thermonuclear Experimental Reactor will require vacuum pressure impregnation of epoxy resin into the glass fabric of the insulation system. Flow of a fluid through a packed bed of woven glass fabric is extremely complicated, and semiempirical methods must be used to analyze these flows. The previous one-dimensional model has been modified for analysis of two-dimensional isotropic flow of epoxy resins through woven glass fabric. Several two-dimensional flow experiments were performed to validate the analysis, and to determine permeabilities of several fabric weave types. The semiempirical permeability is shown to be a characteristic of the fabric weave, and once determined, may be used to analyze flow of fluids of differing viscosities. Plain weave has a lower permeability than satin weave fabric, possibly due to the increased tortuosity of the preferential flow paths along fiber tows. A flow radius of approximately 2 meters through satin weave fabric is predicted for fluid viscosities of 0.10 Pa s (100 cps) in 20 hours, characteristic of VPI resins

  3. Quasi-two-dimensional turbulence in shallow fluid layers: the role of bottom friction and fluid layer depth.

    Science.gov (United States)

    Clercx, H J H; van Heijst, G J F; Zoeteweij, M L

    2003-06-01

    The role of bottom friction and the fluid layer depth in numerical simulations and experiments of freely decaying quasi-two-dimensional turbulence in shallow fluid layers has been investigated. In particular, the power-law behavior of the compensated kinetic energy E0(t)=E(t)e(2lambda t), with E(t) the total kinetic energy of the flow and lambda the bottom-drag coefficient, and the compensated enstrophy Omega(0)(t)=Omega(t)e(2lambda t), with Omega(t) the total enstrophy of the flow, have been studied. We also report on the scaling exponents of the ratio Omega(t)/E(t), which is considered as a measure of the characteristic length scale in the flow, for different values of lambda. The numerical simulations on square bounded domains with no-slip boundaries revealed bottom-friction independent power-law exponents for E0(t), Omega(0)(t), and Omega(t)/E(t). By applying a discrete wavelet packet transform technique to the numerical data, we have been able to compute the power-law exponents of the average number density of vortices rho(t), the average vortex radius a(t), the mean vortex separation r(t), and the averaged normalized vorticity extremum omega(ext)(t)/square root E(t). These decay exponents proved to be independent of the bottom friction as well. In the experiments we have varied the fluid layer depth, and it was found that the decay exponents of E0(t), Omega(0)(t), Omega(t)/E(t), and omega(ext)(t)/square root E(t) are virtually independent of the fluid layer depth. The experimental data for rho(t) and a(t) are less conclusive; power-law exponents obtained for small fluid layer depths agree with those from previously reported experiments, but significantly larger power-law exponents are found for experiments with larger fluid layer depths.

  4. Epi-Two-Dimensional Fluid Flow: A New Topological Paradigm for Dimensionality.

    Science.gov (United States)

    Yoshida, Z; Morrison, P J

    2017-12-15

    While a variety of fundamental differences are known to separate two-dimensional (2D) and three-dimensional (3D) fluid flows, it is not well understood how they are related. Conventionally, dimensional reduction is justified by an a priori geometrical framework; i.e., 2D flows occur under some geometrical constraint such as shallowness. However, deeper inquiry into 3D flow often finds the presence of local 2D-like structures without such a constraint, where 2D-like behavior may be identified by the integrability of vortex lines or vanishing local helicity. Here we propose a new paradigm of flow structure by introducing an intermediate class, termed epi-two-dimensional flow, and thereby build a topological bridge between 2D and 3D flows. The epi-2D property is local and is preserved in fluid elements obeying ideal (inviscid and barotropic) mechanics; a local epi-2D flow may be regarded as a "particle" carrying a generalized enstrophy as its charge. A finite viscosity may cause "fusion" of two epi-2D particles, generating helicity from their charges giving rise to 3D flow.

  5. Complex of two-dimensional multigroup programs for neutron-physical computations of nuclear reactor

    International Nuclear Information System (INIS)

    Karpov, V.A.; Protsenko, A.N.

    1975-01-01

    Briefly stated mathematical aspects of the two-dimensional multigroup method of neutron-physical computation of nuclear reactor. Problems of algorithmization and BESM-6 computer realisation of multigroup diffuse approximations in hexagonal and rectangular calculated lattices are analysed. The results of computation of fast critical assembly having complicated composition of the core are given. The estimation of computation accuracy of criticality, neutron fields distribution and efficiency of absorbing rods by means of computer programs developed is done. (author)

  6. Two-dimensional convection and interchange motions in fluids and magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Bian, N.H.; Naulin, V.

    2006-01-01

    In this contribution some recent investigations of two- dimensional thermal convection relevant to ordinary fluids as well as magnetized plasmas are reviewed. An introductory discussion is given of the physical mechanism for baroclinic vorticity generation and convective motions in stratified...... fluids, emphasizing its relation to interchange motions of non- uniformly magnetized plasmas. This is followed by a review of the theories for the onset of convection and quasi-linear saturation in driven-dissipative systems. Non-linear numerical simulations which result in stationary convective states...... reveal the process of laminar scalar gradient expulsion, leading to the formation of temperature plumes and vorticity sheets. These dissipative structures are demonstrated to result in temperature profile consistency and power law transport scaling far from the threshold. The last part of this paper...

  7. Hamiltonian field description of two-dimensional vortex fluids and guiding center plasmas

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1981-03-01

    The equations that describe the motion of two-dimensional vortex fluids and guiding center plasmas are shown to possess underlying field Hamiltonian structure. A Poisson bracket which is given in terms of the vorticity, the physical although noncanonical dynamical variable, casts these equations into Heisenberg form. The Hamiltonian density is the kinetic energy density of the fluid. The well-known conserved quantities are seen to be in involution with respect to this Poisson bracket. Expanding the vorticity in terms of a Fourier-Dirac series transforms the field description given here into the usual canonical equations for discrete vortex motion. A Clebsch potential representation of the vorticity transforms the noncanonical field description into a canonical description

  8. Experimental and computational studies of two-dimensional compressible vortex-shock interaction

    Science.gov (United States)

    Kao, Chun-Teh

    The problem of two-dimensional compressible vortex-shock interaction is studied both experimentally and numerically. On the experimental side, a strong compressible vortex and a shock wave are produced in the open test section of a shock tube. The shock wave of strength M ≈ 1.2 then collides with the vortex that possesses a density drop at the vortex center exceeding 60% of the free stream value. Shadowgraphs and schlieren pictures of the event are taken in a sequence of experiments with progressive time delays. The pictures show that the shock profile is significantly modified by the interaction, with substantial distortion, disconnection, and a local nonlinear focusing structure. In the computational work, both the Euler equations and the Navier-Stokes equations are solved to simulate the problem. Two flux-splitting techniques are employed: (1) first-order-accurate Modified Steger-Warming method and (2) second-order-accurate variable-extrapolation method satisfying the total-variation-diminishing (TVD) condition. Based on the numerical data, the respective behaviors of the vortex, the shock wave, and the secondary wave generated during the interaction are analyzed. The simulation also reveals that the focal region of the distorted shock structure is bounded by a Mach stem and two slipstreams, in which local intensified pressure, density, and temperature peaks occur. It is found that the local intensification of fluid properties and the secondary wave possess essentially nonlinear characteristics at their early stages. The computational results agree well, qualitatively, with the experimental observations.

  9. Integral equation and thermodynamic perturbation theory for a two-dimensional model of chain-forming fluid.

    Science.gov (United States)

    Urbic, Tomaz

    2017-07-01

    In this paper we applied analytical theories for the two dimensional chain-forming fluid. Wertheims thermodynamic perturbation theory (TPT) and integral equation theory (IET) for associative liquids were used to study thermodynamical and structural properties of the chain-forming model. The model has polymerizing points at arbitrary position from center of the particles. Calculated analytical results were tested against corresponding results obtained by Monte Carlo computer simulations to check the accuracy of the theories. The theories are accurate for the different positions of patches of the model at all values of the temperature and density studied. The IET's pair correlation functions of the model agree well with computer simulations. Both TPT and IET are in good agreement with the Monte Carlo values of the energy, chemical potential and ratios of free, once and twice bonded particles.

  10. Multipetal vortex structures in two-dimensional models of geophysical fluid dynamics and plasma

    International Nuclear Information System (INIS)

    Goncharov, V.P.; Pavlov, V.I.

    2001-01-01

    A new class of strongly nonlinear steadily rotating vortices is found. The Hamiltonian contour dynamics is proposed as a new approach for their study in some models of geophysical fluid dynamics and plasma. Using the Euler description as a starting point, we present a systematic procedure to reduce the two-dimensional dynamics of constant-vorticity and constant-density patches to the Hamiltonian dynamics of their contours for various parametrizations of the contour. The special Dirac procedure is used to eliminate the constraints arising in the Hamiltonian formulations with the Lagrangian parametrization of the contour. Numerical estimations illustrating the physical significance of the results and the range of model parameters where these results can be applicable are presented. Possible generalizations of the approach based on the application of the Hamiltonian contour dynamics to nonplanar and 3D flows are discussed

  11. Linear stability analysis of parallel shear flows for an inviscid generalized two-dimensional fluid system

    International Nuclear Information System (INIS)

    Iwayama, T; Sueyoshi, M; Watanabe, T

    2013-01-01

    The linear stability of parallel shear flows for an inviscid generalized two-dimensional (2D) fluid system, the so-called α turbulence system, is studied. This system is characterized by the relation q = −( − Δ) α/2 ψ between the advected scalar q and the stream function ψ. Here, α is a real number not exceeding 3 and q is referred to as the generalized vorticity. In this study, a sufficient condition for linear stability of parallel shear flows is derived using the conservation of wave activity. A stability analysis is then performed for a sheet vortex that violates the stability condition. The instability of a sheet vortex in the 2D Euler system (α = 2) is referred to as a Kelvin–Helmholtz (KH) instability; such an instability for the generalized 2D fluid system is investigated for 0 3−α for 1 < α < 3, where k is the wavenumber of the perturbation. In contrast, for 0 < α ⩽ 1, the growth rate is infinite. In other words, a transition of the growth rate of the perturbation occurs at α = 1. A physical model for KH instability in the generalized 2D fluid system, which can explain the transition of the growth rate of the perturbation at α = 1, is proposed. (paper)

  12. Two-dimensional Turbulence in Symmetric Binary-Fluid Mixtures: Coarsening Arrest by the Inverse Cascade.

    Science.gov (United States)

    Perlekar, Prasad; Pal, Nairita; Pandit, Rahul

    2017-03-21

    We study two-dimensional (2D) binary-fluid turbulence by carrying out an extensive direct numerical simulation (DNS) of the forced, statistically steady turbulence in the coupled Cahn-Hilliard and Navier-Stokes equations. In the absence of any coupling, we choose parameters that lead (a) to spinodal decomposition and domain growth, which is characterized by the spatiotemporal evolution of the Cahn-Hilliard order parameter ϕ, and (b) the formation of an inverse-energy-cascade regime in the energy spectrum E(k), in which energy cascades towards wave numbers k that are smaller than the energy-injection scale kin j in the turbulent fluid. We show that the Cahn-Hilliard-Navier-Stokes coupling leads to an arrest of phase separation at a length scale Lc, which we evaluate from S(k), the spectrum of the fluctuations of ϕ. We demonstrate that (a) Lc ~ LH, the Hinze scale that follows from balancing inertial and interfacial-tension forces, and (b) Lc is independent, within error bars, of the diffusivity D. We elucidate how this coupling modifies E(k) by blocking the inverse energy cascade at a wavenumber kc, which we show is ≃2π/Lc. We compare our work with earlier studies of this problem.

  13. Liquid structure and freezing of the two-dimensional classical electron fluid

    International Nuclear Information System (INIS)

    Ballone, P.; Pastore, G.; Rovere, M.; Tosi, M.P.

    1984-11-01

    Accurate theoretical results are reported for the pair correlation function of the classical two-dimensional electron liquid with r -1 interactions at strong coupling. The approach involves an evaluation of the bridge diagram corrections to the hypernetted-chain approximation, the role of low dimensionality being evident, relative to the case of the three-dimensional classical plasma, in an enhanced sensitivity to long range correlations. The liquid structure results are utilized in a density-wave theory of first-order freezing into the triangular lattice, the calculated coupling strength at freezing being in reasonable agreement with computer simulation results and with data on electron films on a liquid-He surface. The stability of the triangular electron lattice against deformation into a body-centered rectangular lattice is also discussed. (author)

  14. Two-Dimensional and Three-Dimensional Cephalometry Using Cone Beam Computed Tomography Scans.

    Science.gov (United States)

    Cassetta, Michele; Michele, Cassetta; Altieri, Federica; Federica, Altieri; Di Giorgio, Roberto; Roberto, Di Giorgio; Silvestri, Alessandro; Alessandro, Silvestri

    2015-06-01

    Lateral cephalometric radiograph produces a two-dimensional image with several drawbacks. Cone beam computed tomography (CBCT) allows obtaining a three-dimensional representation of the craniofacial structures and seems to overcome the problems of superimposition and magnification, providing more precision than two-dimensional methods. The aim of the current study was to test the intraobserver and interobserver reliability of linear and angular measurements performed on two-dimensional conventional cephalometric images and CBCT-generated cephalograms, and to evaluate if there is a statistically significant difference between the 2 methods of measurements. The sample group consisted of 24 adolescents with a pretreatment digital lateral radiograph and a corresponding CBCT image. A total of 16 cephalometric landmarks were identified and 17 widely used measurements (9 angular and 8 linear) were recorded by 2 independent observers. Intraobserver and interobserver reliability were assessed by calculating Pearson correlation coefficient. Student t-test was used to compare the 2 methods. The threshold for significance was set at P ≤ 0.05.Concerning the intraobserver and interobserver reliability, data showed a statistically significant correlation between all two-dimensional and three-dimensional measurements. The linear and angular measurements of two-dimensional and three-dimensional cephalometry were not statistically different. The results of the current study showed the reliability of both conventional two-dimensional and three-dimensional cephalometry. Linear and angular measurements from CBCT were found also to be similar to conventional measurements. Considering that conventional images deliver the lowest radiation doses to patients, the use of CBCT for orthodontic purposes should be limited.

  15. VNAP2: a computer program for computation of two-dimensional, time-dependent, compressible, turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Cline, M.C.

    1981-08-01

    VNAP2 is a computer program for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow. VNAP2 solves the two-dimensional, time-dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing-length model, a one-equation model, or the Jones-Launder two-equation model. The geometry may be a single- or a dual-flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference-plane-characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free-jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet-powered afterbodies, airfoils, and free-jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.

  16. A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment

    KAUST Repository

    Duddu, Ravindra

    2009-05-01

    We present a two-dimensional biofilm growth model in a continuum framework using an Eulerian description. A computational technique based on the eXtended Finite Element Method (XFEM) and the level set method is used to simulate the growth of the biofilm. The model considers fluid flow around the biofilm surface, the advection-diffusion and reaction of substrate, variable biomass volume fraction and erosion due to the interfacial shear stress at the biofilm-fluid interface. The key assumptions of the model and the governing equations of transport, biofilm kinetics and biofilm mechanics are presented. Our 2D biofilm growth results are in good agreement with those obtained by Picioreanu et al. (Biotechnol Bioeng 69(5):504-515, 2000). Detachment due to erosion is modeled using two continuous speed functions based on: (a) interfacial shear stress and (b) biofilm height. A relation between the two detachment models in the case of a 1D biofilm is established and simulated biofilm results with detachment in 2D are presented. The stress in the biofilm due to fluid flow is evaluated and higher stresses are observed close to the substratum where the biofilm is attached. © 2008 Wiley Periodicals, Inc.

  17. Two-dimensional single fluid MHD simulations of plasma opening switches

    International Nuclear Information System (INIS)

    Roderick, N.F.; Payne, S.S.; Peterkin, R.E. Jr.; Frese, M.H.; Hussey, T.W.

    1989-01-01

    Simulations of plasma opening switch have been made using two-dimensional, single fluid, magnetohydrodynamic codes HAM and MACH2. A variety of mechanisms for magnetic field penetration have been investigated. These include plasma convection, classical and microturbulent resistive diffusion, and Hall effect transport. We find that plasma microturbulent models are necessary to explain the broad current channels observed in experiments. Both heuristic and consistent microturbulent models are able to explain observed channel widths and penetration features. The best results are obtained for a consistent model that includes the Buneman, ion acoustic, and lower hybrid microturbulent collision frequencies and threshold conditions. Maximum microturbulent collision frequencies of 5 ω p , are typical. Field transport and current channel profiles are in excellent agreement with experimental observations for GAMBLE I, GAMBLE II, and SUPERMITE experiments. Dominant field penetration mechanisms and center of mass plasma motion are current and density dependent. Including the Hall effect enhanced field penetration. Center of mass motion is negligible for the GAMBLE I experiments but significant for the GAMBLE II conditions. Scaling of plasma opening time with switch length and density can be fit by linear representations for lengths from 0.03 m to 0.24 m and ion densities from 10 18 m -3 to 1.5 times 10 19 m -3 . 15 refs., 7 figs., 1 tab

  18. Two-dimensional hybrid Monte Carlo–fluid modelling of dc glow discharges: Comparison with fluid models, reliability, and accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Eylenceoğlu, E.; Rafatov, I., E-mail: rafatov@metu.edu.tr [Department of Physics, Middle East Technical University, Ankara (Turkey); Kudryavtsev, A. A. [Saint Petersburg State University, St.Petersburg (Russian Federation)

    2015-01-15

    Two-dimensional hybrid Monte Carlo–fluid numerical code is developed and applied to model the dc glow discharge. The model is based on the separation of electrons into two parts: the low energetic (slow) and high energetic (fast) electron groups. Ions and slow electrons are described within the fluid model using the drift-diffusion approximation for particle fluxes. Fast electrons, represented by suitable number of super particles emitted from the cathode, are responsible for ionization processes in the discharge volume, which are simulated by the Monte Carlo collision method. Electrostatic field is obtained from the solution of Poisson equation. The test calculations were carried out for an argon plasma. Main properties of the glow discharge are considered. Current-voltage curves, electric field reversal phenomenon, and the vortex current formation are developed and discussed. The results are compared to those obtained from the simple and extended fluid models. Contrary to reports in the literature, the analysis does not reveal significant advantages of existing hybrid methods over the extended fluid model.

  19. Development of a multimaterial, two-dimensional, arbitrary Lagrangian-Eulerian mesh computer program

    International Nuclear Information System (INIS)

    Barton, R.T.

    1982-01-01

    We have developed a large, multimaterial, two-dimensional Arbitrary Lagrangian-Eulerian (ALE) computer program. The special feature of an ALE mesh is that it can be either an embedded Lagrangian mesh, a fixed Eulerian mesh, or a partially embedded, partially remapped mesh. Remapping is used to remove Lagrangian mesh distortion. This general purpose program has been used for astrophysical modeling, under the guidance of James R. Wilson. The rationale behind the development of this program will be used to highlight several important issues in program design

  20. Engineering and programming manual: Two-dimensional kinetic reference computer program (TDK)

    Science.gov (United States)

    Nickerson, G. R.; Dang, L. D.; Coats, D. E.

    1985-01-01

    The Two Dimensional Kinetics (TDK) computer program is a primary tool in applying the JANNAF liquid rocket thrust chamber performance prediction methodology. The development of a methodology that includes all aspects of rocket engine performance from analytical calculation to test measurements, that is physically accurate and consistent, and that serves as an industry and government reference is presented. Recent interest in rocket engines that operate at high expansion ratio, such as most Orbit Transfer Vehicle (OTV) engine designs, has required an extension of the analytical methods used by the TDK computer program. Thus, the version of TDK that is described in this manual is in many respects different from the 1973 version of the program. This new material reflects the new capabilities of the TDK computer program, the most important of which are described.

  1. Spontaneous angular momentum generation of two-dimensional fluid flow in an elliptic geometry

    NARCIS (Netherlands)

    Keetels, G.H.; Clercx, H.J.H.; van Heijst, G.J.F.

    2008-01-01

    Spontaneous spin-up, i.e., the significant increase of the total angular momentum of a flow that initially has no net angular momentum, is very characteristic for decaying two-dimensional turbulence in square domains bounded by rigid no-slip walls. In contrast, spontaneous spin-up is virtually

  2. Computing stationary solutions of the two-dimensional Gross-Pitaevskii equation with deflated continuation

    Science.gov (United States)

    Charalampidis, E. G.; Kevrekidis, P. G.; Farrell, P. E.

    2018-01-01

    In this work we employ a recently proposed bifurcation analysis technique, the deflated continuation algorithm, to compute steady-state solitary waveforms in a one-component, two-dimensional nonlinear Schrödinger equation with a parabolic trap and repulsive interactions. Despite the fact that this system has been studied extensively, we discover a wide variety of previously unknown branches of solutions. We analyze the stability of the newly discovered branches and discuss the bifurcations that relate them to known solutions both in the near linear (Cartesian, as well as polar) and in the highly nonlinear regimes. While deflated continuation is not guaranteed to compute the full bifurcation diagram, this analysis is a potent demonstration that the algorithm can discover new nonlinear states and provide insights into the energy landscape of complex high-dimensional Hamiltonian dynamical systems.

  3. A binary motor imagery tasks based brain-computer interface for two-dimensional movement control

    Science.gov (United States)

    Xia, Bin; Cao, Lei; Maysam, Oladazimi; Li, Jie; Xie, Hong; Su, Caixia; Birbaumer, Niels

    2017-12-01

    Objective. Two-dimensional movement control is a popular issue in brain–computer interface (BCI) research and has many applications in the real world. In this paper, we introduce a combined control strategy to a binary class-based BCI system that allows the user to move a cursor in a two-dimensional (2D) plane. Users focus on a single moving vector to control 2D movement instead of controlling vertical and horizontal movement separately. Approach. Five participants took part in a fixed-target experiment and random-target experiment to verify the effectiveness of the combination control strategy under the fixed and random routine conditions. Both experiments were performed in a virtual 2D dimensional environment and visual feedback was provided on the screen. Main results. The five participants achieved an average hit rate of 98.9% and 99.4% for the fixed-target experiment and the random-target experiment, respectively. Significance. The results demonstrate that participants could move the cursor in the 2D plane effectively. The proposed control strategy is based only on a basic two-motor imagery BCI, which enables more people to use it in real-life applications.

  4. Comparison of Three Different Parallel Computation Methods for a Two-Dimensional Dam-Break Model

    Directory of Open Access Journals (Sweden)

    Shanghong Zhang

    2017-01-01

    Full Text Available Three parallel methods (OpenMP, MPI, and OpenACC are evaluated for the computation of a two-dimensional dam-break model using the explicit finite volume method. A dam-break event in the Pangtoupao flood storage area in China is selected as a case study to demonstrate the key technologies for implementing parallel computation. The subsequent acceleration of the methods is also evaluated. The simulation results show that the OpenMP and MPI parallel methods achieve a speedup factor of 9.8× and 5.1×, respectively, on a 32-core computer, whereas the OpenACC parallel method achieves a speedup factor of 20.7× on NVIDIA Tesla K20c graphics card. The results show that if the memory required by the dam-break simulation does not exceed the memory capacity of a single computer, the OpenMP parallel method is a good choice. Moreover, if GPU acceleration is used, the acceleration of the OpenACC parallel method is the best. Finally, the MPI parallel method is suitable for a model that requires little data exchange and large-scale calculation. This study compares the efficiency and methodology of accelerating algorithms for a dam-break model and can also be used as a reference for selecting the best acceleration method for a similar hydrodynamic model.

  5. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-04-01

    A computational approach used for subsurface explosion cratering has been extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for our first computer simulation because it was the most thoroughly studied. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Shoemaker estimates that the impact occurred about 20,000 to 30,000 years ago (Roddy (1977)). Initial conditions for this calculation included a meteorite impact velocity of 15 km/s. meteorite mass of 1.57E + 08 kg, with a corresponding kinetic energy of 1.88E + 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation a Tillotson equation-of-state description for iron and limestone was used with no shear strength. A color movie based on this calculation was produced using computer-generated graphics. Results obtained for this preliminary calculation of the formation of Meteor Crater, Arizona, are in good agreement with Meteor Crater Measurements.

  6. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    International Nuclear Information System (INIS)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-04-01

    A computational approach used for subsurface explosion cratering has been extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for our first computer simulation because it was the most thoroughly studied. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Shoemaker estimates that the impact occurred about 20,000 to 30,000 years ago [Roddy (1977)]. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s. meteorite mass of 1.57E + 08 kg, with a corresponding kinetic energy of 1.88E + 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation a Tillotson equation-of-state description for iron and limestone was used with no shear strength. A color movie based on this calculation was produced using computer-generated graphics. Results obtained for this preliminary calculation of the formation of Meteor Crater, Arizona, are in good agreement with Meteor Crater Measurements

  7. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-06-01

    A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 10/sup 8/ kg, with a corresponding kinetic energy of 1.88 x 10/sup 16/ J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references.

  8. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    International Nuclear Information System (INIS)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-06-01

    A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 10 8 kg, with a corresponding kinetic energy of 1.88 x 10 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references

  9. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model

    NARCIS (Netherlands)

    Reid, Daniel A. P.; Hildenbrandt, H.; Hemelrijk, C. K.; Padding, J.T.

    2012-01-01

    The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed

  10. Field computation for two-dimensional array transducers with limited diffraction array beams.

    Science.gov (United States)

    Lu, Jian-Yu; Cheng, Jiqi

    2005-10-01

    A method is developed for calculating fields produced with a two-dimensional (2D) array transducer. This method decomposes an arbitrary 2D aperture weighting function into a set of limited diffraction array beams. Using the analytical expressions of limited diffraction beams, arbitrary continuous wave (cw) or pulse wave (pw) fields of 2D arrays can be obtained with a simple superposition of these beams. In addition, this method can be simplified and applied to a 1D array transducer of a finite or infinite elevation height. For beams produced with axially symmetric aperture weighting functions, this method can be reduced to the Fourier-Bessel method studied previously where an annular array transducer can be used. The advantage of the method is that it is accurate and computationally efficient, especially in regions that are not far from the surface of the transducer (near field), where it is important for medical imaging. Both computer simulations and a synthetic array experiment are carried out to verify the method. Results (Bessel beam, focused Gaussian beam, X wave and asymmetric array beams) show that the method is accurate as compared to that using the Rayleigh-Sommerfeld diffraction formula and agrees well with the experiment.

  11. Two-dimensional hydrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic fluid flow through porous media

    Science.gov (United States)

    Maillet; Coveney

    2000-08-01

    The behavior of two-dimensional binary and ternary amphiphilic fluids under flow conditions is investigated using a hydrodynamic lattice-gas model. After the validation of the model in simple cases (Poiseuille flow, Darcy's law for single component fluids), attention is focused on the properties of binary immiscible fluids in porous media. An extension of Darcy's law which explicitly admits a viscous coupling between the fluids is verified, and evidence of capillary effects is described. The influence of a third component, namely, surfactant, is studied in the same context. Invasion simulations have also been performed. The effect of the applied force on the invasion process is reported. As the forcing level increases, the invasion process becomes faster and the residual oil saturation decreases. The introduction of surfactant in the invading phase during imbibition produces new phenomena, including emulsification and micellization. At very low fluid forcing levels, this leads to the production of a low-resistance gel, which then slows down the progress of the invading fluid. At long times (beyond the water percolation threshold), the concentration of remaining oil within the porous medium is lowered by the action of surfactant, thus enhancing oil recovery. On the other hand, the introduction of surfactant in the invading phase during drainage simulations slows down the invasion process-the invading fluid takes a more tortuous path to invade the porous medium-and reduces the oil recovery (the residual oil saturation increases).

  12. MISCIBLE FLUID DISPLACEMENT STABILITY IN UNCONFINED POROUS MEDIA: TWO-DIMENSIONAL FLOW EXPERIMENTS AND SIMULATIONS

    Science.gov (United States)

    In situ flushing groundwater remediation technologies, such as cosolvent flushing, rely on the stability of the interface between the resident and displacing fluids for efficient removal of contaminants. Contrasts in density and viscosity between the resident and displacing flui...

  13. Large Deviations for Stochastic Models of Two-Dimensional Second Grade Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Jianliang, E-mail: zhaijl@ustc.edu.cn [University of Science and Technology of China, School of Mathematical Sciences (China); Zhang, Tusheng, E-mail: Tusheng.Zhang@manchester.ac.uk [University of Manchester, School of Mathematics (United Kingdom)

    2017-06-15

    In this paper, we establish a large deviation principle for stochastic models of incompressible second grade fluids. The weak convergence method introduced by Budhiraja and Dupuis (Probab Math Statist 20:39–61, 2000) plays an important role.

  14. Multiplanar and two-dimensional imaging of central airway stenting with multidetector computed tomography

    Directory of Open Access Journals (Sweden)

    Ozgul Mehmet

    2012-08-01

    Full Text Available Abstract Background Multidetector computed tomography (MDCT provides guidance for primary screening of the central airways. The aim of our study was assessing the contribution of multidetector computed tomography- two dimensional reconstruction in the management of patients with tracheobronchial stenosis prior to the procedure and during a short follow up period of 3 months after the endobronchial treatment. Methods This is a retrospective study with data collected from an electronic database and from the medical records. Patients evaluated with MDCT and who had undergone a stenting procedure were included. A Philips RSGDT 07605 model MDCT was used, and slice thickness, 3 mm; overlap, 1.5 mm; matrix, 512x512; mass, 90 and kV, 120 were evaluated. The diameters of the airways 10 mm proximal and 10 mm distal to the obstruction were measured and the stent diameter (D was determined from the average between D upper and D lower. Results Fifty-six patients, 14 (25% women and 42 (75% men, mean age 55.3 ± 13.2 years (range: 16-79 years, were assessed by MDCT and then treated with placement of an endobronchial stent. A computed tomography review was made with 6 detector Philips RSGDT 07605 multidetector computed tomography device. Endobronchial therapy was provided for the patients with endoluminal lesions. Stents were placed into the area of stenosis in patients with external compression after dilatation and debulking procedures had been carried out. In one patient the migration of a stent was detected during the follow up period by using MDCT. Conclusions MDCT helps to define stent size, length and type in patients who are suitable for endobronchial stinting. This is a non-invasive, reliable method that helps decisions about optimal stent size and position, thus reducing complications.

  15. Fluid dynamics of two-dimensional pollination in Ruppia (widgeon grass)

    Science.gov (United States)

    Musunuri, Naga; Bunker, Daniel; Pell, Susan; Fischer, Ian; Singh, Pushpendra

    2015-11-01

    The aim of this work is to understand the physics underlying the mechanisms of two-dimensional aquatic pollen dispersal, known as hydrophily, that have evolved in several genera of aquatic plants, including Halodule, Halophila, Lepilaena, and Ruppia. We selected Ruppia, which grows in the wetlands of the New Jersey/New York metropolitan area, for this study. We observed two mechanisms by which the pollen released from male inflorescences of Ruppia maritime is adsorbed on a water surface: 1) inflorescences rise above the water surface and after they mature their pollen mass falls onto the surface as clumps and disperses as it comes in contact with the surface; 2) inflorescences remain below the surface and produce air bubbles which carry pollen mass to the surface where it disperses. In both cases dispersed pollen masses combined with others to form pollen rafts. The formation of porous pollen rafts increases the probability of pollination since the attractive capillary force on a pollen raft towards a stigma is much larger than on a single pollen grain. The work was supported by National Science Foundation.

  16. Wide-field two-dimensional multifocal optical-resolution photoacoustic computed microscopy

    Science.gov (United States)

    Xia, Jun; Li, Guo; Wang, Lidai; Nasiriavanaki, Mohammadreza; Maslov, Konstantin; Engelbach, John A.; Garbow, Joel R.; Wang, Lihong V.

    2014-01-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is an emerging technique that directly images optical absorption in tissue at high spatial resolution. To date, the majority of OR-PAM systems are based on single focused optical excitation and ultrasonic detection, limiting the wide-field imaging speed. While one-dimensional multifocal OR-PAM (1D-MFOR-PAM) has been developed, the potential of microlens and transducer arrays has not been fully realized. Here, we present the development of two-dimensional multifocal optical-resolution photoacoustic computed microscopy (2D-MFOR-PACM), using a 2D microlens array and a full-ring ultrasonic transducer array. The 10 × 10 mm2 microlens array generates 1800 optical foci within the focal plane of the 512-element transducer array, and raster scanning the microlens array yields optical-resolution photoacoustic images. The system has improved the in-plane resolution of a full-ring transducer array from ≥100 µm to 29 µm and achieved an imaging time of 36 seconds over a 10 × 10 mm2 field of view. In comparison, the 1D-MFOR-PAM would take more than 4 minutes to image over the same field of view. The imaging capability of the system was demonstrated on phantoms and animals both ex vivo and in vivo. PMID:24322226

  17. Computer-based training in two-dimensional echocardiography using an echocardiography simulator.

    Science.gov (United States)

    Weidenbach, Michael; Wild, Florentine; Scheer, Kathrin; Muth, Gerhard; Kreutter, Stefan; Grunst, Gernoth; Berlage, Thomas; Schneider, Peter

    2005-04-01

    Two-dimensional (2D) echocardiography is a user-dependent technique that poses some inherent problems to the beginner. The first problem for beginners is spatial orientation, especially the orientation of the scan plane in reference to the 3-dimensional (3D) geometry of the heart. The second problem for beginners is steering of the ultrasound probe. We have designed a simulator to teach these skills. On a computer screen a side-by-side presentation of a 3D virtual reality scene on the right side and a 2D echocardiographic view on the left side is given. The virtual scene consists of a 3D heart and an ultrasound probe with scan plane. The 2D echocardiographic image is calculated from 3D echocardiographic data sets that are registered with the heart model to achieve spatial and temporal congruency. The displayed 2D echocardiographic image is defined and controlled by the orientation of the virtual scan plane. To teach hand-eye coordination we equipped a dummy transducer with a 3D tracking system and placed it on a dummy torso. We have evaluated the usability of the simulator in an introductory course for final-year medical students. The simulator was graded realistic and easy to use. According to a subjective self-assessment by a standardized questionnaire the aforementioned skills were imparted effectively.

  18. TROTT computer program for two-dimensional stress wave propagation, volume 3

    Science.gov (United States)

    Seaman, L.; Curran, D. R.

    1980-04-01

    TROTT is a Lagrangian finite-difference computer program for calculating two dimensional stress wave propagation through solid, porous, and composite materials. The stress waves may be caused by impact, detonation of an explosive, or a prescribed velocity. The calculational procedure is the standard leapfrog method of von Neumann and Richtmyer, using artificial viscosity to smooth shock fronts. Quadrilateral or triangular cells are used. The momentum relations are derived by treating the cells as finite elements. Axisymmetric or planar flow can be handled. The constitutive relations include the standard Mie-Gruneisen equation-of-state and elastic-plastic, work-hardening deviator stress relations. A polytropic gas and detonating flow relations are provided for explosives. Ductile and brittle fracture and shear banding are provided by nucleation and growth models. Porous materials can be represented by a cap plasticity model. A model for layered composites is also present. The code is constructed for easy insertion of additional material models. The number of extra variables required for each cell for a material model can be specified on an input card. This manual includes many sample problems, a derivation of the flow equations, and a discussion of material models.

  19. Critical behavior of a two-dimensional complex fluid: Macroscopic and mesoscopic views

    Science.gov (United States)

    Choudhuri, Madhumita; Datta, Alokmay

    2016-04-01

    Liquid disordered (Ld) to liquid ordered (Lo) phase transition in myristic acid [MyA, CH3(CH2) 12COOH ] Langmuir monolayers was studied macroscopically as well as mesoscopically to locate the critical point. Macroscopically, isotherms of the monolayer were obtained across the 20 ∘C-38 ∘Ctemperature (T ) range and the critical point was estimated, primarily from the vanishing of the order parameter, at ≈38 ∘C. Mesoscopically, domain morphology in the Ld-Lo coexistence regime was imaged using the technique of Brewster angle microscopy (BAM) as a function of T and the corresponding power spectral density function (PSDF) obtained. Monolayer morphology passed from stable circular domains and a sharp peak in PSDF to stable dendritic domains and a divergence of the correlation length as the critical point was approached from below. The critical point was found to be consistent at ≈38 ∘Cfrom both isotherm and BAM results. In the critical regime the scaling behavior of the transition followed the two-dimensional Ising model. Additionally, we obtained a precritical regime, over a temperature range of ≈8 ∘C below Tc, characterized by fluctuations in the order parameter at the macroscopic scale and at the mesoscopic scale characterized by unstable domains of fingering or dendritic morphology as well as proliferation of a large number of small sized domains, multiple peaks in the power spectra, and a corresponding fluctuation in the peak q values with T . Further, while comparing temperature studies on an ensemble of MyA monolayers with those on a single monolayer, the system was found to be not strictly ergodic in that the ensemble development did not strictly match with the time development in the system. In particular, the critical temperature was found to be lowered in the latter. These results clearly show that the critical behavior in fatty acid monolayer phase transitions have features of both complex and nonequilibrium systems.

  20. Nonmonotonic magnetoresistance of a two-dimensional viscous electron-hole fluid in a confined geometry

    Science.gov (United States)

    Alekseev, P. S.; Dmitriev, A. P.; Gornyi, I. V.; Kachorovskii, V. Yu.; Narozhny, B. N.; Titov, M.

    2018-02-01

    Ultrapure conductors may exhibit hydrodynamic transport where the collective motion of charge carriers resembles the flow of a viscous fluid. In a confined geometry (e.g., in ultra-high-quality nanostructures), the electronic fluid assumes a Poiseuille-type flow. Applying an external magnetic field tends to diminish viscous effects leading to large negative magnetoresistance. In two-component systems near charge neutrality, the hydrodynamic flow of charge carriers is strongly affected by the mutual friction between the two constituents. At low fields, the magnetoresistance is negative, however, at high fields the interplay between electron-hole scattering, recombination, and viscosity results in a dramatic change of the flow profile: the magnetoresistance changes its sign and eventually becomes linear in very high fields. This nonmonotonic magnetoresistance can be used as a fingerprint to detect viscous flow in two-component conducting systems.

  1. On steady two-dimensional Carreau fluid flow over a wedge in the presence of infinite shear rate viscosity

    Science.gov (United States)

    Khan, Masood; Sardar, Humara

    2018-03-01

    This paper investigates the steady two-dimensional flow over a moving/static wedge in a Carreau viscosity model with infinite shear rate viscosity. Additionally, heat transfer analysis is performed. Using suitable transformations, nonlinear partial differential equations are transformed into ordinary differential equations and solved numerically using the Runge-Kutta Fehlberg method coupled with the shooting technique. The effects of various physical parameters on the velocity and temperature distributions are displayed graphically and discussed qualitatively. A comparison with the earlier reported results has been made with an excellent agreement. It is important to note that the increasing values of the wedge angle parameter enhance the fluid velocity while the opposite trend is observed for the temperature field for both shear thinning and thickening fluids. Generally, our results reveal that the velocity and temperature distributions are marginally influenced by the viscosity ratio parameter. Further, it is noted that augmented values of viscosity ratio parameter thin the momentum and thermal boundary layer thickness in shear thickening fluid and reverse is true for shear thinning fluid. Moreover, it is noticed that the velocity in case of moving wedge is higher than static wedge.

  2. Optimizing human synovial fluid preparation for two-dimensional gel electrophoresis.

    Science.gov (United States)

    Chen, Carl Pc; Hsu, Chih-Chin; Yeh, Wen-Lin; Lin, Hsiu-Chu; Hsieh, Sen-Yung; Lin, Shih-Cherng; Chen, Tai-Tzung; Chen, Max Jl; Tang, Simon Ft

    2011-10-11

    Proteome analysis is frequently applied in identifying the proteins or biomarkers in knee synovial fluids (SF) that are associated with osteoarthritis and other arthritic disorders. The 2-dimensional gel electrophoresis (2-DE) is the technique of choice in these studies. Disease biomarkers usually appear in low concentrations and may be masked by high abundant proteins. Therefore, the main aim of this study was to find the most suitable sample preparation method that can optimize the expression of proteins on 2-DE gels that can be used to develop a reference proteome picture for non-osteoarthritic knee synovial fluid samples. Proteome pictures obtained from osteoarthritic knee synovial fluids can then be compared with the reference proteome pictures obtained in this study to assist us in identifying the disease biomarkers more correctly. The proteomic tool of 2-DE with immobilized pH gradients was applied in this study. A total of 12 2-DE gel images were constructed from SF samples that were free of osteoarthritis. In these samples, 3 were not treated with any sample preparation methods, 3 were treated with acetone, 3 were treated with 2-DE Clean-Up Kit, and 3 were treated with the combination of acetone and 2-D Clean-Up Kit prior to 2-DE analysis. Gel images were analyzed using the PDQuest Basic 8.0.1 Analytical software. Protein spots that were of interest were excised from the gels and sent for identification by mass spectrometry. Total SF total protein concentration was calculated to be 21.98 ± 0.86 mg/mL. The untreated SF samples were detected to have 456 ± 33 protein spots on 2-DE gel images. Acetone treated SF samples were detected to have 320 ± 28 protein spots, 2-D Clean-Up Kit treated SF samples were detected to have 413 ± 31 protein spots, and the combined treatment method of acetone and 2-D Clean-Up Kit was detected to have 278 ± 26 protein spots 2-DE gel images. SF samples treated with 2-D Clean-Up Kit revealed clearer presentation of the isoforms

  3. Optimizing Human Synovial Fluid Preparation for Two-Dimensional Gel Electrophoresis

    Directory of Open Access Journals (Sweden)

    Chen Max JL

    2011-10-01

    Full Text Available Abstract Background Proteome analysis is frequently applied in identifying the proteins or biomarkers in knee synovial fluids (SF that are associated with osteoarthritis and other arthritic disorders. The 2-dimensional gel electrophoresis (2-DE is the technique of choice in these studies. Disease biomarkers usually appear in low concentrations and may be masked by high abundant proteins. Therefore, the main aim of this study was to find the most suitable sample preparation method that can optimize the expression of proteins on 2-DE gels that can be used to develop a reference proteome picture for non-osteoarthritic knee synovial fluid samples. Proteome pictures obtained from osteoarthritic knee synovial fluids can then be compared with the reference proteome pictures obtained in this study to assist us in identifying the disease biomarkers more correctly. Results The proteomic tool of 2-DE with immobilized pH gradients was applied in this study. A total of 12 2-DE gel images were constructed from SF samples that were free of osteoarthritis. In these samples, 3 were not treated with any sample preparation methods, 3 were treated with acetone, 3 were treated with 2-DE Clean-Up Kit, and 3 were treated with the combination of acetone and 2-D Clean-Up Kit prior to 2-DE analysis. Gel images were analyzed using the PDQuest Basic 8.0.1 Analytical software. Protein spots that were of interest were excised from the gels and sent for identification by mass spectrometry. Total SF total protein concentration was calculated to be 21.98 ± 0.86 mg/mL. The untreated SF samples were detected to have 456 ± 33 protein spots on 2-DE gel images. Acetone treated SF samples were detected to have 320 ± 28 protein spots, 2-D Clean-Up Kit treated SF samples were detected to have 413 ± 31 protein spots, and the combined treatment method of acetone and 2-D Clean-Up Kit was detected to have 278 ± 26 protein spots 2-DE gel images. SF samples treated with 2-D Clean-Up Kit

  4. User's manual for EVITS: a steady state fluids code for complex two-dimensional geometries

    International Nuclear Information System (INIS)

    Domanus, H.M.

    1976-07-01

    A 2-D computer code, EVITS, has been developed for estimating steady state, incompressible, isothermal flow fields in complex geometries. A vorticity-stream function formulation is used along with a model to resolve viscous effects at solid boundaries. Sufficient geometry and boundary type options are included within the code so that a large number of flow situations can be specified without modifying the program. All instructions to the code are via an input dataset. Detailed instructions for preparing the user oriented input, along with examples, are included in this users' manual

  5. Computing two dimensional flood wave propagation using unstructured finite volume method: Application to the Ourika valley

    OpenAIRE

    Belhadj, H; Taik, A; Ouazar, D

    2006-01-01

    International audience; This study is devoted to the flood wave propagation modelling corresponding to a realistic situation. The equations that governs the propagation of a flood wave, in natural rivers, corresponds to the free surface flow equations in the Shallow Water case. The obtained two dimensional system, known as Saint Venant's system, is derived from the three-dimensional incompressible Navier Stokes equations by depth-averaging of the state variables. This system is written in a c...

  6. Proteomic profiling of amniotic fluid in preterm labor using two-dimensional liquid separation and mass spectrometry.

    Science.gov (United States)

    Bujold, Emmanuel; Romero, Roberto; Kusanovic, Juan Pedro; Erez, Offer; Gotsch, Francesca; Chaiworapongsa, Tinnakorn; Gomez, Ricardo; Espinoza, Jimmy; Vaisbuch, Edi; Mee Kim, Yeon; Edwin, Samuel; Pisano, Mike; Allen, Beth; Podust, Vladimir N; Dalmasso, Enrique A; Rutherford, Jennifer; Rogers, Wade; Moser, Allan; Yoon, Bo Hyun; Barder, Tim

    2008-10-01

    Simultaneous analysis of the protein composition of biological fluids is now possible. Such an approach can be used to identify biological markers of disease and to understand the pathophysiology of disorders that have eluded classification, diagnosis, and treatment. The purpose of this study was to analyze the differences in protein composition of the amniotic fluid of patients in preterm labor. Amniotic fluid was obtained by amniocentesis from three groups of women with preterm labor and intact membranes: (1) women without intra-amniotic infection/inflammation (IAI) who delivered at term, (2) women without IAI who delivered a preterm neonate, and (3) women with IAI. Intra-amniotic infection was defined as a positive amniotic fluid culture for microorganisms. Intra-amniotic inflammation was defined as an elevated amniotic fluid interleukin (IL)-6 (> or =2.3 ng/mL). Two-dimensional (2D) chromatography was used for analysis. The first dimension separated proteins by isoelectric point, while the second, by the degree of hydrophobicity. 2D protein maps were generated using different experimental conditions (reducing agents as well as protein concentration). The maps were used to discern subsets of isoelectric point/hydrophobicity containing differentially expressed proteins. Protein identification of differentially expressed fractions was conducted with mass spectrometry. Enzyme-linked immunosorbent assays (ELISA) as well as surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS)-based on-chip antibody capture immunoassays were also used for confirmation of a specific protein that was differentially expressed. (1) Amniotic fluid protein composition can be analyzed using a combination of 2D liquid chromatography and mass spectrometry for the identification of proteins differentially expressed in patients in preterm labor. (2) While total insulin-like growth factor-binding protein-1 (IGFBP-1) concentration did not change, IGFBP-1

  7. Numerical Modeling and Investigation of Fluid-Driven Fracture Propagation in Reservoirs Based on a Modified Fluid-Mechanically Coupled Model in Two-Dimensional Particle Flow Code

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2016-09-01

    Full Text Available Hydraulic fracturing is a useful tool for enhancing rock mass permeability for shale gas development, enhanced geothermal systems, and geological carbon sequestration by the high-pressure injection of a fracturing fluid into tight reservoir rocks. Although significant advances have been made in hydraulic fracturing theory, experiments, and numerical modeling, when it comes to the complexity of geological conditions knowledge is still limited. Mechanisms of fluid injection-induced fracture initiation and propagation should be better understood to take full advantage of hydraulic fracturing. This paper presents the development and application of discrete particle modeling based on two-dimensional particle flow code (PFC2D. Firstly, it is shown that the modeled value of the breakdown pressure for the hydraulic fracturing process is approximately equal to analytically calculated values under varied in situ stress conditions. Furthermore, a series of simulations for hydraulic fracturing in competent rock was performed to examine the influence of the in situ stress ratio, fluid injection rate, and fluid viscosity on the borehole pressure history, the geometry of hydraulic fractures, and the pore-pressure field, respectively. It was found that the hydraulic fractures in an isotropic medium always propagate parallel to the orientation of the maximum principal stress. When a high fluid injection rate is used, higher breakdown pressure is needed for fracture propagation and complex geometries of fractures can develop. When a low viscosity fluid is used, fluid can more easily penetrate from the borehole into the surrounding rock, which causes a reduction of the effective stress and leads to a lower breakdown pressure. Moreover, the geometry of the fractures is not particularly sensitive to the fluid viscosity in the approximate isotropic model.

  8. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds

    Science.gov (United States)

    Mounet, Nicolas; Gibertini, Marco; Schwaller, Philippe; Campi, Davide; Merkys, Andrius; Marrazzo, Antimo; Sohier, Thibault; Castelli, Ivano Eligio; Cepellotti, Andrea; Pizzi, Giovanni; Marzari, Nicola

    2018-02-01

    Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. Yet, only a few dozen 2D materials have been successfully synthesized or exfoliated. Here, we search for 2D materials that can be easily exfoliated from their parent compounds. Starting from 108,423 unique, experimentally known 3D compounds, we identify a subset of 5,619 compounds that appear layered according to robust geometric and bonding criteria. High-throughput calculations using van der Waals density functional theory, validated against experimental structural data and calculated random phase approximation binding energies, further allowed the identification of 1,825 compounds that are either easily or potentially exfoliable. In particular, the subset of 1,036 easily exfoliable cases provides novel structural prototypes and simple ternary compounds as well as a large portfolio of materials to search from for optimal properties. For a subset of 258 compounds, we explore vibrational, electronic, magnetic and topological properties, identifying 56 ferromagnetic and antiferromagnetic systems, including half-metals and half-semiconductors.

  9. Stacked codes: Universal fault-tolerant quantum computation in a two-dimensional layout

    Science.gov (United States)

    Jochym-O'Connor, Tomas; Bartlett, Stephen D.

    2016-02-01

    We introduce a class of three-dimensional color codes, which we call stacked codes, together with a fault-tolerant transformation that will map logical qubits encoded in two-dimensional (2D) color codes into stacked codes and back. The stacked code allows for the transversal implementation of a non-Clifford π /8 logical gate, which when combined with the logical Clifford gates that are transversal in the 2D color code give a gate set that is both fault-tolerant and universal without requiring nonstabilizer magic states. We then show that the layers forming the stacked code can be unfolded and arranged in a 2D layout. As only Clifford gates can be implemented transversally for 2D topological stabilizer codes, a nonlocal operation must be incorporated in order to allow for this transversal application of a non-Clifford gate. Our code achieves this operation through the transformation from a 2D color code to the unfolded stacked code induced by measuring only geometrically local stabilizers and gauge operators within the bulk of 2D color codes together with a nonlocal operator that has support on a one-dimensional boundary between such 2D codes. We believe that this proposed method to implement the nonlocal operation is a realistic one for 2D stabilizer layouts and would be beneficial in avoiding the large overheads caused by magic state distillation.

  10. Computational simulation of two-dimensional transient natural convection in volumetrically heated square enclosure

    International Nuclear Information System (INIS)

    Natural convection is a physical phenomenon that has been investigated in nuclear engineering so as to provide information about heat transfer in severe accident conditions involving nuclear reactors. This research reported transient natural convection of fluids with uniformly distributed volumetrically heat generation in square cavity with isothermal side walls and adiabatic top/bottom walls. Two Prandtl numbers were considered, 0:0321 and 0:71. Direct numerical simulations were applied in order to obtain results about the velocities of the fluid in directions x and y. These results were used in Fast Fourier Transform, which showed the periodic, quasi-chaotic and chaotic behavior of transient laminar flow. (author)

  11. Interobserver reliability of coronoid fracture classification: two-dimensional versus three-dimensional computed tomography

    NARCIS (Netherlands)

    Lindenhovius, Anneluuk; Karanicolas, Paul Jack; Bhandari, Mohit; van Dijk, Niek; Ring, David; Allan, Christopher; Anglen, Jeffrey; Axelrod, Terry; Baratz, Mark; Beingessner, Daphne; Brink, Peter; Cassidy, Charles; Coles, Chad; Conflitti, Joe; Crist, Brett; Della Rocca, Gregory; Dijkstra, Sander; Elmans, L. H. G. J.; Feibel, Roger; Flores, Luis; Frihagen, Frede; Gosens, Taco; Goslings, J. C.; Greenberg, Jeffrey; Grosso, Elena; Harness, Neil; van der Heide, Huub; Jeray, Kyle; Kalainov, David; van Kampen, Albert; Kawamura, Sumito; Kloen, Peter; McKee, Michael; Nork, Sean; Page, Richard; Pesantez, Rodrigo; Peters, Anil; Poolman, Rudolf; Prayson, Michael; Richardson, Martin; Seiler, John; Swiontkowski, Marc; Thomas, George; Trumble, Tom; van Vugt, Arie; Wright, Thomas; Zalavras, Charalampos; Zura, Robert

    2009-01-01

    This study tests the hypothesis that 3-dimensional computed tomography (CT) reconstructions improve interobserver agreement on classification and treatment of coronoid fractures compared with 2-dimensional CT. A total of 29 orthopedic surgeons evaluated 10 coronoid fractures on 2 occasions (first

  12. Computer Solution of the Two-Dimensional Tether Ball: Problem to Illustrate Newton's Second Law.

    Science.gov (United States)

    Zimmerman, W. Bruce

    Force diagrams involving angular velocity, linear velocity, centripetal force, work, and kinetic energy are given with related equations of motion expressed in polar coordinates. The computer is used to solve differential equations, thus reducing the mathematical requirements of the students. An experiment is conducted using an air table to check…

  13. Stability of a flow down an incline with respect to two-dimensional and three-dimensional disturbances for Newtonian and non-Newtonian fluids.

    Science.gov (United States)

    Allouche, M H; Millet, S; Botton, V; Henry, D; Ben Hadid, H; Rousset, F

    2015-12-01

    Squire's theorem, which states that the two-dimensional instabilities are more dangerous than the three-dimensional instabilities, is revisited here for a flow down an incline, making use of numerical stability analysis and Squire relationships when available. For flows down inclined planes, one of these Squire relationships involves the slopes of the inclines. This means that the Reynolds number associated with a two-dimensional wave can be shown to be smaller than that for an oblique wave, but this oblique wave being obtained for a larger slope. Physically speaking, this prevents the possibility to directly compare the thresholds at a given slope. The goal of the paper is then to reach a conclusion about the predominance or not of two-dimensional instabilities at a given slope, which is of practical interest for industrial or environmental applications. For a Newtonian fluid, it is shown that, for a given slope, oblique wave instabilities are never the dominant instabilities. Both the Squire relationships and the particular variations of the two-dimensional wave critical curve with regard to the inclination angle are involved in the proof of this result. For a generalized Newtonian fluid, a similar result can only be obtained for a reduced stability problem where some term connected to the perturbation of viscosity is neglected. For the general stability problem, however, no Squire relationships can be derived and the numerical stability results show that the thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves at a given slope, particularly for large obliquity angles and strong shear-thinning behaviors. The conclusion is then completely different in that case: the dominant instability for a generalized Newtonian fluid flowing down an inclined plane with a given slope can be three dimensional.

  14. Two-Dimensional Computational Flow Analysis and Frictional Characteristics Model for Red Blood Cell under Inclined Centrifuge Microscopy

    Science.gov (United States)

    Funamoto, Kenichi; Hayase, Toshiyuki; Shirai, Atsushi

    Simplified two-dimensional flow analysis is performed in order to simulate frictional characteristics measurement of red blood cells moving on a glass plate in a medium with an inclined centrifuge microscope. Computation under various conditions reveals the influences of parameters on lift, drag, and moment acting on a red blood cell. Among these forces, lift appears only when the cell is longitudinally asymmetric. By considering the balance of forces, the frictional characteristics of the red blood cell are modeled as the sum of Coulomb friction and viscous drag. The model describes the possibility that the red blood cell deforms to expand in the front side in response to the inclined centrifugal force. When velocity exceeds some critical value, the lift overcomes the normal centrifugal force component, and the thickness of the plasma layer between the cell and the glass plate increases from the initial value of the plasma protein thickness.

  15. Identification and quantification of alkene-based drilling fluids in crude oils by comprehensive two-dimensional gas chromatography with flame ionization detection.

    Science.gov (United States)

    Reddy, Christopher M; Nelson, Robert K; Sylva, Sean P; Xu, Li; Peacock, Emily A; Raghuraman, Bhavani; Mullins, Oliver C

    2007-04-27

    Comprehensive two-dimensional gas chromatography with flame ionization detection (GC x GC-FID) was used to measure alkene-based drilling fluids in crude oils. Compared to one-dimensional gas chromatography, GC x GC-FID is more robust for detecting alkenes due to the increased resolution afforded by second dimension separations. Using GC x GC-FID to analyze four oil samples from one reservoir contaminated with the same drilling fluid, C(15), C(16), C(17), C(18) and C(20) alkenes were identified. The drilling fluid that contaminated these samples also differed from another commercially obtained fluid, which only contained C(16) and C(18) alkenes. These results should motivate the petroleum industry to consider GC x GC-FID for measuring drilling fluids.

  16. Simulation tools for two-dimensional experiments in x-ray computed tomography using the FORBILD head phantom

    International Nuclear Information System (INIS)

    Yu Zhicong; Noo, Frédéric; Wunderlich, Adam; Dennerlein, Frank; Lauritsch, Günter; Hornegger, Joachim

    2012-01-01

    Mathematical phantoms are essential for the development and early stage evaluation of image reconstruction algorithms in x-ray computed tomography (CT). This note offers tools for computer simulations using a two-dimensional (2D) phantom that models the central axial slice through the FORBILD head phantom. Introduced in 1999, in response to a need for a more robust test, the FORBILD head phantom is now seen by many as the gold standard. However, the simple Shepp–Logan phantom is still heavily used by researchers working on 2D image reconstruction. Universal acceptance of the FORBILD head phantom may have been prevented by its significantly higher complexity: software that allows computer simulations with the Shepp–Logan phantom is not readily applicable to the FORBILD head phantom. The tools offered here address this problem. They are designed for use with Matlab®, as well as open-source variants, such as FreeMat and Octave, which are all widely used in both academia and industry. To get started, the interested user can simply copy and paste the codes from this PDF document into Matlab® M-files. (note)

  17. Computational fluid dynamics

    CERN Document Server

    Magoules, Frederic

    2011-01-01

    Exploring new variations of classical methods as well as recent approaches appearing in the field, Computational Fluid Dynamics demonstrates the extensive use of numerical techniques and mathematical models in fluid mechanics. It presents various numerical methods, including finite volume, finite difference, finite element, spectral, smoothed particle hydrodynamics (SPH), mixed-element-volume, and free surface flow.Taking a unified point of view, the book first introduces the basis of finite volume, weighted residual, and spectral approaches. The contributors present the SPH method, a novel ap

  18. Non-Darcy Free Convection of Power-Law Fluids Over a Two-Dimensional Body Embedded in a Porous Medium

    KAUST Repository

    El-Amin, Mohamed

    2010-11-27

    A boundary layer analysis was presented to study the non-Darcy-free convection of a power-law fluid over a non-isothermal two-dimensional body embedded in a porous medium. The Ostwald-de Waele power-law model was used to characterize the non-Newtonian fluid behavior. Similarity solutions were obtained with variations in surface temperature or surface heat flux. In view of the fact that most of the non-Newtonian fluids have large Prandtl numbers, this study was directed toward such fluids. The effects of the porous medium parameters, k1 and k2, body shape parameter, m, and surface thermal variations parameter, p, as well as the power-law index, n, were examined. © 2010 Springer Science+Business Media B.V.

  19. Simultaneous sensing of light and sound velocities of fluids in a two-dimensional phoXonic crystal with defects

    Energy Technology Data Exchange (ETDEWEB)

    Amoudache, Samira [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria); Pennec, Yan, E-mail: yan.pennec@univ-lille1.fr; Djafari Rouhani, Bahram [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Khater, Antoine [Institut des Molécules et Matériaux du Mans UMR 6283 CNRS, Université du Maine, 72085 Le Mans (France); Lucklum, Ralf [Institute of Micro and Sensor Systems (IMOS), Otto-von-Guericke-University, Magdeburg (Germany); Tigrine, Rachid [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria)

    2014-04-07

    We theoretically investigate the potentiality of dual phononic-photonic (the so-called phoxonic) crystals for liquid sensing applications. We study the transmission through a two-dimensional (2D) crystal made of infinite cylindrical holes in a silicon substrate, where one row of holes oriented perpendicular to the propagation direction is filled with a liquid. The infiltrated holes may have a different radius than the regular holes. We show, in the defect structure, the existence of well-defined features (peaks or dips) in the transmission spectra of acoustic and optical waves and estimate their sensitivity to the sound and light velocity of the analyte. Some of the geometrical requirements behave in opposite directions when searching for an efficient sensing of either sound or light velocities. Hence, a compromise in the choice of the parameters may become necessary in making the phoxonic sensor.

  20. Self-organization phenomena and decaying self-similar state in two-dimensional incompressible viscous fluids

    International Nuclear Information System (INIS)

    Kondoh, Yoshiomi; Serizawa, Shunsuke; Nakano, Akihiro; Takahashi, Toshiki; Van Dam, James W.

    2004-01-01

    The final self-similar state of decaying two-dimensional (2D) turbulence in 2D incompressible viscous flow is analytically and numerically investigated for the case with periodic boundaries. It is proved by theoretical analysis and simulations that the sinh-Poisson state cω=-sinh(βψ) is not realized in the dynamical system of interest. It is shown by an eigenfunction spectrum analysis that a sufficient explanation for the self-organization to the decaying self-similar state is the faster energy decay of higher eigenmodes and the energy accumulation to the lowest eigenmode for given boundary conditions due to simultaneous normal and inverse cascading by nonlinear mode couplings. The theoretical prediction is demonstrated to be correct by simulations leading to the lowest eigenmode of {(1,0)+(0,1)} of the dissipative operator for the periodic boundaries. It is also clarified that an important process during nonlinear self-organization is an interchange between the dominant operators, which leads to the final decaying self-similar state

  1. Essential Computational Fluid Dynamics

    CERN Document Server

    Zikanov, Oleg

    2011-01-01

    This book serves as a complete and self-contained introduction to the principles of Computational Fluid Dynamic (CFD) analysis. It is deliberately short (at approximately 300 pages) and can be used as a text for the first part of the course of applied CFD followed by a software tutorial. The main objectives of this non-traditional format are: 1) To introduce and explain, using simple examples where possible, the principles and methods of CFD analysis and to demystify the `black box’ of a CFD software tool, and 2) To provide a basic understanding of how CFD problems are set and

  2. Measurement Methods for Humeral Retroversion Using Two-Dimensional Computed Tomography Scans: Which Is Most Concordant with the Standard Method?

    Science.gov (United States)

    Oh, Joo Han; Kim, Woo; Cayetano, Angel A

    2017-06-01

    Humeral retroversion is variable among individuals, and there are several measurement methods. This study was conducted to compare the concordance and reliability between the standard method and 5 other measurement methods on two-dimensional (2D) computed tomography (CT) scans. CT scans from 21 patients who underwent shoulder arthroplasty (19 women and 2 men; mean age, 70.1 years [range, 42 to 81 years]) were analyzed. The elbow transepicondylar axis was used as a distal reference. Proximal reference points included the central humeral head axis (standard method), the axis of the humeral center to 9 mm posterior to the posterior margin of the bicipital groove (method 1), the central axis of the bicipital groove -30° (method 2), the base axis of the triangular shaped metaphysis +2.5° (method 3), the distal humeral head central axis +2.4° (method 4), and contralateral humeral head retroversion (method 5). Measurements were conducted independently by two orthopedic surgeons. The mean humeral retroversion was 31.42° ± 12.10° using the standard method, and 29.70° ± 11.66° (method 1), 30.64° ± 11.24° (method 2), 30.41° ± 11.17° (method 3), 32.14° ± 11.70° (method 4), and 34.15° ± 11.47° (method 5) for the other methods. Interobserver reliability and intraobserver reliability exceeded 0.75 for all methods. On the test to evaluate the equality of the standard method to the other methods, the intraclass correlation coefficients (ICCs) of method 2 and method 4 were different from the ICC of the standard method in surgeon A ( p method 2 and method 3 were different form the ICC of the standard method in surgeon B ( p method 1) would be most concordant with the standard method even though all 5 methods showed excellent agreements.

  3. Analytical analysis of slow and fast pressure waves in a two-dimensional cellular solid with fluid-filled cells.

    Science.gov (United States)

    Dorodnitsyn, Vladimir; Van Damme, Bart

    2016-06-01

    Wave propagation in cellular and porous media is widely studied due to its abundance in nature and industrial applications. Biot's theory for open-cell media predicts the existence of two simultaneous pressure waves, distinguished by its velocity. A fast wave travels through the solid matrix, whereas a much slower wave is carried by fluid channels. In closed-cell materials, the slow wave disappears due to a lack of a continuous fluid path. However, recent finite element (FE) simulations done by the authors of this paper also predict the presence of slow pressure waves in saturated closed-cell materials. The nature of the slow wave is not clear. In this paper, an equivalent unit cell of a medium with square cells is proposed to permit an analytical description of the dynamics of such a material. A simplified FE model suggests that the fluid-structure interaction can be fully captured using a wavenumber-dependent spring support of the vibrating cell walls. Using this approach, the pressure wave behavior can be calculated with high accuracy, but with less numerical effort. Finally, Rayleigh's energy method is used to investigate the coexistence of two waves with different velocities.

  4. Computational fluid dynamic applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.

    2000-04-03

    The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.

  5. Evaluation of vertical and lateral flow through agricultural loessial hillslopes using a two-dimensional computer simulation model

    NARCIS (Netherlands)

    Ritsema, C.J.; Oostindie, K.; Stolte, J.

    1996-01-01

    On four hill-slopes in the loess region of the Netherlands pressure heads were monitored during rain events with time intervals of five minutes. Water flow through these hill-slopes during erosive rain events in summer and winter was simulated two-dimensionally. These simulations showed that

  6. Computational Search for Two-Dimensional MX2 Semiconductors with Possible High Electron Mobility at Room Temperature

    Directory of Open Access Journals (Sweden)

    Zhishuo Huang

    2016-08-01

    Full Text Available Neither of the two typical two-dimensional materials, graphene and single layer MoS 2 , are good enough for developing semiconductor logical devices. We calculated the electron mobility of 14 two-dimensional semiconductors with composition of MX 2 , where M (=Mo, W, Sn, Hf, Zr and Pt are transition metals, and Xs are S, Se and Te. We approximated the electron phonon scattering matrix by deformation potentials, within which long wave longitudinal acoustical and optical phonon scatterings were included. Piezoelectric scattering in the compounds without inversion symmetry is also taken into account. We found that out of the 14 compounds, WS 2 , PtS 2 and PtSe 2 are promising for logical devices regarding the possible high electron mobility and finite band gap. Especially, the phonon limited electron mobility in PtSe 2 reaches about 4000 cm 2 ·V - 1 ·s - 1 at room temperature, which is the highest among the compounds with an indirect bandgap of about 1.25 eV under the local density approximation. Our results can be the first guide for experiments to synthesize better two-dimensional materials for future semiconductor devices.

  7. Computed and experimental motion picture determination of bubble and solids motion in a two-dimensional fluidized-bed with a jet and immersed obstacle

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.; Bouillard, J.; Gidaspow, D.

    1986-01-01

    Bubble and solids motion in a two-dimensional rectangular fluidized-bed having a high speed central jet with a rectangular obstacle above it and secondary air flow at minimum fluidization have been computer modeled. Computer generated motion pictures have been found to be necessary to analyze the computations since there are such a large number of time-dependent complex phenomena difficult to comprehend otherwise. Comparison of the computer generated motion pictures with high speed motion pictures of a flow visualization experiment reveal good agreement

  8. Domain decomposition algorithms and computational fluid dynamics

    International Nuclear Information System (INIS)

    Chan, T.F.

    1988-01-01

    In the past several years, domain decomposition has been a very popular topic, partly because of the potential of parallelization. Although numerous theories and algorithms have been developed for model elliptic problems, they are only recently starting to be tested on realistic applications. This paper investigates the application of some of these methods to two model problems in computational fluid dynamics: two-dimensional convection-diffusion problems and the incompressible driven cavity flow problem. The authors approach is the construction and analysis of efficient preconditioners for the interface operator to be used in the iterative solution of the interface solution. For the convection-diffusion problems, they discuss the effect of the convection term and its discretization on the performance of some of the preconditioners. For the driven cavity problem, they discuss the effectiveness of a class of boundary probe preconditioners

  9. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  10. Effect of Temperature and Fluid Flow on Dendrite Growth During Solidification of Al-3 Wt Pct Cu Alloy by the Two-Dimensional Cellular Automaton Method

    Science.gov (United States)

    Gu, Cheng; Wei, Yanhong; Liu, Renpei; Yu, Fengyi

    2017-12-01

    A two-dimensional cellular automaton-finite volume model was developed to simulate dendrite growth of Al-3 wt pct Cu alloy during solidification to investigate the effect of temperature and fluid flow on dendrite morphology, solute concentration distribution, and dendrite growth velocity. Different calculation conditions that may influence the results of the simulation, including temperature and flow, were considered. The model was also employed to study the effect of different undercoolings, applied temperature fields, and forced flow velocities on solute segregation and dendrite growth. The initial temperature and fluid flow have a significant impact on the dendrite morphologies and solute profiles during solidification. The release of energy is operated with solidification and results in the increase of temperature. A larger undercooling leads to larger solute concentration near the solid/liquid interface and solute concentration gradient at the same time-step. Solute concentration in the solid region tends to increase with the increase of undercooling. Four vortexes appear under the condition when natural flow exists: the two on the right of the dendrite rotate clockwise, and those on the left of the dendrite rotate counterclockwise. With the increase of forced flow velocity, the rejected solute in the upstream region becomes easier to be washed away and enriched in the downstream region, resulting in acceleration of the growth of the dendrite in the upstream and inhibiting the downstream dendrite growth. The dendrite perpendicular to fluid flow shows a coarser morphology in the upstream region than that of the downstream. Almost no secondary dendrite appears during the calculation process.

  11. JAC2D: A two-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method

    International Nuclear Information System (INIS)

    Biffle, J.H.; Blanford, M.L.

    1994-05-01

    JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere

  12. Fluid simulation for computer graphics

    CERN Document Server

    Bridson, Robert

    2008-01-01

    Animating fluids like water, smoke, and fire using physics-based simulation is increasingly important in visual effects, in particular in movies, like The Day After Tomorrow, and in computer games. This book provides a practical introduction to fluid simulation for graphics. The focus is on animating fully three-dimensional incompressible flow, from understanding the math and the algorithms to the actual implementation.

  13. Two dimensional plasma simulation code

    International Nuclear Information System (INIS)

    Hazak, G.; Boneh, Y.; Goshen, Sh.; Oreg, J.

    1977-03-01

    An electrostatic two-dimensional particle code for plasma simulation is described. Boundary conditions which take into account the finiteness of the system are presented. An analytic solution for the case of crossed fields plasma acceleration is derived. This solution serves as a check on a computer test run

  14. Comprehensive on-line two-dimensional liquid chromatography × supercritical fluid chromatography with trapping column-assisted modulation for depolymerised lignin analysis.

    Science.gov (United States)

    Sun, Mingzhe; Sandahl, Margareta; Turner, Charlotta

    2018-03-16

    Lignin depolymerisation produces a large variety of low molecular weight phenolic compounds that can be upgraded to value-added chemicals. Detailed analysis of these complex depolymerisation mixtures is, however, hampered by the lack of resolving power of traditional analysis techniques. In this study, a novel online comprehensive two-dimensional reversed-phase liquid chromatography (RPLC) × supercritical fluid chromatography (SFC) method with trapping column interface was developed for the separation of phenolic compounds in depolymerised lignin samples. The trapping capacities of different trapping columns were evaluated. The influence of large volume water-containing injection on SFC performance was studied. The relation between peak capacity and first dimension flow rate and gradient was investigated. The optimized method was applied for the analysis of a depolymerised lignin sample. The RPLC × SFC system exhibited high degree of orthogonality. Compared with traditional loop based interface, trapping column interface can significantly shorten the analysis time and offer higher detectability, with the disadvantage of more severe undersampling in the first dimension. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. FMG, RENUM, LINEL, ELLFMG, ELLP, and DIMES: Chain of programs for calculating and analyzing fluid flow through two-dimensional fracture networks -- theory and design

    International Nuclear Information System (INIS)

    Billaux, D.; Bodea, S.; Long, J.

    1988-02-01

    This report describes some of the programs developed at Lawrence Berkeley Laboratory for network modelling. By themselves, these programs form a complete chain for the study of the equivalent permeability of two-dimensional fracture networks. FMG generates the fractures considered as line discontinuities, with any desired distribution of aperture, length, and orientation. The locations of these fractures on a plane can be either specified or generated randomly. The intersections of these fractures with each other, and with the boundaries of a specified flow region, are determined, and a finite element line network is output. RENUM is a line network optimizer. Nodes very close to each other are merged, dead-ends are removed, and the nodes are then renumbered in order to minimize the bandwidth of the corresponding linear system of equations. LINEL computes the steady state flux through a mesh of line elements previously processed by program RENUM. Equivalent directional permeabilities are output. ELLFMG determines the three components of the permeability tensor which best fits the directional permeabilities output by LINEL. A measure of the goodness fit is also computed. Two plotting programs, DIMES and ELLP, help visualize the outputs of these programs. DIMES plots the line network at various stages of the process. ELLP plots the equivalent permeability results. 14 refs., 25 figs

  16. A comparison of two-dimensional radiography and three-dimensional computed tomography in angular cephalometric measurements

    Science.gov (United States)

    Nalçaci, R; Öztürk, F; Sökücü, O

    2010-01-01

    Objectives The objective of this study was to assess the reliability of three-dimensional (3D) cephalometric approaches by comparing this method with authenticated traditional two-dimensional (2D) cephalometry in angular cephalometric measurements. Methods CT images and lateral cephalometric radiographs of ten patients (five women, five men) were used in this study. Raw CT data of the patients were converted to 3D images with a 3D simulation program (Mimics 9.0, Leuven, Belgium). Lateral cephalometric radiographs were used manually for 2D measurements. The comparisons of the two methods were made using 14 cephalometric angular measurements. The Wilcoxon matched-pairs signed-ranks test (α _ 0.05) was used to determine the difference between the two methods. To assess the intra- and interobserver reproducibility, two sets of recordings made by each observer, in each modality were used. Dahlberg's formula was used to determine the intraobserver reproducibility, and the Wilcoxon matched-pairs signed-rank test (α _ 0.05) was used to assess the interobserver reproducibility. Results The method errors of both observers ranged from 0.35° to 0.65°. In addition, there were no significant differences between the measurements of the two observers (P > 0.05). However, comparison of 2D and 3D parameters showed significant differences in U1-NA and U1-SN measurements (P cephalometry. PMID:20100922

  17. Quantum computational universality of the Cai-Miyake-Duer-Briegel two-dimensional quantum state from Affleck-Kennedy-Lieb-Tasaki quasichains

    International Nuclear Information System (INIS)

    Wei, Tzu-Chieh; Raussendorf, Robert; Kwek, Leong Chuan

    2011-01-01

    Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, Duer, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. A 82, 052309 (2010)]. They showed that this state enables universal quantum computation by single-spin measurements. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain can be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. We further argue that a two-dimensional cluster state can be distilled from the Cai-Miyake-Duer-Briegel state.

  18. Evidence of nonuniqueness and oscillatory solutions in computational fluid mechanics

    International Nuclear Information System (INIS)

    Nunziato, J.W.; Gartling, D.K.; Kipp, M.E.

    1985-01-01

    We will review some of our recent experiences in computing solutions for nonlinear fluids in relatively simple, two-dimensional geometries. The purpose of this discussion will be to display by example some of the interesting but difficult questions that arise when ill-behaved solutions are obtained numerically. We will consider two examples. As the first example, we will consider a nonlinear elastic (compressible) fluid with chemical reactions and discuss solutions for detonation and detonation failure in a two-dimensional cylinder. In this case, the numerical algorithm utilizes a finite-difference method with artificial viscosity (von Neumann-Richtmyer method) and leads to two, distinctly different, stable solutions depending on the time step criterion used. The second example to be considered involves the convection of a viscous fluid in a rectangular container as a result of an exothermic polymerization reaction. A solidification front develops near the top of the container and propagates down through the fluid, changing the aspect ratio of the region ahead of the front. Using a Galerkin-based finite element method, a numerical solution of the partial differential equations is obtained which tracks the front and correctly predicts the fluid temperatures near the walls. However, the solution also exhibits oscillatory behavior with regard to the number of cells in the fluid ahead of the front and in the strength of the cells. More definitive experiments and analysis are required to determine whether this oscillatory phenomena is a numerical artifact or a physical reality. 20 refs., 14 figs

  19. Computational fluid mechanics

    Science.gov (United States)

    Hassan, H. A.

    1993-01-01

    Two papers are included in this progress report. In the first, the compressible Navier-Stokes equations have been used to compute leading edge receptivity of boundary layers over parabolic cylinders. Natural receptivity at the leading edge was simulated and Tollmien-Schlichting waves were observed to develop in response to an acoustic disturbance, applied through the farfield boundary conditions. To facilitate comparison with previous work, all computations were carried out at a free stream Mach number of 0.3. The spatial and temporal behavior of the flowfields are calculated through the use of finite volume algorithms and Runge-Kutta integration. The results are dominated by strong decay of the Tollmien-Schlichting wave due to the presence of the mean flow favorable pressure gradient. The effects of numerical dissipation, forcing frequency, and nose radius are studied. The Strouhal number is shown to have the greatest effect on the unsteady results. In the second paper, a transition model for low-speed flows, previously developed by Young et al., which incorporates first-mode (Tollmien-Schlichting) disturbance information from linear stability theory has been extended to high-speed flow by incorporating the effects of second mode disturbances. The transition model is incorporated into a Reynolds-averaged Navier-Stokes solver with a one-equation turbulence model. Results using a variable turbulent Prandtl number approach demonstrate that the current model accurately reproduces available experimental data for first and second-mode dominated transitional flows. The performance of the present model shows significant improvement over previous transition modeling attempts.

  20. Computational modelling in fluid mechanics

    International Nuclear Information System (INIS)

    Hauguel, A.

    1985-01-01

    The modelling of the greatest part of environmental or industrial flow problems gives very similar types of equations. The considerable increase in computing capacity over the last ten years consequently allowed numerical models of growing complexity to be processed. The varied group of computer codes presented are now a complementary tool of experimental facilities to achieve studies in the field of fluid mechanics. Several codes applied in the nuclear field (reactors, cooling towers, exchangers, plumes...) are presented among others [fr

  1. Integrable two dimensional supersystems

    International Nuclear Information System (INIS)

    Tripathy, K.C.; Tripathy, L.K.

    1988-08-01

    The integrability of two dimensional time-dependent classical systems is examined in N=2 superspace using Dirac's second class constraints. The invariants involving quadratic powers in velocities for super harmonic oscillator and super Kepler potentials have been derived. (author). 5 refs

  2. Computational Fluid Dynamics in Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Allard, Francis; Awbi, Hazim B.

    2008-01-01

    Computational Fluid Dynamics in Ventilation Design is a new title in the is a new title in the REHVA guidebook series. The guidebook is written for people who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD...

  3. EVP2D- a computer code developed for the eslastoviscoplastic-damage analysis of axyssimetrical and two-dimensional problems

    International Nuclear Information System (INIS)

    Goncalves Filho, O.J.A.

    1987-01-01

    This work aims to describe the computer code EVP2D developed for the elastoviscoplastic-damage analysis of mettalic components, with particular emphasis dedicated to the problem of creep damage and rupture. After a brief introduction of the basic concepts and procedures of Continuum Damage Mechanics, the constitutive equations implemented are presented. Next, the finite element approximation proposed for solution of the initial boundary value problem of interest is discussed, particularly the numerical algorithms used for time integration of the creep strain rate and damage rate equations, and the numerical procedures adopted for dealing with the presense of partially or fully ruptured finite elements in the mesh. As a pratical application, the rupture behaviour of a biaxially tension loaded plate containing a central circular hole is examined. Finally, future developments of the code, which include as prioritiesthe treatment of ciyclic loads and the description of the anisotropic feature of creep damage evolution, are briefly introduced. (author) [pt

  4. Comparison of alveolar ridge preservation method using three dimensional micro-computed tomographic analysis and two dimensional histometric evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Seok; Kim, Sung Tae; Oh, Seung Hee; Park, Hee Jung; Lee, Sophia; Kim, Taeil; Lee, Young Kyu; Heo, Min Suk [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2014-06-15

    This study evaluated the efficacy of alveolar ridge preservation methods with and without primary wound closure and the relationship between histometric and micro-computed tomographic (CT) data. Porcine hydroxyapatite with polytetrafluoroethylene membrane was implanted into a canine extraction socket. The density of the total mineralized tissue, remaining hydroxyapatite, and new bone was analyzed by histometry and micro-CT. The statistical association between these methods was evaluated. Histometry and micro-CT showed that the group which underwent alveolar preservation without primary wound closure had significantly higher new bone density than the group with primary wound closure (P<0.05). However, there was no significant association between the data from histometry and micro-CT analysis. These results suggest that alveolar ridge preservation without primary wound closure enhanced new bone formation more effectively than that with primary wound closure. Further investigation is needed with respect to the comparison of histometry and micro-CT analysis.

  5. Online monitoring of the two-dimensional temperature field in a boiler furnace based on acoustic computed tomography

    International Nuclear Information System (INIS)

    Zhang, Shiping; Shen, Guoqing; An, Liansuo; Niu, Yuguang

    2015-01-01

    Online monitoring of the temperature field is crucial to optimally adjust combustion within a boiler. In this paper, acoustic computed tomography (CT) technology was used to obtain the temperature profile of a furnace cross-section. The physical principles behind acoustic CT, acoustic signals and time delay estimation were studied. Then, the technique was applied to a domestic 600-MW coal-fired boiler. Acoustic CT technology was used to monitor the temperature field of the cross-section in the boiler furnace, and the temperature profile was reconstructed through ART iteration. The linear sweeping frequency signal was adopted as the sound source signal, whose sweeping frequency ranged from 500 to 3000 Hz with a sweeping cycle of 0.1 s. The generalized cross-correlation techniques with PHAT and ML were used as the time delay estimation method when the boiler was in different states. Its actual operation indicated that the monitored images accurately represented the combustion state of the boiler, and the acoustic CT system was determined to be accurate and reliable. - Highlights: • An online monitoring approach to monitor temperature field in a boiler furnace. • The paper provides acoustic CT technology to obtain the temperature profile of a furnace cross-section. • The temperature profile was reconstructed through ART iteration. • The technique is applied to a domestic 600-MW coal-fired boiler. • The monitored images accurately represent the combustion state of the boiler

  6. Computer extended asymptotic series for the two-dimensional linear hydrodynamics of a gas centrifuge with sources and sinks

    International Nuclear Information System (INIS)

    Berger, M.H.

    1985-07-01

    We have reformulated the general problem of internal flow in a modern, high-speed gas centrifuge with sources and sinks in such a way as to obtain new simple yet rigorous closed form, analytical solutions. Both symmetric and anti-symmetric drives lead to an ode in place of the usual inhomogeneous Onsager pde. Due to the difficulties of exactly solving this sixth order, inhomogeneous, variable coefficient ode, we appeal to the power of perturbation theory and techniques. Two extreme parameter regimes are easily identifiable, the so-called semi-long bowl and short bowl approximations. However, this paper treats only the former class of problems. It is shown that the long bowl solution for axial drive is the correct leading order terms, just like was found for pure thermal drive. New O(1) results are derived for radial, drag and heat drives in 2-D. Then we formally carry out regular asymptotic, even ordered power series expansions for the flow field to O(epsilon 4 ) on the computer so that our approximations are valid for values of epsilon near unity. In the spirit of Van Dyke one could carry out this expansion process, in theory, to apparently arbitrary order to describe the internal flow for arbitrary but finite decay length ratio. Evidently for asymptotically large x* the flow induced by axial and radial forces are proportional. The corresponding separation theory integral parameters are given in a companion paper

  7. Visualizing the BEC-BCS crossover in a two-dimensional Fermi gas: Pairing gaps and dynamical response functions from ab initio computations

    Science.gov (United States)

    Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei

    2017-12-01

    Experiments with ultracold atoms provide a highly controllable laboratory setting with many unique opportunities for precision exploration of quantum many-body phenomena. The nature of such systems, with strong interaction and quantum entanglement, makes reliable theoretical calculations challenging. Especially difficult are excitation and dynamical properties, which are often the most directly relevant to experiment. We carry out exact numerical calculations, by Monte Carlo sampling of imaginary-time propagation of Slater determinants, to compute the pairing gap in the two-dimensional Fermi gas from first principles. Applying state-of-the-art analytic continuation techniques, we obtain the spectral function and the density and spin structure factors providing unique tools to visualize the BEC-BCS crossover. These quantities will allow for a direct comparison with experiments.

  8. Visualization of Computational Fluid Dynamics

    Science.gov (United States)

    Gerald-Yamasaki, Michael; Hultquist, Jeff; Bryson, Steve; Kenwright, David; Lane, David; Walatka, Pamela; Clucas, Jean; Watson, Velvin; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Scientific visualization serves the dual purpose of exploration and exposition of the results of numerical simulations of fluid flow. Along with the basic visualization process which transforms source data into images, there are four additional components to a complete visualization system: Source Data Processing, User Interface and Control, Presentation, and Information Management. The requirements imposed by the desired mode of operation (i.e. real-time, interactive, or batch) and the source data have their effect on each of these visualization system components. The special requirements imposed by the wide variety and size of the source data provided by the numerical simulation of fluid flow presents an enormous challenge to the visualization system designer. We describe the visualization system components including specific visualization techniques and how the mode of operation and source data requirements effect the construction of computational fluid dynamics visualization systems.

  9. Analysis of one-dimensional gels and two-dimensional Serwer-type gels on the basis of the extended Ogston model using personal computers.

    Science.gov (United States)

    Tietz, D

    1991-01-01

    This report presents the stand-alone computer application ELPHOFIT, a software package for the analysis of gel electrophoretic data based on Ferguson plots. Either conventional one-dimensional gels or two-dimensional agarose gels (Serwer-type) can be evaluated. Special emphasis is on the latter gel type, which has been applied previously for the separation of DNA, intact viruses and polydisperse meningitis vaccines. ELPHOFIT is designed for Macintosh PCs and for the IBM XT, AT, PS/2 and compatibles. The program operates interactively with the user, who determines the course of evaluation. Data input is in the format of files providing values of gel electrophoretic migration distances or particle mobility (absolute or relative). Data processing involves a simultaneous least-square curve fitting algorithm (Newton-Gauss, Marquardt-Levenberg) which uses equations derived from the extended Ogston model. Functions are fit to the database by adjusting their variables, representing physical parameters of the gel and the electrophoresed particle. The program output consists of tables and graphics accompanied by an explanatory text providing the following information: (i) radius and free mobility of the electrophoresed particle, (ii) fiber radius, length and volume, mean or median pore radius of the gel, (iii) linear Ferguson plots, (iv) iso-free-mobility/iso-size nomogram for two-dimensional gels, (v) confidence ellipses, (vi) required parameters for image processing program GELFIT and (vii) goodness-of-fit and other statistical parameters, such as standard errors, dependency values, root-mean-square (RMS) error and determination coefficient. Other features of the program are (i) simulation of Serwer-type two-dimensional electrophoresis, (ii) standardization according to size, or size and free mobility, (iii) the conversion of particle radii to molecular (or particle) weight and vice versa, (iv) interconversion of DNA size specifications, i.e. the number of base pairs and

  10. Computational fluid dynamics in ventilation: Practical approach

    Science.gov (United States)

    Fontaine, J. R.

    The potential of computation fluid dynamics (CFD) for conceiving ventilation systems is shown through the simulation of five practical cases. The following examples are considered: capture of pollutants on a surface treating tank equipped with a unilateral suction slot in the presence of a disturbing air draft opposed to suction; dispersion of solid aerosols inside fume cupboards; performances comparison of two general ventilation systems in a silkscreen printing workshop; ventilation of a large open painting area; and oil fog removal inside a mechanical engineering workshop. Whereas the two first problems are analyzed through two dimensional numerical simulations, the three other cases require three dimensional modeling. For the surface treating tank case, numerical results are compared to laboratory experiment data. All simulations are carried out using EOL, a CFD software specially devised to deal with air quality problems in industrial ventilated premises. It contains many analysis tools to interpret the results in terms familiar to the industrial hygienist. Much experimental work has been engaged to validate the predictions of EOL for ventilation flows.

  11. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  12. Computer simulation of two-dimensional unsteady flows in estuaries and embayments by the method of characteristics : basic theory and the formulation of the numerical method

    Science.gov (United States)

    Lai, Chintu

    1977-01-01

    Two-dimensional unsteady flows of homogeneous density in estuaries and embayments can be described by hyperbolic, quasi-linear partial differential equations involving three dependent and three independent variables. A linear combination of these equations leads to a parametric equation of characteristic form, which consists of two parts: total differentiation along the bicharacteristics and partial differentiation in space. For its numerical solution, the specified-time-interval scheme has been used. The unknown, partial space-derivative terms can be eliminated first by suitable combinations of difference equations, converted from the corresponding differential forms and written along four selected bicharacteristics and a streamline. Other unknowns are thus made solvable from the known variables on the current time plane. The computation is carried to the second-order accuracy by using trapezoidal rule of integration. Means to handle complex boundary conditions are developed for practical application. Computer programs have been written and a mathematical model has been constructed for flow simulation. The favorable computer outputs suggest further exploration and development of model worthwhile. (Woodard-USGS)

  13. New approach in two-dimensional fluid modeling of edge plasma transport with high intermittency due to blobs and edge localized modes

    International Nuclear Information System (INIS)

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.

    2011-01-01

    A new approach is proposed to simulate intermittent, non-diffusive plasma transport (via blobs and filaments of edge localized modes (ELMs)) observed in the tokamak edge region within the framework of two-dimensional transport codes. This approach combines the inherently three-dimensional filamentary structures associated with an ensemble of blobs into a macro-blob in the two-dimensional poloidal cross-section and advects the macro-blob ballistically across the magnetic field, B. Intermittent transport is represented as a sequence of macro-blobs appropriately seeded in the edge plasma according to experimental statistics. In this case, the code is capable of reproducing both the long-scale temporal evolution of the background plasma and the fast spatiotemporal dynamics of blobs. We report the results from a two-dimensional edge plasma code modeling of a single macro-blob dynamics, and its interaction with initially stationary background plasma as well as with material surfaces. The mechanisms of edge plasma particle and energy losses from macro-blobs are analyzed. The effects of macro-blob sizes and advection velocity on edge plasma profiles are studied. The macro-blob impact on power loading and sputtering rates on the chamber wall and on inner and outer divertor plates is discussed. Temporal evolution of particle inventory of the edge plasma perturbed by macro-blobs is analyzed. Application of macro-blobs to ELM modeling is highlighted.

  14. Two-dimensional ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)

    2000-03-31

    The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)

  15. Principles of computational fluid dynamics

    CERN Document Server

    Wesseling, Pieter

    2001-01-01

    The book is aimed at graduate students, researchers, engineers and physicists involved in flow computations. An up-to-date account is given of the present state-of-the-art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated with a fair amount of detail, using elementary mathematical analysis. Attention is given to difficulties arising from geometric complexity of the flow domain and of nonuniform structured boundary-fitted grids. Uniform accuracy and efficiency for singular perturbation problems is studied, pointing the way to accurate computation of flows at high Reynolds number. Much attention is given to stability analysis, and useful stability conditions are provided, some of them new, for many numerical schemes used in practice. Unified methods for compressible and incompressible flows are discussed. Numerical analysis of the shallow-water equations is included. The theory of hyperbolic conservation laws is treated. Godunov's order barrier and ho...

  16. Computational methods for fluid dynamics

    CERN Document Server

    Ferziger, Joel H

    2002-01-01

    In its 3rd revised and extended edition the book offers an overview of the techniques used to solve problems in fluid mechanics on computers and describes in detail those most often used in practice. Included are advanced methods in computational fluid dynamics, like direct and large-eddy simulation of turbulence, multigrid methods, parallel computing, moving grids, structured, block-structured and unstructured boundary-fitted grids, free surface flows. The 3rd edition contains a new section dealing with grid quality and an extended description of discretization methods. The book shows common roots and basic principles for many different methods. The book also contains a great deal of practical advice for code developers and users, it is designed to be equally useful to beginners and experts. The issues of numerical accuracy, estimation and reduction of numerical errors are dealt with in detail, with many examples. A full-feature user-friendly demo-version of a commercial CFD software has been added, which ca...

  17. A comparison between two-dimensional and three-dimensional cephalometry on frontal radiographs and on cone beam computed tomography scans of human skulls.

    Science.gov (United States)

    van Vlijmen, Olivier J C; Maal, Thomas J J; Bergé, Stefaan J; Bronkhorst, Ewald M; Katsaros, Christos; Kuijpers-Jagtman, Anne Marie

    2009-06-01

    The aim of this study was to evaluate whether measurements performed on conventional frontal radiographs are comparable to measurements performed on three-dimensional (3D) models of human skulls derived from cone beam computed tomography (CBCT) scans and if the latter can be used in longitudinal studies. Cone beam computed tomography scans and conventional frontal cephalometric radiographs were made of 40 dry human skulls. From the CBCT scan a 3D model was constructed. Standard cephalometric software was used to identify landmarks and to calculate ratios and angles. The same operator identified 10 landmarks on both types of cephalometric radiographs, and on all images, five times with a time interval of 1 wk. Intra-observer reliability was acceptable for all measurements. There was a statistically significant and clinically relevant difference between measurements performed on conventional frontal radiographs and on 3D CBCT-derived models of the same skull. There was a clinically relevant difference between angular measurements performed on conventional frontal cephalometric radiographs, compared with measurements performed on 3D models constructed from CBCT scans. We therefore recommend that 3D models should not be used for longitudinal research in cases where there are only two-dimensional (2D) records from the past.

  18. Two-dimensional capillary origami

    International Nuclear Information System (INIS)

    Brubaker, N.D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  19. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  20. ICFD - Interdisciplinary Computational Fluid Dynamics

    International Nuclear Information System (INIS)

    Hankey, W.L.

    1985-01-01

    Interdisciplinary Computational Fluid Dynamics is that field in which the Navier-Stokes equations are coupled to another set of equations for the solution of interaction problems. Although it is currently possible to apply numerical algorithms and grid generation methods to such problems, together with the conservation form for governing equations and arrangements of field data which exploit vector processor hardwares, novel technology is called for in the modeling of complex interface boundary conditions and the incorporation of constitutive relationships for state variables and transport processes. It is also necessary to model such subgrid scale phenomena as turbulence, evaporation, atomization, devolatization, nucleation, chemical reactions, surface tension, and surface roughness. 33 references

  1. Computational Fluid Dynamics in Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Allard, Francis; Awbi, Hazim B.

    2008-01-01

    Computational Fluid Dynamics in Ventilation Design is a new title in the is a new title in the REHVA guidebook series. The guidebook is written for people who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD....... The guidebook is also written for people working with CFD which have to be more aware of how this numerical method is applied in the area of ventilation. The guidebook has, for example, chapters that are very important for CFD quality control in general and for the quality control of ventilation related...

  2. Computational fluid-dynamic model of laser-induced breakdown in air

    International Nuclear Information System (INIS)

    Dors, Ivan G.; Parigger, Christian G.

    2003-01-01

    Temperature and pressure profiles are computed by the use of a two-dimensional, axially symmetric, time-accurate computational fluid-dynamic model for nominal 10-ns optical breakdown laser pulses. The computational model includes a kinetics mechanism that implements plasma equilibrium kinetics in ionized regions and nonequilibrium, multistep, finite-rate reactions in nonionized regions. Fluid-physics phenomena following laser-induced breakdown are recorded with high-speed shadowgraph techniques. The predicted fluid phenomena are shown by direct comparison with experimental records to agree with the flow patterns that are characteristic of laser spark decay

  3. Two-dimensional iron-phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study

    Science.gov (United States)

    Wang, Yu; Yuan, Hao; Li, Yafei; Chen, Zhongfang

    2015-07-01

    Searching for low-cost non-Pt catalysts for oxygen reduction reaction (ORR) has been a key scientific issue in the development of fuel cells. In this work, the potential of utilizing the experimentally available two-dimensional (2D) Fe-phthalocyanine (Fe-Pc) monolayer with precisely-controlled distribution of Fe atoms as a catalyst of ORR was systematically explored by means of comprehensive density functional theory computations. The computations revealed that O2 molecules can be sufficiently activated on the surface of the Fe-Pc monolayer, and the subsequent ORR steps prefer to proceed on the Fe-Pc monolayer through a more efficient 4e pathway with a considerable limiting potential of 0.68 V. Especially, the Fe-Pc monolayer is more stable than the Fe-Pc molecule in acidic medium, and can present good catalytic performance for ORR on the addition of axial ligands. Therefore, the Fe-Pc monolayer is quite a promising single-atom-catalyst with high efficiency for ORR in fuel cells.Searching for low-cost non-Pt catalysts for oxygen reduction reaction (ORR) has been a key scientific issue in the development of fuel cells. In this work, the potential of utilizing the experimentally available two-dimensional (2D) Fe-phthalocyanine (Fe-Pc) monolayer with precisely-controlled distribution of Fe atoms as a catalyst of ORR was systematically explored by means of comprehensive density functional theory computations. The computations revealed that O2 molecules can be sufficiently activated on the surface of the Fe-Pc monolayer, and the subsequent ORR steps prefer to proceed on the Fe-Pc monolayer through a more efficient 4e pathway with a considerable limiting potential of 0.68 V. Especially, the Fe-Pc monolayer is more stable than the Fe-Pc molecule in acidic medium, and can present good catalytic performance for ORR on the addition of axial ligands. Therefore, the Fe-Pc monolayer is quite a promising single-atom-catalyst with high efficiency for ORR in fuel cells. Electronic

  4. Computer face-matching technology using two-dimensional photographs accurately matches the facial gestalt of unrelated individuals with the same syndromic form of intellectual disability.

    Science.gov (United States)

    Dudding-Byth, Tracy; Baxter, Anne; Holliday, Elizabeth G; Hackett, Anna; O'Donnell, Sheridan; White, Susan M; Attia, John; Brunner, Han; de Vries, Bert; Koolen, David; Kleefstra, Tjitske; Ratwatte, Seshika; Riveros, Carlos; Brain, Steve; Lovell, Brian C

    2017-12-19

    Massively parallel genetic sequencing allows rapid testing of known intellectual disability (ID) genes. However, the discovery of novel syndromic ID genes requires molecular confirmation in at least a second or a cluster of individuals with an overlapping phenotype or similar facial gestalt. Using computer face-matching technology we report an automated approach to matching the faces of non-identical individuals with the same genetic syndrome within a database of 3681 images [1600 images of one of 10 genetic syndrome subgroups together with 2081 control images]. Using the leave-one-out method, two research questions were specified: 1) Using two-dimensional (2D) photographs of individuals with one of 10 genetic syndromes within a database of images, did the technology correctly identify more than expected by chance: i) a top match? ii) at least one match within the top five matches? or iii) at least one in the top 10 with an individual from the same syndrome subgroup? 2) Was there concordance between correct technology-based matches and whether two out of three clinical geneticists would have considered the diagnosis based on the image alone? The computer face-matching technology correctly identifies a top match, at least one correct match in the top five and at least one in the top 10 more than expected by chance (P technology and clinicians, with higher accuracy of the technology when results were discordant (P technology was tested on images of individuals with known syndromic forms of intellectual disability, the results of this pilot study illustrate the potential utility of face-matching technology within deep phenotyping platforms to facilitate the interpretation of DNA sequencing data for individuals who remain undiagnosed despite testing the known developmental disorder genes.

  5. Principles of computational fluid dynamics

    International Nuclear Information System (INIS)

    Wesseling, P.

    2001-01-01

    The book is aimed at graduate students, researchers, engineers and physicists involved in flow computations. An up-to-date account is given of the present state- of-the-art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated with a fair amount of detail, using elementary mathematical analysis. Attention is given to difficulties arising from geometric complexity of the flow domain and of nonuniform structured boundary-fitted grids. Uniform accuracy and efficiency for singular perturbation problems is studied, pointing the way to accurate computation of flows at high Reynolds number. Much attention is given to stability analysis, and useful stability conditions are provided, some of them new, for many numerical schemes used in practice. Unified methods for compressible and incompressible flows are discussed. Numerical analysis of the shallow-water equations is included. The theory of hyperbolic conservation laws is treated. Godunov's order barrier and how to overcome it by means of slope-limited schemes is discussed. An introduction is given to efficient iterative solution methods, using Krylov subspace and multigrid acceleration. Many pointers are given to recent literature, to help the reader to quickly reach the current research frontier. (orig.)

  6. A computational fluid dynamic model for fluidized bed heat transfer

    International Nuclear Information System (INIS)

    Yusuf, R.; Melaaen, M.C.; Mathiesen, V.

    2005-01-01

    The objective of this work is to study heat transfer from a heated wall in a gas fluidized bed using the computational fluid dynamic (CFD) approach. An Eulerian-Eulerian simulation of a two dimensional bubbling bed at ambient conditions with a heated wall is carried out on the in-house code FLOTRACS-MP-3D. An empirical as well as a mechanistic model for solid phase thermal conductivity is tested. Effect of operating parameters like velocity and particle size are also investigated. The fluid dynamic model is able to predict the qualitative trends for the influence of operating parameters as well as high heat transfer coefficients observed in gas fluidized beds. (author)

  7. Evaluation of left ventricular function and volumes in patients with ischaemic cardiomyopathy: gated single-photon emission computed tomography versus two-dimensional echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Vourvouri, E.C.; Poldermans, D.; Sianos, G.; Sozzi, F.B.; Schinkel, A.F.L.; Sutter, J. de; Roelandt, J.R.T.C. [Dept. of Cardiology, Erasmus Medical Center Rotterdam (Netherlands); Bax, J.J. [Dept. of Cardiology, Leiden Univ. Medical Center (Netherlands); Parcharidis, G. [Dept. of Cardiology, AHEPA Univ. Hospital, Thessaloniki (Greece); Valkema, R. [Dept. of Nuclear Medicine, Erasmus Medical Center Rotterdam (Netherlands)

    2001-11-01

    The objective of this study was to perform a head-to-head comparison between two-dimensional (2D) echocardiography and gated single-photon emission computed tomography (SPET) for the evaluation of left ventricular (LV) function and volumes in patients with severe ischaemic LV dysfunction. Thirty-two patients with chronic ischaemic LV dysfunction [mean LV ejection fraction (EF) 25%{+-}6%] were studied with gated SPET and 2D echocardiography. Regional wall motion was evaluated by both modalities and scored by two independent observers using a 16-segment model with a 5-point scoring system (1= normokinesia, 2= mild hypokinesia, 3= severe hypokinesia, 4= akinesia and 5= dyskinesia). LVEF and LV end-diastolic and end-systolic volumes were evaluated by 2D echocardiography using the Simpson's biplane discs method. The same parameters were calculated using quantitative gated SPET software (QGS, Cedars-Sinai Medical Center). The overall agreement between the two imaging modalities for assessment of regional wall motion was 69%. The correlations between gated SPET and 2D echocardiography for the assessment of end-diastolic and end-systolic volumes were excellent (r=0.94, P<0.01, and r=0.96, P<0.01, respectively). The correlation for LVEF was also good (r=0.83, P<0.01). In conclusion: in patients with ischaemic cardiomyopathy, close and significant relations between gated SPET and 2D echocardiography were observed for the assessment of regional and global LV function and LV volumes; gated SPET has the advantage that it provides information on both LV function/dimensions and perfusion. (orig.)

  8. Mathematical modelling and computational study of two-dimensional and three-dimensional dynamics of receptor-ligand interactions in signalling response mechanisms.

    Science.gov (United States)

    García-Peñarrubia, Pilar; Gálvez, Juan J; Gálvez, Jesús

    2014-09-01

    Cell signalling processes involve receptor trafficking through highly connected networks of interacting components. The binding of surface receptors to their specific ligands is a key factor for the control and triggering of signalling pathways. But the binding process still presents many enigmas and, by analogy with surface catalytic reactions, two different mechanisms can be conceived: the first mechanism is related to the Eley-Rideal (ER) mechanism, i.e. the bulk-dissolved ligand interacts directly by pure three-dimensional (3D) diffusion with the specific surface receptor; the second mechanism is similar to the Langmuir-Hinshelwood (LH) process, i.e. 3D diffusion of the ligand to the cell surface followed by reversible ligand adsorption and subsequent two-dimensional (2D) surface diffusion to the receptor. A situation where both mechanisms simultaneously contribute to the signalling process could also occur. The aim of this paper is to perform a computational study of the behavior of the signalling response when these different mechanisms for ligand-receptor interactions are integrated into a model for signal transduction and ligand transport. To this end, partial differential equations have been used to develop spatio-temporal models that show trafficking dynamics of ligands, cell surface components, and intracellular signalling molecules through the different domains of the system. The mathematical modeling developed for these mechanisms has been applied to the study of two situations frequently found in cell systems: (a) dependence of the signal response on cell density; and (b) enhancement of the signalling response in a synaptic environment.

  9. Vortex Generators in a Two-Dimensional, External-Compression Supersonic Inlet

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.

    2016-01-01

    Computational fluid dynamics simulations are performed as part of a process to design a vortex generator array for a two-dimensional inlet for Mach 1.6. The objective is to improve total pressure recovery a on at the engine face of the inlet. Both vane-type and ramp-type vortex generators are examined.

  10. Using Computers in Fluids Engineering Education

    Science.gov (United States)

    Benson, Thomas J.

    1998-01-01

    Three approaches for using computers to improve basic fluids engineering education are presented. The use of computational fluid dynamics solutions to fundamental flow problems is discussed. The use of interactive, highly graphical software which operates on either a modern workstation or personal computer is highlighted. And finally, the development of 'textbooks' and teaching aids which are used and distributed on the World Wide Web is described. Arguments for and against this technology as applied to undergraduate education are also discussed.

  11. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2001-01-01

    Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...

  12. A computational fluid dynamics algorithm on a massively parallel computer

    International Nuclear Information System (INIS)

    Jespersen, D.C.; Levit, C.

    1989-01-01

    The discipline of computational fluid dynamics is demanding ever-increasing computational power to deal with complex fluid flow problems. The authors investigate the performance of a finite-difference computational fluid dynamics algorithm on a massively parallel computer, the Connection Machine. Of special interest is an implicitly time-stepping algorithm; to obtain maximum performance from the Connection Machine, it is necessary to use a nonstandard algorithm to solve the linear systems that arise in the implicit algorithm. The authors find that the Connection Machine can achieve very high computation rates on both explicit and implicit algorithms. The performance of the Connection Machine puts it in the same class as conventional supercomputers

  13. An introduction to Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    1999-01-01

    CFD is the shortname for Computational Fluid Dynamics and is a numerical method by means of which we can analyze systems containing fluids. For instance systems dealing with heat flow or smoke control systems acting when a fire occur in a building.......CFD is the shortname for Computational Fluid Dynamics and is a numerical method by means of which we can analyze systems containing fluids. For instance systems dealing with heat flow or smoke control systems acting when a fire occur in a building....

  14. A computer program for transient incompressible fluid flow based on quadratic finite elements

    International Nuclear Information System (INIS)

    Laval, H.

    1981-01-01

    The computer code CONVEC is a general computer program designed for the solution of transient two-dimensional incompressible fluid flow problems. The solution procedure is based on the finite element method. The class of problems treated by the present version of CONVEC are those described by the time-dependent, two-dimensional (plane or axisymmetric) form of the Navier-Stokes equations. The flow field is assumed to be laminar and the fluid Newtonian and incompressible within the Boussinesq approximation. The present report is intended to provide a description of the input data necessary to access and execute the code. In the following sections, the basic dimensions and input data of CONVEC are described. Then a test problem is solved in order to illustrate the input and output of the code

  15. Personal Computer (PC) based image processing applied to fluid mechanics

    Science.gov (United States)

    Cho, Y.-C.; Mclachlan, B. G.

    1987-01-01

    A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes computation.

  16. The computer code EURDYN-1MP (release 1) for plane fluid-structure systems: user's manual

    International Nuclear Information System (INIS)

    Giuliani, S.

    1984-01-01

    EURDYN-1MP is a finite element computer code developed at J.R.C. Ispra to compute the response of two-dimensional, coupled fluid-structure configurations to transient dynamic loading. The structural domain is assumed to be in a situation of plane strain, but axial motion of the fluid is considered. This report gives instructions for preparing input data to EURDYN-1MP, release 1, and describes a test problem in order to illustrate both the input and the output of the code

  17. Computational Fluid Dynamics and Room Air Movement

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2004-01-01

    Nielsen, P.V. Computational Fluid Dynamics and Room Air Movement. Indoor Air, International Journal of Indoor Environment and Health, Vol. 14, Supplement 7, pp. 134-143, 2004. ABSTRACT Computational Fluid Dynamics (CFD) and new developments of CFD in the indoor environment as well as quality...... considerations are important elements in the study of energy consumption, thermal comfort and indoor air quality in buildings. The paper discusses the quality level of Computational Fluid Dynamics and the involved schemes (first, second and third order schemes) by the use of the Smith and Hutton problem...

  18. Formation of large-scale structures with sharp density gradient through Rayleigh-Taylor growth in a two-dimensional slab under the two-fluid and finite Larmor radius effects

    International Nuclear Information System (INIS)

    Goto, R.; Hatori, T.; Miura, H.; Ito, A.; Sato, M.

    2015-01-01

    Two-fluid and the finite Larmor effects on linear and nonlinear growth of the Rayleigh-Taylor instability in a two-dimensional slab are studied numerically with special attention to high-wave-number dynamics and nonlinear structure formation at a low β-value. The two effects stabilize the unstable high wave number modes for a certain range of the β-value. In nonlinear simulations, the absence of the high wave number modes in the linear stage leads to the formation of the density field structure much larger than that in the single-fluid magnetohydrodynamic simulation, together with a sharp density gradient as well as a large velocity difference. The formation of the sharp velocity difference leads to a subsequent Kelvin-Helmholtz-type instability only when both the two-fluid and finite Larmor radius terms are incorporated, whereas it is not observed otherwise. It is shown that the emergence of the secondary instability can modify the outline of the turbulent structures associated with the primary Rayleigh-Taylor instability

  19. Fluid dynamics computer programs for NERVA turbopump

    Science.gov (United States)

    Brunner, J. J.

    1972-01-01

    During the design of the NERVA turbopump, numerous computer programs were developed for the analyses of fluid dynamic problems within the machine. Program descriptions, example cases, users instructions, and listings for the majority of these programs are presented.

  20. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2017-01-01

    This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...

  1. Micromachined two dimensional resistor arrays for determination of gas parameters

    NARCIS (Netherlands)

    van Baar, J.J.J.; Verwey, Willem B.; Dijkstra, Mindert; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of

  2. Computational aspects of the smectization process in liquid crystals: An example study of a perfectly aligned two-dimensional hard-boomerang system.

    Science.gov (United States)

    Chrzanowska, Agnieszka

    2017-06-01

    A replica method for calculation of smectic liquid crystal properties within the Onsager theory has been presented and applied to an exemplary case of two-dimensional perfectly aligned needlelike boomerangs. The method allows one to consider the complete influence of the interaction terms in contrast to the Fourier expansion method which uses mostly first or second order terms of expansion. The program based on the replica algorithm is able to calculate a single representative layer as an equivalent set of layers, depending on the size of the considered width of the sample integration interval. It predicts successfully smectic density distributions, energies, and layer thicknesses for different types of layer arrangement-of the antiferroelectric or of the smectic A order type. Specific features of the algorithm performance and influence of the numerical accuracy on the physical properties are presented. Future applications of the replica method to freely rotating molecules are discussed.

  3. Impact of interannual variability (1979-1986) of transport and temperature on ozone as computed using a two-dimensional photochemical model

    Science.gov (United States)

    Jackman, Charles H.; Douglass, Anne R.; Chandra, Sushil; Stolarski, Richard S.; Rosenfield, Joan E.; Kaye, Jack A.

    1991-01-01

    Values of the monthly mean heating rates and the residual circulation characteristics were calculated using NMC data for temperature and the solar backscattered UV ozone for the period between 1979 and 1986. The results were used in a two-dimensional photochemical model in order to examine the effects of temperature and residual circulation on the interannual variability of ozone. It was found that the calculated total ozone was more sensitive to variations in interannual residual circulation than in the interannual temperature. The magnitude of the modeled ozone variability was found to be similar to the observed variability, but the observed and modeled year-to-year deviations were, for the most part, uncorrelated, due to the fact that the model did not account for most of the QBO forcing and for some of the observed tropospheric changes.

  4. Exact solutions and conservation laws of the system of two-dimensional viscous Burgers equations

    Science.gov (United States)

    Abdulwahhab, Muhammad Alim

    2016-10-01

    Fluid turbulence is one of the phenomena that has been studied extensively for many decades. Due to its huge practical importance in fluid dynamics, various models have been developed to capture both the indispensable physical quality and the mathematical structure of turbulent fluid flow. Among the prominent equations used for gaining in-depth insight of fluid turbulence is the two-dimensional Burgers equations. Its solutions have been studied by researchers through various methods, most of which are numerical. Being a simplified form of the two-dimensional Navier-Stokes equations and its wide range of applicability in various fields of science and engineering, development of computationally efficient methods for the solution of the two-dimensional Burgers equations is still an active field of research. In this study, Lie symmetry method is used to perform detailed analysis on the system of two-dimensional Burgers equations. Optimal system of one-dimensional subalgebras up to conjugacy is derived and used to obtain distinct exact solutions. These solutions not only help in understanding the physical effects of the model problem but also, can serve as benchmarks for constructing algorithms and validation of numerical solutions of the system of Burgers equations under consideration at finite Reynolds numbers. Independent and nontrivial conserved vectors are also constructed.

  5. JAC2D: A two-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Biffle, J.H.; Blanford, M.L.

    1994-05-01

    JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.

  6. Numerical method for two-dimensional unsteady reacting flows

    International Nuclear Information System (INIS)

    Butler, T.D.; O'Rourke, P.J.

    1976-01-01

    A method that numerically solves the full two-dimensional, time-dependent Navier-Stokes equations with species transport, mixing, and chemical reaction between species is presented. The generality of the formulation permits the solution of flows in which deflagrations, detonations, or transitions from deflagration to detonation are found. The solution procedure is embodied in the RICE computer program. RICE is an Eulerian finite difference computer code that uses the Implicit Continuous-fluid Eulerian (ICE) technique to solve the governing equations. One first presents the differential equations of motion and the solution procedure of the Rice program. Next, a method is described for artificially thickening the combustion zone to dimensions resolvable by the computational mesh. This is done in such a way that the physical flame speed and jump conditions across the flame front are preserved. Finally, the results of two example calculations are presented. In the first, the artificial thickening technique is used to solve a one-dimensional laminar flame problem. In the second, the results of a full two-dimensional calculation of unsteady combustion in two connected chambers are detailed

  7. Quasi-two-dimensional holography

    International Nuclear Information System (INIS)

    Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.

    1980-01-01

    The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de

  8. A Computational Fluid Dynamics Algorithm on a Massively Parallel Computer

    Science.gov (United States)

    Jespersen, Dennis C.; Levit, Creon

    1989-01-01

    The discipline of computational fluid dynamics is demanding ever-increasing computational power to deal with complex fluid flow problems. We investigate the performance of a finite-difference computational fluid dynamics algorithm on a massively parallel computer, the Connection Machine. Of special interest is an implicit time-stepping algorithm; to obtain maximum performance from the Connection Machine, it is necessary to use a nonstandard algorithm to solve the linear systems that arise in the implicit algorithm. We find that the Connection Machine ran achieve very high computation rates on both explicit and implicit algorithms. The performance of the Connection Machine puts it in the same class as today's most powerful conventional supercomputers.

  9. Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow

    Energy Technology Data Exchange (ETDEWEB)

    Gu, W.B.; Jungst, Rudolph G.; Nagasubramanian, Ganesan; Wang, C.Y.; Weidner, John.

    1999-06-11

    A two-dimensional model is developed to simulate discharge of a lithium/thionyl chloride primary battery. The model accounts for not only transport of species and charge, but also the electrode porosity variations and the electrolyte flow induced by the volume reduction caused by electrochemical reactions. Numerical simulations are performed using a finite volume method of computational fluid dynamics. The predicted discharge curves for various temperatures are compared to the experimental data with excellent agreement. Moreover, the simulation results. in conjunction with computer visualization and animation techniques, confirm that cell utilization in the temperature and current range of interest is limited by pore plugging or clogging of the front side of the cathode as a result of LiCl precipitation. The detailed two-dimensional flow simulation also shows that the electrolyte is replenished from the cell header predominantly through the separator into the front of the cathode during most parts of the discharge, especially for higher cell temperatures.

  10. Three-Dimensional Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Haworth, D.C.; O' Rourke, P.J.; Ranganathan, R.

    1998-09-01

    Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.

  11. Two dimensional image correlation processor

    Science.gov (United States)

    Yao, Shi-Kai

    1992-06-01

    Two dimensional images are converted into a very long 1-dimensional data stream by means of raster scan. It is shown that the 1-dimensional correlation function of such long data streams is equivalent to the raster scan converted data of 2-dimensional correlation function of images. Real time correlation of high resolution two-dimensional images has been demonstrated using commercially available components. The advantages of this approach includes programmable electronics reference images, easy interface to objects of interest using conventional image collection optics, real time operation with high resolution images using off-the shelf components, and usefulness in the form of either black and white or full colored images. Such system would be versatile enough for robotics vision, optical inspection, and other pattern recognition and identification applications.

  12. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  13. Two-dimensional critical phenomena

    International Nuclear Information System (INIS)

    Saleur, H.

    1987-09-01

    Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr

  14. Computational Fluid Dynamics in Ventilation Design

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    2008-01-01

    This paper is based on the new REHVA Guidebook Computational Fluid  Dynamics in Ventilation Design (Nielsen et al. 2007) written by Peter V. Nielsen, Francis(Nielsen 2007) written by Peter V. Nielsen, Francis Allard, Hazim B. Awbi, Lars Davidson and Alois Schälin. The guidebook is made for people...

  15. Computational fluid dynamics in greenhouses: A review

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... Computational fluid dynamics is a tool that has been used in recent years to develop numerical models that improve our understanding of the interaction of variables that make up the climate inside greenhouses. In the past five years, more realistic studies have appeared due mainly to the development of ...

  16. Engineering applications of computational fluid dynamics

    CERN Document Server

    Awang, Mokhtar

    2015-01-01

    This volume presents the results of Computational Fluid Dynamics (CFD) analysis that can be used for conceptual studies of product design, detail product development, process troubleshooting. It demonstrates the benefit of CFD modeling as a cost saving, timely, safe and easy to scale-up methodology.

  17. Spatial statistics of magnetic field in two-dimensional chaotic flow in the resistive growth stage

    Energy Technology Data Exchange (ETDEWEB)

    Kolokolov, I.V., E-mail: igor.kolokolov@gmail.com [Landau Institute for Theoretical Physics RAS, 119334, Kosygina 2, Moscow (Russian Federation); NRU Higher School of Economics, 101000, Myasnitskaya 20, Moscow (Russian Federation)

    2017-03-18

    The correlation tensors of magnetic field in a two-dimensional chaotic flow of conducting fluid are studied. It is shown that there is a stage of resistive evolution where the field correlators grow exponentially with time. The two- and four-point field correlation tensors are computed explicitly in this stage in the framework of Batchelor–Kraichnan–Kazantsev model. They demonstrate strong temporal intermittency of the field fluctuations and high level of non-Gaussianity in spatial field distribution.

  18. Computational fluid dynamics a practical approach

    CERN Document Server

    Tu, Jiyuan; Liu, Chaoqun

    2018-01-01

    Computational Fluid Dynamics: A Practical Approach, Third Edition, is an introduction to CFD fundamentals and commercial CFD software to solve engineering problems. The book is designed for a wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step-by-step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. This new edition has been updated throughout, with new content and improved figures, examples and problems.

  19. Solitary wave solutions of two-dimensional nonlinear Kadomtsev ...

    Indian Academy of Sciences (India)

    Aly R Seadawy

    2017-09-13

    Sep 13, 2017 ... We considered the two-dimensional DASWs in colli- sionless, unmagnetized cold plasma consisting of dust fluid, ions and electrons. The dynamics of DASWs is governed by the normalized fluid equations of nonlin- ear continuity (1), nonlinear motion of system (2) and. (3) and linear Poisson equation (4) as.

  20. Charge ordering in two-dimensional ionic liquids

    Science.gov (United States)

    Perera, Aurélien; Urbic, Tomaz

    2018-04-01

    The structural properties of model two-dimensional (2D) ionic liquids are examined, with a particular focus on the charge ordering process, with the use of computer simulation and integral equation theories. The influence of the logarithmic form of the Coulomb interaction, versus that of a 3D screened interaction form, is analysed. Charge order is found to hold and to be analogous for both interaction models, despite their very different form. The influence of charge ordering in the low density regime is discussed in relation to well known properties of 2D Coulomb fluids, such as the Kosterlitz-Thouless transition and criticality. The present study suggests the existence of a stable thermodynamic labile cluster phase, implying the existence of a liquid-liquid "transition" above the liquid-gas binodal. The liquid-gas and Kosterlitz-Thouless transitions would then take place inside the predicted cluster phase.

  1. Computational fluid dynamics modeling of a lithium/thionyl chloride battery with electrolyte flow

    Energy Technology Data Exchange (ETDEWEB)

    Gu, W.B.; Wang, C.Y.; Weidner, J.W.; Jungst, R.G.; Nagasubramanian, G.

    2000-02-01

    A two-dimensional model is developed to simulate discharge of a lithium/thionyl chloride primary battery. As in earlier one-dimensional models, the model accounts for transport of species and charge, and electrode porosity variations and electrolyte flow induced by the volume reduction caused by electrochemical reactions. Numerical simulations are performed using a finite volume method of computational fluid dynamics. The predicted discharge curves for various temperatures show good agreement with published experimental data, and are essentially identical to results published for one-dimensional models. The detailed two-dimensional flow simulations show that the electrolyte is replenished from the cell head space predominantly through the separator into the front of the cathode during most parts of the discharge, especially for higher cell temperatures.

  2. Zonal methods and computational fluid dynamics

    International Nuclear Information System (INIS)

    Atta, E.H.

    1985-01-01

    Recent advances in developing numerical algorithms for solving fluid flow problems, and the continuing improvement in the speed and storage of large scale computers have made it feasible to compute the flow field about complex and realistic configurations. Current solution methods involve the use of a hierarchy of mathematical models ranging from the linearized potential equation to the Navier Stokes equations. Because of the increasing complexity of both the geometries and flowfields encountered in practical fluid flow simulation, there is a growing emphasis in computational fluid dynamics on the use of zonal methods. A zonal method is one that subdivides the total flow region into interconnected smaller regions or zones. The flow solutions in these zones are then patched together to establish the global flow field solution. Zonal methods are primarily used either to limit the complexity of the governing flow equations to a localized region or to alleviate the grid generation problems about geometrically complex and multicomponent configurations. This paper surveys the application of zonal methods for solving the flow field about two and three-dimensional configurations. Various factors affecting their accuracy and ease of implementation are also discussed. From the presented review it is concluded that zonal methods promise to be very effective for computing complex flowfields and configurations. Currently there are increasing efforts to improve their efficiency, versatility, and accuracy

  3. A comparison between two-dimensional and three-dimensional cephalometry on frontal radiographs and on cone beam computed tomography scans of human skulls.

    NARCIS (Netherlands)

    Vlijmen, O.J.C. van; Maal, T.J.J.; Berge, S.J.; Bronkhorst, E.M.; Katsaros, C.; Kuijpers-Jagtman, A.M.

    2009-01-01

    The aim of this study was to evaluate whether measurements performed on conventional frontal radiographs are comparable to measurements performed on three-dimensional (3D) models of human skulls derived from cone beam computed tomography (CBCT) scans and if the latter can be used in longitudinal

  4. Elaboration of a computer code for the solution of a two-dimensional two-energy group diffusion problem using the matrix response method

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.

    1980-12-01

    An analytical procedure to solve the neutron diffusion equation in two dimensions and two energy groups was developed. The response matrix method was used coupled with an expansion of the neutron flux in finite Fourier series. A computer code 'MRF2D' was elaborated to implement the above mentioned procedure for PWR reactor core calculations. Different core symmetry options are allowed by the code, which is also flexible enough to allow for improvements by means of algorithm optimization. The code performance was compared with a corner mesh finite difference code named TVEDIM by using a International Atomic Energy Agency (IAEA) standard problem. Computer processing time 12,7% smaller is required by the MRF2D code to reach the same precision on criticality eigenvalue. (Author) [pt

  5. Computational Fluid Dynamics - Applications in Manufacturing Processes

    Science.gov (United States)

    Beninati, Maria Laura; Kathol, Austin; Ziemian, Constance

    2012-11-01

    A new Computational Fluid Dynamics (CFD) exercise has been developed for the undergraduate introductory fluid mechanics course at Bucknell University. The goal is to develop a computational exercise that students complete which links the manufacturing processes course and the concurrent fluid mechanics course in a way that reinforces the concepts in both. In general, CFD is used as a tool to increase student understanding of the fundamentals in a virtual world. A ``learning factory,'' which is currently in development at Bucknell seeks to use the laboratory as a means to link courses that previously seemed to have little correlation at first glance. A large part of the manufacturing processes course is a project using an injection molding machine. The flow of pressurized molten polyurethane into the mold cavity can also be an example of fluid motion (a jet of liquid hitting a plate) that is applied in manufacturing. The students will run a CFD process that captures this flow using their virtual mold created with a graphics package, such as SolidWorks. The laboratory structure is currently being implemented and analyzed as a part of the ``learning factory''. Lastly, a survey taken before and after the CFD exercise demonstrate a better understanding of both the CFD and manufacturing process.

  6. Computational fluid dynamics modeling of proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    UM,SUKKEE; WANG,C.Y.; CHEN,KEN S.

    2000-02-11

    A transient, multi-dimensional model has been developed to simulate proton exchange membrane (PEM) fuel cells. The model accounts simultaneously for electrochemical kinetics, current distribution, hydrodynamics and multi-component transport. A single set of conservation equations valid for flow channels, gas-diffusion electrodes, catalyst layers and the membrane region are developed and numerically solved using a finite-volume-based computational fluid dynamics (CFD) technique. The numerical model is validated against published experimental data with good agreement. Subsequently, the model is applied to explore hydrogen dilution effects in the anode feed. The predicted polarization cubes under hydrogen dilution conditions are found to be in qualitative agreement with recent experiments reported in the literature. The detailed two-dimensional electrochemical and flow/transport simulations further reveal that in the presence of hydrogen dilution in the fuel stream, hydrogen is depleted at the reaction surface resulting in substantial kinetic polarization and hence a lower current density that is limited by hydrogen transport from the fuel stream to the reaction site.

  7. Numerical model for two-dimensional hydrodynamics and energy transport. [VECTRA code

    Energy Technology Data Exchange (ETDEWEB)

    Trent, D.S.

    1973-06-01

    The theoretical basis and computational procedure of the VECTRA computer program are presented. VECTRA (Vorticity-Energy Code for TRansport Analysis) is designed for applying numerical simulation to a broad range of intake/discharge flows in conjunction with power plant hydrological evaluation. The code computational procedure is based on finite-difference approximation of the vorticity-stream function partial differential equations which govern steady flow momentum transport of two-dimensional, incompressible, viscous fluids in conjunction with the transport of heat and other constituents.

  8. Design analysis and performance evaluation of a two-dimensional camera for accelerated positron-emitter beam injection by computer simulation

    International Nuclear Information System (INIS)

    Llacer, J.; Chatterjee, A.; Batho, E.K.; Poskanzer, J.A.

    1982-05-01

    The characteristics and design of a high-accuracy and high-sensitivity 2-dimensional camera for the measurement of the end-point of the trajectory of accelerated heavy ion beams of positron emitter isotopes are described. Computer simulation methods have been used in order to insure that the design would meet the demanding criteria of ability to obtain the location of the centroid of a point source in the X-Y plane with errors smaller than 1 mm, with an activity of 100 nanoCi, in a counting time of 5 sec or less. A computer program which can be developed into a general purpose analysis tool for a large number of positron emitter camera configurations is described in its essential parts. The validation of basic simulation results with simple measurements is reported, and the use of the program to generate simulated images which include important second order effects due to detector material, geometry, septa, etc. is demonstrated. Comparison between simulated images and initial results with the completed instrument shows that the desired specifications have been met

  9. Coal liquefaction process streams characterization and evaluation. Characterization of coal-derived materials by field desorption mass spectrometry, two-dimensional nuclear magnetic resonance, supercritical fluid extraction, and supercritical fluid chromatography/mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.A.; Linehan, J.C.; Robins, W.H. [Battelle Pacific Northwest Lab., Richland, WA (United States)

    1992-07-01

    Under contract from the DOE , and in association with CONSOL Inc., Battelle, Pacific Northwest Laboratory (PNL) evaluated four principal and several complementary techniques for the analysis of non-distillable direct coal liquefaction materials in support of process development. Field desorption mass spectrometry (FDMS) and nuclear magnetic resonance (NMR) spectroscopic methods were examined for potential usefulness as techniques to elucidate the chemical structure of residual (nondistillable) direct coal liquefaction derived materials. Supercritical fluid extraction (SFE) and supercritical fluid chromatography/mass spectrometry (SFC/MS) were evaluated for effectiveness in compound-class separation and identification of residual materials. Liquid chromatography (including microcolumn) separation techniques, gas chromatography/mass spectrometry (GC/MS), mass spectrometry/mass spectrometry (MS/MS), and GC/Fourier transform infrared (FTIR) spectroscopy methods were applied to supercritical fluid extracts. The full report authored by the PNL researchers is presented here. The following assessment briefly highlights the major findings of the project, and evaluates the potential of the methods for application to coal liquefaction materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of CONSOL`s contract.

  10. The use of computers for instruction in fluid dynamics

    Science.gov (United States)

    Watson, Val

    1987-01-01

    Applications for computers which improve instruction in fluid dynamics are examined. Computers can be used to illustrate three-dimensional flow fields and simple fluid dynamics mechanisms, to solve fluid dynamics problems, and for electronic sketching. The usefulness of computer applications is limited by computer speed, memory, and software and the clarity and field of view of the projected display. Proposed advances in personal computers which will address these limitations are discussed. Long range applications for computers in education are considered.

  11. Comparison of alveolar ridge preservation methods using three-dimensional micro-computed tomographic analysis and two-dimensional histometric evaluation.

    Science.gov (United States)

    Park, Young-Seok; Kim, Sungtae; Oh, Seung-Hee; Park, Hee-Jung; Lee, Sophia; Kim, Tae-Il; Lee, Young-Kyu; Heo, Min-Suk

    2014-06-01

    This study evaluated the efficacy of alveolar ridge preservation methods with and without primary wound closure and the relationship between histometric and micro-computed tomographic (CT) data. Porcine hydroxyapatite with polytetrafluoroethylene membrane was implanted into a canine extraction socket. The density of the total mineralized tissue, remaining hydroxyapatite, and new bone was analyzed by histometry and micro-CT. The statistical association between these methods was evaluated. Histometry and micro-CT showed that the group which underwent alveolar preservation without primary wound closure had significantly higher new bone density than the group with primary wound closure (Palveolar ridge preservation without primary wound closure enhanced new bone formation more effectively than that with primary wound closure. Further investigation is needed with respect to the comparison of histometry and micro-CT analysis.

  12. Flow transitions in two-dimensional foams.

    Science.gov (United States)

    Gilbreth, Christopher; Sullivan, Scott; Dennin, Michael

    2006-11-01

    For sufficiently slow rates of strain, flowing foam can exhibit inhomogeneous flows. The nature of these flows is an area of active study in both two-dimensional model foams and three dimensional foam. Recent work in three-dimensional foam has identified three distinct regimes of flow [S. Rodts, J. C. Baudez, and P. Coussot, Europhys. Lett. 69, 636 (2005)]. Two of these regimes are identified with continuum behavior (full flow and shear banding), and the third regime is identified as a discrete regime exhibiting extreme localization. In this paper, the discrete regime is studied in more detail using a model two-dimensional foam: a bubble raft. We characterize the behavior of the bubble raft subjected to a constant rate of strain as a function of time, system size, and applied rate of strain. We observe localized flow that is consistent with the coexistence of a power-law fluid with rigid-body rotation. As a function of applied rate of strain, there is a transition from a continuum description of the flow to discrete flow when the thickness of the flow region is approximately ten bubbles. This occurs at an applied rotation rate of approximately 0.07 s-1.

  13. MetPP: a computational platform for comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry-based metabolomics.

    Science.gov (United States)

    Wei, Xiaoli; Shi, Xue; Koo, Imhoi; Kim, Seongho; Schmidt, Robin H; Arteel, Gavin E; Watson, Walter H; McClain, Craig; Zhang, Xiang

    2013-07-15

    Due to the high complexity of metabolome, the comprehensive 2D gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) is considered as a powerful analytical platform for metabolomics study. However, the applications of GC×GC-TOF MS in metabolomics are not popular owing to the lack of bioinformatics system for data analysis. We developed a computational platform entitled metabolomics profiling pipeline (MetPP) for analysis of metabolomics data acquired on a GC×GC-TOF MS system. MetPP can process peak filtering and merging, retention index matching, peak list alignment, normalization, statistical significance tests and pattern recognition, using the peak lists deconvoluted from the instrument data as its input. The performance of MetPP software was tested with two sets of experimental data acquired in a spike-in experiment and a biomarker discovery experiment, respectively. MetPP not only correctly aligned the spiked-in metabolite standards from the experimental data, but also correctly recognized their concentration difference between sample groups. For analysis of the biomarker discovery data, 15 metabolites were recognized with significant concentration difference between the sample groups and these results agree with the literature results of histological analysis, demonstrating the effectiveness of applying MetPP software for disease biomarker discovery. The source code of MetPP is available at http://metaopen.sourceforge.net xiang.zhang@louisville.edu Supplementary data are available at Bioinformatics online.

  14. Mapping the Information Trace in Local Field Potentials by a Computational Method of Two-Dimensional Time-Shifting Synchronization Likelihood Based on Graphic Processing Unit Acceleration.

    Science.gov (United States)

    Zhao, Zi-Fang; Li, Xue-Zhu; Wan, You

    2017-12-01

    The local field potential (LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood (SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit (GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes, delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals (like EEG and fMRI) using similar recording techniques.

  15. A finite element perturbation method for computing fluid-induced forces on a certrifugal impeller rotating and whirling in a volute casing

    NARCIS (Netherlands)

    Jonker, Jan B.; van Essen, T.G.; van Essen, T.G.

    1997-01-01

    A finite element based method has been developed for computing time-averaged fluid-induced radial excitation forces and rotor dynamic forces on a two-dimensional centrifugal impeller rotating and whirling in a volute casing. In this method potential flow theory is used, which implies the assumption

  16. The coupling of fluids, dynamics, and controls on advanced architecture computers

    Science.gov (United States)

    Atwood, Christopher

    1995-01-01

    This grant provided for the demonstration of coupled controls, body dynamics, and fluids computations in a workstation cluster environment; and an investigation of the impact of peer-peer communication on flow solver performance and robustness. The findings of these investigations were documented in the conference articles.The attached publication, 'Towards Distributed Fluids/Controls Simulations', documents the solution and scaling of the coupled Navier-Stokes, Euler rigid-body dynamics, and state feedback control equations for a two-dimensional canard-wing. The poor scaling shown was due to serialized grid connectivity computation and Ethernet bandwidth limits. The scaling of a peer-to-peer communication flow code on an IBM SP-2 was also shown. The scaling of the code on the switched fabric-linked nodes was good, with a 2.4 percent loss due to communication of intergrid boundary point information. The code performance on 30 worker nodes was 1.7 (mu)s/point/iteration, or a factor of three over a Cray C-90 head. The attached paper, 'Nonlinear Fluid Computations in a Distributed Environment', documents the effect of several computational rate enhancing methods on convergence. For the cases shown, the highest throughput was achieved using boundary updates at each step, with the manager process performing communication tasks only. Constrained domain decomposition of the implicit fluid equations did not degrade the convergence rate or final solution. The scaling of a coupled body/fluid dynamics problem on an Ethernet-linked cluster was also shown.

  17. Numerical evaluation of two-dimensional harmonic polylogarithms

    CERN Document Server

    Gehrmann, T

    2002-01-01

    The two-dimensional harmonic polylogarithms $\\G(\\vec{a}(z);y)$, a generalization of the harmonic polylogarithms, themselves a generalization of Nielsen's polylogarithms, appear in analytic calculations of multi-loop radiative corrections in quantum field theory. We present an algorithm for the numerical evaluation of two-dimensional harmonic polylogarithms, with the two arguments $y,z$ varying in the triangle $0\\le y \\le 1$, $ 0\\le z \\le 1$, $\\ 0\\le (y+z) \\le 1$. This algorithm is implemented into a {\\tt FORTRAN} subroutine {\\tt tdhpl} to compute two-dimensional harmonic polylogarithms up to weight 4.

  18. Computational fluid dynamics applied to flows in an internal combustion engine

    Science.gov (United States)

    Griffin, M. D.; Diwakar, R.; Anderson, J. D., Jr.; Jones, E.

    1978-01-01

    The reported investigation is a continuation of studies conducted by Diwakar et al. (1976) and Griffin et al. (1976), who reported the first computational fluid dynamic results for the two-dimensional flowfield for all four strokes of a reciprocating internal combustion (IC) engine cycle. An analysis of rectangular and cylindrical three-dimensional engine models is performed. The working fluid is assumed to be inviscid air of constant specific heats. Calculations are carried out of a four-stroke IC engine flowfield wherein detailed finite-rate chemical combustion of a gasoline-air mixture is included. The calculations remain basically inviscid, except that in some instances thermal conduction is included to allow a more realistic model of the localized sparking of the mixture. All the results of the investigation are obtained by means of an explicity time-dependent finite-difference technique, using a high-speed digital computer.

  19. User's manual and guide to SALT3 and SALT4: two-dimensional computer codes for analysis of test-scale underground excavations for the disposal of radioactive waste in bedded salt deposits

    International Nuclear Information System (INIS)

    Lindner, E.N.; St John, C.M.; Hart, R.D.

    1984-02-01

    SALT3 and SALT4 are two-dimensional analytical/displacement-discontinuity codes designed to evaluate temperatures, deformation, and stresses associated with underground disposal of radioactive waste in bedded salt. These codes were developed by the University of Minnesota for the Office of Nuclear Waste Isolation in 1979. The present documentation describes the mathematical equations of the physical system being modeled, the numerical techniques utilized, and the organization of these computer codes. The SALT3 and SALT4 codes can simulate: (a) viscoelastic behavior in pillars adjacent to excavations; (b) transversely isotropic elastic moduli such as those exhibited by bedded or stratified rock; and (c) excavation sequence. Major advantages of these codes are: (a) computational efficiency; (b) the small amount of input data required; and (c) a creep law based on laboratory experimental data for salt. The main disadvantage is that some of the assumptions in the formulation of the codes, i.e., the homogeneous elastic half-space and temperature-independent material properties, render it unsuitable for canister-scale analysis or analysis of lateral deformation of the pillars. The SALT3 and SALT4 codes can be used for parameter sensitivity analyses of two-dimensional, repository-scale, thermomechanical response in bedded salt during the excavation, operational, and post-closure phases. It is especially useful in evaluating alternative patterns and sequences of excavation or waste canister placement. SALT3 is a refinement of an earlier code, SALT, and includes a fully anelastic creep model and thermal stress routine. SALT4 is a later version, and incorporates a revised creep model which is strain-hardening

  20. Computational fluid mechanics qualification calculations for the code TEACH

    International Nuclear Information System (INIS)

    DeGrazia, M.C.; Fitzsimmons, L.B.; Reynolds, J.T.

    1979-11-01

    KAPL is developing a predictive method for three-dimensional (3-D) turbulent fluid flow configurations typically encountered in the thermal-hydraulic design of a nuclear reactor. A series of experiments has been selected for analysis to investigate the adequacy of the two-equation turbulence model developed at Imperial College, London, England for predicting the flow patterns in simple geometries. The analysis of these experiments is described with the two-dimensional (2-D) turbulent fluid flow code TEACH. This work qualifies TEACH for a variety of geometries and flow conditions

  1. Computational Fluid Dynamics Technology for Hypersonic Applications

    Science.gov (United States)

    Gnoffo, Peter A.

    2003-01-01

    Several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented from code validation and code benchmarking efforts to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified. Highlights of diverse efforts to address these challenges are then discussed. One such effort to re-engineer and synthesize the existing analysis capability in LAURA, VULCAN, and FUN3D will provide context for these discussions. The critical (and evolving) role of agile software engineering practice in the capability enhancement process is also noted.

  2. Two-dimensional Quantum Gravity

    Science.gov (United States)

    Rolf, Juri

    1998-10-01

    This Ph.D. thesis pursues two goals: The study of the geometrical structure of two-dimensional quantum gravity and in particular its fractal nature. To address these questions we review the continuum formalism of quantum gravity with special focus on the scaling properties of the theory. We discuss several concepts of fractal dimensions which characterize the extrinsic and intrinsic geometry of quantum gravity. This work is partly based on work done in collaboration with Jan Ambjørn, Dimitrij Boulatov, Jakob L. Nielsen and Yoshiyuki Watabiki (1997). The other goal is the discussion of the discretization of quantum gravity and to address the so called quantum failure of Regge calculus. We review dynamical triangulations and show that it agrees with the continuum theory in two dimensions. Then we discuss Regge calculus and prove that a continuum limit cannot be taken in a sensible way and that it does not reproduce continuum results. This work is partly based on work done in collaboration with Jan Ambjørn, Jakob L. Nielsen and George Savvidy (1997).

  3. Computational fluid dynamics in brain aneurysms

    Science.gov (United States)

    Sforza, Daniel M.; Putman, Christopher M.; Cebral, Juan R.

    2013-01-01

    SUMMARY Because of its ability to deal with any geometry, image-based computational fluid dynamics (CFD) has been progressively used to investigate the role of hemodynamics in the underlying mechanisms governing the natural history of cerebral aneurysms. Despite great progress in methodological developments and many studies using patient-specific data, there are still significant controversies about the precise governing processes and divergent conclusions from apparently contradictory results. Sorting out these issues requires a global vision of the state of the art and a unified approach to solving this important scientific problem. Towards this end, this paper reviews the contributions made using patient-specific CFD models to further the understanding of these mechanisms, and highlights the great potential of patient-specific computational models for clinical use in the assessment of aneurysm rupture risk and patient management. PMID:25364852

  4. Longitudinal and transverse modes dispersion in two-dimensional ...

    African Journals Online (AJOL)

    The dynamical properties of two-dimensional Yukawa fluids in the domain of weak and intermediate coupling parameters were analyzed through molecular dynamics (MD) simulation. The dispersion relation for both the longitudinal and transverse modes were obtained and compared with random phase approximation ...

  5. Transient Two-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    Science.gov (United States)

    Wang, Ten-See

    2004-01-01

    Two-dimensional planar and axisymmetric numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to develop a computational methodology to identify nozzle side load physics using simplified two-dimensional geometries, in order to come up with a computational strategy to eventually predict the three-dimensional side loads. The computational methodology is based on a multidimensional, finite-volume, viscous, chemically reacting, unstructured-grid, and pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system modeling. The side load physics captured in the low aspect-ratio, two-dimensional planar nozzle include the Coanda effect, afterburning wave, and the associated lip free-shock oscillation. Results of parametric studies indicate that equivalence ratio, combustion and ramp rate affect the side load physics. The side load physics inferred in the high aspect-ratio, axisymmetric nozzle study include the afterburning wave; transition from free-shock to restricted-shock separation, reverting back to free-shock separation, and transforming to restricted-shock separation again; and lip restricted-shock oscillation. The Mach disk loci and wall pressure history studies reconfirm that combustion and the associated thermodynamic properties affect the formation and duration of the asymmetric flow.

  6. Noise Production of an Idealized Two-Dimensional Fish School

    Science.gov (United States)

    Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin

    2017-11-01

    The analysis of quiet bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates the coupled fluid-solid dynamics of swimmers and their wakes with the resulting noise generation. Such a framework is presented for two-dimensional flows, where the fluid motion is modeled by an unsteady boundary element method with a vortex-particle wake. The unsteady surface forces from the potential flow solver are then passed to an acoustic boundary element solver to predict the radiated sound in low-Mach-number flows. The coupled flow-acoustic solver is validated against canonical vortex-sound problems. A diamond arrangement of four airfoils are subjected to traveling wave kinematics representing a known idealized pattern for a school of fish, and the airfoil motion and inflow values are derived from the range of Strouhal values common to many natural swimmers. The coupled flow-acoustic solver estimates and analyzes the hydrodynamic performance and noise production of the idealized school of swimmers.

  7. Utilizing parallel optimization in computational fluid dynamics

    Science.gov (United States)

    Kokkolaras, Michael

    1998-12-01

    General problems of interest in computational fluid dynamics are investigated by means of optimization. Specifically, in the first part of the dissertation, a method of optimal incremental function approximation is developed for the adaptive solution of differential equations. Various concepts and ideas utilized by numerical techniques employed in computational mechanics and artificial neural networks (e.g. function approximation and error minimization, variational principles and weighted residuals, and adaptive grid optimization) are combined to formulate the proposed method. The basis functions and associated coefficients of a series expansion, representing the solution, are optimally selected by a parallel direct search technique at each step of the algorithm according to appropriate criteria; the solution is built sequentially. In this manner, the proposed method is adaptive in nature, although a grid is neither built nor adapted in the traditional sense using a-posteriori error estimates. Variational principles are utilized for the definition of the objective function to be extremized in the associated optimization problems, ensuring that the problem is well-posed. Complicated data structures and expensive remeshing algorithms and systems solvers are avoided. Computational efficiency is increased by using low-order basis functions and concurrent computing. Numerical results and convergence rates are reported for a range of steady-state problems, including linear and nonlinear differential equations associated with general boundary conditions, and illustrate the potential of the proposed method. Fluid dynamics applications are emphasized. Conclusions are drawn by discussing the method's limitations, advantages, and possible extensions. The second part of the dissertation is concerned with the optimization of the viscous-inviscid-interaction (VII) mechanism in an airfoil flow analysis code. The VII mechanism is based on the concept of a transpiration velocity

  8. Automated Computational Fluid Dynamics Design With Shape Optimization, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Computational fluid dynamics (CFD) is used as an analysis tool to help the designer gain greater understanding of the fluid flow phenomena involved in the components...

  9. Automated Computational Fluid Dynamics Design With Shape Optimization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Computational fluid dynamics (CFD) is used as an analysis tool to help the designer gain greater understanding of the fluid flow phenomena involved in the components...

  10. A review of Green's function methods in computational fluid mechanics: Background, recent developments and future directions

    International Nuclear Information System (INIS)

    Dorning, J.

    1981-01-01

    The research and development over the past eight years on local Green's function methods for the high-accuracy, high-efficiency numerical solution of nuclear engineering problems is reviewed. The basic concepts and key ideas are presented by starting with an expository review of the original fully two-dimensional local Green's function methods developed for neutron diffusion and heat conduction, and continuing through the progressively more complicated and more efficient nodal Green's function methods for neutron diffusion, heat conduction and neutron transport to establish the background for the recent development of Green's function methods in computational fluid mechanics. Some of the impressive numerical results obtained via these classes of methods for nuclear engineering problems are briefly summarized. Finally, speculations are proffered on future directions in which the development of these types of methods in fluid mechanics and other areas might lead. (orig.) [de

  11. CFDLIB05, Computational Fluid Dynamics Library

    International Nuclear Information System (INIS)

    Kashiwa, B.A.; Padial, N.T.; Rauenzahn, R.M.; VanderHeyden, W.B.

    2007-01-01

    1 - Description of program or function: CFDLib05 is the Los Alamos Computational Fluid Dynamics Library. This is a collection of hydro-codes using a common data structure and a common numerical method, for problems ranging from single-field, incompressible flow, to multi-species, multi-field, compressible flow. The data structure is multi-block, with a so-called structured grid in each block. The numerical method is a Finite-Volume scheme employing a state vector that is fully cell-centered. This means that the integral form of the conversation laws is solved on the physical domain that is represented by a mesh of control volumes. The typical control volume is an arbitrary quadrilateral in 2D and an arbitrary hexahedron in 3D. The Finite-Volume scheme is for time-unsteady flow and remains well coupled by means of time and space centered fluxes; if a steady state solution is required, the problem is integrated forward in time until the user is satisfied that the state is stationary. 2 - Methods: Cells-centered Implicit Continuous-fluid Eulerian (ICE) method

  12. Artificial Intelligence In Computational Fluid Dynamics

    Science.gov (United States)

    Vogel, Alison Andrews

    1991-01-01

    Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.

  13. Lectures series in computational fluid dynamics

    International Nuclear Information System (INIS)

    Thompson, K.W.

    1987-08-01

    The lecture notes cover the basic principles of computational fluid dynamics (CFD). They are oriented more toward practical applications than theory, and are intended to serve as a unified source for basic material in the CFD field as well as an introduction to more specialized topics in artificial viscosity and boundary conditions. Each chapter in the text is associated with a videotaped lecture. The basic properties of conservation laws, wave equations, and shock waves are described. The duality of the conservation law and wave representations is investigated, and shock waves are examined in some detail. Finite difference techniques are introduced for the solution of wave equations and conservation laws. Stability analysis for finite difference approximations are presented. A consistent description of artificial viscosity methods are provided. Finally, the problem of nonreflecting boundary conditions are treated

  14. Direct modeling for computational fluid dynamics

    Science.gov (United States)

    Xu, Kun

    2015-06-01

    All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct

  15. Verification and validation in computational fluid dynamics

    Science.gov (United States)

    Oberkampf, William L.; Trucano, Timothy G.

    2002-04-01

    Verification and validation (V&V) are the primary means to assess accuracy and reliability in computational simulations. This paper presents an extensive review of the literature in V&V in computational fluid dynamics (CFD), discusses methods and procedures for assessing V&V, and develops a number of extensions to existing ideas. The review of the development of V&V terminology and methodology points out the contributions from members of the operations research, statistics, and CFD communities. Fundamental issues in V&V are addressed, such as code verification versus solution verification, model validation versus solution validation, the distinction between error and uncertainty, conceptual sources of error and uncertainty, and the relationship between validation and prediction. The fundamental strategy of verification is the identification and quantification of errors in the computational model and its solution. In verification activities, the accuracy of a computational solution is primarily measured relative to two types of highly accurate solutions: analytical solutions and highly accurate numerical solutions. Methods for determining the accuracy of numerical solutions are presented and the importance of software testing during verification activities is emphasized. The fundamental strategy of validation is to assess how accurately the computational results compare with the experimental data, with quantified error and uncertainty estimates for both. This strategy employs a hierarchical methodology that segregates and simplifies the physical and coupling phenomena involved in the complex engineering system of interest. A hypersonic cruise missile is used as an example of how this hierarchical structure is formulated. The discussion of validation assessment also encompasses a number of other important topics. A set of guidelines is proposed for designing and conducting validation experiments, supported by an explanation of how validation experiments are different

  16. Two-Dimensional Superfluidity of Exciton Polaritons Requires Strong Anisotropy

    Directory of Open Access Journals (Sweden)

    Ehud Altman

    2015-02-01

    Full Text Available Fluids of exciton polaritons, excitations of two-dimensional quantum wells in optical cavities, show collective phenomena akin to Bose condensation. However, a fundamental difference from standard condensates stems from the finite lifetime of these excitations, which necessitates continuous driving to maintain a steady state. A basic question is whether a two-dimensional condensate with long-range algebraic correlations can exist under these nonequilibrium conditions. Here, we show that such driven two-dimensional Bose systems cannot exhibit algebraic superfluid order except in low-symmetry, strongly anisotropic systems. Our result implies, in particular, that recent apparent evidence for Bose condensation of exciton polaritons must be an intermediate-scale crossover phenomenon, while the true long-distance correlations fall off exponentially. We obtain these results through a mapping of the long-wavelength condensate dynamics onto the anisotropic Kardar-Parisi-Zhang equation.

  17. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  18. Computational Fluid Dynamics Modeling of Bacillus anthracis ...

    Science.gov (United States)

    Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict

  19. [Research activities in applied mathematics, fluid mechanics, and computer science

    Science.gov (United States)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  20. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    Science.gov (United States)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  1. Computational fluid dynamics applications to improve crop production systems

    Science.gov (United States)

    Computational fluid dynamics (CFD), numerical analysis and simulation tools of fluid flow processes have emerged from the development stage and become nowadays a robust design tool. It is widely used to study various transport phenomena which involve fluid flow, heat and mass transfer, providing det...

  2. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  3. Stochastic Surrogates for Measurements and Computer Models of Fluids

    NARCIS (Netherlands)

    De Baar, J.H.S.

    2014-01-01

    Both measurements and computer simulations of fluids introduce a prediction problem. A Particle Image Velocimetry (PIV) measurement of a flow field results in a discrete grid of velocity vectors, from which we aim to predict the velocity field or related quantities. In Computational Fluid Dynamics

  4. Effective viscosity of two-dimensional suspensions: Confinement effects

    Science.gov (United States)

    Doyeux, Vincent; Priem, Stephane; Jibuti, Levan; Farutin, Alexander; Ismail, Mourad; Peyla, Philippe

    2016-08-01

    We study the rheology of a sheared two-dimensional (2D) suspension of non-Brownian disks in the presence of walls. Although it is of course possible today with modern computers and powerful algorithms to perform direct numerical simulations that fully account for multiparticle 3D interactions in the presence of walls, the analysis of the simple case of a 2D suspension provides valuable insights and helps in the understanding of 3D results. Due to the direct visualization of the whole 2D flow (the shear plane), we are able to give a clear interpretation of the full hydrodynamics of semidilute confined suspensions. For instance, we examine the role of disk-wall and disk-disk interactions to determine the dissipation of confined sheared suspensions whose effective viscosity depends on the area fraction ϕ of the disks as ηeff=η0[1 +[η ] ϕ +β ϕ2+O (ϕ3) ] . We provide numerical estimates of [η ] and β for a wide range of confinements. As a benchmark for our simulations, we compare the numerical results obtained for [η ] and β for very weak confinements with analytical values [η] ∞ and β∞ obtained for an infinite fluid. If the value [η] ∞=2 is well known in the literature, much less is published on the value of β . Here we analytically calculate with very high precision β∞=3.6 . We also reexamine the 3D case in the light of our 2D results.

  5. A newsletter on computational hydraulics and fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This newsletter from Electricite de France (EdF) laboratory of hydraulics and fluid dynamics, reports on recent computer simulation studies of fluid flow in the domain of energy. Five papers were selected which deal with: unsteady flows in turbine blades of turbo-machineries, thermal exchanges between fluid and structures, multi-fluid thermal interactions in heat exchangers, heat transfers through windows, and flows induced by dam breaking. (J.S.)

  6. Two-dimensional generalized harmonic oscillators and their Darboux partners

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel

    2011-01-01

    We construct two-dimensional Darboux partners of the shifted harmonic oscillator potential and of an isotonic oscillator potential belonging to the Smorodinsky–Winternitz class of superintegrable systems. The transformed solutions, their potentials and the corresponding discrete energy spectra are computed in explicit form. (paper)

  7. Two-dimensional turbulence in three-dimensional flows

    Science.gov (United States)

    Xia, H.; Francois, N.

    2017-11-01

    This paper presents a review of experiments performed in three-dimensional flows that show behaviour associated with two-dimensional turbulence. Experiments reveal the presence of the inverse energy cascade in two different systems, namely, flows in thick fluid layers driven electromagnetically and the Faraday wave driven flows. In thick fluid layers, large-scale coherent structures can shear off the vertical eddies and reinforce the planarity of the flow. Such structures are either self-generated or externally imposed. In the Faraday wave driven flows, a seemingly three-dimensional flow is shown to be actually two-dimensional when it is averaged over several Faraday wave periods. In this system, a coupling between the wave motion and 2D hydrodynamic turbulence is uncovered.

  8. Savoir Fluide. A newsletter on computational hydraulics and fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This newsletter reports on computational works performed by the National Laboratory of Hydraulics (LNH) from Electricite de France (EdF). Two papers were selected which concern the simulation of the Paluel nuclear power plant plume and the computation of particles and droplets inside a cooling tower. (J.S.).

  9. Savoir Fluide. A newsletter on computational hydraulics and fluid dynamics

    International Nuclear Information System (INIS)

    1997-01-01

    This newsletter reports on computational works performed by the National Laboratory of Hydraulics (LNH) from Electricite de France (EdF). Two papers were selected which concern the simulation of the Paluel nuclear power plant plume and the computation of particles and droplets inside a cooling tower. (J.S.)

  10. Stability theory for a two-dimensional channel

    Science.gov (United States)

    Troshkin, O. V.

    2017-08-01

    A scheme for deriving conditions for the nonlinear stability of an ideal or viscous incompressible steady flow in a two-dimensional channel that is periodic in one direction is described. A lower bound for the main factor ensuring the stability of the Reynolds-Kolmogorov sinusoidal flow with no-slip conditions (short wavelength stability) is improved. A condition for the stability of a vortex strip modeling Richtmyer-Meshkov fluid vortices (long wavelength stability) is presented.

  11. Control Operator for the Two-Dimensional Energized Wave Equation

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU

    2006-07-01

    Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.

  12. High-pressure fluid phase equilibria phenomenology and computation

    CERN Document Server

    Deiters, Ulrich K

    2012-01-01

    The book begins with an overview of the phase diagrams of fluid mixtures (fluid = liquid, gas, or supercritical state), which can show an astonishing variety when elevated pressures are taken into account; phenomena like retrograde condensation (single and double) and azeotropy (normal and double) are discussed. It then gives an introduction into the relevant thermodynamic equations for fluid mixtures, including some that are rarely found in modern textbooks, and shows how they can they be used to compute phase diagrams and related properties. This chapter gives a consistent and axiomatic approach to fluid thermodynamics; it avoids using activity coefficients. Further chapters are dedicated to solid-fluid phase equilibria and global phase diagrams (systematic search for phase diagram classes). The appendix contains numerical algorithms needed for the computations. The book thus enables the reader to create or improve computer programs for the calculation of fluid phase diagrams. introduces phase diagram class...

  13. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  14. Dynamics of two-dimensional bubbles

    Science.gov (United States)

    Piedra, Saúl; Ramos, Eduardo; Herrera, J. Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.

  15. Development of Two-Dimensional NMR

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...

  16. Conoscopic holography: two-dimensional numerical reconstructions.

    Science.gov (United States)

    Mugnier, L M; Sirat, G Y; Charlot, D

    1993-01-01

    Conoscopic holography is an incoherent light holographic technique based on the properties of crystal optics. We present experimental results of the numerical reconstruction of a two-dimensional object from its conoscopic hologram.

  17. Description of a method for computing fluid-structure interaction

    International Nuclear Information System (INIS)

    Gantenbein, F.

    1982-02-01

    A general formulation allowing computation of structure vibrations in a dense fluid is described. It is based on fluid modelisation by fluid finite elements. For each fluid node are associated two variables: the pressure p and a variable π defined as p=d 2 π/dt 2 . Coupling between structure and fluid is introduced by surface elements. This method is easy to introduce in a general finite element code. Validation was obtained by analytical calculus and tests. It is widely used for vibrational and seismic studies of pipes and internals of nuclear reactors some applications are presented [fr

  18. Two-dimensional simulation of the MHD stability, (1)

    International Nuclear Information System (INIS)

    Kurita, Gen-ichi; Amano, Tsuneo.

    1976-03-01

    The two-dimensional computer code has been prepared to study MHD stability of an axisymmetric toroidal plasma with and without the surrounding vacuum region. It also includes the effect of magnetic surfaces with non-circular cross sections. The linearized equations of motion are solved as an initial value problem. The results by computer simulation are compared with those by the theory for the cylindrical plasma; they are in good agreement. (auth.)

  19. Computational fluid dynamics incompressible turbulent flows

    CERN Document Server

    Kajishima, Takeo

    2017-01-01

    This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications. • Introduces CFD techniques for incompressible flow and turbulence with a comprehensive approach; • Enr...

  20. Unsteady flow around a two-dimensional section of a vertical axis turbine for tidal stream energy conversion

    Directory of Open Access Journals (Sweden)

    Hyun Ju Jung

    2009-12-01

    Full Text Available The two-dimensional unsteady flow around a vertical axis turbine for tidal stream energy conversion was investigated using a computational fluid dynamics tool solving the Reynolds-Averaged Navier-Stokes equations. The geometry of the turbine blade section was NACA653-018 airfoil. The computational analysis was done at several different angles of attack and the results were compared with the corresponding experimental data for validation and calibration. Simulations were then carried out for the two-dimensional cross section of a vertical axis turbine. The simulation results demonstrated the usefulness of the method for the typical unsteady flows around vertical axis turbines. The optimum turbine efficiency was achieved for carefully selected combinations of the number of blades and tip speed ratios.

  1. Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Young S. Shin

    1998-01-01

    Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.

  2. Validation of Computational Fluid Dynamics Simulations for Realistic Flows (Preprint)

    National Research Council Canada - National Science Library

    Davoudzadeh, Farhad

    2007-01-01

    Strategies used to verify and validate computational fluid dynamics (CFD) calculations are described via case studies of realistic flow simulations, each representing a complex flow physics and complex geometry...

  3. ADDRESSING ENVIRONMENTAL ENGINEERING CHALLENGES WITH COMPUTATIONAL FLUID DYNAMICS

    Science.gov (United States)

    This paper discusses the status and application of Computational Fluid Dynamics )CFD) models to address environmental engineering challenges for more detailed understanding of air pollutant source emissions, atmospheric dispersion and resulting human exposure. CFD simulations ...

  4. Using FlowLab, an educational computational fluid dynamics tool, to perform a comparative study of turbulence models

    International Nuclear Information System (INIS)

    Parihar, A.; Kulkarni, A.; Stern, F.; Xing, T.; Moeykens, S.

    2005-01-01

    Flow over an Ahmed body is a key benchmark case for validating the complex turbulent flow field around vehicles. In spite of the simple geometry, the flow field around an Ahmed body retains critical features of real, external vehicular flow. The present study is an attempt to implement such a real life example into the course curriculum for undergraduate engineers. FlowLab, which is a Computational Fluid Dynamics (CFD) tool developed by Fluent Inc. for use in engineering education, allows students to conduct interactive application studies. This paper presents a synopsis of FlowLab, a description of one FlowLab exercise, and an overview of the educational experience gained by students through using FlowLab, which is understood through student surveys and examinations. FlowLab-based CFD exercises were implemented into 57:020 Mechanics of Fluids and Transport Processes and 58:160 Intermediate Mechanics of Fluids courses at the University of Iowa in the fall of 2004, although this report focuses only on experiences with the Ahmed body exercise, which was used only in the intermediate-level fluids class, 58:160. This exercise was developed under National Science Foundation funding by the authors of this paper. The focus of this study does not include validating the various turbulence models used for the Ahmed body simulation, because a two-dimensional simplification was applied. With the two-dimensional simplification, students may setup, run, and post process this model in a 50 minute class period using a single-CPU PC, as required for the 58:160 class at the University of Iowa. It is educational for students to understand the implication of a two- dimensional approximation for essentially a three-dimensional flow field, along with the consequent variation in both qualitative and quantitative results. Additionally, through this exercise, students may realize that the choice of the respective turbulence model will affect simulation prediction. (author)

  5. Computational fluid dynamics open a new world for designers

    International Nuclear Information System (INIS)

    Mitsuda, Masahiko; Hosokawa, Yoshiyuki; Oda, Tsuyoshi; Kobayashi, Toshiyuki; Akamatsu, Hiroshi; Yamada, Hitoshi

    2001-01-01

    As a result of recent improvements in computer performance, practical applications of computational fluid dynamics (CFD) are becoming increasingly common. No longer is the macroscopic flow field merely visualized. It has now become possible to closely investigate boundary issues such as the flow force, the heat transfer, the solid-gas-liquid interface motion. Detailed fluid phenomena is now available to designers and this promises great future developments for various processes. This paper discusses these exciting new developments. (author)

  6. Improved Pyrolysis Micro reactor Design via Computational Fluid Dynamics Simulations

    Science.gov (United States)

    2017-05-23

    NUMBER (Include area code) 23 May 2017 Briefing Charts 25 April 2017 - 23 May 2017 Improved Pyrolysis Micro-reactor Design via Computational Fluid... PYROLYSIS MICRO-REACTOR DESIGN VIA COMPUTATIONAL FLUID DYNAMICS SIMULATIONS Ghanshyam L. Vaghjiani* DISTRIBUTION A: Approved for public release...Approved for public release, distribution unlimited. PA Clearance 17247 Chen-Source (>240 references from SciFinder as of 5/1/17): Flash pyrolysis

  7. TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION

    International Nuclear Information System (INIS)

    Wang, Yougang; Xu, Yidong; Chen, Xuelei; Park, Changbom; Kim, Juhan

    2015-01-01

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array

  8. Dirac cones in two-dimensional borane

    Science.gov (United States)

    Martinez-Canales, Miguel; Galeev, Timur R.; Boldyrev, Alexander I.; Pickard, Chris J.

    2017-11-01

    We introduce two-dimensional borane, a single-layered material of BH stoichiometry, with promising electronic properties. We show that, according to density functional theory calculations, two-dimensional borane is semimetallic, with two symmetry-related Dirac cones meeting right at the Fermi energy Ef. The curvature of the cones is lower than in graphene, thus closer to the ideal linear dispersion. Its structure, formed by a puckered trigonal boron network with hydrogen atoms connected to each boron atom, can be understood as distorted, hydrogenated borophene [Mannix et al., Science 350, 1513 (2015), 10.1126/science.aad1080]. Chemical bonding analysis reveals the boron layer in the network being bound by delocalized four-center two-electron σ bonds. Finally, we suggest high pressure could be a feasible route to synthesize two-dimensional borane.

  9. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    Energy Technology Data Exchange (ETDEWEB)

    Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  10. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  11. Finite Element Framework for Computational Fluid Dynamics in FEBio.

    Science.gov (United States)

    Ateshian, Gerard A; Shim, Jay J; Maas, Steve A; Weiss, Jeffrey A

    2018-02-01

    The mechanics of biological fluids is an important topic in biomechanics, often requiring the use of computational tools to analyze problems with realistic geometries and material properties. This study describes the formulation and implementation of a finite element framework for computational fluid dynamics (CFD) in FEBio, a free software designed to meet the computational needs of the biomechanics and biophysics communities. This formulation models nearly incompressible flow with a compressible isothermal formulation that uses a physically realistic value for the fluid bulk modulus. It employs fluid velocity and dilatation as essential variables: The virtual work integral enforces the balance of linear momentum and the kinematic constraint between fluid velocity and dilatation, while fluid density varies with dilatation as prescribed by the axiom of mass balance. Using this approach, equal-order interpolations may be used for both essential variables over each element, contrary to traditional mixed formulations that must explicitly satisfy the inf-sup condition. The formulation accommodates Newtonian and non-Newtonian viscous responses as well as inviscid fluids. The efficiency of numerical solutions is enhanced using Broyden's quasi-Newton method. The results of finite element simulations were verified using well-documented benchmark problems as well as comparisons with other free and commercial codes. These analyses demonstrated that the novel formulation introduced in FEBio could successfully reproduce the results of other codes. The analogy between this CFD formulation and standard finite element formulations for solid mechanics makes it suitable for future extension to fluid-structure interactions (FSIs).

  12. Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas

    International Nuclear Information System (INIS)

    Valeo, E.J.; Kramer, G.J.; Nazikian, R.

    2001-01-01

    A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed

  13. New Two-Dimensional Polynomial Failure Criteria for Composite Materials

    OpenAIRE

    Zhao, Shi Yang; Xue, Pu

    2014-01-01

    The in-plane damage behavior and material properties of the composite material are very complex. At present, a large number of two-dimensional failure criteria, such as Chang-Chang criteria, have been proposed to predict the damage process of composite structures under loading. However, there is still no good criterion to realize it with both enough accuracy and computational performance. All these criteria cannot be adjusted by experimental data. Therefore, any special properties of composit...

  14. Spontaneous spiral formation in two-dimensional oscillatory media

    Science.gov (United States)

    Kettunen, Petteri; Amemiya, Takashi; Ohmori, Takao; Yamaguchi, Tomohiko

    1999-08-01

    Computational studies of pattern formation in a modified Oregonator model of the Belousov-Zhabotinsky reaction is described. Initially inactive two-dimensional reaction media with an immobilized catalyst is connected to a reservoir of fresh reactants through a set of discrete points distributed randomly over the interphase surface. It is shown that the diffusion of reactants combined with oscillatory reaction kinetics can give rise to spontaneous spiral formation and phase waves.

  15. Prospects for Computational Fluid Dynamics in Room Air Contaminant Control

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The fluid dynamics research is strongly influenced by the increasing computer power which has been available for the last decades. This development is obvious from the curve in figure 1 which shows the computation cost as a function of years. It is obvious that the cost for a given job...

  16. Dipolar vortices in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Hesthaven, J.S.; Lynov, Jens-Peter

    1996-01-01

    The dynamics of dipolar vortex solutions to the two-dimensional Euler equations is studied. A new type of nonlinear dipole is found and its dynamics in a slightly viscous system is compared with the dynamics of the Lamb dipole. The evolution of dipolar structures from an initial turbulent patch...

  17. Analytical simulation of two dimensional advection dispersion ...

    African Journals Online (AJOL)

    The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...

  18. Analytical Simulation of Two Dimensional Advection Dispersion ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...

  19. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons.

  20. Stability of two-dimensional vorticity filaments

    International Nuclear Information System (INIS)

    Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.

    2004-01-01

    We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability

  1. Two-dimensional membranes in motion

    NARCIS (Netherlands)

    Davidovikj, D.

    2018-01-01

    This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research

  2. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Sums of two-dimensional spectral triples

    DEFF Research Database (Denmark)

    Christensen, Erik; Ivan, Cristina

    2007-01-01

    We study countable sums of two dimensional modules for the continuous complex functions on a compact metric space and show that it is possible to construct a spectral triple which gives the original metric back. This spectral triple will be finitely summable for any positive parameter. We also co...

  4. A novel two dimensional particle velocity sensor

    NARCIS (Netherlands)

    Pjetri, O.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    2013-01-01

    In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to

  5. Two-dimensional microstrip detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.

  6. Computational fluid dynamics simulations of light water reactor flows

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    1999-01-01

    Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed

  7. An Introduction to Computational Fluid Mechanics by Example

    CERN Document Server

    Biringen, Sedat

    2011-01-01

    This new book builds on the original classic textbook entitled: An Introduction to Computational Fluid Mechanics by C. Y. Chow which was originally published in 1979. In the decades that have passed since this book was published the field of computational fluid dynamics has seen a number of changes in both the sophistication of the algorithms used but also advances in the computer hardware and software available. This new book incorporates the latest algorithms in the solution techniques and supports this by using numerous examples of applications to a broad range of industries from mechanical

  8. Fluid dynamics parallel computer development at NASA Langley Research Center

    Science.gov (United States)

    Townsend, James C.; Zang, Thomas A.; Dwoyer, Douglas L.

    1987-01-01

    To accomplish more detailed simulations of highly complex flows, such as the transition to turbulence, fluid dynamics research requires computers much more powerful than any available today. Only parallel processing on multiple-processor computers offers hope for achieving the required effective speeds. Looking ahead to the use of these machines, the fluid dynamicist faces three issues: algorithm development for near-term parallel computers, architecture development for future computer power increases, and assessment of possible advantages of special purpose designs. Two projects at NASA Langley address these issues. Software development and algorithm exploration is being done on the FLEX/32 Parallel Processing Research Computer. New architecture features are being explored in the special purpose hardware design of the Navier-Stokes Computer. These projects are complementary and are producing promising results.

  9. Unsteady computational fluid dynamics in aeronautics

    CERN Document Server

    Tucker, P G

    2014-01-01

    The field of Large Eddy Simulation (LES) and hybrids is a vibrant research area. This book runs through all the potential unsteady modelling fidelity ranges, from low-order to LES. The latter is probably the highest fidelity for practical aerospace systems modelling. Cutting edge new frontiers are defined.  One example of a pressing environmental concern is noise. For the accurate prediction of this, unsteady modelling is needed. Hence computational aeroacoustics is explored. It is also emerging that there is a critical need for coupled simulations. Hence, this area is also considered and the tensions of utilizing such simulations with the already expensive LES.  This work has relevance to the general field of CFD and LES and to a wide variety of non-aerospace aerodynamic systems (e.g. cars, submarines, ships, electronics, buildings). Topics treated include unsteady flow techniques; LES and hybrids; general numerical methods; computational aeroacoustics; computational aeroelasticity; coupled simulations and...

  10. Computational fluid dynamics for sport simulation

    CERN Document Server

    2009-01-01

    All over the world sport plays a prominent role in society: as a leisure activity for many, as an ingredient of culture, as a business and as a matter of national prestige in such major events as the World Cup in soccer or the Olympic Games. Hence, it is not surprising that science has entered the realm of sports, and, in particular, that computer simulation has become highly relevant in recent years. This is explored in this book by choosing five different sports as examples, demonstrating that computational science and engineering (CSE) can make essential contributions to research on sports topics on both the fundamental level and, eventually, by supporting athletes’ performance.

  11. Anisotropic mass density by two-dimensional acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera s/n, E-46022 Valencia (Spain)], E-mail: jsdehesa@upvnet.upv.es

    2008-02-15

    We show that specially designed two-dimensional arrangements of full elastic cylinders embedded in a nonviscous fluid or gas define (in the homogenization limit) a new class of acoustic metamaterials characterized by a dynamical effective mass density that is anisotropic. Here, analytic expressions for the dynamical mass density and the effective sound velocity tensors are derived in the long wavelength limit. Both show an explicit dependence on the lattice filling fraction, the elastic properties of cylinders relative to the background, their positions in the unit cell, and their multiple scattering interactions. Several examples of these metamaterials are reported and discussed.

  12. HEXAGA-II. A two-dimensional multi-group neutron diffusion programme for a uniform triangular mesh with arbitrary group scattering for the IBM/370-168 computer

    International Nuclear Information System (INIS)

    Woznicki, Z.

    1976-05-01

    This report presents the AGA two-sweep iterative methods belonging to the family of factorization techniques in their practical application in the HEXAGA-II two-dimensional programme to obtain the numerical solution to the multi-group, time-independent, (real and/or adjoint) neutron diffusion equations for a fine uniform triangular mesh. An arbitrary group scattering model is permitted. The report written for the users provides the description of input and output. The use of HEXAGA-II is illustrated by two sample reactor problems. (orig.) [de

  13. Computational fluid dynamics investigation of turbulent separated ...

    African Journals Online (AJOL)

    user

    This aims to contribute to the physics of flow separation, by computing the pressure coefficients ... model belongs to the class of two-equation models, in which model transport equations are solved for two turbulence quantities k and ε. ... model two other equations are required, namely the transport equations for k and ε :.

  14. Computational Fluid Dynamics and Ventilation Airflow

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2014-01-01

    the principle behind CFD, the development in numerical schemes and computer size since the 1970s. Special attention is given to the selection of the correct governing equations, to the understanding of low turbulent flow, to the selection of turbulence models, and to addressing situations with more steady...

  15. Computational fluid dynamics (CFD) study on the fetal aortic coarctation

    Science.gov (United States)

    Zhou, Yue; Zhang, Yutao; Wang, Jingying

    2018-03-01

    Blood flows in normal and coarctate fetal aortas are simulated by the CFD technique using T-rex grids. The three-dimensional (3-D) digital model of the fetal arota is reconstructed by the computer-aided design (CAD) software based on two-dimensional (2-D) ultrasono tomographic images. Simulation results displays the development and enhancement of the secondary flow structure in the coarctate fetal arota. As the diameter narrow ratio rises greater than 45%, the pressure and wall shear stress (WSS) of the aorta arch increase exponentially, which is consistent with the conventional clinical concept. The present study also demonstrates that CFD is a very promising assistant technique to investigate human cardiovascular diseases.

  16. Entanglement Entropy in Two-Dimensional String Theory.

    Science.gov (United States)

    Hartnoll, Sean A; Mazenc, Edward A

    2015-09-18

    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.

  17. Two dimensional analytical model for a reconfigurable field effect transistor

    Science.gov (United States)

    Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.

    2018-02-01

    This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.

  18. Two-dimensional time dependent Riemann solvers for neutron transport

    International Nuclear Information System (INIS)

    Brunner, Thomas A.; Holloway, James Paul

    2005-01-01

    A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem

  19. Space-time fluid mechanics computation of heart valve models

    Science.gov (United States)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Buscher, Austin; Asada, Shohei

    2014-10-01

    Fluid mechanics computation of heart valves with an interface-tracking (moving-mesh) method was one of the classes of computations targeted in introducing the space-time (ST) interface tracking method with topology change (ST-TC). The ST-TC method is a new version of the Deforming-Spatial-Domain/Stabilized ST (DSD/SST) method. It can deal with an actual contact between solid surfaces in flow problems with moving interfaces, while still possessing the desirable features of interface-tracking methods, such as better resolution of the boundary layers. The DSD/SST method with effective mesh update can already handle moving-interface problems when the solid surfaces are in near contact or create near TC, if the "nearness" is sufficiently "near" for the purpose of solving the problem. That, however, is not the case in fluid mechanics of heart valves, as the solid surfaces need to be brought into an actual contact when the flow has to be completely blocked. Here we extend the ST-TC method to 3D fluid mechanics computation of heart valve models. We present computations for two models: an aortic valve with coronary arteries and a mechanical aortic valve. These computations demonstrate that the ST-TC method can bring interface-tracking accuracy to fluid mechanics of heart valves, and can do that with computational practicality.

  20. Fluid dynamics applications of the Illiac IV computer

    Science.gov (United States)

    Maccormack, R. W.; Stevens, K. G., Jr.

    1976-01-01

    The Illiac IV is a parallel-structure computer with computing power an order of magnitude greater than that of conventional computers. It can be used for experimental tasks in fluid dynamics which can be simulated more economically, for simulating flows that cannot be studied by experiment, and for combining computer and experimental simulations. The architecture of Illiac IV is described, and the use of its parallel operation is demonstrated on the example of its solution of the one-dimensional wave equation. For fluid dynamics problems, a special FORTRAN-like vector programming language was devised, called CFD language. Two applications are described in detail: (1) the determination of the flowfield around the space shuttle, and (2) the computation of transonic turbulent separated flow past a thick biconvex airfoil.

  1. Two-dimensional sensitivity calculation code: SENSETWO

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.

    1979-05-01

    A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)

  2. Two-dimensional ranking of Wikipedia articles

    Science.gov (United States)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  3. Two-dimensional confinement of heavy fermions

    International Nuclear Information System (INIS)

    Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito

    2010-01-01

    Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)

  4. Toward two-dimensional search engines

    International Nuclear Information System (INIS)

    Ermann, L; Shepelyansky, D L; Chepelianskii, A D

    2012-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)

  5. Plasmonics with two-dimensional conductors

    Science.gov (United States)

    Yoon, Hosang; Yeung, Kitty Y. M.; Kim, Philip; Ham, Donhee

    2014-01-01

    A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics. PMID:24567472

  6. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  7. Superintegrability on the two dimensional hyperboloid

    International Nuclear Information System (INIS)

    Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr

    1998-01-01

    This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out

  8. MINIMUM QUANTITY LUBRICANT FLOW ANALYSIS IN END MILLING PROCESSES: A COMPUTATIONAL FLUID DYNAMICS APPROACH

    Directory of Open Access Journals (Sweden)

    M. S. Najiha

    2012-12-01

    Full Text Available This paper presents a two-dimensional steady-state incompressible analysis for the minimum quantity of lubricant flow in milling operations using a computational fluid dynamics (CFD approach. The analysis of flow and heat transfer in a four-teeth milling cutter operation was undertaken. The domain of the rotating cutter along with the spray nozzle is defined. Operating cutting and boundary conditions are taken from the literature. A steady-state, pressure-based, planar analysis was performed with a viscous, realizable k-ε model. A mixture of oils and air were sprayed on the tool, which is considered to be rotating and is at a temperature near the melting temperature of the workpiece. Flow fields are obtained from the study. The vector plot of the flow field shows that the flow is not evenly distributed over the cutter surface, as well as the uneven distribution of the lubricant in the direction of the cutter rotation. It can be seen that the cutting fluid has not completely penetrated the tool edges. The turbulence created by the cutter rotation in the proximity of the tool throws oil drops out of the cutting zone. The nozzle position in relation to the feed direction is very important in order to obtain the optimum effect of the MQL flow.

  9. Computational fluid dynamics on a massively parallel computer

    Science.gov (United States)

    Jespersen, Dennis C.; Levit, Creon

    1989-01-01

    A finite difference code was implemented for the compressible Navier-Stokes equations on the Connection Machine, a massively parallel computer. The code is based on the ARC2D/ARC3D program and uses the implicit factored algorithm of Beam and Warming. The codes uses odd-even elimination to solve linear systems. Timings and computation rates are given for the code, and a comparison is made with a Cray XMP.

  10. Computational Fluid and Particle Dynamics in the Human Respiratory System

    CERN Document Server

    Tu, Jiyuan; Ahmadi, Goodarz

    2013-01-01

    Traditional research methodologies in the human respiratory system have always been challenging due to their invasive nature. Recent advances in medical imaging and computational fluid dynamics (CFD) have accelerated this research. This book compiles and details recent advances in the modelling of the respiratory system for researchers, engineers, scientists, and health practitioners. It breaks down the complexities of this field and provides both students and scientists with an introduction and starting point to the physiology of the respiratory system, fluid dynamics and advanced CFD modeling tools. In addition to a brief introduction to the physics of the respiratory system and an overview of computational methods, the book contains best-practice guidelines for establishing high-quality computational models and simulations. Inspiration for new simulations can be gained through innovative case studies as well as hands-on practice using pre-made computational code. Last but not least, students and researcher...

  11. A Textbook for a First Course in Computational Fluid Dynamics

    Science.gov (United States)

    Zingg, D. W.; Pulliam, T. H.; Nixon, David (Technical Monitor)

    1999-01-01

    This paper describes and discusses the textbook, Fundamentals of Computational Fluid Dynamics by Lomax, Pulliam, and Zingg, which is intended for a graduate level first course in computational fluid dynamics. This textbook emphasizes fundamental concepts in developing, analyzing, and understanding numerical methods for the partial differential equations governing the physics of fluid flow. Its underlying philosophy is that the theory of linear algebra and the attendant eigenanalysis of linear systems provides a mathematical framework to describe and unify most numerical methods in common use in the field of fluid dynamics. Two linear model equations, the linear convection and diffusion equations, are used to illustrate concepts throughout. Emphasis is on the semi-discrete approach, in which the governing partial differential equations (PDE's) are reduced to systems of ordinary differential equations (ODE's) through a discretization of the spatial derivatives. The ordinary differential equations are then reduced to ordinary difference equations (O(Delta)E's) using a time-marching method. This methodology, using the progression from PDE through ODE's to O(Delta)E's, together with the use of the eigensystems of tridiagonal matrices and the theory of O(Delta)E's, gives the book its distinctiveness and provides a sound basis for a deep understanding of fundamental concepts in computational fluid dynamics.

  12. Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis.

    Directory of Open Access Journals (Sweden)

    Juhyun Lee

    Full Text Available Peristaltic contraction of the embryonic heart tube produces time- and spatial-varying wall shear stress (WSS and pressure gradients (∇P across the atrioventricular (AV canal. Zebrafish (Danio rerio are a genetically tractable system to investigate cardiac morphogenesis. The use of Tg(fli1a:EGFP (y1 transgenic embryos allowed for delineation and two-dimensional reconstruction of the endocardium. This time-varying wall motion was then prescribed in a two-dimensional moving domain computational fluid dynamics (CFD model, providing new insights into spatial and temporal variations in WSS and ∇P during cardiac development. The CFD simulations were validated with particle image velocimetry (PIV across the atrioventricular (AV canal, revealing an increase in both velocities and heart rates, but a decrease in the duration of atrial systole from early to later stages. At 20-30 hours post fertilization (hpf, simulation results revealed bidirectional WSS across the AV canal in the heart tube in response to peristaltic motion of the wall. At 40-50 hpf, the tube structure undergoes cardiac looping, accompanied by a nearly 3-fold increase in WSS magnitude. At 110-120 hpf, distinct AV valve, atrium, ventricle, and bulbus arteriosus form, accompanied by incremental increases in both WSS magnitude and ∇P, but a decrease in bi-directional flow. Laminar flow develops across the AV canal at 20-30 hpf, and persists at 110-120 hpf. Reynolds numbers at the AV canal increase from 0.07±0.03 at 20-30 hpf to 0.23±0.07 at 110-120 hpf (p< 0.05, n=6, whereas Womersley numbers remain relatively unchanged from 0.11 to 0.13. Our moving domain simulations highlights hemodynamic changes in relation to cardiac morphogenesis; thereby, providing a 2-D quantitative approach to complement imaging analysis.

  13. Computational Fluid Dynamics. [numerical methods and algorithm development

    Science.gov (United States)

    1992-01-01

    This collection of papers was presented at the Computational Fluid Dynamics (CFD) Conference held at Ames Research Center in California on March 12 through 14, 1991. It is an overview of CFD activities at NASA Lewis Research Center. The main thrust of computational work at Lewis is aimed at propulsion systems. Specific issues related to propulsion CFD and associated modeling will also be presented. Examples of results obtained with the most recent algorithm development will also be presented.

  14. Shape and Symmetry Determine Two-Dimensional Melting Transitions of Hard Regular Polygons

    Science.gov (United States)

    Anderson, Joshua A.; Antonaglia, James; Millan, Jaime A.; Engel, Michael; Glotzer, Sharon C.

    2017-04-01

    The melting transition of two-dimensional systems is a fundamental problem in condensed matter and statistical physics that has advanced significantly through the application of computational resources and algorithms. Two-dimensional systems present the opportunity for novel phases and phase transition scenarios not observed in 3D systems, but these phases depend sensitively on the system and, thus, predicting how any given 2D system will behave remains a challenge. Here, we report a comprehensive simulation study of the phase behavior near the melting transition of all hard regular polygons with 3 ≤n ≤14 vertices using massively parallel Monte Carlo simulations of up to 1 ×106 particles. By investigating this family of shapes, we show that the melting transition depends upon both particle shape and symmetry considerations, which together can predict which of three different melting scenarios will occur for a given n . We show that systems of polygons with as few as seven edges behave like hard disks; they melt continuously from a solid to a hexatic fluid and then undergo a first-order transition from the hexatic phase to the isotropic fluid phase. We show that this behavior, which holds for all 7 ≤n ≤14 , arises from weak entropic forces among the particles. Strong directional entropic forces align polygons with fewer than seven edges and impose local order in the fluid. These forces can enhance or suppress the discontinuous character of the transition depending on whether the local order in the fluid is compatible with the local order in the solid. As a result, systems of triangles, squares, and hexagons exhibit a Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) predicted continuous transition between isotropic fluid and triatic, tetratic, and hexatic phases, respectively, and a continuous transition from the appropriate x -atic to the solid. In particular, we find that systems of hexagons display continuous two-step KTHNY melting. In contrast, due to

  15. Shape and Symmetry Determine Two-Dimensional Melting Transitions of Hard Regular Polygons

    Directory of Open Access Journals (Sweden)

    Joshua A. Anderson

    2017-04-01

    Full Text Available The melting transition of two-dimensional systems is a fundamental problem in condensed matter and statistical physics that has advanced significantly through the application of computational resources and algorithms. Two-dimensional systems present the opportunity for novel phases and phase transition scenarios not observed in 3D systems, but these phases depend sensitively on the system and, thus, predicting how any given 2D system will behave remains a challenge. Here, we report a comprehensive simulation study of the phase behavior near the melting transition of all hard regular polygons with 3≤n≤14 vertices using massively parallel Monte Carlo simulations of up to 1×10^{6} particles. By investigating this family of shapes, we show that the melting transition depends upon both particle shape and symmetry considerations, which together can predict which of three different melting scenarios will occur for a given n. We show that systems of polygons with as few as seven edges behave like hard disks; they melt continuously from a solid to a hexatic fluid and then undergo a first-order transition from the hexatic phase to the isotropic fluid phase. We show that this behavior, which holds for all 7≤n≤14, arises from weak entropic forces among the particles. Strong directional entropic forces align polygons with fewer than seven edges and impose local order in the fluid. These forces can enhance or suppress the discontinuous character of the transition depending on whether the local order in the fluid is compatible with the local order in the solid. As a result, systems of triangles, squares, and hexagons exhibit a Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY predicted continuous transition between isotropic fluid and triatic, tetratic, and hexatic phases, respectively, and a continuous transition from the appropriate x-atic to the solid. In particular, we find that systems of hexagons display continuous two-step KTHNY melting. In

  16. HAMOC: a computer program for fluid hammer analysis

    International Nuclear Information System (INIS)

    Johnson, H.G.

    1975-12-01

    A computer program has been developed for fluid hammer analysis of piping systems attached to a vessel which has undergone a known rapid pressure transient. The program is based on the characteristics method for solution of the partial differential equations of motion and continuity. Column separation logic is included for situations in which pressures fall to saturation values

  17. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Tryggvason, Tryggvi

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...

  18. Modelling Emission from Building Materials with Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    This paper presents a numerical model that by means of computational fluid dynamics (CFD) is capable of dealing with both pollutant transport across the boundary layer and internal diffusion in the source without prior knowledge of which is the limiting process. The model provides the concentration...

  19. Computer program for calculating thermodynamic and transport properties of fluids

    Science.gov (United States)

    Hendricks, R. C.; Braon, A. K.; Peller, I. C.

    1975-01-01

    Computer code has been developed to provide thermodynamic and transport properties of liquid argon, carbon dioxide, carbon monoxide, fluorine, helium, methane, neon, nitrogen, oxygen, and parahydrogen. Equation of state and transport coefficients are updated and other fluids added as new material becomes available.

  20. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Tryggvason, T.

    1998-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...

  1. Computational fluid dynamics using in vivo ultrasound blood flow measurements

    DEFF Research Database (Denmark)

    Traberg, Marie Sand; Pedersen, Mads Møller; Hemmsen, Martin Christian

    2012-01-01

    This paper presents a model environment for construction of patient-specific computational fluid dynamic (CFD) models for the abdominal aorta (AA). Realistic pulsatile velocity waveforms are employed by using in vivo ultrasound blood flow measurements. Ultrasound is suitable for acquisition...

  2. Computational fluid dynamics in greenhouses: A review | De la ...

    African Journals Online (AJOL)

    Computational fluid dynamics is a tool that has been used in recent years to develop numerical models that improve our understanding of the interaction of variables that make up the climate inside greenhouses. In the past five years, more realistic studies have appeared due mainly to the development of more powerful ...

  3. Application of computational fluid dynamics modelling to an ozone ...

    African Journals Online (AJOL)

    Computational fluid dynamics (CFD) modelling has been applied to examine the operation of the pre-ozonation system at Wiggins Waterworks, operated by Umgeni Water in Durban, South Africa. A hydraulic model has been satisfactorily verified by experimental tracer tests. The turbulence effect induced by the gas ...

  4. Microchannel Emulsification: From Computational Fluid Dynamics to Predictive Analytical Model

    NARCIS (Netherlands)

    Dijke, van K.C.; Schroën, C.G.P.H.; Boom, R.M.

    2008-01-01

    Emulsion droplet formation was investigated in terrace-based microchannel systems that generate droplets through spontaneous Laplace pressure driven snap-off. The droplet formation mechanism was investigated through high-speed imaging and computational fluid dynamics (CFD) simulation, and we found

  5. Computer-Based Writing: Navigating the Fluid Text.

    Science.gov (United States)

    Catano, James V.

    1985-01-01

    Explains how a year of observing two successful novelists write and revise on the computer provided a number of ideas that are encapsulated in the concept of a fluid text or the writer's conscious avoidance of a text that becomes static or fixed. (HOD)

  6. Computational fluid dynamics (CFD) simulation of hot air flow ...

    African Journals Online (AJOL)

    Computational Fluid Dynamics simulation of air flow distribution, air velocity and pressure field pattern as it will affect moisture transient in a cabinet tray dryer is performed using SolidWorks Flow Simulation (SWFS) 2014 SP 4.0 program. The model used for the drying process in this experiment was designed with Solid ...

  7. Gyroscope with two-dimensional optomechanical mirror

    Science.gov (United States)

    Davuluri, Sankar; Li, Kai; Li, Yong

    2017-11-01

    We propose an application of two-dimensional optomechanical oscillator as a gyroscope by detecting the Coriolis force which is modulated at the natural frequency of the optomechanical oscillator. Dependence of gyroscope's sensitivity on shot noise, back-action noise, thermal noise, and input laser power is studied. At optimal input laser power, the gyroscope's sensitivity can be improved by increasing the mass or by decreasing the temperature and decay rate of the mechanical oscillator. When the mechanical oscillator's thermal occupation number, n th, is zero, sensitivity improves with decrease in frequency of the mechanical oscillator. For {n}{{th}}\\gg 1, the sensitivity is independent of the mechanical oscillator's frequency.

  8. Versatile two-dimensional transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Canulescu, Stela; Affannoukoué, Kévin; Döbeli, Max

    Two-dimensional transition metal dichalcogenides (2D-TMDCs), such as MoS2, have emerged as a new class of semiconducting materials with distinct optical and electrical properties. The availability of 2D-TMDCs with distinct band gaps allows for unlimited combinations of TMDC monolayers (MLs...... vacancies. We have found that the absorption spectra of the MoS2 films exhibit distinct excitonic peaks at ~1.8 and ~2 eV when grown in the presence of a sulfur evaporation beam as compared to those deposited in vacuum. The structure of the PLD-grown MoS2 films will be further discussed based Raman...

  9. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko

    1996-01-01

    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  10. Morphing-Based Shape Optimization in Computational Fluid Dynamics

    Science.gov (United States)

    Rousseau, Yannick; Men'Shov, Igor; Nakamura, Yoshiaki

    In this paper, a Morphing-based Shape Optimization (MbSO) technique is presented for solving Optimum-Shape Design (OSD) problems in Computational Fluid Dynamics (CFD). The proposed method couples Free-Form Deformation (FFD) and Evolutionary Computation, and, as its name suggests, relies on the morphing of shape and computational domain, rather than direct shape parameterization. Advantages of the FFD approach compared to traditional parameterization are first discussed. Then, examples of shape and grid deformations by FFD are presented. Finally, the MbSO approach is illustrated and applied through an example: the design of an airfoil for a future Mars exploration airplane.

  11. On the Use of Computers for Teaching Fluid Mechanics

    Science.gov (United States)

    Benson, Thomas J.

    1994-01-01

    Several approaches for improving the teaching of basic fluid mechanics using computers are presented. There are two objectives to these approaches: to increase the involvement of the student in the learning process and to present information to the student in a variety of forms. Items discussed include: the preparation of educational videos using the results of computational fluid dynamics (CFD) calculations, the analysis of CFD flow solutions using workstation based post-processing graphics packages, and the development of workstation or personal computer based simulators which behave like desk top wind tunnels. Examples of these approaches are presented along with observations from working with undergraduate co-ops. Possible problems in the implementation of these approaches as well as solutions to these problems are also discussed.

  12. Parallel comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Yan, DanDan; Tedone, Laura; Koutoulis, Anthony; Whittock, Simon P; Shellie, Robert A

    2017-11-17

    We introduce an information rich analytical approach called parallel comprehensive two-dimensional gas chromatography (2GC×2GC). This parallel chromatography approach splits injected samples into two independent two-dimensional column ensembles and provides two GC×GC separations by using contra-directional thermal modulation. The first-dimension ( 1 D) and second-dimension ( 2 D) columns are connected using planar three-port microchannel devices, which are supplied with supplementary flow via two pressure controller modules. Precise carrier gas flow control at the junction of the 1 D and 2 D columns permits independent control of flow conditions in each separation column. The 2GC×2GC approach provides two entirely independent GC×GC separations for each injection. Analysis of hop (Humulus lupulus L.) essential oils is used to demonstrate the capability of the approach. The analytical performance of each GC×GC separation in the 2GC×2GC experiment is comparable to individual GC×GC separation with matching column configurations. The peak capacity of 2GC×2GC is about 2 times than that of single GC×GC system. The dual 2D chromatograms produced by this single detector system provide complementary separations and additional identification information by harnessing different selectivity provided by the four separation columns. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Two-dimensional Lagrangian simulation of suspended sediment

    Science.gov (United States)

    Schoellhamer, David H.

    1988-01-01

    A two-dimensional laterally averaged model for suspended sediment transport in steady gradually varied flow that is based on the Lagrangian reference frame is presented. The layered Lagrangian transport model (LLTM) for suspended sediment performs laterally averaged concentration. The elevations of nearly horizontal streamlines and the simulation time step are selected to optimize model stability and efficiency. The computational elements are parcels of water that are moved along the streamlines in the Lagrangian sense and are mixed with neighboring parcels. Three applications show that the LLTM can accurately simulate theoretical and empirical nonequilibrium suspended sediment distributions and slug injections of suspended sediment in a laboratory flume.

  14. Two-dimensional collapse calculations of cylindrical clouds

    International Nuclear Information System (INIS)

    Bastien, P.; Mitalas, R.

    1979-01-01

    A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)

  15. Two-dimensional fermionic correlations in topologically nontrivial backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Manias, M.V.; Naon, C.M.; Trobo, M.L. (Departamento de Fisica, Universidad Nacional de La Plata, Casilla de Correo No. 67, 1900 La Plata, Buenos Aires (Argentina))

    1993-04-15

    By using a path-integral approach to the study of two-dimensional massless fermionic models in nontrivial sectors, we compute certain special correlation functions which are nonvanishing only when nontrivial topology is taken into account. In particular, we derive the first explicit expression for the so-called nonminimal Green's function. We introduce one specific topological charge distribution for which this correlation function takes a simple form. We also comment on the application of our results to the analysis of massive fermions in topological backgrounds.

  16. On bosonization ambiguities of two dimensional quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dias, S.A.; Silva Neto, M.B.

    1996-02-01

    We study bosonization ambiguities in two dimensional quantum electrodynamics in the presence and in the absence of topologically charged gauge fields. The computation of fermionic correlation functions gives us a mechanism to fix the ambiguities in nontrivial topologies, provided that we do not allow changes of sector as we evaluate functional integrals. This removes an infinite arbitrariness from the theory. In the case of trivial topologies, we find upper and lower bounds for the Jackiw-Rajaraman parameter, corresponding to the limiting cases of regularizations which preserve gauge or chiral symmetry. (author). 19 refs.

  17. Cavalier perspective plots of two-dimensional matrices. Program Stereo

    International Nuclear Information System (INIS)

    Los Arcos Merino, J.M.

    1978-01-01

    The program Stereo allows representation of a two-dimensional matrix containing numerical data, in the form of a cavalier perspective, isometric or not, with an angle variable between 0 deg and 180 deg. The representation is in histogram form for each matrix row and those curves which fall behind higher curves and therefore would not be seen are suppressed. It has been written in Fortran V for a Calcomp-936 digital plotter operating off-line with a Univac 1106 computer. Drawing method, subroutine structure and running instructions are described in this paper. (author)

  18. Symposium on computational fluid dynamics: technology and applications

    International Nuclear Information System (INIS)

    1988-01-01

    A symposium on the technology and applications of computational fluid dynamics (CFD) was held in Pretoria from 21-23 Nov 1988. The following aspects were covered: multilevel adaptive methods and multigrid solvers in CFD, a symbolic processing approach to CFD, interplay between CFD and analytical approximations, CFD on a transfer array, the application of CFD in high speed aerodynamics, numerical simulation of laminar blood flow, two-phase flow modelling in nuclear accident analysis, and the finite difference scheme for the numerical solution of fluid flow

  19. Application of computational fluid mechanics to atmospheric pollution problems

    Science.gov (United States)

    Hung, R. J.; Liaw, G. S.; Smith, R. E.

    1986-01-01

    One of the most noticeable effects of air pollution on the properties of the atmosphere is the reduction in visibility. This paper reports the results of investigations of the fluid dynamical and microphysical processes involved in the formation of advection fog on aerosols from combustion-related pollutants, as condensation nuclei. The effects of a polydisperse aerosol distribution, on the condensation/nucleation processes which cause the reduction in visibility are studied. This study demonstrates how computational fluid mechanics and heat transfer modeling can be applied to simulate the life cycle of the atmosphereic pollution problems.

  20. Using artificial intelligence to control fluid flow computations

    Science.gov (United States)

    Gelsey, Andrew

    1992-01-01

    Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.

  1. Computer program for computing the properties of seventeen fluids. [cryogenic liquids

    Science.gov (United States)

    Brennan, J. A.; Friend, D. G.; Arp, V. D.; Mccarty, R. D.

    1992-01-01

    The present study describes modifications and additions to the MIPROPS computer program for calculating the thermophysical properties of 17 fluids. These changes include adding new fluids, new properties, and a new interface to the program. The new program allows the user to select the input and output parameters and the units to be displayed for each parameter. Fluids added to the MIPROPS program are carbon dioxide, carbon monoxide, deuterium, helium, normal hydrogen, and xenon. The most recent modifications to the MIPROPS program are the addition of viscosity and thermal conductivity correlations for parahydrogen and the addition of the fluids normal hydrogen and xenon. The recently added interface considerably increases the program's utility.

  2. Development of computational fluid dynamics--habitat suitability (CFD-HSI) models to identify potential passage--Challenge zones for migratory fishes in the Penobscot River

    Science.gov (United States)

    Haro, Alexander J.; Dudley, Robert W.; Chelminski, Michael

    2012-01-01

    A two-dimensional computational fluid dynamics-habitat suitability (CFD–HSI) model was developed to identify potential zones of shallow depth and high water velocity that may present passage challenges for five anadromous fish species in the Penobscot River, Maine, upstream from two existing dams and as a result of the proposed future removal of the dams. Potential depth-challenge zones were predicted for larger species at the lowest flow modeled in the dam-removal scenario. Increasing flows under both scenarios increased the number and size of potential velocity-challenge zones, especially for smaller species. This application of the two-dimensional CFD–HSI model demonstrated its capabilities to estimate the potential effects of flow and hydraulic alteration on the passage of migratory fish.

  3. Numerical computational of fluid flow through a detached retina

    Science.gov (United States)

    Jiann, Lim Yeou; Ismail, Zuhaila; Shafie, Sharidan; Fitt, Alistair

    2015-02-01

    In this paper, a phenomenon of fluid flow through a detached retina is studied. Rhegmatogeneous retinal detachment happens when vitreous humour flow through a detached retina. The exact mechanism of Rhegmatogeneous retinal detachment is complex and remains incomplete. To understand the fluid flow, a paradigm mathematical model is developed and is approximated by the lubrication theory. The numerical results of the velocity profile and pressure distribution are computed by using Finite Element Method. The effects of fluid mechanical on the retinal detachment is discussed and analyzed. Based on the analysis, it is found that the retinal detachment deformation affects the pressure distribution. It is important to comprehend the development of the retinal detachment so that a new treatment method can be developed.

  4. Two dimensional NMR studies of polysaccharides

    International Nuclear Information System (INIS)

    Byrd, R.A.; Egan, W.; Summers, M.F.

    1987-01-01

    Polysaccharides are very important components in the immune response system. Capsular polysaccharides and lipopolysaccharides occupy cell surface sites of bacteria, play key roles in recognition and some have been used to develop vaccines. Consequently, the ability to determine chemical structures of these systems is vital to an understanding of their immunogenic action. The authors have been utilizing recently developed two-dimensional homonuclear and heteronuclear correlation spectroscopy for unambiguous assignment and structure determination of a number of polysaccharides. In particular, the 1 H-detected heteronuclear correlation experiments are essential to the rapid and sensitive determination of these structures. Linkage sites are determined by independent polarization transfer experiments and multiple quantum correlation experiments. These methods permit the complete structure determination on very small amounts of the polysaccharides. They present the results of a number of structural determinations and discuss the limits of these experiments in terms of their applications to polysaccharides

  5. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  6. Two-dimensional materials for ultrafast lasers

    International Nuclear Information System (INIS)

    Wang Fengqiu

    2017-01-01

    As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)

  7. Two dimensional generalizations of the Newcomb equation

    International Nuclear Information System (INIS)

    Dewar, R.L.; Pletzer, A.

    1989-11-01

    The Bineau reduction to scalar form of the equation governing ideal, zero frequency linearized displacements from a hydromagnetic equilibrium possessing a continuous symmetry is performed in 'universal coordinates', applicable to both the toroidal and helical cases. The resulting generalized Newcomb equation (GNE) has in general a more complicated form than the corresponding one dimensional equation obtained by Newcomb in the case of circular cylindrical symmetry, but in this cylindrical case , the equation can be transformed to that of Newcomb. In the two dimensional case there is a transformation which leaves the form of the GNE invariant and simplifies the Frobenius expansion about a rational surface, especially in the limit of zero pressure gradient. The Frobenius expansions about a mode rational surface is developed and the connection with Hamiltonian transformation theory is shown. 17 refs

  8. Ward identities in two-dimensional gravity

    International Nuclear Information System (INIS)

    Polchinski, J.

    1991-01-01

    We study the decoupling of null states in two-dimensional gravity, using methods of critical string theory. We identify a family of null states which fail to decouple due to curvature and boundary terms. This gives relations involving amplitudes at different genus. At genus zero, these determine certain operator product coefficients. At genus one, they determine the partition function. At higher genus, we obtain a relation similar in form to the Painleve equation, but due to an incomplete understanding of a certain ghost/curvature term we do not have a closed relation for the partition function. Our results appear to correspond to the L 0 and L 1 equations in the topological and matrix model approaches. (orig.)

  9. Two dimensional compass model with Heisenberg interactions

    Science.gov (United States)

    Pires, A. S. T.

    2018-04-01

    We consider a two dimensional compass model with a next and a next near Heisenberg term. The interactions are of two types: frustrated near neighbor compass interactions of amplitudes Jx and Jy, and next and next near neighbor Heisenberg interactions with exchanges J1 and J2 respectively. The Heisenberg interactions are isotropic in spin space, but the compass interactions depend on the bond direction. The ground state of the pure compass model is degenerated with a complex phase diagram. This degeneracy is removed by the Heisenberg terms leading to the arising of a magnetically ordered phase with a preferred direction. We calculate the phase diagrams at zero temperature for the case where, for J2 = 0, we have an antiferromagnetic ground state. We show that varying the value of J2, a magnetically disordered phase can be reached for small values of the compass interactions. We also calculate the critical temperature for a specified value of parameters.

  10. Strategies for Interpreting Two Dimensional Microwave Spectra

    Science.gov (United States)

    Martin-Drumel, Marie-Aline; Crabtree, Kyle N.; Buchanan, Zachary

    2017-06-01

    Microwave spectroscopy can uniquely identify molecules because their rotational energy levels are sensitive to the three principal moments of inertia. However, a priori predictions of a molecule's structure have traditionally been required to enable efficient assignment of the rotational spectrum. Recently, automated microwave double resonance spectroscopy (AMDOR) has been employed to rapidly generate two dimensional spectra based on transitions that share a common rotational level, which may enable automated extraction of rotational constants without any prior estimates of molecular structure. Algorithms used to date for AMDOR have relied on making several initial assumptions about the nature of a subset of the linked transitions, followed by testing possible assignments by "brute force." In this talk, we will discuss new strategies for interpreting AMDOR spectra, using eugenol as a test case, as well as prospects for library-free, automated identification of the molecules in a volatile mixture.

  11. Modified black holes in two dimensional gravity

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1991-11-01

    The SL(2,R)/U(1) gauged WZWN model is modified by a topological term and the accompanying change in the geometry of the two dimensional target space is determined. The possibility of this additional term arises from a symmetry in the general formalism of gauging an isometry subgroup of a non-linear sigma model with an antisymmetric tensor. It is shown, in particular, that the space-time exhibits some general singularities for which the recently found black hole is just a special case. From a conformal field theory point of view and for special values of the unitary representation of SL(2,R), this topological term can be interpreted as a small perturbation by a (1,1) conformal operator of the gauged WZWN action. (author). 26 refs

  12. Thermal properties of two-dimensional materials

    International Nuclear Information System (INIS)

    Zhang Gang; Zhang Yong-Wei

    2017-01-01

    Two-dimensional (2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides (e.g., MoS 2 and WS 2 ), have attracted a great deal of attention recently due to their extraordinary structural, mechanical, and physical properties. In particular, 2D materials have shown great potential for thermal management and thermoelectric energy generation. In this article, we review the recent advances in the study of thermal properties of 2D materials. We first review some important aspects in thermal conductivity of graphene and discuss the possibility to enhance the ultra-high thermal conductivity of graphene. Next, we discuss thermal conductivity of MoS 2 and the new strategy for thermal management of MoS 2 device. Subsequently, we discuss the anisotropic thermal properties of phosphorene. Finally, we review the application of 2D materials in thermal devices, including thermal rectifier and thermal modulator. (topical reviews)

  13. Two-dimensional heterostructures for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States); Pomerantseva, Ekaterina [Drexel Univ., Philadelphia, PA (United States)

    2017-06-12

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  14. Two-dimensional electroacoustic waves in silicene

    Science.gov (United States)

    Zhukov, Alexander V.; Bouffanais, Roland; Konobeeva, Natalia N.; Belonenko, Mikhail B.

    2018-01-01

    In this letter, we investigate the propagation of two-dimensional electromagnetic waves in a piezoelectric medium built upon silicene. Ultrashort optical pulses of Gaussian form are considered to probe this medium. On the basis of Maxwell's equations supplemented with the wave equation for the medium's displacement vector, we obtain the effective governing equation for the vector potential associated with the electromagnetic field, as well as the component of the displacement vector. The dependence of the pulse shape on the bandgap in silicene and the piezoelectric coefficient of the medium was analyzed, thereby revealing a nontrivial triadic interplay between the characteristics of the pulse dynamics, the electronic properties of silicene, and the electrically induced mechanical vibrations of the medium. In particular, we uncovered the possibility for an amplification of the pulse amplitude through the tuning of the piezoelectric coefficient. This property could potentially offer promising prospects for the development of amplification devices for the optoelectronics industry.

  15. Equivalency of two-dimensional algebras

    International Nuclear Information System (INIS)

    Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.

    2011-01-01

    Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)

  16. Interface between computational fluid dynamics (CFD) and plant analysis computer codes

    International Nuclear Information System (INIS)

    Coffield, R.D.; Dunckhorst, F.F.; Tomlinson, E.T.; Welch, J.W.

    1993-01-01

    Computational fluid dynamics (CFD) can provide valuable input to the development of advanced plant analysis computer codes. The types of interfacing discussed in this paper will directly contribute to modeling and accuracy improvements throughout the plant system and should result in significant reduction of design conservatisms that have been applied to such analyses in the past

  17. Data Point Averaging for Computational Fluid Dynamics Data

    Science.gov (United States)

    Norman, Jr., David (Inventor)

    2016-01-01

    A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.

  18. Distributed interactive graphics applications in computational fluid dynamics

    International Nuclear Information System (INIS)

    Rogers, S.E.; Buning, P.G.; Merritt, F.J.

    1987-01-01

    Implementation of two distributed graphics programs used in computational fluid dynamics is discussed. Both programs are interactive in nature. They run on a CRAY-2 supercomputer and use a Silicon Graphics Iris workstation as the front-end machine. The hardware and supporting software are from the Numerical Aerodynamic Simulation project. The supercomputer does all numerically intensive work and the workstation, as the front-end machine, allows the user to perform real-time interactive transformations on the displayed data. The first program was written as a distributed program that computes particle traces for fluid flow solutions existing on the supercomputer. The second is an older post-processing and plotting program modified to run in a distributed mode. Both programs have realized a large increase in speed over that obtained using a single machine. By using these programs, one can learn quickly about complex features of a three-dimensional flow field. Some color results are presented

  19. Fast reactor safety and computational thermo-fluid dynamics approaches

    International Nuclear Information System (INIS)

    Ninokata, Hisashi; Shimizu, Takeshi

    1993-01-01

    This article provides a brief description of the safety principle on which liquid metal cooled fast breeder reactors (LMFBRs) is based and the roles of computations in the safety practices. A number of thermohydraulics models have been developed to date that successfully describe several of the important types of fluids and materials motion encountered in the analysis of postulated accidents in LMFBRs. Most of these models use a mixture of implicit and explicit numerical solution techniques in solving a set of conservation equations formulated in Eulerian coordinates, with special techniques included to specific situations. Typical computational thermo-fluid dynamics approaches are discussed in particular areas of analyses of the physical phenomena relevant to the fuel subassembly thermohydraulics design and that involve describing the motion of molten materials in the core over a large scale. (orig.)

  20. Cardioplegia heat exchanger design modelling using computational fluid dynamics.

    Science.gov (United States)

    van Driel, M R

    2000-11-01

    A new cardioplegia heat exchanger has been developed by Sorin Biomedica. A three-dimensional computer-aided design (CAD) model was optimized using computational fluid dynamics (CFD) modelling. CFD optimization techniques have commonly been applied to velocity flow field analysis, but CFD analysis was also used in this study to predict the heat exchange performance of the design before prototype fabrication. The iterative results of the optimization and the actual heat exchange performance of the final configuration are presented in this paper. Based on the behaviour of this model, both the water and blood fluid flow paths of the heat exchanger were optimized. The simulation predicted superior heat exchange performance using an optimal amount of energy exchange surface area, reducing the total contact surface area, the device priming volume and the material costs. Experimental results confirm the empirical results predicted by the CFD analysis.

  1. Computer methods for transient fluid-structure analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Belytschko, T.; Liu, W.K.

    1985-01-01

    Fluid-structure interaction problems in nuclear engineering are categorized according to the dominant physical phenomena and the appropriate computational methods. Linear fluid models that are considered include acoustic fluids, incompressible fluids undergoing small disturbances, and small amplitude sloshing. Methods available in general-purpose codes for these linear fluid problems are described. For nonlinear fluid problems, the major features of alternative computational treatments are reviewed; some special-purpose and multipurpose computer codes applicable to these problems are then described. For illustration, some examples of nuclear reactor problems that entail coupled fluid-structure analysis are described along with computational results

  2. Simulating soil melting with CFD [computational fluid dynamics

    International Nuclear Information System (INIS)

    Hawkes, G.L.

    1997-01-01

    Computational fluid dynamics (CFD) is being used to validate the use of thermal plasma arc vitrification for treatment of contaminated soil. Soil melting is modelled by a CFD calculation code which links electrical fields, heat transport, and natural convection. The developers believe it is the first successful CFD analysis to incorporate a simulated PID (proportional-integral-derivative) controller, which plays a vital role by following the specified electrical power curve. (Author)

  3. Assessment of underwater glider performance through viscous computational fluid dynamics

    OpenAIRE

    Lidtke, Artur Konrad; Turnock, Stephen; Downes, Jon

    2016-01-01

    The process of designing an apt hydrodynamic shape for a new underwater glider is discussed. Intermediate stages include selecting a suitable axi-symmetric hull shape, adding hydrofoils and appendages, and evaluating the performance of the final design. All of the hydrodynamic characteristics are obtained using computational fluid dynamics using the kT - kL - ω transition model. It is shown that drag reduction of the main glider hull is of crucial importance to the ultimate performance. Sugge...

  4. Rigorous results in space-periodic two-dimensional turbulence

    Science.gov (United States)

    Kuksin, Sergei; Shirikyan, Armen

    2017-12-01

    We survey the recent advance in the rigorous qualitative theory of the 2d stochastic Navier-Stokes system that is relevant to the description of turbulence in two-dimensional fluids. After discussing briefly the initial-boundary value problem and the associated Markov process, we formulate results on the existence, uniqueness, and mixing of a stationary measure. We next turn to various consequences of these properties: strong law of large numbers, central limit theorem, and random attractors related to a unique stationary measure. We also discuss the Donsker-Varadhan and Freidlin-Wentzell type large deviations, the inviscid limit, and asymptotic results in 3d thin domains. We conclude with some open problems.

  5. Acoustic metamaterials for new two-dimensional sonic devices

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera sn, E-46022 Valencia (Spain)

    2007-09-15

    It has been shown that two-dimensional arrays of rigid or fluidlike cylinders in a fluid or a gas define, in the limit of large wavelengths, a class of acoustic metamaterials whose effective parameters (sound velocity and density) can be tailored up to a certain limit. This work goes a step further by considering arrays of solid cylinders in which the elastic properties of cylinders are taken into account. We have also treated mixtures of two different elastic cylinders. It is shown that both effects broaden the range of acoustic parameters available for designing metamaterials. For example, it is predicted that metamaterials with perfect matching of impedance with air are now possible by using aerogel and rigid cylinders equally distributed in a square lattice. As a potential application of the proposed metamaterial, we present a gradient index lens for airborne sound (i.e. a sonic Wood lens) whose functionality is demonstrated by multiple scattering simulations.

  6. Quality control of computational fluid dynamics in indoor environments

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft; Nielsen, P. V.

    2003-01-01

    Computational fluid dynamics (CFD) is used routinely to predict air movement and distributions of temperature and concentrations in indoor environments. Modelling and numerical errors are inherent in such studies and must be considered when the results are presented. Here, we discuss modelling...... aspects of turbulence and boundary conditions, as well as aspects related to numerical errors, with emphasis on choice of differencing scheme and computational grid. Illustrative examples are given to stress the main points related to numerical errors. Finally, recommendations are given for improving...

  7. Multitasking the code ARC3D. [for computational fluid dynamics

    Science.gov (United States)

    Barton, John T.; Hsiung, Christopher C.

    1986-01-01

    The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.

  8. The Efficient Use of Vector Computers with Emphasis on Computational Fluid Dynamics : a GAMM-Workshop

    CERN Document Server

    Gentzsch, Wolfgang

    1986-01-01

    The GAMM Committee for Numerical Methods in Fluid Mechanics organizes workshops which should bring together experts of a narrow field of computational fluid dynamics (CFD) to exchange ideas and experiences in order to speed-up the development in this field. In this sense it was suggested that a workshop should treat the solution of CFD problems on vector computers. Thus we organized a workshop with the title "The efficient use of vector computers with emphasis on computational fluid dynamics". The workshop took place at the Computing Centre of the University of Karlsruhe, March 13-15,1985. The participation had been restricted to 22 people of 7 countries. 18 papers have been presented. In the announcement of the workshop we wrote: "Fluid mechanics has actively stimulated the development of superfast vector computers like the CRAY's or CYBER 205. Now these computers on their turn stimulate the development of new algorithms which result in a high degree of vectorization (sca1ar/vectorized execution-time). But w...

  9. Nematic Equilibria on a Two-Dimensional Annulus

    KAUST Repository

    Lewis, A. H.

    2017-01-16

    We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.

  10. Efficient two-dimensional compressive sensing in MIMO radar

    Science.gov (United States)

    Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad

    2017-12-01

    Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.

  11. Internal optical bistability of quasi-two-dimensional semiconductor nanoheterostructures

    Science.gov (United States)

    Derevyanchuk, Oleksandr V.; Kramar, Natalia K.; Kramar, Valeriy M.

    2018-01-01

    We represent the results of numerical computations of the frequency and temperature domains of possible realization of internal optical bistability in flat quasi-two-dimensional semiconductor nanoheterostructures with a single quantum well (i.e., nanofilms). Particular computations have been made for a nanofilm of layered semiconductor PbI2 embedded in dielectric medium, i.e. ethylene-methacrylic acid (E-MAA) copolymer. It is shown that an increase in the nanofilm's thickness leads to a long-wave shift of the frequency range of the manifestation the phenomenon of bistability, to increase the size of the hysteresis loop, as well as to the expansion of the temperature interval at which the realization of this phenomenon is possible.

  12. Considerations of blood properties, outlet boundary conditions and energy loss approaches in computational fluid dynamics modeling.

    Science.gov (United States)

    Moon, Ji Young; Suh, Dae Chul; Lee, Yong Sang; Kim, Young Woo; Lee, Joon Sang

    2014-02-01

    Despite recent development of computational fluid dynamics (CFD) research, analysis of computational fluid dynamics of cerebral vessels has several limitations. Although blood is a non-Newtonian fluid, velocity and pressure fields were computed under the assumptions of incompressible, laminar, steady-state flows and Newtonian fluid dynamics. The pulsatile nature of blood flow is not properly applied in inlet and outlet boundaries. Therefore, we present these technical limitations and discuss the possible solution by comparing the theoretical and computational studies.

  13. Radiation effects on two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)

    2016-12-15

    The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Photodetectors based on two dimensional materials

    Science.gov (United States)

    Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen

    2016-09-01

    Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  15. Two-dimensional atomic crystals beyond graphene

    Science.gov (United States)

    Kaul, Anupama B.

    2014-06-01

    Carbon-based nanostructures have been the center of intense research and development for more than two decades now. Of these materials, graphene, a two-dimensional (2D) layered material system, has had a significant impact on science and technology over the past decade after monolayers of this material were experimentally isolated in 2004. The recent emergence of other classes of 2D graphene-like layered materials has added yet more exciting dimensions for research in exploring the diverse properties and applications arising from these 2D material systems. For example, hexagonal-BN, a layered material closest in structure to graphene, is an insulator, while NbSe2, a transition metal di-chalcogenide, is metallic and monolayers of other transition metal di-chalcogenides such as MoS2 are direct band-gap semiconductors. The rich spectrum of properties that 2D layered material systems offer can potentially be engineered ondemand, and creates exciting prospects for using such materials in applications ranging from electronics, sensing, photonics, energy harvesting and flexible electronics over the coming years.

  16. Seismic isolation of two dimensional periodic foundations

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Y.; Mo, Y. L., E-mail: yilungmo@central.uh.edu [University of Houston, Houston, Texas 77004 (United States); Laskar, A. [Indian Institute of Technology Bombay, Powai, Mumbai (India); Cheng, Z.; Shi, Z. [Beijing Jiaotong University, Beijing (China); Menq, F. [University of Texas, Austin, Texas 78712 (United States); Tang, Y. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-07-28

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  17. Comparative Two-Dimensional Fluorescence Gel Electrophoresis.

    Science.gov (United States)

    Ackermann, Doreen; König, Simone

    2018-01-01

    Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.

  18. Stress distribution in two-dimensional silos

    Science.gov (United States)

    Blanco-Rodríguez, Rodolfo; Pérez-Ángel, Gabriel

    2018-01-01

    Simulations of a polydispersed two-dimensional silo were performed using molecular dynamics, with different numbers of grains reaching up to 64 000, verifying numerically the model derived by Janssen and also the main assumption that the walls carry part of the weight due to the static friction between grains with themselves and those with the silo's walls. We vary the friction coefficient, the radii dispersity, the silo width, and the size of grains. We find that the Janssen's model becomes less relevant as the the silo width increases since the behavior of the stresses becomes more hydrostatic. Likewise, we get the normal and tangential stress distribution on the walls evidencing the existence of points of maximum stress. We also obtained the stress matrix with which we observe zones of concentration of load, located always at a height around two thirds of the granular columns. Finally, we observe that the size of the grains affects the distribution of stresses, increasing the weight on the bottom and reducing the normal stress on the walls, as the grains are made smaller (for the same total mass of the granulate), giving again a more hydrostatic and therefore less Janssen-type behavior for the weight of the column.

  19. Asymptotics for Two-dimensional Atoms

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip

    2012-01-01

    We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....

  20. Two-dimensional bipolar junction transistors

    Science.gov (United States)

    Gharekhanlou, Behnaz; Khorasani, Sina; Sarvari, Reza

    2014-03-01

    Recent development in fabrication technology of planar two-dimensional (2D) materials has introduced the possibility of numerous novel applications. Our recent analysis has revealed that by definition of p-n junctions through appropriate patterned doping of 2D semiconductors, ideal exponential I-V characteristics may be expected. However, the theory of 2D junctions turns out to be very different to that of standard bulk junctions. Based on this theory of 2D diodes, we construct for the first time a model to describe 2D bipolar junction transistors (2D-BJTs). We derive the small-signal equivalent model, and estimate the performance of a 2D-BJT device based on graphone as the example material. A current gain of about 138 and maximum threshold frequency of 77 GHz, together with a power-delay product of only 4 fJ per 1 μm lateral width is expected at an operating voltage of 5 V. In addition, we derive the necessary formulae and a new approximate solution for the continuity equation in the 2D configuration, which have been verified against numerical solutions.

  1. 77 FR 64834 - Computational Fluid Dynamics Best Practice Guidelines for Dry Cask Applications

    Science.gov (United States)

    2012-10-23

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0250] Computational Fluid Dynamics Best Practice... public comments on draft NUREG-2152, ``Computational Fluid Dynamics Best Practice Guidelines for Dry Cask... opportunity to review and solicit comments on the draft NUREG-2152, ``Computational Fluid Dynamics Best...

  2. Issues in computational fluid dynamics code verification and validation

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, W.L.; Blottner, F.G.

    1997-09-01

    A broad range of mathematical modeling errors of fluid flow physics and numerical approximation errors are addressed in computational fluid dynamics (CFD). It is strongly believed that if CFD is to have a major impact on the design of engineering hardware and flight systems, the level of confidence in complex simulations must substantially improve. To better understand the present limitations of CFD simulations, a wide variety of physical modeling, discretization, and solution errors are identified and discussed. Here, discretization and solution errors refer to all errors caused by conversion of the original partial differential, or integral, conservation equations representing the physical process, to algebraic equations and their solution on a computer. The impact of boundary conditions on the solution of the partial differential equations and their discrete representation will also be discussed. Throughout the article, clear distinctions are made between the analytical mathematical models of fluid dynamics and the numerical models. Lax`s Equivalence Theorem and its frailties in practical CFD solutions are pointed out. Distinctions are also made between the existence and uniqueness of solutions to the partial differential equations as opposed to the discrete equations. Two techniques are briefly discussed for the detection and quantification of certain types of discretization and grid resolution errors.

  3. FAST - A multiprocessed environment for visualization of computational fluid dynamics

    International Nuclear Information System (INIS)

    Bancroft, G.V.; Merritt, F.J.; Plessel, T.C.; Kelaita, P.G.; Mccabe, R.K.

    1991-01-01

    The paper presents the Flow Analysis Software Toolset (FAST) to be used for fluid-mechanics analysis. The design criteria for FAST including the minimization of the data path in the computational fluid-dynamics (CFD) process, consistent user interface, extensible software architecture, modularization, and the isolation of three-dimensional tasks from the application programmer are outlined. Each separate process communicates through the FAST Hub, while other modules such as FAST Central, NAS file input, CFD calculator, surface extractor and renderer, titler, tracer, and isolev might work together to generate the scene. An interprocess communication package making it possible for FAST to operate as a modular environment where resources could be shared among different machines as well as a single host is discussed. 20 refs

  4. FAST - A multiprocessed environment for visualization of computational fluid dynamics

    Science.gov (United States)

    Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin

    1991-01-01

    The paper presents the Flow Analysis Software Toolset (FAST) to be used for fluid-mechanics analysis. The design criteria for FAST including the minimization of the data path in the computational fluid-dynamics (CFD) process, consistent user interface, extensible software architecture, modularization, and the isolation of three-dimensional tasks from the application programmer are outlined. Each separate process communicates through the FAST Hub, while other modules such as FAST Central, NAS file input, CFD calculator, surface extractor and renderer, titler, tracer, and isolev might work together to generate the scene. An interprocess communication package making it possible for FAST to operate as a modular environment where resources could be shared among different machines as well as a single host is discussed.

  5. Computational Fluid Dynamics (CFD) simulations of a Heisenberg Vortex Tube

    Science.gov (United States)

    Bunge, Carl; Sitaraman, Hariswaran; Leachman, Jake

    2017-11-01

    A 3D Computational Fluid Dynamics (CFD) simulation of a Heisenberg Vortex Tube (HVT) is performed to estimate cooling potential with cryogenic hydrogen. The main mechanism driving operation of the vortex tube is the use of fluid power for enthalpy streaming in a highly turbulent swirl in a dual-outlet tube. This enthalpy streaming creates a temperature separation between the outer and inner regions of the flow. Use of a catalyst on the peripheral wall of the centrifuge enables endothermic conversion of para-ortho hydrogen to aid primary cooling. A κ- ɛ turbulence model is used with a cryogenic, non-ideal equation of state, and para-orthohydrogen species evolution. The simulations are validated with experiments and strategies for parametric optimization of this device are presented.

  6. The application of computational fluid dynamics to critical heat flux

    International Nuclear Information System (INIS)

    Stuhmiller, J.H.; Masiello, P.J.; Srikantiah, G.S.; Agee, L.J.

    1995-01-01

    The estimation of critical heat flux (CHF) in nuclear reactors is based largely on empirical relations that have a physical limiting conditions, a narrow range of applicability, and are inadequate for transient conditions. It is generally agreed that a more physically based approach is needed. Evidence is presented supporting the importance of boiling-induced fluid flow o the CHF process. Computational fluid dynamics (CFD) is used to model the microscale, transient dynamics of a vapor bubble growing in a subcooled liquid, resulting in qualitative reproduction of vapor blanket growth and CHF. The same CFD techniques are used to evaluate the macroscale thermal diffusion caused by spacers, resulting in qualitative reproduction of previous empirical results. This work forms the basis for a systematic investigation of CHF that could result in improved and less costly procedures for nuclear fuel design. This work is relevant for BWR and PWR reactors

  7. Feedback stabilisation of a two-dimensional pool-boiling system by modal control

    NARCIS (Netherlands)

    van Gils, R.W.; Speetjens, M.F.M; Zwart, Heiko J.; Nijmeijer, H.

    2012-01-01

    The present study concerns the feedback stabilisation of the unstable equilibria of a two-dimensional nonlinear pool-boiling system with essentially heterogeneous temperature distributions in the fluid-heater interface. Regulation of such equilibria has great potential for application in, for

  8. Two-Dimensional Programmable Manipulation of Magnetic Nanoparticles on-Chip

    DEFF Research Database (Denmark)

    Sarella, Anandakumar; Torti, Andrea; Donolato, Marco

    2014-01-01

    A novel device is designed for on-chip selective trap and two-dimensional remote manipulation of single and multiple fluid-borne magnetic particles using field controlled magnetic domain walls in circular nanostructures. The combination of different ring-shaped nanostructures and field sequences ...

  9. Interaction of two-dimensional magnetoexcitons

    Science.gov (United States)

    Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.

    2017-04-01

    We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .

  10. Computational Fluid Dynamics (CFD) Technology Programme 1995- 1999

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, R.J.; Hirsch, C.; Krause, E.; Kytoemaa, H.K. [eds.

    1997-12-31

    The report is a mid-term evaluation of the Computational Fluid Dynamics (CFD) Technology Programme started by Technology Development Centre Finland (TEKES) in 1995 as a five-year initiative to be concluded in 1999. The main goal of the programme is to increase the know-how and application of CFD in Finnish industry, to coordinate and thus provide a better basis for co-operation between national CFD activities and encouraging research laboratories and industry to establish co-operation with the international CFD community. The projects of the programme focus on the following areas: (1) studies of modeling the physics and dynamics of the behaviour of fluid material, (2) expressing the physical models in a numerical mode and developing a computer codes, (3) evaluating and testing current physical models and developing new ones, (4) developing new numerical algorithms, solvers, and pre- and post-processing software, and (5) applying the new computational tools to problems relevant to their ultimate industrial use. The report consists of two sections. The first considers issues concerning the whole programme and the second reviews each project

  11. Computational fluid dynamics evaluation of excessive dynamic airway collapse.

    Science.gov (United States)

    Taherian, Shahab; Rahai, Hamid; Gomez, Bernardo; Waddington, Thomas; Mazdisnian, Farhad

    2017-12-01

    Excessive dynamic airway collapse, which is often caused by the collapse of the posterior membrane wall during exhalation, is often misdiagnosed with other diseases; stents can provide support for the collapsing airways. The standard pulmonary function tests do not necessarily show change in functional breathing condition for evaluation of these type of diseases. Flow characteristics through a patient's airways with excessive dynamic airway collapse have been numerically investigated. A stent was placed to support the collapsing airway and to improve breathing conditions. Computed tomography images of the patient's pre- and post-stenting were used for generating 3-Dimensional models of the airways, and were imported into a computational fluid dynamics software for simulation of realistic air flow behavior. Unsteady simulations of the inspiratory phase and expiratory phase were performed with patient-specific boundary conditions for pre- and post-intervention cases to investigate the effect of stent placement on flow characteristic and possible improvements. Results of post-stent condition show reduced pressure, velocity magnitude and wall shear stress during expiration. The variation in wall shear stress, velocity magnitude and pressure drop is negligible during inspiration. Although Spirometry tests do not show significant improvements, computational fluid dynamics results show significant improvements in pre- and post-treatment results, suggesting improvement in breathing condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Computational fluid dynamics study of viscous fingering in supercritical fluid chromatography.

    Science.gov (United States)

    Subraveti, Sai Gokul; Nikrityuk, Petr; Rajendran, Arvind

    2018-01-26

    Axi-symmetric numerical simulations are carried out to study the dynamics of a plug introduced through a mixed-stream injection in supercritical fluid chromatographic columns. The computational fluid dynamics model developed in this work takes into account both the hydrodynamics and adsorption equilibria to describe the phenomena of viscous fingering and plug effect that contribute to peak distortions in mixed-stream injections. The model was implemented into commercial computational fluid dynamics software using user-defined functions. The simulations describe the propagation of both the solute and modifier highlighting the interplay between the hydrodynamics and plug effect. The simulated peaks showed good agreement with experimental data published in the literature involving different injection volumes (5 μL, 50 μL, 1 mL and 2 mL) of flurbiprofen on Chiralpak AD-H column using a mobile phase of CO 2 and methanol. The study demonstrates that while viscous fingering is the main source of peak distortions for large-volume injections (1 mL and 2 mL) it has negligible impact on small-volume injections (5 μL and 50 μL). Band broadening in small-volume injections arise mainly due to the plug effect. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Simulation and Experimental Studies of Jamming for Model Two-Dimensional Particles Under Flow

    Science.gov (United States)

    Guariguata, A.; Wu, D. T.; Koh, C. A.; Sum, A. K.; Sloan, E. D.

    2009-06-01

    Jamming and plugging of flowlines with gas hydrates is the most critical issue in the flow assurance of oil and gas production lines. Because solid hydrate particles are often suspended in a fluid, the pipeline jamming and flow constriction formed by hydrates depend not only on particle/wall properties, such as friction, binding forces and mechanical characteristics, but also on the concentration of particles upstream of the restriction, flow velocity, fluid viscosity, and forces between the particles. Therefore, to gain insight into the jamming phenomena, both experiments and computer simulations on two-dimensional model systems have been carried out to characterize the flow of particles in a channel, with the eventual goal of applying that knowledge to gas hydrates jamming. Using the simulation software PFC2d®, we studied the effect of restriction geometry and flow velocity on the jamming process of particles. Results from the simulations were compared to experimental measurements on polyethylene discs floating on water flowing in an open channel.

  14. Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces

    International Nuclear Information System (INIS)

    Kirkpatrick, R. James; Kalinichev, Andrey G.

    2008-01-01

    significantly larger systems. These calculations have allowed us, for the first time, to study the effects of metal cations with different charges and charge density on the NOM aggregation in aqueous solutions. Other computational work has looked at the longer-time-scale dynamical behavior of aqueous species at mineral-water interfaces investigated simultaneously by NMR spectroscopy. Our experimental NMR studies have focused on understanding the structure and dynamics of water and dissolved species at mineral-water interfaces and in two-dimensional nano-confinement within clay interlayers. Combined NMR and MD study of H2O, Na+, and Cl- interactions with the surface of quartz has direct implications regarding interpretation of sum frequency vibrational spectroscopic experiments for this phase and will be an important reference for future studies. We also used NMR to examine the behavior of K+ and H2O in the interlayer and at the surfaces of the clay minerals hectorite and illite-rich illite-smectite. This the first time K+ dynamics has been characterized spectroscopically in geochemical systems. Preliminary experiments were also performed to evaluate the potential of 75As NMR as a probe of arsenic geochemical behavior. The 75As NMR study used advanced signal enhancement methods, introduced a new data acquisition approach to minimize the time investment in ultra-wide-line NMR experiments, and provides the first evidence of a strong relationship between the chemical shift and structural parameters for this experimentally challenging nucleus. We have also initiated a series of inelastic and quasi-elastic neutron scattering measurements of water dynamics in the interlayers of clays and layered double hydroxides. The objective of these experiments is to probe the correlations of water molecular motions in confined spaces over the scale of times and distances most directly comparable to our MD simulations and on a time scale different than that probed by NMR. This work is being done

  15. Modeling fires in adjacent ship compartments with computational fluid dynamics

    International Nuclear Information System (INIS)

    Wix, S.D.; Cole, J.K.; Koski, J.A.

    1998-01-01

    This paper presents an analysis of the thermal effects on radioactive (RAM) transportation packages with a fire in an adjacent compartment. An assumption for this analysis is that the adjacent hold fire is some sort of engine room fire. Computational fluid dynamics (CFD) analysis tools were used to perform the analysis in order to include convective heat transfer effects. The analysis results were compared to experimental data gathered in a series of tests on tile US Coast Guard ship Mayo Lykes located at Mobile, Alabama

  16. Computational fluid dynamics in fire engineering theory, modelling and practice

    CERN Document Server

    Yuen, Kwok Kit

    2009-01-01

    Fire and combustion presents a significant engineering challenge to mechanical, civil and dedicated fire engineers, as well as specialists in the process and chemical, safety, buildings and structural fields. We are reminded of the tragic outcomes of 'untenable' fire disasters such as at King's Cross underground station or Switzerland's St Gotthard tunnel. In these and many other cases, computational fluid dynamics (CFD) is at the forefront of active research into unravelling the probable causes of fires and helping to design structures and systems to ensure that they are less likely in the f

  17. Approaching multiphase flows from the perspective of computational fluid dynamics

    International Nuclear Information System (INIS)

    Banas, A.O.

    1992-01-01

    Thermalhydraulic simulation methodologies based on subchannel and porous-medium concepts are briefly reviewed and contrasted with the general approach of Computational Fluid Dynamics (CFD). An outline of the advanced CFD methods for single-phase turbulent flows is followed by a short discussion of the unified formulation of averaged equations for turbulent and multiphase flows. Some of the recent applications of CFD at Chalk River Laboratories are discussed, and the complementary role of CFD with regard to the established thermalhydraulic methods of analysis is indicated. (author). 8 refs

  18. Torque converter transient characteristics prediction using computational fluid dynamics

    International Nuclear Information System (INIS)

    Yamaguchi, T; Tanaka, K

    2012-01-01

    The objective of this research is to investigate the transient torque converter performance used in an automobile. A new technique in computational fluid dynamics is introduced, which includes the inertia of the turbine in a three dimensional simulation of the torque converter during a launch condition. The simulation results are compared to experimental test data with good agreement across the range of data. In addition, the simulated flow structure inside the torque converter is visualized and compared to results from a steady-state calculation.

  19. Continuing Validation of Computational Fluid Dynamics for Supersonic Retropropulsion

    Science.gov (United States)

    Schauerhamer, Daniel Guy; Trumble, Kerry A.; Kleb, Bil; Carlson, Jan-Renee; Edquist, Karl T.

    2011-01-01

    A large step in the validation of Computational Fluid Dynamics (CFD) for Supersonic Retropropulsion (SRP) is shown through the comparison of three Navier-Stokes solvers (DPLR, FUN3D, and OVERFLOW) and wind tunnel test results. The test was designed specifically for CFD validation and was conducted in the Langley supersonic 4 x4 Unitary Plan Wind Tunnel and includes variations in the number of nozzles, Mach and Reynolds numbers, thrust coefficient, and angles of orientation. Code-to-code and code-to-test comparisons are encouraging and possible error sources are discussed.

  20. Computational Fluid Dynamics in Torque Converters: Validation and Application

    OpenAIRE

    Schweitzer, Jean; Gandham, Jeya

    2003-01-01

    This article describes some of the computational fluid dynamics (CFD) work being done on three-element torque converters using a commercially available package CFX TASCflow. The article details some of the work done to validate CFD results and gives examples of ways in which CFD is used in the torque-converter design process. Based on the validation study, it is shown that CFD can be used as a design and analysis tool to make decisions about design direction. Use of CFD in torque converters i...

  1. Computational evaluation of convection schemes in fluid dynamics problems

    Directory of Open Access Journals (Sweden)

    Paulo Laerte Natti

    2012-11-01

    Full Text Available This article provides a computational evaluation of the popular high resolution upwind WACEB, CUBISTA and ADBQUICKEST schemes for solving non-linear fluid dynamics problems. By using the finite difference methodology, the schemes are analyzed and implemented in the context of normalized variables of Leonard. In order to access the performance of the schemes, Riemann problems for 1D Burgers, Euler and shallow water equations are considered. From the numerical results, the schemes are ranked according to their performance in solving these non-linear equations. The best scheme is then applied in the numerical simulation of tridimensional incompressible moving free surface flows.

  2. Computational Fluid Dynamic Simulation (CFD and Experimental Study on Wing-external Store Aerodynamic Interference

    Directory of Open Access Journals (Sweden)

    Tholudin Mat Lazim

    2004-01-01

    Full Text Available The main objective of the present work is to study the effect of an external store to a subsonic fighter aircraft. Generally most modern fighter aircraft is designed with an external store installation. In this project a subsonic fighter aircraft model has been manufactured using a computer numerical control machine for the purpose of studying the effect of the external store aerodynamic interference on the flow around the aircraft wing. A computational fluid dynamic (CFD and wind tunnel testing experiments have been carried out to ensure the aerodynamic characteristic of the model then certified the aircraft will not facing any difficulties in stability and controllability. In the CFD experiment, commercial CFD code is used to simulate the interference and aerodynamic characteristics of the model. Subsequently, the model together with an external store was tested in a low speed wind tunnel with test section sized 0.45 m×0.45 m. Result in the two-dimensional pressure distribution obtained by both experiments are comparable. There is only 12% deviation in pressure distribution found in wind tunnel testing compared to the result predicted by the CFD. The result shows that the effect of the external storage is only significant at the lower surface of the wing and almost negligible at the upper surface of the wing. Aerodynamic interference is due to the external storage were mostly evidence on a lower surface of the wing and almost negligible on the upper surface at low angle of attack. In addition, the area of influence on the wing surface by store interference increased as the airspeed increase. 

  3. A simplified two-dimensional boundary element method with arbitrary uniform mean flow

    Directory of Open Access Journals (Sweden)

    Bassem Barhoumi

    2017-07-01

    Full Text Available To reduce computational costs, an improved form of the frequency domain boundary element method (BEM is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation (BIE representation solves the two-dimensional convected Helmholtz equation (CHE and its fundamental solution, which must satisfy a new Sommerfeld radiation condition (SRC in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green’s kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole, dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation. Keywords: Two-dimensional convected Helmholtz equation, Two-dimensional convected Green’s function, Two-dimensional convected boundary element method, Arbitrary uniform mean flow, Two-dimensional acoustic sources

  4. Two-dimensional FSI simulation of closing dynamics of a tilting disc mechanical heart valve.

    Science.gov (United States)

    Govindarajan, V; Udaykumar, H S; Herbertson, L H; Deutsch, S; Manning, K B; Chandran, K B

    2010-03-01

    The fluid dynamics during valve closure resulting in high shear flows and large residence times of particles has been implicated in platelet activation and thrombus formation in mechanical heart valves. Our previous studies with bi-leaflet valves have shown that large shear stresses induced in the gap between the leaflet edge and the valve housing results in relatively high platelet activation levels whereas flow between the leaflets results in shed vortices not conducive to platelet damage. In this study we compare the result of closing dynamics of a tilting disc valve with that of a bi-leaflet valve. The two-dimensional fluid-structure interaction analysis of a tilting disc valve closure mechanics is performed with a fixed grid Cartesian mesh flow solver with local mesh refinement, and a Lagrangian particle dynamic analysis for computation of potential for platelet activation. Throughout the simulation the flow remains in the laminar regime and the flow through the gap width is marked by the development of a shear layer which separates from the leaflet downstream of the valve. Zones of re-circulation are observed in the gap between the leaflet edge and the valve housing on the major orifice region of the tilting disc valve and are seen to be migrating towards the minor orifice region. Jet flow is observed at the minor orifice region and a vortex is formed which sheds in the direction of fluid motion as observed in experiments using PIV measurements. The activation parameter computed for the tilting disc valve, at the time of closure was found to be 2.7 times greater than that of the bi-leaflet mechanical valve and was found to be in the vicinity of the minor orifice region mainly due to the migration of vortical structures from the major to the minor orifice region during the leaflet rebound of the closing phase.

  5. Integrating aerodynamic surface modeling for computational fluid dynamics with computer aided structural analysis, design, and manufacturing

    Science.gov (United States)

    Thorp, Scott A.

    1992-01-01

    This presentation will discuss the development of a NASA Geometry Exchange Specification for transferring aerodynamic surface geometry between LeRC systems and grid generation software used for computational fluid dynamics research. The proposed specification is based on a subset of the Initial Graphics Exchange Specification (IGES). The presentation will include discussion of how the NASA-IGES standard will accommodate improved computer aided design inspection methods and reverse engineering techniques currently being developed. The presentation is in viewgraph format.

  6. Quantification of nasal airflow resistance in English bulldogs using computed tomography and computational fluid dynamics.

    Science.gov (United States)

    Hostnik, Eric T; Scansen, Brian A; Zielinski, Rachel; Ghadiali, Samir N

    2017-09-01

    Stenotic nares, edematous intranasal turbinates, mucosal swelling, and an elongated, thickened soft palate are common sources of airflow resistance for dogs with brachycephalic airway syndrome. Surgery has focused on enlarging the nasal apertures and reducing tissue of the soft palate. However, objective measures of surgical efficacy are lacking. Twenty-one English bulldogs without previous surgery were recruited for this prospective, pilot study. Computed tomography was performed using conscious sedation and without endotracheal intubation using a 128 multidetector computed tomography scanner. Raw multidetector computed tomography data were rendered to create a three-dimensional surface mesh model by automatic segmentation of the air-filled nasal passage from the nares to the caudal soft palate. Three-dimensional surface models were used to construct computational fluid dynamics models of nasal airflow resistance from the nares to the caudal aspect of the soft palate. The computational fluid dynamics models were used to simulate airflow in each dog and airway resistance varied widely with a median 36.46 (Pa/mm)/(l/s) and an interquartile range of 19.84 to 90.74 (Pa/mm)/(/s). In 19/21 dogs, the rostral third of the nasal passage exhibited a larger airflow resistance than the caudal and middle regions of the nasal passage. In addition, computational fluid dynamics data indicated that overall measures of airflow resistance may significantly underestimate the maximum local resistance. We conclude that computational fluid dynamics models derived from nasal multidetector computed tomography can quantify airway resistance in brachycephalic dogs. This methodology represents a novel approach to noninvasively quantify airflow resistance and may have utility for objectively studying effects of surgical interventions in canine brachycephalic airway syndrome. © 2017 American College of Veterinary Radiology.

  7. Computational Fluid Dynamics Demonstration of Rigid Bodies in Motion

    Science.gov (United States)

    Camarena, Ernesto; Vu, Bruce T.

    2011-01-01

    The Design Analysis Branch (NE-Ml) at the Kennedy Space Center has not had the ability to accurately couple Rigid Body Dynamics (RBD) and Computational Fluid Dynamics (CFD). OVERFLOW-D is a flow solver that has been developed by NASA to have the capability to analyze and simulate dynamic motions with up to six Degrees of Freedom (6-DOF). Two simulations were prepared over the course of the internship to demonstrate 6DOF motion of rigid bodies under aerodynamic loading. The geometries in the simulations were based on a conceptual Space Launch System (SLS). The first simulation that was prepared and computed was the motion of a Solid Rocket Booster (SRB) as it separates from its core stage. To reduce computational time during the development of the simulation, only half of the physical domain with respect to the symmetry plane was simulated. Then a full solution was prepared and computed. The second simulation was a model of the SLS as it departs from a launch pad under a 20 knot crosswind. This simulation was reduced to Two Dimensions (2D) to reduce both preparation and computation time. By allowing 2-DOF for translations and 1-DOF for rotation, the simulation predicted unrealistic rotation. The simulation was then constrained to only allow translations.

  8. Self-organized defect strings in two-dimensional crystals.

    Science.gov (United States)

    Lechner, Wolfgang; Polster, David; Maret, Georg; Keim, Peter; Dellago, Christoph

    2013-12-01

    Using experiments with single-particle resolution and computer simulations we study the collective behavior of multiple vacancies injected into two-dimensional crystals. We find that the defects assemble into linear strings, terminated by dislocations with antiparallel Burgers vectors. We show that these defect strings propagate through the crystal in a succession of rapid one-dimensional gliding and rare rotations. While the rotation rate decreases exponentially with the number of defects in the string, the diffusion constant is constant for large strings. By monitoring the separation of the dislocations at the end points, we measure their effective interactions with high precision beyond their spontaneous formation and annihilation, and we explain the double-well form of the dislocation interaction in terms of continuum elasticity theory.

  9. Two-dimensional silica opens new perspectives

    Science.gov (United States)

    Büchner, Christin; Heyde, Markus

    2017-12-01

    In recent years, silica films have emerged as a novel class of two-dimensional (2D) materials. Several groups succeeded in epitaxial growth of ultrathin SiO2 layers using different growth methods and various substrates. The structures consist of tetrahedral [SiO4] building blocks in two mirror symmetrical planes, connected via oxygen bridges. This arrangement is called a silica bilayer as it is the thinnest 2D arrangement with the stoichiometry SiO2 known today. With all bonds saturated within the nano-sheet, the interaction with the substrate is based on van der Waals forces. Complex ring networks are observed, including hexagonal honeycomb lattices, point defects and domain boundaries, as well as amorphous domains. The network structures are highly tuneable through variation of the substrate, deposition parameters, cooling procedure, introducing dopants or intercalating small species. The amorphous networks and structural defects were resolved with atomic resolution microscopy and modeled with density functional theory and molecular dynamics. Such data contribute to our understanding of the formation and characteristic motifs of glassy systems. Growth studies and doping with other chemical elements reveal ways to tune ring sizes and defects as well as chemical reactivities. The pristine films have been utilized as molecular sieves and for confining molecules in nanocatalysis. Post growth hydroxylation can be used to tweak the reactivity as well. The electronic properties of silica bilayers are favourable for using silica as insulators in 2D material stacks. Due to the fully saturated atomic structure, the bilayer interacts weakly with the substrate and can be described as quasi-freestanding. Recently, a mm-scale film transfer under structure retention has been demonstrated. The chemical and mechanical stability of silica bilayers is very promising for technological applications in 2D heterostacks. Due to the impact of this bilayer system for glass science

  10. Two-dimensional vibrational-electronic spectroscopy

    Science.gov (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  11. Optimal Padding for the Two-Dimensional Fast Fourier Transform

    Science.gov (United States)

    Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.

    2011-01-01

    One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that

  12. Computational transport phenomena of fluid-particle systems

    CERN Document Server

    Arastoopour, Hamid; Abbasi, Emad

    2017-01-01

    This book concerns the most up-to-date advances in computational transport phenomena (CTP), an emerging tool for the design of gas-solid processes such as fluidized bed systems. The authors examine recent work in kinetic theory and CTP and illustrate gas-solid processes’ many applications in the energy, chemical, pharmaceutical, and food industries. They also discuss the kinetic theory approach in developing constitutive equations for gas-solid flow systems and how it has advanced over the last decade as well as the possibility of obtaining innovative designs for multiphase reactors, such as those needed to capture CO2 from flue gases. Suitable as a concise reference and a textbook supplement for graduate courses, Computational Transport Phenomena of Gas-Solid Systems is ideal for practitioners in industries involved with the design and operation of processes based on fluid/particle mixtures, such as the energy, chemicals, pharmaceuticals, and food processing. Explains how to couple the population balance e...

  13. Computational methods of the Advanced Fluid Dynamics Model

    International Nuclear Information System (INIS)

    Bohl, W.R.; Wilhelm, D.; Parker, F.R.

    1987-01-01

    To more accurately treat severe accidents in fast reactors, a program has been set up to investigate new computational models and approaches. The product of this effort is a computer code, the Advanced Fluid Dynamics Model (AFDM). This paper describes some of the basic features of the numerical algorithm used in AFDM. Aspects receiving particular emphasis are the fractional-step method of time integration, the semi-implicit pressure iteration, the virtual mass inertial terms, the use of three velocity fields, higher order differencing, convection of interfacial area with source and sink terms, multicomponent diffusion processes in heat and mass transfer, the SESAME equation of state, and vectorized programming. A calculated comparison with an isothermal tetralin/ammonia experiment is performed. We conclude that significant improvements are possible in reliably calculating the progression of severe accidents with further development

  14. Progress in Parallel Schur Complement Preconditioning for Computational Fluid Dynamics

    Science.gov (United States)

    Barth, Timothy J.; Chan, Tony F.; Tang, Wei-Pai; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    We consider preconditioning methods for nonself-adjoint advective-diffusive systems based on a non-overlapping Schur complement procedure for arbitrary triangulated domains. The ultimate goal of this research is to develop scalable preconditioning algorithms for fluid flow discretizations on parallel computing architectures. In our implementation of the Schur complement preconditioning technique, the triangulation is first partitioned into a number of subdomains using the METIS multi-level k-way partitioning code. This partitioning induces a natural 2X2 partitioning of the p.d.e. discretization matrix. By considering various inverse approximations of the 2X2 system, we have developed a family of robust preconditioning techniques. A computer code based on these ideas has been developed and tested on the IBM SP2 and the SGI Power Challenge array using MPI message passing protocol. A number of example CFD calculations will be presented to illustrate and assess various Schur complement approximations.

  15. Generalized added masses computation for fluid structure interaction

    International Nuclear Information System (INIS)

    Lazzeri, L.; Cecconi, S.; Scala, M.

    1983-01-01

    The aim of this paper a description of a method to simulate the dynamic effect of a fluid between two structures by means of an added mass and an added stiffness. The method is based on a potential theory which assumes the fluid is inviscid and incompressible (the case of compressibility is discussed); a solution of the corresponding field equation is given as a superposition of elementary conditions (i.e. applicable to elementary boundary conditions). Consequently the pressure and displacements of the fluid on the boundary are given as a function of the series coefficients; the ''work lost'' (i.e. the work done by the pressures on the difference between actual and estimated displacements) is minimized, in this way the expansion coefficients are related to the displacements on the boundaries. Virtual work procedures are then used to compute added masses. The particular case of a free surface (with gravity effects) is discussed, it is shown how the effect can be modelled by means of an added stiffness term. Some examples relative to vibrations in reservoirs are given and discussed. (orig.)

  16. Rapid computer prediction of total body water in fluid overload

    International Nuclear Information System (INIS)

    Schloerb, P.R.; Palaskas, C.L.; Mintun, M.A.

    1981-01-01

    Using computer analysis of the early plasma arterial disappearance curve of tritiated water (HTO), we sought the fewest points and earliest times needed to predict the final volume of dilution, total body water (TBW). In ten anesthetized adult female dogs weighing 19.1 +/- 0.5 kg, with bilateral ureteral ligation, 500 muC HTO were given IV. Arterial blood samples were taken until equilibrium (3 hours), when the approximate equivalent of extracellular fluid (ECF), 4,000 ml of lactated Ringer's solution, was given IV within 1 hour. The next day, in the second phase of the study, 1,000 muC of HTO were given IV and arterial blood samples were taken at intervals up to equilibrium (5 hours). TBW at 3 hours after the first HTO infusion was 63.3 +/- 1.2% body weight. Using a curve-fitting Fortran program (CFIT), the arterial plasma HTO concentrations were fitted to one or two exponentials. Although initial TBW could be predicted from arterial plasma concentrations of HTO during 20 minutes after injection in normally hydrated dogs, values during 60 minutes were required for accurate prediction of TBW after infusion of 4 L of fluid. TBW in normal and fluid-loaded animals was predicted within 2.3 +/- 0.6% of the final HTO equilibrium

  17. Two-dimensional numerical investigation of a normal shock wave boundary layer interaction

    Science.gov (United States)

    Turlin, Miranda P.

    Shock wave boundary layer interactions (SWBLIs) occur when a shock wave meets a boundary layer. This study aims to isolate the interaction through numerical investigation of a normal SWBLI and build knowledge of the computational fluid dynamics software, Wind-US 3.0. The test geometry, based on the experimental work of Bruce et al [16], contains a two-dimensional duct split into upper and lower channels by a shock holding plate. The boundary conditions were based on experimental conditions, and include: an inlet Mach number of 1.6; inlet total pressure and temperature of 62.5 psi and 522 degrees R, respectively; and viscous walls on all physical surfaces. Downstream boundary conditions are varied in attempts to produce a correct shock structure throughout the domain. This study uses two-dimensional structured grids containing approximately 832,000 elements. Wind-US solves the Reynolds-Averaged Navier-Stokes equations using Roe's second-order upwind-biased flux-difference splitting algorithm with a total variation diminishing (TVD) limiting parameter. The turbulence model selected for this study was the Menter SST k-o model. Attempts to produce the correct shock structure have included varying the downstream boundary conditions, changing the number of cycles and associated Courant-Friedrichs-Lewy, TVD, and grid sequencing parameters. This study used several tutorial files available through the NPARC Alliance to establish the analysis settings needed to produce a shock wave in the lower channel. This enables progress to be made on the next step of this project which is to simulate and analyze the interaction of a normal SWBLI in two dimensions. Results illustrate the correct combination of boundary conditions necessary to generate a shock in the expected location. In addition, an appropriate zonal configuration has been determined to eliminate the horizontal zone interfaces which can cause non-physical behavior in those locations.

  18. Computational thermal, chemical, fluid, and solid mechanics for geosystems management.

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu

    2011-09-01

    This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

  19. Evaluation of the SWOV-TNO three-dimensional crash victim model : comparison with the SWOV-TNO two-dimensional crash victim model.

    NARCIS (Netherlands)

    Maltha, J. Bacchetti, A.C. & Heijer, T.

    1977-01-01

    Two different computer programs have been developed for a two-dimensional and a three-dimensional crash victim model. In this study the three-dimensional model is tested in comparison with the two-dimensional model. A test run of the two-dimensional model is simulated with the SWOV-TNO

  20. Two fluid space-time discontinuous Galerkin finite element method. Part II: Applications

    NARCIS (Netherlands)

    Sollie, W.E.H.; van der Vegt, Jacobus J.W.

    2009-01-01

    The numerical method for two fluid flow computations presented in Sollie, Bokhove \\& van der Vegt, Two Fluid Space-Time Discontinuous Galerkin Finite Element Method. Part I: Numerical Algorithm is applied to a number of one and two dimensional single and two fluid test problems, including a magma -

  1. Development of real-time visualization system for Computational Fluid Dynamics on parallel computers

    International Nuclear Information System (INIS)

    Muramatsu, Kazuhiro; Otani, Takayuki; Matsumoto, Hideki; Takei, Toshifumi; Doi, Shun

    1998-03-01

    A real-time visualization system for computational fluid dynamics in a network connecting between a parallel computing server and the client terminal was developed. Using the system, a user can visualize the results of a CFD (Computational Fluid Dynamics) simulation on the parallel computer as a client terminal during the actual computation on a server. Using GUI (Graphical User Interface) on the client terminal, to user is also able to change parameters of the analysis and visualization during the real-time of the calculation. The system carries out both of CFD simulation and generation of a pixel image data on the parallel computer, and compresses the data. Therefore, the amount of data from the parallel computer to the client is so small in comparison with no compression that the user can enjoy the swift image appearance comfortably. Parallelization of image data generation is based on Owner Computation Rule. GUI on the client is built on Java applet. A real-time visualization is thus possible on the client PC only if Web browser is implemented on it. (author)

  2. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  3. Computational fluid dynamic modeling of two passive samplers

    International Nuclear Information System (INIS)

    Thomas, Justin; Holsen, Thomas M.; Dhaniyala, Suresh

    2006-01-01

    To effectively use a passive sampler for monitoring trace contaminants in the gas-phase, its sampling characteristics as a function of ambient wind conditions must be known. In this study two commonly used passive samplers were evaluated using computational fluid dynamics. Contaminant uptake by the polyurethane foam (PUF) was modeled using a species transport model. The external-internal flow interactions in the sampler were characterized, and the uptake rates of contaminant species were quantified. The simulations show that flow fields in the samplers have strong velocity gradients, and single-point velocity measurements do not capture flow interactions accurately. Sampling rates calculated for a PUF in freestream are in good agreement with sampling rates for PUFs in the passive samplers studied for the same average velocity over the PUF. The calculated sampling rates are in general agreement with those obtained experimentally by other researchers. - The effect of wind speed on sampling rates of two commonly used passive samplers was investigated using computational fluid dynamic techniques

  4. Dynamic modeling of oil boom failure using computational fluid dynamics

    International Nuclear Information System (INIS)

    Goodman, R. H.; Brown, H. M.; An, C. F.; Rowe, R. D.

    1997-01-01

    Oil retention boom failure mechanisms have been identified and studied using computational fluid dynamics (CFD), a powerful modeling tool combining fluid dynamics and mathematics with high speed computer technology. This study utilized a commercially available CFD package, 'Fluent', to simulate the oil-water flow around a barrier. 'Drainage failure', 'droplet entrainment' and 'critical accumulation' were modeled using this software. Flow characteristics were found to be different for different failure mechanisms. In the drainage failure process, the oil slick was compressed against the barrier until the slick was deep enough for the oil to leak under the barrier. During boom failure due to droplet entrainment, the oil-water interface of the oil slick was wavy and unstable. During boom failure due to critical accumulation, the oil remained a single mass and moved under the barrier readily. The most significant observation, however, was that flow patterns around barriers are modified by the presence of oil. Therefore, towing and wave-conformity tests of booms will not be meaningful unless such tests are conducted with oil present. 15 refs., 11 figs

  5. Application of GPU to computational multiphase fluid dynamics

    International Nuclear Information System (INIS)

    Nagatake, T; Kunugi, T

    2010-01-01

    The MARS (Multi-interfaces Advection and Reconstruction Solver) [1] is one of the surface volume tracking methods for multi-phase flows. Nowadays, the performance of GPU (Graphics Processing Unit) is much higher than the CPU (Central Processing Unit). In this study, the GPU was applied to the MARS in order to accelerate the computation of multi-phase flows (GPU-MARS), and the performance of the GPU-MARS was discussed. From the performance of the interface tracking method for the analyses of one-directional advection problem, it is found that the computing time of GPU(single GTX280) was around 4 times faster than that of the CPU (Xeon 5040, 4 threads parallelized). From the performance of Poisson Solver by using the algorithm developed in this study, it is found that the performance of the GPU showed around 30 times faster than that of the CPU. Finally, it is confirmed that the GPU showed the large acceleration of the fluid flow computation (GPU-MARS) compared to the CPU. However, it is also found that the double-precision computation of the GPU must perform with very high precision.

  6. A two-dimensional CFD model of a refrigerated display case

    Energy Technology Data Exchange (ETDEWEB)

    Stribling, D.; Tassou, S.A. [Brunel Univ., Uxbridge (United Kingdom). Dept. of Mechanical Engineering; Marriott, D. [Safeway Stores plc, Middlesex (United Kingdom)

    1997-12-31

    The discomfort caused by the cold air overspill from vertical refrigerated display cases in supermarkets is widely accepted as being a problem to customers. This, together with the adverse effect on case performance caused by heat and moisture transfer across the air curtain, suggests that there may be room for improvement in the design and fundamental operation of these display fixtures. This paper presents a two-dimensional computational fluid dynamics (CFD) model of a vertical dairy display case that could be used in the design and optimization of such equipment. Comparisons are also made with experimentally obtained values of velocity and temperature measured around the case in order to assess the accuracy and viability of such a model. Parameters of the computer model, such as the size of the calculation grid, the turbulence model, and the discretization scheme, were also varied to determine their effect on the converged solution, and these results are presented. The CFD model showed good qualitative agreement with measured values and requires only fine tuning to make it quantitatively accurate.

  7. Comparison of various spring analogy related mesh deformation techniques in two-dimensional airfoil design optimization

    Science.gov (United States)

    Yang, Y.; Özgen, S.

    2017-06-01

    During the last few decades, CFD (Computational Fluid Dynamics) has developed greatly and has become a more reliable tool for the conceptual phase of aircraft design. This tool is generally combined with an optimization algorithm. In the optimization phase, the need for regenerating the computational mesh might become cumbersome, especially when the number of design parameters is high. For this reason, several mesh generation and deformation techniques have been developed in the past decades. One of the most widely used techniques is the Spring Analogy. There are numerous spring analogy related techniques reported in the literature: linear spring analogy, torsional spring analogy, semitorsional spring analogy, and ball vertex spring analogy. This paper gives the explanation of linear spring analogy method and angle inclusion in the spring analogy method. In the latter case, two di¨erent solution methods are proposed. The best feasible method will later be used for two-dimensional (2D) Airfoil Design Optimization with objective function being to minimize sectional drag for a required lift coe©cient at di¨erent speeds. Design variables used in the optimization include camber and thickness distribution of the airfoil. SU2 CFD is chosen as the §ow solver during the optimization procedure. The optimization is done by using Phoenix ModelCenter Optimization Tool.

  8. Parallel Computational Fluid Dynamics 2007 : Implementations and Experiences on Large Scale and Grid Computing

    CERN Document Server

    2009-01-01

    At the 19th Annual Conference on Parallel Computational Fluid Dynamics held in Antalya, Turkey, in May 2007, the most recent developments and implementations of large-scale and grid computing were presented. This book, comprised of the invited and selected papers of this conference, details those advances, which are of particular interest to CFD and CFD-related communities. It also offers the results related to applications of various scientific and engineering problems involving flows and flow-related topics. Intended for CFD researchers and graduate students, this book is a state-of-the-art presentation of the relevant methodology and implementation techniques of large-scale computing.

  9. Patients by Two-Dimensional Gel Electrophoresis

    Directory of Open Access Journals (Sweden)

    Sadan Yavuz

    2014-01-01

    Full Text Available Pericardial fluid (PF is often considered to be reflection of the serum by which information regarding the physiological status of the heart can be obtained. Some local and systemic disorders may perturb the balance between synthesis and discharge of PF and may cause its aberrant accumulation in the pericardial cavity as pericardial effusion (PE. PE may then lead to an increased intrapericardial pressure from which the heart function is undesirably affected. For some cases, the causes for the perturbance of fluid balance are well understood, but in some other cases, they are not apparent. It may, thus, be helpful to understand the molecular mechanisms behind this troublesome condition to elucidate a clinical approach for therapeutic uses. In this study, protein profiles of PEs from idiopathic pericarditis patients were analyzed. Control samples from patients undergoing elective cardiac surgery (ECS were included for comparison. In addition to high abundant serum-originated proteins that may not hold significance for understanding the molecular mechanisms behind this disease, omentin-1 was identified and its level was higher for more than two-fold in PE of IP patients. Increased levels of omentin-1 in PE may open a way for understanding the molecular mechanisms behind idiopathic pericarditis (IP.

  10. Berezinskii–Kosterlitz–Thouless transition and two-dimensional melting

    Science.gov (United States)

    Ryzhov, V. N.; Tareyeva, E. E.; Fomin, Yu D.; Tsiok, E. N.

    2017-12-01

    The main aspects of the theory of phase transitions in two-dimensional degenerate systems (Berezinskii–Kosterlitz–Thouless, or BKT, transitions) are reviewed in detail, including the transition mechanism, the renormalization group as a tool for describing the transition, and how the transition scenario can possibly depend on the core energy of topological defects (in particular, in thin superconducting films). Various melting scenarios in two-dimensional systems are analyzed, and the current status of actual experiments and computer simulations in the field is examined. Whereas in three dimensions melting always occurs as a single first-order transition, in two dimensions, as shown by Halperin, Nelson, and Young, melting via two continuous BKT transitions with an intermediate hexatic phase characterized by quasi-long-range orientational order is possible. But there is also a possibility for a first-order phase transition to occur. Recently, one further melting scenario, different from that occurring in the Berezinskii–Kosterlitz–Thouless–Halperin–Nelson–Young theory, has been proposed, according to which a solid can melt in two stages: a continuous BKT-type solid–hexatic transition and then a first-order hexatic-phase–isotropic-liquid phase transition. Particular attention is given to the melting scenario as a function of the potential shape and to the random pinning effect on two-dimensional melting. In particular, it is shown that random pinning can alter the melting scenario fundamentally in the case of a first-order transition. Also considered is the melting of systems with potentials having a negative curvature in the repulsion region–potentials that are successfully used in describing the anomalous properties of water in two dimensions. This review is an extended version of the report “Old and new in the physics of phase transitions” presented at the scientific session of the Physical Sciences Division of the Russian Academy of

  11. SSME Fuel Preburner Two-dimensional Analysis

    Science.gov (United States)

    Vanoverbeke, T. J.

    1985-01-01

    The durability of the SSME turbine is strongly affected by the temperature profile leaving the preburner. A reacting flow computer model to predict the turbine inlet temperature profile was used. Calculations were made by using a reacting flow code, to assess the sensitivity of the turbine inlet temperature profile to variations in the flow entering the SSME preburner.

  12. Computational fluid dynamics investigation of turbulence models for non-newtonian fluid flow in anaerobic digesters.

    Science.gov (United States)

    Wu, Binxin

    2010-12-01

    In this paper, 12 turbulence models for single-phase non-newtonian fluid flow in a pipe are evaluated by comparing the frictional pressure drops obtained from computational fluid dynamics (CFD) with those from three friction factor correlations. The turbulence models studied are (1) three high-Reynolds-number k-ε models, (2) six low-Reynolds-number k-ε models, (3) two k-ω models, and (4) the Reynolds stress model. The simulation results indicate that the Chang-Hsieh-Chen version of the low-Reynolds-number k-ε model performs better than the other models in predicting the frictional pressure drops while the standard k-ω model has an acceptable accuracy and a low computing cost. In the model applications, CFD simulation of mixing in a full-scale anaerobic digester with pumped circulation is performed to propose an improvement in the effective mixing standards recommended by the U.S. EPA based on the effect of rheology on the flow fields. Characterization of the velocity gradient is conducted to quantify the growth or breakage of an assumed floc size. Placement of two discharge nozzles in the digester is analyzed to show that spacing two nozzles 180° apart with each one discharging at an angle of 45° off the wall is the most efficient. Moreover, the similarity rules of geometry and mixing energy are checked for scaling up the digester.

  13. Two dimensional MHD flows between porous boundaries

    International Nuclear Information System (INIS)

    Gratton, F.T.

    1994-01-01

    Similarity solutions of dissipative MHD equations representing conducting fluids injected through porous walls and flowing out in both directions from the center of the channel, are studied as a function of four non dimensional parameters, Reynolds number R e , magnetic Reynolds number R m , Alfvenic Mach number, M A , and pressure gradient coefficient, C. The effluence is restrained by an external magnetic field normal to the walls. When R m m >>1, the solution may model a collision of plasmas of astrophysical interest. In this case the magnetic field lines help to drive the outflow acting jointly with the pressure gradient. The law for C as a function of the other parameters is given for several asymptotic limits. (author). 3 refs, 6 figs

  14. Lie algebra contractions on two-dimensional hyperboloid

    International Nuclear Information System (INIS)

    Pogosyan, G. S.; Yakhno, A.

    2010-01-01

    The Inoenue-Wigner contraction from the SO(2, 1) group to the Euclidean E(2) and E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the four corresponding two-dimensional homogeneous spaces: two-dimensional hyperboloids and two-dimensional Euclidean and pseudo-Euclidean spaces. We show how the nine systems of coordinates on the two-dimensional hyperboloids contracted to the four systems of coordinates on E 2 and eight on E 1,1 . The text was submitted by the authors in English.

  15. Two-dimensional maximum entropy reconstruction of radio brightness

    International Nuclear Information System (INIS)

    Wernecke, S.J.

    1977-01-01

    A procedure is described for maximum entropy reconstruction of two-dimensional radio brightness maps from noisy interferometer measurements. The method defines a map that obeys the nonnegativity constraint and is, in a sense, the smoothest of all brightness distributions that agree with the visibility measurements within the errors of observation. This approach acknowledges the fact that signal-to-noise considerations have a strong influence on useful resolution; fine structure appears only to the extent justified by measurement accuracy. Iterative computing is needed to find the maximum entropy image. It is shown that the primary computational burden of maximum entropy reconstruction involves calculations that are efficiently performed by fast Fourier transform techniques. Different techniques are used depending on whether visibility data are irregularly distributed in the u,ν plane or interpolated onto a rectangular lattice prior to reconstruction. The efficiency of the fast Fourier transform provides a tremendous computational advantage with the result that maximum entropy reconstruction on a moderately large grid (64 x 64) is practicable at reasonable cost. Several comparative examples are shown, and some of the limitations of the present theory of maximum entropy imaging are identified

  16. A Review of Hemolysis Prediction Models for Computational Fluid Dynamics.

    Science.gov (United States)

    Yu, Hai; Engel, Sebastian; Janiga, Gábor; Thévenin, Dominique

    2017-07-01

    Flow-induced hemolysis is a crucial issue for many biomedical applications; in particular, it is an essential issue for the development of blood-transporting devices such as left ventricular assist devices, and other types of blood pumps. In order to estimate red blood cell (RBC) damage in blood flows, many models have been proposed in the past. Most models have been validated by their respective authors. However, the accuracy and the validity range of these models remains unclear. In this work, the most established hemolysis models compatible with computational fluid dynamics of full-scale devices are described and assessed by comparing two selected reference experiments: a simple rheometric flow and a more complex hemodialytic flow through a needle. The quantitative comparisons show very large deviations concerning hemolysis predictions, depending on the model and model parameter. In light of the current results, two simple power-law models deliver the best compromise between computational efficiency and obtained accuracy. Finally, hemolysis has been computed in an axial blood pump. The reconstructed geometry of a HeartMate II shows that hemolysis occurs mainly at the tip and leading edge of the rotor blades, as well as at the leading edge of the diffusor vanes. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. Cepstrum analysis and applications to computational fluid dynamic solutions

    Science.gov (United States)

    Meadows, Kristine R.

    1990-04-01

    A novel approach to the problem of spurious reflections introduced by artificial boundary conditions in computational fluid dynamic (CFD) solutions is proposed. Instead of attempting to derive non-reflecting boundary conditions, the approach is to accept the fact that spurious reflections occur, but to remove these reflections with cepstrum analysis, a signal processing technique which has been successfully used to remove echoes from experimental data. First, the theory of the cepstrum method is presented. This includes presentation of two types of cepstra: The Power Cepstrum and the Complex Cepstrum. The definitions of the cepstrum methods are applied theoretically and numerically to the analytical solution of sinusoidal plane wave propagation in a duct. One-D and 3-D time dependent solutions to the Euler equations are computed, and hard-wall conditions are prescribed at the numerical boundaries. The cepstrum method is applied, and the reflections from the boundaries are removed from the solutions. One-D and 3-D solutions are computed with so called nonreflecting boundary conditions, and these solutions are compared to those obtained by prescribing hard wall conditions and processing with the cepstrum.

  18. Computational fluid dynamics benchmark dataset of airflow in tracheas

    Directory of Open Access Journals (Sweden)

    A.J. Bates

    2017-02-01

    Full Text Available Computational Fluid Dynamics (CFD is fast becoming a useful tool to aid clinicians in pre-surgical planning through the ability to provide information that could otherwise be extremely difficult if not impossible to obtain. However, in order to provide clinically relevant metrics, the accuracy of the computational method must be sufficiently high. There are many alternative methods employed in the process of performing CFD simulations within the airways, including different segmentation and meshing strategies, as well as alternative approaches to solving the Navier–Stokes equations. However, as in vivo validation of the simulated flow patterns within the airways is not possible, little exists in the way of validation of the various simulation techniques. The data presented here consists of very highly resolved flow data. The degree of resolution is compared to the highest necessary resolutions of the Kolmogorov length and time scales. Therefore this data is ideally suited to act as a benchmark case to which cheaper computational methods may be compared. A dataset and solution setup for one such more efficient method, large eddy simulation (LES, is also presented.

  19. Energy Spectra of Vortex Distributions in Two-Dimensional Quantum Turbulence

    Directory of Open Access Journals (Sweden)

    Ashton S. Bradley

    2012-10-01

    Full Text Available We theoretically explore key concepts of two-dimensional turbulence in a homogeneous compressible superfluid described by a dissipative two-dimensional Gross-Pitaeveskii equation. Such a fluid supports quantized vortices that have a size characterized by the healing length ξ. We show that, for the divergence-free portion of the superfluid velocity field, the kinetic-energy spectrum over wave number k may be decomposed into an ultraviolet regime (k≫ξ^{-1} having a universal k^{-3} scaling arising from the vortex core structure, and an infrared regime (k≪ξ^{-1} with a spectrum that arises purely from the configuration of the vortices. The Novikov power-law distribution of intervortex distances with exponent -1/3 for vortices of the same sign of circulation leads to an infrared kinetic-energy spectrum with a Kolmogorov k^{-5/3} power law, which is consistent with the existence of an inertial range. The presence of these k^{-3} and k^{-5/3} power laws, together with the constraint of continuity at the smallest configurational scale k≈ξ^{-1}, allows us to derive a new analytical expression for the Kolmogorov constant that we test against a numerical simulation of a forced homogeneous, compressible, two-dimensional superfluid. The numerical simulation corroborates our analysis of the spectral features of the kinetic-energy distribution, once we introduce the concept of a clustered fraction consisting of the fraction of vortices that have the same sign of circulation as their nearest neighboring vortices. Our analysis presents a new approach to understanding two-dimensional quantum turbulence and interpreting similarities and differences with classical two-dimensional turbulence, and suggests new methods to characterize vortex turbulence in two-dimensional quantum fluids via vortex position and circulation measurements.

  20. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rokkam, Ram [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  1. Solitary wave solutions of two-dimensional nonlinear Kadomtsev ...

    Indian Academy of Sciences (India)

    Aly R Seadawy

    2017-09-13

    Sep 13, 2017 ... [13] M M Lin and W S Duan, Chaos, Solitons and Fractals. 33, 1189 (2007). [14] S Singh and T Honzawa, Phys. Fluids B 5, 2093 (1993). [15] A R Seadawy, Eur. Phys. J. Plus, 130 (2015). [16] T S Gill, N S Saini and H Kaur, Chaos, Solitons and. Fractals 28, 1106 (2006). [17] A R Seadawy, Comput. Math.

  2. Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Rong [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid FB reactors with mono-dispersed, non-cohesive solids. This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed polymerization reactors is given, and a simplified two-site kinetic mechanism are discussed. Some basic theories used in our work are given in detail in Chapter 3. First, the governing equations and other constitutive equations for the multi-fluid model are summarized, and the kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of DQMOM for the population balance equation is given as the second section. In this section

  3. Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade

    Directory of Open Access Journals (Sweden)

    Osama N. Alshroof

    2012-01-01

    Full Text Available This study presents the numerical fluid-structure interaction (FSI modelling of a vibrating turbine blade using the commercial software ANSYS-12.1. The study has two major aims: (i discussion of the current state of the art of modelling FSI in gas turbine engines and (ii development of a “tuned” one-way FSI model of a vibrating turbine blade to investigate the correlation between the pressure at the turbine casing surface and the vibrating blade motion. Firstly, the feasibility of the complete FSI coupled two-way, three-dimensional modelling of a turbine blade undergoing vibration using current commercial software is discussed. Various modelling simplifications, which reduce the full coupling between the fluid and structural domains, are then presented. The one-way FSI model of the vibrating turbine blade is introduced, which has the computational efficiency of a moving boundary CFD model. This one-way FSI model includes the corrected motion of the vibrating turbine blade under given engine flow conditions. This one-way FSI model is used to interrogate the pressure around a vibrating gas turbine blade. The results obtained show that the pressure distribution at the casing surface does not differ significantly, in its general form, from the pressure at the vibrating rotor blade tip.

  4. Computational fluid dynamics (CFD) studies of a miniaturized dissolution system.

    Science.gov (United States)

    Frenning, G; Ahnfelt, E; Sjögren, E; Lennernäs, H

    2017-04-15

    Dissolution testing is an important tool that has applications ranging from fundamental studies of drug-release mechanisms to quality control of the final product. The rate of release of the drug from the delivery system is known to be affected by hydrodynamics. In this study we used computational fluid dynamics to simulate and investigate the hydrodynamics in a novel miniaturized dissolution method for parenteral formulations. The dissolution method is based on a rotating disc system and uses a rotating sample reservoir which is separated from the remaining dissolution medium by a nylon screen. Sample reservoirs of two sizes were investigated (SR6 and SR8) and the hydrodynamic studies were performed at rotation rates of 100, 200 and 400rpm. The overall fluid flow was similar for all investigated cases, with a lateral upward spiraling motion and central downward motion in the form of a vortex to and through the screen. The simulations indicated that the exchange of dissolution medium between the sample reservoir and the remaining release medium was rapid for typical screens, for which almost complete mixing would be expected to occur within less than one minute at 400rpm. The local hydrodynamic conditions in the sample reservoirs depended on their size; SR8 appeared to be relatively more affected than SR6 by the resistance to liquid flow resulting from the screen. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Review of computational fluid dynamics applications in biotechnology processes.

    Science.gov (United States)

    Sharma, C; Malhotra, D; Rathore, A S

    2011-01-01

    Computational fluid dynamics (CFD) is well established as a tool of choice for solving problems that involve one or more of the following phenomena: flow of fluids, heat transfer,mass transfer, and chemical reaction. Unit operations that are commonly utilized in biotechnology processes are often complex and as such would greatly benefit from application of CFD. The thirst for deeper process and product understanding that has arisen out of initiatives such as quality by design provides further impetus toward usefulness of CFD for problems that may otherwise require extensive experimentation. Not surprisingly, there has been increasing interest in applying CFD toward a variety of applications in biotechnology processing in the last decade. In this article, we will review applications in the major unit operations involved with processing of biotechnology products. These include fermentation,centrifugation, chromatography, ultrafiltration, microfiltration, and freeze drying. We feel that the future applications of CFD in biotechnology processing will focus on establishing CFD as a tool of choice for providing process understanding that can be then used to guide more efficient and effective experimentation. This article puts special emphasis on the work done in the last 10 years. © 2011 American Institute of Chemical Engineers

  6. Computational and analytical methods in nonlinear fluid dynamics

    Science.gov (United States)

    Walker, James

    1993-09-01

    The central focus of the program was on the application and development of modern analytical and computational methods to the solution of nonlinear problems in fluid dynamics and reactive gas dynamics. The research was carried out within the Division of Engineering Mathematics in the Department of Mechanical Engineering and Mechanics and principally involved Professors P.A. Blythe, E. Varley and J.D.A. Walker. In addition. the program involved various international collaborations. Professor Blythe completed work on reactive gas dynamics with Professor D. Crighton FRS of Cambridge University in the United Kingdom. Professor Walker and his students carried out joint work with Professor F.T. Smith, of University College London, on various problems in unsteady flow and turbulent boundary layers.

  7. Using computational fluid dynamics to characterize and improve bioreactor performance.

    Science.gov (United States)

    Kelly, William J

    2008-04-01

    CFD (computational fluid dynamics) has been used to model upstream bioprocessing steps such as fermentation and homogenization. The focus of these studies has oftentimes been to characterize single-phase (liquid) flow and hydrodynamic shear. In the actual bioprocessing operations, however, there are at least two phases (cells and liquid) present. In the bioreactor, the gas bubbles constitute a third phase. More recent CFD models have considered the momentum and mass transfer that occurs between the phases. This review summarizes studies from the biochemical and biomedical literature relating to the use of CFD to model the performance of a variety of bioreactor types. Particular emphasis will be placed on describing current methods for handling multi-phase flow involving animal cells and/or gas bubbles.

  8. Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models; FINAL

    International Nuclear Information System (INIS)

    Cook, Chris B; Richmond, Marshall C

    2001-01-01

    This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields

  9. Computational Fluid Dynamics Analysis of an Evaporative Cooling System

    Directory of Open Access Journals (Sweden)

    Kapilan N.

    2016-11-01

    Full Text Available The use of chlorofluorocarbon based refrigerants in the air-conditioning system increases the global warming and causes the climate change. The climate change is expected to present a number of challenges for the built environment and an evaporative cooling system is one of the simplest and environmentally friendly cooling system. The evaporative cooling system is most widely used in summer and in rural and urban areas of India for human comfort. In evaporative cooling system, the addition of water into air reduces the temperature of the air as the energy needed to evaporate the water is taken from the air. Computational fluid dynamics is a numerical analysis and was used to analyse the evaporative cooling system. The CFD results are matches with the experimental results.

  10. Simulating Smoke Filling in Big Halls by Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    W. K. Chow

    2011-01-01

    Full Text Available Many tall halls of big space volume were built and, to be built in many construction projects in the Far East, particularly Mainland China, Hong Kong, and Taiwan. Smoke is identified to be the key hazard to handle. Consequently, smoke exhaust systems are specified in the fire code in those areas. An update on applying Computational Fluid Dynamics (CFD in smoke exhaust design will be presented in this paper. Key points to note in CFD simulations on smoke filling due to a fire in a big hall will be discussed. Mathematical aspects concerning of discretization of partial differential equations and algorithms for solving the velocity-pressure linked equations are briefly outlined. Results predicted by CFD with different free boundary conditions are compared with those on room fire tests. Standards on grid size, relaxation factors, convergence criteria, and false diffusion should be set up for numerical experiments with CFD.

  11. Modeling centrifugal cell washers using computational fluid dynamics.

    Science.gov (United States)

    Kellet, Beth E; Han, Binbing; Dandy, David S; Wickramasinghe, S Ranil

    2004-11-01

    Reinfusion of shed blood during surgery could avoid the need for blood transfusions. Prior to reinfusion of the red blood cells, the shed blood must be washed in order to remove leukocytes, platelets, and other contaminants. Further, the hematocrit of the washed blood must be increased. The feasibility of using computational fluid dynamics (CFD) to guide the design of better centrifuges for processing shed blood is explored here. The velocity field within a centrifuge bowl and the rate of protein removal from the shed blood has been studied. The results obtained indicate that CFD could help screen preliminary centrifuge bowl designs, thus reducing the number of initial experimental tests required when developing new centrifuge bowls. Although the focus of this work is on washing shed blood, the methods developed here are applicable to the design of centrifuge bowls for other blood-processing applications.

  12. Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Christopher B.; Richmond, Marshall C.

    2001-05-01

    This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.

  13. On Computational Fluid Dynamics Tools in Architectural Design

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Hougaard, Mads; Stærdahl, Jesper Winther

    engineering computational fluid dynamics (CFD) simulation program ANSYS CFX and a CFD based representative program RealFlow are investigated. These two programs represent two types of CFD based tools available for use during phases of an architectural design process. However, as outlined in two case studies...... the durability of the two program types for simulation of flow is strongly depended of the purpose. One case presents results obtained with the programs with respect to the accuracy and physical behaviour of the flow. Another case deals with wind flow around a complex building design, the roof of the new Utzon...... Centre in Aalborg, Denmark. The obtained results show that detailed and accurate flow predictions can be obtained using a simulation tool like ANSYS CFX. On the other hand RealFlow provides satisfactory flow results for evaluation of a proposed building shape in an early phase of a design process...

  14. Uncertainty quantification in computational fluid dynamics and aircraft engines

    CERN Document Server

    Montomoli, Francesco; D'Ammaro, Antonio; Massini, Michela; Salvadori, Simone

    2015-01-01

    This book introduces novel design techniques developed to increase the safety of aircraft engines. The authors demonstrate how the application of uncertainty methods can overcome problems in the accurate prediction of engine lift, caused by manufacturing error. This in turn ameliorates the difficulty of achieving required safety margins imposed by limits in current design and manufacturing methods. This text shows that even state-of-the-art computational fluid dynamics (CFD) are not able to predict the same performance measured in experiments; CFD methods assume idealised geometries but ideal geometries do not exist, cannot be manufactured and their performance differs from real-world ones. By applying geometrical variations of a few microns, the agreement with experiments improves dramatically, but unfortunately the manufacturing errors in engines or in experiments are unknown. In order to overcome this limitation, uncertainty quantification considers the probability density functions of manufacturing errors...

  15. Helicopter fuselage drag - combined computational fluid dynamics and experimental studies

    Science.gov (United States)

    Batrakov, A.; Kusyumov, A.; Mikhailov, S.; Pakhov, V.; Sungatullin, A.; Valeev, M.; Zherekhov, V.; Barakos, G.

    2015-06-01

    In this paper, wind tunnel experiments are combined with Computational Fluid Dynamics (CFD) aiming to analyze the aerodynamics of realistic fuselage configurations. A development model of the ANSAT aircraft and an early model of the AKTAI light helicopter were employed. Both models were tested at the subsonic wind tunnel of KNRTU-KAI for a range of Reynolds numbers and pitch and yaw angles. The force balance measurements were complemented by particle image velocimetry (PIV) investigations for the cases where the experimental force measurements showed substantial unsteadiness. The CFD results were found to be in fair agreement with the test data and revealed some flow separation at the rear of the fuselages. Once confidence on the CFD method was established, further modifications were introduced to the ANSAT-like fuselage model to demonstrate drag reduction via small shape changes.

  16. Mapping flow distortion on oceanographic platforms using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    N. O'Sullivan

    2013-10-01

    Full Text Available Wind speed measurements over the ocean on ships or buoys are affected by flow distortion from the platform and by the anemometer itself. This can lead to errors in direct measurements and the derived parametrisations. Here we computational fluid dynamics (CFD to simulate the errors in wind speed measurements caused by flow distortion on the RV Celtic Explorer. Numerical measurements were obtained from the finite-volume CFD code OpenFOAM, which was used to simulate the velocity fields. This was done over a range of orientations in the test domain from −60 to +60° in increments of 10°. The simulation was also set up for a range of velocities, ranging from 5 to 25 m s−1 in increments of 0.5 m s−1. The numerical analysis showed close agreement to experimental measurements.

  17. Study of blast wave overpressures using the computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    M. L. COSTA NETO

    Full Text Available ABSTRACT The threats of bomb attacks by criminal organizations and accidental events involving chemical explosives are a danger to the people and buildings. Due the severity of these issues and the need of data required for a safety design, more research is required about explosions and shock waves. This paper presents an assessment of blast wave overpressures using a computational fluid dynamics software. Analyses of phenomena as reflection of shock waves and channeling effects were done and a comparison between numerical results and analytical predictions has been executed, based on the simulation on several models. The results suggest that the common analytical predictions aren’t accurate enough for an overpressure analysis in small stand-off distances and that poorly designed buildings may increase the shock wave overpressures due multiple blast wave reflections, increasing the destructive potential of the explosions.

  18. Two Dimensional Heat Transfer around Penetrations in Multilayer Insulation

    Science.gov (United States)

    Johnson, Wesley L.; Kelly, Andrew O.; Jumper, Kevin M.

    2012-01-01

    The objective of this task was to quantify thermal losses involving integrating MLI into real life situations. Testing specifically focused on the effects of penetrations (including structural attachments, electrical conduit/feedthroughs, and fluid lines) through MLI. While there have been attempts at quantifying these losses both analytically and experimentally, none have included a thorough investigation of the methods and materials that could be used in such applications. To attempt to quantify the excess heat load coming into the system due to the integration losses, a calorimeter was designed to study two dimensional heat transfer through penetrated MLI. The test matrix was designed to take as many variables into account as was possible with the limited test duration and system size. The parameters varied were the attachment mechanism, the buffer material (for buffer attachment mechanisms only), the thickness of the buffer, and the penetration material. The work done under this task is an attempt to measure the parasitic heat loads and affected insulation areas produced by system integration, to model the parasitic loads, and from the model produce engineering equations to allow for the determination of parasitic heat loads in future applications. The methods of integration investigated were no integration, using a buffer to thermally isolate the strut from the MLI, and temperature matching the MLI on the strut. Several materials were investigated as a buffer material including aerogel blankets, aerogel bead packages, cryolite, and even an evacuated vacuum space (in essence a no buffer condition).

  19. Note: Interpolation for evaluation of a two-dimensional spatial profile of plasma densities at low gas pressures

    International Nuclear Information System (INIS)

    Oh, Se-Jin; Kim, Young-Chul; Chung, Chin-Wook

    2011-01-01

    An interpolation algorithm for the evaluation of the spatial profile of plasma densities in a cylindrical reactor was developed for low gas pressures. The algorithm is based on a collisionless two-dimensional fluid model. Contrary to the collisional case, i.e., diffusion fluid model, the fitting algorithm depends on the aspect ratio of the cylindrical reactor. The spatial density profile of the collisionless fitting algorithm is presented in two-dimensional images and compared with the results of the diffusion fluid model.

  20. Two-dimensional photonic crystal accelerator structures

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2003-10-01

    Full Text Available Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric structure, likely a necessary feature in any optical accelerator. We explore computationally a class of photonic crystal structures with translational symmetry in a direction transverse to the electron beam. We demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then explore how accelerator parameters vary as the geometry of the structure is changed and consider trade-offs inherent in the design of an accelerator of this type.

  1. Hall conductivity for two dimensional magnetic systems

    International Nuclear Information System (INIS)

    Desbois, J.; Ouvry, S.; Texier, C.

    1996-01-01

    A Kubo inspired formalism is proposed to compute the longitudinal and transverse dynamical conductivities of an electron in a plane (or a gas of electrons at zero temperature) coupled to the potential vector of an external local magnetic field, with the additional coupling of the spin degree of freedom of the electron to the local magnetic field (Pauli Hamiltonian). As an example, the homogeneous magnetic field Hall conductivity is rederived. The case of the vortex at the origin is worked out in detail. A perturbative analysis is proposed for the conductivity in the random magnetic impurity problem (Poissonian vortices in the plane). (author)

  2. Flow of quasi-two dimensional water in graphene channels

    Science.gov (United States)

    Fang, Chao; Wu, Xihui; Yang, Fengchang; Qiao, Rui

    2018-02-01

    When liquids confined in slit channels approach a monolayer, they become two-dimensional (2D) fluids. Using molecular dynamics simulations, we study the flow of quasi-2D water confined in slit channels featuring pristine graphene walls and graphene walls with hydroxyl groups. We focus on to what extent the flow of quasi-2D water can be described using classical hydrodynamics and what are the effective transport properties of the water and the channel. First, the in-plane shearing of quasi-2D water confined between pristine graphene can be described using the classical hydrodynamic equation, and the viscosity of the water is ˜50% higher than that of the bulk water in the channel studied here. Second, the flow of quasi-2D water around a single hydroxyl group is perturbed at a position of tens of cluster radius from its center, as expected for low Reynolds number flows. Even though water is not pinned at the edge of the hydroxyl group, the hydroxyl group screens the flow greatly, with a single, isolated hydroxyl group rendering drag similar to ˜90 nm2 pristine graphene walls. Finally, the flow of quasi-2D water through graphene channels featuring randomly distributed hydroxyl groups resembles the fluid flow through porous media. The effective friction factor of the channel increases linearly with the hydroxyl groups' area density up to 0.5 nm-2 but increases nonlinearly at higher densities. The effective friction factor of the channel can be fitted to a modified Carman equation at least up to a hydroxyl area density of 2.0 nm-2. These findings help understand the liquid transport in 2D material-based nanochannels for applications including desalination.

  3. Numerical computation of fluid flow in different nonferrous metallurgical reactors

    International Nuclear Information System (INIS)

    Lackner, A.

    1996-10-01

    Heat, mass and fluid flow phenomena in metallurgical reactor systems such as smelting cyclones or electrolytic cells are complex and intricately linked through the governing equations of fluid flow, chemical reaction kinetics and chemical thermodynamics. The challenges for the representation of flow phenomena in such reactors as well as the transfers of these concepts to non-specialist modelers (e.g. plant operators and management personnel) can be met through scientific flow visualization techniques. In the first example the fluid flow of the gas phase and of concentrate particles in a smelting cyclone for copper production are calculated three dimensionally. The effect of design parameters (length and diameter of reactor, concentrate feeding tangentially or from the top, ..) and operating conditions are investigated. Single particle traces show, how to increase particle retention time before the particles reach the liquid film flowing down the cyclone wall. Cyclone separators are widely used in the metallurgical and chemical industry for collection of large quantities of dust. Most of the empirical models, which today are applied for the design, are lacking in being valid in the high temperature region. Therefore the numerical prediction of the collection efficiency of dust particles is done. The particle behavior close to the wall is considered by applying a particle restitution model, which calculates individual particle restitution coefficients as functions of impact velocity and impact angle. The effect of design parameters and operating are studied. Moreover, the fluid flow inside a copper refining electrolysis cell is modeled. The simulation is based on density variations in the boundary layer at the electrode surface. Density and thickness of the boundary layer are compared to measurements in a parametric study. The actual inhibitor concentration in the cell is calculated, too. Moreover, a two-phase flow approach is developed to simulate the behavior of

  4. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine

    2004-01-01

    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...

  5. Optimizing separations in online comprehensive two-dimensional liquid chromatography

    NARCIS (Netherlands)

    Pirok, Bob W.J.; Gargano, Andrea F.G.; Schoenmakers, Peter J.

    2018-01-01

    Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular

  6. Beginning Introductory Physics with Two-Dimensional Motion

    Science.gov (United States)

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  7. Two-dimensional black holes and non-commutative spaces

    International Nuclear Information System (INIS)

    Sadeghi, J.

    2008-01-01

    We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon

  8. Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade Cascade

    Science.gov (United States)

    2016-11-01

    ARL-TR-7871 ● NOV 2016 US Army Research Laboratory Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade...ARL-TR-7871 ● NOV 2016 US Army Research Laboratory Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade Cascade by Luis...COVERED (From - To) 1 June–31 August 2016 4. TITLE AND SUBTITLE Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade Cascade 5a

  9. Computational Fluid Dynamics (CFD) Simulations of a Finned Projectile with Microflaps for Flow Control

    Science.gov (United States)

    2016-04-01

    ARL-TR-7660 ● APR 2016 US Army Research Laboratory Computational Fluid Dynamics (CFD) Simulations of a Finned Projectile with... Computational Fluid Dynamics (CFD) Simulations of a Finned Projectile with Microflaps for Flow Control by Jubaraj Sahu Weapons and Materials Research...TITLE AND SUBTITLE Computational Fluid Dynamics (CFD) Simulations of a Finned Projectile with Microflaps for Flow Control 5a. CONTRACT NUMBER 5b

  10. Two-dimensional disruption thermal analysis code DREAM

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Kobayashi, Takeshi; Seki, Masahiro.

    1988-08-01

    When a plasma disruption takes place in a tokamak type fusion reactor, plasma facing components such as first wall and divertor/limiter are subjected to an intense heat load with very high heat flux and short duration. At the surface of the wall, temperature rapidly rises, and melting and evaporation occurs, it causes reduction of wall thickness and crack initiation/propagation. As lifetime of the components is significantly affected by them, the transient analysis in consideration of phase changes (melting/evaporation) and radiation heat loss is required in the design of these components. This paper describes the computer code DREAM developed to perform the two-dimensional transient thermal analysis that takes phase changes and radiation into account. The input and output of the code and a sample analysis on a disruption simulation experiment are also reported. The user's input manual is added as an appendix. The profiles and time variations of temperature, and melting and evaporated thicknesses of the material subjected to intense heat load can be obtained, using this computer code. This code also gives the temperature data for elastoplastic analysis with FEM structural analysis codes (ADINA, MARC, etc.) to evaluate the thermal stress and crack propagation behavior within the wall materials. (author)

  11. Parallel processing of two-dimensional Sn transport calculations

    International Nuclear Information System (INIS)

    Uematsu, M.

    1997-01-01

    A parallel processing method for the two-dimensional S n transport code DOT3.5 has been developed to achieve a drastic reduction in computation time. In the proposed method, parallelization is achieved with angular domain decomposition and/or space domain decomposition. The calculational speed of parallel processing by angular domain decomposition is largely influenced by frequent communications between processing elements. To assess parallelization efficiency, sample problems with up to 32 x 32 spatial meshes were solved with a Sun workstation using the PVM message-passing library. As a result, parallel calculation using 16 processing elements, for example, was found to be nine times as fast as that with one processing element. As for parallel processing by geometry segmentation, the influence of processing element communications on computation time is small; however, discontinuity at the segment boundary degrades convergence speed. To accelerate the convergence, an alternate sweep of angular flux in conjunction with space domain decomposition and a two-step rescaling method consisting of segmentwise rescaling and ordinary pointwise rescaling have been developed. By applying the developed method, the number of iterations needed to obtain a converged flux solution was reduced by a factor of 2. As a result, parallel calculation using 16 processing elements was found to be 5.98 times as fast as the original DOT3.5 calculation

  12. Axial-Flow Turbine Rotor Discharge-Flow Overexpansion and Limit-Loading Condition, Part I: Computational Fluid Dynamics (CFD) Investigation

    Science.gov (United States)

    Chen, Shu-Cheng S.

    2017-01-01

    A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.

  13. Compressible Kolmogorov flow in strongly coupled dusty plasma using molecular dynamics and computational fluid dynamics. II. A comparative study

    Science.gov (United States)

    Gupta, Akanksha; Ganesh, Rajaraman; Joy, Ashwin

    2018-01-01

    In this paper, we perform comparative studies of compressible Kolmogorov flow in the two-dimensional strongly coupled dusty plasma by means of atomistic or molecular dynamics (MD) and continuum or computational fluid dynamics (CFD) methods. Recently, using MD simulation, generation of molecular shear heat at the atomistic level is shown to reduce the average coupling strength of the system and destruct the vortical structures. To suppress the molecular heat, a novel method of a thermostat, namely, the configurational thermostat is introduced by which the microscale heat generated by the shear flow has shown to be thermostatted out efficiently without compromising the large scale vortex dynamics. While using a configurational thermostat, it has been found that the growth rate obtained from both the studies is the same with the marginal difference. To make the comparison with the continuum fluid model, we perform the same study using the generalised hydrodynamic model, wherein molecular shear heating phenomena is completely absent, however, viscous dissipation is there at the macroscale level. For this purpose, an Advanced Generalised SPECTral Code has been developed to study the linear and nonlinear aspects of the Kolmogorov flow in the incompressible and compressible limit for viscoelastic fluids. All the phenomenological parameters used in CFD simulations have been calculated from MD simulations. Code is benchmarked against the eigen value solver in the linear regime. Linear growth-rates calculated from the phenomenological fluid model is found to be close to that obtained from MD simulation for the same set of input parameters. The transition from laminar to turbulent flow has been found at a critical value of Reynolds number Rc in both the macroscopic (CFD) and microscopic (MD) simulation. Rc in MD is smaller than the one obtained by CFD simulation. In the nonlinear regime of CFD, the mode becomes unstable and vortex formation happens earlier than in MD. The

  14. An Automated High Aspect Ratio Mesher for Computational Fluid Dynamics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Computational fluid dynamics (CFD) simulations are routinely used while designing, analyzing, and optimizing air- and spacecraft. An important component of CFD...

  15. Prediction of Projectile Performance, Stability, and Free-Flight Motion Using Computational Fluid Dynamics

    National Research Council Canada - National Science Library

    Weinacht, Paul

    2003-01-01

    ... that are derived solely from computational fluid dynamics (CFD). As a demonstration of the capability, this report presents results for a family of axisymmetric projectiles in supersonic flight...

  16. An Automated High Aspect Ratio Mesher for Computational Fluid Dynamics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Computational fluid dynamics (CFD) simulations are routinely used while designing, analyzing, and optimizing air- and spacecraft. An important component of CFD...

  17. High-order computational fluid dynamics tools for aircraft design.

    Science.gov (United States)

    Wang, Z J

    2014-08-13

    Most forecasts predict an annual airline traffic growth rate between 4.5 and 5% in the foreseeable future. To sustain that growth, the environmental impact of aircraft cannot be ignored. Future aircraft must have much better fuel economy, dramatically less greenhouse gas emissions and noise, in addition to better performance. Many technical breakthroughs must take place to achieve the aggressive environmental goals set up by governments in North America and Europe. One of these breakthroughs will be physics-based, highly accurate and efficient computational fluid dynamics and aeroacoustics tools capable of predicting complex flows over the entire flight envelope and through an aircraft engine, and computing aircraft noise. Some of these flows are dominated by unsteady vortices of disparate scales, often highly turbulent, and they call for higher-order methods. As these tools will be integral components of a multi-disciplinary optimization environment, they must be efficient to impact design. Ultimately, the accuracy, efficiency, robustness, scalability and geometric flexibility will determine which methods will be adopted in the design process. This article explores these aspects and identifies pacing items. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. Class of reconstructed discontinuous Galerkin methods in computational fluid dynamics

    International Nuclear Information System (INIS)

    Luo, Hong; Xia, Yidong; Nourgaliev, Robert

    2011-01-01

    A class of reconstructed discontinuous Galerkin (DG) methods is presented to solve compressible flow problems on arbitrary grids. The idea is to combine the efficiency of the reconstruction methods in finite volume methods and the accuracy of the DG methods to obtain a better numerical algorithm in computational fluid dynamics. The beauty of the resulting reconstructed discontinuous Galerkin (RDG) methods is that they provide a unified formulation for both finite volume and DG methods, and contain both classical finite volume and standard DG methods as two special cases of the RDG methods, and thus allow for a direct efficiency comparison. Both Green-Gauss and least-squares reconstruction methods and a least-squares recovery method are presented to obtain a quadratic polynomial representation of the underlying linear discontinuous Galerkin solution on each cell via a so-called in-cell reconstruction process. The devised in-cell reconstruction is aimed to augment the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution. These three reconstructed discontinuous Galerkin methods are used to compute a variety of compressible flow problems on arbitrary meshes to assess their accuracy. The numerical experiments demonstrate that all three reconstructed discontinuous Galerkin methods can significantly improve the accuracy of the underlying second-order DG method, although the least-squares reconstructed DG method provides the best performance in terms of both accuracy, efficiency, and robustness. (author)

  19. Algorithms for computational fluid dynamics n parallel processors

    International Nuclear Information System (INIS)

    Van de Velde, E.F.

    1986-01-01

    A study of parallel algorithms for the numerical solution of partial differential equations arising in computational fluid dynamics is presented. The actual implementation on parallel processors of shared and nonshared memory design is discussed. The performance of these algorithms is analyzed in terms of machine efficiency, communication time, bottlenecks and software development costs. For elliptic equations, a parallel preconditioned conjugate gradient method is described, which has been used to solve pressure equations discretized with high order finite elements on irregular grids. A parallel full multigrid method and a parallel fast Poisson solver are also presented. Hyperbolic conservation laws were discretized with parallel versions of finite difference methods like the Lax-Wendroff scheme and with the Random Choice method. Techniques are developed for comparing the behavior of an algorithm on different architectures as a function of problem size and local computational effort. Effective use of these advanced architecture machines requires the use of machine dependent programming. It is shown that the portability problems can be minimized by introducing high level operations on vectors and matrices structured into program libraries

  20. A two-dimensional two-phase mass transport model for direct methanol fuel cells adopting a modified agglomerate approach

    Science.gov (United States)

    Miao, Zheng; He, Ya-Ling; Li, Xiang-Lin; Zou, Jin-Qiang

    A two-dimensional two-phase mass transport model for liquid-feed direct methanol fuel cells (DMFCs) is presented in this paper. The fluid flow and mass transport across the membrane electrode assembly (MEA) is formulated based on the classical multiphase flow theory in the porous media. The modeling of mass transport in the catalyst layers (CLs) and membrane is given more attentions. The effect of the two-dimensional migration of protons in the electrolyte phase on the liquid flow behavior is considered. Water and methanol crossovers through the membrane are implicitly calculated in the governing equations of momentum and methanol concentration. A modified agglomerate model is developed to characterize the microstructure of the CLs. A self-written computer code is used to solve the inherently coupled differential governing equations. Then this model is applied to investigate the mechanisms of species transport and the distributions of the species concentrations, overpotential and the electrochemical reaction rates in CLs. The effects of radius and overlapping angle of agglomerates on cell performance are also explored in this work.

  1. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

  2. Experimental measurement of the aerodynamic charateristics of two-dimensional airfoils for an unmanned aerial vehicle

    Directory of Open Access Journals (Sweden)

    Nožička Jiří

    2012-04-01

    Full Text Available This paper is part of the development of an airfoil for an unmanned aerial vehicle (UAV with internal propulsion system; the investigation involves the analysis of the aerodynamic performance for the gliding condition of two-dimensional airfoil models which have been tested. This development is based on the modification of a selected airfoil from the NACA four digits family. The modification of this base airfoil was made in order to create a blowing outlet with the shape of a step on the suction surface since the UAV will have an internal propulsion system. This analysis involved obtaining the lift, drag and pitching moment coefficients experimentally for the situation where there is not flow through the blowing outlet, called the no blowing condition by means of wind tunnel tests. The methodology to obtain the forces experimentally was through an aerodynamic wire balance. Obtained results were compared with numerical results by means of computational fluid dynamics (CFD from references and found in very good agreement. Finally, a selection of the airfoil with the best aerodynamic performance is done and proposed for further analysis including the blowing condition.

  3. Experimental measurement of the aerodynamic charateristics of two-dimensional airfoils for an unmanned aerial vehicle

    Science.gov (United States)

    Velazquez, Luis; Nožička, Jiří; Vavřín, Jan

    2012-04-01

    This paper is part of the development of an airfoil for an unmanned aerial vehicle (UAV) with internal propulsion system; the investigation involves the analysis of the aerodynamic performance for the gliding condition of two-dimensional airfoil models which have been tested. This development is based on the modification of a selected airfoil from the NACA four digits family. The modification of this base airfoil was made in order to create a blowing outlet with the shape of a step on the suction surface since the UAV will have an internal propulsion system. This analysis involved obtaining the lift, drag and pitching moment coefficients experimentally for the situation where there is not flow through the blowing outlet, called the no blowing condition by means of wind tunnel tests. The methodology to obtain the forces experimentally was through an aerodynamic wire balance. Obtained results were compared with numerical results by means of computational fluid dynamics (CFD) from references and found in very good agreement. Finally, a selection of the airfoil with the best aerodynamic performance is done and proposed for further analysis including the blowing condition.

  4. Curved low order angular elements in two-dimensional neutron transport problems

    International Nuclear Information System (INIS)

    Silvennoinen, P.; Tuominen, J.

    1974-01-01

    A two-dimensional finite element scheme is presented. The angular discretization is based on curved rather than rectangular elements. Numerical computations performed indicate improved accuracy as compared to rectangular methods of a same order. No ray effects are found even in low order results. In addition to linear trial functions the paper is concerned with higher degree polynomials. (author)

  5. Status for the two-dimensional Navier-Stokes solver EllipSys2D

    DEFF Research Database (Denmark)

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, J.

    2001-01-01

    This report sets up an evaluation of the two-dimensional Navier-Stokes solver EllipSys2D in its present state. This code is used for blade aerodynamics simulations in the Aeroelastic Design group at Risø. Two airfoils are investigated by computing theflow at several angles of attack ranging from...

  6. Two-dimensional beam-profile monitor using the Reticon MC510A array camera

    International Nuclear Information System (INIS)

    Gottschalk, B.

    1981-08-01

    A quantitative two-dimensional beam profile may be obtained from a scintillator viewed by a Reticon camera which uses a 32 x 32 array of photodiodes as its sensing element. In this note, CAMAC-oriented data acquisition electronics which allow one either to transmit the profile to a computer, or to use the monitor in a stand-alone mode are described

  7. Border-crossing model for the diffusive coarsening of two-dimensional and quasi-two-dimensional wet foams

    Science.gov (United States)

    Schimming, C. D.; Durian, D. J.

    2017-09-01

    For dry foams, the transport of gas from small high-pressure bubbles to large low-pressure bubbles is dominated by diffusion across the thin soap films separating neighboring bubbles. For wetter foams, the film areas become smaller as the Plateau borders and vertices inflate with liquid. So-called "border-blocking" models can explain some features of wet-foam coarsening based on the presumption that the inflated borders totally block the gas flux; however, this approximation dramatically fails in the wet or unjamming limit where the bubbles become close-packed spheres and coarsening proceeds even though there are no films. Here, we account for the ever-present border-crossing flux by a new length scale defined by the average gradient of gas concentration inside the borders. We compute that it is proportional to the geometric average of film and border thicknesses, and we verify this scaling by numerical solution of the diffusion equation. We similarly consider transport across inflated vertices and surface Plateau borders in quasi-two-dimensional foams. And we show how the d A /d t =K0(n -6 ) von Neumann law is modified by the appearance of terms that depend on bubble size and shape as well as the concentration gradient length scales. Finally, we use the modified von Neumann law to compute the growth rate of the average bubble area, which is not constant.

  8. Code Verification of the HIGRAD Computational Fluid Dynamics Solver

    Energy Technology Data Exchange (ETDEWEB)

    Van Buren, Kendra L. [Los Alamos National Laboratory; Canfield, Jesse M. [Los Alamos National Laboratory; Hemez, Francois M. [Los Alamos National Laboratory; Sauer, Jeremy A. [Los Alamos National Laboratory

    2012-05-04

    The purpose of this report is to outline code and solution verification activities applied to HIGRAD, a Computational Fluid Dynamics (CFD) solver of the compressible Navier-Stokes equations developed at the Los Alamos National Laboratory, and used to simulate various phenomena such as the propagation of wildfires and atmospheric hydrodynamics. Code verification efforts, as described in this report, are an important first step to establish the credibility of numerical simulations. They provide evidence that the mathematical formulation is properly implemented without significant mistakes that would adversely impact the application of interest. Highly accurate analytical solutions are derived for four code verification test problems that exercise different aspects of the code. These test problems are referred to as: (i) the quiet start, (ii) the passive advection, (iii) the passive diffusion, and (iv) the piston-like problem. These problems are simulated using HIGRAD with different levels of mesh discretization and the numerical solutions are compared to their analytical counterparts. In addition, the rates of convergence are estimated to verify the numerical performance of the solver. The first three test problems produce numerical approximations as expected. The fourth test problem (piston-like) indicates the extent to which the code is able to simulate a 'mild' discontinuity, which is a condition that would typically be better handled by a Lagrangian formulation. The current investigation concludes that the numerical implementation of the solver performs as expected. The quality of solutions is sufficient to provide credible simulations of fluid flows around wind turbines. The main caveat associated to these findings is the low coverage provided by these four problems, and somewhat limited verification activities. A more comprehensive evaluation of HIGRAD may be beneficial for future studies.

  9. Optimizing separations in online comprehensive two-dimensional liquid chromatography.

    Science.gov (United States)

    Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J

    2018-01-01

    Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.

  10. A numerical method for two-dimensional anisotropic transport problem in cylindrical geometry

    International Nuclear Information System (INIS)

    Du Mingsheng; Feng Tiekai; Fu Lianxiang; Cao Changshu; Liu Yulan

    1988-01-01

    The authors deal with the triangular mesh-discontinuous finite element method for solving the time-dependent anisotropic neutron transport problem in two-dimensional cylindrical geometry. A prior estimate of the numerical solution is given. Stability is proved. The authors have computed a two dimensional anisotropic neutron transport problem and a Tungsten-Carbide critical assembly problem by using the numerical method. In comparision with DSN method and the experimental results obtained by others both at home and abroad, the method is satisfactory

  11. Theory and application of the RAZOR two-dimensional continuous energy lattice physics code

    International Nuclear Information System (INIS)

    Zerkle, M.L.; Abu-Shumays, I.K.; Ott, M.W.; Winwood, J.P.

    1997-01-01

    The theory and application of the RAZOR two-dimensional, continuous energy lattice physics code are discussed. RAZOR solves the continuous energy neutron transport equation in one- and two-dimensional geometries, and calculates equivalent few-group diffusion theory constants that rigorously account for spatial and spectral self-shielding effects. A dual energy resolution slowing down algorithm is used to reduce computer memory and disk storage requirements for the slowing down calculation. Results are presented for a 2D BWR pin cell depletion benchmark problem

  12. Two-dimensional black hole as a topological coset model of c = 1 string theory

    International Nuclear Information System (INIS)

    Mukhi, S.; Vafa, C.

    1993-01-01

    We show that a special superconformal coset (with c=3) is equivalent to c=1 matter coupled to two-dimensional gravity. This identification allows a direct computation of the correlation functions of the c=1 non-critical string to all genus, and at nonzero cosmological constant, directly from the continuum approach. The results agree with those of the matrix model. Moreover we connect our coset with a twisted version of a euclidean two-dimensional black hole, in which the ghost and matter systems are mixed. (orig.)

  13. A FRAMEWORK FOR FINE-SCALE COMPUTATIONAL FLUID DYNAMICS AIR QUALITY MODELING AND ANALYSIS

    Science.gov (United States)

    Fine-scale Computational Fluid Dynamics (CFD) simulation of pollutant concentrations within roadway and building microenvironments is feasible using high performance computing. Unlike currently used regulatory air quality models, fine-scale CFD simulations are able to account rig...

  14. Computational fluid dynamics model of avian tracheal temperature control as a model for extant and extinct animals.

    Science.gov (United States)

    Sverdlova, N S; Arkali, F; Witzel, U; Perry, S F

    2013-10-01

    Respiratory evaporative cooling is an important mechanism of temperature control in bird. A computational simulation of the breathing cycle, heat and water loss in anatomical avian trachea/air sac model has not previously been conducted. We report a first attempt to simulate a breathing cycle in a three-dimensional model of avian trachea and air sacs (domestic fowl) using transient computational fluid dynamics. The airflow in the trachea of the model is evoked by changing the volume of the air sacs based on the measured tidal volume and inspiratory/expiratory times for the domestic fowl. We compare flow parameters and heat transfer results with in vivo data and with our previously reported results for a two-dimensional model. The total respiratory heat loss corresponds to about 13-19% of the starvation metabolic rate of domestic fowl. The present study can lend insight into a possible thermoregulatory function in species with long necks and/or a very long trachea, as found in swans and birds of paradise. Assuming the structure of the sauropod dinosaur respiratory system was close to avian, the simulation of the respiratory temperature control (using convective and evaporative cooling) in the extensively experimentally studied domestic fowl may also help in making simulations of respiratory heat control in these extinct animals. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Third sound in one and two dimensional modulated structures

    International Nuclear Information System (INIS)

    Komuro, T.; Kawashima, H., Shirahama, K.; Kono, K.

    1996-01-01

    An experimental technique is developed to study acoustic transmission in one and two dimensional modulated structures by employing third sound of a superfluid helium film. In particular, the Penrose lattice, which is a two dimensional quasiperiodic structure, is studied. In two dimensions, the scattering of third sound is weaker than in one dimension. Nevertheless, the authors find that the transmission spectrum in the Penrose lattice, which is a two dimensional prototype of the quasicrystal, is observable if the helium film thickness is chosen around 5 atomic layers. The transmission spectra in the Penrose lattice are explained in terms of dynamical theory of diffraction

  16. Stability analysis of two-dimensional digital recursive filters

    Science.gov (United States)

    Alexander, W. E.; Pruess, S. A.

    1980-01-01

    A new approach to the stability problem for the two-dimensional digital recursive filter is presented. The bivariate difference equation representation of the two-dimensional recursive digital filter is converted to a multiinput-multioutput (MIMO) system similar to the state-space representation of the one-dimensional digital recursive filter. In this paper, a pseudo-state representation is used and three coefficient matrices are obtained. A general theorem for stability of two-dimensional digital recursive filters is derived and a very useful theorem is presented which expresses sufficient requirements for instability in terms of the spectral radii of these matrices.

  17. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  18. Quinoa - Adaptive Computational Fluid Dynamics, 0.2

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-22

    Quinoa is a set of computational tools that enables research and numerical analysis in fluid dynamics. At this time it remains a test-bed to experiment with various algorithms using fully asynchronous runtime systems. Currently, Quinoa consists of the following tools: (1) Walker, a numerical integrator for systems of stochastic differential equations in time. It is a mathematical tool to analyze and design the behavior of stochastic differential equations. It allows the estimation of arbitrary coupled statistics and probability density functions and is currently used for the design of statistical moment approximations for multiple mixing materials in variable-density turbulence. (2) Inciter, an overdecomposition-aware finite element field solver for partial differential equations using 3D unstructured grids. Inciter is used to research asynchronous mesh-based algorithms and to experiment with coupling asynchronous to bulk-synchronous parallel code. Two planned new features of Inciter, compared to the previous release (LA-CC-16-015), to be implemented in 2017, are (a) a simple Navier-Stokes solver for ideal single-material compressible gases, and (b) solution-adaptive mesh refinement (AMR), which enables dynamically concentrating compute resources to regions with interesting physics. Using the NS-AMR problem we plan to explore how to scale such high-load-imbalance simulations, representative of large production multiphysics codes, to very large problems on very large computers using an asynchronous runtime system. (3) RNGTest, a test harness to subject random number generators to stringent statistical tests enabling quantitative ranking with respect to their quality and computational cost. (4) UnitTest, a unit test harness, running hundreds of tests per second, capable of testing serial, synchronous, and asynchronous functions. (5) MeshConv, a mesh file converter that can be used to convert 3D tetrahedron meshes from and to either of the following formats: Gmsh

  19. Two-dimensional steady unsaturated flow through embedded elliptical layers

    Science.gov (United States)

    Bakker, Mark; Nieber, John L.

    2004-12-01

    New analytic element solutions are presented for unsaturated, two-dimensional steady flow in vertical planes that include nonoverlapping impermeable elliptical layers and elliptical inhomogeneities. The hydraulic conductivity, which is represented by an exponential function of the pressure head, differs between the inside and outside of an elliptical inhomogeneity; both the saturated hydraulic conductivity and water retention parameters are allowed to differ between the inside and outside. The Richards equation is transformed, through the Kirchhoff transformation and a second standard transformation, into the modified Helmholtz equation. Analytic element solutions are obtained through separation of variables in elliptical coordinates. The resulting equations for the Kirchhoff potential consist of infinite sums of products of exponentials and modified Mathieu functions. In practical applications the series are truncated but still fulfill the differential equation exactly; boundary conditions are met approximately but up to machine accuracy, provided that enough terms are used. The pressure head, saturation, and flow may be computed analytically at any point in the vadose zone. Examples are given of the shadowing effect of an impermeable elliptical layer in a uniform flow field and funnel-type flow between two elliptical inhomogeneities. The presented solutions may be applied to study transport processes in vadose zones containing many impermeable elliptical layers or elliptical inhomogeneities.

  20. Two-dimensional modeling of conduction-mode laser welding

    International Nuclear Information System (INIS)

    Russo, A.J.

    1984-01-01

    WELD2D is a two-dimensional finite difference computer program suitable for modeling the conduction-mode welding process when the molten weld pool motion can be neglected. The code is currently structured to treat butt-welded geometries in a plane normal to the beam motion so that dissimilar materials may be considered. The surface heat transfer models used in the code include a Gaussian beam or uniform laser source, and a free electron theory reflectance calculation. Temperature-dependent material parameters are used in the reflectance calculation. Measured cold reflection data are used to include surface roughness or oxide effects until melt occurs, after which the surface is assumed to be smooth and clean. Blackbody reradiation and a simple natural convection model are also included in the upper surface boundary condition. Either an implicit or explicit finite-difference representation of the heat conduction equation in an enthalpy form is solved at each time step. This enables phase transition energies to be easily and accurately incorporated into the formulation. Temperature-dependent 9second-order polynominal dependence) thermal conductivities are used in the conduction calculations. Constant values of specific heat are used for each material phase. At present, material properties for six metals are included in the code. These are: aluminium, nickel, steel, molybdenum, copper and silicon

  1. Two dimensional simulation of high power laser-surface interaction

    International Nuclear Information System (INIS)

    Goldman, S.R.; Wilke, M.D.; Green, R.E.L.; Johnson, R.P.; Busch, G.E.

    1998-01-01

    For laser intensities in the range of 10 8 --10 9 W/cm 2 , and pulse lengths of order 10 microsec or longer, the authors have modified the inertial confinement fusion code Lasnex to simulate gaseous and some dense material aspects of the laser-matter interaction. The unique aspect of their treatment consists of an ablation model which defines a dense material-vapor interface and then calculates the mass flow across this interface. The model treats the dense material as a rigid two-dimensional mass and heat reservoir suppressing all hydrodynamic motion in the dense material. The computer simulations and additional post-processors provide predictions for measurements including impulse given to the target, pressures at the target interface, electron temperatures and densities in the vapor-plasma plume region, and emission of radiation from the target. The authors will present an analysis of some relatively well diagnosed experiments which have been useful in developing their modeling. The simulations match experimentally obtained target impulses, pressures at the target surface inside the laser spot, and radiation emission from the target to within about 20%. Hence their simulational technique appears to form a useful basis for further investigation of laser-surface interaction in this intensity, pulse-width range. This work is useful in many technical areas such as materials processing

  2. Computational Fluid Dynamics Analysis of Flexible Duct Junction Box Design

    Energy Technology Data Exchange (ETDEWEB)

    Beach, Robert [IBACOS Inc., Pittsburgh, PA (United States); Prahl, Duncan [IBACOS Inc., Pittsburgh, PA (United States); Lange, Rich [IBACOS Inc., Pittsburgh, PA (United States)

    2013-12-01

    IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.

  3. Application of computational fluid dynamics in tissue engineering.

    Science.gov (United States)

    Patrachari, Anirudh R; Podichetty, Jagdeep T; Madihally, Sundararajan V

    2012-08-01

    The process of tissue regeneration consists of a set of complex phenomena such as hydrodynamics, nutrient transfer, cell growth, and matrix deposition. Traditional cell culture and bioreactor design procedure follow trial-and-error analyses to understand the effects of varying physical, chemical, and mechanical parameters that govern the process of tissue regeneration. This trend has been changing as computational fluid dynamics (CFD) analysis can now be used to understand the effects of flow, cell proliferation, and consumption kinetics on the dynamics involved with in vitro tissue regeneration. Furthermore, CFD analyses enable understanding the influence of nutrient transport on cell growth and the effect of cell proliferation as the tissue regenerates. This is especially advantageous in improving and optimizing the design of bioreactors and tissue culture. Influence of parameters such as velocity, oxygen tension, stress, and strain on tissue growth can be effectively studied throughout the bioreactor using CFD as it becomes impractical and cumbersome to install probes at several locations in the bioreactor. Hence, CFD offers several advantages for the advancement of tissue engineering. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Improving flow distribution in influent channels using computational fluid dynamics.

    Science.gov (United States)

    Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae

    2016-10-01

    Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.

  5. Shape Optimization of Vehicle Radiator Using Computational Fluid Dynamics (cfd)

    Science.gov (United States)

    Maddipatla, Sridhar; Guessous, Laila

    2002-11-01

    Automotive manufacturers need to improve the efficiency and lifetime of all engine components. In the case of radiators, performance depends significantly on coolant flow homogeneity across the tubes and overall pressure drop between the inlet and outlet. Design improvements are especially needed in tube-flow uniformity to prevent premature fouling and failure of heat exchangers. Rather than relying on ad-hoc geometry changes, the current study combines Computational Fluid Dynamics with shape optimization methods to improve radiator performance. The goal is to develop an automated suite of virtual tools to assist in radiator design. Two objective functions are considered: a flow non-uniformity coefficient,Cf, and the overall pressure drop, dP*. The methodology used to automate the CFD and shape optimization procedures is discussed. In the first phase, single and multi-variable optimization methods, coupled with CFD, are applied to simplified 2-D radiator models to investigate effects of inlet and outlet positions on the above functions. The second phase concentrates on CFD simulations of a simplified 3-D radiator model. The results, which show possible improvements in both pressure and flow uniformity, validate the optimization criteria that were developed, as well as the potential of shape optimization methods with CFD to improve heat exchanger design. * Improving Radiator Design Through Shape Optimization, L. Guessous and S. Maddipatla, Paper # IMECE2002-33888, Proceedings of the 2002 ASME International Mechanical Engineering Congress and Exposition, November 2002

  6. ANALYSIS OF DRAFTING EFFECTS IN SWIMMING USING COMPUTATIONAL FLUID DYNAMICS

    Directory of Open Access Journals (Sweden)

    António José Silva

    2008-03-01

    Full Text Available The purpose of this study was to determine the effect of drafting distance on the drag coefficient in swimming. A k-epsilon turbulent model was implemented in the commercial code Fluent® and applied to the fluid flow around two swimmers in a drafting situation. Numerical simulations were conducted for various distances between swimmers (0.5-8.0 m and swimming velocities (1.6-2.0 m.s-1. Drag coefficient (Cd was computed for each one of the distances and velocities. We found that the drag coefficient of the leading swimmer decreased as the flow velocity increased. The relative drag coefficient of the back swimmer was lower (about 56% of the leading swimmer for the smallest inter-swimmer distance (0.5 m. This value increased progressively until the distance between swimmers reached 6.0 m, where the relative drag coefficient of the back swimmer was about 84% of the leading swimmer. The results indicated that the Cd of the back swimmer was equal to that of the leading swimmer at distances ranging from 6.45 to 8. 90 m. We conclude that these distances allow the swimmers to be in the same hydrodynamic conditions during training and competitions.

  7. Computational Fluid Dynamics Modeling of Flow over Stepped Spillway

    Directory of Open Access Journals (Sweden)

    Raad Hoobi Irzooki

    2017-12-01

    Full Text Available In present paper, the computational fluid dynamics (CFD - program Flow-3D was used toanalyze and study the characteristics of flow energy dissipation over stepped spillways. Threedifferent spillway heights ( (15, 20 and 25cm were used. For each one of these models, threenumbers of steps (N (5, 10 and 25 and three spillway slopes (S (0.5, 1 and 1.25 were used.Eight different discharges ranging (600-8500cm³/s were passed over each one of these models,therefore the total runs of this study are 216. The energy dissipation over these models and thepressure distribution on the horizontal and vertical step faces over some models were studied. Forverification purpose of the (CFD program, the experimental work was conducted on four models ofstepped spillway and five different discharges were passed over each model. The magnitude ofdissipated energy on models was compared with results of numerical program under sameconditions. The comparison showed good agreement between them with standard percentage errorranging between (-2.01 - 11.13%. Thus, the program Flow-3D is a reasonable numerical programwhich can be used in this study.Results showed that the energy dissipation increases with increased spillway height anddecreased number of steps and spillway slope. Also, the energy dissipation decreases withincreasing the flow rate. An empirical equation for measuring the energy dissipation was derivedusing the dimensional analysis. The coefficient of determination of this equation ( equals 0.766.

  8. Unsteady computational fluid dynamics in front crawl swimming.

    Science.gov (United States)

    Samson, Mathias; Bernard, Anthony; Monnet, Tony; Lacouture, Patrick; David, Laurent

    2017-05-01

    The development of codes and power calculations currently allows the simulation of increasingly complex flows, especially in the turbulent regime. Swimming research should benefit from these technological advances to try to better understand the dynamic mechanisms involved in swimming. An unsteady Computational Fluid Dynamics (CFD) study is conducted in crawl, in order to analyse the propulsive forces generated by the hand and forearm. The k-ω SST turbulence model and an overset grid method have been used. The main objectives are to analyse the evolution of the hand-forearm propulsive forces and to explain this relative to the arm kinematics parameters. In order to validate our simulation model, the calculated forces and pressures were compared with several other experimental and numerical studies. A good agreement is found between our results and those of other studies. The hand is the segment that generates the most propulsive forces during the aquatic stroke. As the pressure component is the main source of force, the orientation of the hand-forearm in the absolute coordinate system is an important kinematic parameter in the swimming performance. The propulsive forces are biggest when the angles of attack are high. CFD appears as a very valuable tool to better analyze the mechanisms of swimming performance and offers some promising developments, especially for optimizing the performance from a parametric study.

  9. Computational fluid dynamic analysis for independent floating water treatment device

    Science.gov (United States)

    Zawawi, M. H.; Swee, M. G.; Zainal, N. S.; Zahari, N. M.; Kamarudin, M. A.; Ramli, M. Z.

    2017-09-01

    This project is to design and develop 3D Independent Floating Water Treatment Device using 3D CAD software. The device is designed to treat water for better water qualities and water flows of the lakes. A prototype was manufactured to study the water treatment efficiency of the device. Computational Fluid Dynamic (CFD) analysis was used to capture the efficiency of the Independent Floating Water Treatment Device by simulates and model the water flows, pressure and velocity. According to the results, the maximum velocity magnitude was around 1m3/s. The velocity contour showed the device has high velocity at the pipe outlet. The velocity became lower and lower as the distance is further from the pipe outlet. The result from the velocity measurement was 1.05m/s. The pressure magnitude was in between 1426 Pa to 1429 Pa. The laboratory results based on water parameters proved that the water movement and direction of water flow of the Independent Floating Water Treatment Device enable the efficient pollutant removal. The vector plot, velocity contour, water flow path lines, water flow streamline and pressure contour was successful modeled.

  10. Simulation of climate inside tunnel greenhouses using computational fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zeroual, S.; Bougoul, S.; Labaal, C.; Aouachria, Z. [Batna Univ., Batna (Algeria). Dept. of Physics

    2009-07-01

    This paper investigated heat transfer and air flow in an open-tunnel greenhouse both with and without plants. The aim of the study was to determine the effect of wind speed on natural ventilation using computational fluid dynamics (CFD) and finite volume methods. A porous medium approach was used to to describe air flow. Turbulence in the 3-D model was described using a standard k-{epsilon} model. Air temperature variations indicated the presence of a gradient from the side walls towards the centre of the greenhouse. The gradient was caused by the movement of hot air rising towards the roof vents. A vertical gradient was attributed to the movement of the air above the surface of the heated floor. Maximum air velocity was reached at the openings of the greenhouse. The lowest heat values were measured in the middle of the greenhouse and at the crop level. Results obtained in the study were compared with results obtained in the literature. Data obtained in the study will be used to improve the design and control of both greenhouse ventilation and heating systems. 15 refs., 18 figs.

  11. Computational fluid dynamics for turbomachinery internal air systems.

    Science.gov (United States)

    Chew, John W; Hills, Nicholas J

    2007-10-15

    Considerable progress in development and application of computational fluid dynamics (CFD) for aeroengine internal flow systems has been made in recent years. CFD is regularly used in industry for assessment of air systems, and the performance of CFD for basic axisymmetric rotor/rotor and stator/rotor disc cavities with radial throughflow is largely understood and documented. Incorporation of three-dimensional geometrical features and calculation of unsteady flows are becoming commonplace. Automation of CFD, coupling with thermal models of the solid components, and extension of CFD models to include both air system and main gas path flows are current areas of development. CFD is also being used as a research tool to investigate a number of flow phenomena that are not yet fully understood. These include buoyancy-affected flows in rotating cavities, rim seal flows and mixed air/oil flows. Large eddy simulation has shown considerable promise for the buoyancy-driven flows and its use for air system flows is expected to expand in the future.

  12. PORFLO - a continuum model for fluid flow, heat transfer, and mass transport in porous media. Model theory, numerical methods, and computational tests

    International Nuclear Information System (INIS)

    Runchal, A.K.; Sagar, B.; Baca, R.G.; Kline, N.W.

    1985-09-01

    Postclosure performance assessment of the proposed high-level nuclear waste repository in flood basalts at Hanford requires that the processes of fluid flow, heat transfer, and mass transport be numerically modeled at appropriate space and time scales. A suite of computer models has been developed to meet this objective. The theory of one of these models, named PORFLO, is described in this report. Also presented are a discussion of the numerical techniques in the PORFLO computer code and a few computational test cases. Three two-dimensional equations, one each for fluid flow, heat transfer, and mass transport, are numerically solved in PORFLO. The governing equations are derived from the principle of conservation of mass, momentum, and energy in a stationary control volume that is assumed to contain a heterogeneous, anisotropic porous medium. Broad discrete features can be accommodated by specifying zones with distinct properties, or these can be included by defining an equivalent porous medium. The governing equations are parabolic differential equations that are coupled through time-varying parameters. Computational tests of the model are done by comparisons of simulation results with analytic solutions, with results from other independently developed numerical models, and with available laboratory and/or field data. In this report, in addition to the theory of the model, results from three test cases are discussed. A users' manual for the computer code resulting from this model has been prepared and is available as a separate document. 37 refs., 20 figs., 15 tabs

  13. Computational and Experimental Investigations of the Molecular Scale Structure and Dynamics of Gologically Important Fluids and Mineral-Fluid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Geoffrey [Alfred Univ., NY (United States)

    2017-04-05

    United States Department of Energy grant DE-FG02-10ER16128, “Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces” (Geoffrey M. Bowers, P.I.) focused on developing a molecular-scale understanding of processes that occur in fluids and at solid-fluid interfaces using the combination of spectroscopic, microscopic, and diffraction studies with molecular dynamics computer modeling. The work is intimately tied to the twin proposal at Michigan State University (DOE DE-FG02-08ER15929; same title: R. James Kirkpatrick, P.I. and A. Ozgur Yazaydin, co-P.I.).

  14. A computational approach for fluid queues driven by truncated birth-death processes.

    NARCIS (Netherlands)

    Lenin, R.B.; Parthasarathy, P.R.

    2000-01-01

    In this paper, we analyze fluid queues driven by truncated birth-death processes with general birth and death rates. We compute the equilibrium distribution of the content of the fluid buffer by providing efficient numerical procedures to compute the eigenvalues and the eigenvectors of the

  15. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Foteinopoulou, Stavroula [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates

  16. Analysis, approximation, and computation of a coupled solid/fluid temperature control problem

    Science.gov (United States)

    Gunzburger, Max D.; Lee, Hyung C.

    1993-01-01

    An optimization problem is formulated motivated by the desire to remove temperature peaks, i.e., 'hot spots', along the bounding surfaces of containers of fluid flows. The heat equation of the solid container is coupled to the energy equations for the fluid. Heat sources can be located in the solid body, the fluid, or both. Control is effected by adjustments to the temperature of the fluid at the inflow boundary. Both mathematical analyses and computational experiments are given.

  17. Proteome research : two-dimensional gel electrophoresis and identification methods

    National Research Council Canada - National Science Library

    Rabilloud, Thierry, 1961

    2000-01-01

    "Two-dimensional electrophoresis is the central methodology in proteome research, and the state of the art is described in detail in this text, together with extensive coverage of the detection methods available...

  18. Partition function of the two-dimensional nearest neighbour Ising ...

    Indian Academy of Sciences (India)

    Abstract. The partition function for two-dimensional nearest neighbour Ising model in a non-zero magnetic field have been derived for a finite square lattice of 16, 25, 36 and 64 sites with the help of ...

  19. Multisoliton formula for completely integrable two-dimensional systems

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.; Chudnovsky, G.V.

    1979-01-01

    For general two-dimensional completely integrable systems, the exact formulae for multisoliton type solutions are given. The formulae are obtained algebrically from solutions of two linear partial differential equations

  20. Coherent Response of Two Dimensional Electron Gas probed by Two Dimensional Fourier Transform Spectroscopy

    Science.gov (United States)

    Paul, Jagannath

    Advent of ultrashort lasers made it possible to probe various scattering phenomena in materials that occur in a time scale on the order of few femtoseconds to several tens of picoseconds. Nonlinear optical spectroscopy techniques, such as pump-probe, transient four wave mixing (TFWM), etc., are very common to study the carrier dynamics in various material systems. In time domain, the transient FWM uses several ultrashort pulses separated by time delays to obtain the information of dephasing and population relaxation times, which are very important parameters that govern the carrier dynamics of materials. A recently developed multidimensional nonlinear optical spectroscopy is an enhanced version of TFWM which keeps track of two time delays simultaneously and correlate them in the frequency domain with the aid of Fourier transform in a two dimensional map. Using this technique, the nonlinear complex signal field is characterized both in amplitude and phase. Furthermore, this technique allows us to identify the coupling between resonances which are rather difficult to interpret from time domain measurements. This work focuses on the study of the coherent response of a two dimensional electron gas formed in a modulation doped GaAs/AlGaAs quantum well both at zero and at high magnetic fields. In modulation doped quantum wells, the excitons are formed as a result of the inter- actions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the formation of Mahan excitons, which is also referred to as Fermi edge singularity (FES). Polarization and temperature dependent rephasing 2DFT spectra in combination with TI-FWM measurements, provides insight into the dephasing mechanism of the heavy hole (HH) Mahan exciton. In addition to that strong quantum coherence between the HH and LH Mahan excitons is observed, which is rather surprising at this high doping concentration. The binding energy of Mahan excitons is expected to be greatly

  1. Structures of two-dimensional three-body systems

    International Nuclear Information System (INIS)

    Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.

    1996-01-01

    Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)

  2. The Two-Dimensional Analogue of General Relativity

    OpenAIRE

    Lemos, José P. S.; Sá, Paulo M.

    1993-01-01

    General Relativity in three or more dimensions can be obtained by taking the limit $\\omega\\rightarrow\\infty$ in the Brans-Dicke theory. In two dimensions General Relativity is an unacceptable theory. We show that the two-dimensional closest analogue of General Relativity is a theory that also arises in the limit $\\omega\\rightarrow\\infty$ of the two-dimensional Brans-Dicke theory.

  3. Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal

    DEFF Research Database (Denmark)

    Lebech, Bente; Bak, P.

    1979-01-01

    The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern.......The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....

  4. Two-dimensional multifractal cross-correlation analysis

    International Nuclear Information System (INIS)

    Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong

    2017-01-01

    Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.

  5. The theory of critical phenomena in two-dimensional systems

    International Nuclear Information System (INIS)

    Olvera de la C, M.

    1981-01-01

    An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)

  6. Two-Dimensional Materials for Sensing: Graphene and Beyond

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese

    2015-09-01

    Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.

  7. Micro-phase separation in two dimensional suspensions of self-propelled spheres and dumbbells.

    Science.gov (United States)

    Tung, Clarion; Harder, Joseph; Valeriani, C; Cacciuto, A

    2016-01-14

    We use numerical simulations to study the phase behavior of self-propelled spherical and dumbbellar particles interacting via micro-phase separation inducing potentials. Our results indicate that under the appropriate conditions, it is possible to drive the formation of two new active states; a spinning cluster crystal, i.e. an ordered mesoscopic phase having finite size spinning crystallites as lattice sites, and a fluid of living clusters, i.e. a two dimensional fluid where each "particle" is a finite size living cluster. We discuss the dynamics of these phases and suggest ways of extending their stability under a wide range of active forces.

  8. Computational Fluid Dynamics Simulation of Dual Bell Nozzle Film Cooling

    Science.gov (United States)

    Braman, Kalen; Garcia, Christian; Ruf, Joseph; Bui, Trong

    2015-01-01

    Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) are working together to advance the technology readiness level (TRL) of the dual bell nozzle concept. Dual bell nozzles are a form of altitude compensating nozzle that consists of two connecting bell contours. At low altitude the nozzle flows fully in the first, relatively lower area ratio, nozzle. The nozzle flow separates from the wall at the inflection point which joins the two bell contours. This relatively low expansion results in higher nozzle efficiency during the low altitude portion of the launch. As ambient pressure decreases with increasing altitude, the nozzle flow will expand to fill the relatively large area ratio second nozzle. The larger area ratio of the second bell enables higher Isp during the high altitude and vacuum portions of the launch. Despite a long history of theoretical consideration and promise towards improving rocket performance, dual bell nozzles have yet to be developed for practical use and have seen only limited testing. One barrier to use of dual bell nozzles is the lack of control over the nozzle flow transition from the first bell to the second bell during operation. A method that this team is pursuing to enhance the controllability of the nozzle flow transition is manipulation of the film coolant that is injected near the inflection between the two bell contours. Computational fluid dynamics (CFD) analysis is being run to assess the degree of control over nozzle flow transition generated via manipulation of the film injection. A cold flow dual bell nozzle, without film coolant, was tested over a range of simulated altitudes in 2004 in MSFC's nozzle test facility. Both NASA centers have performed a series of simulations of that dual bell to validate their computational models. Those CFD results are compared to the experimental results within this paper. MSFC then proceeded to add film injection to the CFD grid of the dual bell nozzle. A series of

  9. Computations of incompressible fluid flow around a long square ...

    Indian Academy of Sciences (India)

    DEEPAK KUMAR

    13th Australasian. Fluid Mechanics Conference, pp. 943–946. [6] Reichl P, Hourigan K and Thompson M C 2003 The unsteady wake of a circular cylinder near a free surface. Flow. Turbul. Combust. 71: 347–359. [7] Reichl P, Hourigan K and Thompson M C 2005 Flow past a cylinder close to a free surface. J. Fluid Mech.

  10. Computational fluid dynamics applied to gas-liquid contactors.

    NARCIS (Netherlands)

    Delnoij, E.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1997-01-01

    In this paper a `hierarchy of models¿ is discussed to study the fluid dynamic behaviour of gas-liquid bubble columns. This `hierarchy of models¿ consists of a Eulerian-Eulerian two fluid model, a Eulerian-Lagrangian discrete bubble model and a Volume Tracking or Marker Particle model. These models

  11. Wetting controlled phase transitions in two-dimensional systems of colloids

    DEFF Research Database (Denmark)

    Gil, Tamir; Ipsen, John Hjorth; Tejero, T.F.

    1998-01-01

    The phase behavior of disk colloids, embedded in a two-dimensional fluid matrix that undergoes a first-order phase transition, is studied in the complete wetting regime where the thermodynamically metastable fluid phase is stabilized at the surface of the disks. In dilute collections of disks......, the tendency to minimize the extent of the fluid-fluid interface and the extent of the unfavorable wetting phase in the system gives rise to aggregation phenomena and to separation of large domains of disks that have the characteristics of bulk colloidal phases. The conditions for phase transitions among...... cluster gas, liquid, and solid phases of the disk colloids are determined from the corresponding values of the disk chemical potential within an analytic representation of the grand partition function for the excess energy associated with a gas of disk clusters in the low-disk-density limit. The wetting...

  12. Effects of aeration on matrix temperature by infrared thermal imager and computational fluid dynamics during sludge bio-drying.

    Science.gov (United States)

    Yu, Dawei; Yang, Min; Qi, Lu; Liu, Mengmeng; Wang, Yawei; Wei, Yuansong

    2017-10-01

    The effect of aeration on the pile matrix temperature was investigated using thermocouples and Infrared Thermal Imager (IRI) for temperature sensing, and Computational Fluid Dynamics (CFD) for modelling of temperature variation during aeration in a full-scale sludge biodrying plant. With aeration saving of 20%, the improved strategy speeded up biodrying from 21 days to 14 days, while achieving similar drying effect. A persistent thermocouple recorded the one-dimensional (1D) total temperature variation of all aeration strategies. The IRI captured the rapid two-dimensional (2D) pile temperature dropped from 72.5 °C to 30.3 °C during 6 min of aeration, which mechanism suggested as the latent heat of moisture evaporation and sensible heat of air exchange. The CFD three-dimensional (3D) CFD results highlight the importance of latent heat rather than sensible heat. Therefore, the pile temperature drop inferred is ΔT = 5.38 °C theoretically and ΔT = 5.17 ± 4.56 °C practically, per unit of MC removed. These findings also emphasize the possibility of a pile temperature valley, due to excessive aeration under unsaturated vapour conditions. Surface temperature monitored by IRI coupled with 3D temperature simulated by CFD rapidly gives a clear matrix temperature evolution, empowering biodrying by more accurate temperature and aeration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, P.R.; Ramshaw, J.D.

    1991-11-01

    MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.

  14. A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools

    International Nuclear Information System (INIS)

    McHugh, P.R.; Ramshaw, J.D.

    1991-11-01

    MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs

  15. Application of computational fluid dynamics models to aerodynamic design and optimization of wind turbine airfoils

    OpenAIRE

    Castiñeira, Esther; Solís, Irene; Argüelles, K.M. (Katia); Velarde, Sandra; Fernández, J.M. (Jesús); González, Jose

    2016-01-01

    In this work, the capability of simple numerical models with coarse grids to predict performance coefficients in wind turbine airfoils is explored. A wide range of simulations were performed for a typical wind turbine profile, under the main criteria of design simplicity and low calculation time. The solutions were computed over different mesh sizes using a two-dimensional Reynolds-Average Navier-Stockes (2D-RANS) approach. Spalart-Allmaras, k-ε and k-omega turbulence models were run in the s...

  16. Parrondo Games with Two-Dimensional Spatial Dependence

    Science.gov (United States)

    Ethier, S. N.; Lee, Jiyeon

    Parrondo games with one-dimensional (1D) spatial dependence were introduced by Toral and extended to the two-dimensional (2D) setting by Mihailović and Rajković. MN players are arranged in an M × N array. There are three games, the fair, spatially independent game A, the spatially dependent game B, and game C, which is a random mixture or non-random pattern of games A and B. Of interest is μB (or μC), the mean profit per turn at equilibrium to the set of MN players playing game B (or game C). Game A is fair, so if μB ≤ 0 and μC > 0, then we say the Parrondo effect is present. We obtain a strong law of large numbers (SLLN) and a central limit theorem (CLT) for the sequence of profits of the set of MN players playing game B (or game C). The mean and variance parameters are computable for small arrays and can be simulated otherwise. The SLLN justifies the use of simulation to estimate the mean. The CLT permits evaluation of the standard error of a simulated estimate. We investigate the presence of the Parrondo effect for both small arrays and large ones. One of the findings of Mihailović and Rajković was that “capital evolution depends to a large degree on the lattice size.” We provide evidence that this conclusion is partly incorrect. A paradoxical feature of the 2D game B that does not appear in the 1D setting is that, for fixed M and N, the mean function μB is not necessarily a monotone function of its parameters.

  17. Traditional Semiconductors in the Two-Dimensional Limit

    Science.gov (United States)

    Lucking, Michael C.; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S. B.

    2018-02-01

    Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.

  18. A smoothed finite element approach for computational fluid dynamics: applications to incompressible flows and fluid-structure interaction

    Science.gov (United States)

    He, Tao; Zhang, Hexin; Zhang, Kai

    2018-01-01

    In this paper the cell-based smoothed finite element method (CS-FEM) is introduced into two mainstream aspects of computational fluid dynamics: incompressible flows and fluid-structure interaction (FSI). The emphasis is placed on the fluid gradient smoothing which simply requires equal numbers of Gaussian points and smoothing cells in each four-node quadrilateral element. The second-order, smoothed characteristic-based split scheme in conjunction with a pressure stabilization is then presented to settle the incompressible Navier-Stokes equations. As for FSI, CS-FEM is applied to the geometrically nonlinear solid as usual. Following an efficient mesh deformation strategy, block-Gauss-Seidel procedure is adopted to couple all individual fields under the arbitrary Lagriangian-Eulerian description. The proposed solvers are carefully validated against the previously published data for several benchmarks, revealing visible improvements in computed results.

  19. Current research activities: Applied and numerical mathematics, fluid mechanics, experiments in transition and turbulence and aerodynamics, and computer science

    Science.gov (United States)

    1992-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.

  20. Estimation of numerical uncertainty in computational fluid dynamics simulations of a passively controlled wave energy converter

    DEFF Research Database (Denmark)

    Wang, Weizhi; Wu, Minghao; Palm, Johannes

    2018-01-01

    mathematical models such as computational fluid dynamics are preferred and over the last 5 years, computational fluid dynamics has become more frequently used in the wave energy field. However, rigorous estimation of numerical errors, convergence rates and uncertainties associated with computational fluid...... for almost linear incident waves. First, we show that the computational fluid dynamics simulations have acceptable agreement to experimental data. We then present a verification and validation study focusing on the solution verification covering spatial and temporal discretization, iterative and domain......The wave loads and the resulting motions of floating wave energy converters are traditionally computed using linear radiation–diffraction methods. Yet for certain cases such as survival conditions, phase control and wave energy converters operating in the resonance region, more complete...