WorldWideScience

Sample records for two-dimensional cell tissue

  1. Role of cell deformability in the two-dimensional melting of biological tissues

    Science.gov (United States)

    Li, Yan-Wei; Ciamarra, Massimo Pica

    2018-04-01

    The size and shape of a large variety of polymeric particles, including biological cells, star polymers, dendrimes, and microgels, depend on the applied stresses as the particles are extremely soft. In high-density suspensions these particles deform as stressed by their neighbors, which implies that the interparticle interaction becomes of many-body type. Investigating a two-dimensional model of cell tissue, where the single particle shear modulus is related to the cell adhesion strength, here we show that the particle deformability affects the melting scenario. On increasing the temperature, stiff particles undergo a first-order solid/liquid transition, while soft ones undergo a continuous solid/hexatic transition followed by a discontinuous hexatic/liquid transition. At zero temperature the melting transition driven by the decrease of the adhesion strength occurs through two continuous transitions as in the Kosterlitz, Thouless, Halperin, Nelson, and Young scenario. Thus, there is a range of adhesion strength values where the hexatic phase is stable at zero temperature, which suggests that the intermediate phase of the epithelial-to-mesenchymal transition could be hexatic type.

  2. Two-dimensional zymography differentiates gelatinase isoforms in stimulated microglial cells and in brain tissues of acute brain injuries.

    Science.gov (United States)

    Chen, Shanyan; Meng, Fanjun; Chen, Zhenzhou; Tomlinson, Brittany N; Wesley, Jennifer M; Sun, Grace Y; Whaley-Connell, Adam T; Sowers, James R; Cui, Jiankun; Gu, Zezong

    2015-01-01

    Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions.

  3. Two-dimensional electrophoretic comparison of metastatic and non-metastatic human breast tumors using in vitro cultured epithelial cells derived from the cancer tissues

    International Nuclear Information System (INIS)

    Vydra, Jan; Jiráček, Jiří; Selicharová, Irena; Smutná, Kateřina; Šanda, Miloslav; Matoušková, Eva; Buršíková, Eva; Prchalová, Markéta; Velenská, Zuzana; Coufal, David

    2008-01-01

    Breast carcinomas represent a heterogeneous group of tumors diverse in behavior, outcome, and response to therapy. Identification of proteins resembling the tumor biology can improve the diagnosis, prediction, treatment selection, and targeting of therapy. Since the beginning of the post-genomic era, the focus of molecular biology gradually moved from genomes to proteins and proteomes and to their functionality. Proteomics can potentially capture dynamic changes in protein expression integrating both genetic and epigenetic influences. We prepared primary cultures of epithelial cells from 23 breast cancer tissue samples and performed comparative proteomic analysis. Seven patients developed distant metastases within three-year follow-up. These samples were included into a metastase-positive group, the others formed a metastase-negative group. Two-dimensional electrophoretical (2-DE) gels in pH range 4–7 were prepared. Spot densities in 2-DE protein maps were subjected to statistical analyses (R/maanova package) and data-mining analysis (GUHA). For identification of proteins in selected spots, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed. Three protein spots were significantly altered between the metastatic and non-metastatic groups. The correlations were proven at the 0.05 significance level. Nucleophosmin was increased in the group with metastases. The levels of 2,3-trans-enoyl-CoA isomerase and glutathione peroxidase 1 were decreased. We have performed an extensive proteomic study of mammary epithelial cells from breast cancer patients. We have found differentially expressed proteins between the samples from metastase-positive and metastase-negative patient groups

  4. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.

    Science.gov (United States)

    Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul

    2012-08-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.

  5. Two-dimensional diffusion limited system for cell growth

    International Nuclear Information System (INIS)

    Hlatky, L.

    1985-11-01

    A new cell system, the ''sandwich'' system, was developed to supplement multicellular spheroids as tumor analogues. Sandwiches allow new experimental approaches to questions of diffusion, cell cycle effects and radiation resistance in tumors. In this thesis the method for setting up sandwiches is described both theoretically and experimentally followed by its use in x-ray irradiation studies. In the sandwich system, cells are grown in a narrow gap between two glass slides. Where nutrients and waste products can move into or out of the local environment of the cells only by diffusing through the narrow gap between the slides. Due to the competition between cells, self-created gradients of nutrients and metabolic products are set up resulting in a layer of cells which resembles a living spheroid cross section. Unlike the cells of the spheroid, however, cells in all regions of the sandwich are visible. Therefore, the relative sizes of the regions and their time-dependent growth can be monitored visually without fixation or sectioning. The oxygen and nutrient gradients can be ''turned off'' at any time without disrupting the spatial arrangement of the cells by removing the top slide of the assembly and subsequently turned back on if desired. Removal of the top slide also provides access to all the cells, including those near the necrotic center, of the sandwich. The cells can then be removed for analysis outside the sandwich system. 61 refs., 17 figs

  6. Two-dimensional Tissue Image Reconstruction Based on Magnetic Field Data

    Directory of Open Access Journals (Sweden)

    J. Dedkova

    2012-09-01

    Full Text Available This paper introduces new possibilities within two-dimensional reconstruction of internal conductivity distribution. In addition to the electric field inside the given object, the injected current causes a magnetic field which can be measured either outside the object by means of a Hall probe or inside the object through magnetic resonance imaging. The Magnetic Resonance method, together with Electrical impedance tomography (MREIT, is well known as a bio-imaging modality providing cross-sectional conductivity images with a good spatial resolution from the measurements of internal magnetic flux density produced by externally injected currents. A new algorithm for the conductivity reconstruction, which utilizes the internal current information with respect to corresponding boundary conditions and the external magnetic field, was developed. A series of computer simulations has been conducted to assess the performance of the proposed algorithm within the process of estimating electrical conductivity changes in the lungs, heart, and brain tissues captured in two-dimensional piecewise homogeneous chest and head models. The reconstructed conductivity distribution using the proposed method is compared with that using a conventional method based on Electrical Impedance Tomography (EIT. The acquired experience is discussed and the direction of further research is proposed.

  7. Two-dimensional material-based bionano platforms to control mesenchymal stem cell differentiation.

    Science.gov (United States)

    Kang, Ee-Seul; Kim, Da-Seul; Suhito, Intan Rosalina; Lee, Wanhee; Song, Inbeom; Kim, Tae-Hyung

    2018-01-01

    In the past decade, stem cells, with their ability to differentiate into various types of cells, have been proven to be resourceful in regenerative medicine and tissue engineering. Despite the ability to repair damaged parts of organs and tissues, the use of stem cells still entails several limitations, such as low differentiation efficiency and difficulties in guiding differentiation. To address these limitations, nanotechnology approaches have been recently implemented in stem cell research. It has been discovered that stem cells, in combination with carbon-based functional materials, show enhanced regenerative performances in varying biophysical conditions. In particular, several studies have reported solutions to the conventional quandaries in biomedical engineering, using synergetic effects of nanohybrid materials, as well as further development of technologies to recover from diverse health conditions such as bone fracture and strokes. In this review, we discuss several prior studies regarding the application of various nanomaterials in controlling the behavior of stem cells. We focus on the potential of different types of nanomaterials, such as two-dimensional materials, gold nanoparticles, and three-dimensional nanohybrid composites, to control the differentiation of human mesenchymal stem cells (hMSCs). These materials have been found to affect stem cell functions via the adsorption of growth/differentiation factors on the surfaces of nanomaterials and the activation of signaling pathways that are mostly related to cell adhesion and differentiation (e.g., FAK, Smad, Erk, and Wnt). Controlling stem cell differentiation using biophysical factors, especially the use of nanohybrid materials to functionalize underlying substrates wherein the cells attach and grow, is a promising strategy to achieve cells of interest in a highly efficient manner. We hope that this review will facilitate the use of other types of newly discovered and/or synthesized nanomaterials

  8. Two-dimensional fluorescence in-gel electrophoresis of coronary restenosis tissues in minipigs: increased adipocyte fatty acid binding protein induces reactive oxygen species-mediated growth and migration in smooth muscle cells.

    Science.gov (United States)

    Lu, Lin; Wang, Ya Nan; Sun, Wei Hua; Liu, Zhu Hui; Zhang, Qi; Pu, Li Jin; Yang, Ke; Wang, Ling Jie; Zhu, Zhen Bin; Meng, Hua; Yang, Ping; Du, Run; Chen, Qiu Jing; Wang, Li Shun; Yu, Hong; Shen, Wei Feng

    2013-03-01

    We aimed to uncover the protein changes of coronary artery in-stent restenosis (ISR) tissue in minipigs with and without streptozotocin-induced diabetes mellitus by quantitative 2-dimensional fluorescence in-gel electrophoresis (2D-DIGE), and to investigate the influences of crucial proteins identified, particularly adipocyte fatty acid binding protein (AFABP), in human arterial smooth muscle cells. Sirolimus-eluting stents were implanted in the coronary arteries of 15 diabetic and 26 nondiabetic minipigs, and angiography was repeated after 6 months. The intima tissue of significant ISR and non-ISR segments in both diabetic and nondiabetic minipigs was analyzed by 2D-DIGE and MALDI-TOF/TOF mass spectrometry. AFABP level was significantly increased in ISR tissue than in non-ISR tissue in both diabetic and nondiabetic minipigs, with level being higher in diabetic ISR than in nondiabetic ISR tissue. In human arterial smooth muscle cells, overexpression of AFABP significantly altered phenotype and promoted growth and migration, with effects more prominent in high-glucose than in low-glucose medium, whereas AFABP knockdown inhibited these effects. AFABP overexpression increased reactive oxygen species production by upregulating the expression of NADPH oxidase subunits Nox1, Nox4, and P22 through multiple pathways, with elevation of downstream gene cyclin D1, matrix metalloproteinase-2, and monocyte chemoattractant protein-1. However, AFABP-induced effects were inhibited by diphenyleneiodonium, pathway inhibitors, and small interfering RNA. In addition, the supernatant from AFABP-expressing human arterial smooth muscle cells and recombinant AFABP also promoted cellular growth and migration. This study has demonstrated that AFABP is significantly increased in coronary artery ISR segments of both diabetic and nondiabetic minipigs. Increased AFABP expression and secretory AFABP of human arterial smooth muscle cells promote growth and migration via reactive oxygen species

  9. Diagnostic features in two-dimensional light scattering patterns of normal and dysplastic cervical cell nuclei

    Science.gov (United States)

    Arifler, Dizem; MacAulay, Calum; Follen, Michele; Guillaud, Martial

    2014-03-01

    Dysplastic progression in epithelial tissues is linked to changes in morphology and internal structure of cell nuclei. These changes lead to alterations in nuclear light scattering profiles that can potentially be monitored for diagnostic purposes. Numerical tools allow for simulation of complex nuclear models and are particularly useful for quantifying the optical response of cell nuclei as dysplasia progresses. In this study, we first analyze a set of quantitative histopathology images from twenty cervical biopsy sections stained with Feulgen-thionin. Since Feulgen-thionin is stoichiometric for DNA, the images enable us to obtain detailed information on size, shape, and chromatin content of all the segmented nuclei. We use this extensive data set to construct realistic three-dimensional computational models of cervical cell nuclei that are representative of four diagnostic categories, namely normal or negative for dysplasia, mild dysplasia, moderate dysplasia, and severe dysplasia or carcinoma in situ (CIS). We then carry out finite-difference time-domain simulations to compute the light scattering response of the constructed models as a function of the polar scattering angle and the azimuthal scattering angle. The results show that these two-dimensional scattering patterns exhibit characteristic intensity ridges that change form with progression of dysplasia; pattern processing reveals that Haralick features can be used to distinguish moderately and severely dysplastic or CIS nuclei from normal and mildly dysplastic nuclei. Our numerical study also suggests that different angular ranges need to be considered separately to fully exploit the diagnostic potential of two-dimensional light scattering measurements.

  10. Oxygen tension and formation of cervical-like tissue in two-dimensional and three-dimensional culture.

    Science.gov (United States)

    House, Michael; Daniel, Jennifer; Elstad, Kirigin; Socrate, Simona; Kaplan, David L

    2012-03-01

    Cervical dysfunction contributes to a significant number of preterm births and is a common cause of morbidity and mortality in newborn infants. Cervical dysfunction is related to weakened load bearing properties of the collagen-rich cervical stroma. However, the mechanisms responsible for cervical collagen changes during pregnancy are not well defined. It is known that blood flow and oxygen tension significantly increase in reproductive tissues during pregnancy. To examine the effect of oxygen tension, a key mediator of tissue homeostasis, on the formation of cervical-like tissue in vitro, we grew primary human cervical cells in both two-dimensional (2D) and three-dimensional (3D) culture systems at 5% and 20% oxygen. Immunofluorescence studies revealed a stable fibroblast phenotype across six passages in all subjects studied (n=5). In 2D culture for 2 weeks, 20% oxygen was associated with significantly increased collagen gene expression (p<0.01), increased tissue wet weight (p<0.01), and increased collagen concentration (p=0.046). 3D cultures could be followed for significantly longer time frames than 2D cultures (12 weeks vs. 2 weeks). In contrast to 2D cultures, 20% oxygen in 3D cultures was associated with decreased collagen concentration (p<0.01) and unchanged collagen gene expression, which is similar to cervical collagen changes seen during pregnancy. We infer that 3D culture is more relevant for studying cervical collagen changes in vitro. The data suggest that increased oxygen tension may be related to significant cervical collagen changes seen in pregnancy.

  11. Assessment of Soft Tissue Changes by Cephalometry and Two-Dimensional Photogrammetry in Bilateral Sagittal Split Ramus Osteotomy Cases

    Science.gov (United States)

    Martin, Alice

    2011-01-01

    ABSTRACT Objectives We aimed to compare the standard methods of cephalometry and two-dimensional photogrammetry, to evaluate the reliability and accuracy of both methods. Material and Methods Twenty-six patients (mean age 25.5, standard deviation (SD) 5.2 years) with Class II relationship and 23 patients with Class III relationship (mean age 26.4, SD 4.7 years) who had undergone bilateral sagittal split ramus osteotomy were selected, with a median follow-up of 8 months between pre- and postsurgical evaluation. Pre- and postsurgical cephalograms and lateral photograms were traced and changes were recorded. Results Pre- and postsurgical measurements of hard tissue angles and distances revealed higher correlations with cephalometrically performed soft tissue measurements of facial convexity (Class II: N-PG, r = - 0.50, P = 0.047; Class III: ANB, r = 0.73, P = 0.005; NaPg , r = 0.71, P = 0.007;) and labiomental angle (Class II: SNB, r = 0.72, P = 0.002; ANB, r = - 0.72, P = 0.002; N-B, r = - 0.68, P = 0.004; ANS-Gn, r = 0.71, P = 0.002; Class III: ANS-Gn, r = 0.65, P = 0.043) compared with two-dimensional photogrammetry. However, two-dimensional photogrammetry revealed higher correlation between lower lip length and cephalometrically assessed angular hard tissue changes (Class II: SNB, r = 0.98, P = 0.007; N-B, r = 0.89, P = 0.037; N-Pg, r = 0.90, P = 0.033; Class III: SNB, r = - 0.54, P = 0.060; NAPg, r = - 0.65, P = 0.041; N-Pg, r = 0.58, P = 0.039). Conclusions Our findings suggest that cephalometry and two-dimensional photogrammetry offer the possibility to complement one another. PMID:24421994

  12. Assessment of soft tissue changes by cephalometry and two-dimensional photogrammetry in bilateral sagittal split ramus osteotomy cases.

    Science.gov (United States)

    Rustemeyer, Jan; Martin, Alice

    2011-01-01

    We aimed to compare the standard methods of cephalometry and two-dimensional photogrammetry, to evaluate the reliability and accuracy of both methods. Twenty-six patients (mean age 25.5, standard deviation (SD) 5.2 years) with Class II relationship and 23 patients with Class III relationship (mean age 26.4, SD 4.7 years) who had undergone bilateral sagittal split ramus osteotomy were selected, with a median follow-up of 8 months between pre- and postsurgical evaluation. Pre- and postsurgical cephalograms and lateral photograms were traced and changes were recorded. Pre- and postsurgical measurements of hard tissue angles and distances revealed higher correlations with cephalometrically performed soft tissue measurements of facial convexity (Class II: N-PG, r = - 0.50, P = 0.047; Class III: ANB, r = 0.73, P = 0.005; NaPg , r = 0.71, P = 0.007;) and labiomental angle (Class II: SNB, r = 0.72, P = 0.002; ANB, r = - 0.72, P = 0.002; N-B, r = - 0.68, P = 0.004; ANS-Gn, r = 0.71, P = 0.002; Class III: ANS-Gn, r = 0.65, P = 0.043) compared with two-dimensional photogrammetry. However, two-dimensional photogrammetry revealed higher correlation between lower lip length and cephalometrically assessed angular hard tissue changes (Class II: SNB, r = 0.98, P = 0.007; N-B, r = 0.89, P = 0.037; N-Pg, r = 0.90, P = 0.033; Class III: SNB, r = - 0.54, P = 0.060; NAPg, r = - 0.65, P = 0.041; N-Pg, r = 0.58, P = 0.039). Our findings suggest that cephalometry and two-dimensional photogrammetry offer the possibility to complement one another.

  13. Assessment of Soft Tissue Changes by Cephalometry and Two-Dimensional Photogrammetry in Bilateral Sagittal Split Ramus Osteotomy Cases

    Directory of Open Access Journals (Sweden)

    Jan Rustemeyer

    2011-07-01

    Full Text Available Objectives: We aimed to compare the standard methods of cephalometry and two-dimensional photogrammetry, to evaluate the reliability and accuracy of both methods.Material and Methods: Twenty-six patients (mean age 25.5, standard deviation (SD 5.2 years with Class II relationship and 23 patients with Class III relationship (mean age 26.4, SD 4.7 years who had undergone bilateral sagittal split ramus osteotomy were selected, with a median follow-up of 8 months between pre- and postsurgical evaluation. Pre- and postsurgical cephalograms and lateral photograms were traced and changes were recorded.Results: Pre- and postsurgical measurements of hard tissue angles and distances revealed higher correlations with cephalometrically performed soft tissue measurements of facial convexity (Class II: N-PG, r = - 0.50, P = 0.047; Class III: ANB, r = 0.73, P = 0.005; NaPg , r = 0.71, P = 0.007; and labiomental angle (Class II: SNB, r = 0.72, P = 0.002; ANB, r = - 0.72, P = 0.002; N-B, r = - 0.68, P = 0.004; ANS-Gn, r = 0.71, P = 0.002; Class III: ANS-Gn, r = 0.65, P = 0.043 compared with two-dimensional photogrammetry. However, two-dimensional photogrammetry revealed higher correlation between lower lip length and cephalometrically assessed angular hard tissue changes (Class II: SNB, r = 0.98, P = 0.007; N-B, r = 0.89, P = 0.037; N-Pg, r = 0.90, P = 0.033; Class III: SNB, r = - 0.54, P = 0.060; NAPg, r = - 0.65, P = 0.041; N-Pg, r = 0.58, P = 0.039.Conclusions: Our findings suggest that cephalometry and two-dimensional photogrammetry offer the possibility to complement one another.

  14. Two-dimensional electrophoretic analysis of radio frequency radiation-exposed MCF7 breast cancer cells

    International Nuclear Information System (INIS)

    Kim, Ki-Bum; Ko, Young-Gyu; Byun, Hae-Ok; Han, Na-Kyung; Lee, Jae-Seon; Choi, Hyung-Do; Kim, Nam; Pack, Jeong-Ki

    2010-01-01

    Although many in vitro studies have previously been conducted to elucidate the biological effects of radio frequency (RF) radiation over the past decades, the existence and nature of any effects is still inconclusive. In an effort to further elucidate this question, we have monitored changes in protein expression profiles in RF-exposed MCF7 human breast cancer cells using two-dimensional gel electrophoresis. MCF7 cells were exposed to 849 MHz RF radiation for 1 h per day for three consecutive days at specific absorption rates (SARs) of either 2 W/Kg or 10 W/kg. During exposure, the temperature in the exposure chamber was kept in an isothermal condition. Twenty-four hours after the final RF exposure, the protein lysates from MCF cells were prepared and two-dimensional electrophoretic analyses were conducted. The protein expression profiles of the MCF cells were not significantly altered as the result of RF exposure. None of the protein spots on the two-dimensional electrophoretic gels showed reproducible changes in three independent experiments. To determine effect of RF radiation on protein expression profiles more clearly, three spots showing altered expression without reproducibility were identified using electrospray ionization tandem mass spectrometry analysis and their expressions were examined with reverse transcription polymerase chain reaction (RT-PCR) and Western blot assays. There was no alteration in their mRNA and protein levels. As we were unable to observe any significant and reproducible changes in the protein expression profiles of the RF radiation-exposed MCF7 cells using high throughput and non-high throughput techniques, it seems unlikely that RF exposure modulates the protein expression profile. (author)

  15. Fourier analysis of cell-wise Block-Jacobi splitting in two-dimensional geometry

    International Nuclear Information System (INIS)

    Rosa, M.; Warsa, J. S.; Kelley, T. M.

    2009-01-01

    A Fourier analysis is conducted in two-dimensional (2D) geometry for the discrete ordinates (S N ) approximation of the neutron transport problem solved with Richardson iteration (Source Iteration) using the cell-wise Block-Jacobi (BJ) algorithm. The results of the Fourier analysis show that convergence of cell-wise BJ can degrade, leading to a spectral radius equal to 1, in problems containing optically thin cells. For problems containing cells that are optically thick, instead, the spectral radius tends to 0. Hence, in the optically thick-cell regime, cell-wise BJ is rapidly convergent even for problems that are scattering dominated, with a scattering ratio c close to 1. (authors)

  16. Two-dimensional model of flows and interface instability in aluminum reduction cells

    Science.gov (United States)

    Zikanov, Oleg; Sun, Haijun; Ziegler, Donald

    2003-11-01

    We derive a two-dimensional model for the melt flows and interface instability in aluminum reduction cells. The model is based on the de St. Venant shallow water equations and incorporates the essential features of the system such as the magnetohydrodynamic instability mechanism and nonlinear coupling between the flows and interfacial waves. The model is applied to verify a recently proposed theory that explains the instability through the interaction between perturbations of horizontal electric currents in the aluminum layer and the imposed vertical magnetic field. We investigate the role of other factors, in particular, background melt flows and magnetic field perturbations.

  17. Mapping and identification of interferon gamma-regulated HeLa cell proteins separated by immobilized pH gradient two-dimensional gel electrophoresis

    DEFF Research Database (Denmark)

    Shaw, AC; Rossel Larsen, M; Roepstorff, P

    1999-01-01

    magnitude of IFN-gamma responsive genes has been reported previously. Our goal is to identify and map IFN-gamma-regulated HeLa cell proteins to the two-dimensional polyacrylamide gel electrophoresis with the immobilized pH gradient (IPG) two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) system....... A semiconfluent layer of HeLa cells was grown on tissue culture plates, and changes in protein expression due to 100 U/mL IFN-gamma were investigated at different periods after treatment, using pulse labeling with [35S]methionine/cysteine in combination with 2-D PAGE (IPG). The identity of eight protein spots...

  18. Optimized Protocol for Protein Extraction from the Breast Tissue that is Compatible with Two-Dimensional Gel Electrophoresis

    Directory of Open Access Journals (Sweden)

    Olena Zakharchenko

    2011-01-01

    Full Text Available Proteomics is a highly informative approach to analyze cancer-associated transformation in tissues. The main challenge to use a tissue for proteomics studies is the small sample size and difficulties to extract and preserve proteins. The choice of a buffer compatible with proteomics applications is also a challenge. Here we describe a protocol optimized for the most efficient extraction of proteins from the human breast tissue in a buffer compatible with two-dimensional gel electrophoresis (2D-GE. This protocol is based on mechanically assisted disintegration of tissues directly in the 2D-GE buffer. Our method is simple, robust and easy to apply in clinical practice. We demonstrate high quality of separation of proteins prepared according to the reported here protocol.

  19. A Density-Driven Method for the Placement of Biological Cells Over Two-Dimensional Manifolds

    Science.gov (United States)

    Rougier, Nicolas P.

    2018-01-01

    We introduce a graphical method originating from the computer graphics domain that is used for the arbitrary placement of cells over a two-dimensional manifold. Using a bitmap image whose luminance provides cell density, this method guarantees a discrete distribution of the positions of the cells respecting the local density. This method scales to any number of cells, allows one to specify arbitrary enclosing shapes and provides a scalable and versatile alternative to the more classical assumption of a uniform spatial distribution. The method is illustrated on a discrete homogeneous neural field, on the distribution of cones and rods in the retina and on the neural density of a flattened piece of cortex.

  20. A Density-Driven Method for the Placement of Biological Cells Over Two-Dimensional Manifolds

    Directory of Open Access Journals (Sweden)

    Nicolas P. Rougier

    2018-03-01

    Full Text Available We introduce a graphical method originating from the computer graphics domain that is used for the arbitrary placement of cells over a two-dimensional manifold. Using a bitmap image whose luminance provides cell density, this method guarantees a discrete distribution of the positions of the cells respecting the local density. This method scales to any number of cells, allows one to specify arbitrary enclosing shapes and provides a scalable and versatile alternative to the more classical assumption of a uniform spatial distribution. The method is illustrated on a discrete homogeneous neural field, on the distribution of cones and rods in the retina and on the neural density of a flattened piece of cortex.

  1. Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells

    Science.gov (United States)

    Kim, Yu Geun; Kwon, Ki Chang; Le, Quyet Van; Hong, Kootak; Jang, Ho Won; Kim, Soo Young

    2016-07-01

    Atomically thin two-dimensional materials such as MoS2, WS2, and graphene oxide (GO) are used as hole extraction layers (HEL) in organolead halide perovskites solar cells (PSCs) instead of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HEL. MoS2 and WS2 layers with a polycrystalline structure were synthesized by a chemical deposition method using a uniformly spin-coated (NH4)MoS4 and (NH4)WS4 precursor solution. GO was synthesized by the oxidation of natural graphite powder using Hummers' method. The work functions of MoS2, WS2, and GO are measured to be 5.0, 4.95, and 5.1 eV, respectively. The X-ray diffraction spectrum indicated that the synthesized perovskite material is CH3NH3PbI3-xClx. The PSCs with the p-n junction structure were fabricated based on the CH3NH3PbI3-xClx perovskite layer. The power conversion efficiencies of the MoS2, WS2, and GO-based PSCs were 9.53%, 8.02%, and 9.62%, respectively, which are comparable to those obtained from PEDOT:PSS-based devices (9.93%). These results suggest that two-dimensional materials such as MoS2, WS2, and GO can be promising candidates for the formation of HELs in the PSCs.

  2. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    Energy Technology Data Exchange (ETDEWEB)

    Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  3. Magnetoresistance oscillations of two-dimensional electron systems in lateral superlattices with structured unit cells

    Science.gov (United States)

    Gerhardts, Rolf R.

    2015-11-01

    Model calculations for commensurability oscillations of the low-field magnetoresistance of two-dimensional electron systems (2DES) in lateral superlattices, consisting of unit cells with an internal structure, are compared with recent experiments. The relevant harmonics of the effective modulation potential depend not only on the geometrical structure of the modulated unit cell, but also strongly on the nature of the modulation. While higher harmonics of an electrostatically generated surface modulation are exponentially damped at the position of the 2DES about 90 nm below the surface, no such damping appears for strain-induced modulation generated, e.g., by the deposition of stripes of calixarene resist on the surface before cooling down the sample.

  4. Two-Dimensional N-Glycan Distribution Mapping of Hepatocellular Carcinoma Tissues by MALDI-Imaging Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Thomas W. Powers

    2015-10-01

    Full Text Available A new mass spectrometry imaging approach to simultaneously map the two-dimensional distribution of N-glycans in tissues has been recently developed. The method uses Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS to spatially profile the location and distribution of multiple N-linked glycan species released by peptide N-glycosidase F in frozen or formalin-fixed tissues. Multiple formalin-fixed human hepatocellular carcinoma tissues were evaluated with this method, resulting in a panel of over 30 N-glycans detected. An ethylation reaction of extracted N-glycans released from adjacent slides was done to stabilize sialic acid containing glycans, and these structures were compared to N-glycans detected directly from tissue profiling. In addition, the distribution of singly fucosylated N-glycans detected in tumor tissue microarray cores were compared to the histochemistry staining pattern of a core fucose binding lectin. As this MALDI-IMS workflow has the potential to be applied to any formalin-fixed tissue block or tissue microarray, the advantages and limitations of the technique in context with other glycomic methods are also summarized.

  5. Effect of Substrate Friction in a Two-Dimensional Granular Couette Shearing Cell

    Science.gov (United States)

    Templeman, Chris; Garg, Shila

    2001-03-01

    An investigation of the effect of substrate friction on the kinematics of rigid granular material in a two-dimensional granular Couette shearing cell was conducted. Cylindrical disks resting on a substrate were packed between a stationary outer ring and a rotating inner wheel. Previous work reports the velocity and particle rotation rates as a function of packing fraction and shearing rates [1]. The authors report the existence of a stick-slip condition of the disks in contact with the shearing wheel. The focus of our study is to investigate the impact of the substrate friction on the stick-slip condition as well as the kinematics of the system in general. [1] C.T. Veje, Daniel W. Howell, and R.P Behringer, Phys. Rev. E 59, 739 (1999). This research was partially supported by the Copeland Fund, administered by The College of Wooster. C.T. received support from NASA GRC LERCIP internship program.

  6. Efficient extraction of proteins from recalcitrant plant tissue for subsequent analysis by two-dimensional gel electrophoresis.

    Science.gov (United States)

    Parkhey, Suruchi; Chandrakar, Vibhuti; Naithani, S C; Keshavkant, S

    2015-10-01

    Protein extraction for two-dimensional electrophoresis from tissues of recalcitrant species is quite problematic and challenging due to the low protein content and high abundance of contaminants. Proteomics in Shorea robusta is scarcely conducted due to the lack of a suitable protein preparation procedure. To establish an effective protein extraction protocol suitable for two-dimensional electrophoresis in Shorea robusta, four procedures (borate buffer/trichloroacetic acid extraction, organic solvent/trichloroacetic acid precipitation, sucrose/Tris/phenol, and organic solvent/phenol/sodium dodecyl sulfate) were evaluated. Following these, proteins were isolated from mature leaves and were analyzed for proteomics, and also for potential contaminants, widely reported to hinder proteomics. The borate buffer/trichloroacetic acid extraction had the lowest protein yield and did not result in any banding even in one-dimensional electrophoresis. In contrast, organic solvent/phenol/sodium dodecyl sulfate extraction allowed the highest protein yield. Moreover, during proteomics, organic solvent/phenol/sodium dodecyl sulfate extracted protein resolved the maximum number (144) of spots. Further, when proteins were evaluated for contaminants, significant (77-95%) reductions in the nucleic acids, phenol, and sugars were discernible with refinement in extraction procedure. Accumulated data suggested that the organic solvent/phenol/sodium dodecyl sulfate extraction was the most effective protocol for protein isolation for proteomics of Shorea robusta and can be used for plants that have a similar set of contaminants. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Two-dimensional gel electrophoresis of gastric tissue in an alkaline pH range.

    Science.gov (United States)

    Kočevar, Nina; Grazio, Snježana Frković; Komel, Radovan

    2014-02-01

    2DE in combination with MS has facilitated the discovery of several proteins with altered abundance in gastric cancer. While acidic and wide pH ranges have been widely investigated, analysis in the alkaline pH range has not been specifically performed in gastric cancer to date. In the present study, we initially optimized the 2DE in alkaline pH range (pH 7-11) for gastric tissue samples. Using a modified lysis buffer, we analyzed pooled nontumor and tumor samples for proteins with altered abundance in gastric adenocarcinoma. We successfully identified 38 silver-stained spots as 24 different proteins. Four of these were chosen for investigation with immunoblotting on individual paired samples to determine whether the changes seen in 2DE represent the overall abundance of the protein or possibly only a single form. While mitochondrial trifunctional protein (MTP) subunits were decreased in 2DE gels, immunoblotting identified their overall abundance as being differently dysregulated: in the gastric tumor samples, the MTP-α subunit was decreased, and the MTP-β subunit was increased. On the other hand, heterogenous nuclear ribonucleoprotein M and galectin-4 were increased in the gastric tumor samples in both 2DE and immunoblotting. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Stable high efficiency two-dimensional perovskite solar cells via cesium doping

    KAUST Repository

    Zhang, Xu

    2017-08-15

    Two-dimensional (2D) organic-inorganic perovskites have recently emerged as one of the most important thin-film solar cell materials owing to their excellent environmental stability. The remaining major pitfall is their relatively poor photovoltaic performance in contrast to 3D perovskites. In this work we demonstrate cesium cation (Cs) doped 2D (BA)(MA)PbI perovskite solar cells giving a power conversion efficiency (PCE) as high as 13.7%, the highest among the reported 2D devices, with excellent humidity resistance. The enhanced efficiency from 12.3% (without Cs) to 13.7% (with 5% Cs) is attributed to perfectly controlled crystal orientation, an increased grain size of the 2D planes, superior surface quality, reduced trap-state density, enhanced charge-carrier mobility and charge-transfer kinetics. Surprisingly, it is found that the Cs doping yields superior stability for the 2D perovskite solar cells when subjected to a high humidity environment without encapsulation. The device doped using 5% Cs degrades only ca. 10% after 1400 hours of exposure in 30% relative humidity (RH), and exhibits significantly improved stability under heating and high moisture environments. Our results provide an important step toward air-stable and fully printable low dimensional perovskites as a next-generation renewable energy source.

  9. Two-dimensional gel electrophoresis data for proteomic profiling of Sporothrix yeast cells

    Directory of Open Access Journals (Sweden)

    Anderson Messias Rodrigues

    2015-03-01

    Full Text Available Sporotrichosis is a chronic infection of the skin and subcutaneous tissues of human and other mammals caused by a complex of cryptic dimorphic fungi in the plant-associated order Ophiostomatales. With major differences between routes of transmission, Sporothrix infections are emerging as new threat in tropical and subtropical areas, particularly in form of outbreaks. The mechanisms underlying the pathogenesis and invasion of Sporothrix spp. are still poorly understood and many virulence factors remain unidentified. In this scenario, a global analysis of proteins expressed by clinical Sporothrix species combined with the identification of seroreactive proteins is overdue. Optimization of sample preparation and electrophoresis conditions are key steps toward reproducibility of gel-based proteomics assays. We provide the data generated using an efficient protocol of protein extraction for rapid and large-scale proteome analysis using two-dimensional gel electrophoresis. The protocol was established and optimized for pathogenic and non-pathogenic Sporothrix spp. including Sporothrix brasiliensis (CBS 132990, Sporothrix schenckii sensu stricto (CBS 132974, Sporothrix globosa (CBS 132922, and Sporothrix mexicana (CBS 120341. The data, supplied in this article, are related to the research article entitled “Immunoproteomic analysis reveals a convergent humoral response signature in the Sporothrix schenckii complex” (Rodrigues et al., 2014 [1].

  10. Two-Dimensional Simulation of Mass Transfer in Unitized Regenerative Fuel Cells under Operation Mode Switching

    Directory of Open Access Journals (Sweden)

    Lulu Wang

    2016-01-01

    Full Text Available A two-dimensional, single-phase, isothermal, multicomponent, transient model is built to investigate the transport phenomena in unitized regenerative fuel cells (URFCs under the condition of switching from the fuel cell (FC mode to the water electrolysis (WE mode. The model is coupled with an electrochemical reaction. The proton exchange membrane (PEM is selected as the solid electrolyte of the URFC. The work is motivated by the need to elucidate the complex mass transfer and electrochemical process under operation mode switching in order to improve the performance of PEM URFC. A set of governing equations, including conservation of mass, momentum, species, and charge, are considered. These equations are solved by the finite element method. The simulation results indicate the distributions of hydrogen, oxygen, water mass fraction, and electrolyte potential response to the transient phenomena via saltation under operation mode switching. The hydrogen mass fraction gradients are smaller than the oxygen mass fraction gradients. The average mass fractions of the reactants (oxygen and hydrogen and product (water exhibit evident differences between each layer in the steady state of the FC mode. By contrast, the average mass fractions of the reactant (water and products (oxygen and hydrogen exhibit only slight differences between each layer in the steady state of the WE mode. Under either the FC mode or the WE mode, the duration of the transient state is only approximately 0.2 s.

  11. Proteomic analysis of docetaxel resistance in human nasopharyngeal carcinoma cells using the two-dimensional gel electrophoresis method.

    Science.gov (United States)

    Peng, Xingchen; Gong, Fengming M; Ren, Min; Ai, Ping; Wu, ShaoYong; Tang, Jie; Hu, XiaoLin

    2016-09-01

    Docetaxel-based chemotherapy has been recommended for advanced nasopharyngeal carcinoma (NPC). However, treatment failure often occurs because of acquired drug resistance. In this study, a docetaxel-resistant NPC cell line CNE-2R was established with increasing doses of docetaxel for more than 6 months. Two-dimensional gel electrophoresis and ESI-Q-TOF-MS were used to compare the differential expression of docetaxel-resistance-associated proteins between human NPC CNE-2 cells and docetaxel-resistant CNE-2R cells. As a result, 24 differentially expressed proteins were identified, including 11 proteins with increased expression and 13 proteins with decreased expression. These proteins function in diverse biological processes such as metabolism, signal transduction, calcium ion binding, immune response, proteolysis, and so on. Among these, α-enolase (ENO1), significantly upregulated in CNE-2R, was selected for detailed analysis. Inhibition of ENO1 by shRNA restored CNE-2R cells' sensitivity to docetaxel. Moreover, overexpression of ENO1 could facilitate the development of acquired resistance of docetaxel in CNE-2 cells. Western blot and reverse-transcription PCR data of clinical samples confirmed that α-enolase was upregulated in docetaxel-resistant human NPC tissues. Finding such proteins might improve interpretation of the molecular mechanisms leading to the acquisition of docetaxel chemoresistance.

  12. Electrostatic and electromagnetic instabilities associated with electrostatic shocks: Two-dimensional particle-in-cell simulation

    International Nuclear Information System (INIS)

    Kato, Tsunehiko N.; Takabe, Hideaki

    2010-01-01

    A two-dimensional electromagnetic particle-in-cell simulation with the realistic ion-to-electron mass ratio of 1836 is carried out to investigate the electrostatic collisionless shocks in relatively high-speed (∼3000 km s -1 ) plasma flows and also the influence of both electrostatic and electromagnetic instabilities, which can develop around the shocks, on the shock dynamics. It is shown that the electrostatic ion-ion instability can develop in front of the shocks, where the plasma is under counterstreaming condition, with highly oblique wave vectors as was shown previously. The electrostatic potential generated by the electrostatic ion-ion instability propagating obliquely to the shock surface becomes comparable with the shock potential and finally the shock structure is destroyed. It is also shown that in front of the shock the beam-Weibel instability gradually grows as well, consequently suggesting that the magnetic field generated by the beam-Weibel instability becomes important in long-term evolution of the shock and the Weibel-mediated shock forms long after the electrostatic shock vanished. It is also observed that the secondary electrostatic shock forms in the reflected ions in front of the primary electrostatic shock.

  13. Osteogenic differentiation of mesenchymal stromal cells in two-dimensional and three-dimensional cultures without animal serum.

    Science.gov (United States)

    Castrén, Eeva; Sillat, Tarvo; Oja, Sofia; Noro, Ariel; Laitinen, Anita; Konttinen, Yrjö T; Lehenkari, Petri; Hukkanen, Mika; Korhonen, Matti

    2015-09-07

    Bone marrow-derived mesenchymal stromal cells (MSCs) have been intensely studied for the purpose of developing solutions for clinical tissue engineering. Autologous MSCs can potentially be used to replace tissue defects, but the procedure also carries risks such as immunization and xenogeneic infection. Replacement of the commonly used fetal calf serum (FCS) with human platelet lysate and plasma (PLP) to support cell growth may reduce some of these risks. Altered media could, however, influence stem cell differentiation and we address this experimentally. We examined human MSC differentiation into the osteoblast lineage using in vitro two- and three-dimensional cultures with PLP or FCS as cell culture medium supplements. Differentiation was followed by quantitative polymerase chain reaction, and alkaline phosphatase activity, matrix formation and matrix calcium content were quantified. Three-dimensional culture, where human MSCs were grown on collagen sponges, markedly stimulated osteoblast differentiation; a fourfold increase in calcium deposition could be observed in both PLP and FCS groups. PLP-grown cells showed robust osteogenic differentiation both in two- and three-dimensional MSC cultures. The calcium content of the matrix in the two-dimensional PLP group at day 14 was 2.2-fold higher in comparison to the FCS group (p cultures, cellular proliferation appeared to decrease during later stages of differentiation, while in the FCS group the number of cells increased throughout the experiment. In three-dimensional experiments, the PLP and FCS groups behaved more congruently, except for the alkaline phosphatase activity and mRNA levels which were markedly increased by PLP. Human PLP was at least equal to FCS in supporting osteogenic differentiation of human MSCs in two- and three-dimensional conditions; however, proliferation was inferior. As PLP is free of animal components, and thus represents reduced risk for xenogeneic infection, its use for human MSC

  14. Two dimensional point of use fuel cell : a final LDRD project report.

    Energy Technology Data Exchange (ETDEWEB)

    Zavadil, Kevin Robert; Hickner, Michael A. (Pennsylvania State University, University Park, PA); Gross, Matthew L. (Pennsylvania State University, University Park, PA)

    2011-03-01

    The Proliferation Assessment (program area - Things Thin) within the Defense Systems and Assessment Investment Area desires high energy density and long-lived power sources with moderate currents (mA) that can be used as building blocks in platforms for the continuous monitoring of chemical, biological, and radiological agents. Fuel cells can be an optimum choice for a power source because of the high energy densities that are possible with liquid fuels. Additionally, power generation and fuel storage can be decoupled in a fuel cell for independent control of energy and power density for customized, application-driven power solutions. Direct methanol fuel cells (DMFC) are explored as a possible concept to develop into ultrathin or two-dimensional power sources. New developments in nanotechnology, advanced fabrication techniques, and materials science are exploited to create a planar DMFC that could be co-located with electronics in a chip format. Carbon nanotubes and pyrolyzed polymers are used as building block electrodes - porous, mechanically compliant current collectors. Directed assembly methods including surface functionalization and layer-by-layer deposition with polyelectrolytes are used to pattern, build, and add functionality to these electrodes. These same techniques are used to incorporate nanoscale selective electrocatalyst into the carbon electrodes to provide a high density of active electron transfer sites for the methanol oxidation and oxygen reduction reactions. The resulting electrodes are characterized in terms of their physical properties, electrocatalytic function, and selectivity to better understand how processing impacts their performance attributes. The basic function of a membrane electrode assembly is demonstrated for several prototype devices.

  15. Synthesis of Lead Sulfide Nanocrystals and Their Two-Dimensional Electronic Spectra in a Spinning Cell

    Science.gov (United States)

    Baranov, Dmitry

    This thesis describes new aspects of the synthesis and ultrafast spectroscopy of PbS nanocrystals. The first part of the thesis investigates two aspects of PbS nanocrystal synthesis: the identity and composition of oleylamine reagent and the nature of sulfur species in sulfur solutions in long-chain amines. Oleylamine, formally cis-9-octadecyl-1-amine, is a solvent, a reactant, and a ligand in the synthesis of high-quality PbS nanocrystals and other nanomaterials. It is shown that commercial oleylamine samples contain elaidylamine, trans-9-octadecen-1-amine. Sulfur solutions in long-chain amines (n-octylamine and oleylamine) are common precursors in metal sulfide nanomaterial synthesis. Resonance Raman experiments on sulfur-amine solutions established the presence of various polysulfide anions, which slowly equilibrate on the timescale of days, causing a change in reactivity of the sulfur precursor. This aging of sulfur-amine solutions is shown to be strongly correlated with irreproducibility in PbS nanocrystal syntheses. The second part of the thesis deals with non-linear optical experiments on sensitive samples, where vibrational stability, repetitive excitation, and sensitivity to air and moisture constitute a set of challenges often preventing an experiment without photoproduct contamination. As a solution to this problem, we designed, constructed and characterized a compact spinning sample cell suitable for liquid and thin film samples. The spinning sample cell, enclosed in a copper gasket sealed enclosure, enables complete sample exchange in optical experiments with up to 100 kHz repetition rates while maintaining an oxygen and water free environment at the 1 ppm level for over a month. The spinning sample cell was successfully used in a two-dimensional electronic spectroscopy experiment on PbS nanocrystals in solution, eliminating the buildup of the long-lived photoproducts and reducing trap emission in the spinning sample.

  16. Enhancement of Solar Cell Efficiency for Space Applications Using Two-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Postigo P.A.

    2017-01-01

    with the area of photonic crystal patterning has been clearly observed. Finally, a low-cost nanofabrication procedure to obtain high quality two-dimensional photonic crystals in large areas (up to square cm is described.

  17. Comparative two-dimensional gel analysis and microsequencing identifies gelsolin as one of the most prominent downregulated markers of transformed human fibroblast and epithelial cells

    DEFF Research Database (Denmark)

    Vandekerckhove, J; Bauw, G; Vancompernolle, K

    1990-01-01

    downregulated markers typical of the transformed state. Using the information stored in the comprehensive human cellular protein database, we found this protein strongly expressed in several fetal tissues and one of them, epidermis, served as a source for preparative two-dimensional gel electrophoresis. Partial......A systematic comparison of the protein synthesis patterns of cultured normal and transformed human fibroblasts and epithelial cells, using two-dimensional gel protein analysis combined with computerized imaging and data acquisition, identified a 90-kD protein (SSP 5714) as one of the most striking...... and by coelectrophoresis with purified human gelsolin. These results suggest that an important regulatory protein of the microfilament system may play a role in defining the phenotype of transformed human fibroblast and epithelial cells in culture. Udgivelsesdato: 1990-Jul...

  18. Analysis of host-cell proteins in biotherapeutic proteins by comprehensive online two-dimensional liquid chromatography/mass spectrometry

    OpenAIRE

    Doneanu, Catalin E; Xenopoulos, Alex; Fadgen, Keith; Murphy, Jim; Skilton, St. John; Prentice, Holly; Stapels, Martha; Chen, Weibin

    2012-01-01

    Assays for identification and quantification of host-cell proteins (HCPs) in biotherapeutic proteins over 5 orders of magnitude in concentration are presented. The HCP assays consist of two types: HCP identification using comprehensive online two-dimensional liquid chromatography coupled with high resolution mass spectrometry (2D-LC/MS), followed by high-throughput HCP quantification by liquid chromatography, multiple reaction monitoring (LC-MRM). The former is described as a “discovery” assa...

  19. Non-linear two-dimensional model of melt flows and interface instability in aluminum reduction cells

    Science.gov (United States)

    Sun, Haijun; Zikanov, Oleg; Ziegler, Donald P.

    2004-10-01

    We derive a new two-dimensional model for the melt flows and interface instability in aluminum reduction cells. The model is based on the de St. Venant shallow water equations and incorporates the essential features of the system such as the magnetohydrodynamic instability mechanism and non-linear coupling between the flows and interfacial waves. The model is applied to investigate the impact of background melt flows and magnetic field perturbations on the instability.

  20. Assessing CMT cell line stability by two dimensional polyacrylamide gel electrophoresis and mass spectrometry based proteome analysis

    DEFF Research Database (Denmark)

    Zhang, Kelan; Wrzesinski, Krzysztof; Fey, Stephen J

    2008-01-01

    Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) followed by mass spectrometric identification of the proteins in the protein spots has become a central tool in proteomics. CMT167(H), CMT64(M) and CMT170(L) cell lines, selected from a spontaneous mouse lung adenocarcinoma, with high...... to be a useful tool for assessing differences in cell line stability. This approach provided a tool to select the best cell line and optimal subculture period for studies of cancer related phenomena and for testing the effect of potential anticancer drugs....

  1. Two-dimensional high efficiency thin-film silicon solar cells with a lateral light trapping architecture.

    Science.gov (United States)

    Fang, Jia; Liu, Bofei; Zhao, Ying; Zhang, Xiaodan

    2014-08-22

    Introducing light trapping structures into thin-film solar cells has the potential to enhance their solar energy harvesting as well as the performance of the cells; however, current strategies have been focused mainly on harvesting photons without considering the light re-escaping from cells in two-dimensional scales. The lateral out-coupled solar energy loss from the marginal areas of cells has reduced the electrical yield indeed. We therefore herein propose a lateral light trapping structure (LLTS) as a means of improving the light-harvesting capacity and performance of cells, achieving a 13.07% initial efficiency and greatly improved current output of a-Si:H single-junction solar cell based on this architecture. Given the unique transparency characteristics of thin-film solar cells, this proposed architecture has great potential for integration into the windows of buildings, microelectronics and other applications requiring transparent components.

  2. [Mesh structure of two-dimensional tumor microvascular architecture phenotype heterogeneity in non-small cell lung cancer].

    Science.gov (United States)

    Xiong, Zeng; Zhou, Hui; Liu, Jin-Kang; Hu, Cheng-Ping; Zhou, Mo-Ling; Xia, Yu; Zhou, Jian-Hua

    2009-11-01

    To investigate the structural characteristics and clinical significance of two-dimensional tumor microvascular architecture phenotype (2D-TMAP) in non-small cell lung cancer (NSCLC). Thirty surgical specimens of NSCLC were collected. The sections of the tumor tissues corresponding to the slice of CT perfusion imaging were selected to construct the 2D-TMAP expression. Spearman correlation analysis was used to examine the relation between the 2D-TMAP expression and the clinicopathological features of NSCLC. A heterogeneity was noted in the 2D-TMAP expression of NSCLC. The microvascular density (MVD) in the area surrounding the tumor was higher than that in the central area, but the difference was not statistically significant. The density of the microvessels without intact lumen was significantly greater in the surrounding area than in the central area (P=0.030). The total MVD was not correlated to tumor differentiation (r=0.042, P=0.831). The density of the microvessels without intact lumen in the surrounding area was positively correlated to degree of tumor differentiation and lymph node metastasis (r=0.528 and 0.533, P=0.041 and 0.028, respectively), and also to the expressions of vascular endothelial growth factor (VEGF), ephrinB2, EphB4, and proliferating cell nuclear antigen (PCNA) (r=0.504, 0.549, 0.549, and 0.370; P=0.005, 0.002, 0.002, and 0.048, respectively). The degree of tumor differentiation was positively correlated to PCNA and VEGF expression (r=0.604 and 0.370, P=0.001 and 0.048, respectively), but inversely to the integrity of microvascular basement membrane (r=-0.531, P=0.033). The 2D-TMAP suggests the overall state of the micro-environment for tumor growth. The 2D-TMAP of NSCLC regulates angiogenesis and tumor cell proliferation through a mesh-like structure, and better understanding of the characteristics and possible mechanism of 2D-TMAP expression can be of great clinical importance.

  3. Double Dirac cone in two-dimensional phononic crystals beyond circular cells

    Science.gov (United States)

    Dai, Hongqing; Liu, Tingting; Jiao, Junrui; Xia, Baizhan; Yu, Dejie

    2017-04-01

    A double Dirac cone plays a significant role in the design of zero-refractive-index metamaterials without phase variation and topological insulators with pseudospin states. We present a study on the formation of a double Dirac cone in two-dimensional phononic crystals consisting of either hexagonal or triangular columns in air. We arranged hexagonal and triangular columns separately in a honeycomb lattice to explore the influence of phononic crystal symmetry on the formation of the double Dirac cone. The results show that phononic crystals forming a honeycomb lattice with C6v or C6 symmetry induce an accidental degeneracy, but C3v and C3 cannot. We also demonstrate that by varying the filling ratio of the hexagonal columns, a topological phase transformation induced by energy band inversion with dipolar and quadrupolar states occurs near the double Dirac cone. Transmission properties for acoustic tunneling and waveform shaping are confirmed in two numerical simulation examples. A discussion is given on the formation of the double Dirac cone in different phononic crystal symmetries in a honeycomb lattice. The conclusions suggest a new route for designing topological and zero-refractive-index acoustic devices.

  4. Two-Dimensional Computational Flow Analysis and Frictional Characteristics Model for Red Blood Cell under Inclined Centrifuge Microscopy

    Science.gov (United States)

    Funamoto, Kenichi; Hayase, Toshiyuki; Shirai, Atsushi

    Simplified two-dimensional flow analysis is performed in order to simulate frictional characteristics measurement of red blood cells moving on a glass plate in a medium with an inclined centrifuge microscope. Computation under various conditions reveals the influences of parameters on lift, drag, and moment acting on a red blood cell. Among these forces, lift appears only when the cell is longitudinally asymmetric. By considering the balance of forces, the frictional characteristics of the red blood cell are modeled as the sum of Coulomb friction and viscous drag. The model describes the possibility that the red blood cell deforms to expand in the front side in response to the inclined centrifugal force. When velocity exceeds some critical value, the lift overcomes the normal centrifugal force component, and the thickness of the plasma layer between the cell and the glass plate increases from the initial value of the plasma protein thickness.

  5. Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice Boltzmann Model

    International Nuclear Information System (INIS)

    Hua-Bing, Li; Li, Jin; Bing, Qiu

    2008-01-01

    To study two-dimensional red blood cells deforming in a shear Bow with the membrane nonuniform on the rigidity and mass, the membrane is discretized into equilength segments. The fluid inside and outside the red blood cell is simulated by the D2Q9 lattice Boltzmann model and the hydrodynamic forces exerted on the membrane from the inner and outer of the red blood cell are calculated by a stress-integration method. Through the global deviation from the curvature of uniform-membrane, we find that when the membrane is nonuniform on the rigidity, the deviation first decreases with the time increases and implies that the terminal profile of the red blood cell is static. To a red blood cell with the mass nonuniform on the membrane, the deviation becomes more large, and the mass distribution affects the profile of the two sides of the flattened red blood cell in a shear flow. (fundamental areas of phenomenology(including applications))

  6. Identification of mitochondrial proteins and some of their precursors in two-dimensional electrophoretic maps of human cells.

    Science.gov (United States)

    Anderson, L

    1981-04-01

    A set of at least 30 proteins disappears from the two-dimensional electrophoretic pattern of human lymphoid cells treated with various antimitochondrial agents. This set is similar to the set of proteins found in isolated mitochondria (except for the presence of action in the latter group), indicating that the inhibitor effect stops production of a majority of mature mitochondrial proteins. Several proteins having the characteristics of precursors to the major cytoplasmically synthesized mitochondrial proteins can be observed in cells during fast-pulse experiments and in a reticulocyte lysate system fed with total lymphoid cell RNA. In the three major instances of mitochondrial precursor--product processing, the removed peptide is quite basic in each case, suggesting that a lysine- or arginine-rich terminal sequence may be necessary for initial recognition by the mitochondrial protein uptake apparatus. The inhibitor effect allows easy identification of a large set of mitochondrial proteins in two-dimensional maps of various cells, thereby specifying a particularly tractable and functionally distinctive subset of the cellular proteins. The nature and wide scope of the effect support the concept of energy-dependent "vectorial processing" [Schatz, G. (1979) FEBS Lett. 103, 203--211] and indicate that such a mechanism is generally applicable to the major class of cytoplasmically synthesized mitochondrial proteins in mammalian cells.

  7. A two-dimensional two-phase mass transport model for direct methanol fuel cells adopting a modified agglomerate approach

    Science.gov (United States)

    Miao, Zheng; He, Ya-Ling; Li, Xiang-Lin; Zou, Jin-Qiang

    A two-dimensional two-phase mass transport model for liquid-feed direct methanol fuel cells (DMFCs) is presented in this paper. The fluid flow and mass transport across the membrane electrode assembly (MEA) is formulated based on the classical multiphase flow theory in the porous media. The modeling of mass transport in the catalyst layers (CLs) and membrane is given more attentions. The effect of the two-dimensional migration of protons in the electrolyte phase on the liquid flow behavior is considered. Water and methanol crossovers through the membrane are implicitly calculated in the governing equations of momentum and methanol concentration. A modified agglomerate model is developed to characterize the microstructure of the CLs. A self-written computer code is used to solve the inherently coupled differential governing equations. Then this model is applied to investigate the mechanisms of species transport and the distributions of the species concentrations, overpotential and the electrochemical reaction rates in CLs. The effects of radius and overlapping angle of agglomerates on cell performance are also explored in this work.

  8. Two-dimensional gel electrophoresis data for proteomic profiling of Sporothrix yeast cells

    OpenAIRE

    Anderson Messias Rodrigues; Paula H. Kubitschek-Barreira; Geisa Ferreira Fernandes; Sandro Rogério de Almeida; Leila M. Lopes-Bezerra; Zoilo Pires de Camargo

    2015-01-01

    Sporotrichosis is a chronic infection of the skin and subcutaneous tissues of human and other mammals caused by a complex of cryptic dimorphic fungi in the plant-associated order Ophiostomatales. With major differences between routes of transmission, Sporothrix infections are emerging as new threat in tropical and subtropical areas, particularly in form of outbreaks. The mechanisms underlying the pathogenesis and invasion of Sporothrix spp. are still poorly understood and many virulence facto...

  9. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.

    Science.gov (United States)

    Secomb, Timothy W; Styp-Rekowska, Beata; Pries, Axel R

    2007-05-01

    A theoretical method is used to simulate the motion and deformation of mammalian red blood cells (RBCs) in microvessels, based on knowledge of the mechanical characteristics of RBCs. Each RBC is represented as a set of interconnected viscoelastic elements in two dimensions. The motion and deformation of the cell and the motion of the surrounding fluid are computed using a finite-element numerical method. Simulations of RBC motion in simple shear flow of a high-viscosity fluid show "tank-treading'' motion of the membrane around the cell perimeter, as observed experimentally. With appropriate choice of the parameters representing RBC mechanical properties, the tank-treading frequency and cell elongation agree closely with observations over a range of shear rates. In simulations of RBC motion in capillary-sized channels, initially circular cell shapes rapidly approach shapes typical of those seen experimentally in capillaries, convex in front and concave at the rear. An isolated RBC entering an 8-mum capillary close to the wall is predicted to migrate in the lateral direction as it traverses the capillary, achieving a position near the center-line after traveling a distance of about 60 mum. Cell trajectories agree closely with those observed in microvessels of the rat mesentery.

  10. Comparison of Yeast Cell Protein Solubilization Procedures for Two-dimensional Electrophoresis

    DEFF Research Database (Denmark)

    Harder, A; Wildgruber, R; Nawrocki, A

    1999-01-01

    with sodium dodecyl sulfate (SDS) buffer, consisting of 1% SDS and 100 mM tris(hydroxymethyl)aminomethane (Tris)-HCl, pH 7.0, followed by dilution with "standard" lysis buffer, and (iii) boiling the sample with SDS during cell lysis, followed by dilution with thiourea/urea lysis buffer (2 M thiourea/ 7 M urea...... sonication (method ii). Protein disaggregation and solubilization of high Mr proteins were further improved by pre-boiling with SDS and using thiourea/urea lysis buffer instead of "standard" lysis buffer (procedure iii)....... molecular mass proteins. The procedures employed were sonication, followed by (i) protein solubilization with "standard" lysis buffer (9 M urea, 2% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 1% dithiothreitol (DTT), 2% v/v carrier ampholytes, (ii) presolubilization of proteins...

  11. Two dimensional numerical simulation of gas discharges: comparison between particle-in-cell and FCT techniques

    Energy Technology Data Exchange (ETDEWEB)

    Soria-Hoyo, C; Castellanos, A [Departamento de Electronica y Electromagnetismo, Facultad de Fisica, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain); Pontiga, F [Departamento de Fisica Aplicada II, EUAT, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain)], E-mail: cshoyo@us.es

    2008-10-21

    Two different numerical techniques have been applied to the numerical integration of equations modelling gas discharges: a finite-difference flux corrected transport (FD-FCT) technique and a particle-in-cell (PIC) technique. The PIC technique here implemented has been specifically designed for the simulation of 2D electrical discharges using cylindrical coordinates. The development and propagation of a streamer between two parallel electrodes has been used as a convenient test to compare the performance of both techniques. In particular, the phase velocity of the cathode directed streamer has been used to check the internal consistency of the numerical simulations. The results obtained from the two techniques are in reasonable agreement with each other, and both techniques have proved their ability to follow the high gradients of charge density and electric field present in this type of problems. Moreover, the streamer velocities predicted by the simulation are in accordance with the typical experimental values.

  12. The role of vascular actors in two dimensional dialogue of human bone marrow stromal cell and endothelial cell for inducing self-assembled network.

    Directory of Open Access Journals (Sweden)

    Haiyan Li

    Full Text Available Angiogenesis is very important for vascularized tissue engineering. In this study, we found that a two-dimensional co-culture of human bone marrow stromal cell (HBMSC and human umbical vein endothelial cell (HUVEC is able to stimulate the migration of co-cultured HUVEC and induce self-assembled network formation. During this process, expression of vascular endothelial growth factor (VEGF₁₆₅ was upregulated in co-cultured HBMSC. Meanwhile, VEGF₁₆₅-receptor2 (KDR and urokinase-type plasminogen activator (uPA were upregulated in co-cultured HUVEC. Functional studies show that neutralization of VEGF₁₆₅ blocked the migration and the rearrangement of the cells and downregulated the expression of uPA and its receptor. Blocking of vascular endothelial-cadherin (VE-cad did not affect the migration of co-cultured HUVEC but suppressed the self-assembled network formation. In conclusion, co-cultures upregulated the expression of VEGF₁₆₅ in co-cultured HBMSC; VEGF₁₆₅ then activated uPA in co-cultured HUVEC, which might be responsible for initiating the migration and the self-assembled network formation with the participation of VE-cad. All of these results indicated that only the direct contact of HBMSC and HUVEC and their respective dialogue are sufficient to stimulate secretion of soluble factors and to activate molecules that are critical for self-assembled network formation which show a great application potential for vascularization in tissue engineering.

  13. Two-dimensional real-time blood flow and temperature of soft tissue around maxillary anterior implants.

    Science.gov (United States)

    Nakamoto, Tetsuji; Kanao, Masato; Kondo, Yusuke; Kajiwara, Norihiro; Masaki, Chihiro; Takahashi, Tetsu; Hosokawa, Ryuji

    2012-12-01

    The aims of this study were to (1) evaluate the basic nature of soft tissue surrounding maxillary anterior implants by simultaneous measurements of blood flow and surface temperature and (2) analyze differences with and without bone grafting associated with implant placement to try to detect the signs of surface morphology change. Twenty maxillary anterior implant patients, 10 bone grafting and 10 graftless, were involved in this clinical trial. Soft tissue around the implant was evaluated with 2-dimensional laser speckle imaging and a thermograph. Blood flow was significantly lower in attached gingiva surrounding implants in graftless patients (P = 0.0468). On the other hand, it was significantly lower in dental papillae (P = 0.0254), free gingiva (P = 0.0198), and attached gingiva (P = 0.00805) in bone graft patients. Temperature was significantly higher in free gingiva (P = 0.00819) and attached gingiva (P = 0.00593) in graftless patients, whereas it was significantly higher in dental papilla and free gingiva in implants with bone grafting. The results suggest that simultaneous measurements of soft-tissue blood flow and temperature is a useful technique to evaluate the microcirculation of soft tissue surrounding implants.

  14. Identification of cellular proteome using two-dimensional difference gel electrophoresis in ST cells infected with transmissible gastroenteritis coronavirus.

    Science.gov (United States)

    Zhang, Xin; Shi, Hong-Yan; Chen, Jian-Fei; Shi, Da; Lang, Hong-Wu; Wang, Zhong-Tian; Feng, Li

    2013-07-16

    Transmissible gastroenteritis coronavirus (TGEV) is an enteropathogenic coronavirus that causes diarrhea in pigs, which is correlated with high morbidity and mortality in suckling piglets. Information remains limited about the comparative protein expression of host cells in response to TGEV infection. In this study, cellular protein response to TGEV infection in swine testes (ST) cells was analyzed, using the proteomic method of two-dimensional difference gel electrophoresis (2D DIGE) coupled with MALDI-TOF-TOF/MS identification. 33 differentially expressed protein spots, of which 23 were up-regulated and 10 were down-regulated were identified. All the protein spots were successfully identified. The identified proteins were involved in the regulation of essential processes such as cellular structure and integrity, RNA processing, protein biosynthesis and modification, vesicle transport, signal transduction, and the mitochondrial pathway. Western blot analysis was used to validate the changes of alpha tubulin, keratin 19, and prohibitin during TGEV infection. To our knowledge, we have performed the first analysis of the proteomic changes in host cell during TGEV infection. 17 altered cellular proteins that differentially expressed in TGEV infection were identified. The present study provides protein-related information that should be useful for understanding the host cell response to TGEV infection and the underlying mechanism of TGEV replication and pathogenicity.

  15. Difluorobenzothiadiazole based two-dimensional conjugated polymers with triphenylamine substituted moieties as pendants for bulk heterojunction solar cells

    Directory of Open Access Journals (Sweden)

    W. H. Lee

    2017-11-01

    Full Text Available Three donor/acceptor (D/A-type two-dimensional polythiophenes (PTs; PBTFA13, PBTFA12, PBTFA11 featuring difluorobenzothiadiazole (DFBT derivatives as the conjugated (acceptor units in the polymer backbone and tertbutyl–substituted triphenylamine (tTPA-containing moieties as (donor pendants have been synthesized and characterized. These PTs exhibited good thermal stabilities, broad absorption spectra, and narrow optical band gaps. The cutoff wavelength of the UV–Vis absorption band was red-shifted upon increasing the content of the DFBT units in the PTs. Bulk heterojunction solar cells having an active layer comprising blends of the PTs and fullerene derivatives [6,6] phenyl-C61/71-butyric acid methyl ester (PC61BM/PC71BM were fabricated; their photovoltaic performance was strongly dependent on the content of the DFBT derivative in the PT. Incorporating a suitable content of the DFBT derivative in the polymer backbone enhanced the solar absorption ability and conjugation length of the PTs. The photovoltaic properties of the PBTFA13-based solar cells were superior to those of the PBTFA11- and PBTFA12-based solar cells.

  16. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  17. Analysis of the Listeria cell wall proteome by two-dimensional nanoliquid chromatography coupled to mass spectrometry.

    Science.gov (United States)

    Calvo, Enrique; Pucciarelli, M Graciela; Bierne, Hélène; Cossart, Pascale; Albar, Juan Pablo; García-Del Portillo, Francisco

    2005-02-01

    Genome analyses have revealed that the Gram-positive bacterial species Listeria monocytogenes and L. innocua contain a large number of genes encoding surface proteins predicted to be covalently bound to the cell wall (41 and 34, respectively). The function of most of these proteins is unknown and they have not even been identified biochemically. Here, we report the first characterization of the Listeria cell wall proteome using a nonelectrophoretic approach. The material analyzed consisted of a peptide mixture obtained from a cell wall extract insoluble in boiling 4% SDS. This extract, containing peptidoglycan (intrinsically resistant to proteases) and strongly associated proteins, was digested with trypsin in a solution with 0.01% SDS, used to favor protein digestion throughout the peptidoglycan. The resulting complex peptide mixture was fractionated and analyzed by two-dimensional nanoliquid chromatography coupled to ion-trap mass spectrometry. A total of 30 protein species were unequivocally identified in cell wall extracts of the genome strains L. monocytogenes EGD-e (19 proteins) and L. innocua CLIP11262 (11 proteins). Among them, 20 proteins bearing an LPXTG motif recognized for covalent anchoring to the peptidoglycan were identified. Other proteins detected included peptidoglycan-lytic enzymes, a penicillin-binding protein, and proteins bearing an NXZTN motif recently proposed to direct protein anchoring to the peptidoglycan. The marked sensitivity of the method makes it highly attractive in the post-genome era for defining the cell wall proteome in any bacterial species. This information will be useful to study novel protein-peptidoglycan associations and to rapidly identify new targets in the surface of important bacterial pathogens.

  18. Cytoskeletal proteins from human skin fibroblasts, peripheral blood leukocytes, and a lymphoblastoid cell line compared by two-dimensional gel electrophoresis

    International Nuclear Information System (INIS)

    Giometti, C.S.; Willard, K.E.; Anderson, N.L.

    1982-01-01

    Differences in proteins between cells grown as suspension cultures and those grown as attached cultures were studied by comparing the proteins of detergent-resistant cytoskeletons prepared from peripheral blood leukocytes and a lymphoblastoid cell line (GM607) (both grown as suspension cultures) and those of human skin fibroblasts (grown as attached cultures) by two-dimensional gel electrophoresis. The major cytoskeletal proteins of the leukocytes were also present in the protein pattern of GM607 cytoskeletons. In contrast, the fibroblast cytoskeletal protein pattern contained four groups of proteins that differed from the patterns of the leukocytes and GM607. In addition, surface labeling of GM607 and human fibroblasts with 125 I demonstrated that substantial amounts of vimentin and actin are exposed at the surface of the attached fibroblasts, but there is little evidence of similar exposure at the surface of the suspension-grown GM607. These results demonstrate some differences in cytoskeletal protein composition between different types of cells could be related to their ability or lack of ability to grow as attached cells in tissue culture

  19. Analysis of effects of laser profiles on fast electron generation by two-dimensional Particle-In-Cell simulations

    International Nuclear Information System (INIS)

    Hata, M.

    2010-01-01

    Complete text of publication follows. A cone-guided target is used in the Fast Ignition Realization Experiment project phase-I (FIREX-I) and optimization of its design is performed. However a laser profile is not optimized much, because the laser profile that is the best for core heating is not known well. To find that, it is useful to investigate characteristics of generated fast electrons in each condition of different laser profiles. In this research, effects of laser profiles on fast electron generation are investigated on somewhat simple conditions by two-dimensional Particle-In-Cell simulations. In these simulations, a target is made up of Au pre-plasma and Au plasma. The Au pre-plasma has the exponential profile in the x direction with the scale length L = 4.0 μm and the density from 0.10 n cr to 20 n cr . The Au plasma has the flat profile in the x direction with 10 μm width and 20 n cr . Plasma profiles are uniform in the y direction. The ionization degree and the mass number of plasmas are 40 and 197, where the ionization degree is determined by PINOCO simulations. PINOCO is a two-dimensional radiation hydrodynamics simulation code, which simulates formation of the high-density plasma during the compression phase in the fast ignition. A laser is assumed to propagate as plane wave from the negative x direction to the positive x direction. Laser profiles are supposed to be uniform in the y direction. Three different laser profiles, namely flat one with t flat = 100 fs, Gaussian one with t rise/fall = 47.0 fs and flat + Gaussian one with t rise/fall = 23.5 fs and t flat = 50 fs are used. The energy and the peak intensity are constant with E = 10 7 J/cm 2 and I L = 10 20 W/cm 2 in all cases of different laser profiles. We compare results in each condition of three different laser profiles and investigate effects of laser profiles on fast electron generation. Time-integrated energy spectra are similar in all cases of three different laser profiles. In the

  20. Two-dimensional Reconnection Dynamics Using Particle-In-Cell and Hall MHD Simulations: A Comparative Study

    Science.gov (United States)

    Bessho, N.; Bhattacharjee, A.; Chandran, B.

    2003-10-01

    We present results of two new studies on magnetic reconnection dynamics obtained from two-dimensional fully electromagnetic particle-in-cell (PIC) simulations, and compare them with results obtained from earlier Hall MHD theory and simulations using the same initial conditions. Our studies include realistic values of me/mi. The first study involves the scaling of the maximum electron outflow velocity from the reconnnection region in the GEM Reconnection Challenge as a function of the electron mass, which Hall MHD models predict to scale as the electron Alfven speed. (This study has significant implications for particle detectors from the upcoming NASA MMS mission.) The PIC simulations exhibit flows that are uniformly smaller than the electron Alfven speed, with deviations that increase in magnitude as the mass ratio reaches its actual physical value. The second study involves forced magnetic reconnection in a Harris sheet driven by external electric fields which produce inward boundary flows. It is observed in the PIC simulations that the reconnection rate in the linear regime increases algebraically in time, and is followed by a sudden near-explosive enhancement in the nonlinear regime, qualitatively similar to that seen in earlier Hall MHD simulations. Quantitative comparisons between PIC and previous Hall MHD theory and simulations will be reported.

  1. Avoiding acidic region streaking in two-dimensional gel electrophoresis: case study with two bacterial whole cell protein extracts.

    Science.gov (United States)

    Roy, Arnab; Varshney, Umesh; Pal, Debnath

    2014-09-01

    Acidic region streaking (ARS) is one of the lacunae in two-dimensional gel electrophoresis (2DE) of bacterial proteome. This streaking is primarily caused by nucleic acid (NuA) contamination and poses major problem in the downstream processes like image analysis and protein identification. Although cleanup and nuclease digestion are practiced as remedial options, these strategies may incur loss in protein recovery and perform incomplete removal of NuA. As a result, ARS has remained a common observation across publications, including the recent ones. In this work, we demonstrate how ultrasound wave can be used to shear NuA in plain ice-cooled water, facilitating the elimination of ARS in the 2DE gels without the need for any additional sample cleanup tasks. In combination with a suitable buffer recipe, IEF program and frequent paper-wick changing approach, we are able to reproducibly demonstrate the production of clean 2DE gels with improved protein recovery and negligible or no ARS. We illustrate our procedure using whole cell protein extracts from two diverse organisms, Escherichia coli and Mycobacterium smegmatis. Our designed protocols are straightforward and expected to provide good 2DE gels without ARS, with comparable times and significantly lower cost.

  2. Mapping of surface glycoproteins of Trypanosoma cruzi by two-dimensional electrophoresis. A correlation with the cell invasion capacity.

    Science.gov (United States)

    Andrews, N W; Katzin, A M; Colli, W

    1984-05-02

    The cell-surface iodinatable proteins of Trypanosoma cruzi have been analyzed by two-dimensional polyacrylamide gel electrophoresis under equilibrium conditions. Antigenic polypeptides were characterized after immunoprecipitation and glycoproteins were identified by means of lectin-affinity chromatography. Two glycoproteins, with affinity for concanavalin A, were found to be common to both infective (trypomastigote) and non-infective (epimastigote) forms: protein 1 (90 kDa, pI 5.5-6.5) and protein 2 (80 kDa, pI 5.3-6.3). In epimastigotes a specific concanavalin-A-binding surface glycoprotein (70 kDa, pI 5.5) was identified. Trypomastigote forms, on the other hand, presented several specific iodinatable surface components: glycoproteins 3(85 kDa, pI 5.5), 4 (85 kDa, pI 5.0), 6 (100 kDa, pI 6.5), 7 (120 kDa, pI 6.3), 8 (68 kDa, pI 6.7) and several minor high-molecular-mass acid proteins, all containing glucose and/or mannose, and glycoprotein 5 (85 kDa, pI 6.3-7.5), containing N-acetyl-D-glucosamine (Tc-85). Proteins 1, 2 and 5 were the only ones which gave clear evidence of charge heterogeneity. Most of the surface proteins of trypomastigote forms, the exception being proteins 3, 4 and 8, were removed by treatment with trypsin. This proteolytic treatment results in 90% inhibition of the in vitro vertebrate-cell-invasion capacity of the parasites. Upon reincubation in culture medium for 4 h, the trypsin-removed glycoproteins are again detected, an observation that correlates well with the recovery of the cell-penetration capacity observed in the same period.

  3. Use of Two-Dimensional Fluorescence Spectroscopy for Monitoring of the Effect of Dimethyl Sulfoxide in the Growth and Viability of Immobilized Plant Cells

    Czech Academy of Sciences Publication Activity Database

    Vaňková, Radomíra; Kuncová, Gabriela; Podrazký, Ondřej; Gaudinová, Alena; Vaněk, Tomáš

    2003-01-01

    Roč. 57, č. 12 (2003), s. 632-635 ISSN 0354-7531 R&D Projects: GA MŠk OC 840.10; GA MŠk OC 843.10 Institutional research plan: CEZ:AV0Z4072921; CEZ:AV0Z5038910 Keywords : Two-Dimensional Fluorescence Spectroscopy * Immobilized Plant Cells * Tobacco Subject RIV: CE - Biochemistry

  4. Analysis of host-cell proteins in biotherapeutic proteins by comprehensive online two-dimensional liquid chromatography/mass spectrometry.

    Science.gov (United States)

    Doneanu, Catalin E; Xenopoulos, Alex; Fadgen, Keith; Murphy, Jim; Skilton, St John; Prentice, Holly; Stapels, Martha; Chen, Weibin

    2012-01-01

    Assays for identification and quantification of host-cell proteins (HCPs) in biotherapeutic proteins over 5 orders of magnitude in concentration are presented. The HCP assays consist of two types: HCP identification using comprehensive online two-dimensional liquid chromatography coupled with high resolution mass spectrometry (2D-LC/MS), followed by high-throughput HCP quantification by liquid chromatography, multiple reaction monitoring (LC-MRM). The former is described as a "discovery" assay, the latter as a "monitoring" assay. Purified biotherapeutic proteins (e.g., monoclonal antibodies) were digested with trypsin after reduction and alkylation, and the digests were fractionated using reversed-phase (RP) chromatography at high pH (pH 10) by a step gradient in the first dimension, followed by a high-resolution separation at low pH (pH 2.5) in the second dimension. As peptides eluted from the second dimension, a quadrupole time-of-flight mass spectrometer was used to detect the peptides and their fragments simultaneously by alternating the collision cell energy between a low and an elevated energy (MSE methodology). The MSE data was used to identify and quantify the proteins in the mixture using a proven label-free quantification technique ("Hi3" method). The same data set was mined to subsequently develop target peptides and transitions for monitoring the concentration of selected HCPs on a triple quadrupole mass spectrometer in a high-throughput manner (20 min LC-MRM analysis). This analytical methodology was applied to the identification and quantification of low-abundance HCPs in six samples of PTG1, a recombinant chimeric anti-phosphotyrosine monoclonal antibody (mAb). Thirty three HCPs were identified in total from the PTG1 samples among which 21 HCP isoforms were selected for MRM monitoring. The absolute quantification of three selected HCPs was undertaken on two different LC-MRM platforms after spiking isotopically labeled peptides in the samples. Finally

  5. Integrable two dimensional supersystems

    International Nuclear Information System (INIS)

    Tripathy, K.C.; Tripathy, L.K.

    1988-08-01

    The integrability of two dimensional time-dependent classical systems is examined in N=2 superspace using Dirac's second class constraints. The invariants involving quadratic powers in velocities for super harmonic oscillator and super Kepler potentials have been derived. (author). 5 refs

  6. Expression of Raf kinase inhibitor protein in human hepatoma tissues by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight methods.

    Science.gov (United States)

    Tsao, D A; Shiau, Y F; Tseng, C S; Chang, H R

    2016-01-01

    Hepatocellular carcinoma (HCC) is the most common malignant liver tumor. To reduce the mortality and improve the effectiveness of therapy, it is important to search for changes in tumor-specific biomarkers whose function may involve in disease progression and which may be useful as potential therapeutic targets. Materials and Mehtods: In this study, we use two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to observe proteome alterations of 12 tissue pairs isolated from HCC patients: Normal and tumorous tissue. Comparing the tissue types with each other, 40 protein spots corresponding to fifteen differentially expressed between normal and cancer part of HCC patients. Raf kinase inhibitor protein (RKIP), an inhibitor of Raf-mediated activation of mitogen-activated protein kinase/extracellular signal-regulated kinase, may play an important role in cancer metastasis and cell proliferation and migration of human hepatoma cells. RKIP may be considered as a marker for HCC, because its expression level changes considerably in HCC compared with normal tissue. In addition, we used the methods of Western blotting and real time-polymerase chain reaction to analysis the protein expression and gene expression of RKIP. The result showed RKIP protein and gene expression in tumor part liver tissues of HCC patient is lower than peritumorous non-neoplastic liver tissue of the corresponding HCC samples. These results strongly suggest that RKIP may be considered to be a marker for HCC and RKIP are down-regulated in liver cancer cell.

  7. Proteins pattern alteration in AZT-treated K562 cells detected by two-dimensional gel electrophoresis and peptide mass fingerprinting

    Directory of Open Access Journals (Sweden)

    Mignogna Giuseppina

    2006-03-01

    Full Text Available Abstract In this study we report the effect of AZT on the whole protein expression profile both in the control and the AZT-treated K562 cells, evidenced by two-dimensional gel electrophoresis and peptide mass fingerprinting analysis. Two-dimensional gels computer digital image analysis showed two spots that appeared up-regulated in AZT-treated cells and one spot present only in the drug exposed samples. Upon extraction and analysis by peptide mass fingerprinting, the first two spots were identified as PDI-A3 and stathmin, while the third one was proved to be NDPK-A. Conversely, two protein spots were present only in the untreated K562 cells, and were identified as SOD1 and HSP-60, respectively.

  8. Specific proteins synthesized during the viral lytic cycle in vaccinia virus-infected HeLa cells: analysis by high-resolution, two-dimensional gel electrophoresis

    International Nuclear Information System (INIS)

    Carrasco, L.; Bravo, R.

    1986-01-01

    The proteins synthesized in vaccinia-infected HeLa cells have been analyzed at different times after infection by using two-dimensional gel electrophoresis. Vaccinia-infected cells present up to 198 polypeptides (138 acidic, isoelectric focusing; 60 basic, nonequilibrium pH gradient electrophoresis) not detected in control cells. Cells infected in the presence of cycloheximide show 81 additional polypeptides after cycloheximide removal, resulting in a total estimate of 279 proteins induced after vaccinia infection. The glycoproteins made at various time postinfection were also analyzed. At least 13 proteins labeled with [ 3 H]glucosamine were detected in vaccinia-infected HeLa cells

  9. Overview of online two-dimensional liquid chromatography based on cell membrane chromatography for screening target components from traditional Chinese medicines.

    Science.gov (United States)

    Muhammad, Saqib; Han, Shengli; Xie, Xiaoyu; Wang, Sicen; Aziz, Muhammad Majid

    2017-01-01

    Cell membrane chromatography is a simple, specific, and time-saving technique for studying drug-receptor interactions, screening of active components from complex mixtures, and quality control of traditional Chinese medicines. However, the short column life, low sensitivity, low column efficiency (so cannot resolve satisfactorily mixture of compounds), low peak capacity, and inefficient in structure identification were bottleneck in its application. Combinations of cell membrane chromatography with multidimensional chromatography such as two-dimensional liquid chromatography and high sensitivity detectors like mass have significantly reduced many of the above-mentioned shortcomings. This paper provides an overview of the current advances in online two-dimensional-based cell membrane chromatography for screening target components from traditional Chinese medicines with particular emphasis on the instrumentation, preparation of cell membrane stationary phase, advantages, and disadvantages compared to alternative approaches. The last section of the review summarizes the applications of the online two-dimensional high-performance liquid chromatography based cell membrane chromatography reported since its emergence to date (2010-June 2016). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Major proteins in normal human lymphocyte subpopulations separated by fluorescence-activated cell sorting and analyzed by two-dimensional gel electrophoresis

    DEFF Research Database (Denmark)

    Madsen, P S; Hokland, M; Ellegaard, J

    1988-01-01

    We have compared the overall patterns of protein synthesis of normal human lymphocyte subpopulations taken from five volunteers using high resolution two-dimensional gel electrophoresis. The lymphocytes were isolated using density gradient centrifugation, labeled with subtype-specific MoAbs, and ......We have compared the overall patterns of protein synthesis of normal human lymphocyte subpopulations taken from five volunteers using high resolution two-dimensional gel electrophoresis. The lymphocytes were isolated using density gradient centrifugation, labeled with subtype-specific Mo...... markers were observed in all cell types. All the putative protein markers have been identified in the protein database of human peripheral blood mononuclear cells (PBMCs) (see accompanying article by Celis et al.). Comparison of the overall patterns of protein synthesis of the unsorted PBMCs with those...

  11. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  12. Concordance and reproducibility between M-mode, tissue Doppler imaging, and two-dimensional strain imaging in the assessment of mitral annular displacement and velocity in patients with various heart conditions

    DEFF Research Database (Denmark)

    de Knegt, Martina Chantal; Biering-Sorensen, Tor; Sogaard, Peter

    2014-01-01

    between motion mode (M-mode), colour tissue Doppler imaging (TDI), and two-dimensional strain imaging (2DSI) when measuring MA displacement and systolic velocity. METHODS AND RESULTS: Using GE Healthcare Vivid 7 and E9 and Echopac BT11 software, MA displacement and velocity measurements by 2DSI, TDI...

  13. Two-dimensional ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)

    2000-03-31

    The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)

  14. A comparison of left ventricular mass between two-dimensional echocardiography, using fundamental and tissue harmonic imaging, and cardiac MRI in patients with hypertension

    International Nuclear Information System (INIS)

    Alfakih, Khaled; Bloomer, Tim; Bainbridge, Samantha; Bainbridge, Gavin; Ridgway, John; Williams, Gordon; Sivananthan, Mohan

    2004-01-01

    Purpose: To compare left ventricular mass (LVM) as measured by two-dimensional (2D) echocardiography using two different calculation methods: truncated ellipse (TE) and area length (AL), in both fundamental and tissue harmonic imaging frequencies, to LVM as measured by, the current gold standard, cardiac magnetic resonance imaging (MRI). Turbo gradient echo (TGE) pulse sequence was utilized for MRI. Materials and methods: Thirty-two subjects with history of hypertension were recruited. The images were acquired, contours were traced and the LVM was calculated for all four different echocardiography methods as well as for the cardiac MRI method. The intra-observer variabilities were calculated. The four different echocardiography methods were compared to cardiac MRI using the method described by Bland and Altman. Results: Twenty-five subjects had adequate paired data sets. The mean LVM as measured by cardiac MRI was 162±55 g and for the four different echocardiography methods were: fundamental AL 165±55 g, harmonic AL 168±53 g, fundamental TE 148±50 g, harmonic TE 149±45 g. The intra-observer variability for cardiac MRI method, expressed as bias ± 1 standard deviation of the difference (S.D.D.), was 2.3±9.2 g and for the four different echocardiography methods were: fundamental TE 0.4±26.8 g, fundamental AL 0.6±27.0 g, harmonic TE 6.7±21.8 g, harmonic AL 6.4±22.9 g. The mean LVM for the AL method was closest to the cardiac MRI technique, while TE underestimated LVM. The 95% limits of agreement were consistently wide for all the 2D echocardiography modalities when compared with the cardiac MRI technique. Conclusion: The intra-observer variability in measurements of 2D echocardiographic LVM, together with the wide limits of agreement when compared to the gold standard (cardiac MRI) are sufficiently large to make serial estimates of LVM, of single patients or small groups of subjects, by 2D echocardiography, unreliable

  15. Major proteins in normal human lymphocyte subpopulations separated by fluorescence-activated cell sorting and analyzed by two-dimensional gel electrophoresis

    DEFF Research Database (Denmark)

    Madsen, P S; Hokland, M; Ellegaard, J

    1988-01-01

    We have compared the overall patterns of protein synthesis of normal human lymphocyte subpopulations taken from five volunteers using high resolution two-dimensional gel electrophoresis. The lymphocytes were isolated using density gradient centrifugation, labeled with subtype-specific Mo......Abs, and separated to a high degree of homogeneity by FACS into CD4+ helper T cells, CD8+ suppressor T cells, CD20+ B cells, and N901 (NHK-1)+ NK cells. The four lymphocyte subpopulations were labeled with [35S]methionine for 14 hr, solubilized in lysis buffer, and analyzed by two-dimensional gel electrophoresis...... (IEF). Of about 1000 proteins resolved in each case, most were found to be common to all subpopulations. However, eight putative markers for B1+ (proteins 5525, Mr = 63,700; 5621, Mr = 63,700; 8311, Mr = 36,900; 2202, Mr = 36,300; 6121, Mr = 30,300; 106, Mr = 29,300; 5009, Mr = 23,000; 8012, Mr = 11...

  16. Cell and Tissue Engineering

    CERN Document Server

    2012-01-01

    Cell and Tissue Engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field. The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of ...

  17. Two-Dimensional Measurement of n+-p Asymmetrical Junctions in Multicrystalline Silicon Solar Cells Using AFM-Based Electrical Techniques with Nanometer Resolution: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C. S.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.; Heath, J. T.

    2011-07-01

    Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.

  18. Performance analysis of three-dimensional-triple-level cell and two-dimensional-multi-level cell NAND flash hybrid solid-state drives

    Science.gov (United States)

    Sakaki, Yukiya; Yamada, Tomoaki; Matsui, Chihiro; Yamaga, Yusuke; Takeuchi, Ken

    2018-04-01

    In order to improve performance of solid-state drives (SSDs), hybrid SSDs have been proposed. Hybrid SSDs consist of more than two types of NAND flash memories or NAND flash memories and storage-class memories (SCMs). However, the cost of hybrid SSDs adopting SCMs is more expensive than that of NAND flash only SSDs because of the high bit cost of SCMs. This paper proposes unique hybrid SSDs with two-dimensional (2D) horizontal multi-level cell (MLC)/three-dimensional (3D) vertical triple-level cell (TLC) NAND flash memories to achieve higher cost-performance. The 2D-MLC/3D-TLC hybrid SSD achieves up to 31% higher performance than the conventional 2D-MLC/2D-TLC hybrid SSD. The factors of different performance between the proposed hybrid SSD and the conventional hybrid SSD are analyzed by changing its block size, read/write/erase latencies, and write unit of 3D-TLC NAND flash memory, by means of a transaction-level modeling simulator.

  19. New apparatus for direct counting of β particles from two-dimensional gels and an application to changes in protein synthesis due to cell density

    International Nuclear Information System (INIS)

    Anderson, H.L.; Puck, T.T.; Shera, E.B.

    1987-07-01

    A new method is described for scanning two-dimensional gels by the direct counting of β particles instead of autoradiography. The methodology is described; results are compared with autoradiographic results; and data are presented demonstrating changed patterns of protein synthesis accompanying changes in cell density. The method is rapid and permits identification of differences in protein abundance of approximately 10% for a substantial fraction of the more prominent proteins. A modulation effect of more than 5 standard deviations, accompanying contact inhibition of cell growth, is shown to occur for an appreciable number of these proteins. The method promises to be applicable to a variety of biochemical and genetic experiments designed to delineate changes in protein synthesis accompanying changes in genome, molecular environment, history, and state of differentiation of the cell populations studied. 13 refs., 8 figs., 4 tabs

  20. Analytical analysis of slow and fast pressure waves in a two-dimensional cellular solid with fluid-filled cells.

    Science.gov (United States)

    Dorodnitsyn, Vladimir; Van Damme, Bart

    2016-06-01

    Wave propagation in cellular and porous media is widely studied due to its abundance in nature and industrial applications. Biot's theory for open-cell media predicts the existence of two simultaneous pressure waves, distinguished by its velocity. A fast wave travels through the solid matrix, whereas a much slower wave is carried by fluid channels. In closed-cell materials, the slow wave disappears due to a lack of a continuous fluid path. However, recent finite element (FE) simulations done by the authors of this paper also predict the presence of slow pressure waves in saturated closed-cell materials. The nature of the slow wave is not clear. In this paper, an equivalent unit cell of a medium with square cells is proposed to permit an analytical description of the dynamics of such a material. A simplified FE model suggests that the fluid-structure interaction can be fully captured using a wavenumber-dependent spring support of the vibrating cell walls. Using this approach, the pressure wave behavior can be calculated with high accuracy, but with less numerical effort. Finally, Rayleigh's energy method is used to investigate the coexistence of two waves with different velocities.

  1. From cells to tissue: A continuum model of epithelial mechanics

    Science.gov (United States)

    Ishihara, Shuji; Marcq, Philippe; Sugimura, Kaoru

    2017-08-01

    A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model incorporates stress and deformation tensors, which can be compared with experimental data. Focusing on the interplay between cell shape changes and cell rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow, including a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme for the understanding of the orchestration of morphogenetic processes in individual cells to achieve epithelial tissue morphogenesis.

  2. Two dimensional gel human protein databases offer a systematic approach to the study of cell proliferation and differentiation

    DEFF Research Database (Denmark)

    Celis, J E; Gesser, B; Dejgaard, K

    1989-01-01

    Human cellular protein databases have been established using computer-analyzed 2D gel electrophoresis. These databases, which include information on various properties of proteins, offer a global approach to the study of regulation of cell proliferation and differentiation. Furthermore, thanks to...

  3. Two-dimensional Al hydroxide interaction with cancerous cell membrane building units: Complexed free energy and orientation analysis

    Science.gov (United States)

    Tsukanov, A. A.; Psakhie, S. G.

    2017-09-01

    The application of hierarchical nanoparticles based on metal hydroxides in biomedicine, including anticancer therapy and medical imaging, is a rapidly developing field. Low-dimensional aluminum oxyhydroxide nanomaterials (AlOOH-NM) are quite promising base to develop hybrid theranostic nano-agents with core-shell architecture, which is determined by AlOOH-NMs physicochemical properties such as: large specific surface area, pH-dependent charge, amphoteric behavior, high surface density of polar groups capable to form non-covalent bonds, low or null cytotoxicity and biocompatibility. Characterization of the system behavior within interface between NM and plasmatic membrane is crucial for the understanding of nano-agent—cell interaction. In the present work the complex in silico study including the free energy estimation and orientation analysis of phosphatidylcholine (POPC) and phosphatidylethanolamine (POPE) lipids interacting with AlOOH nanosheet was conducted to understand the effect of such nanomaterial on cancerous cell plasmatic membrane.

  4. Ocular Proteomics with Emphasis on Two-Dimensional Gel Electrophoresis and Mass Spectrometry

    OpenAIRE

    Mandal, Nakul; Heegaard, Steffen; Prause, Jan Ulrik; Honoré, Bent; Vorum, Henrik

    2009-01-01

    Abstract The intention of this review is to provide an overview of current methodologies employed in the rapidly developing field of ocular proteomics with emphasis on sample preparation, two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Appropriate sample preparation for the diverse range of cells and tissues of the eye is essential to ensure reliable results. Current methods of protein staining for 2D-PAGE, protein labelling for two-dimensional differe...

  5. Generation of eye field/optic vesicle-like structures from human embryonic stem cells under two-dimensional and chemically defined conditions.

    Science.gov (United States)

    Parvini, Maryam; Parivar, Kazem; Safari, Fatemeh; Tondar, Mahdi

    2015-03-01

    Despite the enormous progress in studying retinal cell differentiation from human embryonic stem cells (hESCs), none of the reported protocols have produced a cost-effective eye field cells with the capability to further differentiate into retinal derivatives. In this study, by drawing chemicals on our four-step differentiation strategy, we demonstrated the ability of hESCs in assembling such qualifications to follow human retinogenesis in a serum- and feeder-free adherent condition. Two-dimensional (2D) populations of eye field cells arose within early forebrain progeny upon hESCs differentiation. Gene expression analysis showed that the treatment of hESCs with a combination of selected small molecules (SMs) gave rise to the higher expressions of eye field-specific genes, PAX6, RX, and SIX3. Thereafter, a subset of cells gained the transient features of advancing retinal differentiation, including optic vesicle (OV)-like structures, which expressed MITF and CHX10 in a manner imitated in vivo human retinal development. The competency of derived cells in differentiation to retinal derivatives was further investigated. The gene analysis of the cells showed more propensity for generating retinal pigment epithelial (RPE) than neural retina (NR). The generation of OV-like structures in 2D cultures can shed light on molecular events governing retinal specification. It can also facilitate the study of human retinal development.

  6. Chemo-sensitivity of Two-dimensional Monolayer and Three-dimensional Spheroid of Breast Cancer MCF-7 Cells to Daunorubicin, Docetaxel, and Arsenic Disulfide.

    Science.gov (United States)

    Uematsu, Nami; Zhao, Yuxue; Kiyomi, Anna; Yuan, B O; Onda, Kenji; Tanaka, Sachiko; Sugiyama, Kentaro; Sugiura, Munetoshi; Takagi, Norio; Hayakawa, Akemi; Hirano, Toshihiko

    2018-04-01

    Chemo-sensitivity of two-dimensional (2D) monolayers and three-dimensional (3D) spheroids of human breast cancer MCF-7 cells were investigated. MCF-7 cells were cultured in monolayers or spheroids established using a thermo-reversible gelatin polymer, in the presence of daunorubicin, docetaxel, or As 2 S 2 Cell proliferation was examined by a Cell Counting Kit-8 assay. Daunorubicin, docetaxel, and As 2 S 2 dose-dependently decreased the MCF-7 cell proliferation in both 2D- and 3D-culture systems. The 3D spheroids were less sensitive to these agents than the 2D cultured cells. Verapamil, an inhibitor of P-glycoprotein, partially enhanced the antiproliferative effects of the agents. DL-buthionine-(S, R)-sulfoximine significantly increased (p<0.05), while N-acetyl-L-cysteine significantly inhibited the antiproliferative effects of As 2 S 2 (p<0.003). The 3D spheroids showed less sensitivity to the antiprolliferative efficacies of anticancer agents than the 2D cultured cells. P-Glycoprotein is suggested to be partially implicated in drug resistance. Reduction of cellular glutathione level enhanced the As 2 S 2 cytotoxicity. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Pt loaded two-dimensional TaC-nanosheet/graphene hybrid as an efficient and durable electrocatalyst for direct methanol fuel cells

    Science.gov (United States)

    He, Chunyong; Tao, Juzhou

    2016-08-01

    Poor electrocatalytic activity, insufficient operation durability and low carbon monoxide (CO) tolerance of the Pt-based catalysts are key challenges facing the direct methanol fuel cells (DMFCs) as promising electrochemical energy conversion device. We here present a new effort to catalyst designed by depositing Pt nanoparticles on two-dimensional (2D) TaC-nanosheet/graphene hybird (Pt/TaC-G) to obtain notable improvement in electrocatalytic performance over the commercial Pt/C. Experiment results from both X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) support that a strong synergetic chemical coupling interaction between the Pt nanoparticles and the 2D TaC-G significantly enhanced electrocatalytic activity for methanol oxidation reaction (MOR). This process can improve the CO tolerance as well as durability of MOR catalysts simultaneously, making it a promising general approach to design and optimize the next generation electrocatalysts in DMFCs.

  8. Analysis of the potential oscillation in Hall thrusters with a two-dimensional particle-in-cell simulation parallelized with graphic processing units

    Science.gov (United States)

    Hur, Min Young; Lee, Ho-Jun; Lee, Hae June; Choe, Won Ho; Seon, Jong Ho

    2013-09-01

    Oscillations of the plasma potential have been observed in many Hall thruster experiments. It was estimated that the oscillations are triggered by the interaction between the plasma and the dielectric materials such as secondary electron emission, but detailed mechanism has not been proven. In this paper, the effects of the interaction between the plasma and dielectric material are simulated with a two-dimensional particle-in-cell (PIC) code for the acceleration channel of the hall thruster. Especially, the simulation code is parallelized using graphic processing units (GPUs). To analyze the effect, the simulation is confirmed to change following two parameters, magnetic flux density and secondary electron emission coefficient (SEEC). The particle trajectory is presented with the variation of the SEEC and magnetic flux density as well as its curvature. This research is supported by a ``Core technology development of high Isp electric propulsion system for space exploration'' from National Space Lab. sponsored by the National Reshearch Foundation of korea (NRF).

  9. Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations

    International Nuclear Information System (INIS)

    Jiang Shuai; Jia Rui; Tao Ke; Hou Caixia; Sun Hengchao; Li Yongtao; Yu Zhiyong

    2017-01-01

    Interdigitated back contact (IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO 2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO 2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO 2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm. Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance. (paper)

  10. The Two-Dimensional Gabor Function Adapted to Natural Image Statistics: A Model of Simple-Cell Receptive Fields and Sparse Structure in Images.

    Science.gov (United States)

    Loxley, P N

    2017-10-01

    The two-dimensional Gabor function is adapted to natural image statistics, leading to a tractable probabilistic generative model that can be used to model simple cell receptive field profiles, or generate basis functions for sparse coding applications. Learning is found to be most pronounced in three Gabor function parameters representing the size and spatial frequency of the two-dimensional Gabor function and characterized by a nonuniform probability distribution with heavy tails. All three parameters are found to be strongly correlated, resulting in a basis of multiscale Gabor functions with similar aspect ratios and size-dependent spatial frequencies. A key finding is that the distribution of receptive-field sizes is scale invariant over a wide range of values, so there is no characteristic receptive field size selected by natural image statistics. The Gabor function aspect ratio is found to be approximately conserved by the learning rules and is therefore not well determined by natural image statistics. This allows for three distinct solutions: a basis of Gabor functions with sharp orientation resolution at the expense of spatial-frequency resolution, a basis of Gabor functions with sharp spatial-frequency resolution at the expense of orientation resolution, or a basis with unit aspect ratio. Arbitrary mixtures of all three cases are also possible. Two parameters controlling the shape of the marginal distributions in a probabilistic generative model fully account for all three solutions. The best-performing probabilistic generative model for sparse coding applications is found to be a gaussian copula with Pareto marginal probability density functions.

  11. Enhancing Performance of CdS Quantum Dot-Sensitized Solar Cells by Two-Dimensional g-C3N4Modified TiO2Nanorods.

    Science.gov (United States)

    Gao, Qiqian; Sun, Shihan; Li, Xuesong; Zhang, Xueyu; Duan, Lianfeng; Lü, Wei

    2016-12-01

    In present work, two-dimensional g-C 3 N 4 was used to modify TiO 2 nanorod array photoanodes for CdS quantum dot-sensitized solar cells (QDSSCs), and the improved cell performances were reported. Single crystal TiO 2 nanorods are prepared by hydrothermal method on transparent conductive glass and spin-coated with g-C 3 N 4 . CdS quantum dots were deposited on the g-C 3 N 4 modified TiO 2 photoanodes via successive ionic layer adsorption and reaction method. Compared with pure TiO 2 nanorod array photoanodes, the g-C 3 N 4 modified photoanodes showed an obvious improvement in cell performances, and a champion efficiency of 2.31 % with open circuit voltage of 0.66 V, short circuit current density of 7.13 mA/cm 2 , and fill factor (FF) of 0.49 was achieved, giving 23 % enhancement in cell efficiency. The improved performances were due to the matching conduction bands and valence bands of g-C 3 N 4 and TiO 2 , which greatly enhanced the separation and transfer of the photogenerated electrons and holes and effectively suppressed interfacial recombination. Present work provides a new direction for improving performance of QDSSCs.

  12. MoS2: a two-dimensional hole-transporting material for high-efficiency, low-cost perovskite solar cells

    Science.gov (United States)

    Kohnehpoushi, Saman; Nazari, Pariya; Abdollahi Nejand, Bahram; Eskandari, Mehdi

    2018-05-01

    In this work MoS2 thin film was studied as a potential two-dimensional (2D) hole-transporting material for fabrication of low-cost, durable and efficient perovskite solar cells. The thickness of MoS2 was studied as a potential factor in reaching high power conversion efficiency in perovskite solar cells. The thickness of the perovskite layer and the different metal back contacts gave distinct photovoltaic properties to the designed cells. The results show that a single sheet of MoS2 could considerably improve the power conversion efficacy of the device from 10.41% for a hole transport material (HTM)-free device to 20.43% for a device prepared with a 0.67 nm thick MoS2 layer as a HTM. On the back, Ag and Al collected the carriers more efficiently than Au due to the value of their metal contact work function with the TiO2 conduction band. The present work proposes a new architecture for the fabrication of low-cost, durable and efficient perovskite solar cells made from a low-cost and robust inorganic HTM and electron transport material.

  13. Mapping and identification of HeLa cell proteins separated by immobilized pH-gradient two-dimensional gel electrophoresis and construction of a two-dimensional polyacrylamide gel electrophoresis database

    DEFF Research Database (Denmark)

    Shaw, AC; Rossel Larsen, M; Roepstorff, P

    1999-01-01

    The HeLa cell line, a human adenocarcinoma, is used in many research fields, since it can be infected with a wide range of viruses and intracellular bacteria. Therefore, the mapping of HeLa cell proteins is useful for the investigation of parasite host cell interactions. Because of the recent imp...... these and future data accessible for interlaboratory comparison, we constructed a 2-D PAGE database on the World Wide Web....... the mapping of [35S]methionine/cysteine-labeled HeLa cell proteins with the 2-D PAGE (IPG)-system, using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and N-terminal sequencing for protein identification. To date 21 proteins have been identified and mapped. In order to make...

  14. Unit-cell design for two-dimensional phase-field simulation of microstructure evolution in single-crystal Ni-based superalloys during solidification

    Directory of Open Access Journals (Sweden)

    Dongjia Cao

    2017-12-01

    Full Text Available Phase-field simulation serves as an effective tool for quantitative characterization of microstructure evolution in single-crystal Ni-based superalloys during solidification nowadays. The classic unit cell is either limited to γ dendrites along crystal orientation or too ideal to cover complex morphologies for γ dendrites. An attempt to design the unit cell for two-dimensional (2-D phase-field simulations of microstructure evolution in single-crystal Ni-based superalloys during solidification was thus performed by using the MICRESS (MICRostructure Evolution Simulation Software in the framework of the multi-phase-field (MPF model, and demonstrated in a commercial TMS-113 superalloy. The coupling to CALPHAD (CALculation of PHAse Diagram thermodynamic database was realized via the TQ interface and the experimental diffusion coefficients were utilized in the simulation. Firstly, the classic unit cell with a single γ dendrite along crystal orientation was employed for the phase-field simulation in order to reproduce the microstructure features. Then, such simple unit cell was extended into the cases with two other different crystal orientations, i.e., and . Thirdly, for crystal orientations, the effect of γ dendritic orientations and unit cell sizes on microstructure and microsegregation was comprehensively studied, from which a new unit cell with multiple γ dendrites was proposed. The phase-field simulation with the newly proposed unit cell was further performed in the TMS-113 superalloy, and the microstructure features including the competitive growth of γ dendrites, microsegregation of different solutes and distribution of γ′ grains, can be nicely reproduced.

  15. Electron Transport in Quasi-Two-Dimensional Porous Network of Titania Nanoparticles, Incorporating Electrical and Optical Advantages in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Javadi, Mohammad; Alizadeh, Saba; Khosravi, Yusef; Abdi, Yaser

    2016-11-04

    The integration of fast electron transport and large effective surface area is critical to attaining higher gains in the nanostructured photovoltaic devices. Here, we report facilitated electron transport in the quasi-two-dimensional (Q2D) porous TiO 2 . Liquid electrolyte dye-sensitized solar cells were prepared by utilizing photoanodes based on the Q2D porous substructures. Due to electron confinement in a microscale porous medium, directional diffusion toward collecting electrode is induced into the electron transport. Our measurements based on the photocurrent and photovoltage time-of-flight transients show that at higher Fermi levels, the electron diffusion coefficient in the Q2D porous TiO 2 is about one order of magnitude higher when compared with the conventional layer of porous TiO 2 . The results show that microstructuring of the porous TiO 2 leads to an approximately threefold improvement in the electron diffusion length. Such a modification may considerably affects the electrical functionality of moderate or low performance dye-sensitized solar cells for which the internal gain or collection efficiency is typically low. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Two-dimensional blue native/SDS-PAGE analysis of whole cell lysate protein complexes of rice in response to salt stress.

    Science.gov (United States)

    Hashemi, Amenehsadat; Gharechahi, Javad; Nematzadeh, Ghorbanali; Shekari, Faezeh; Hosseini, Seyed Abdollah; Salekdeh, Ghasem Hosseini

    2016-08-01

    To understand the biology of a plant in response to stress, insight into protein-protein interactions, which almost define cell behavior, is thought to be crucial. Here, we provide a comparative complexomics analysis of leaf whole cell lysate of two rice genotypes with contrasting responses to salt using two-dimensional blue native/SDS-PAGE (2D-BN/SDS-PAGE). We aimed to identify changes in subunit composition and stoichiometry of protein complexes elicited by salt. Using mild detergent for protein complex solubilization, we were able to identify 9 protein assemblies as hetero-oligomeric and 30 as homo-oligomeric complexes. A total of 20 proteins were identified as monomers in the 2D-BN/SDS-PAGE gels. In addition to identifying known protein complexes that confirm the technical validity of our analysis, we were also able to discover novel protein-protein interactions. Interestingly, an interaction was detected for glycolytic enzymes enolase (ENO1) and triosephosphate isomerase (TPI) and also for a chlorophyll a-b binding protein and RuBisCo small subunit. To show changes in subunit composition and stoichiometry of protein assemblies during salt stress, the differential abundance of interacting proteins was compared between salt-treated and control plants. A detailed exploration of some of the protein complexes provided novel insight into the function, composition, stoichiometry and dynamics of known and previously uncharacterized protein complexes in response to salt stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Application of Light Reflection Visualization for Measuring Organic-Liquid Saturation for Two-Phase Systems in Two-Dimensional Flow Cells.

    Science.gov (United States)

    DiFilippo, Erica L; Brusseau, Mark L

    2011-11-01

    A simple, noninvasive imaging technique was used to obtain in situ measurements of organic-liquid saturation in a two-phase system under dynamic conditions. Efficacy of the light reflection visualization (LRV) imaging method was tested through comparison of measured and known volumes of organic liquid for experiments conducted with a two-dimensional flow cell. Two sets of experiments were conducted, with source-zone configurations representing two archetypical residual-and-pool architectures. LRV measurements were collected during the injection of organic liquid and during a dissolution phase induced by water flushing. There was a strong correlation between measured and known organic-liquid volumes, with the LRV-measured values generally somewhat lower than the known volumes. Errors were greater for the system wherein organic liquid was present in multiple zones comprised of porous media of different permeabilities, and for conditions of multiphase flow. This method proved effective at determining organic-liquid distribution in a two-phase system using minimal specialized equipment.

  18. Study of the effects of a transverse magnetic field on radio frequency argon discharges by two-dimensional particle-in-cell-Monte-Carlo collision simulations

    International Nuclear Information System (INIS)

    Fan, Yu; Zou, Ying; Sun, Jizhong; Wang, Dezhen; Stirner, Thomas

    2013-01-01

    The influence of an applied magnetic field on plasma-related devices has a wide range of applications. Its effects on a plasma have been studied for years; however, there are still many issues that are not understood well. This paper reports a detailed kinetic study with the two-dimension-in-space and three-dimension-in-velocity particle-in-cell plus Monte Carlo collision method on the role of E×B drift in a capacitive argon discharge, similar to the experiment of You et al.[Thin Solid Films 519, 6981 (2011)]. The parameters chosen in the present study for the external magnetic field are in a range common to many applications. Two basic configurations of the magnetic field are analyzed in detail: the magnetic field direction parallel to the electrode with or without a gradient. With an extensive parametric study, we give detailed influences of the drift on the collective behaviors of the plasma along a two-dimensional domain, which cannot be represented by a 1 spatial and 3 velocity dimensions model. By analyzing the results of the simulations, the occurring collisionless heating mechanism is explained well

  19. Quasi-two-dimensional holography

    International Nuclear Information System (INIS)

    Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.

    1980-01-01

    The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de

  20. Two dimensional plasma simulation code

    International Nuclear Information System (INIS)

    Hazak, G.; Boneh, Y.; Goshen, Sh.; Oreg, J.

    1977-03-01

    An electrostatic two-dimensional particle code for plasma simulation is described. Boundary conditions which take into account the finiteness of the system are presented. An analytic solution for the case of crossed fields plasma acceleration is derived. This solution serves as a check on a computer test run

  1. The Two-Dimensional Nanocomposite of Molybdenum Disulfide and Nitrogen-Doped Graphene Oxide for Efficient Counter Electrode of Dye-Sensitized Solar Cells

    Science.gov (United States)

    Cheng, Chao-Kuang; Lin, Che-Hsien; Wu, Hsuan-Chung; Ma, Chen-Chi M.; Yeh, Tsung-Kuang; Chou, Huei-Yu; Tsai, Chuen-Horng; Hsieh, Chien-Kuo

    2016-02-01

    In this study, we reported the synthesis of the two-dimensional (2D) nanocomposite of molybdenum disulfide and nitrogen-doped graphene oxide (MoS2/nGO) as a platinum-free counter electrode (CE) for dye-sensitized solar cells (DSSCs). X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy were used to examine the characteristics of the 2D nanocomposite of MoS2/nGO. The cyclic voltammetry (CV), electrochemical impedance spectra (EIS), and the Tafel polarization measurements were carried out to examine the electrocatalytic abilities. XPS and Raman results showed the 2D behaviors of the prepared nanomaterials. HRTEM micrographs showed the direct evidence of the 2D nanocomposite of MoS2/nGO. The results of electrocatalytic examinations indicated the MoS2/nGO owning the low charge transfer resistance, high electrocatalytic activity, and fast reaction kinetics for the reduction of triiodide to iodide on the electrolyte-electrode interface. The 2D nanocomposite of MoS2/nGO combined the advantages of the high specific surface of nGO and the plenty edge sites of MoS2 and showed the promoted properties different from those of their individual constituents to create a new outstanding property. The DSSC with MoS2/nGO nanocomposite CE showed a photovoltaic conversion efficiency (PCE) of 5.95 % under an illumination of AM 1.5 (100 mW/cm2), which was up to 92.2 % of the DSSC with the conventional platinum (Pt) CE (PCE = 6.43 %). These results reveal the potential of the MoS2/nGO nanocomposite in the use of low-cost, scalable, and efficient Pt-free CEs for DSSCs.

  2. The Two-Dimensional Nanocomposite of Molybdenum Disulfide and Nitrogen-Doped Graphene Oxide for Efficient Counter Electrode of Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Cheng, Chao-Kuang; Lin, Che-Hsien; Wu, Hsuan-Chung; Ma, Chen-Chi M; Yeh, Tsung-Kuang; Chou, Huei-Yu; Tsai, Chuen-Horng; Hsieh, Chien-Kuo

    2016-12-01

    In this study, we reported the synthesis of the two-dimensional (2D) nanocomposite of molybdenum disulfide and nitrogen-doped graphene oxide (MoS2/nGO) as a platinum-free counter electrode (CE) for dye-sensitized solar cells (DSSCs). X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy were used to examine the characteristics of the 2D nanocomposite of MoS2/nGO. The cyclic voltammetry (CV), electrochemical impedance spectra (EIS), and the Tafel polarization measurements were carried out to examine the electrocatalytic abilities. XPS and Raman results showed the 2D behaviors of the prepared nanomaterials. HRTEM micrographs showed the direct evidence of the 2D nanocomposite of MoS2/nGO. The results of electrocatalytic examinations indicated the MoS2/nGO owning the low charge transfer resistance, high electrocatalytic activity, and fast reaction kinetics for the reduction of triiodide to iodide on the electrolyte-electrode interface. The 2D nanocomposite of MoS2/nGO combined the advantages of the high specific surface of nGO and the plenty edge sites of MoS2 and showed the promoted properties different from those of their individual constituents to create a new outstanding property. The DSSC with MoS2/nGO nanocomposite CE showed a photovoltaic conversion efficiency (PCE) of 5.95 % under an illumination of AM 1.5 (100 mW/cm(2)), which was up to 92.2 % of the DSSC with the conventional platinum (Pt) CE (PCE = 6.43 %). These results reveal the potential of the MoS2/nGO nanocomposite in the use of low-cost, scalable, and efficient Pt-free CEs for DSSCs.

  3. Application of two-dimensional NMR spectroscopy and molecular dynamics simulations to the conformational analysis of oligosaccharides corresponding to the cell-wall polysaccharide of Streptococcus group A.

    Science.gov (United States)

    Kreis, U C; Varma, V; Pinto, B M

    1995-06-01

    This paper describes the use of a protocol for conformational analysis of oligosaccharide structures related to the cell-wall polysaccharide of Streptococcus group A. The polysaccharide features a branched structure with an L-rhamnopyranose (Rhap) backbone consisting of alternating alpha-(1-->2) and alpha-(1-->3) links and D-N-acetylglucosamine (GlcpNAc) residues beta-(1-->3)-connected to alternating rhamnose rings: [formula: see text] Oligomers consisting of three to six residues have been synthesized and nuclear magnetic resonance (NMR) assignments have been made. The protocol for conformational analysis of the solution structure of these oligosaccharides involves experimental and theoretical methods. Two-dimensional NMR spectroscopy methods (TOCSY, ROESY and NOESY) are utilized to obtain chemical shift data and proton-proton distances. These distances are used as constraints in 100 ps molecular dynamics simulations in water using QUANTA and CHARMm. In addition, the dynamics simulations are performed without constraints. ROE build-up curves are computed from the averaged structures of the molecular dynamics simulations using the CROSREL program and compared with the experimental curves. Thus, a refinement of the initial structure may be obtained. The alpha-(1-->2) and the beta-(1-->3) links are unambiguously defined by the observed ROE cross peaks between the A-B',A'-B and C-B,C'-B' residues, respectively. The branch-point of the trisaccharide CBA' is conformationally well-defined. Assignment of the conformation of the B-A linkage (alpha-(1-->3)) was problematic due to TOCSY relay, but could be solved by NOESY and T-ROESY techniques. A conformational model for the polysaccharide is proposed.

  4. Two dimensional image correlation processor

    Science.gov (United States)

    Yao, Shi-Kai

    1992-06-01

    Two dimensional images are converted into a very long 1-dimensional data stream by means of raster scan. It is shown that the 1-dimensional correlation function of such long data streams is equivalent to the raster scan converted data of 2-dimensional correlation function of images. Real time correlation of high resolution two-dimensional images has been demonstrated using commercially available components. The advantages of this approach includes programmable electronics reference images, easy interface to objects of interest using conventional image collection optics, real time operation with high resolution images using off-the shelf components, and usefulness in the form of either black and white or full colored images. Such system would be versatile enough for robotics vision, optical inspection, and other pattern recognition and identification applications.

  5. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  6. Two-dimensional polyacrylamide gel electrophoresis of intracellular proteins

    International Nuclear Information System (INIS)

    Ojima, N.; Sakamoto, T.; Yamashita, M.

    1996-01-01

    Since two-dimensional electrophoresis was established by O'Farrell for analysis of intracellular proteins of Escherichia coli, it has been applied to separation of proteins of animal cells and tissues, and especially to identification of stress proteins. Using this technique, proteins are separated by isoelectric focusing containing 8 m urea in the first dimension and by SDS-PAGE in the second dimension. The gels are stained with Coomassie Blue R-250 dye, followed by silver staining. In the case of radio-labeled proteins, the gels are dried and then autoradiographed. In order to identify a specific protein separated by two-dimensional electrophoresis, a technique determining the N-terminal amino acid sequence of the protein has been developed recently. After the proteins in the gel were electrotransferred to a polyvinylidene difluoride membrane, the membrane was stained for protein with Commassie Blue and a stained membrane fragment was applied to a protein sequencer. Our recent studies demonstrated that fish cells newly synthesized various proteins in response to heat shock, cold nd osmotic stresses. For example, when cellular proteins extracted from cold-treated rainbow trout cells were subjected to two-dimensional gel electrophoresis, the 70 kDa protein was found to be synthesized during the cold-treatment. N-Terminal sequence analysis showed that the cold-inducible protein was a homolog of mammalian valosin-containing protein and yeast cell division cycle gene product CDC48p. Furthermore, the sequence data were useful for preparing PCR primers and a rabbit antibody against a synthetic peptide to analyze a role for the protein in the function of trout cells and mechanisms for regulation

  7. Two-dimensional critical phenomena

    International Nuclear Information System (INIS)

    Saleur, H.

    1987-09-01

    Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr

  8. A comprehensive two-dimensional gel protein database of noncultured unfractionated normal human epidermal keratinocytes: towards an integrated approach to the study of cell proliferation, differentiation and skin diseases

    DEFF Research Database (Denmark)

    Celis, J E; Madsen, Peder; Rasmussen, H H

    1991-01-01

    A two-dimensional (2-D) gel database of cellular proteins from noncultured, unfractionated normal human epidermal keratinocytes has been established. A total of 2651 [35S]methionine-labeled cellular proteins (1868 isoelectric focusing, 783 nonequilibrium pH gradient electrophoresis) were resolved......, melanocytes, fibroblasts, dermal microvascular endothelial cells, peripheral blood mononuclear cells and sweat duct cells. The keratinocyte 2-D gel protein database will be updated yearly in the November issue of Electrophoresis. Udgivelsesdato: 1991-Nov...

  9. Plasma non-uniformity in a symmetric radiofrequency capacitively-coupled reactor with dielectric side-wall: a two dimensional particle-in-cell/Monte Carlo collision simulation

    Science.gov (United States)

    Liu, Yue; Booth, Jean-Paul; Chabert, Pascal

    2018-02-01

    A Cartesian-coordinate two-dimensional electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) plasma simulation code is presented, including a new treatment of charge balance at dielectric boundaries. It is used to simulate an Ar plasma in a symmetric radiofrequency capacitively-coupled parallel-plate reactor with a thick (3.5 cm) dielectric side-wall. The reactor size (12 cm electrode width, 2.5 cm electrode spacing) and frequency (15 MHz) are such that electromagnetic effects can be ignored. The dielectric side-wall effectively shields the plasma from the enhanced electric field at the powered-grounded electrode junction, which has previously been shown to produce locally enhanced plasma density (Dalvie et al 1993 Appl. Phys. Lett. 62 3207–9 Overzet and Hopkins 1993 Appl. Phys. Lett. 63 2484–6 Boeuf and Pitchford 1995 Phys. Rev. E 51 1376–90). Nevertheless, enhanced electron heating is observed in a region adjacent to the dielectric boundary, leading to maxima in ionization rate, plasma density and ion flux to the electrodes in this region, and not at the reactor centre as would otherwise be expected. The axially-integrated electron power deposition peaks closer to the dielectric edge than the electron density. The electron heating components are derived from the PIC/MCC simulations and show that this enhanced electron heating results from increased Ohmic heating in the axial direction as the electron density decreases towards the side-wall. We investigated the validity of different analytical formulas to estimate the Ohmic heating by comparing them to the PIC results. The widespread assumption that a time-averaged momentum transfer frequency, v m , can be used to estimate the momentum change can cause large errors, since it neglects both phase and amplitude information. Furthermore, the classical relationship between the total electron current and the electric field must be used with caution, particularly close to the dielectric edge where the

  10. Two-dimensional capillary origami

    International Nuclear Information System (INIS)

    Brubaker, N.D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  11. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  12. Characterisation of ribosomal proteins from HeLa and Krebs II mouse ascites tumor cells by different two-dimensional polyacrylamide gel electrophoresis techniques

    DEFF Research Database (Denmark)

    Issinger, O G; Beier, H

    1978-01-01

    electrophoresis; 2. two-dimensional gel electrophoresis at pH 4.K/pH 8.6 in SDS. The molecular weights for 40S proteins ranged from 10,000 to 39,000 dalton (number average molecular weight: 21,000). The molecular weights for the 60S proteins ranged from 14,000 to 44,000 dalton (number average molecular weight: 23...... using the pH 4.5/pH 8.6 SDS system. The molecular weights Krebs II ascites and HeLa ribosomal proteins are compared with those obtained by other authors for different mammalian species....

  13. The human keratinocyte two-dimensional protein database (update 1994): towards an integrated approach to the study of cell proliferation, differentiation and skin diseases

    DEFF Research Database (Denmark)

    Celis, J E; Rasmussen, H H; Olsen, E

    1994-01-01

    ) vaccinia virus expression of full length cDNAs. These are listed both in alphabetical order and with increasing SSP number, together with their M(r), pI, cellular localization and credit to the investigator(s) that aided in the identification. Furthermore, we list 239 microsequenced proteins recorded......The master two-dimensional (2-D) gel database of human keratinocytes currently lists 3087 cellular proteins (2168 isoelectric focusing, IEF; and 919 none-quilibrium pH gradient electrophoresis, NEPHGE), many of which correspond to posttranslational modifications, 890 polypeptides have been...... identified (protein name, organelle components, etc.) using one or a combination of procedures that include (i) comigration with known human proteins, (ii) 2-D gel immunoblotting using specific antibodies (iii) microsequencing of Coomassie Brilliant Blue stained proteins, (iv) mass spectrometry and (v...

  14. Two-dimensional Quantum Gravity

    Science.gov (United States)

    Rolf, Juri

    1998-10-01

    This Ph.D. thesis pursues two goals: The study of the geometrical structure of two-dimensional quantum gravity and in particular its fractal nature. To address these questions we review the continuum formalism of quantum gravity with special focus on the scaling properties of the theory. We discuss several concepts of fractal dimensions which characterize the extrinsic and intrinsic geometry of quantum gravity. This work is partly based on work done in collaboration with Jan Ambjørn, Dimitrij Boulatov, Jakob L. Nielsen and Yoshiyuki Watabiki (1997). The other goal is the discussion of the discretization of quantum gravity and to address the so called quantum failure of Regge calculus. We review dynamical triangulations and show that it agrees with the continuum theory in two dimensions. Then we discuss Regge calculus and prove that a continuum limit cannot be taken in a sensible way and that it does not reproduce continuum results. This work is partly based on work done in collaboration with Jan Ambjørn, Jakob L. Nielsen and George Savvidy (1997).

  15. Comprehensive two-dimensional gel protein databases offer a global approach to the analysis of human cells: the transformed amnion cells (AMA) master database and its link to genome DNA sequence data

    DEFF Research Database (Denmark)

    Celis, J E; Gesser, B; Rasmussen, H H

    1990-01-01

    A total of 3430 polypeptides (2592 cellular; 838 secreted) from transformed human amnion cells (AMA) labeled with [35S]methionine were separated and recorded using computer-aided two-dimensional (2-D) gel electrophoresis. A master 2-D gel database of cellular protein information that includes both...... qualitative and quantitative annotations has been established. The protein numbers in this database differ from those reported in an earlier version (Celis et al. Leukemia 1988, 2,561-602) as a result of changes in the scanning hardware. The reported information includes: percentage of total radioactivity...... recovered from the gels (based on quantitations of polypeptides labeled with a mixture of 16 14C-amino acids), protein name (including credit to investigators that aided identification), antibody against protein, cellular localization, (nuclear, 40S hnRNP, 20S snRNP U5, proteasomes, endoplasmic reticulum...

  16. Bridging the gap between cell culture and live tissue

    Directory of Open Access Journals (Sweden)

    Stefan Przyborski

    2017-11-01

    Full Text Available Traditional in vitro two-dimensional (2-D culture systems only partly imitate the physiological and biochemical features of cells in their original tissue. In vivo, in organs and tissues, cells are surrounded by a three-dimensional (3-D organization of supporting matrix and neighbouring cells, and a gradient of chemical and mechanical signals. Furthermore, the presence of blood flow and mechanical movement provides a dynamic environment (Jong et al., 2011. In contrast, traditional in vitro culture, carried out on 2-D plastic or glass substrates, typically provides a static environment, which, however is the base of the present understanding of many biological processes, tissue homeostasis as well as disease. It is clear that this is not an exact representation of what is happening in vivo and the microenvironment provided by in vitro cell culture models are significantly different and can cause deviations in cell response and behaviour from those distinctive of in vivo tissues. In order to translate the present basic knowledge in cell control, cell repair and regeneration from the laboratory bench to the clinical application, we need a better understanding of the cell and tissue interactions. This implies a detailed comprehension of the natural tissue environment, with its organization and local signals, in order to more closely mimic what happens in vivo, developing more physiological models for efficient in vitro systems. In particular, it is imperative to understand the role of the environmental cues which can be mainly divided into those of a chemical and mechanical nature.

  17. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    Science.gov (United States)

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  18. Two dimensional NMR studies of polysaccharides

    International Nuclear Information System (INIS)

    Byrd, R.A.; Egan, W.; Summers, M.F.

    1987-01-01

    Polysaccharides are very important components in the immune response system. Capsular polysaccharides and lipopolysaccharides occupy cell surface sites of bacteria, play key roles in recognition and some have been used to develop vaccines. Consequently, the ability to determine chemical structures of these systems is vital to an understanding of their immunogenic action. The authors have been utilizing recently developed two-dimensional homonuclear and heteronuclear correlation spectroscopy for unambiguous assignment and structure determination of a number of polysaccharides. In particular, the 1 H-detected heteronuclear correlation experiments are essential to the rapid and sensitive determination of these structures. Linkage sites are determined by independent polarization transfer experiments and multiple quantum correlation experiments. These methods permit the complete structure determination on very small amounts of the polysaccharides. They present the results of a number of structural determinations and discuss the limits of these experiments in terms of their applications to polysaccharides

  19. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  20. Mechanisms of Regulating Tissue Elongation in Drosophila Wing: Impact of Oriented Cell Divisions, Oriented Mechanical Forces, and Reduced Cell Size

    Science.gov (United States)

    Li, Yingzi; Naveed, Hammad; Kachalo, Sema; Xu, Lisa X.; Liang, Jie

    2014-01-01

    Regulation of cell growth and cell division plays fundamental roles in tissue morphogenesis. However, the mechanisms of regulating tissue elongation through cell growth and cell division are still not well understood. The wing imaginal disc of Drosophila provides a model system that has been widely used to study tissue morphogenesis. Here we use a recently developed two-dimensional cellular model to study the mechanisms of regulating tissue elongation in Drosophila wing. We simulate the effects of directional cues on tissue elongation. We also computationally analyze the role of reduced cell size. Our simulation results indicate that oriented cell divisions, oriented mechanical forces, and reduced cell size can all mediate tissue elongation, but they function differently. We show that oriented cell divisions and oriented mechanical forces act as directional cues during tissue elongation. Between these two directional cues, oriented mechanical forces have a stronger influence than oriented cell divisions. In addition, we raise the novel hypothesis that reduced cell size may significantly promote tissue elongation. We find that reduced cell size alone cannot drive tissue elongation. However, when combined with directional cues, such as oriented cell divisions or oriented mechanical forces, reduced cell size can significantly enhance tissue elongation in Drosophila wing. Furthermore, our simulation results suggest that reduced cell size has a short-term effect on cell topology by decreasing the frequency of hexagonal cells, which is consistent with experimental observations. Our simulation results suggest that cell divisions without cell growth play essential roles in tissue elongation. PMID:24504016

  1. Comparative proteome analysis of three mouse lung adenocarcinoma CMT cell lines with different metastatic potential by two-dimensional gel electrophoresis and mass spectrometry.

    Science.gov (United States)

    Zhang, Kelan; Wrzesinski, Krzysztof; Stephen, J Fey; Larsen, Peter Mose; Zhang, Xumin; Roepstorff, Peter

    2008-12-01

    Metastasis is a lethal attribute of a cancer and presents a continuing therapeutic challenge. Metastasis is a highly complex process and more knowledge about the mechanisms behind metastasis is highly desirable. Isogenic CMT cell lines were selected from a spontaneous mouse lung adenocarcinoma and characterized in vivo to have different metastatic potential. In this study, the comprehensive protein expression profiles of three of these CMT cell lines at passage 5, 15 and 35 were analyzed by 2-DE separation followed by MS identification. As a result, 82 and 40 unique proteins were found to be significantly up- or down-regulated between cell lines with different metastatic potential at passages 5 and 15, respectively. These proteins were identified by MS and most of them have previously been reported to be related to cancer development and/or metastasis. Bioinformatics analysis indicated that several of the proteins were involved in proteasome, cell-cycle and cell-communication pathways. Among them, some keratins, 14-3-3 proteins and 26S proteasome proteins were identified and their aberrant expression may be directly or indirectly involved in cancer development and metastasis. In conclusion, our comprehensive 2-DE-based proteomics studies revealed some candidate proteins, protein families and signaling pathways, which might be important in cancer development and metastasis.

  2. Optimization of charge-carrier generation in amorphous-silicon thin-film tandem solar cell backed by two-dimensional metallic surface-relief grating

    Science.gov (United States)

    Civiletti, Benjamin J.; Anderson, Tom H.; Ahmad, Faiz; Monk, Peter B.; Lakhtakia, Akhlesh

    2017-08-01

    The rigorous coupled-wave approach was implemented in a three-dimensional setting to calculate the chargecarrier-generation rate in a thin-film solar cell with multiple amorphous-silicon p-i-n junctions. The solar cell comprised a front antireflection window; three electrically isolated p-i-n junctions in tandem; and a periodically corrugated silver back-reflector with hillock-shaped corrugations arranged on a hexagonal lattice. The differential evolution algorithm (DEA) was used to maximize the charge-carrier-generation rate over a set of selected optical and electrical parameters. This optimization exercise minimized the bandgap of the topmost i-layer but all other parameters turned out to be uninfluential. More importantly, the exercise led to a configuration that would very likely render the solar cell inefficient. Therefore, another optimization exercise was conducted to maximize power density. The resulting configuration was optimal over all parameters.

  3. The MRC-5 human embryonal lung fibroblast two-dimensional gel cellular protein database: quantitative identification of polypeptides whose relative abundance differs between quiescent, proliferating and SV40 transformed cells

    DEFF Research Database (Denmark)

    Celis, J E; Dejgaard, K; Madsen, Peder

    1990-01-01

    A new version of the MRC-5 two-dimensional gel cellular protein database (Celis et al., Electrophoresis 1989, 10, 76-115) is presented. Gels were scanned with a Molecular Dynamics laser scanner and processed by the PDQUEST II software. A total of 1895 [35S]methionine-labeled cellular polypeptides...... (1323 with isoelectric focusing and 572 with nonequilibrium pH gradient electrophoresis) are recorded in this database, containing quantitative and qualitative data on the relative abundance of cellular proteins synthesized by quiescent, proliferating and SV40 transformed MRC-5 fibroblasts. Of the 592...... proteins quantitated so far, the levels of 138 were up- or down-regulated (51 and 87, respectively) by two times or more in the transformed cells as compared to their normal proliferating counterparts, while only 14 behaved similarly in quiescent cells. Seven MRC-5 SV40 proteins, including plastin and two...

  4. MoS2: a Two Dimensional (2D) Hole-Transporting Materials for High Efficiency and Low-cost Perovskite Solar Cells.

    Science.gov (United States)

    Kohnehpoushi, Saman; Nazari, Pariya; Abdollahi Nejand, Bahram; Eskandari, Mehdi

    2018-02-23

    Here, the MoS2 thin film was studied as a potential 2D hole transporting materials for fabrication of low-cost, durable, and efficient perovskite solar cells. Regarding the 2D character of MoS2, its thickness was studied as a potential factor in reaching high power conversion efficiency of the perovskite solar cells. Besides, the perovskite layer thickness and the different metal back contacts showed distinct photovoltaic properties of the designed perovskite solar cells. The results presented that a single sheet of MoS2 could considerably improve the device PCE from 10.41% for HTM free device up to 20.43% for a device prepared by 0.67nm MoS2 thickness as a HTM layer. On the other side, Ag and Al could collect the carriers more efficiently than Au due to the appropriate justification of metal contact work-function with TiO2 conduction band. The present architecture proposed a new architecture in the fabrication of low-cost, durable, and efficient perovskite solar cells to reach the market criteria due to the used low-cost and robust inorganic HTM and ETM in their structure. © 2018 IOP Publishing Ltd.

  5. Comparative proteome analysis of three mouse lung adenocarcinoma CMT cell lines with different metastatic potential by two-dimensional gel electrophoresis and mass spectrometry

    DEFF Research Database (Denmark)

    Zhang, Kelan; Wrzesinski, Krzysztof; Stephen, J Fey

    2008-01-01

    and characterized in vivo to have different metastatic potential. In this study, the comprehensive protein expression profiles of three of these CMT cell lines at passage 5, 15 and 35 were analyzed by 2-DE separation followed by MS identification. As a result, 82 and 40 unique proteins were found...

  6. Phase diagrams and morphological evolution in wrapping of rod-shaped elastic nanoparticles by cell membrane: A two-dimensional study

    Science.gov (United States)

    Yi, Xin; Gao, Huajian

    2014-06-01

    A fundamental understanding of cell-nanomaterial interaction is essential for biomedical diagnostics, therapeutics, and nanotoxicity. Here, we perform a theoretical analysis to investigate the phase diagram and morphological evolution of an elastic rod-shaped nanoparticle wrapped by a lipid membrane in two dimensions. We show that there exist five possible wrapping phases based on the stability of full wrapping, partial wrapping, and no wrapping states. The wrapping phases depend on the shape and size of the particle, adhesion energy, membrane tension, and bending rigidity ratio between the particle and membrane. While symmetric morphologies are observed in the early and late stages of wrapping, in between a soft rod-shaped nanoparticle undergoes a dramatic symmetry breaking morphological change while stiff and rigid nanoparticles experience a sharp reorientation. These results are of interest to the study of a range of phenomena including viral budding, exocytosis, as well as endocytosis or phagocytosis of elastic particles into cells.

  7. Stem Cells and Tissue Engineering

    CERN Document Server

    Pavlovic, Mirjana

    2013-01-01

    Stem cells are the building blocks for all other cells in an organism. The human body has about 200 different types of cells and any of those cells can be produced by a stem cell. This fact emphasizes the significance of stem cells in transplantational medicine, regenerative therapy and bioengineering. Whether embryonic or adult, these cells can be used for the successful treatment of a wide range of diseases that were not treatable before, such as osteogenesis imperfecta in children, different forms of leukemias, acute myocardial infarction, some neural damages and diseases, etc. Bioengineering, e.g. successful manipulation of these cells with multipotential capacity of differentiation toward appropriate patterns and precise quantity, are the prerequisites for successful outcome and treatment. By combining in vivo and in vitro techniques, it is now possible to manage the wide spectrum of tissue damages and organ diseases. Although the stem-cell therapy is not a response to all the questions, it provides more...

  8. Two-dimensional strain-hardening membrane model for large deformation behavior of multiple red blood cells in high shear conditions.

    Science.gov (United States)

    Ye, Swe Soe; Ng, Yan Cheng; Tan, Justin; Leo, Hwa Liang; Kim, Sangho

    2014-05-13

    Computational modeling of Red Blood Cell (RBC) flow contributes to the fundamental understanding of microhemodynamics and microcirculation. In order to construct theoretical RBC models, experimental studies on single RBC mechanics have presented a material description for RBC membranes based on their membrane shear, bending and area moduli. These properties have been directly employed in 3D continuum models of RBCs but practical flow analysis with 3D models have been limited by their computationally expensive nature. As such, various researchers have employed 2D models to efficiently and qualitatively study microvessel flows. Currently, the representation of RBC dynamics using 2D models is a limited methodology that breaks down at high shear rates due to excessive and unrealistic stretching. We propose a localized scaling of the 2D elastic moduli such that it increases with RBC local membrane strain, thereby accounting for effects such as the Poisson effect and membrane local area incompressibility lost in the 2D simplification. Validation of our 2D Large Deformation (2D-LD) RBC model was achieved by comparing the predicted RBC deformation against the 3D model from literature for the case of a single RBC in simple shear flow under various shear rates (dimensionless shear rate G = 0.05, 0.1, 0.2, 0.5). The multi-cell flow of RBCs (38% Hematocrit) in a 20 μm width microchannel under varying shear rates (50, 150, 150 s-1) was then simulated with our proposed model and the popularly-employed 2D neo-Hookean model in order to evaluate the efficacy of our proposed 2D-LD model. The validation set indicated similar RBC deformation for both the 2D-LD and the 3D models across the studied shear rates, highlighting the robustness of our model. The multi-cell simulation indicated that the 2D neo-Hookean model predicts noodle-like RBC shapes at high shear rates (G = 0.5) whereas our 2D-LD model maintains sensible RBC deformations. The ability of the 2D-LD model to

  9. Development of Two-Dimensional NMR

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...

  10. Conoscopic holography: two-dimensional numerical reconstructions.

    Science.gov (United States)

    Mugnier, L M; Sirat, G Y; Charlot, D

    1993-01-01

    Conoscopic holography is an incoherent light holographic technique based on the properties of crystal optics. We present experimental results of the numerical reconstruction of a two-dimensional object from its conoscopic hologram.

  11. Ocular Proteomics with Emphasis on Two-Dimensional Gel Electrophoresis and Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Mandal Nakul

    2009-12-01

    Full Text Available Abstract The intention of this review is to provide an overview of current methodologies employed in the rapidly developing field of ocular proteomics with emphasis on sample preparation, two-dimensional polyacrylamide gel electrophoresis (2D-PAGE and mass spectrometry (MS. Appropriate sample preparation for the diverse range of cells and tissues of the eye is essential to ensure reliable results. Current methods of protein staining for 2D-PAGE, protein labelling for two-dimensional difference gel electrophoresis, gel-based expression analysis and protein identification by MS are summarised. The uses of gel-free MS-based strategies (MuDPIT, iTRAQ, ICAT and SILAC are also discussed. Proteomic technologies promise to shed new light onto ocular disease processes that could lead to the discovery of strong novel biomarkers and therapeutic targets useful in many ophthalmic conditions.

  12. Ocular Proteomics with Emphasis on Two-Dimensional Gel Electrophoresis and Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Honoré Bent

    2010-01-01

    Full Text Available Abstract The intention of this review is to provide an overview of current methodologies employed in the rapidly developing field of ocular proteomics with emphasis on sample preparation, two-dimensional polyacrylamide gel electrophoresis (2D-PAGE and mass spectrometry (MS. Appropriate sample preparation for the diverse range of cells and tissues of the eye is essential to ensure reliable results. Current methods of protein staining for 2D-PAGE, protein labelling for two-dimensional difference gel electrophoresis, gel-based expression analysis and protein identification by MS are summarised. The uses of gel-free MS-based strategies (MuDPIT, iTRAQ, ICAT and SILAC are also discussed. Proteomic technologies promise to shed new light onto ocular disease processes that could lead to the discovery of strong novel biomarkers and therapeutic targets useful in many ophthalmic conditions.

  13. Two-dimensional quantitative structure-activity relationship study of 1,4-naphthoquinone derivatives tested against HL-60 human promyelocytic leukaemia cells.

    Science.gov (United States)

    Costa, M C A; Ferreira, M M C

    2017-04-01

    A series of 50 derivatives of 1,4-naphthoquinone tested against human HL-60 leukaemic cells showed activity at a wide range of concentrations. A multivariate quantitative structure-activity relationship (QSAR) study of 45 compounds was performed through principal component analysis (PCA) and partial least squares (PLS) regression. A good PLS regression model was obtained with two factors describing 60.1% of the total variance, and the selected descriptors were partial atomic charge at carbons 1 and 10 (C1 and C10) and total dipole moment (DIP). The calibration model exhibited the determination coefficient r 2 = 0.78 and the standard error of calibration = 0.29. For external validation, r 2 and the standard error of prediction were 0.74 and 0.32, respectively. DIP and C1 were the main descriptors for PCA, as well as for PLS, such that the pIC 50 value increases when C1 increases and DIP diminishes. The selected descriptors are in accordance with the literature, once C10 and C1 are bound or close to the quinone oxygens involved in the production of radical anions (O 2 -∙). From the QSAR analysis, the structures of two new naphthoquinones were proposed and their estimated IC 50 values were 1.42 and 1.13 μmol L -1 .

  14. Comparison of protein patterns of xrs-5, a radiosensitive Chinese hamster ovary cell line, and CHO-K1, its radioresistant parent, using two-dimensional gel-electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, J.M. (Miami Univ., Oxford, OH (USA). Dept. of Zoology)

    1991-01-01

    X-ray sensitive strains of Chinese hamster ovary cell lines have been used to analyze radiation repair mechanisms. One cell line, xrs-5, has been shown to be very sensitive to ionizing radiation and radical forming chemical mutagens. This sensitivity is thought to be a result a mutation in the DNA double strand break (DSB) repair mechanism, and its characterization has been a goal of several repair mechanism studies. Using two-dimensional gel electrophoresis, we have detected a protein (MW approximately 55KD) in the DNA/Nuclear Matrix (nucleoid) cell fraction of CHO-Kl cells that is absent in the nucleoid fraction of xrs-5. This protein is present, however, in both CHO-Kl and xrs-5 whole cell protein maps. To determine whether the 55KD protein is responsible for the radiosensitive and defective DSB repair phenotype of xrs-5 cells, studies are now underway to analyze revertants of xrs-5 that are proficient in DSB repair. Furthermore, an effort to sequence the protein in question is planned. 23 refs., 2 figs.

  15. The Integrated Adjustment of Chlorine Substitution and Two-Dimensional Side Chain of Low Band Gap Polymers in Organic Solar Cells.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhen; Chen, Hui; Wang, Huan; Mo, Daize; Liu, Longzhu; Chao, Pengjie; Zhu, Yulin; Liu, Chuanjun; Chen, Wei; He, Feng

    2018-02-28

    A series of conjugated T2 polymers (PBBF1-T2 and PBBCl1-T2), and T3 polymers (PBBF1-T3, PBBCl1-T3 and PBBCl2-T3) were synthesized using chlorinated/fluorinated benzothiadiazole (BT) and the twodimensional benzo[1,2-b:4,5-b’]dithiophene (BDT) units as the building blocks. When compared to the fluorinated polymer, the performance of the polymer photovoltaic devices showed that these chlorinated polymers gave extended optical absorption spectrum, and lower highest occupied molecular orbital (HOMO) energy levels. The introduction of chlorine atoms increases the twist angle between the polymer backbones, and led to a lower HOMO energy level and resulted in the increase of open circuit voltage (Voc) up to 0.84 V in PBBCl2-T3 based devices with a two chlorine substitution. However, the device based on PBBCl1-T3 with only one chlorine atom exhibited the best power conversion efficiency (PCE) which was as high as 6.87% with a Voc of 0.73 V, and this was about 10% higher than that of its fluorinated analogs. This result indicated that the introduction of chlorine atoms into polymers is not only a simple route to synthesize a large amount of material and which avoids the tedious synthesis steps in widely used fluorinated polymers, but it is also a feasible and effective strategy to fine tune the energy level of polymer solar cell with optimized PCE. Furthermore, it is worth noting that the introduction of longer π-conjugation side chains could minimize the influence of chlorine substitution by reducing the twist angle between the polymer backbones, which would reduce the gap of Voc between the chlorinated polymers and their fluorinated analogs.

  16. Prognostic and Added Value of Two-Dimensional Global Longitudinal Strain for Prediction of Survival in Patients with Light Chain Amyloidosis Undergoing Autologous Hematopoietic Cell Transplantation.

    Science.gov (United States)

    Pun, Shawn C; Landau, Heather J; Riedel, Elyn R; Jordan, Jonathan; Yu, Anthony F; Hassoun, Hani; Chen, Carol L; Steingart, Richard M; Liu, Jennifer E

    2018-01-01

    Autologous hematopoietic cell transplantation (HCT) is a first-line therapy for prolonging survival in patients with light-chain (AL) amyloidosis. Cardiac involvement is the most important determinant of survival. However, patients with advanced cardiac involvement have often been excluded from HCT because of high risk for transplantation-related mortality and poor overall survival. Whether baseline left ventricular global longitudinal strain (GLS) can provide additional risk stratification and predict survival after HCT in this high-risk population remains unclear. The aim of this study was to evaluate the prognostic implication of baseline GLS and the added value of GLS beyond circulating cardiac biomarkers for risk stratification in patients with AL amyloidosis undergoing HCT. Eighty-two patients with newly diagnosed AL amyloidosis who underwent upfront HCT between January 2007 and April 2014 were included in the study. Clinical, echocardiographic, and serum cardiac biomarker data were collected at baseline and 12 months following HCT. GLS measurements were performed using a vendor-independent offline system. The median follow-up time for survivors was 58 months. Sixty-four percent of patients were in biomarker-based Mayo stage II or III. GLS, brain natriuretic peptide, troponin, and mitral E/A ratio were identified as the strongest predictors of survival (P value that best discriminated survivors from nonsurvivors, and the application of this cutoff value provided further mortality risk stratification within each Mayo stage. GLS is a strong predictor of survival in patients with AL amyloidosis undergoing HCT, potentially providing incremental value over serum cardiac biomarkers for risk stratification. GLS should be considered as a standard parameter along with serum cardiac biomarkers when evaluating eligibility for HCT or other investigational therapies. Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  17. Dynamics of two-dimensional bubbles

    Science.gov (United States)

    Piedra, Saúl; Ramos, Eduardo; Herrera, J. Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.

  18. Heat stress-induced loss of eukaryotic initiation factor 5A (eIF-5A) in a human pancreatic cancer cell line, MIA PaCa-2, analyzed by two-dimensional gel electrophoresis.

    Science.gov (United States)

    Takeuchi, Kana; Nakamura, Kazuyuki; Fujimoto, Masanori; Kaino, Seiji; Kondoh, Satoshi; Okita, Kiwamu

    2002-02-01

    Alterations of intracellular proteins during the process of heat stress-induced cell death of a human pancreatic cancer cell line, MIA PaCa-2, were investigated using two-dimensional gel electrophoresis (2-DE), agarose gel electrophoresis, and cell biology techniques. Incubation of MIA PaCa-2 at 45 degrees C for 30 min decreased the cell growth rate and cell viability without causing chromosomal DNA fragmentation. Incubation at 51 degrees C for 30 min suppressed cell growth and again led to death without DNA fragmentation. The cell death was associated with the loss of an intracellular protein of M(r) 17,500 and pI 5.2 on 2-DE gel. This protein was determined to be eukaryotic initiation factor SA (eIF-5A) by microsequencing of the N-terminal region of peptide fragments obtained by cyanogen bromide treatment of the protein blotted onto a polyvinylidene difluoride (PVDF) membrane. The sequences detected were QXSALRKNGFVVLKGRP and STSKTGXHGHAKVHLVGID, which were homologous with the sequence of eIF-5A from Gln 20 to Pro 36 and from Ser 43 to Asp 61, respectively. Furthermore, the result of sequencing suggested that the protein was an active form of hypusinated eIF-5A, because Lys 46 could be detected but not Lys 49, which is the site for hypusination. These results suggest that loss of the active form of eIF-5A is an important factor in the irreversible process of heat stress-induced death of MIA PaCa-2 cells.

  19. TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION

    International Nuclear Information System (INIS)

    Wang, Yougang; Xu, Yidong; Chen, Xuelei; Park, Changbom; Kim, Juhan

    2015-01-01

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array

  20. Dirac cones in two-dimensional borane

    Science.gov (United States)

    Martinez-Canales, Miguel; Galeev, Timur R.; Boldyrev, Alexander I.; Pickard, Chris J.

    2017-11-01

    We introduce two-dimensional borane, a single-layered material of BH stoichiometry, with promising electronic properties. We show that, according to density functional theory calculations, two-dimensional borane is semimetallic, with two symmetry-related Dirac cones meeting right at the Fermi energy Ef. The curvature of the cones is lower than in graphene, thus closer to the ideal linear dispersion. Its structure, formed by a puckered trigonal boron network with hydrogen atoms connected to each boron atom, can be understood as distorted, hydrogenated borophene [Mannix et al., Science 350, 1513 (2015), 10.1126/science.aad1080]. Chemical bonding analysis reveals the boron layer in the network being bound by delocalized four-center two-electron σ bonds. Finally, we suggest high pressure could be a feasible route to synthesize two-dimensional borane.

  1. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  2. Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control

    NARCIS (Netherlands)

    Witte, S.; Baclayon, M.; Peterman, E.J.G.; Toonen, R.F.G.; Mansvelder, H.D.; Groot, M.L.

    2009-01-01

    We present a full-range Fourier-domain optical coherence tomography (OCT) system that is capable of acquiring two-dimensional images of living tissue in a single shot. By using line illumination of the sample in combination with a two-dimensional imaging spectrometer, 1040 depth scans are performed

  3. 76 FR 18769 - Prospective Grant of Exclusive License: Device and System for Two Dimensional Analysis of...

    Science.gov (United States)

    2011-04-05

    ... for Two Dimensional Analysis of Biomolecules From Tissue and Other Samples AGENCY: National Institutes... services for high throughput parallel analysis and two dimensional analyses of molecules for all uses...- Dimensional Array;'' U.S. Patent Application No. 10/535,521 [HHS Ref. No. E-339-2002/0-US-03], filed May 18...

  4. Red cell distribution width and its relationship with global longitudinal strain in patients with heart failure with reduced ejection fraction: a study using two-dimensional speckle tracking echocardiography.

    Science.gov (United States)

    Eroglu, Elif; Kilicgedik, Alev; Kahveci, Gokhan; Bakal, Ruken Bengi; Kirma, Cevat

    2018-01-01

    Red cell distribution width (RDW) is a measurement of size variability of the red blood cells and has been shown to be a powerful predictor of prognosis in heart failure (HF). Recently, global longitudinal strain (GLS) emerged as a more accurate marker of left ventricular (LV) systolic function. We aimed to assess the relationship between RDW and standard echocardiographic parameters and LV global strain measured by two-dimensional (2D) speckle tracking echocardiography in patients with HF with reduced EF (HFrEF). Fifty-nine HF patients with an EF natri-uretic peptide (r = 0.45, p = 0.0001), left atrial volume index (r = 0.38, p = 0.001), LV end-diastolic dimensions (r = 0.37, p = 0.001), and E/e' (r = 0.33, p = 0.005) and negative correlations with haemoglobin (r = -0.54, p = 0.0001), LVEF (r = -0.27, p = 0.004) and finally LV GLS (r = -0.41, p = 0.001). HFrEF patients were divided into two groups based on the median RDW value. Patients with higher than median RDW had significantly lower GLS despite similar EF. Elevated RDW is associated with poorer LV deformation assessed by speckle tracking echocardiography in HF patients with similar EF. Therefore, the degree of anisocytosis could be used as an additional marker to identify these high-risk patients as well as improve treatment strategy.

  5. Dipolar vortices in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Hesthaven, J.S.; Lynov, Jens-Peter

    1996-01-01

    The dynamics of dipolar vortex solutions to the two-dimensional Euler equations is studied. A new type of nonlinear dipole is found and its dynamics in a slightly viscous system is compared with the dynamics of the Lamb dipole. The evolution of dipolar structures from an initial turbulent patch...

  6. Analytical simulation of two dimensional advection dispersion ...

    African Journals Online (AJOL)

    The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...

  7. Analytical Simulation of Two Dimensional Advection Dispersion ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...

  8. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons.

  9. Stability of two-dimensional vorticity filaments

    International Nuclear Information System (INIS)

    Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.

    2004-01-01

    We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability

  10. Two-dimensional membranes in motion

    NARCIS (Netherlands)

    Davidovikj, D.

    2018-01-01

    This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research

  11. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Sums of two-dimensional spectral triples

    DEFF Research Database (Denmark)

    Christensen, Erik; Ivan, Cristina

    2007-01-01

    We study countable sums of two dimensional modules for the continuous complex functions on a compact metric space and show that it is possible to construct a spectral triple which gives the original metric back. This spectral triple will be finitely summable for any positive parameter. We also co...

  13. A novel two dimensional particle velocity sensor

    NARCIS (Netherlands)

    Pjetri, O.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    2013-01-01

    In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to

  14. Two-dimensional microstrip detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.

  15. Comparative proteomic analysis of the ribosomes in 5-fluorouracil resistance of a human colon cancer cell line using the radical-free and highly reducing method of two-dimensional polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Kimura, Kosei; Wada, Akira; Ueta, Masami; Ogata, Akihiko; Tanaka, Satoru; Sakai, Akiko; Yoshida, Hideji; Fushitani, Hideo; Miyamoto, Akiko; Fukushima, Masakazu; Uchiumi, Toshio; Tanigawa, Nobuhiko

    2010-11-01

    Many auxiliary functions of ribosomal proteins (r-proteins) have received considerable attention in recent years. However, human r-proteins have hardly been examined by proteomic analysis. In this study, we isolated ribosomal particles and subsequently compared the proteome of r-proteins between the DLD-1 human colon cancer cell line and its 5-fluorouracil (5-FU)-resistant sub-line, DLD-1/5-FU, using the radical-free and highly reducing method of two-dimensional polyacrylamide gel electrophoresis, which has a superior ability to separate basic proteins, and we discuss the role of r-proteins in 5-FU resistance. Densitometric analysis was performed to quantify modulated proteins, and protein spots showing significant changes were identified by employing matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Three basic proteins (L15, L37 and prohibitin) which were significantly modulated between DLD-1 and DLD-1/5-FU were identified. Two proteins, L15 and L37, showed down-regulated expression in DLD-1/5-FU in comparison to DLD-1. Prohibitin, which is not an r-protein and is known to be localized in the mitochondria, showed up-regulated expression in DLD-1/5-FU. These 3 proteins may be related to 5-FU resistance.

  16. Two-dimensional sensitivity calculation code: SENSETWO

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.

    1979-05-01

    A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)

  17. Two-dimensional ranking of Wikipedia articles

    Science.gov (United States)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  18. Two-dimensional confinement of heavy fermions

    International Nuclear Information System (INIS)

    Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito

    2010-01-01

    Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)

  19. Toward two-dimensional search engines

    International Nuclear Information System (INIS)

    Ermann, L; Shepelyansky, D L; Chepelianskii, A D

    2012-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)

  20. Plasmonics with two-dimensional conductors

    Science.gov (United States)

    Yoon, Hosang; Yeung, Kitty Y. M.; Kim, Philip; Ham, Donhee

    2014-01-01

    A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics. PMID:24567472

  1. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  2. Superintegrability on the two dimensional hyperboloid

    International Nuclear Information System (INIS)

    Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr

    1998-01-01

    This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out

  3. Two-dimensional time dependent Riemann solvers for neutron transport

    International Nuclear Information System (INIS)

    Brunner, Thomas A.; Holloway, James Paul

    2005-01-01

    A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem

  4. Hardwiring Stem Cell Communication through Tissue Structure.

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-03-10

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function, but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Hardwiring stem cell communication through tissue structure

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-01-01

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. PMID:26967287

  6. Gyroscope with two-dimensional optomechanical mirror

    Science.gov (United States)

    Davuluri, Sankar; Li, Kai; Li, Yong

    2017-11-01

    We propose an application of two-dimensional optomechanical oscillator as a gyroscope by detecting the Coriolis force which is modulated at the natural frequency of the optomechanical oscillator. Dependence of gyroscope's sensitivity on shot noise, back-action noise, thermal noise, and input laser power is studied. At optimal input laser power, the gyroscope's sensitivity can be improved by increasing the mass or by decreasing the temperature and decay rate of the mechanical oscillator. When the mechanical oscillator's thermal occupation number, n th, is zero, sensitivity improves with decrease in frequency of the mechanical oscillator. For {n}{{th}}\\gg 1, the sensitivity is independent of the mechanical oscillator's frequency.

  7. Versatile two-dimensional transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Canulescu, Stela; Affannoukoué, Kévin; Döbeli, Max

    Two-dimensional transition metal dichalcogenides (2D-TMDCs), such as MoS2, have emerged as a new class of semiconducting materials with distinct optical and electrical properties. The availability of 2D-TMDCs with distinct band gaps allows for unlimited combinations of TMDC monolayers (MLs...... vacancies. We have found that the absorption spectra of the MoS2 films exhibit distinct excitonic peaks at ~1.8 and ~2 eV when grown in the presence of a sulfur evaporation beam as compared to those deposited in vacuum. The structure of the PLD-grown MoS2 films will be further discussed based Raman...

  8. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko

    1996-01-01

    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  9. Reduced toxicity with three-dimensional conformal radiotherapy or intensity-modulated radiotherapy compared with conventional two-dimensional radiotherapy for esophageal squamous cell carcinoma: a secondary analysis of data from four prospective clinical trials.

    Science.gov (United States)

    Deng, J-Y; Wang, C; Shi, X-H; Jiang, G-L; Wang, Y; Liu, Y; Zhao, K-L

    2016-11-01

    We conducted a retrospective analysis to assess the toxicity and long-term survival of esophageal squamous cell carcinoma patients treated with three-dimensional conformal radiotherapy (3DCRT) or intensity-modulated radiotherapy (IMRT) versus conventional two-dimensional radiotherapy (2DRT). All data in the present study were based on four prospective clinical trials conducted at our institution from 1996 to 2004 and included 308 esophageal squamous cell carcinoma patients treated with 2DRT or 3DCRT/IMRT. Based on the inclusion and exclusion criteria, 254 patients were included in the analysis. Of these patients, 158 were treated with 2DRT, whereas 96 were treated with 3DCRT/IMRT. The rates of ≥Grade3 acute toxicity of the esophagus and lung were 11.5% versus 28.5% (P = 0.002) and 5.2% versus 10.8% (P = 0.127) in the 3DCRT/IMRT and 2DRT groups, respectively. The incidences of ≥Grade 3 late toxicity of the esophagus and lungs were 3.1% versus 10.7% (P = 0.028) and 3.1% versus 5.7% (P = 0.127) in the 3DCRT/IMRT and 2DRT groups, respectively. The 1-year, 3-year and 5-year estimated overall survival rates were 81%, 38% and 34% in the 3DCRT/IMRT group and 79%, 44% and 31% in the 2DRT group, respectively (P = 0.628). The 1-year, 3-year and 5-year local control rates were 88%, 71% and 66% in the 3DCRT/IMRT group and 84%, 66% and 60% in the 2DRT group, respectively (P = 0.412). Fewer incidences of acute and late toxicities were observed in esophageal squamous cell carcinoma patients treated with 3DCRT/IMRT compared with those treated with 2DRT. No significant survival benefit was observed with the use of 3DCRT/IMRT. © 2015 International Society for Diseases of the Esophagus.

  10. Focused two-dimensional antiscatter grid for mammography

    International Nuclear Information System (INIS)

    Makarova, O.V.; Moldovan, N.; Tang, C.-M.; Mancini, D.C.; Divan, R.; Zyryanov, V.N.; Ryding, D.C.; Yaeger, J.; Liu, C.

    2002-01-01

    We are developing freestanding high-aspect-ratio, focused, two-dimensional antiscatter grids for mammography using deep x-ray lithography and copper electroforming. The exposure is performed using x-rays from bending magnet beamline 2-BM at the Advanced Photon Source (APS) of Argonne National Laboratory. A 2.8-mm-thick prototype freestanding copper antiscatter grid with 25 (micro)m-wide parallel cell walls and 550 (micro)m periodicity has been fabricated. The progress in developing a dynamic double-exposure technique to create the grid with the cell walls aligned to a point x-ray source of the mammography system is discussed

  11. Reproducibility of regional and global longitudinal strains derived from two-dimensional speckle-tracking and doppler tissue imaging between expert and novice readers during quantitative dobutamine stress echocardiography.

    Science.gov (United States)

    Yamada, Akira; Luis, Sushil A; Sathianathan, Daniel; Khandheria, Bijoy K; Cafaro, James; Hamilton-Craig, Christian R; Platts, David G; Haseler, Luke; Burstow, Darryl; Chan, Jonathan

    2014-08-01

    Longitudinal strain (LS) is a quantitative parameter that adds incremental value to wall motion analysis. The aim of this study was to compare the reproducibility of LS derived from Doppler tissue imaging and speckle-tracking between an expert and a novice strain reader during dobutamine stress echocardiography (DSE). Forty-one patients (mean age, 65 ± 15 years; mean ejection fraction, 58 ± 11%) underwent DSE per clinical protocol. Global LS derived from speckle-tracking and regional LS derived from both speckle-tracking and Doppler tissue imaging were measured twice by an expert strain reader and also measured twice by a novice strain reader. Intraobserver and interobserver analyses were performed using intraclass correlation coefficients (ICC), Bland-Altman analysis, and absolute difference values (mean ± SD). Global LS measured by the expert strain reader demonstrated high intraobserver measurement reproducibility (rest: ICC = 0.95, absolute difference = 5.5 ± 4.9%; low dose: ICC = 0.96, absolute difference = 5.7 ± 3.7%; peak dose: ICC = 0.87, absolute difference = 11.4 ± 8.4%). Global LS measured by the novice strain reader also demonstrated high intraobserver reproducibility (rest: ICC = 0.97, absolute difference = 4.1 ± 3.4%; low dose: ICC = 0.94, absolute difference = 5.4 ± 5.9%; peak dose: ICC = 0.94, absolute difference = 6.1 ± 4.8%). Global LS also showed high interobserver agreement between the expert and novice readers at all stages of DSE (rest: ICC = 0.90, absolute difference = 8.5 ± 7.5%; low dose: ICC = 0.90, absolute difference = 8.9 ± 7.1%; peak dose: ICC = 0.87, absolute difference = 10.8 ± 8.4%). Of all parameters studied, LS derived from Doppler tissue imaging had relatively low interobserver and intraobserver agreement. Global LS is highly reproducible during all stages of DSE. This variable is a potentially reliable and reproducible measure of myocardial deformation. Copyright © 2014 American Society of Echocardiography

  12. Parallel comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Yan, DanDan; Tedone, Laura; Koutoulis, Anthony; Whittock, Simon P; Shellie, Robert A

    2017-11-17

    We introduce an information rich analytical approach called parallel comprehensive two-dimensional gas chromatography (2GC×2GC). This parallel chromatography approach splits injected samples into two independent two-dimensional column ensembles and provides two GC×GC separations by using contra-directional thermal modulation. The first-dimension ( 1 D) and second-dimension ( 2 D) columns are connected using planar three-port microchannel devices, which are supplied with supplementary flow via two pressure controller modules. Precise carrier gas flow control at the junction of the 1 D and 2 D columns permits independent control of flow conditions in each separation column. The 2GC×2GC approach provides two entirely independent GC×GC separations for each injection. Analysis of hop (Humulus lupulus L.) essential oils is used to demonstrate the capability of the approach. The analytical performance of each GC×GC separation in the 2GC×2GC experiment is comparable to individual GC×GC separation with matching column configurations. The peak capacity of 2GC×2GC is about 2 times than that of single GC×GC system. The dual 2D chromatograms produced by this single detector system provide complementary separations and additional identification information by harnessing different selectivity provided by the four separation columns. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Flow transitions in two-dimensional foams.

    Science.gov (United States)

    Gilbreth, Christopher; Sullivan, Scott; Dennin, Michael

    2006-11-01

    For sufficiently slow rates of strain, flowing foam can exhibit inhomogeneous flows. The nature of these flows is an area of active study in both two-dimensional model foams and three dimensional foam. Recent work in three-dimensional foam has identified three distinct regimes of flow [S. Rodts, J. C. Baudez, and P. Coussot, Europhys. Lett. 69, 636 (2005)]. Two of these regimes are identified with continuum behavior (full flow and shear banding), and the third regime is identified as a discrete regime exhibiting extreme localization. In this paper, the discrete regime is studied in more detail using a model two-dimensional foam: a bubble raft. We characterize the behavior of the bubble raft subjected to a constant rate of strain as a function of time, system size, and applied rate of strain. We observe localized flow that is consistent with the coexistence of a power-law fluid with rigid-body rotation. As a function of applied rate of strain, there is a transition from a continuum description of the flow to discrete flow when the thickness of the flow region is approximately ten bubbles. This occurs at an applied rotation rate of approximately 0.07 s-1.

  14. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  15. Two-dimensional materials for ultrafast lasers

    International Nuclear Information System (INIS)

    Wang Fengqiu

    2017-01-01

    As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)

  16. Two dimensional generalizations of the Newcomb equation

    International Nuclear Information System (INIS)

    Dewar, R.L.; Pletzer, A.

    1989-11-01

    The Bineau reduction to scalar form of the equation governing ideal, zero frequency linearized displacements from a hydromagnetic equilibrium possessing a continuous symmetry is performed in 'universal coordinates', applicable to both the toroidal and helical cases. The resulting generalized Newcomb equation (GNE) has in general a more complicated form than the corresponding one dimensional equation obtained by Newcomb in the case of circular cylindrical symmetry, but in this cylindrical case , the equation can be transformed to that of Newcomb. In the two dimensional case there is a transformation which leaves the form of the GNE invariant and simplifies the Frobenius expansion about a rational surface, especially in the limit of zero pressure gradient. The Frobenius expansions about a mode rational surface is developed and the connection with Hamiltonian transformation theory is shown. 17 refs

  17. Ward identities in two-dimensional gravity

    International Nuclear Information System (INIS)

    Polchinski, J.

    1991-01-01

    We study the decoupling of null states in two-dimensional gravity, using methods of critical string theory. We identify a family of null states which fail to decouple due to curvature and boundary terms. This gives relations involving amplitudes at different genus. At genus zero, these determine certain operator product coefficients. At genus one, they determine the partition function. At higher genus, we obtain a relation similar in form to the Painleve equation, but due to an incomplete understanding of a certain ghost/curvature term we do not have a closed relation for the partition function. Our results appear to correspond to the L 0 and L 1 equations in the topological and matrix model approaches. (orig.)

  18. Two dimensional compass model with Heisenberg interactions

    Science.gov (United States)

    Pires, A. S. T.

    2018-04-01

    We consider a two dimensional compass model with a next and a next near Heisenberg term. The interactions are of two types: frustrated near neighbor compass interactions of amplitudes Jx and Jy, and next and next near neighbor Heisenberg interactions with exchanges J1 and J2 respectively. The Heisenberg interactions are isotropic in spin space, but the compass interactions depend on the bond direction. The ground state of the pure compass model is degenerated with a complex phase diagram. This degeneracy is removed by the Heisenberg terms leading to the arising of a magnetically ordered phase with a preferred direction. We calculate the phase diagrams at zero temperature for the case where, for J2 = 0, we have an antiferromagnetic ground state. We show that varying the value of J2, a magnetically disordered phase can be reached for small values of the compass interactions. We also calculate the critical temperature for a specified value of parameters.

  19. Strategies for Interpreting Two Dimensional Microwave Spectra

    Science.gov (United States)

    Martin-Drumel, Marie-Aline; Crabtree, Kyle N.; Buchanan, Zachary

    2017-06-01

    Microwave spectroscopy can uniquely identify molecules because their rotational energy levels are sensitive to the three principal moments of inertia. However, a priori predictions of a molecule's structure have traditionally been required to enable efficient assignment of the rotational spectrum. Recently, automated microwave double resonance spectroscopy (AMDOR) has been employed to rapidly generate two dimensional spectra based on transitions that share a common rotational level, which may enable automated extraction of rotational constants without any prior estimates of molecular structure. Algorithms used to date for AMDOR have relied on making several initial assumptions about the nature of a subset of the linked transitions, followed by testing possible assignments by "brute force." In this talk, we will discuss new strategies for interpreting AMDOR spectra, using eugenol as a test case, as well as prospects for library-free, automated identification of the molecules in a volatile mixture.

  20. Modified black holes in two dimensional gravity

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1991-11-01

    The SL(2,R)/U(1) gauged WZWN model is modified by a topological term and the accompanying change in the geometry of the two dimensional target space is determined. The possibility of this additional term arises from a symmetry in the general formalism of gauging an isometry subgroup of a non-linear sigma model with an antisymmetric tensor. It is shown, in particular, that the space-time exhibits some general singularities for which the recently found black hole is just a special case. From a conformal field theory point of view and for special values of the unitary representation of SL(2,R), this topological term can be interpreted as a small perturbation by a (1,1) conformal operator of the gauged WZWN action. (author). 26 refs

  1. Thermal properties of two-dimensional materials

    International Nuclear Information System (INIS)

    Zhang Gang; Zhang Yong-Wei

    2017-01-01

    Two-dimensional (2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides (e.g., MoS 2 and WS 2 ), have attracted a great deal of attention recently due to their extraordinary structural, mechanical, and physical properties. In particular, 2D materials have shown great potential for thermal management and thermoelectric energy generation. In this article, we review the recent advances in the study of thermal properties of 2D materials. We first review some important aspects in thermal conductivity of graphene and discuss the possibility to enhance the ultra-high thermal conductivity of graphene. Next, we discuss thermal conductivity of MoS 2 and the new strategy for thermal management of MoS 2 device. Subsequently, we discuss the anisotropic thermal properties of phosphorene. Finally, we review the application of 2D materials in thermal devices, including thermal rectifier and thermal modulator. (topical reviews)

  2. Two-dimensional heterostructures for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States); Pomerantseva, Ekaterina [Drexel Univ., Philadelphia, PA (United States)

    2017-06-12

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  3. Two-dimensional electroacoustic waves in silicene

    Science.gov (United States)

    Zhukov, Alexander V.; Bouffanais, Roland; Konobeeva, Natalia N.; Belonenko, Mikhail B.

    2018-01-01

    In this letter, we investigate the propagation of two-dimensional electromagnetic waves in a piezoelectric medium built upon silicene. Ultrashort optical pulses of Gaussian form are considered to probe this medium. On the basis of Maxwell's equations supplemented with the wave equation for the medium's displacement vector, we obtain the effective governing equation for the vector potential associated with the electromagnetic field, as well as the component of the displacement vector. The dependence of the pulse shape on the bandgap in silicene and the piezoelectric coefficient of the medium was analyzed, thereby revealing a nontrivial triadic interplay between the characteristics of the pulse dynamics, the electronic properties of silicene, and the electrically induced mechanical vibrations of the medium. In particular, we uncovered the possibility for an amplification of the pulse amplitude through the tuning of the piezoelectric coefficient. This property could potentially offer promising prospects for the development of amplification devices for the optoelectronics industry.

  4. Equivalency of two-dimensional algebras

    International Nuclear Information System (INIS)

    Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.

    2011-01-01

    Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)

  5. Anisotropic mass density by two-dimensional acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera s/n, E-46022 Valencia (Spain)], E-mail: jsdehesa@upvnet.upv.es

    2008-02-15

    We show that specially designed two-dimensional arrangements of full elastic cylinders embedded in a nonviscous fluid or gas define (in the homogenization limit) a new class of acoustic metamaterials characterized by a dynamical effective mass density that is anisotropic. Here, analytic expressions for the dynamical mass density and the effective sound velocity tensors are derived in the long wavelength limit. Both show an explicit dependence on the lattice filling fraction, the elastic properties of cylinders relative to the background, their positions in the unit cell, and their multiple scattering interactions. Several examples of these metamaterials are reported and discussed.

  6. Two-dimensional electrophoretic comparison of metastatic and non-metastatic human breast tumors using in vitro cultured epithelial cells derived from the cancer tissues

    Czech Academy of Sciences Publication Activity Database

    Vydra, J.; Selicharová, Irena; Smutná, Kateřina; Šanda, Miloslav; Matoušková, Eva; Buršíková, Eva; Prchalová, Markéta; Velenská, Z.; Coufal, David; Jiráček, Jiří

    2008-01-01

    Roč. 8, č. 107 (2008), s. 1-13 ISSN 1471-2407 R&D Projects: GA MZd NR8323 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520514; CEZ:AV0Z10300504 Keywords : breast cancer * 2-DE * metastases Subject RIV: CE - Biochemistry Impact factor: 3.087, year: 2008

  7. Stem cells in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Jeong Min [Department of Preventive and Social Dentistry and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Mantalaris, Anathathios, E-mail: yshwang@khu.ac.k [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2010-12-15

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  8. Stem cells in bone tissue engineering

    International Nuclear Information System (INIS)

    Seong, Jeong Min; Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik; Mantalaris, Anathathios

    2010-01-01

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  9. Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis

    Science.gov (United States)

    Murphy, Sandra; Dowling, Paul; Ohlendieck, Kay

    2016-01-01

    The pioneering work by Patrick H. O’Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry 1975, 250, 4007–4021). The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O’Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins. PMID:28248237

  10. Cell supermarket: Adipose tissue as a source of stem cells

    Science.gov (United States)

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  11. Cells for tissue engineering of cardiac valves.

    Science.gov (United States)

    Jana, Soumen; Tranquillo, Robert T; Lerman, Amir

    2016-10-01

    Heart valve tissue engineering is a promising alternative to prostheses for the replacement of diseased or damaged heart valves, because tissue-engineered valves have the ability to remodel, regenerate and grow. To engineer heart valves, cells are harvested, seeded onto or into a three-dimensional (3D) matrix platform to generate a tissue-engineered construct in vitro, and then implanted into a patient's body. Successful engineering of heart valves requires a thorough understanding of the different types of cells that can be used to obtain the essential phenotypes that are expressed in native heart valves. This article reviews different cell types that have been used in heart valve engineering, cell sources for harvesting, phenotypic expression in constructs and suitability in heart valve tissue engineering. Natural and synthetic biomaterials that have been applied as scaffold systems or cell-delivery platforms are discussed with each cell type. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Radiation effects on two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)

    2016-12-15

    The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Photodetectors based on two dimensional materials

    Science.gov (United States)

    Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen

    2016-09-01

    Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  14. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  15. Two-dimensional atomic crystals beyond graphene

    Science.gov (United States)

    Kaul, Anupama B.

    2014-06-01

    Carbon-based nanostructures have been the center of intense research and development for more than two decades now. Of these materials, graphene, a two-dimensional (2D) layered material system, has had a significant impact on science and technology over the past decade after monolayers of this material were experimentally isolated in 2004. The recent emergence of other classes of 2D graphene-like layered materials has added yet more exciting dimensions for research in exploring the diverse properties and applications arising from these 2D material systems. For example, hexagonal-BN, a layered material closest in structure to graphene, is an insulator, while NbSe2, a transition metal di-chalcogenide, is metallic and monolayers of other transition metal di-chalcogenides such as MoS2 are direct band-gap semiconductors. The rich spectrum of properties that 2D layered material systems offer can potentially be engineered ondemand, and creates exciting prospects for using such materials in applications ranging from electronics, sensing, photonics, energy harvesting and flexible electronics over the coming years.

  16. Seismic isolation of two dimensional periodic foundations

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Y.; Mo, Y. L., E-mail: yilungmo@central.uh.edu [University of Houston, Houston, Texas 77004 (United States); Laskar, A. [Indian Institute of Technology Bombay, Powai, Mumbai (India); Cheng, Z.; Shi, Z. [Beijing Jiaotong University, Beijing (China); Menq, F. [University of Texas, Austin, Texas 78712 (United States); Tang, Y. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-07-28

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  17. Comparative Two-Dimensional Fluorescence Gel Electrophoresis.

    Science.gov (United States)

    Ackermann, Doreen; König, Simone

    2018-01-01

    Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.

  18. Stress distribution in two-dimensional silos

    Science.gov (United States)

    Blanco-Rodríguez, Rodolfo; Pérez-Ángel, Gabriel

    2018-01-01

    Simulations of a polydispersed two-dimensional silo were performed using molecular dynamics, with different numbers of grains reaching up to 64 000, verifying numerically the model derived by Janssen and also the main assumption that the walls carry part of the weight due to the static friction between grains with themselves and those with the silo's walls. We vary the friction coefficient, the radii dispersity, the silo width, and the size of grains. We find that the Janssen's model becomes less relevant as the the silo width increases since the behavior of the stresses becomes more hydrostatic. Likewise, we get the normal and tangential stress distribution on the walls evidencing the existence of points of maximum stress. We also obtained the stress matrix with which we observe zones of concentration of load, located always at a height around two thirds of the granular columns. Finally, we observe that the size of the grains affects the distribution of stresses, increasing the weight on the bottom and reducing the normal stress on the walls, as the grains are made smaller (for the same total mass of the granulate), giving again a more hydrostatic and therefore less Janssen-type behavior for the weight of the column.

  19. Asymptotics for Two-dimensional Atoms

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip

    2012-01-01

    We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....

  20. Two-dimensional bipolar junction transistors

    Science.gov (United States)

    Gharekhanlou, Behnaz; Khorasani, Sina; Sarvari, Reza

    2014-03-01

    Recent development in fabrication technology of planar two-dimensional (2D) materials has introduced the possibility of numerous novel applications. Our recent analysis has revealed that by definition of p-n junctions through appropriate patterned doping of 2D semiconductors, ideal exponential I-V characteristics may be expected. However, the theory of 2D junctions turns out to be very different to that of standard bulk junctions. Based on this theory of 2D diodes, we construct for the first time a model to describe 2D bipolar junction transistors (2D-BJTs). We derive the small-signal equivalent model, and estimate the performance of a 2D-BJT device based on graphone as the example material. A current gain of about 138 and maximum threshold frequency of 77 GHz, together with a power-delay product of only 4 fJ per 1 μm lateral width is expected at an operating voltage of 5 V. In addition, we derive the necessary formulae and a new approximate solution for the continuity equation in the 2D configuration, which have been verified against numerical solutions.

  1. Discrete formulation for two-dimensional multigroup neutron diffusion equations

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Salehi, Ali A.; Shahriari, Majid

    2003-01-01

    The objective of this paper is to introduce a new numerical method for neutronic calculation in a reactor core. This method can produce the final finite form of the neutron diffusion equation by classifying the neutronic variables and using two kinds of cell complexes without starting from the conventional differential form of the neutron diffusion equation. The method with linear interpolation produces the same convergence as the linear continuous finite element method. The quadratic interpolation is proven; the convergence order depends on the shape of the dual cell. The maximum convergence order is achieved by choosing the dual cell based on two Gauss' points. The accuracy of the method was examined with a well-known IAEA two-dimensional benchmark problem. The numerical results demonstrate the effectiveness of the new method

  2. Interaction of two-dimensional magnetoexcitons

    Science.gov (United States)

    Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.

    2017-04-01

    We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .

  3. Two-Dimensional Gel Electrophoresis and 2D-DIGE.

    Science.gov (United States)

    Meleady, Paula

    2018-01-01

    Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) continues to be one of the most versatile and widely used techniques to study the proteome of a biological system. In particular, a modified version of 2D-PAGE, two-dimensional difference gel electrophoresis (2D-DIGE), which uses differential labeling of protein samples with up to three fluorescent tags, offers greater sensitivity and reproducibility over conventional 2D-PAGE gels for differential quantitative analysis of protein expression between experimental groups. Both these methods have distinct advantages in the separation and identification of thousands of individual proteins species including protein isoforms and post-translational modifications. This review will discuss the principles of 2D-PAGE and 2D-DIGE including limitations to the methods. 2D-PAGE and 2D-DIGE continue to be popular methods in bioprocessing-related research (particularly on recombinant Chinese hamster ovary cells), which will also be discussed in the review chapter.

  4. Photostrictive Two-Dimensional Materials in the Monochalcogenide Family

    Science.gov (United States)

    Haleoot, Raad; Paillard, Charles; Kaloni, Thaneshwor P.; Mehboudi, Mehrshad; Xu, Bin; Bellaiche, L.; Barraza-Lopez, Salvador

    2017-06-01

    Photostriction is predicted for group-IV monochalcogenide monolayers, two-dimensional ferroelectrics with rectangular unit cells (the lattice vector a1 is larger than a2) and an intrinsic dipole moment parallel to a1. Photostriction is found to be related to the structural change induced by a screened electric polarization (i.e., a converse piezoelectric effect) in photoexcited electronic states with either px or py (in-plane) orbital symmetry that leads to a compression of a1 and a comparatively smaller increase of a2 for a reduced unit cell area. The structural change documented here is 10 times larger than that observed in BiFeO3 , making monochalcogenide monolayers an ultimate platform for this effect. This structural modification should be observable under experimentally feasible densities of photexcited carriers on samples that have been grown already, having a potential usefulness for light-induced, remote mechano-optoelectronic applications.

  5. Two-Dimensional Organic-Inorganic Hybrid Perovskite Photonic Films.

    Science.gov (United States)

    Meng, Ke; Gao, Shanshan; Wu, Longlong; Wang, Geng; Liu, Xin; Chen, Gang; Liu, Zhou; Chen, Gang

    2016-07-13

    Organic-inorganic hybrid perovskites have created enormous expectations for low-cost and high-performance optoelectronic devices. In prospect, future advancements may derive from reaping novel electrical and optical properties beyond pristine perovskites through microscopic structure design and engineering. Herein, we report the successful preparation of two-dimensional inverse-opal perovskite (IOP) photonic films, featuring unique nanostructures and vivid colors. Further compositional and structural managements promise optical property and energy level tunability of the IOP films. They are further functionalized in solar cells, resulting in colorful devices with respectable power conversion efficiency. Such concept has not been previously applied for perovskite-based solar cells, which could open a route for more versatile optoelectronic devices.

  6. Two-dimensional silica opens new perspectives

    Science.gov (United States)

    Büchner, Christin; Heyde, Markus

    2017-12-01

    In recent years, silica films have emerged as a novel class of two-dimensional (2D) materials. Several groups succeeded in epitaxial growth of ultrathin SiO2 layers using different growth methods and various substrates. The structures consist of tetrahedral [SiO4] building blocks in two mirror symmetrical planes, connected via oxygen bridges. This arrangement is called a silica bilayer as it is the thinnest 2D arrangement with the stoichiometry SiO2 known today. With all bonds saturated within the nano-sheet, the interaction with the substrate is based on van der Waals forces. Complex ring networks are observed, including hexagonal honeycomb lattices, point defects and domain boundaries, as well as amorphous domains. The network structures are highly tuneable through variation of the substrate, deposition parameters, cooling procedure, introducing dopants or intercalating small species. The amorphous networks and structural defects were resolved with atomic resolution microscopy and modeled with density functional theory and molecular dynamics. Such data contribute to our understanding of the formation and characteristic motifs of glassy systems. Growth studies and doping with other chemical elements reveal ways to tune ring sizes and defects as well as chemical reactivities. The pristine films have been utilized as molecular sieves and for confining molecules in nanocatalysis. Post growth hydroxylation can be used to tweak the reactivity as well. The electronic properties of silica bilayers are favourable for using silica as insulators in 2D material stacks. Due to the fully saturated atomic structure, the bilayer interacts weakly with the substrate and can be described as quasi-freestanding. Recently, a mm-scale film transfer under structure retention has been demonstrated. The chemical and mechanical stability of silica bilayers is very promising for technological applications in 2D heterostacks. Due to the impact of this bilayer system for glass science

  7. Two-dimensional vibrational-electronic spectroscopy

    Science.gov (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  8. Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy.

    Science.gov (United States)

    Nijssen, Annieke; Bakker Schut, Tom C; Heule, Freerk; Caspers, Peter J; Hayes, Donal P; Neumann, Martino H A; Puppels, Gerwin J

    2002-07-01

    The objective of this in vitro study was to explore the applicability of Raman spectroscopy to distinguish basal cell carcinoma from its surrounding noncancerous tissue; therefore, identifying possibilities for the development of an in vivo diagnostic technique for tumor border demarcation. Raman spectra were obtained in a two-dimensional grid from unstained frozen sections of 15 basal cell carcinoma specimens. Pseudo-color Raman images were generated by multivariate statistical analysis and clustering analysis of spectra and compared with histopathology. In this way a direct link between histologically identifiable skin layers and structures and their Raman spectra was made. A tissue classification model was developed, which discriminates between basal cell carcinoma and surrounding nontumorous tissue, based on Raman spectra. The logistic regression model, shows a 100% sensitivity and 93% selectivity for basal cell carcinoma. The Raman spectra were, furthermore, used to obtain information about the differences in molecular composition between different skin layers and structures. An interesting finding was that in four samples of nodular basal cell carcinoma, the collagen signal contribution in spectra of dermis close to a basal cell carcinoma, was markedly reduced. The study demonstrates the sensitivity of Raman spectroscopy to biochemical changes in tissue accompanying malignancy, resulting in a high accuracy when discriminating between basal cell carcinoma and noncancerous tissue.

  9. Cell Source for Tissue and Organ Printing

    Science.gov (United States)

    Xu, Tao; Yuan, Yuyu; Yoo, James J.

    Organ printing, a novel approach in tissue engineering, applies computer-driven deposition of cells, growth factors, biomaterials layer-by-layer to create complex 3D tissue or organ constructs. This emerging technology shows great promise in regenerative medicine, because it may help to address current crisis of tissue and organ shortage for transplantation. Organ printing is developing fast, and there are exciting new possibilities in this area. Successful cell and organ printing requires many key elements. Among these, the choice of appropriate cells for printing is vital. This chapter surveys available cell sources for cell and organ printing application and discusses factors that affect cell choice. Special emphasis is put on several important factors, including the proposed printing system and bioprinters, the assembling method, and the target tissues or organs, which need to be considered to select proper cell sources and cell types. In this chapter, characterizations of the selected cells to justify and/or refine the cell selection will also be discussed. Finally, future prospects in this field will be envisioned.

  10. Electrical and optoelectronic properties of two-dimensional materials

    Science.gov (United States)

    Wang, Qiaoming

    Electrical and optoelectronic properties of bulk semiconductor materials have been extensively explored in last century. However, when reduced to one-dimensional and two-dimensional, many semiconductors start to show unique electrical and optoelectronic behaviors. In this dissertation, electrical and optoelectronic properties of one-dimensional (nanowires) and two-dimensional semiconductor materials are investigated by various techniques, including scanning photocurrent microscopy, scanning Kelvin probe microscopy, Raman spectroscopy, photoluminescence, and finite-element simulations. In our work, gate-tunable photocurrent in ZnO nanowires has been observed under optical excitation in the visible regime, which originates from the nanowire/substrate interface states. This gate tunability in the visible regime can be used to enhance the photon absorption efficiency, and suppress the undesirable visible-light photodetection in ZnO-based solar cells. The power conversion efficiency of CuInSe2/CdS core-shell nanowire solar cells has been investigated. The highest power conversion efficiency per unit area/volume is achieved with core diameter of 50 nm and the thinnest shell thickness. The existence of the optimal geometrical parameters is due to a combined effect of optical resonances and carrier transport/dynamics. Significant current crowding in two-dimensional black phosphorus field-effect transistors has been found, which has been significantly underestimated by the commonly used transmission-line model. This current crowding can lead to Joule heating close to the contacts. New van der Waals metal-semiconductor junctions have been mechanically constructed and systematically studied. The photocurrent on junction area has been demonstrated to originate from the photothermal effect rather than the photovoltaic effect. Our findings suggest that a reasonable control of interface/surface state properties can enable new and beneficial functionalities in nanostructures. We

  11. Tissue-resident memory T cells.

    Science.gov (United States)

    Shin, Haina; Iwasaki, Akiko

    2013-09-01

    Tissues such as the genital tract, skin, and lung act as barriers against invading pathogens. To protect the host, incoming microbes must be quickly and efficiently controlled by the immune system at the portal of entry. Memory is a hallmark of the adaptive immune system, which confers long-term protection and is the basis for efficacious vaccines. While the majority of existing vaccines rely on circulating antibody for protection, struggles to develop antibody-based vaccines against infections such as herpes simplex virus (HSV) and human immunodeficiency virus (HIV) have underscored the need to generate memory T cells for robust antiviral control. The circulating memory T-cell population is generally divided into two subsets: effector memory (TEM ) and central memory (TCM ). These two subsets can be distinguished by their localization, as TCM home to secondary lymphoid organs and TEM circulate through non-lymphoid tissues. More recently, studies have identified a third subset, called tissue-resident memory (TRM ) cells, based on its migratory properties. This subset is found in peripheral tissues that require expression of specific chemoattractants and homing receptors for T-cell recruitment and retention, including barrier sites such as the skin and genital tract. In this review, we categorize different tissues in the body based on patterns of memory T-cell migration and tissue residency. This review also describes the rules for TRM generation and the properties that distinguish them from circulating TEM and TCM cells. Finally, based on the failure of recent T-cell-based vaccines to provide optimal protection, we also discuss the potential role of TRM cells in vaccine design against microbes that invade through the peripheral tissues and highlight new vaccination strategies that take advantage of this newly described memory T-cell subset. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Persistence of Precursor Waves in Two-dimensional Relativistic Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro [Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Matsumoto, Yosuke, E-mail: iwamoto@eps.s.u-tokyo.ac.jp [Department of Physics, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522 (Japan)

    2017-05-01

    We investigated the efficiency of coherent upstream large-amplitude electromagnetic wave emission via synchrotron maser instability in relativistic magnetized shocks using two-dimensional particle-in-cell simulations. We considered a purely perpendicular shock in an electron–positron plasma. The coherent wave emission efficiency was measured as a function of the magnetization parameter σ , which is defined as the ratio of the Poynting flux to the kinetic energy flux. The wave amplitude was systematically smaller than that observed in one-dimensional simulations. However, it continued to persist, even at a considerably low magnetization rate, where the Weibel instability dominated the shock transition. The emitted electromagnetic waves were sufficiently strong to disturb the upstream medium, and transverse filamentary density structures of substantial amplitude were produced. Based on this result, we discuss the possibility of the wakefield acceleration model to produce nonthermal electrons in a relativistic magnetized ion–electron shock.

  13. Seismic isolation of buildings on two dimensional phononic crystal foundation

    Science.gov (United States)

    Han, Lin; Li, Xiao-mei; Zhang, Yan

    2017-11-01

    In order to realize the seismic isolation of buildings, we establish the two dimensional phononic crystal (PC) foundation which has the cell with the size close to the regular concrete test specimens, and is composed of the concrete base, rubber coating and lead cylindrical core. We study the in-plane band gap (BG) characteristics in it, through the analysis of the frequency dispersion relation and frequency response result. To lower the start BG frequency to the seismic frequency range, we also study the influences of material parameters (the elastic modulus of coating and density of cylindrical core) and geometry parameters (the thickness of coating, radius of cylindrical core and lattice constant) on BG ranges. The study could help to design the PC foundation for seismic isolation of building.

  14. Mesenchymal Stromal Cells and Tissue-Specific Progenitor Cells: Their Role in Tissue Homeostasis

    Directory of Open Access Journals (Sweden)

    Aleksandra Klimczak

    2016-01-01

    Full Text Available Multipotent mesenchymal stromal/stem cells (MSCs reside in many human organs and comprise heterogeneous population of cells with self-renewal ability. These cells can be isolated from different tissues, and their morphology, immunophenotype, and differentiation potential are dependent on their tissue of origin. Each organ contains specific population of stromal cells which maintain regeneration process of the tissue where they reside, but some of them have much more wide plasticity and differentiate into multiple cells lineage. MSCs isolated from adult human tissues are ideal candidates for tissue regeneration and tissue engineering. However, MSCs do not only contribute to structurally tissue repair but also MSC possess strong immunomodulatory and anti-inflammatory properties and may influence in tissue repair by modulation of local environment. This paper is presenting an overview of the current knowledge of biology of tissue-resident mesenchymal stromal and progenitor cells (originated from bone marrow, liver, skeletal muscle, skin, heart, and lung associated with tissue regeneration and tissue homeostasis.

  15. Lie algebra contractions on two-dimensional hyperboloid

    International Nuclear Information System (INIS)

    Pogosyan, G. S.; Yakhno, A.

    2010-01-01

    The Inoenue-Wigner contraction from the SO(2, 1) group to the Euclidean E(2) and E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the four corresponding two-dimensional homogeneous spaces: two-dimensional hyperboloids and two-dimensional Euclidean and pseudo-Euclidean spaces. We show how the nine systems of coordinates on the two-dimensional hyperboloids contracted to the four systems of coordinates on E 2 and eight on E 1,1 . The text was submitted by the authors in English.

  16. Two Dimensional Mathematical Model of Tumor Angiogenesis: Coupling of Avascular Growth and Vascularization

    Directory of Open Access Journals (Sweden)

    Farideh Hosseini

    2015-09-01

    Full Text Available Introduction As a tumor grows, the demand for oxygen and nutrients increases and it grows further if acquires the ability to induce angiogenesis. In this study, we aimed to present a two-dimensional continuous mathematical model for avascular tumor growth, coupled with a discrete model of angiogenesis. Materials and Methods In the avascular growth model, tumor is considered as a single mass, which uptakes oxygen through diffusion and invades the extracellular matrix (ECM. After the tumor reaches its maximum size in the avascular growth phase, tumor cells may be in three different states (proliferative, quiescent and apoptotic, depending on oxygen availability. Quiescent cells are assumed to secrete tumor angiogenic factors, which diffuse into the surrounding tissue until reaching endothelial cells. The mathematical model for tumor angiogenesis is consisted of a five-point finite difference scheme to simulate the progression of endothelial cells in ECM and their penetration into the tumor. Results The morphology of produced networks was investigated, based on various ECM degradation patterns. The generated capillary networks involved the rules of microvascular branching and anastomosis. Model predictions were in qualitative agreement with experimental observations and might have implications as a supplementary model to facilitate mathematical analyses for anti-cancer therapies. Conclusion Our numerical simulations could facilitate the qualitative comparison between three layers of tumor cells, their TAF-producing abilities and subsequent penetration of micro-vessels in order to determine the dynamics of microvascular branching and anastomosis in ECM and three different parts of the tumor.

  17. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine

    2004-01-01

    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...

  18. Optimizing separations in online comprehensive two-dimensional liquid chromatography

    NARCIS (Netherlands)

    Pirok, Bob W.J.; Gargano, Andrea F.G.; Schoenmakers, Peter J.

    2018-01-01

    Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular

  19. Beginning Introductory Physics with Two-Dimensional Motion

    Science.gov (United States)

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  20. Two-dimensional black holes and non-commutative spaces

    International Nuclear Information System (INIS)

    Sadeghi, J.

    2008-01-01

    We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon

  1. Spaceflight bioreactor studies of cells and tissues.

    Science.gov (United States)

    Freed, Lisa E; Vunjak-Novakovic, Gordana

    2002-01-01

    Studies of the fundamental role of gravity in the development and function of biological organisms are a central component of the human exploration of space. Microgravity affects numerous physical phenomena relevant to biological research, including the hydrostatic pressure in fluid filled vesicles, sedimentation of organelles, and buoyancy-driven convection of flow and heat. These physical phenomena can in turn directly and indirectly affect cellular morphology, metabolism, locomotion, secretion of extracellular matrix and soluble signals, and assembly into functional tissues. Studies aimed at distinguishing specific effects of gravity on biological systems require the ability to: (i) control and systematically vary gravity, e.g. by utilizing the microgravity environment of space in conjunction with an in-flight centrifuge; and (ii) maintain constant all other factors in the immediate environment, including in particular concentrations and exchange rates of biochemical species and hydrodynamic shear. The latter criteria imply the need for gravity-independent mechanisms to provide for mass transport between the cells and their environment. Available flight hardware has largely determined the experimental design and scientific objectives of spaceflight cell and tissue culture studies carried out to date. Simple culture vessels have yielded important quantitative data, and helped establish in vitro models of cell locomotion, growth and differentiation in various mammalian cell types including embryonic lung cells [6], lymphocytes [2,8], and renal cells [7,31]. Studies done using bacterial cells established the first correlations between gravity-dependent factors such as cell settling velocity and diffusional distance and the respective cell responses [12]. The development of advanced bioreactors for microgravity cell and tissue culture and for tissue engineering has benefited both research areas and provided relevant in vitro model systems for studies of astronaut

  2. Mesenchymal cells for skeletal tissue engineering.

    Science.gov (United States)

    Panetta, N J; Gupta, D M; Quarto, N; Longaker, M T

    2009-03-01

    Today, surgical intervention remains the mainstay of treatment to intervene upon a multitude of skeletal deficits and defects attributable to congenital malformations, oncologic resection, pathologic degenerative bone destruction, and post-traumatic loss. Despite this significant demand, the tools with which surgeons remain equipped are plagued with a surfeit of inadequacies, often resulting in less than ideal patient outcomes. The failings of current techniques largely arise secondary to their inability to produce a regenerate which closely resembles lost tissue. As such, focus has shifted to the potential of mesenchymal stem cell (MSC)-based skeletal tissue engineering. The successful development of such techniques would represent a paradigm shift from current approaches, carrying with it the potential to regenerate tissues which mimic the form and function of endogenous bone. Lessons learned from investigations probing the endogenous regenerative capacity of skeletal tissues have provided direction to early studies investigating the osteogenic potential of MSC. Additionally, increasing attention is being turned to the role of targeted molecular manipulations in augmenting MSC osteogenesis, as well as the development of an ideal scaffold ''vehicle'' with which to deliver progenitor cells. The following discussion presents the authors' current working knowledge regarding these critical aspects of MSC application in cell-based skeletal tissue engineering strategies, as well as provides insight towards what future steps must be taken to make their clinical translation a reality.

  3. Cell sheet-based tissue engineering for fabricating 3-dimensional heart tissues.

    Science.gov (United States)

    Shimizu, Tatsuya

    2014-01-01

    In addition to stem cell biology, tissue engineering is an essential research field for regenerative medicine. In contrast to cell injection, bioengineered tissue transplantation minimizes cell loss and has the potential to repair tissue defects. A popular approach is scaffold-based tissue engineering, which utilizes a biodegradable polymer scaffold for seeding cells; however, new techniques of cell sheet-based tissue engineering have been developed. Cell sheets are harvested from temperature-responsive culture dishes by simply lowering the temperature. Monolayer or stacked cell sheets are transplantable directly onto damaged tissues and cell sheet transplantation has already been clinically applied. Cardiac cell sheet stacking produces pulsatile heart tissue; however, lack of vasculature limits the viable tissue thickness to 3 layers. Multistep transplantation of triple-layer cardiac cell sheets cocultured with endothelial cells has been used to form thick vascularized cardiac tissue in vivo. Furthermore, in vitro functional blood vessel formation within 3-dimensional (3D) tissues has been realized by successfully imitating in vivo conditions. Triple-layer cardiac cell sheets containing endothelial cells were layered on vascular beds and the constructs were media-perfused using novel bioreactor systems. Interestingly, cocultured endothelial cells migrate into the vascular beds and form perfusable blood vessels. An in vitro multistep procedure has also enabled the fabrication of thick, vascularized heart tissues. Cell sheet-based tissue engineering has revealed great potential to fabricate 3D cardiac tissues and should contribute to future treatment of severe heart diseases and human tissue model production.

  4. Optimizing separations in online comprehensive two-dimensional liquid chromatography.

    Science.gov (United States)

    Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J

    2018-01-01

    Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.

  5. Third sound in one and two dimensional modulated structures

    International Nuclear Information System (INIS)

    Komuro, T.; Kawashima, H., Shirahama, K.; Kono, K.

    1996-01-01

    An experimental technique is developed to study acoustic transmission in one and two dimensional modulated structures by employing third sound of a superfluid helium film. In particular, the Penrose lattice, which is a two dimensional quasiperiodic structure, is studied. In two dimensions, the scattering of third sound is weaker than in one dimension. Nevertheless, the authors find that the transmission spectrum in the Penrose lattice, which is a two dimensional prototype of the quasicrystal, is observable if the helium film thickness is chosen around 5 atomic layers. The transmission spectra in the Penrose lattice are explained in terms of dynamical theory of diffraction

  6. Stability analysis of two-dimensional digital recursive filters

    Science.gov (United States)

    Alexander, W. E.; Pruess, S. A.

    1980-01-01

    A new approach to the stability problem for the two-dimensional digital recursive filter is presented. The bivariate difference equation representation of the two-dimensional recursive digital filter is converted to a multiinput-multioutput (MIMO) system similar to the state-space representation of the one-dimensional digital recursive filter. In this paper, a pseudo-state representation is used and three coefficient matrices are obtained. A general theorem for stability of two-dimensional digital recursive filters is derived and a very useful theorem is presented which expresses sufficient requirements for instability in terms of the spectral radii of these matrices.

  7. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  8. Numerical evaluation of two-dimensional harmonic polylogarithms

    CERN Document Server

    Gehrmann, T

    2002-01-01

    The two-dimensional harmonic polylogarithms $\\G(\\vec{a}(z);y)$, a generalization of the harmonic polylogarithms, themselves a generalization of Nielsen's polylogarithms, appear in analytic calculations of multi-loop radiative corrections in quantum field theory. We present an algorithm for the numerical evaluation of two-dimensional harmonic polylogarithms, with the two arguments $y,z$ varying in the triangle $0\\le y \\le 1$, $ 0\\le z \\le 1$, $\\ 0\\le (y+z) \\le 1$. This algorithm is implemented into a {\\tt FORTRAN} subroutine {\\tt tdhpl} to compute two-dimensional harmonic polylogarithms up to weight 4.

  9. Cell Sheet-Based Tissue Engineering for Organizing Anisotropic Tissue Constructs Produced Using Microfabricated Thermoresponsive Substrates.

    Science.gov (United States)

    Takahashi, Hironobu; Okano, Teruo

    2015-11-18

    In some native tissues, appropriate microstructures, including orientation of the cell/extracellular matrix, provide specific mechanical and biological functions. For example, skeletal muscle is made of oriented myofibers that is responsible for the mechanical function. Native artery and myocardial tissues are organized three-dimensionally by stacking sheet-like tissues of aligned cells. Therefore, to construct any kind of complex tissue, the microstructures of cells such as myotubes, smooth muscle cells, and cardiomyocytes also need to be organized three-dimensionally just as in the native tissues of the body. Cell sheet-based tissue engineering allows the production of scaffold-free engineered tissues through a layer-by-layer construction technique. Recently, using microfabricated thermoresponsive substrates, aligned cells are being harvested as single continuous cell sheets. The cell sheets act as anisotropic tissue units to build three-dimensional tissue constructs with the appropriate anisotropy. This cell sheet-based technology is straightforward and has the potential to engineer a wide variety of complex tissues. In addition, due to the scaffold-free cell-dense environment, the physical and biological cell-cell interactions of these cell sheet constructs exhibit unique cell behaviors. These advantages will provide important clues to enable the production of well-organized tissues that closely mimic the structure and function of native tissues, required for the future of tissue engineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Micromachined two dimensional resistor arrays for determination of gas parameters

    NARCIS (Netherlands)

    van Baar, J.J.J.; Verwey, Willem B.; Dijkstra, Mindert; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of

  11. Proteome research : two-dimensional gel electrophoresis and identification methods

    National Research Council Canada - National Science Library

    Rabilloud, Thierry, 1961

    2000-01-01

    "Two-dimensional electrophoresis is the central methodology in proteome research, and the state of the art is described in detail in this text, together with extensive coverage of the detection methods available...

  12. 1/f noise in two-dimensional fluids

    International Nuclear Information System (INIS)

    Cable, S.B.; Tajima, T.

    1994-10-01

    We derive an exact result on the velocity fluctuation power spectrum of an incompressible two-dimensional fluid. Employing the fluctuation-dissipation relationship and the enstrophy conversation, we obtain the frequency spectrum of a 1/f form

  13. Partition function of the two-dimensional nearest neighbour Ising ...

    Indian Academy of Sciences (India)

    Abstract. The partition function for two-dimensional nearest neighbour Ising model in a non-zero magnetic field have been derived for a finite square lattice of 16, 25, 36 and 64 sites with the help of ...

  14. Multisoliton formula for completely integrable two-dimensional systems

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.; Chudnovsky, G.V.

    1979-01-01

    For general two-dimensional completely integrable systems, the exact formulae for multisoliton type solutions are given. The formulae are obtained algebrically from solutions of two linear partial differential equations

  15. Coherent Response of Two Dimensional Electron Gas probed by Two Dimensional Fourier Transform Spectroscopy

    Science.gov (United States)

    Paul, Jagannath

    Advent of ultrashort lasers made it possible to probe various scattering phenomena in materials that occur in a time scale on the order of few femtoseconds to several tens of picoseconds. Nonlinear optical spectroscopy techniques, such as pump-probe, transient four wave mixing (TFWM), etc., are very common to study the carrier dynamics in various material systems. In time domain, the transient FWM uses several ultrashort pulses separated by time delays to obtain the information of dephasing and population relaxation times, which are very important parameters that govern the carrier dynamics of materials. A recently developed multidimensional nonlinear optical spectroscopy is an enhanced version of TFWM which keeps track of two time delays simultaneously and correlate them in the frequency domain with the aid of Fourier transform in a two dimensional map. Using this technique, the nonlinear complex signal field is characterized both in amplitude and phase. Furthermore, this technique allows us to identify the coupling between resonances which are rather difficult to interpret from time domain measurements. This work focuses on the study of the coherent response of a two dimensional electron gas formed in a modulation doped GaAs/AlGaAs quantum well both at zero and at high magnetic fields. In modulation doped quantum wells, the excitons are formed as a result of the inter- actions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the formation of Mahan excitons, which is also referred to as Fermi edge singularity (FES). Polarization and temperature dependent rephasing 2DFT spectra in combination with TI-FWM measurements, provides insight into the dephasing mechanism of the heavy hole (HH) Mahan exciton. In addition to that strong quantum coherence between the HH and LH Mahan excitons is observed, which is rather surprising at this high doping concentration. The binding energy of Mahan excitons is expected to be greatly

  16. Structures of two-dimensional three-body systems

    International Nuclear Information System (INIS)

    Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.

    1996-01-01

    Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)

  17. The Two-Dimensional Analogue of General Relativity

    OpenAIRE

    Lemos, José P. S.; Sá, Paulo M.

    1993-01-01

    General Relativity in three or more dimensions can be obtained by taking the limit $\\omega\\rightarrow\\infty$ in the Brans-Dicke theory. In two dimensions General Relativity is an unacceptable theory. We show that the two-dimensional closest analogue of General Relativity is a theory that also arises in the limit $\\omega\\rightarrow\\infty$ of the two-dimensional Brans-Dicke theory.

  18. Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal

    DEFF Research Database (Denmark)

    Lebech, Bente; Bak, P.

    1979-01-01

    The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern.......The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....

  19. Two-dimensional multifractal cross-correlation analysis

    International Nuclear Information System (INIS)

    Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong

    2017-01-01

    Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.

  20. The theory of critical phenomena in two-dimensional systems

    International Nuclear Information System (INIS)

    Olvera de la C, M.

    1981-01-01

    An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)

  1. Two-Dimensional Materials for Sensing: Graphene and Beyond

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese

    2015-09-01

    Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.

  2. A two-dimensional mathematical model of percutaneous drug absorption

    Directory of Open Access Journals (Sweden)

    Kubota K

    2004-06-01

    Full Text Available Abstract Background When a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, r. The values of r depend on the amount of diffusion and the normalized skin-capillary clearence. It is defined as the ratio of the steady-state drug concentration at the skin-capillary boundary to that at the skin-surface in one-dimensional models. The present paper studies the effect of the parameter values, when the region of contact of the skin with the drug, is a line segment on the skin surface. Methods Though a simple one-dimensional model is often useful to describe percutaneous drug absorption, it may be better represented by multi-dimensional models. A two-dimensional mathematical model is developed for percutaneous absorption of a drug, which may be used when the diffusion of the drug in the direction parallel to the skin surface must be examined, as well as in the direction into the skin, examined in one-dimensional models. This model consists of a linear second-order parabolic equation with appropriate initial conditions and boundary conditions. These boundary conditions are of Dirichlet type, Neumann type or Robin type. A finite-difference method which maintains second-order accuracy in space along the boundary, is developed to solve the parabolic equation. Extrapolation in time is applied to improve the accuracy in time. Solution of the parabolic equation gives the concentration of the drug in the skin at a given time. Results Simulation of the numerical methods described is carried out with various values of the parameter r. The illustrations are given in the form of figures. Conclusion Based on the values of r, conclusions are drawn about (1 the flow rate of the drug, (2 the flux and the cumulative amount of drug eliminated into the receptor cell, (3 the steady-state value of the flux, (4 the time to reach the steady

  3. Theory and application of the RAZOR two-dimensional continuous energy lattice physics code

    International Nuclear Information System (INIS)

    Zerkle, M.L.; Abu-Shumays, I.K.; Ott, M.W.; Winwood, J.P.

    1997-01-01

    The theory and application of the RAZOR two-dimensional, continuous energy lattice physics code are discussed. RAZOR solves the continuous energy neutron transport equation in one- and two-dimensional geometries, and calculates equivalent few-group diffusion theory constants that rigorously account for spatial and spectral self-shielding effects. A dual energy resolution slowing down algorithm is used to reduce computer memory and disk storage requirements for the slowing down calculation. Results are presented for a 2D BWR pin cell depletion benchmark problem

  4. The directional propagation characteristics of elastic wave in two-dimensional thin plate phononic crystals

    International Nuclear Information System (INIS)

    Wen Jihong; Yu, Dianlong; Wang Gang; Zhao Honggang; Liu Yaozong; Wen Xisen

    2007-01-01

    The directional propagation characteristics of elastic wave during pass bands in two-dimensional thin plate phononic crystals are analyzed by using the lumped-mass method to yield the phase constant surface. The directions and regions of wave propagation in phononic crystals for certain frequencies during pass bands are predicted with the iso-frequency contour lines of the phase constant surface, which are then validated with the harmonic responses of a finite two-dimensional thin plate phononic crystals with 16x16 unit cells. These results are useful for controlling the wave propagation in the pass bands of phononic crystals

  5. One and two dimensional simulations on beat wave acceleration

    International Nuclear Information System (INIS)

    Mori, W.; Joshi, C.; Dawson, J.M.; Forslund, D.W.; Kindel, J.M.

    1984-01-01

    Recently there has been considerable interest in the use of fast-large-amplitude plasma waves as the basis for a high energy particle accelerator. In these schemes, lasers are used to create the plasma wave. To date the few simulation studies on this subject have been limited to one-dimensional, short rise time simulations. Here the authors present results from simulations in which more realistic parameters are used. In addition, they present the first two dimensional simulations on this subject. One dimensional simulations on a 2 1/2-D relativistic electromagnetic particle code, in which only a few cells were used in one direction, on colinear optical mixing are presented. In these simulations the laser rise time, laser intensity, plasma density, plasma temperature and system size were varied. The simulations indicate that the theory of Rosenbluth and Liu is applicable over a wide range of parameters. In addition, simulations with a DC magnetic field are presented in order to study the ''Surfatron'' concept

  6. Two-dimensional and three-dimensional models for studying atherosclerosis pathogenesis induced by periodontopathogenic microorganisms.

    Science.gov (United States)

    Gualtero, D F; Lafaurie, G I; Fontanilla, M R

    2018-02-01

    Epidemiological studies have established a clinical association between periodontal disease and atherosclerosis. Bacteremia and endotoxemia episodes in patients with periodontitis appear to link these two diseases by inducing a body-wide production of cardiovascular markers. The presence of oral bacteria in atherosclerotic lesions in patients with periodontitis suggests that bacteria, or their antigenic components, induce alterations in the endothelium associated with atherosclerosis. Therefore, a causal mechanism explaining the association between both diseases can be constructed using in vitro models. This review presents current experimental approaches based on in vitro cell models used to shed light on the mechanism by which periodontal pathogenic microorganisms, and their antigenic components, induce proatherosclerotic endothelial activity. Monolayer cultures of endothelial vascular or arterial cells have been used to assess periodontal pathogenic bacteria and their antigenic compounds and endothelial activation. However, these models are not capable of reflecting the physiological characteristics of the endothelium inside vascularized tissue. Therefore, the shift from two-dimensional (2D) cellular models toward three-dimensional (3D) models of endothelial cells resembling an environment close to the physiological environment of the endothelial cell within the endothelium is useful for evaluating the physiological relevance of results regarding the endothelial dysfunction induced by periodontopathogens that are currently obtained from 2D models. The use of in vitro 3D cellular models can also be relevant to the search for therapeutic agents for chronic inflammatory diseases such as atherosclerosis. Here, we present some strategies for the assembly of 3D cultures with endothelial cells, which is useful for the study of periodontopathogen-mediated disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. [Differentiation of mesenchymal stem cells of adipose tissue].

    Science.gov (United States)

    Salyutin, R V; Zapohlska, K M; Palyanytsya, S S; Sirman, V M; Sokolov, M F

    2015-03-01

    Experimental investigation were conducted with the objective to determine a stem cells, capacity to differentiate in adipogenic direction, if they were obtained from adipose tissue. The investigation results have witnessed, that the cells, obtained from adipose tissue, are capable for a tissue-speciphic differentiation in osteogenic, chondrogenic, and, principally--in adipogenic direction, what confirms a multypotent nature of mesenchymal stem cells of adipose tissue. Adipose tissue constitutes an alternative to the bone marrow, as a source of multipotent mesenchymal stem cells, which may be applied in further investigations, concerning determination of their defense possibility for the transplanted autologous adipose tissue from the tissue resorption, made in a lipophiling way.

  8. Traditional Semiconductors in the Two-Dimensional Limit

    Science.gov (United States)

    Lucking, Michael C.; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S. B.

    2018-02-01

    Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.

  9. Quantitative evaluation and modeling of two-dimensional neovascular network complexity: the surface fractal dimension

    International Nuclear Information System (INIS)

    Grizzi, Fabio; Russo, Carlo; Colombo, Piergiuseppe; Franceschini, Barbara; Frezza, Eldo E; Cobos, Everardo; Chiriva-Internati, Maurizio

    2005-01-01

    Modeling the complex development and growth of tumor angiogenesis using mathematics and biological data is a burgeoning area of cancer research. Architectural complexity is the main feature of every anatomical system, including organs, tissues, cells and sub-cellular entities. The vascular system is a complex network whose geometrical characteristics cannot be properly defined using the principles of Euclidean geometry, which is only capable of interpreting regular and smooth objects that are almost impossible to find in Nature. However, fractal geometry is a more powerful means of quantifying the spatial complexity of real objects. This paper introduces the surface fractal dimension (D s ) as a numerical index of the two-dimensional (2-D) geometrical complexity of tumor vascular networks, and their behavior during computer-simulated changes in vessel density and distribution. We show that D s significantly depends on the number of vessels and their pattern of distribution. This demonstrates that the quantitative evaluation of the 2-D geometrical complexity of tumor vascular systems can be useful not only to measure its complex architecture, but also to model its development and growth. Studying the fractal properties of neovascularity induces reflections upon the real significance of the complex form of branched anatomical structures, in an attempt to define more appropriate methods of describing them quantitatively. This knowledge can be used to predict the aggressiveness of malignant tumors and design compounds that can halt the process of angiogenesis and influence tumor growth

  10. Two dimensional convolute integers for machine vision and image recognition

    Science.gov (United States)

    Edwards, Thomas R.

    1988-01-01

    Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.

  11. Two-Dimensional Superfluidity of Exciton Polaritons Requires Strong Anisotropy

    Directory of Open Access Journals (Sweden)

    Ehud Altman

    2015-02-01

    Full Text Available Fluids of exciton polaritons, excitations of two-dimensional quantum wells in optical cavities, show collective phenomena akin to Bose condensation. However, a fundamental difference from standard condensates stems from the finite lifetime of these excitations, which necessitates continuous driving to maintain a steady state. A basic question is whether a two-dimensional condensate with long-range algebraic correlations can exist under these nonequilibrium conditions. Here, we show that such driven two-dimensional Bose systems cannot exhibit algebraic superfluid order except in low-symmetry, strongly anisotropic systems. Our result implies, in particular, that recent apparent evidence for Bose condensation of exciton polaritons must be an intermediate-scale crossover phenomenon, while the true long-distance correlations fall off exponentially. We obtain these results through a mapping of the long-wavelength condensate dynamics onto the anisotropic Kardar-Parisi-Zhang equation.

  12. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  13. A nonperturbative treatment of two-dimensional quantum gravity

    International Nuclear Information System (INIS)

    Gross, D.J.; Migdal, A.A.

    1990-01-01

    We propose a nonperturbative definition of two-dimensional quantum gravity, based on a double scaling limit of the random matrix model. We develop an operator formalism for utilizing the method of orthogonal polynomials that allows us to solve the matrix models to all orders in the genus expansion. Using this formalism we derive an exact differential equation for the partition function of two-dimensional gravity as a function of the string coupling constant that governs the genus expansion of two-dimensional surfaces, and discuss its properties and consequences. We construct and discuss the correlation functions of an infinite set of pointlike and loop operators to all orders in the genus expansion. (orig.)

  14. Control Operator for the Two-Dimensional Energized Wave Equation

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU

    2006-07-01

    Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.

  15. [DEVELOPMENT OF CELL SHEET ENGINEERING TECHNOLOGY IN ENGINEERING VASCULARIZED TISSUE].

    Science.gov (United States)

    Chen, Jia; Ma, Dongyang; Ren, Liling

    2015-03-01

    To review the development of cell sheet engineering technology in engineering vascularized tissue. The literature about cell sheet engineering technology and engineering vascularized tissue was reviewed, analyzed, and summarized. Although there are many methods to engineer vascularized tissue, cell sheet engineering technology provides a promising potential to develop a vascularized tissue. Recently, cell sheet engineering technology has become a hot topic in engineering vascularized tissue. Co-culturing endothelial cells on a cell sheet, endothelial cells are able to form three-dimensional prevascularized networks and microvascular cavities in the cell sheet, which facilitate the formation of functional vascular networks in the transplanted tissue. Cell sheet engineering technology is a promising strategy to engineer vascularized tissue, which is still being studied to explore more potential.

  16. Metabolically Active Three-Dimensional Brown Adipose Tissue Engineered from White Adipose-Derived Stem Cells.

    Science.gov (United States)

    Yang, Jessica P; Anderson, Amy E; McCartney, Annemarie; Ory, Xavier; Ma, Garret; Pappalardo, Elisa; Bader, Joel; Elisseeff, Jennifer H

    2017-04-01

    Brown adipose tissue (BAT) has a unique capacity to expend calories by decoupling energy expenditure from ATP production, therefore BAT could realize therapeutic potential to treat metabolic diseases such as obesity and type 2 diabetes. Recent studies have investigated markers and function of native BAT, however, successful therapies will rely on methods that supplement the small existing pool of brown adipocytes in adult humans. In this study, we engineered BAT from both human and rat adipose precursors and determined whether these ex vivo constructs could mimic in vivo tissue form and metabolic function. Adipose-derived stem cells (ASCs) were isolated from several sources, human white adipose tissue (WAT), rat WAT, and rat BAT, then differentiated toward both white and brown adipogenic lineages in two-dimensional and three-dimensional (3D) culture conditions. ASCs derived from WAT were successfully differentiated in 3D poly(ethylene glycol) hydrogels into mature adipocytes with BAT phenotype and function, including high uncoupling protein 1 (UCP1) mRNA and protein expression and increased metabolic activity (basal oxygen consumption, proton leak, and maximum respiration). By utilizing this "browning" process, the abundant and accessible WAT stem cell population can be engineered into 3D tissue constructs with the metabolic capacity of native BAT, ultimately for therapeutic intervention in vivo and as a tool for studying BAT and its metabolic properties.

  17. LOCALIZATION OF ANTIGEN IN TISSUE CELLS

    Science.gov (United States)

    Coons, Albert H.; Leduc, Elizabeth H.; Kaplan, Melvin H.

    1951-01-01

    The fate of three proteins, crystalline hen's egg albumin, crystalline bovine plasma albumin, and human plasma γ-globulin, was traced after intravenous injection into mice. This was done by preparing frozen sections of quick-frozen tissue, allowing what foreign protein might be present in the section to react with homologous antibody labelled with fluorescein, and examining the section under the fluorescence microscope. By this means, which employs the serological specificity of the protein as a natural "marker," all three of these proteins were found in the cells of the reticulo-endothelial system, the connective tissue, the vascular endothelium, the lymphocytes of spleen and lymph node, and the epithelium of the kidney tubules, the liver, and in very small amounts in the adrenal. The central nervous system was not studied. All three persisted longest in the reticulo-endothelial system and the connective tissue, and in the doses employed egg white (10 mg.) was no longer detectable after 1 day, bovine albumin (10 mg.) after 2 days, and human γ-globulin (4 mg.) after 6 days, although in a somewhat higher dose (10 mg.) human γ-globulin persisted longer than 8 days. Egg albumin differed from the others in not being detectable in the cells of the renal glomerulus. It was found that each of the three proteins was present in the nuclei of each cell type enumerated above, often in higher concentration than in the cytoplasm. Further, some of the nuclei not only contained antigen, soon after injection, but were also surrounded by a bright ring associated with the nuclear membrane. By means of photographic records under the fluorescence microscope of sections stained for antigen, and direct observation under the light microscope of the same field subsequently stained with hematoxylin and eosin, it could be determined that the antigen was not adsorbed to chromatin or nucleoli, but was apparently in solution in the nuclear sap. PMID:14803641

  18. Approximate solutions of the two-dimensional integral transport equation by collision probability methods

    International Nuclear Information System (INIS)

    Sanchez, Richard

    1977-01-01

    A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the Interface Current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding and water, or homogenized structural material. The cells are divided into zones which are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is made by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: the first uses a cylindrical cell model and one or three terms for the flux expansion; the second uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark pr

  19. Critical Behaviour of a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1976-01-01

    A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphous...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....

  20. Nonlinear excitations in two-dimensional molecular structures with impurities

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth

    1995-01-01

    We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....

  1. Two-dimensional nonlinear equations of supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Savel'ev, M.V.

    1985-01-01

    Supersymmetric generalization of two-dimensional nonlinear dynamical equations of gauge theories is presented. The nontrivial dynamics of a physical system in the supersymmetry and supergravity theories for (2+2)-dimensions is described by the integrable embeddings of Vsub(2/2) superspace into the flat enveloping superspace Rsub(N/M), supplied with the structure of a Lie superalgebra. An equation is derived which describes a supersymmetric generalization of the two-dimensional Toda lattice. It contains both super-Liouville and Sinh-Gordon equations

  2. Two-dimensional SCFTs from D3-branes

    Energy Technology Data Exchange (ETDEWEB)

    Benini, Francesco [Blackett Laboratory, Imperial College London,South Kensington Campus, London SW7 2AZ (United Kingdom); International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); Bobev, Nikolay [Instituut voor Theoretische Fysica, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Crichigno, P. Marcos [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,Leuvenlaan 4, 3854 CE Utrecht (Netherlands)

    2016-07-05

    We find a large class of two-dimensional N=(0,2) SCFTs obtained by compactifying four-dimensional N=1 quiver gauge theories on a Riemann surface. We study these theories using anomalies and c-extremization. The gravitational duals to these fixed points are new AdS{sub 3} solutions of IIB supergravity which we exhibit explicitly. Along the way we uncover a universal relation between the conformal anomaly coefficients of four-dimensional and two-dimensional SCFTs connected by an RG flow across dimensions. We also observe an interesting novel phenomenon in which the superconformal R-symmetry mixes with baryonic symmetries along the RG flow.

  3. Densis. Densimetric representation of two-dimensional matrices

    International Nuclear Information System (INIS)

    Los Arcos Merino, J.M.

    1978-01-01

    Densis is a Fortran V program which allows off-line control of a Calcomp digital plotter, to represent a two-dimensional matrix of numerical elements in the form of a variable shading intensity map in two colours. Each matrix element is associated to a square of a grid which is traced over by lines whose number is a function of the element value according to a selected scale. Program features, subroutine structure and running instructions, are described. Some typical results, for gamma-gamma coincidence experimental data and a sampled two-dimensional function, are indicated. (author)

  4. Quantum melting of a two-dimensional Wigner crystal

    Science.gov (United States)

    Dolgopolov, V. T.

    2017-10-01

    The paper reviews theoretical predictions about the behavior of two-dimensional low-density electron systems at nearly absolute zero temperatures, including the formation of an electron (Wigner) crystal, crystal melting at a critical electron density, and transitions between crystal modifications in more complex (for example, two-layer) systems. The paper presents experimental results obtained from real two-dimensional systems in which the nonconducting (solid) state of the electronic system with indications of collective localization is actually realized. Experimental methods for detecting a quantum liquid–solid phase interface are discussed.

  5. Two dimensional nonlinear spectral estimation techniques for breast cancer localization

    International Nuclear Information System (INIS)

    Stathaki, P.T.; Constantinides, A.G.

    1994-01-01

    In this paper the problem of image texture analysis in the presence of noise is examined from a higher-order statistical perspective. The approach taken involves the use of two dimensional second order Volterra filters where the filter weights are derived from third order cumulants of the two dimensional signal. The specific application contained in this contribution is in mammography, an area in which it is difficult to discern the appropriate features. The paper describes the fundamental issues of the various components of the approach. The results of the entire texture modelling, classification and segmentation scheme contained in this paper are very encouraging

  6. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank

    2014-01-01

    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...... with nonlocal Einstein-Podolsky-Rosen entanglement....

  7. Chiral anomaly, fermionic determinant and two dimensional models

    International Nuclear Information System (INIS)

    Rego Monteiro, M.A. do.

    1985-01-01

    The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt

  8. Two-dimensional spin diffusion in multiterminal lateral spin valves

    Science.gov (United States)

    Saha, D.; Basu, D.; Holub, M.; Bhattacharya, P.

    2008-01-01

    The effects of two-dimensional spin diffusion on spin extraction in lateral semiconductor spin valves have been investigated experimentally and theoretically. A ferromagnetic collector terminal of variable size is placed between the ferromagnetic electron spin injector and detector of a conventional lateral spin valve for spin extraction. It is observed that transverse spin diffusion beneath the collector terminal plays an important role along with the conventional longitudinal spin diffusion in describing the overall transport of spin carriers. Two-dimensional spin diffusion reduces the perturbation of the channel electrochemical potentials and improves spin extraction.

  9. Nonstationarity of a two-dimensional perpendicular shock: Competing mechanisms

    Science.gov (United States)

    Lembège, Bertrand; Savoini, Philippe; Hellinger, Petr; Trávníček, Pavel M.

    2009-03-01

    Two-dimensional particle-in-cell (PIC) simulations are used for analyzing in detail different nonstationary behaviors of a perpendicular supercritical shock. A recent study by Hellinger et al. (2007) has shown that the front of a supercritical shock can be dominated by the emission of large-amplitude whistler waves. These waves inhibit the self-reformation driven by the reflected ions; then, the shock front appears almost ``quasi-stationary.'' The present study stresses new complementary results. First, for a fixed β i value, the whistler waves emission (WWE) persists for high M A above a critical Mach number (i.e., M A >= M A WWE). The quasi-stationarity is only apparent and disappears when considering the full 3-D field profiles. Second, for lower M A , the self-reformation is retrieved and becomes dominant as the amplitude of the whistler waves becomes negligible. Third, there exists a transition regime in M A within which both processes compete each other. Fourth, these results are observed for a strictly perpendicular shock only as B 0 is within the simulation plane. When B 0 is out of the simulation plane, no whistler waves emission is evidenced and only self-reformation is recovered. Fifth, the occurrence and disappearance of the nonlinear whistler waves are well recovered in both 2-D PIC and 2-D hybrid simulations. The impacts on the results of the mass ratio (2-D PIC simulations), of the resistivity and spatial resolution (2-D hybrid simulations), and of the size of the simulation box along the shock front are analyzed in detail.

  10. Nanotechnology, Cell Culture and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kazutoshi Haraguchi

    2011-01-01

    Full Text Available We have fabricated new types of polymer hydrogels and polymer nanocomposites, i.e., nanocomposite gels (NC gels and soft, polymer nanocomposites (M-NCs: solid, with novel organic/inorganic network structures. Both NC gels and M-NCs were synthesized by in-situ free-radical polymerization in the presence of exfoliated clay platelets in aqueous systems and were obtained in various forms such as film, sheet, tube, coating, etc. and sizes with a wide range of clay contents. Here, disk-like inorganic clay nanoparticles act as multi-functional crosslinkers to form new types of network systems. Both NC gels and M-NCs have extraordinary optical and mechanical properties including ultra-high reversible extensibility, as well as a number of new characteristics relating to optical anisotropy, polymer/clay morphology, biocompatibility, stimuli-sensitive surfaces, micro-patterning, etc. For examples, the biological testing of medical devices, comprised of a sensitization test, an irritation test, an intracutaneous test and an in vitro cytotoxicity test,was carried out for NC gels and M-NCs. The safety of NC gels and M-NCs was confirmed in all tests. Also, the interaction of living tissue with NC gel was investigated in vivo by implantation in live goats; neither inflammation nor concrescence occurred around the NC gels. Furthermore, it was found that both N-NC gels consisting of poly(N-isopropylacrylamide(PNIPA/clay network and M-NCs consisting of poly(2-methoxyethyacrylate(PMEA/clay network show characteristic cell culture and subsequent cell detachment on their surfaces, although it was almost impossible to culture cells on conventional, chemically-crosslinked PNIPA hydrogels and chemically crossslinked PMEA, regardless of their crosslinker concentration. Various kinds of cells, such ashumanhepatoma cells (HepG2, normal human dermal fibroblast (NHDF, and human umbilical vein endothelial cells (HUVEC, could be cultured to be confluent on the surfaces of N

  11. Adipose tissue-derived stem cells in oral mucosa tissue engineering ...

    African Journals Online (AJOL)

    Jane

    2011-10-10

    Oct 10, 2011 ... urethral reconstruction. Specifically, tissue-engineered oral mucosa holds great prospect for urethroplasty. Mesenchymal stem cells within the stromal-vascular fraction of subcutaneous adipose tissue, that is, adipose tissue-derived stem cells (ADSCs), have been used in skin repair with satisfactory results.

  12. Mesenchymal Stem Cells in Tissue Repair

    Directory of Open Access Journals (Sweden)

    Amy M DiMarino

    2013-09-01

    Full Text Available The advent of mesenchymal stem cell (MSC based therapies for clinical therapeutics has been an exciting and new innovation for the treatment of a variety of diseases associated with inflammation, tissue damage and subsequent regeneration and repair. Application-based ability to measure MSC potency and fate of the cells post-MSC therapy are the variables that confound the use of MSCs therapeutics in human diseases. An evaluation of MSC function and applications with attention to detail in the preparation as well as quality control (QC and quality assurance (QA are only as good as the assays that are developed. In vivo measures of efficacy and potency require an appreciation of the overall pathophysiology of the model and standardization of outcome measures. The new concepts of how MSC’s participate in the tissue regeneration and wound repair process and further, how this is impacted by estimates of efficacy and potency Are important new topics. In this regard,,, this chapter will review some of the in vitro and in vivo assays for MSC function and activity and their application to the clinical arena.

  13. Imaging stem cell differentiation for cell-based tissue repair.

    Science.gov (United States)

    Lee, Zhenghong; Dennis, James; Alsberg, Eben; Krebs, Melissa D; Welter, Jean; Caplan, Arnold

    2012-01-01

    Mesenchymal stem cells (MSCs) can differentiate into a number of tissue lineages and possess great potential in tissue regeneration and cell-based therapy. For bone fracture or cartilage wear and tear, stem cells need to be delivered to the injury site for repair. Assessing engraftment of the delivered cells and their differentiation status is crucial for the optimization of novel cell-based therapy. A longitudinal and quantitative method is needed to track stem cells transplanted/implanted to advance our understanding of their therapeutic effects and facilitate improvements in cell-based therapy. Currently, there are very few effective noninvasive ways to track the differentiation of infused stem cells. A brief review of a few existing approaches, mostly using transgenic animals, is given first, followed by newly developed in vivo imaging strategies that are intended to track implanted MSCs using a reporter gene system. Specifically, marker genes are selected to track whether MSCs differentiate along the osteogenic lineage for bone regeneration or the chondrogenic lineage for cartilage repair. The general strategy is to use the promoter of a differentiation-specific marker gene to drive the expression of an established reporter gene for noninvasive and repeated imaging of stem cell differentiation. The reporter gene system is introduced into MSCs by way of a lenti-viral vector, which allows the use of human cells and thus offers more flexibility than the transgenic animal approach. Imaging osteogenic differentiation of implanted MSCs is used as a demonstration of the proof-of-principle of this differentiation-specific reporter gene approach. This framework can be easily extended to other cell types and for differentiation into any other cell lineage for which a specific marker gene (promoter) can be identified. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Longitudinal and transverse modes dispersion in two-dimensional ...

    African Journals Online (AJOL)

    The dynamical properties of two-dimensional Yukawa fluids in the domain of weak and intermediate coupling parameters were analyzed through molecular dynamics (MD) simulation. The dispersion relation for both the longitudinal and transverse modes were obtained and compared with random phase approximation ...

  15. Two-dimensional static deformation of an anisotropic medium

    Indian Academy of Sciences (India)

    The problem of two-dimensional static deformation of a monoclinic elastic medium has been studied using the eigenvalue method, following a Fourier transform. We have obtained expressions for displacements and stresses for the medium in the transformed domain. As an application of the above theory, the particular ...

  16. Types of two-dimensional N = 4 superconformal field theories

    Indian Academy of Sciences (India)

    Superconformal field theory; free field realization; string theory; AdS-CFT correspon- dence. PACS Nos 11.25.Hf; 11.25.-w; 11.30.Ly; 11.30.Pb. Conformal symmetries in two space-time dimensions have been very extensively studied owing to their applications both in string theory and two-dimensional statistical systems.

  17. Conformal QED in two-dimensional topological insulators

    NARCIS (Netherlands)

    Menezes Silva Da Costa, Natália; Palumbo, Giandomenico; de Morais Smith, Cristiane

    2017-01-01

    It has been shown recently that local four-fermion interactions on the edges of two-dimensional time-reversal-invariant topological insulators give rise to a new non-Fermi-liquid phase, called helical Luttinger liquid (HLL). In this work, we provide a first-principle derivation of this

  18. Stress and mixed boundary conditions for two-dimensional ...

    Indian Academy of Sciences (India)

    For plate bending and stretching problems in two-dimensional (2D) dodecagonal quasi-crystal (QC) media, the reciprocal theorem and the general solution for QCs are applied in a novel way to obtain the appropriate stress and mixed boundary conditions accurate to all order. The method developed by Gregory and Wan is ...

  19. Two-dimensional profiling of Xanthomonas campestris pv. viticola ...

    African Journals Online (AJOL)

    However, the analysis of the 2D-PAGE gel images revealed a larger number of spots in the lysis method when compared to the others. Taking ... Keywords: Bacterial canker, Vitis vinifera, proteomics, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2D-PAGE).

  20. Vortex scaling ranges in two-dimensional turbulence

    Science.gov (United States)

    Burgess, B. H.; Dritschel, D. G.; Scott, R. K.

    2017-11-01

    We survey the role of coherent vortices in two-dimensional turbulence, including formation mechanisms, implications for classical similarity and inertial range theories, and characteristics of the vortex populations. We review early work on the spatial and temporal scaling properties of vortices in freely evolving turbulence and more recent developments, including a spatiotemporal scaling theory for vortices in the forced inverse energy cascade. We emphasize that Kraichnan-Batchelor similarity theories and vortex scaling theories are best viewed as complementary and together provide a more complete description of two-dimensional turbulence. In particular, similarity theory has a continued role in describing the weak filamentary sea between the vortices. Moreover, we locate both classical inertial and vortex scaling ranges within the broader framework of scaling in far-from-equilibrium systems, which generically exhibit multiple fixed point solutions with distinct scaling behaviour. We describe how stationary transport in a range of scales comoving with the dilatation of flow features, as measured by the growth in vortex area, constrains the vortex number density in both freely evolving and forced two-dimensional turbulence. The new theories for coherent vortices reveal previously hidden nontrivial scaling, point to new dynamical understanding, and provide a novel exciting window into two-dimensional turbulence.

  1. Two-dimensional effects in nonlinear Kronig-Penney models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim

    1997-01-01

    An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...

  2. Two-dimensional hazard estimation for longevity analysis

    DEFF Research Database (Denmark)

    Fledelius, Peter; Guillen, M.; Nielsen, J.P.

    2004-01-01

    We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface i...... for analysis of economic implications arising from mortality changes....

  3. Solitary wave solutions of two-dimensional nonlinear Kadomtsev ...

    Indian Academy of Sciences (India)

    2017-09-13

    Sep 13, 2017 ... Home; Journals; Pramana – Journal of Physics; Volume 89; Issue 3. Solitary wave solutions of ... Nonlinear two-dimensional Kadomtsev–Petviashvili (KP) equation governs the behaviour of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions. By using the reductive ...

  4. Image Making in Two Dimensional Art; Experiences with Straw and ...

    African Journals Online (AJOL)

    Image making in art is professionally referred to as bust in Sculpture andPortraiture in Painting. ... havebeen used to achieve these forms of art; like clay cement, marble, stone,different metals and, fibre glass in the three dimensional form; We also have Pencil, Charcoal Pastel and, Acrylic oil-paint in two dimensional form.

  5. Seismically constrained two-dimensional crustal thermal structure of ...

    Indian Academy of Sciences (India)

    The temperature field within the crust is closely related to tectonic history as well as many other geological processes inside the earth. Therefore, knowledge of the crustal thermal structure of a region is of great importance for its tectonophysical studies. This work deals with the two-dimensional thermal modelling to ...

  6. (Bombyx mori L.) using two-dimensional polyacrylami

    Indian Academy of Sciences (India)

    Unknown

    Fountoulakis M, Schuller E, Hardmeier R, Berndt P and Lubec. G 1999 Rat brain proteins: Two-dimensional protein data- base and variation in the expression level; Electrophoresis 20. 3527–3579. Hiroshi Fujii, Junji Tochinara, Yutaka Kawaguchi and Sakagu- chi B 1988 Existence of carotenoids binding protein in larval.

  7. Solitary wave solutions of two-dimensional nonlinear Kadomtsev ...

    Indian Academy of Sciences (India)

    Aly R Seadawy

    2017-09-13

    Sep 13, 2017 ... We considered the two-dimensional DASWs in colli- sionless, unmagnetized cold plasma consisting of dust fluid, ions and electrons. The dynamics of DASWs is governed by the normalized fluid equations of nonlin- ear continuity (1), nonlinear motion of system (2) and. (3) and linear Poisson equation (4) as.

  8. Polaron dynamics in a two-dimensional anharmonic Holstein model

    DEFF Research Database (Denmark)

    Zolotaryuk, Yaroslav; Christiansen, Peter Leth; Juul Rasmussen, Jens

    1998-01-01

    A generalized two-dimensional semiclassical :Holstein model with a realistic on-site potential that contains anharmonicity is studied. More precisely, the lattice subsystem of anharmonic on-site oscillators is supposed to have a restricting core. The core plays the role of an effective saturation...

  9. Sound waves in two-dimensional ducts with sinusoidal walls

    Science.gov (United States)

    Nayfeh, A. H.

    1974-01-01

    The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.

  10. Two-dimensional NMR studies of allyl palladium complexes of ...

    Indian Academy of Sciences (India)

    Administrator

    h3-Allyl complexes are intermediates in organic synthetic reactions such as allylic alkylation and amination. There is growing interest in understanding the structures of chiral h3-allyl intermediates as this would help to unravel the mechanism of enantioselective C–C bond forming reactions. Two-dimensional NMR study is a.

  11. Vibrations of thin piezoelectric shallow shells: Two-dimensional ...

    Indian Academy of Sciences (India)

    In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

  12. Magnetoelectronic transport of the two-dimensional electron gas in ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 72; Issue 2 ... CdSe quantum wells; 2D electron gas; magneto-electronic transport. Abstract. Hall mobility and magnetoresistance coefficient for the two-dimensional (2D) electron transport parallel to the heterojunction interfaces in a single quantum well of CdSe are ...

  13. g Algebra and two-dimensional quasiexactly solvable Hamiltonian ...

    Indian Academy of Sciences (India)

    g2 algebra via one special representation in the x–y two-dimensional space. Then, by choosing an appropriate set of ..... Gen. 40, 212 (2005). [3] S Grigorian and S T Yau, Commun. Math. Phys. 287, 459 (2009). [4] L Fernandez-Jambrina and L M Gonzalez-Romero, Class. Quant. Grav. 16, 953 (1999). [5] A Belhaj, J. Phys.

  14. Two-Dimensional Light Diffraction from an EPROM Chip

    Science.gov (United States)

    Ekkens, Tom

    2018-01-01

    In introductory physics classes, a laser pointer and a compact disc are all the items required to illustrate diffraction of light in a single dimension. If a two-dimensional diffraction pattern is desired, double axis diffraction grating material is available or a CCD sensor can be extracted from an unused electronics device. This article presents…

  15. Avoiding acidic region streaking in two-dimensional gel ...

    Indian Academy of Sciences (India)

    2014-07-21

    Jul 21, 2014 ... used, as an alternative for costly 2DE-quantification kits. Our designed protocols are ..... 7 IPG 17 cm strips: (i) made by OP then DNase/RNase treated and (ii) made by OP with optimized IEF. (D) 2DE image of (i) E. coli ..... Proteomic analysis of human saliva from lung cancer patients using two-dimensional ...

  16. Solar Internal Rotation and Dynamo Waves: A Two Dimensional ...

    Indian Academy of Sciences (India)

    tribpo

    Solar Internal Rotation and Dynamo Waves: A Two Dimensional. Asymptotic Solution in the Convection Zone ... We calculate here a spatial 2 D structure of the mean magnetic field, adopting real profiles of the solar internal ... of the asymptotic solution in low (middle) and high (right panel) latitudes. field is shifted towards the ...

  17. Two-dimensional models in statistical mechanics and field theory

    International Nuclear Information System (INIS)

    Koberle, R.

    1980-01-01

    Several features of two-dimensional models in statistical mechanics and Field theory, such as, lattice quantum chromodynamics, Z(N), Gross-Neveu and CP N-1 are discussed. The problems of confinement and dynamical mass generation are also analyzed. (L.C.) [pt

  18. Two-Dimensional Mesoscale-Ordered Conducting Polymers

    NARCIS (Netherlands)

    Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang

    2016-01-01

    Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of

  19. Two-dimensional generalized harmonic oscillators and their Darboux partners

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel

    2011-01-01

    We construct two-dimensional Darboux partners of the shifted harmonic oscillator potential and of an isotonic oscillator potential belonging to the Smorodinsky–Winternitz class of superintegrable systems. The transformed solutions, their potentials and the corresponding discrete energy spectra are computed in explicit form. (paper)

  20. Two-dimensional weak pseudomanifolds on eight vertices

    Indian Academy of Sciences (India)

    We explicitly determine all the two-dimensional weak pseudomanifolds on 8 vertices. We prove that there are (up to isomorphism) exactly 95 such weak pseudomanifolds, 44 of which are combinatorial 2-manifolds. These 95 weak pseudomanifolds triangulate 16 topological spaces. As a consequence, we prove that there ...

  1. Inter-layer Cooper pairing of two-dimensional electrons

    International Nuclear Information System (INIS)

    Inoue, Masahiro; Takemori, Tadashi; Yoshizaki, Ryozo; Sakudo, Tunetaro; Ohtaka, Kazuo

    1987-01-01

    The authors point out the possibility that the high transition temperatures of the recently discovered oxide superconductors are dominantly caused by the inter-layer Cooper pairing of two-dimensional electrons that are coupled through the exchange of three-dimensional phonons. (author)

  2. Symmetry Reductions of Two-Dimensional Variable Coefficient Burgers Equation

    Science.gov (United States)

    Zhang, Xiao-Ling; Li, Biao

    2005-05-01

    By use of a direct method, we discuss symmetries and reductions of the two-dimensional Burgers equation with variable coefficient (VCBurgers). Five types of symmetry-reducing VCBurgers to (1+1)-dimensional partial differential equation and three types of symmetry reducing VCBurgers to ordinary differential equation are obtained.

  3. Interior design of a two-dimensional semiclassical black hole

    International Nuclear Information System (INIS)

    Levanony, Dana; Ori, Amos

    2009-01-01

    We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.

  4. Interior design of a two-dimensional semiclassical black hole

    Science.gov (United States)

    Levanony, Dana; Ori, Amos

    2009-10-01

    We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.

  5. Vibrations of thin piezoelectric shallow shells: Two-dimensional ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two- dimensional eigenvalue problem. Keywords. Vibrations; piezoelectricity ...

  6. Two-dimensional microwave band-gap structures of different ...

    Indian Academy of Sciences (India)

    Abstract. We report the use of low dielectric constant materials to form two- dimensional microwave band-gap structures for achieving high gap-to-midgap ratio. The variable parameters chosen are the lattice spacing and the geometric structure. The se- lected geometries are square and triangular and the materials chosen ...

  7. Nonlinear dynamic characterization of two-dimensional materials

    NARCIS (Netherlands)

    Davidovikj, D.; Alijani, F.; Cartamil Bueno, S.J.; van der Zant, H.S.J.; Amabili, M.; Steeneken, P.G.

    2017-01-01

    Owing to their atomic-scale thickness, the resonances of two-dimensional (2D) material membranes show signatures of nonlinearities at forces of only a few picoNewtons. Although the linear dynamics of membranes is well understood, the exact relation between the nonlinear response and the resonator's

  8. Two-Dimensional Fourier Transform Analysis of Helicopter Flyover Noise

    Science.gov (United States)

    SantaMaria, Odilyn L.; Farassat, F.; Morris, Philip J.

    1999-01-01

    A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to separate main rotor and tail rotor noise. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.

  9. Level crossings in complex two-dimensional potentials

    Indian Academy of Sciences (India)

    Two-dimensional P T -symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both ...

  10. Image Making in Two Dimensional Art; Experiences with Straw and ...

    African Journals Online (AJOL)

    Image making in art is professionally referred to as bust in Sculpture andPortraiture in Painting. It is an art form executed in three dimensional (3D)and two dimensional (2D) formats respectively. Uncountable materials havebeen used to achieve these forms of art; like clay cement, marble, stone,different metals and, fibre ...

  11. Optical properties of two-dimensional magnetoelectric point scattering lattices

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann; Sersic, Ivana; Koenderink, A. Femius

    2013-01-01

    We explore the electrodynamic coupling between a plane wave and an infinite two-dimensional periodic lattice of magnetoelectric point scatterers, deriving a semianalytical theory with consistent treatment of radiation damping, retardation, and energy conservation. We apply the theory to arrays...

  12. Magnetoelectronic transport of the two-dimensional electron gas in ...

    Indian Academy of Sciences (India)

    Abstract. Hall mobility and magnetoresistance coefficient for the two-dimensional (2D) electron transport parallel to the heterojunction interfaces in a single quantum well of. CdSe are calculated with a numerical iterative technique in the framework of Fermi–Dirac statistics. Lattice scatterings due to polar-mode longitudinal ...

  13. Divorticity and dihelicity in two-dimensional hydrodynamics

    DEFF Research Database (Denmark)

    Shivamoggi, B.K.; van Heijst, G.J.F.; Juul Rasmussen, Jens

    2010-01-01

    A framework is developed based on the concepts of divorticity B (≡×ω, ω being the vorticity) and dihelicity g (≡vB) for discussing the theoretical structure underlying two-dimensional (2D) hydrodynamics. This formulation leads to the global and Lagrange invariants that could impose significant...... constraints on the evolution of divorticity lines in 2D hydrodynamics....

  14. Supersymmetric quantum mechanics for two-dimensional disk

    Indian Academy of Sciences (India)

    Supersymmetric quantum mechanics for two-dimensional disk. AKIRA SUZUKI1, RANABIR DUTT2 and RAJAT K BHADURI1,3. 1Department of Physics, Tokyo University of Science, Tokyo 162-8601, Japan. 2Department of Physics, Visva Bharati University, Santiniketan 731 235, India. 3Department of Physics and ...

  15. Phase conjugated Andreev backscattering in two-dimensional ballistic cavities

    NARCIS (Netherlands)

    Morpurgo, A.F.; Holl, S.; Wees, B.J.van; Klapwijk, T.M; Borghs, G.

    1997-01-01

    We have experimentally investigated transport in two-dimensional ballistic cavities connected to a point contact and to two superconducting electrodes with a tunable macroscopic phase difference. The point contact resistance oscillates as a function of the phase difference in a way which reflects

  16. Noninteracting beams of ballistic two-dimensional electrons

    International Nuclear Information System (INIS)

    Spector, J.; Stormer, H.L.; Baldwin, K.W.; Pfeiffer, L.N.; West, K.W.

    1991-01-01

    We demonstrate that two beams of two-dimensional ballistic electrons in a GaAs-AlGaAs heterostructure can penetrate each other with negligible mutual interaction analogous to the penetration of two optical beams. This allows electrical signal channels to intersect in the same plane with negligible crosstalk between the channels

  17. Two-dimensional optimization of free-electron-laser designs

    Science.gov (United States)

    Prosnitz, D.; Haas, R.A.

    1982-05-04

    Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  18. Protein mapping by two-dimensional high performance liquid chromatography

    NARCIS (Netherlands)

    Wagner, K.; Racaityte, K.; Unger, K.K.; Miliotis, T.; Edholm, L.E.; Bischoff, Rainer; Marko-Varga, G

    2000-01-01

    Current developments in drug discovery in the pharmaceutical industry require highly efficient analytical systems for protein mapping providing high resolution, robustness, sensitivity, reproducibility and a high throughput of samples. The potential of two-dimensional (2D) HPLC as a complementary

  19. Colloidal interactions in two-dimensional nematic emulsions

    Indian Academy of Sciences (India)

    These were reported to lead to a variety of novel self-organized colloidal structures, such as linear chains [5,6], periodic lattices [7], anisotropic clusters [3], and cellular structures [8] that are stabilized, in general, by topological defects. More recently, two-dimensional (2D) inverted nematic emulsions were also stud- ied and ...

  20. Tagging multiphoton ionization events by two-dimensional photoelectron spectroscopy

    NARCIS (Netherlands)

    de Groot, Mattijs; Broos, Jaap; Buma, Wybren Jan

    2007-01-01

    Two-dimensional photoelectron spectroscopy has been used to supply process-specific labels to multiphoton ionization events. Employing these tags, the authors can construct excitation and photoelectron spectra along predefined excitation routes in the neutral manifold and ionization routes to the

  1. A very useful experiment of two dimensional po- tential mapping ...

    Indian Academy of Sciences (India)

    A very useful experiment of two dimensional po- tential mapping, namely electrolytic tank model, for graduate and post graduate level physics stu- dents is given here. Laplace's equation is solved for the above and the results are compared with the experiment. The agreement· is so good that this is extended to complex ...

  2. Bounds on the capacity of constrained two-dimensional codes

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Justesen, Jørn

    2000-01-01

    Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run...

  3. Complex dynamical invariants for two-dimensional complex potentials

    Indian Academy of Sciences (India)

    Abstract. Complex dynamical invariants are searched out for two-dimensional complex poten- tials using rationalization method within the framework of an extended complex phase space characterized by x = x1 + ip3, y = x2 + ip4, px = p1 + ix3, py = p2 + ix4. It is found that the cubic oscillator and shifted harmonic oscillator ...

  4. Level crossings in complex two-dimensional potentials

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 73; Issue 2. Level crossings in complex two-dimensional potentials. Qing-Hai Wang. Volume 73 Issue 2 August 2009 pp ... Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both potentials respect the P T symmetry, the ...

  5. Weakly nonlinear analysis of two dimensional sheared granular flow

    NARCIS (Netherlands)

    Saitoh, K.; Hayakawa, Hisao

    2011-01-01

    Weakly nonlinear analysis of a two dimensional sheared granular flow is carried out under the Lees-Edwards boundary condition. We derive the time dependent Ginzburg–Landau equation of a disturbance amplitude starting from a set of granular hydrodynamic equations and discuss the bifurcation of the

  6. Fermi liquid of two-dimensional polar molecules

    NARCIS (Netherlands)

    Lu, Z.K; Shlyapnikov, G.V.

    2012-01-01

    We study Fermi-liquid properties of a weakly interacting two-dimensional gas of single-component fermionic polar molecules with dipole moments d oriented perpendicularly to the plane of their translational motion. This geometry allows the minimization of inelastic losses due to chemical reactions

  7. Zero sound in a two-dimensional dipolar Fermi gas

    NARCIS (Netherlands)

    Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.

    2013-01-01

    We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both

  8. Two-dimensional gel electrophoresis analysis of different parts of ...

    African Journals Online (AJOL)

    Two-dimensional gel electrophoresis analysis of different parts of Panax quinquefolius L. root. ... From these results it was concluded that proteomic analysis method was an effective way to identify the different parts of quinquefolius L. root. These findings may contribute to further understanding of the physiological ...

  9. TreePM Method for Two-Dimensional Cosmological Simulations ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle– ..... ment, we need less than 75 MB of RAM for a simulation with 10242 particles on a. 10242 grid.

  10. Engineered Muscle Actuators: Cells and Tissues

    National Research Council Canada - National Science Library

    Dennis, Robert G; Herr, Hugh; Parker, Kevin K; Larkin, Lisa; Arruda, Ellen; Baar, Keith

    2007-01-01

    .... Our primary objectives were to engineer living skeletal muscle actuators in culture using integrated bioreactors to guide tissue development and to maintain tissue contractility, to achieve 50...

  11. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  12. Comparison of chondrocytes produced from adipose tissue-derived stem cells and cartilage tissue.

    Science.gov (United States)

    Meric, Aysenur; Yenigun, Alper; Yenigun, Vildan Betul; Dogan, Remzi; Ozturan, Orhan

    2013-05-01

    Spontaneous cartilage regeneration is poor after a cartilage defect occurs by trauma, surgical, and other reasons. Importance of producing chondrocytes from stem cells and using tissues to repair a defect is getting popular. The aim of this study was to compare the effects of injectable cartilage produced by chondrocytes differentiated from adipose tissue-derived mesenchymal stem cells and chondrocyte cells isolated directly from cartilage tissue. Mesenchymal stem cells were isolated from rat adipose tissue and characterized by cell-surface markers. Then, they were differentiated to chondrocyte cells. The function of differentiated chondrocyte cells was compared with chondrocyte cells directly isolated from cartilage tissue in terms of collagen and glycosaminoglycan secretion. Then, both chondrocyte cell types were injected to rats' left ears in liquid and gel form, and histologic evaluation was done 3 weeks after the injection. Adipose-derived stem cells were strongly positive for the CD44 and CD73 mesenchymal markers. Differentiated chondrocyte cells and chondrocyte cells directly isolated from cartilage tissue had relative collagen and glycosaminoglycan secretion results. However, histologic evaluations did not show any cartilage formation after both chondrocyte cell types were injected to rats. Strong CD44- and CD73-positive expression indicated that adipose-derived cells had the stem cell characters. Collagen and glycosaminoglycan secretion results demonstrated that adipose-derived stem cells were successfully differentiated to chondrocyte cells.

  13. The statistics of molecular motor trajectories on different two-dimensional structures

    Science.gov (United States)

    Tabei, S. M. Ali; Jahanmiri-Nezhad, Faezeh; Martin, Michael; Lastine, Colten

    Molecular motors move on a complex cytoskeleton network to transport material within the cell. In this talk, we investigate different scenarios of transport on two-dimensional network structures. We will study different statistical properties of an ensemble of simulated trajectories such as the frequency of directional changes and diffusion statistics. We will investigate how these statistical measures depend on the geometrical properties of the underlying structure.

  14. Tuning spin transport across two-dimensional organometallic junctions

    Science.gov (United States)

    Liu, Shuanglong; Wang, Yun-Peng; Li, Xiangguo; Fry, James N.; Cheng, Hai-Ping

    2018-01-01

    We study via first-principles modeling and simulation two-dimensional spintronic junctions made of metal-organic frameworks consisting of two Mn-phthalocyanine ferromagnetic metal leads and semiconducting Ni-phthalocyanine channels of various lengths. These systems exhibit a large tunneling magnetoresistance ratio; the transmission functions of such junctions can be tuned using gate voltage by three orders of magnitude. We find that the origin of this drastic change lies in the orbital alignment and hybridization between the leads and the center electronic states. With physical insight into the observed on-off phenomenon, we predict a gate-controlled spin current switch based on two-dimensional crystallines and offer general guidelines for designing spin junctions using 2D materials.

  15. Entanglement Entropy in Two-Dimensional String Theory.

    Science.gov (United States)

    Hartnoll, Sean A; Mazenc, Edward A

    2015-09-18

    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.

  16. Duality-invariant class of two-dimensional field theories

    CERN Document Server

    Sfetsos, K

    1999-01-01

    We construct a new class of two-dimensional field theories with target spaces that are finite multiparameter deformations of the usual coset G/H-spaces. They arise naturally, when certain models, related by Poisson-Lie T-duality, develop a local gauge invariance at specific points of their classical moduli space. We show that canonical equivalences in this context can be formulated in loop space in terms of parafermionic-type algebras with a central extension. We find that the corresponding generating functionals are non-polynomial in the derivatives of the fields with respect to the space-like variable. After constructing models with three- and two-dimensional targets, we study renormalization group flows in this context. In the ultraviolet, in some cases, the target space of the theory reduces to a coset space or there is a fixed point where the theory becomes free.

  17. Transient two-dimensional fuel-concentration measurement technique

    Science.gov (United States)

    Konishi, Tadashi; Naka, Syuji; Ito, Akihiko; Saito, Kozo

    1997-11-01

    We propose a nonintrusive experimental technique, the transient fuel-concentration measurement technique (TFMT), that is capable of being used to measure two-dimensional profiles of transient fuel concentrations over an open liquid fuel surface. The TFMT is based on single-wavelength holographic interferometry; its response time is less than 1 s and spatial resolution is 0.1 mol. % /0.1 mm. It was applied to measure both methanol vapor and n-propanol vapor concentrations. To assess the accuracy of the technique, our results were compared with steady-state methanol and n-propanol fuel-vapor concentrations measured by other researchers with a microsampling technique combined with gas chromatography. We found the TFMT to be accurate for on-line monitoring of two-dimensional profiles of fuel-vapor concentrations.

  18. Quasi-two-dimensional thermoelectricity in SnSe

    Science.gov (United States)

    Tayari, V.; Senkovskiy, B. V.; Rybkovskiy, D.; Ehlen, N.; Fedorov, A.; Chen, C.-Y.; Avila, J.; Asensio, M.; Perucchi, A.; di Pietro, P.; Yashina, L.; Fakih, I.; Hemsworth, N.; Petrescu, M.; Gervais, G.; Grüneis, A.; Szkopek, T.

    2018-01-01

    Stannous selenide is a layered semiconductor that is a polar analog of black phosphorus and of great interest as a thermoelectric material. Unusually, hole doped SnSe supports a large Seebeck coefficient at high conductivity, which has not been explained to date. Angle-resolved photoemission spectroscopy, optical reflection spectroscopy, and magnetotransport measurements reveal a multiple-valley valence-band structure and a quasi-two-dimensional dispersion, realizing a Hicks-Dresselhaus thermoelectric contributing to the high Seebeck coefficient at high carrier density. We further demonstrate that the hole accumulation layer in exfoliated SnSe transistors exhibits a field effect mobility of up to 250 cm2/V s at T =1.3 K . SnSe is thus found to be a high-quality quasi-two-dimensional semiconductor ideal for thermoelectric applications.

  19. Two dimensional analytical model for a reconfigurable field effect transistor

    Science.gov (United States)

    Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.

    2018-02-01

    This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.

  20. Recombination in one- and two-dimensional fitness landscapes.

    Science.gov (United States)

    Avetisyan, Zh; Saakian, David B

    2010-05-01

    We consider many-site mutation-recombination models of molecular evolution, where fitness is a function of a Hamming distance from one (one-dimensional case) or two (two-dimensional case) sequences. For the one-dimensional case, we calculate the population distribution dynamics for a model with zero fitness and an arbitrary symmetric initial distribution and find an error threshold transition point in the single-peak fitness model for a given initial symmetric distribution. We calculate the recombination period in the case of a single-peak fitness function, when the original population is located at one sequence, at some Hamming distance from the peak configuration. Steady-state fitness is calculated with finite genome length corrections. We derive analytical equations for the two-dimensional mutation-recombination model.

  1. Dynamics of vortex interactions in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.

    2002-01-01

    The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...... a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 ... is effectively producing small scale structures and the relation to the enstrophy "cascade" in developed 2D turbulence is discussed. The influence of finite viscosity on the merging is also investigated. Additionally, we examine vortex interactions on a finite domain, and discuss the results in connection...

  2. Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas

    International Nuclear Information System (INIS)

    Valeo, E.J.; Kramer, G.J.; Nazikian, R.

    2001-01-01

    A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed

  3. Vortex annihilation and inverse cascades in two dimensional superfluid turbulence

    Science.gov (United States)

    Lucas, Andrew; Chesler, Paul M.

    2015-03-01

    The dynamics of a dilute mixture of vortices and antivortices in a turbulent two-dimensional superfluid at finite temperature is well described by first order Hall-Vinen-Iordanskii equations, or dissipative point vortex dynamics. These equations are governed by a single dimensionless parameter: the ratio of the strength of drag forces to Magnus forces on vortices. When this parameter is small, we demonstrate using numerical simulations that the resulting superfluid enjoys an inverse energy cascade where small scale stirring leads to large scale vortex clustering. We argue analytically and numerically that the vortex annihilation rate in a laminar flow may be parametrically smaller than the rate in a turbulent flow with an inverse cascade. This suggests a new way to detect inverse cascades in experiments on two-dimensional superfluid turbulence using cold atomic gases, where traditional probes of turbulence such as the energy spectrum are not currently accessible.

  4. Two-dimensional turbulence in three-dimensional flows

    Science.gov (United States)

    Xia, H.; Francois, N.

    2017-11-01

    This paper presents a review of experiments performed in three-dimensional flows that show behaviour associated with two-dimensional turbulence. Experiments reveal the presence of the inverse energy cascade in two different systems, namely, flows in thick fluid layers driven electromagnetically and the Faraday wave driven flows. In thick fluid layers, large-scale coherent structures can shear off the vertical eddies and reinforce the planarity of the flow. Such structures are either self-generated or externally imposed. In the Faraday wave driven flows, a seemingly three-dimensional flow is shown to be actually two-dimensional when it is averaged over several Faraday wave periods. In this system, a coupling between the wave motion and 2D hydrodynamic turbulence is uncovered.

  5. CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION

    Directory of Open Access Journals (Sweden)

    Toth Reka

    2010-12-01

    Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.

  6. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine

    2004-01-01

    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...

  7. Two-dimensional cephalometry and computerized orthognathic surgical treatment planning.

    Science.gov (United States)

    Kusnoto, Budi

    2007-07-01

    Cephalometric radiographs provide for standardized skull/facial views that allow for comparison over time to assess growth in an individual, and to compare that individual against standardized population norms. Cephalometric analysis and surgical prediction are done by robust cephalometric imaging software that can rapidly analyze the radiograph, and retrace and recalculate the analysis for a variety of possible surgical outcomes; however, the validity of the prediction depends on the accuracy of the records, the algorithm specific to the software, and the specifics of the patient population. Three-dimensional digital imaging to replace conventional two-dimensional photographic images and CT scans, with corresponding cephalometric analysis to replace two-dimensional cephalometric films, is already on the horizon.

  8. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Zhang, Meiyun; Long, Shibing [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Lian, Xiaojuan; Miao, Feng [National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Larcher, Luca [DISMI, Università di Modena e Reggio Emilia, 42122 Reggio Emilia (Italy); Wu, Ernest [IBM Research Division, Essex Junction, Vermont 05452 (United States)

    2016-01-04

    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  9. The stability of a two-dimensional rising bubble

    International Nuclear Information System (INIS)

    Nie, Q.; Tanveer, S.

    1995-01-01

    The stability of an inviscid two-dimensional bubble subject to two-dimensional disturbances is considered and the bubbles are found to be linearly stable for all Weber numbers, for which a steady solution is known. Certain aspects of the nonlinear initial value problem are also studied. An initial condition that consists of a superposition of a suitable symmetric eigenmode (of the linear stability operator) on a steady state is found to result in pinching of the bubble neck as it tends to oscillate about the steady state. An estimate of the threshold amplitude of such a disturbance needed to cause breakup of a large aspect ratio bubble is obtained. The presence of gravity appears to inhibit this pinching process

  10. Linear negative magnetoresistance in two-dimensional Lorentz gases

    Science.gov (United States)

    Schluck, J.; Hund, M.; Heckenthaler, T.; Heinzel, T.; Siboni, N. H.; Horbach, J.; Pierz, K.; Schumacher, H. W.; Kazazis, D.; Gennser, U.; Mailly, D.

    2018-03-01

    Two-dimensional Lorentz gases formed by obstacles in the shape of circles, squares, and retroreflectors are reported to show a pronounced linear negative magnetoresistance at small magnetic fields. For circular obstacles at low number densities, our results agree with the predictions of a model based on classical retroreflection. In extension to the existing theoretical models, we find that the normalized magnetoresistance slope depends on the obstacle shape and increases as the number density of the obstacles is increased. The peaks are furthermore suppressed by in-plane magnetic fields as well as by elevated temperatures. These results suggest that classical retroreflection can form a significant contribution to the magnetoresistivity of two-dimensional Lorentz gases, while contributions from weak localization cannot be excluded, in particular for large obstacle densities.

  11. Directional detection of dark matter with two-dimensional targets

    Directory of Open Access Journals (Sweden)

    Yonit Hochberg

    2017-09-01

    Full Text Available We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. We show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. This proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.

  12. Directional detection of dark matter with two-dimensional targets

    Science.gov (United States)

    Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Tully, Christopher G.; Zurek, Kathryn M.

    2017-09-01

    We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. We show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. This proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.

  13. Robust L1-norm two-dimensional linear discriminant analysis.

    Science.gov (United States)

    Li, Chun-Na; Shao, Yuan-Hai; Deng, Nai-Yang

    2015-05-01

    In this paper, we propose an L1-norm two-dimensional linear discriminant analysis (L1-2DLDA) with robust performance. Different from the conventional two-dimensional linear discriminant analysis with L2-norm (L2-2DLDA), where the optimization problem is transferred to a generalized eigenvalue problem, the optimization problem in our L1-2DLDA is solved by a simple justifiable iterative technique, and its convergence is guaranteed. Compared with L2-2DLDA, our L1-2DLDA is more robust to outliers and noises since the L1-norm is used. This is supported by our preliminary experiments on toy example and face datasets, which show the improvement of our L1-2DLDA over L2-2DLDA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Folding two dimensional crystals by swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Ochedowski, Oliver; Bukowska, Hanna; Freire Soler, Victor M.; Brökers, Lara; Ban-d'Etat, Brigitte; Lebius, Henning; Schleberger, Marika

    2014-01-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS 2 and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS 2 does not

  15. Folding two dimensional crystals by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2014-12-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.

  16. Logarithmic Superdiffusion in Two Dimensional Driven Lattice Gases

    Science.gov (United States)

    Krug, J.; Neiss, R. A.; Schadschneider, A.; Schmidt, J.

    2018-03-01

    The spreading of density fluctuations in two-dimensional driven diffusive systems is marginally anomalous. Mode coupling theory predicts that the diffusivity in the direction of the drive diverges with time as (ln t)^{2/3} with a prefactor depending on the macroscopic current-density relation and the diffusion tensor of the fluctuating hydrodynamic field equation. Here we present the first numerical verification of this behavior for a particular version of the two-dimensional asymmetric exclusion process. Particles jump strictly asymmetrically along one of the lattice directions and symmetrically along the other, and an anisotropy parameter p governs the ratio between the two rates. Using a novel massively parallel coupling algorithm that strongly reduces the fluctuations in the numerical estimate of the two-point correlation function, we are able to accurately determine the exponent of the logarithmic correction. In addition, the variation of the prefactor with p provides a stringent test of mode coupling theory.

  17. Nano scaffolds and stem cell therapy in liver tissue engineering

    Science.gov (United States)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  18. Automated tissue dissociation for rapid extraction of viable cells

    OpenAIRE

    McBeth, Christine; Gutermuth, Angela; Ochs, Jelena; Sharon, Andre; Sauer-Budge, Alexis F.

    2017-01-01

    Viable cells from healthy tissues are a rich resource in high demand for many next-generation therapeutics and regenerative medicine applications. Cell extraction from the dense connective matrix of most tissues is a labor-intensive task and high variability makes cGMP compliance difficult. To reduce costs and ensure greater reproducibility, automated tissue dissociators compatible with robotic liquid handling systems are required. Here we demonstrate the utility of our automated tissue disso...

  19. Constraints and hidden symmetry in two-dimensional gravity

    Energy Technology Data Exchange (ETDEWEB)

    Barcelos-Neto, J. (Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21945-970 (Brazil))

    1994-01-15

    We study the hidden symmetry of Polyakov two-dimensional gravity by means of first-class constraints. These are obtained from the combination of Fourier mode expansions of the usual (second-class) constraints of the theory. We show that, more than the usual SL(2,[ital R]), there is a hidden Virasoro symmetry in the theory. The results of the above analysis are also confirmed from the point of view of a geometrical symplectic treatment.

  20. Two-dimensional simulation of the MHD stability, (1)

    International Nuclear Information System (INIS)

    Kurita, Gen-ichi; Amano, Tsuneo.

    1976-03-01

    The two-dimensional computer code has been prepared to study MHD stability of an axisymmetric toroidal plasma with and without the surrounding vacuum region. It also includes the effect of magnetic surfaces with non-circular cross sections. The linearized equations of motion are solved as an initial value problem. The results by computer simulation are compared with those by the theory for the cylindrical plasma; they are in good agreement. (auth.)

  1. Decaying Two-Dimensional Turbulence in a Circular Container

    OpenAIRE

    Schneider, Kai; Farge, Marie

    2005-01-01

    We present direct numerical simulations of two-dimensional decaying turbulence at initial Reynolds number 5×104 in a circular container with no-slip boundary conditions. Starting with random initial conditions the flow rapidly exhibits self-organization into coherent vortices. We study their formation and the role of the viscous boundary layer on the production and decay of integral quantities. The no-slip wall produces vortices which are injected into the bulk flow and tend to compensate the...

  2. Stochastic and collisional diffusion in two-dimensional periodic flows

    International Nuclear Information System (INIS)

    Doxas, I.; Horton, W.; Berk, H.L.

    1990-05-01

    The global effective diffusion coefficient D* for a two-dimensional system of convective rolls with a time dependent perturbation added, is calculated. The perturbation produces a background diffusion coefficient D, which is calculated analytically using the Menlikov-Arnold integral. This intrinsic diffusion coefficient is then enhanced by the unperturbed flow, to produce the global effective diffusion coefficient D*, which we can calculate theoretically for a certain range of parameters. The theoretical value agrees well with numerical simulations. 23 refs., 4 figs

  3. An energy principle for two-dimensional collisionless relativistic plasmas

    International Nuclear Information System (INIS)

    Otto, A.; Schindler, K.

    1984-01-01

    Using relativistic Vlasov theory an energy principle for two-dimensional plasmas is derived, which provides a sufficient and necessary criterion for the stability of relativistic plasma equilibria. This energy principle includes charge separating effects since the exact Poisson equation was taken into consideration. Applying the variational principle to the case of the relativistic plane plasma sheet, the same marginal wave length is found as in the non-relativistic case. (author)

  4. New Two-Dimensional Polynomial Failure Criteria for Composite Materials

    OpenAIRE

    Zhao, Shi Yang; Xue, Pu

    2014-01-01

    The in-plane damage behavior and material properties of the composite material are very complex. At present, a large number of two-dimensional failure criteria, such as Chang-Chang criteria, have been proposed to predict the damage process of composite structures under loading. However, there is still no good criterion to realize it with both enough accuracy and computational performance. All these criteria cannot be adjusted by experimental data. Therefore, any special properties of composit...

  5. Two-dimensional heat conducting simulation of plasma armatures

    International Nuclear Information System (INIS)

    Huerta, M.A.; Boynton, G.

    1991-01-01

    This paper reports on our development of a two-dimensional MHD code to simulate internal motions in a railgun plasma armature. The authors use the equations of resistive MHD, with Ohmic heating, and radiation heat transport. The authors use a Flux Corrected Transport code to advance all quantities in time. Our runs show the development of complex flows, subsequent shedding of secondary arcs, and a drop in the acceleration of the armature

  6. Topological field theories and two-dimensional instantons

    International Nuclear Information System (INIS)

    Schaposnik, F.A.

    1990-01-01

    In this paper, the author discusses some topics related to the recently developed Topological Field Theories (TFTs). The first part is devoted to a discussion on how a TFT can be quantized using techniques which are well-known from the study of gauge theories. Then the author describes the results that we have obtained in collaboration with George Thompson in the study of a two-dimensional TFT related to the Abelian Higgs model

  7. Pseudospectral reduction of incompressible two-dimensional turbulence

    Science.gov (United States)

    Bowman, John C.; Roberts, Malcolm

    2012-05-01

    Spectral reduction was originally formulated entirely in the wavenumber domain as a coarse-grained wavenumber convolution in which bins of modes interact with enhanced coupling coefficients. A Liouville theorem leads to inviscid equipartition solutions when each bin contains the same number of modes. A pseudospectral implementation of spectral reduction which enjoys the efficiency of the fast Fourier transform is described. The model compares well with full pseudospectral simulations of the two-dimensional forced-dissipative energy and enstrophy cascades.

  8. Warranty menu design for a two-dimensional warranty

    International Nuclear Information System (INIS)

    Ye, Zhi-Sheng; Murthy, D.N. Pra

    2016-01-01

    Fierce competitions in the commercial product market have forced manufacturers to provide customer-friendly warranties with a view to achieving higher customer satisfaction and increasing the market share. This study proposes a strategy that offers customers a two-dimensional warranty menu with a number of warranty choices, called a flexible warranty policy. We investigate the design of a flexible two-dimensional warranty policy that contains a number of rectangular regions. This warranty policy is obtained by dividing customers into several groups according to their use rates and providing each group a germane warranty region. Consumers choose a favorable one from the menu according to their usage behaviors. Evidently, this flexible warranty policy is attractive to users of different usage behaviors, and thus, it gives the manufacturer a good position in advertising the product. When consumers are unaware about their use rates upon purchase, we consider a fixed two-dimensional warranty policy with a stair-case warranty region and show that it is equivalent to the flexible policy. Such an equivalence reveals the inherent relationship between the rectangular warranty policy, the L-shape warranty policy, the step-stair warranty policy and the iso-probability of failure warranty policy that were extensively discussed in the literature. - Highlights: • We design a two-dimensional warranty menu with a number of warranty choices. • Consumers can choose a favorable one from the menu as per their usage behavior. • We further consider a fixed 2D warranty policy with a stair-case warranty region. • We show the equivalence of the two warranty policies.

  9. Stability theory for a two-dimensional channel

    Science.gov (United States)

    Troshkin, O. V.

    2017-08-01

    A scheme for deriving conditions for the nonlinear stability of an ideal or viscous incompressible steady flow in a two-dimensional channel that is periodic in one direction is described. A lower bound for the main factor ensuring the stability of the Reynolds-Kolmogorov sinusoidal flow with no-slip conditions (short wavelength stability) is improved. A condition for the stability of a vortex strip modeling Richtmyer-Meshkov fluid vortices (long wavelength stability) is presented.

  10. Effective mass of two-dimensional He3

    International Nuclear Information System (INIS)

    Boronat, J.; Casulleras, J.; Grau, V.; Krotscheck, E.; Springer, J.

    2003-01-01

    We use structural information from diffusion Monte Carlo calculations for two-dimensional He 3 to calculate the effective mass. Static effective interactions are constructed from the density and spin-structure functions using sum rules. We find that both spin and density fluctuations contribute about equally to the effective mass. Our results show, in agreement with recent experiments, a flattening of the single-particle self-energy with increasing density, which eventually leads to a divergent effective mass

  11. SU(1,2) invariance in two-dimensional oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Krivonos, Sergey [Bogoliubov Laboratory of Theoretical Physics,Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nersessian, Armen [Yerevan State University,1 Alex Manoogian St., Yerevan, 0025 (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)

    2017-02-01

    Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756, with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written in terms of the oscillator variables.

  12. Two-dimensional gel electrophoretic method for mapping DNA replicons.

    OpenAIRE

    Nawotka, K A; Huberman, J A

    1988-01-01

    We describe in detail a method which allows determination of the directions of replication fork movement through segments of DNA for which cloned probes are available. The method uses two-dimensional neutral-alkaline agarose gel electrophoresis followed by hybridization with short probe sequences. The nascent strands of replicating molecules form an arc separated from parental and nonreplicating strands. The closer a probe is to its replication origin or to the origin-proximal end of its rest...

  13. On Two-Dimensional Quaternion Wigner-Ville Distribution

    Directory of Open Access Journals (Sweden)

    Mawardi Bahri

    2014-01-01

    Full Text Available We present the two-dimensional quaternion Wigner-Ville distribution (QWVD. The transform is constructed by substituting the Fourier transform kernel with the quaternion Fourier transform (QFT kernel in the classical Wigner-Ville distribution definition. Based on the properties of quaternions and the QFT kernel we obtain three types of the QWVD. We discuss some useful properties of various definitions for the QWVD, which are extensions of the classical Wigner-Ville distribution properties.

  14. Acoustic transparency in two-dimensional sonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Dehesa, Jose; Torrent, Daniel [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/ Camino de Vera s/n, E-46022 Valencia (Spain); Cai Liangwu [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)], E-mail: jsdehesa@upvnet.upv.es

    2009-01-15

    Acoustic transparency is studied in two-dimensional sonic crystals consisting of hexagonal distributions of cylinders with continuously varying properties. The transparency condition is achieved by selectively closing the acoustic bandgaps, which are governed by the structure factor of the cylindrical scatterers. It is shown here that cylindrical scatterers with the proposed continuously varying properties are physically realizable by using metafluids based on sonic crystals. The feasibility of this proposal is analyzed by a numerical experiment based on multiple scattering theory.

  15. Analysis of two dimensional signals via curvelet transform

    Science.gov (United States)

    Lech, W.; Wójcik, W.; Kotyra, A.; Popiel, P.; Duk, M.

    2007-04-01

    This paper describes an application of curvelet transform analysis problem of interferometric images. Comparing to two-dimensional wavelet transform, curvelet transform has higher time-frequency resolution. This article includes numerical experiments, which were executed on random interferometric image. In the result of nonlinear approximations, curvelet transform obtains matrix with smaller number of coefficients than is guaranteed by wavelet transform. Additionally, denoising simulations show that curvelet could be a very good tool to remove noise from images.

  16. On the Initial Singularity Problem in Two Dimensional Quantum Cosmology

    OpenAIRE

    Gamboa, J.

    1995-01-01

    The problem of how to put interactions in two-dimensional quantum gravity in the strong coupling regime is studied. It shows that the most general interaction consistent with this symmetry is a Liouville term that contain two parameters $(\\alpha, \\beta)$ satisfying the algebraic relation $2\\beta - \\alpha =2$ in order to assure the closure of the diffeomorphism algebra. The model is classically soluble and it contains as general solution the temporal singularity. The theory is quantized and we...

  17. Negative differential Rashba effect in two-dimensional hole systems

    OpenAIRE

    Habib, B.; Tutuc, E.; Melinte, S.; Shayegan, M.; Wasserman, D.; Lyon, S. A.; Winkler, R.

    2004-01-01

    We demonstrate experimentally and theoretically that two-dimensional (2D) heavy hole systems in single heterostructures exhibit a \\emph{decrease} in spin-orbit interaction-induced spin splitting with an increase in perpendicular electric field. Using front and back gates, we measure the spin splitting as a function of applied electric field while keeping the density constant. Our results are in contrast to the more familiar case of 2D electrons where spin splitting increases with electric field.

  18. Spontaneous spiral formation in two-dimensional oscillatory media

    Science.gov (United States)

    Kettunen, Petteri; Amemiya, Takashi; Ohmori, Takao; Yamaguchi, Tomohiko

    1999-08-01

    Computational studies of pattern formation in a modified Oregonator model of the Belousov-Zhabotinsky reaction is described. Initially inactive two-dimensional reaction media with an immobilized catalyst is connected to a reservoir of fresh reactants through a set of discrete points distributed randomly over the interphase surface. It is shown that the diffusion of reactants combined with oscillatory reaction kinetics can give rise to spontaneous spiral formation and phase waves.

  19. Canard solutions of two-dimensional singularly perturbed systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xianfeng [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China)]. E-mail: chenxf@sjtu.edu.cn; Yu Pei [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Applied Mathematics, University of Western Ontario London, Ont., N6A 5B7 (Canada); Han Maoan [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Weijiang [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2005-02-01

    In this paper, some new lemmas on asymptotic analysis are established. We apply an asymptotic method to study generalized two-dimensional singularly perturbed systems with one parameter, whose critical manifold has an m-22 th-order degenerate extreme point. Certain sufficient conditions are obtained for the existence of canard solutions, which are the extension and correction of some existing results. Finally, one numerical example is given.

  20. Designing the stem cell microenvironment for guided connective tissue regeneration.

    Science.gov (United States)

    Bogdanowicz, Danielle R; Lu, Helen H

    2017-12-01

    Adult mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because of their ability to self-renew and their capacity for multilineage differentiation and tissue regeneration. For connective tissues, such as ligaments or tendons, MSCs are vital to the modulation of the inflammatory response following acute injury while also interacting with resident fibroblasts to promote cell proliferation and matrix synthesis. To date, MSC injection for connective tissue repair has yielded mixed results in vivo, likely due to a lack of appropriate environmental cues to effectively control MSC response and promote tissue healing instead of scar formation. In healthy tissues, stem cells reside within a complex microenvironment comprising cellular, structural, and signaling cues that collectively maintain stemness and modulate tissue homeostasis. Changes to the microenvironment following injury regulate stem cell differentiation, trophic signaling, and tissue healing. Here, we focus on models of the stem cell microenvironment that are used to elucidate the mechanisms of stem cell regulation and inspire functional approaches to tissue regeneration. Recent studies in this frontier area are highlighted, focusing on how microenvironmental cues modulate MSC response following connective tissue injury and, more importantly, how this unique cell environment can be programmed for stem cell-guided tissue regeneration. © 2017 New York Academy of Sciences.

  1. Adipose-derived stem cells and periodontal tissue engineering.

    Science.gov (United States)

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  2. Current State-of-the-Art 3D Tissue Models and Their Compatibility with Live Cell Imaging.

    Science.gov (United States)

    Bardsley, Katie; Deegan, Anthony J; El Haj, Alicia; Yang, Ying

    2017-01-01

    Mammalian cells grow within a complex three-dimensional (3D) microenvironment where multiple cells are organized and surrounded by extracellular matrix (ECM). The quantity and types of ECM components, alongside cell-to-cell and cell-to-matrix interactions dictate cellular differentiation, proliferation and function in vivo. To mimic natural cellular activities, various 3D tissue culture models have been established to replace conventional two dimensional (2D) culture environments. Allowing for both characterization and visualization of cellular activities within possibly bulky 3D tissue models presents considerable challenges due to the increased thickness and subsequent light scattering features of such 3D models. In this chapter, state-of-the-art methodologies used to establish 3D tissue models are discussed, first with a focus on both scaffold-free and scaffold-based 3D tissue model formation. Following on, multiple 3D live cell imaging systems, mainly optical imaging modalities, are introduced. Their advantages and disadvantages are discussed, with the aim of stimulating more research in this highly demanding research area.

  3. Quantum oscillations in quasi-two-dimensional conductors

    CERN Document Server

    Galbova, O

    2002-01-01

    The electronic absorption of sound waves in quasi-two-dimensional conductors in strong magnetic fields, is investigated theoretically. A longitudinal acoustic wave, propagating along the normal n-> to the layer of quasi-two-dimensional conductor (k-> = left brace 0,0,k right brace; u-> = left brace 0,0,u right brace) in magnetic field (B-> = left brace 0, 0, B right brace), is considered. The quasiclassical approach for this geometry is of no interest, due to the absence of interaction between electromagnetic and acoustic waves. The problem is of interest in strong magnetic field when quantization of the charge carriers energy levels takes place. The quantum oscillations in the sound absorption coefficient, as a function of the magnetic field, are theoretically observed. The experimental study of the quantum oscillations in quasi-two-dimensional conductors makes it possible to solve the inverse problem of determining from experimental data the extrema closed sections of the Fermi surface by a plane p sub z = ...

  4. Electromagnetically induced two-dimensional grating assisted by incoherent pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn

    2017-04-25

    We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.

  5. Observations of two-dimensional monolayer zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Trilochan, E-mail: trilochansahoo@gmail.com [Department of Physics and Nanotechnology, SRM University, Kattankulathur, 603203 Tamilnadu (India); Nayak, Sanjeev K. [Institute of Physics, Martin Luther University Halle-Wittenberg, Von Seckendorff Platz 1, 06120 Halle (Germany); Chelliah, Pandian [Department of Physics and Nanotechnology, SRM University, Kattankulathur, 603203 Tamilnadu (India); Rath, Manasa K.; Parida, Bhaskar [Division of Advanced Materials Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of)

    2016-03-15

    Highlights: • Synthesis of planer ZnO nanostructure. • Observation of multilayered and monolayer ZnO. • DFT calculation of (10-10), (11-20) and (0 0 0 1) planes of ZnO. • Stability of non-polar (10-10) and (11-20) planes of ZnO. - Abstract: This letter reports the observations of planar two-dimensional ZnO synthesized using the hydrothermal growth technique. High-resolution transmission electron microscopy revealed the formation of a two-dimensional honeycomb lattice and aggregated structures of layered ZnO. The nonpolar (10-10) and (11-20) planes were present in the X-ray diffraction patterns, but the characteristic (0 0 0 1) peak of bulk ZnO was absent. The study found that nonpolar freestanding ZnO structures composed of a single or few layers may be more stable and may have a higher probability of formation than their polar counterparts. The stability of the nonpolar two-dimensional hexagonal ZnO slabs is supported by density functional theory studies.

  6. Two-Dimensional Identification of Fetal Tooth Germs.

    Science.gov (United States)

    Seabra, Mariana; Vaz, Paula; Valente, Francisco; Braga, Ana; Felino, António

    2017-03-01

      To demonstrate the efficiency and applicability of two-dimensional ultrasonography in the identification of tooth germs and in the assessment of potential pathology.   Observational, descriptive, cross-sectional study.   Prenatal Diagnosis Unit of Centro Hospitalar de Vila Nova de Gaia / Espinho-Empresa Pública in Portugal.   A total of 157 white pregnant women (median age, 32 years; range, 14 to 47 years) undergoing routine ultrasound exams.   Description of the fetal tooth germs, as visualized by two-dimensional ultrasonography, including results from prior fetal biometry and detailed screening for malformations.   In the first trimester group, ultrasonography identified 10 tooth germs in the maxilla and 10 tooth germs in the mandible in all fetuses except for one who presented eight maxillary tooth germs. This case was associated with a chromosomal abnormality (trisomy 13) with a bilateral cleft palate. In the second and third trimesters group, ultrasonography identified a larger range of tooth germs: 81.2% of fetuses showed 10 tooth germs in the maxilla and 85.0% of fetuses had 10 tooth germs in the mandible. Hypodontia was more prevalent in the maxilla than in the mandible, which led us to use qualitative two-dimensional ultrasonography to analyze the possible association between hypodontia and other variables such as fetal pathology, markers, head, nuchal, face, and spine.   We recommend using this method as the first exam to evaluate fetal morphology and also to help establish accurate diagnosis of abnormalities in pregnancy.

  7. H₂ sensing properties of two-dimensional zinc oxide nanostructures.

    Science.gov (United States)

    Tonezzer, Matteo; Iannotta, Salvatore

    2014-05-01

    In this work we have grown particular zinc oxide two-dimensional nanostructures which are essentially a series of hexagonal very thin sheets. The hexagonal wurtzite crystal structure gives them their peculiar shape, whose dimensions are few microns wide, with a thickness in the order of 25 nm. Such kind of nanostructure, grown by thermal oxidation of evaporated metallic zinc on a silica substrate, has been used to fabricate conductometric gas sensors, investigated then for hydrogen gas detection. The "depletion layer sensing mechanism" is clarified, explaining how the geometrical factors of one- and two-dimensional nanostructures affect their sensing parameters. The comparison with one-dimensional ZnO nanowires based structures shows that two-dimensional nanostructures are ideal for gas sensing, due to their tiny thickness, which is comparable to the depletion-layer thickness, and their large cross-section, which increases the base current, thus lowering the limit of detection. The response to H₂ has been found good even to sub-ppm concentrations, with response and recovery times shorter than 18s in the whole range of H₂ concentrations investigated (500 ppb-10 ppm). The limit of detection has been found around 200 ppb for H₂ gas even at relatively low working temperature (175 °C). Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Procedures for two-dimensional electrophoresis of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tollaksen, S.L.; Giometti, C.S.

    1996-10-01

    High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.

  9. Analysis techniques for two-dimensional infrared data

    Science.gov (United States)

    Winter, E. M.; Smith, M. C.

    1978-01-01

    In order to evaluate infrared detection and remote sensing systems, it is necessary to know the characteristics of the observational environment. For both scanning and staring sensors, the spatial characteristics of the background may be more of a limitation to the performance of a remote sensor than system noise. This limitation is the so-called spatial clutter limit and may be important for systems design of many earth application and surveillance sensors. The data used in this study is two dimensional radiometric data obtained as part of the continuing NASA remote sensing programs. Typical data sources are the Landsat multi-spectral scanner (1.1 micrometers), the airborne heat capacity mapping radiometer (10.5 - 12.5 micrometers) and various infrared data sets acquired by low altitude aircraft. Techniques used for the statistical analysis of one dimensional infrared data, such as power spectral density (PSD), exceedance statistics, etc. are investigated for two dimensional applicability. Also treated are two dimensional extensions of these techniques (2D PSD, etc.), and special techniques developed for the analysis of 2D data.

  10. Tissue-specific designs of stem cell hierarchies

    NARCIS (Netherlands)

    Visvader, Jane E.; Clevers, Hans

    2016-01-01

    Recent work in the field of stem cell biology suggests that there is no single design for an adult tissue stem cell hierarchy, and that different tissues employ distinct strategies to meet their self-renewal and repair requirements. Stem cells may be multipotent or unipotent, and can exist in

  11. Tissue-specific designs of stem cell hierarchies

    NARCIS (Netherlands)

    Visvader, Jane E; Clevers, Hans

    Recent work in the field of stem cell biology suggests that there is no single design for an adult tissue stem cell hierarchy, and that different tissues employ distinct strategies to meet their self-renewal and repair requirements. Stem cells may be multipotent or unipotent, and can exist in

  12. Sufficient Controllability Condition for Affine Systems with Two-Dimensional Control and Two-Dimensional Zero Dynamics

    Directory of Open Access Journals (Sweden)

    D. A. Fetisov

    2015-01-01

    Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved

  13. Computational cell quantification in the human brain tissues based on hard x-ray phase-contrast tomograms

    Science.gov (United States)

    Hieber, Simone E.; Bikis, Christos; Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Thalmann, Peter; Chicherova, Natalia; Rack, Alexander; Zdora, Marie-Christine; Zanette, Irene; Schweighauser, Gabriel; Hench, Jürgen; Müller, Bert

    2016-10-01

    Cell visualization and counting plays a crucial role in biological and medical research including the study of neurodegenerative diseases. The neuronal cell loss is typically determined to measure the extent of the disease. Its characterization is challenging because the cell density and size already differs by more than three orders of magnitude in a healthy cerebellum. Cell visualization is commonly performed by histology and fluorescence microscopy. These techniques are limited to resolve complex microstructures in the third dimension. Phase- contrast tomography has been proven to provide sufficient contrast in the three-dimensional imaging of soft tissue down to the cell level and, therefore, offers the basis for the three-dimensional segmentation. Within this context, a human cerebellum sample was embedded in paraffin and measured in local phase-contrast mode at the beamline ID19 (ESRF, Grenoble, France) and the Diamond Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK). After the application of Frangi-based filtering the data showed sufficient contrast to automatically identify the Purkinje cells and to quantify their density to 177 cells per mm3 within the volume of interest. Moreover, brain layers were segmented in a region of interest based on edge detection. Subsequently performed histological analysis validated the presence of the cells, which required a mapping from the two- dimensional histological slices to the three-dimensional tomogram. The methodology can also be applied to further tissue types and shows potential for the computational tissue analysis in health and disease.

  14. Aging changes in organs - tissue - cells

    Science.gov (United States)

    ... the passages inside the body, such as the gastrointestinal system, are made of epithelial tissue. Muscle tissue includes ... including changes in: Hormone production Immunity The skin Sleep Bones, muscles, and joints The breasts The face ...

  15. Stem cell homing-based tissue engineering using bioactive materials

    Science.gov (United States)

    Yu, Yinxian; Sun, Binbin; Yi, Chengqing; Mo, Xiumei

    2017-06-01

    Tissue engineering focuses on repairing tissue and restoring tissue functions by employing three elements: scaffolds, cells and biochemical signals. In tissue engineering, bioactive material scaffolds have been used to cure tissue and organ defects with stem cell-based therapies being one of the best documented approaches. In the review, different biomaterials which are used in several methods to fabricate tissue engineering scaffolds were explained and show good properties (biocompatibility, biodegradability, and mechanical properties etc.) for cell migration and infiltration. Stem cell homing is a recruitment process for inducing the migration of the systemically transplanted cells, or host cells, to defect sites. The mechanisms and modes of stem cell homing-based tissue engineering can be divided into two types depending on the source of the stem cells: endogenous and exogenous. Exogenous stem cell-based bioactive scaffolds have the challenge of long-term culturing in vitro and for endogenous stem cells the biochemical signal homing recruitment mechanism is not clear yet. Although the stem cell homing-based bioactive scaffolds are attractive candidates for tissue defect therapies, based on in vitro studies and animal tests, there is still a long way before clinical application.

  16. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue culture media for human ex vivo tissue and... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  17. Patterning of Cells on Bioresist for Tissue Engineering Applications

    National Research Council Canada - National Science Library

    Umar, Yusif; Thiyagarajan, Muthiah; Halberstadt, Craig; Gonsalves, Kenneth E

    2005-01-01

    .... The field of tissue engineering hinges on developing degradable polymeric scaffolds that promote cell proliferation and expression of desired physiological behaviors through careful control of the polymer surface...

  18. Two-Dimensional Crystallization Procedure, from Protein Expression to Sample Preparation

    Directory of Open Access Journals (Sweden)

    Qie Kuang

    2015-01-01

    Full Text Available Membrane proteins play important roles for living cells. Structural studies of membrane proteins provide deeper understanding of their mechanisms and further aid in drug design. As compared to other methods, electron microscopy is uniquely suitable for analysis of a broad range of specimens, from small proteins to large complexes. Of various electron microscopic methods, electron crystallography is particularly well-suited to study membrane proteins which are reconstituted into two-dimensional crystals in lipid environments. In this review, we discuss the steps and parameters for obtaining large and well-ordered two-dimensional crystals. A general description of the principle in each step is provided since this information can also be applied to other biochemical and biophysical methods. The examples are taken from our own studies and published results with related proteins. Our purpose is to give readers a more general idea of electron crystallography and to share our experiences in obtaining suitable crystals for data collection.

  19. Tissue type plasminogen activator regulates myeloid-cell dependent neoangiogenesis during tissue regeneration

    DEFF Research Database (Denmark)

    Ohki, Makiko; Ohki, Yuichi; Ishihara, Makoto

    2010-01-01

    tissue regeneration is not well understood. Bone marrow (BM)-derived myeloid cells facilitate angiogenesis during tissue regeneration. Here, we report that a serpin-resistant form of tPA by activating the extracellular proteases matrix metalloproteinase-9 and plasmin expands the myeloid cell pool...

  20. STEM CELL ORIGIN DIFFERENTLY AFFECTS BONE TISSUE ENGINEERING STRATEGIES.

    Directory of Open Access Journals (Sweden)

    Monica eMattioli-Belmonte

    2015-09-01

    Full Text Available Bone tissue engineering is a promising research area for the improvement of traditional bone grafting procedure drawbacks. Thanks to the capability of self-renewal and multi-lineage differentiation, stem cells are one of the major actors in tissue engineering approaches, and adult mesenchymal stem cells (MSCs are considered to be appropriate for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs are the earliest- discovered and well-known stem cell population used in bone tissue engineering. However, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The successful identification and combination of tissue engineering, scaffold, progenitor cells, and physiologic signalling molecules enabled the surgeon to design, recreate the missing tissue in its near natural form. On the basis of these considerations, we analysed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e. periodontal ligament, maxillary periosteum as well as adipose-derived stem cells, in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, considering their peculiar features, they may alternatively represent interesting cell sources in different stem cell-based bone/periodontal tissue regeneration approaches.

  1. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Shan Liu

    2016-06-01

    Full Text Available Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous. The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells, early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium, using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration, timing for cell therapy (immediate vs. a few days after injury, single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.

  2. Contact inhibition of locomotion determines cell-cell and cell-substrate forces in tissues.

    Science.gov (United States)

    Zimmermann, Juliane; Camley, Brian A; Rappel, Wouter-Jan; Levine, Herbert

    2016-03-08

    Cells organized in tissues exert forces on their neighbors and their environment. Those cellular forces determine tissue homeostasis as well as reorganization during embryonic development and wound healing. To understand how cellular forces are generated and how they can influence the tissue state, we develop a particle-based simulation model for adhesive cell clusters and monolayers. Cells are contractile, exert forces on their substrate and on each other, and interact through contact inhibition of locomotion (CIL), meaning that cell-cell contacts suppress force transduction to the substrate and propulsion forces align away from neighbors. Our model captures the traction force patterns of small clusters of nonmotile cells and larger sheets of motile Madin-Darby canine kidney (MDCK) cells. In agreement with observations in a spreading MDCK colony, the cell density in the center increases as cells divide and the tissue grows. A feedback between cell density, CIL, and cell-cell adhesion gives rise to a linear relationship between cell density and intercellular tensile stress and forces the tissue into a nonmotile state characterized by a broad distribution of traction forces. Our model also captures the experimentally observed tissue flow around circular obstacles, and CIL accounts for traction forces at the edge.

  3. Adult-onset nemaline rods in a patient treated for suspected dermatomyositis: study with two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Danon, M.J.; Giometti, C.S.; Manaligod, J.R.; Perurena, O.H.; Skosey, J.L.

    1981-12-01

    A 65-year-old woman with progressive muscle weakness and a diffuse rash of three years' duration was examined. Muscle tissue was studied with histochemical techniques, phase-contrast microscopy, electron microscopy, and two-dimensional electrophoresis. Histochemical studies showed numerous nemaline rods, with a normal ratio of types I and II fibers. Two-dimensional electrophoresis revealed abnormalities in the myosin light chain and tropomyosin protein patterns when compared with normal and diseased muscle biopsy samples, including those from two patients with adult-onset dermatomyositis.

  4. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    Science.gov (United States)

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  5. Alfalfa stem tissues: Cell wall deposition, composition, and degradability

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.

    2002-01-01

    Declining cell wall degradability of alfalfa (Medicago sativa L.) stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, composition, and degradability by rumen microbes resulting from alfalfa stem tissue

  6. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    Science.gov (United States)

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  7. Electrophoretic analysis of proteins from Mycoplasma hominis strains detected by SDS-PAGE, two-dimensional gel electrophoresis and immunoblotting

    DEFF Research Database (Denmark)

    Andersen, H; Birkelund, Svend; Christiansen, Gunna

    1987-01-01

    The proteins of 14 strains of Mycoplasma hominis were compared by SDS-PAGE in gradient gels, by two-dimensional (2D) gel electrophoresis of extracts of 35S-labelled cells and by immunoblot analysis of cell proteins. The strains examined included the M. hominis type strain PG21 and 13 others...

  8. Statistical mechanics of two-dimensional and geophysical flows

    International Nuclear Information System (INIS)

    Bouchet, Freddy; Venaille, Antoine

    2012-01-01

    The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. After a brief presentation of the 2D Euler and quasi-geostrophic equations, the specificity of two-dimensional and geophysical turbulence is emphasized. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations and mean field approach) and thermodynamic concepts (ensemble inequivalence and negative heat capacity) are briefly explained and described. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations is provided. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equilibrium steady states. In this last case, forces and dissipation are in a statistical balance; fluxes of conserved quantity characterize the system and microcanonical or other equilibrium measures no longer describe the system.

  9. Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials.

    Science.gov (United States)

    Kang, Joohoon; Sangwan, Vinod K; Wood, Joshua D; Hersam, Mark C

    2017-04-18

    Exfoliation of single-layer graphene from bulk graphite and the subsequent discovery of exotic physics and emergent phenomena in the atomically thin limit has motivated the isolation of other two-dimensional (2D) layered nanomaterials. Early work on isolated 2D nanomaterial flakes has revealed a broad range of unique physical and chemical properties with potential utility in diverse applications. For example, the electronic and optical properties of 2D nanomaterials depend strongly on atomic-scale variations in thickness, enabling enhanced performance in optoelectronic technologies such as light emitters, photodetectors, and photovoltaics. Much of the initial research on 2D nanomaterials has relied on micromechanical exfoliation, which yields high-quality 2D nanomaterial flakes that are suitable for fundamental studies but possesses limited scalability for real-world applications. In an effort to overcome this limitation, solution-processing methods for isolating large quantities of 2D nanomaterials have emerged. Importantly, solution processing results in 2D nanomaterial dispersions that are amenable to roll-to-roll fabrication methods that underlie lost-cost manufacturing of thin-film transistors, transparent conductors, energy storage devices, and solar cells. Despite these advantages, solution-based exfoliation methods typically lack control over the lateral size and thickness of the resulting 2D nanomaterial flakes, resulting in polydisperse dispersions with heterogeneous properties. Therefore, post-exfoliation separation techniques are needed to achieve 2D nanomaterial dispersions with monodispersity in lateral size, thickness, and properties. In this Account, we survey the latest developments in solution-based separation methods that aim to produce monodisperse dispersions and thin films of emerging 2D nanomaterials such as graphene, boron nitride, transition metal dichalcogenides, and black phosphorus. First, we motivate the need for precise thickness

  10. Graphene and Two-Dimensional Materials for Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Andreas Bablich

    2016-03-01

    Full Text Available This article reviews optoelectronic devices based on graphene and related two-dimensional (2D materials. The review includes basic considerations of process technology, including demonstrations of 2D heterostructure growth, and comments on the scalability and manufacturability of the growth methods. We then assess the potential of graphene-based transparent conducting electrodes. A major part of the review describes photodetectors based on lateral graphene p-n junctions and Schottky diodes. Finally, the progress in vertical devices made from 2D/3D heterojunctions, as well as all-2D heterostructures is discussed.

  11. Network patterns in exponentially growing two-dimensional biofilms

    Science.gov (United States)

    Zachreson, Cameron; Yap, Xinhui; Gloag, Erin S.; Shimoni, Raz; Whitchurch, Cynthia B.; Toth, Milos

    2017-10-01

    Anisotropic collective patterns occur frequently in the morphogenesis of two-dimensional biofilms. These patterns are often attributed to growth regulation mechanisms and differentiation based on gradients of diffusing nutrients and signaling molecules. Here, we employ a model of bacterial growth dynamics to show that even in the absence of growth regulation or differentiation, confinement by an enclosing medium such as agar can itself lead to stable pattern formation over time scales that are employed in experiments. The underlying mechanism relies on path formation through physical deformation of the enclosing environment.

  12. Two-dimensional carbon fundamental properties, synthesis, characterization, and applications

    CERN Document Server

    Yihong, Wu; Ting, Yu

    2013-01-01

    After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC, chemical synthesis of graphene on metal, and chemical vapor deposition of vertically aligned carbon nanosheets or nanowalls. One chapter is dedicated to characterization of 2D nanocarbon using Raman spectroscopy. It provides extensive coverage for a

  13. Two-dimensional Lagrangian simulation of suspended sediment

    Science.gov (United States)

    Schoellhamer, David H.

    1988-01-01

    A two-dimensional laterally averaged model for suspended sediment transport in steady gradually varied flow that is based on the Lagrangian reference frame is presented. The layered Lagrangian transport model (LLTM) for suspended sediment performs laterally averaged concentration. The elevations of nearly horizontal streamlines and the simulation time step are selected to optimize model stability and efficiency. The computational elements are parcels of water that are moved along the streamlines in the Lagrangian sense and are mixed with neighboring parcels. Three applications show that the LLTM can accurately simulate theoretical and empirical nonequilibrium suspended sediment distributions and slug injections of suspended sediment in a laboratory flume.

  14. Blind deconvolution of two-dimensional complex data

    Energy Technology Data Exchange (ETDEWEB)

    Ghiglia, D.C.; Romero, L.A.

    1994-01-01

    Inspired by the work of Lane and Bates on automatic multidimensional deconvolution, the authors have developed a systematic approach and an operational code for performing the deconvolution of multiply-convolved two-dimensional complex data sets in the absence of noise. They explain, in some detail, the major algorithmic steps, where noise or numerical errors can cause problems, their approach in dealing with numerical rounding errors, and where special noise-mitigating techniques can be used toward making blind deconvolution practical. Several examples of deconvolved imagery are presented, and future research directions are noted.

  15. Two-dimensional collapse calculations of cylindrical clouds

    International Nuclear Information System (INIS)

    Bastien, P.; Mitalas, R.

    1979-01-01

    A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)

  16. Optical Two Dimensional Fourier Transform Spectroscopy of Layered Metal Dichalcogenides

    Science.gov (United States)

    Dey, P.; Paul, J.; Stevens, C. E.; Kovalyuk, Z. D.; Kudrynskyi, Z. R.; Romero, A. H.; Cantarero, A.; Hilton, D. J.; Shan, J.; Karaiskaj, D.; Z. D. Kovalyuk; Z. R. Kudrynskyi Collaboration; A. H. Romero Collaboration; A. Cantarero Collaboration; D. J. Hilton Collaboration; J. Shan Collaboration

    2015-03-01

    Nonlinear two-dimensional Fourier transform (2DFT) measurements were used to study the mechanism of excitonic dephasing and probe the electronic structure of the excitonic ground state in layered metal dichalcogenides. Temperature-dependent 2DFT measurements were performed to probe exciton-phonon interactions. Excitation density dependent 2DFT measurements reveal exciton-exciton and exciton-carrier scattering, and the lower limit for the homogeneous linewidth of excitons on positively and negatively doped samples. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0012635.

  17. Quantum computation with two-dimensional graphene quantum dots

    International Nuclear Information System (INIS)

    Li Jie-Sen; Li Zhi-Bing; Yao Dao-Xin

    2012-01-01

    We study an array of graphene nano sheets that form a two-dimensional S = 1/2 Kagome spin lattice used for quantum computation. The edge states of the graphene nano sheets are used to form quantum dots to confine electrons and perform the computation. We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots. It is shown that both schemes contain a great amount of information for quantum computation. The corresponding gate operations are also proposed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Quantum algebras for two-dimensional Cayley-Klein Geometries

    International Nuclear Information System (INIS)

    Herranz, F.J.; Ballesteros, A.; Olmo, M.A. del; Santander, M.

    1993-01-01

    Simultaneous quantization of the quasi-simple groups of motions of the nine two-dimensional Cayley-Klein geometries is obtained by defining a deformed Hopf structure on their enveloping algebras. The spaces of points and lines of the classical CK geometries are homogeneous spaces of their motion groups. Both the well known classical non-euclidean geometries and the (1+1) kinematical geometries are included within this scheme. Their corresponding quantum algebras preserve a scheme of contractions, symmetries and dualities based on the classical one. (Author)

  19. Graphene surface plasmon bandgap based on two dimensional Si gratings

    Directory of Open Access Journals (Sweden)

    Yueke Wang

    2017-11-01

    Full Text Available A graphene/Si system, which is composed of a two-dimensional subwavelength silicon gratings and a graphene sheet, is designed to realize the complete band gap in infrared region for graphene surface plasmons (GSPs theoretically. The complete band gap originates from the strong scatterings, which is caused by the periodical distribution of effective refractive index. The band structure has been calculated using the plane wave expansion method, and full wave numerical simulations are conducted by finite element method. Thanks to the tunable permittivity of graphene, the band structure can be easily tuned, which provides a way to manipulate in-plane GSPs’ propagation.

  20. Two-Dimensional Electron System in Electromagnetic Radiation Field

    Science.gov (United States)

    Lungu, Radu Paul; Manolescu, Andrei

    We consider a two-dimensional electron gas in the presence of a monochromatic linear polarized electromagnetic field, within the Floquet formalism. The Floquet states have a simple relation with the energy eigenstates in the absence of the field. Therefore the single-particle and the two-particle Green functions of the many-body system with Coulomb interactions, in the radiation field, can be formally calculated by the standard diagrammatic techniques, as for the conservative system. We derive the elementary excitations of quasi-particle type, the plasma dispersion relation, and the ground state quasi-energy, and we relate them to the corresponding results for the conservative system.

  1. Saddle-points of a two dimensional random lattice theory

    International Nuclear Information System (INIS)

    Pertermann, D.

    1985-07-01

    A two dimensional random lattice theory with a free massless scalar field is considered. We analyse the field theoretic generating functional for any given choice of positions of the lattice sites. Asking for saddle-points of this generating functional with respect to the positions we find the hexagonal lattice and a triangulated version of the hypercubic lattice as candidates. The investigation of the neighbourhood of a single lattice site yields triangulated rectangles and regular polygons extremizing the above generating functional on the local level. (author)

  2. Two-dimensional N = 2 Super-Yang-Mills Theory

    Directory of Open Access Journals (Sweden)

    August Daniel

    2018-01-01

    Full Text Available Supersymmetry is one of the possible scenarios for physics beyond the standard model. The building blocks of this scenario are supersymmetric gauge theories. In our work we study the N = 1 Super-Yang-Mills (SYM theory with gauge group SU(2 dimensionally reduced to two-dimensional N = 2 SYM theory. In our lattice formulation we break supersymmetry and chiral symmetry explicitly while preserving R symmetry. By fine tuning the bar-mass of the fermions in the Lagrangian we construct a supersymmetric continuum theory. To this aim we carefully investigate mass spectra and Ward identities, which both show a clear signal of supersymmetry restoration in the continuum limit.

  3. Two-dimensional Kaehler Einstein spaces and gravitational instantons

    International Nuclear Information System (INIS)

    Tseytlin, A.A.

    1980-01-01

    A new class of solutions of the euclidean Einstein equations with Λ-term ( A-class ) is found by solving the complex two-dimensional Kaehler Einstein equations with the following realization of complex metrics. The A-Class includes two gravitational instantons already known: the CP 2 and the Eguchi-Hanson metric, and allows a U(1)-generalized spin structure. It is shown that all Einstein euclidean two-axial Bianchi type IX metrics are exhausted by the Taub-NUT-de Sitter family and the A-class. (orig.)

  4. Quantum skyrmions in two-dimensional chiral magnets

    Science.gov (United States)

    Takashima, Rina; Ishizuka, Hiroaki; Balents, Leon

    2016-10-01

    We study the quantum mechanics of magnetic skyrmions in the vicinity of the skyrmion-crystal to ferromagnet phase boundary in two-dimensional magnets. We show that the skyrmion excitation has an energy dispersion that splits into multiple bands due to the combination of magnus force and the underlying lattice. Condensation of the skyrmions can give rise to an intermediate phase between the skyrmion crystal and ferromagnet: a quantum liquid, in which skyrmions are not spatially localized. We show that the critical behavior depends on the spin size S and the topological number of the skyrmion. Experimental signatures of quantum skyrmions in inelastic neutron-scattering measurements are also discussed.

  5. Thermal neutron diffraction on two-dimensional lattices

    International Nuclear Information System (INIS)

    Stern, T.

    1974-06-01

    This thesis deals with the problem of neutron diffraction from a two-dimensional lattice. The neutron spin is not taken into account. Firstly the scalar wave field is treated by means of differential equations (Helmholtz) and secondly by the equivalent integral equation formulation (Kirchoff-Weber). Finally, using the methods of the Green function, the reflected and transmitted wave fields are represented as integral transformations of a certain source function. In respect to the calculation of the amplitudes of the diffraction waves the third method seems to be the best one for the purpose of the physical interpretation and the applicability of numerical methods. (C.R.)

  6. Stable corrugated state of the two-dimensional electron gas

    International Nuclear Information System (INIS)

    Mendez-Moreno, R.M.; Moreno, M.; Ortiz, M.A.

    1991-01-01

    A corrugated and stable ground state is found for the two-dimensional electron gas in both the normal paramagnetic and the fully polarized phases. The self-consistent Hartree-Fock method is used with a modulated set of trial wave functions within the deformable jellium model. The results for high metallic densities reproduce the usual noncorrugated ferromagnetic electron-gas behavior. A transition to a paramagnetic corrugated state for values of r s ∼6.5 is predicted. At lower densities r s ∼30, a second transition to a corrugated ferromagnetic phase is suggested

  7. Quantum wells physics and electronics of two-dimensional systems

    CERN Document Server

    Shik, A

    1998-01-01

    This invaluable book is devoted to the physics, technology and device applications of semiconductor structures with ultrathin layers where the electronic properties are governed by the quantum-mechanical laws. Such structures called quantum wells or structures with the two-dimensional electron gas, have become one of the most actively investigated objects in modern solid state physics. Electronic properties of quantum wells differ dramatically from those of bulk semiconductors, which allows one to observe new types of physical phenomena, such as the quantum Hall effect and many other so-far-un

  8. Pattern formation in two-dimensional square-shoulder systems

    International Nuclear Information System (INIS)

    Fornleitner, Julia; Kahl, Gerhard

    2010-01-01

    Using a highly efficient and reliable optimization tool that is based on ideas of genetic algorithms, we have systematically studied the pattern formation of the two-dimensional square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures emerge from this investigation as we vary the shoulder width. With increasing pressure three structural archetypes could be identified: cluster lattices, where clusters of particles occupy the sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with high coordination numbers. The internal complexity of these structures increases with increasing shoulder width.

  9. Field analysis of two-dimensional focusing grating

    OpenAIRE

    Borsboom, P.P.; Frankena, H.J.

    1995-01-01

    The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity distribution in the focal region agrees well with the approximate predictions of geo...

  10. The Penalty Cost Functional for the Two-Dimensional

    Directory of Open Access Journals (Sweden)

    Victor Onomza WAZIRI

    2006-07-01

    Full Text Available This paper constructs the penalty cost functional for optimizing the two-dimensional control operator of the energized wave equation. In some multiplier methods such as the Lagrange multipliers and Pontrygean maximum principle, the cost of merging the constraint equation to the integral quadratic objective functional to obtain an unconstraint equation is normally guessed or obtained from the first partial derivatives of the unconstrained equation. The Extended Conjugate Gradient Method (ECGM necessitates that the penalty cost be sequentially obtained algebraically. The ECGM problem contains a functional which is completely given in terms of state and time spatial dependent variables.

  11. Quasi-integrability and two-dimensional QCD

    International Nuclear Information System (INIS)

    Abdalla, E.; Mohayaee, R.

    1996-10-01

    The notion of integrability in two-dimensional QCD is discussed. We show that in spite of an infinite number of conserved charges, particle production is not entirely suppressed. This phenomenon, which we call quasi-integrability, is explained in terms of quantum corrections to the combined algebra of higher-conserved and spectrum-generating currents. We predict the qualitative form of particle production probabilities and verify that they are in agreement with numerical data. We also discuss four-dimensional self-dual Yang-Mills theory in the light of our results. (author). 25 refs, 4 figs, 1 tab

  12. Two-dimensional fermionic correlations in topologically nontrivial backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Manias, M.V.; Naon, C.M.; Trobo, M.L. (Departamento de Fisica, Universidad Nacional de La Plata, Casilla de Correo No. 67, 1900 La Plata, Buenos Aires (Argentina))

    1993-04-15

    By using a path-integral approach to the study of two-dimensional massless fermionic models in nontrivial sectors, we compute certain special correlation functions which are nonvanishing only when nontrivial topology is taken into account. In particular, we derive the first explicit expression for the so-called nonminimal Green's function. We introduce one specific topological charge distribution for which this correlation function takes a simple form. We also comment on the application of our results to the analysis of massive fermions in topological backgrounds.

  13. On bosonization ambiguities of two dimensional quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dias, S.A.; Silva Neto, M.B.

    1996-02-01

    We study bosonization ambiguities in two dimensional quantum electrodynamics in the presence and in the absence of topologically charged gauge fields. The computation of fermionic correlation functions gives us a mechanism to fix the ambiguities in nontrivial topologies, provided that we do not allow changes of sector as we evaluate functional integrals. This removes an infinite arbitrariness from the theory. In the case of trivial topologies, we find upper and lower bounds for the Jackiw-Rajaraman parameter, corresponding to the limiting cases of regularizations which preserve gauge or chiral symmetry. (author). 19 refs.

  14. Ultrafast Charge Transfer Visualized by Two-Dimensional Electronic Spectroscopy

    Directory of Open Access Journals (Sweden)

    Mančal T.

    2013-03-01

    Full Text Available Two-dimensional electronic spectroscopy (2D-ES is used to investigate ultrafast excited-state dynamics in a lutetium bisphthalocyanine dimer. Following optical excitation, a chain of electron and hole transfer steps gives rise to characteristic cross-peak dynamics in the electronic 2D spectra. The combination of density matrix propagation and quantum chemical calculations results in a molecular view of the charge transfer dynamics and highlights the role of the counter-ion in providing an energetic perturbation which promotes charge transfer across the complex.

  15. Two-dimensional Bose and Fermi gases beyond weak coupling

    Science.gov (United States)

    França, Guilherme; LeClair, André; Squires, Joshua

    2017-07-01

    Using a formalism based on the two-body S-matrix we study two-dimensional Bose and Fermi gases with both attractive and repulsive interactions. Approximate analytic expressions, valid at weak coupling and beyond, are developed and applied to the Berezinskii-Kosterlitz-Thouless (BKT) transition. We successfully recover the correct logarithmic functional form of the critical chemical potential and density for the Bose gas. For fermions, the BKT critical temperature is calculated in BCS and BEC regimes through consideration of Tan’s contact.

  16. Mass/Count Variation: A Mereological, Two-Dimensional Semantics

    Directory of Open Access Journals (Sweden)

    Peter R Sutton

    2016-12-01

    Full Text Available We argue that two types of context are central to grounding the semantics for the mass/count distinction. We combine and develop the accounts of Rothstein (2010 and Landman (2011, which emphasize (non-overlap at a context. We also adopt some parts of Chierchia’s (2010 account which uses precisifying contexts. We unite these strands in a two-dimensional semantics that covers a wide range of the puzzling variation data in mass/count lexicalization. Most importantly, it predicts where we should expect to find such variation for some classes of nouns but not for others, and also explains why.

  17. Minimal quantization of two-dimensional models with chiral anomalies

    International Nuclear Information System (INIS)

    Ilieva, N.

    1987-01-01

    Two-dimensional gauge models with chiral anomalies - ''left-handed'' QED and the chiral Schwinger model, are quantized consistently in the frames of the minimal quantization method. The choice of the cone time as a physical time for system of quantization is motivated. The well-known mass spectrum is found but with a fixed value of the regularization parameter a=2. Such a unique solution is obtained due to the strong requirement of consistency of the minimal quantization that reflects in the physically motivated choice of the time axis

  18. Magnetism and pairing of two-dimensional trapped fermions.

    Science.gov (United States)

    Chiesa, Simone; Varney, Christopher N; Rigol, Marcos; Scalettar, Richard T

    2011-01-21

    The emergence of local phases in a trapped two-component Fermi gas in an optical lattice is studied using quantum Monte Carlo simulations. We treat temperatures that are comparable to or lower than those presently achievable in experiments and large enough systems that both magnetic and paired phases can be detected by inspection of the behavior of suitable short-range correlations. We use the latter to suggest the interaction strength and temperature range at which experimental observation of incipient magnetism and d-wave pairing are more likely and evaluate the relation between entropy and temperature in two-dimensional confined fermionic systems.

  19. Confinement and dynamical regulation in two-dimensional convective turbulence

    DEFF Research Database (Denmark)

    Bian, N.H.; Garcia, O.E.

    2003-01-01

    In this work the nature of confinement improvement implied by the self-consistent generation of mean flows in two-dimensional convective turbulence is studied. The confinement variations are linked to two distinct regulation mechanisms which are also shown to be at the origin of low......-frequency bursting in the fluctuation level and the convective heat flux integral, both resulting in a state of large-scale intermittency. The first one involves the control of convective transport by sheared mean flows. This regulation relies on the conservative transfer of kinetic energy from tilted fluctuations...

  20. Cavalier perspective plots of two-dimensional matrices. Program Stereo

    International Nuclear Information System (INIS)

    Los Arcos Merino, J.M.

    1978-01-01

    The program Stereo allows representation of a two-dimensional matrix containing numerical data, in the form of a cavalier perspective, isometric or not, with an angle variable between 0 deg and 180 deg. The representation is in histogram form for each matrix row and those curves which fall behind higher curves and therefore would not be seen are suppressed. It has been written in Fortran V for a Calcomp-936 digital plotter operating off-line with a Univac 1106 computer. Drawing method, subroutine structure and running instructions are described in this paper. (author)

  1. A Chain-Detection Algorithm for Two-Dimensional Grids

    OpenAIRE

    Bonham, Paul; Iqbal, Azlan

    2016-01-01

    We describe a general method of detecting valid chains or links of pieces on a two-dimensional grid. Specifically, using the example of the chess variant known as Switch-Side Chain-Chess (SSCC). Presently, no foolproof method of detecting such chains in any given chess position is known and existing graph theory, to our knowledge, is unable to fully address this problem either. We therefore propose a solution implemented and tested using the C++ programming language. We have been unable to fi...

  2. Inverse radiative transfer problems in two-dimensional heterogeneous media

    International Nuclear Information System (INIS)

    Tito, Mariella Janette Berrocal

    2001-01-01

    The analysis of inverse problems in participating media where emission, absorption and scattering take place has several relevant applications in engineering and medicine. Some of the techniques developed for the solution of inverse problems have as a first step the solution of the direct problem. In this work the discrete ordinates method has been used for the solution of the linearized Boltzmann equation in two dimensional cartesian geometry. The Levenberg - Marquardt method has been used for the solution of the inverse problem of internal source and absorption and scattering coefficient estimation. (author)

  3. Stable two-dimensional dispersion-managed soliton

    International Nuclear Information System (INIS)

    Abdullaev, Fatkhulla Kh.; Baizakov, Bakhtiyor B.; Salerno, Mario

    2003-01-01

    The existence of a dispersion-managed soliton in two-dimensional nonlinear Schroedinger equation with periodically varying dispersion has been explored. The averaged equations for the soliton width and chirp are obtained which successfully describe the long time evolution of the soliton. The slow dynamics of the soliton around the fixed points for the width and chirp are investigated and the corresponding frequencies are calculated. Analytical predictions are confirmed by direct partial differential equation (PDE) and ordinary differential equation (ODE) simulations. Application to a Bose-Einstein condensate in optical lattice is discussed. The existence of a dispersion-managed matter-wave soliton in such system is shown

  4. Three-dimensional hydrogel cell culture systems for modeling neural tissue

    Science.gov (United States)

    Frampton, John

    Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was

  5. Cell-size distribution in epithelial tissue formation and homeostasis.

    Science.gov (United States)

    Puliafito, Alberto; Primo, Luca; Celani, Antonio

    2017-03-01

    How cell growth and proliferation are orchestrated in living tissues to achieve a given biological function is a central problem in biology. During development, tissue regeneration and homeostasis, cell proliferation must be coordinated by spatial cues in order for cells to attain the correct size and shape. Biological tissues also feature a notable homogeneity of cell size, which, in specific cases, represents a physiological need. Here, we study the temporal evolution of the cell-size distribution by applying the theory of kinetic fragmentation to tissue development and homeostasis. Our theory predicts self-similar probability density function (PDF) of cell size and explains how division times and redistribution ensure cell size homogeneity across the tissue. Theoretical predictions and numerical simulations of confluent non-homeostatic tissue cultures show that cell size distribution is self-similar. Our experimental data confirm predictions and reveal that, as assumed in the theory, cell division times scale like a power-law of the cell size. We find that in homeostatic conditions there is a stationary distribution with lognormal tails, consistently with our experimental data. Our theoretical predictions and numerical simulations show that the shape of the PDF depends on how the space inherited by apoptotic cells is redistributed and that apoptotic cell rates might also depend on size. © 2017 The Author(s).

  6. Virtual microstructural leaf tissue generation based on cell growth modeling

    NARCIS (Netherlands)

    Abera, M.K.; Retta, M.A.; Verboven, P.; Nicolai, B.M.; Berghuijs, H.; Struik, P.

    2016-01-01

    A cell growth algorithm for virtual leaf tissue generation is presented based on the biomechanics of plant cells in tissues. The algorithm can account for typical differences in epidermal layers, palisade mesophyll layer and spongy mesophyll layer which have characteristic differences in the

  7. FPGA Implementation of one-dimensional and two-dimensional cellular automata

    International Nuclear Information System (INIS)

    D'Antone, I.

    1999-01-01

    This report describes the hardware implementation of one-dimensional and two-dimensional cellular automata (CAs). After a general introduction to the cellular automata, we consider a one-dimensional CA used to implement pseudo-random techniques in built-in self test for VLSI. Due to the increase in digital ASIC complexity, testing is becoming one of the major costs in the VLSI production. The high electronics complexity, used in particle physics experiments, demands higher reliability than in the past time. General criterions are given to evaluate the feasibility of the circuit used for testing and some quantitative parameters are underlined to optimize the architecture of the cellular automaton. Furthermore, we propose a two-dimensional CA that performs a peak finding algorithm in a matrix of cells mapping a sub-region of a calorimeter. As in a two-dimensional filtering process, the peaks of the energy clusters are found in one evolution step. This CA belongs to Wolfram class II cellular automata. Some quantitative parameters are given to optimize the architecture of the cellular automaton implemented in a commercial field programmable gate array (FPGA)

  8. The emergence of geometry: a two-dimensional toy model

    CERN Document Server

    Alfaro, Jorge; Puigdomenech, Daniel

    2010-01-01

    We review the similarities between the effective chiral lagrangrian, relevant for low-energy strong interactions, and the Einstein-Hilbert action. We use these analogies to suggest a specific mechanism whereby gravitons would emerge as Goldstone bosons of a global SO(D) X GL(D) symmetry broken down to SO(D) by fermion condensation. We propose a two-dimensional toy model where a dynamical zwei-bein is generated from a topological theory without any pre-existing metric structure, the space being endowed only with an affine connection. A metric appears only after the symmetry breaking; thus the notion of distance is an induced effective one. In spite of several non-standard features this simple toy model appears to be renormalizable and at long distances is described by an effective lagrangian that corresponds to that of two-dimensional gravity (Liouville theory). The induced cosmological constant is related to the dynamical mass M acquired by the fermion fields in the breaking, which also acts as an infrared re...

  9. A microprocessor based on a two-dimensional semiconductor

    Science.gov (United States)

    Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas

    2017-04-01

    The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor--molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.

  10. Two-dimensional theory and simulation of free electron lasers

    International Nuclear Information System (INIS)

    Kwan, T.J.T.; Cary, J.R.

    1981-01-01

    Two-dimensional homogeneous theory of free-electron lasers with a wiggler magnetic field of constant wavelength is formulated. It has been found from the theory that waves propagating obliquely with respect to the electron beam are always unstable with appreciable growth rates; therefore, mode competition among the on-axis and off-axis modes is an important consideration in the design of the free-electron laser. Furthermore, electromagnetic waves with group velocities opposite to the direction of electron beam propagation are absolutely unstable if k/sub o/v/sub o/ > ω/sub pe/(1/γ/sup 3/2/ + 1/γ/sup 1/2/). Due to strong nonlinear saturation levels of the low-frequency absolute instability, the dynamics of the electron beam and the generation of the high-frequency electromagnetic radiation can be severely affected. Two-dimensional particle simulations show that the efficiency of generation of the on-axis high-frequency electromagnetic wave decreases significantly due to instability of the off-axis modes. In addition, complete disruption of the electron beam and laser oscillation due to the onset of the absolute instability have been observed in simulations

  11. Growth and characterization of two-dimensional nanostructures

    International Nuclear Information System (INIS)

    Herrera Sancho, Oscar Andrey

    2008-01-01

    Two dimensional nanostructures of palladium, nickel, silver and gadolinium were grown by means of physical evaporation in atmospheres of high vacuum and ultra high vacuum. The qualitative characterization, in situ, of the nanostructures was carried out with techniques of surface analysis: Auger electron spectroscopy and X-ray photoelectron spectroscopy (XPS). The model for the quantification of contaminants in the nanostructures, was proposed by Seah and Shirley, and was made using the spectra XPS measured in situ in the atmospheres of vacuum. For the two-dimensional nanostructures of gadolinium of thicknesses 8 Å, 16 Å, 24 Å, 32 Å, 36 Å, 44 Å, 50 Å, 61 Å, 77 Å, 81 Å, 92 Å and 101 Å, were obtained optical spectra of transmission measured in situ. An band of absorption centered at approximately 2,40 eV is obtained by an increase in the dynamic conductivity from the optical constants, i.e. refractive index and extinction coefficient, of the nanostructure of gadolinium. In addition, the optical constants for the gadolinium nanostructures have presented a maximum of 80 Å of thickness and then it was continued a decreasing tendency toward the values that were reported in the literature for bulk of gadolinium. (author) [es

  12. Two-dimensional photonic crystal polarizer modulated by silicon resin

    Science.gov (United States)

    Tan, Chunhua; Huang, Xuguang

    2007-11-01

    Photonic crystals(PCs)have many potential applications because of their ability to control light-wave propagation. In this paper, we theoretically investigate the tunability of light propagation in photonic crystal waveguides in two-dimensional photonic crystals with square lattices composed of heat-resistant silicon resin. Waveguides can be obtained by the infiltration of silicon resin into air regions in two-dimensional photonic crystals composed of air holes with square lattices of dielectric cylinders. The refractive index of silicon resin can be changed by manipulating the temperature of the sample. Numerical simulation by solving Maxwell's equations using the plane wave expansion(PWE) method shows that the band gaps can be continuously tuned by silicon resin, accordingly the light propagation in photonic crystal waveguides can be controlled. The band gap is analyzed in the temperature range of 20°C-120°C. In our work, the gap map for a square lattice of dielectric cylinders is also simulated. The method can separate TM- and TE-polarized modes in the waveguide. Such a mechanism of band gap adjustment should open up a new application for designing field-sensitive polarizer in photonic integrated circuits.

  13. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuanhu [Univ. of California, Berkeley, CA (United States)

    1997-09-01

    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.

  14. Human lymphocyte polymorphisms detected by quantitative two-dimensional electrophoresis

    International Nuclear Information System (INIS)

    Goldman, D.; Merril, C.R.

    1983-01-01

    A survey of 186 soluble lymphocyte proteins for genetic polymorphism was carried out utilizing two-dimensional electrophoresis of 14 C-labeled phytohemagglutinin (PHA)-stimulated human lymphocyte proteins. Nineteen of these proteins exhibited positional variation consistent with independent genetic polymorphism in a primary sample of 28 individuals. Each of these polymorphisms was characterized by quantitative gene-dosage dependence insofar as the heterozygous phenotype expressed approximately 50% of each allelic gene product as was seen in homozygotes. Patterns observed were also identical in monozygotic twins, replicate samples, and replicate gels. The three expected phenotypes (two homozygotes and a heterozygote) were observed in each of 10 of these polymorphisms while the remaining nine had one of the homozygous classes absent. The presence of the three phenotypes, the demonstration of gene-dosage dependence, and our own and previous pedigree analysis of certain of these polymorphisms supports the genetic basis of these variants. Based on this data, the frequency of polymorphic loci for man is: P . 19/186 . .102, and the average heterozygosity is .024. This estimate is approximately 1/3 to 1/2 the rate of polymorphism previously estimated for man in other studies using one-dimensional electrophoresis of isozyme loci. The newly described polymorphisms and others which should be detectable in larger protein surveys with two-dimensional electrophoresis hold promise as genetic markers of the human genome for use in gene mapping and pedigree analyses

  15. Numerical method for two-dimensional unsteady reacting flows

    International Nuclear Information System (INIS)

    Butler, T.D.; O'Rourke, P.J.

    1976-01-01

    A method that numerically solves the full two-dimensional, time-dependent Navier-Stokes equations with species transport, mixing, and chemical reaction between species is presented. The generality of the formulation permits the solution of flows in which deflagrations, detonations, or transitions from deflagration to detonation are found. The solution procedure is embodied in the RICE computer program. RICE is an Eulerian finite difference computer code that uses the Implicit Continuous-fluid Eulerian (ICE) technique to solve the governing equations. One first presents the differential equations of motion and the solution procedure of the Rice program. Next, a method is described for artificially thickening the combustion zone to dimensions resolvable by the computational mesh. This is done in such a way that the physical flame speed and jump conditions across the flame front are preserved. Finally, the results of two example calculations are presented. In the first, the artificial thickening technique is used to solve a one-dimensional laminar flame problem. In the second, the results of a full two-dimensional calculation of unsteady combustion in two connected chambers are detailed

  16. Strain-engineered growth of two-dimensional materials.

    Science.gov (United States)

    Ahn, Geun Ho; Amani, Matin; Rasool, Haider; Lien, Der-Hsien; Mastandrea, James P; Ager Iii, Joel W; Dubey, Madan; Chrzan, Daryl C; Minor, Andrew M; Javey, Ali

    2017-09-20

    The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates. For two-dimensional (2D) semiconductors, this is not feasible as they typically do not interact epitaxially with the substrate. Here, we demonstrate controlled strain engineering of 2D semiconductors during synthesis by utilizing the thermal coefficient of expansion mismatch between the substrate and semiconductor. Using WSe 2 as a model system, we demonstrate stable built-in strains ranging from 1% tensile to 0.2% compressive on substrates with different thermal coefficient of expansion. Consequently, we observe a dramatic modulation of the band structure, manifested by a strain-driven indirect-to-direct bandgap transition and brightening of the dark exciton in bilayer and monolayer WSe 2 , respectively. The growth method developed here should enable flexibility in design of more sophisticated devices based on 2D materials.Strain engineering is an essential tool for modifying local electronic properties in silicon-based electronics. Here, Ahn et al. demonstrate control of biaxial strain in two-dimensional materials based on the growth substrate, enabling more complex low-dimensional electronics.

  17. Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal

    International Nuclear Information System (INIS)

    Konno, R; Hatayama, N; Takahashi, Y; Nakano, H

    2009-01-01

    Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal is investigated according to the recent theoretical development of magneto-volume effect for the three-dimensional weak ferromagnets. We particularly focus on the T 2 -linear thermal expansion of magnetic origin at low temperatures, so far disregarded by conventional theories. As the effect of thermal spin fluctuations we have found that the T-linear thermal expansion coefficient shows strong enhancement by assuming the double Lorentzian form of the non-interacting dynamical susceptibility justified in the small wave-number and low frequency region. It grows faster in proportional to y -1/2 as we approach the magnetic instability point than two-dimensional nearly antiferromagnetic metals with ln(1/y s ) dependence, where y and y s are the inverses of the reduced uniform and staggered magnetic susceptibilities, respectively. Our result is consistent with the Grueneisen's relation between the thermal expansion coefficient and the specific heat at low temperatures. In 2-dimensional electron gas we find that the thermal expansion coefficient is divergent with a finite y when the higher order term of non-interacting dynamical susceptibility is taken into account.

  18. Flexoelectricity in two-dimensional crystalline and biological membranes

    Science.gov (United States)

    Ahmadpoor, Fatemeh; Sharma, Pradeep

    2015-10-01

    The ability of a material to convert electrical stimuli into mechanical deformation, i.e. piezoelectricity, is a remarkable property of a rather small subset of insulating materials. The phenomenon of flexoelectricity, on the other hand, is universal. All dielectrics exhibit the flexoelectric effect whereby non-uniform strain (or strain gradients) can polarize the material and conversely non-uniform electric fields may cause mechanical deformation. The flexoelectric effect is strongly enhanced at the nanoscale and accordingly, all two-dimensional membranes of atomistic scale thickness exhibit a strong two-way coupling between the curvature and electric field. In this review, we highlight the recent advances made in our understanding of flexoelectricity in two-dimensional (2D) membranes--whether the crystalline ones such as dielectric graphene nanoribbons or the soft lipid bilayer membranes that are ubiquitous in biology. Aside from the fundamental mechanisms, phenomenology, and recent findings, we focus on rapidly emerging directions in this field and discuss applications such as energy harvesting, understanding of the mammalian hearing mechanism and ion transport among others.

  19. On Space Efficient Two Dimensional Range Minimum Data Structures

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Davoodi, Pooya; Rao, S. Srinivasa

    2012-01-01

    of the problem, the lower bound is tight up to a constant factor. In two dimensions, we complement the lower bound with an indexing data structure of size O(N/c) bits which can be preprocessed in O(N) time to support O(clog 2 c) query time. For c=O(1), this is the first O(1) query time algorithm using a data......The two dimensional range minimum query problem is to preprocess a static m by n matrix (two dimensional array) A of size N=m⋅n, such that subsequent queries, asking for the position of the minimum element in a rectangular range within A, can be answered efficiently. We study the trade-off between...... the space and query time of the problem. We show that every algorithm enabled to access A during the query and using a data structure of size O(N/c) bits requires Ω(c) query time, for any c where 1≤c≤N. This lower bound holds for arrays of any dimension. In particular, for the one dimensional version...

  20. On Space Efficient Two Dimensional Range Minimum Data Structures

    DEFF Research Database (Denmark)

    Davoodi, Pooya; Brodal, Gerth Stølting; Rao, S. Srinivasa

    2010-01-01

    , the lower bound is tight up to a constant factor. In two dimensions, we complement the lower bound with an indexing data structure of size O(N/c) bits additional space which can be preprocessed in O(N) time and achieves O(clog2 c) query time. For c = O(1), this is the first O(1) query time algorithm using......The two dimensional range minimum query problem is to preprocess a static two dimensional m by n array A of size N = m · n, such that subsequent queries, asking for the position of the minimum element in a rectangular range within A, can be answered efficiently. We study the trade-off between...... optimal O(N) bits additional space. For the case where queries can not probe A, we give a data structure of size O(N· min {m,logn}) bits with O(1) query time, assuming m ≤ n. This leaves a gap to the lower bound of Ω(Nlogm) bits for this version of the problem....

  1. Development of two dimensional electrophoresis method using single chain DNA

    International Nuclear Information System (INIS)

    Ikeda, Junichi; Hidaka, So

    1998-01-01

    By combining a separation method due to molecular weight and a method to distinguish difference of mono-bases, it was aimed to develop a two dimensional single chain DNA labeled with Radioisotope (RI). From electrophoretic pattern difference of parent and variant strands, it was investigated to isolate the root module implantation control gene. At first, a Single Strand Conformation Polymorphism (SSCP) method using concentration gradient gel was investigated. As a result, it was formed that intervals between double chain and single chain DNAs expanded, but intervals of both single chain DNAs did not expand. On next, combination of non-modified acrylic amide electrophoresis method and Denaturing Gradient-Gel Electrophoresis (DGGE) method was examined. As a result, hybrid DNA developed by two dimensional electrophoresis arranged on two lines. But, among them a band of DNA modified by high concentration of urea could not be found. Therefore, in this fiscal year's experiments, no preferable result could be obtained. By the used method, it was thought to be impossible to detect the differences. (G.K.)

  2. Utilizing stem cells for three-dimensional neural tissue engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Cho, Yongku; Li, Xue-Jun; Khademhosseini, Ali; Tasoglu, Savas

    2016-05-26

    Three-dimensional neural tissue engineering has made great strides in developing neural disease models and replacement tissues for patients. However, the need for biomimetic tissue models and effective patient therapies remains unmet. The recent push to expand 2D neural tissue engineering into the third dimension shows great potential to advance the field. Another area which has much to offer to neural tissue engineering is stem cell research. Stem cells are well known for their self-renewal and differentiation potential and have been shown to give rise to tissues with structural and functional properties mimicking natural organs. Application of these capabilities to 3D neural tissue engineering may be highly useful for basic research on neural tissue structure and function, engineering disease models, designing tissues for drug development, and generating replacement tissues with a patient's genetic makeup. Here, we discuss the vast potential, as well as the current challenges, unique to integration of 3D fabrication strategies and stem cells into neural tissue engineering. We also present some of the most significant recent achievements, including nerve guidance conduits to facilitate better healing of nerve injuries, functional 3D biomimetic neural tissue models, physiologically relevant disease models for research purposes, and rapid and effective screening of potential drugs.

  3. Advantages of Sheep Infrapatellar Fat Pad Adipose Tissue Derived Stem Cells in Tissue Engineering.

    Science.gov (United States)

    Vahedi, Parviz; Soleimanirad, Jafar; Roshangar, Leila; Shafaei, Hajar; Jarolmasjed, Seyedhosein; Nozad Charoudeh, Hojjatollah

    2016-03-01

    The goal of this study has been to evaluate adipose tissue derived stem cells (ADSCs) from infrapatellar fat pad and characterize their cell surface markers using anti-human antibodies, as adipose tissue derived stem cells (ADSCs) have great potential for cellular therapies to restore injured tissues. Adipose tissue was obtained from infrapatellar fat pad of sheep. Surface markers evaluated by flow cytometry. In order to evaluate cell adhesion, the Polycaprolactone (PCL) was sterilized under Ultraviolet (UV) light and about 1×10(5) cells were seeded on PCL. Then, ASCs- PCL construct were evaluated by Scanning Electron Microscopy (Mira3 Te Scan, Czech Republic). We showed that adipose tissue derived stem cells (ADSCs) maintain their fibroblastic-like morphology during different subcultures and cell adhesion. They were positive for CD44 and CD90 markers and negative for CD31 and Cd45 markers by human antibodies. Our results suggest that ASCs surface markers can be characterized by anti-human antibodies in sheep. As stem cells, they can be used in tissue engineering.

  4. Mesenchymal Stem Cells: Application for Immunomodulation and Tissue Repair

    DEFF Research Database (Denmark)

    Horwood, Nicole J.; Dazzi, Francesco; Zaher, Walid

    2012-01-01

    Mesenchymal stem cells (MSC) are stem cell populations present among the bone marrow stroma and a number of other tissues that are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. MSC provide supportive stroma for growth and diffe......Mesenchymal stem cells (MSC) are stem cell populations present among the bone marrow stroma and a number of other tissues that are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. MSC provide supportive stroma for growth...

  5. Pulp tissue from primary teeth: new source of stem cells

    Directory of Open Access Journals (Sweden)

    Paloma Dias Telles

    2011-06-01

    Full Text Available SHED (stem cells from human exfoliated deciduous teeth represent a population of postnatal stem cells capable of extensive proliferation and multipotential differentiation. Primary teeth may be an ideal source of postnatal stem cells to regenerate tooth structures and bone, and possibly to treat neural tissue injury or degenerative diseases. SHED are highly proliferative cells derived from an accessible tissue source, and therefore hold potential for providing enough cells for clinical applications. In this review, we describe the current knowledge about dental pulp stem cells and discuss tissue engineering approaches that use SHED to replace irreversibly inflamed or necrotic pulps with a healthy and functionally competent tissue that is capable of forming new dentin.

  6. Cell sheet approach for tissue engineering and regenerative medicine.

    Science.gov (United States)

    Matsuura, Katsuhisa; Utoh, Rie; Nagase, Kenichi; Okano, Teruo

    2014-09-28

    After the biotech medicine era, regenerative medicine is expected to be an advanced medicine that is capable of curing patients with difficult-to-treat diseases and physically impaired function. Our original scaffold-free cell sheet-based tissue engineering technology enables transplanted cells to be engrafted for a long time, while fully maintaining their viability. This technology has already been applied to various diseases in the clinical setting, including the cornea, esophagus, heart, periodontal ligament, and cartilage using autologous cells. Transplanted cell sheets not only replace the injured tissue and compensate for impaired function, but also deliver growth factors and cytokines in a spatiotemporal manner over a prolonged period, which leads to promotion of tissue repair. Moreover, the integration of stem cell biology and cell sheet technology with sufficient vascularization opens possibilities for fabrication of human three-dimensional vascularized dense and intact tissue grafts for regenerative medicine to parenchymal organs. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Cell-Based Strategies for Meniscus Tissue Engineering

    Science.gov (United States)

    Niu, Wei; Guo, Weimin; Han, Shufeng; Zhu, Yun; Liu, Shuyun; Guo, Quanyi

    2016-01-01

    Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a fundamental role in meniscal regeneration. According to current studies, the main cell-based strategies for meniscus tissue engineering are single cell type strategies; cell coculture strategies also were applied to meniscus tissue engineering. Likewise, on the one side, the zonal recapitulation strategies based on mimicking meniscal differing cells and internal architectures have received wide attentions. On the other side, cell self-assembling strategies without any scaffolds may be a better way to build a bionic meniscus. In this review, we primarily discuss cell seeds for meniscus tissue engineering and their application strategies. We also discuss recent advances and achievements in meniscus repair experiments that further improve our understanding of meniscus tissue engineering. PMID:27274735

  8. Isolation of Precursor Cells from Waste Solid Fat Tissue

    Science.gov (United States)

    Byerly, Diane; Sognier, Marguerite A.

    2009-01-01

    A process for isolating tissue-specific progenitor cells exploits solid fat tissue obtained as waste from such elective surgical procedures as abdominoplasties (tummy tucks) and breast reductions. Until now, a painful and risky process of aspiration of bone marrow has been used to obtain a limited number of tissue- specific progenitor cells. The present process yields more tissue-specific progenitor cells and involves much less pain and risk for the patient. This process includes separation of fat from skin, mincing of the fat into small pieces, and forcing a fat saline mixture through a sieve. The mixture is then digested with collagenase type I in an incubator. After centrifugation tissue-specific progenitor cells are recovered and placed in a tissue-culture medium in flasks or Petri dishes. The tissue-specific progenitor cells can be used for such purposes as (1) generating three-dimensional tissue equivalent models for studying bone loss and muscle atrophy (among other deficiencies) and, ultimately, (2) generating replacements for tissues lost by the fat donor because of injury or disease.

  9. Basic Techniques in Mammalian Cell Tissue Culture.

    Science.gov (United States)

    Phelan, Katy; May, Kristin M

    2016-11-01

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  10. Engineering pancreatic tissues from stem cells towards therapy

    Directory of Open Access Journals (Sweden)

    Yoshinobu Takahashi

    2016-03-01

    Full Text Available Pancreatic islet transplantation is performed as a potential treatment for type 1 diabetes mellitus. However, this approach is significantly limited due to the critical shortage of islet sources. Recently, a number of publications have developed protocols for directed β-cell differentiation of pluripotent cells, such as embryonic stem (ES or induced pluripotent stem (iPS cells. Decades of studies have led to the development of modified protocols that recapitulate molecular developmental cues by combining various growth factors and small molecules with improved efficiency. However, the later step of pancreatic differentiation into functional β-cells has yet to be satisfactory in vitro, highlighting alternative approach by recapitulating spatiotemporal multicellular interaction in three-dimensional (3D culture. Here, we summarize recent progress in the directed differentiation into pancreatic β-cells with a focus on both two-dimensional (2D and 3D differentiation settings. We also discuss the potential transplantation strategies in combination with current bioengineering approaches towards diabetes therapy.

  11. Berezinskii–Kosterlitz–Thouless transition and two-dimensional melting

    Science.gov (United States)

    Ryzhov, V. N.; Tareyeva, E. E.; Fomin, Yu D.; Tsiok, E. N.

    2017-12-01

    The main aspects of the theory of phase transitions in two-dimensional degenerate systems (Berezinskii–Kosterlitz–Thouless, or BKT, transitions) are reviewed in detail, including the transition mechanism, the renormalization group as a tool for describing the transition, and how the transition scenario can possibly depend on the core energy of topological defects (in particular, in thin superconducting films). Various melting scenarios in two-dimensional systems are analyzed, and the current status of actual experiments and computer simulations in the field is examined. Whereas in three dimensions melting always occurs as a single first-order transition, in two dimensions, as shown by Halperin, Nelson, and Young, melting via two continuous BKT transitions with an intermediate hexatic phase characterized by quasi-long-range orientational order is possible. But there is also a possibility for a first-order phase transition to occur. Recently, one further melting scenario, different from that occurring in the Berezinskii–Kosterlitz–Thouless–Halperin–Nelson–Young theory, has been proposed, according to which a solid can melt in two stages: a continuous BKT-type solid–hexatic transition and then a first-order hexatic-phase–isotropic-liquid phase transition. Particular attention is given to the melting scenario as a function of the potential shape and to the random pinning effect on two-dimensional melting. In particular, it is shown that random pinning can alter the melting scenario fundamentally in the case of a first-order transition. Also considered is the melting of systems with potentials having a negative curvature in the repulsion region–potentials that are successfully used in describing the anomalous properties of water in two dimensions. This review is an extended version of the report “Old and new in the physics of phase transitions” presented at the scientific session of the Physical Sciences Division of the Russian Academy of

  12. Optimal Padding for the Two-Dimensional Fast Fourier Transform

    Science.gov (United States)

    Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.

    2011-01-01

    One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that

  13. Perivascular cells and tissue engineering: Current applications and untapped potential.

    Science.gov (United States)

    Avolio, Elisa; Alvino, Valeria V; Ghorbel, Mohamed T; Campagnolo, Paola

    2017-03-01

    The recent development of tissue engineering provides exciting new perspectives for the replacement of failing organs and the repair of damaged tissues. Perivascular cells, including vascular smooth muscle cells, pericytes and other tissue specific populations residing around blood vessels, have been isolated from many organs and are known to participate to the in situ repair process and angiogenesis. Their potential has been harnessed for cell therapy of numerous pathologies; however, in this Review we will discuss the potential of perivascular cells in the development of tissue engineering solutions for healthcare. We will examine their application in the engineering of vascular grafts, cardiac patches and bone substitutes as well as other tissue engineering applications and we will focus on their extensive use in the vascularization of engineered constructs. Additionally, we will discuss the emerging potential of human pericytes for the development of efficient, vascularized and non-immunogenic engineered constructs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Giant Panda (Ailuropoda melanoleuca Buccal Mucosa Tissue as a Source of Multipotent Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Hilary M A Prescott

    Full Text Available Since the first mammal was cloned, the idea of using this technique to help endangered species has aroused considerable interest. However, several issues limit this possibility, including the relatively low success rate at every stage of the cloning process, and the dearth of usable tissues from these rare animals. iPS cells have been produced from cells from a number of rare mammalian species and this is the method of choice for strategies to improve cloning efficiency and create new gametes by directed differentiation. Nevertheless information about other stem cell/progenitor capabilities of cells from endangered species could prove important for future conservation approaches and adds to the knowledge base about cellular material that can be extremely limited. Multipotent progenitor cells, termed skin-derived precursor (SKP cells, can be isolated directly from mammalian skin dermis, and human cheek tissue has also been shown to be a good source of SKP-like cells. Recently we showed that structures identical to SKPs termed m-SKPs could be obtained from monolayer/ two dimensional (2D skin fibroblast cultures. Here we aimed to isolate m-SKPs from cultured cells of three endangered species; giant panda (Ailuropoda melanoleuca; red panda (Ailurus fulgens; and Asiatic lion (Panthera leo persica. m-SKP-like spheres were formed from the giant panda buccal mucosa fibroblasts; whereas dermal fibroblast (DF cells cultured from abdominal skin of the other two species were unable to generate spheres. Under specific differentiation culture conditions giant panda spheres expressed neural, Schwann, adipogenic and osteogenic cell markers. Furthermore, these buccal mucosa derived spheres were shown to maintain expression of SKP markers: nestin, versican, fibronectin, and P75 and switch on expression of the stem cell marker ABCG2. These results demonstrate that giant panda cheek skin can be a useful source of m-SKP multipotent progenitors. At present lack of

  15. Giant Panda (Ailuropoda melanoleuca) Buccal Mucosa Tissue as a Source of Multipotent Progenitor Cells.

    Science.gov (United States)

    Prescott, Hilary M A; Manning, Craig; Gardner, Aaron; Ritchie, William A; Pizzi, Romain; Girling, Simon; Valentine, Iain; Wang, Chengdong; Jahoda, Colin A B

    2015-01-01

    Since the first mammal was cloned, the idea of using this technique to help endangered species has aroused considerable interest. However, several issues limit this possibility, including the relatively low success rate at every stage of the cloning process, and the dearth of usable tissues from these rare animals. iPS cells have been produced from cells from a number of rare mammalian species and this is the method of choice for strategies to improve cloning efficiency and create new gametes by directed differentiation. Nevertheless information about other stem cell/progenitor capabilities of cells from endangered species could prove important for future conservation approaches and adds to the knowledge base about cellular material that can be extremely limited. Multipotent progenitor cells, termed skin-derived precursor (SKP) cells, can be isolated directly from mammalian skin dermis, and human cheek tissue has also been shown to be a good source of SKP-like cells. Recently we showed that structures identical to SKPs termed m-SKPs could be obtained from monolayer/ two dimensional (2D) skin fibroblast cultures. Here we aimed to isolate m-SKPs from cultured cells of three endangered species; giant panda (Ailuropoda melanoleuca); red panda (Ailurus fulgens); and Asiatic lion (Panthera leo persica). m-SKP-like spheres were formed from the giant panda buccal mucosa fibroblasts; whereas dermal fibroblast (DF) cells cultured from abdominal skin of the other two species were unable to generate spheres. Under specific differentiation culture conditions giant panda spheres expressed neural, Schwann, adipogenic and osteogenic cell markers. Furthermore, these buccal mucosa derived spheres were shown to maintain expression of SKP markers: nestin, versican, fibronectin, and P75 and switch on expression of the stem cell marker ABCG2. These results demonstrate that giant panda cheek skin can be a useful source of m-SKP multipotent progenitors. At present lack of sample numbers

  16. Tissue-specific endothelial cells: a promising approach for augmentation of soft tissue repair in orthopedics.

    Science.gov (United States)

    Lebaschi, Amir; Nakagawa, Yusuke; Wada, Susumu; Cong, Guang-Ting; Rodeo, Scott A

    2017-12-01

    Biologics are playing an increasingly significant role in the practice of modern medicine and surgery in general and orthopedics in particular. Cell-based approaches are among the most important and widely used modalities in orthopedic biologics, with mesenchymal stem cells and other multi/pluripotent cells undergoing evaluation in numerous preclinical and clinical studies. On the other hand, fully differentiated endothelial cells (ECs) have been found to perform critical roles in homeostasis of visceral tissues through production of an adaptive panel of so-called "angiocrine factors." This newly discovered function of ECs renders them excellent candidates for novel approaches in cell-based biologics. Here, we present a review of the role of ECs and angiocrine factors in some visceral tissues, followed by an overview of current cell-based approaches and a discussion of the potential applications of ECs in soft tissue repair. © 2017 New York Academy of Sciences.

  17. Non-invasive transdermal two-dimensional mapping of cutaneous oxygenation with a rapid-drying liquid bandage.

    Science.gov (United States)

    Li, Zongxi; Roussakis, Emmanuel; Koolen, Pieter G L; Ibrahim, Ahmed M S; Kim, Kuylhee; Rose, Lloyd F; Wu, Jesse; Nichols, Alexander J; Baek, Yunjung; Birngruber, Reginald; Apiou-Sbirlea, Gabriela; Matyal, Robina; Huang, Thomas; Chan, Rodney; Lin, Samuel J; Evans, Conor L

    2014-11-01

    Oxygen plays an important role in wound healing, as it is essential to biological functions such as cell proliferation, immune responses and collagen synthesis. Poor oxygenation is directly associated with the development of chronic ischemic wounds, which affect more than 6 million people each year in the United States alone at an estimated cost of $25 billion. Knowledge of oxygenation status is also important in the management of burns and skin grafts, as well as in a wide range of skin conditions. Despite the importance of the clinical determination of tissue oxygenation, there is a lack of rapid, user-friendly and quantitative diagnostic tools that allow for non-disruptive, continuous monitoring of oxygen content across large areas of skin and wounds to guide care and therapeutic decisions. In this work, we describe a sensitive, colorimetric, oxygen-sensing paint-on bandage for two-dimensional mapping of tissue oxygenation in skin, burns, and skin grafts. By embedding both an oxygen-sensing porphyrin-dendrimer phosphor and a reference dye in a liquid bandage matrix, we have created a liquid bandage that can be painted onto the skin surface and dries into a thin film that adheres tightly to the skin or wound topology. When captured by a camera-based imaging device, the oxygen-dependent phosphorescence emission of the bandage can be used to quantify and map both the pO2 and oxygen consumption of the underlying tissue. In this proof-of-principle study, we first demonstrate our system on a rat ischemic limb model to show its capabilities in sensing tissue ischemia. It is then tested on both ex vivo and in vivo porcine burn models to monitor the progression of burn injuries. Lastly, the bandage is applied to an in vivo porcine graft model for monitoring the integration of full- and partial-thickness skin grafts.

  18. Dental Tissue — New Source for Stem Cells

    Directory of Open Access Journals (Sweden)

    Vladimir Petrovic

    2009-01-01

    Full Text Available Stem cells have been isolated from many tissues and organs, including dental tissue. Five types of dental stem cells have been established: dental pulp stem cells, stem cells from exfoliated deciduous teeth, stem cells from apical papilla, periodontal ligament stem cells, and dental follicle progenitor cells. The main characteristics of dental stem cells are their potential for multilineage differentiation and self-renewal capacity. Dental stem cells can differentiate into odontoblasts, adipocytes, neuronal-like cells, glial cells, osteoblasts, chondrocytes, melanocytes, myotubes, and endothelial cells. Possible application of these cells in various fields of medicine makes them good candidates for future research as a new, powerful tool for therapy. Although the possible use of these cells in therapeutic purposes and tooth tissue engineering is still in the beginning stages, the results are promising. The efforts made in the research of dental stem cells have clarified many mechanisms underlying the biological processes in which these cells are involved. This review will focus on the new findings in the field of dental stem cell research and on their potential use in the therapy of various disorders.

  19. A two-dimensional model of the colonic crypt accounting for the role of the basement membrane and pericryptal fibroblast sheath.

    Directory of Open Access Journals (Sweden)

    Sara-Jane Dunn

    Full Text Available The role of the basement membrane is vital in maintaining the integrity and structure of an epithelial layer, acting as both a mechanical support and forming the physical interface between epithelial cells and the surrounding connective tissue. The function of this membrane is explored here in the context of the epithelial monolayer that lines the colonic crypt, test-tube shaped invaginations that punctuate the lining of the intestine and coordinate a regular turnover of cells to replenish the epithelial layer every few days. To investigate the consequence of genetic mutations that perturb the system dynamics and can lead to colorectal cancer, it must be possible to track the emerging tissue level changes that arise in the crypt. To that end, a theoretical crypt model with a realistic, deformable geometry is required. A new discrete crypt model is presented, which focuses on the interaction between cell- and tissue-level behaviour, while incorporating key subcellular components. The model contains a novel description of the role of the surrounding tissue and musculature, based upon experimental observations of the tissue structure of the crypt, which are also reported. A two-dimensional (2D cross-sectional geometry is considered, and the shape of the crypt is allowed to evolve and deform. Simulation results reveal how the shape of the crypt may contribute mechanically to the asymmetric division events typically associated with the stem cells at the base. The model predicts that epithelial cell migration may arise due to feedback between cell loss at the crypt collar and density-dependent cell division, an hypothesis which can be investigated in a wet lab. This work forms the basis for investigation of the deformation of the crypt structure that can occur due to proliferation of cells exhibiting mutant phenotypes, experiments that would not be possible in vivo or in vitro.

  20. Periodontal tissue engineering strategies based on nonoral stem cells.

    Science.gov (United States)

    Requicha, João Filipe; Viegas, Carlos Alberto; Muñoz, Fernando; Reis, Rui Luís; Gomes, Manuela Estima

    2014-01-01

    Periodontal disease is an inflammatory disease which constitutes an important health problem in humans due to its enormous prevalence and life threatening implications on systemic health. Routine standard periodontal treatments include gingival flaps, root planning, application of growth/differentiation factors or filler materials and guided tissue regeneration. However, these treatments have come short on achieving regeneration ad integrum of the periodontium, mainly due to the presence of tissues from different embryonic origins and their complex interactions along the regenerative process. Tissue engineering (TE) aims to regenerate damaged tissue by providing the repair site with a suitable scaffold seeded with sufficient undifferentiated cells and, thus, constitutes a valuable alternative to current therapies for the treatment of periodontal defects. Stem cells from oral and dental origin are known to have potential to regenerate these tissues. Nevertheless, harvesting cells from these sites implies a significant local tissue morbidity and low cell yield, as compared to other anatomical sources of adult multipotent stem cells. This manuscript reviews studies describing the use of non-oral stem cells in tissue engineering strategies, highlighting the importance and potential of these alternative stem cells sources in the development of advanced therapies for periodontal regeneration. Copyright © 2013 Wiley Periodicals, Inc.

  1. Intruder Motion in Two-Dimensional Shaken Granular Beds

    International Nuclear Information System (INIS)

    Ma Huan-Ping; Lv Yong-Jun; Zheng Ning; Shi Qing-Fan; Li Liang-Sheng

    2014-01-01

    The dynamical behavior of an intruder immersed in a two-dimensional shaken granular bed is experimentally investigated. With two types of background particles, f−Γ phase diagrams depicting the intruder's motion are measured and compared. It is found that even with the same size and density ratio of the intruder to the background particles, the intruder exhibits a distinct behavior at given vibrational conditions: rising behavior in one granular bed; sinking behavior in another granular bed. We slightly tune the size and density ratio to confirm the reliability of the experimental results. In addition, we examine the influences of interstitial air, convection and the initial position on the intruder's motion, speculating that the opposite motion could be traced to the material properties of the background particles

  2. Two-dimensional neutron scintillation detector with optimal gamma discrimination

    International Nuclear Information System (INIS)

    Kanyo, M.; Reinartz, R.; Schelten, J.; Mueller, K.D.

    1993-01-01

    The gamma sensitivity of a two-dimensional scintillation neutron detector based on position sensitive photomultipliers (Hamamatsu R2387 PM) has been minimized by a digital differential discrimination unit. Since the photomultiplier gain is position-dependent by ±25% a discrimination unit was developed where digital upper and lower discrimination levels are set due to the position-dependent photomultiplier gain obtained from calibration measurements. By this method narrow discriminator windows can be used to reduce the gamma background drastically without effecting the neutron sensitivity of the detector. The new discrimination method and its performance tested by neutron measurements will be described. Experimental results concerning spatial resolution and γ-sensitivity are presented

  3. Analysis of Two-Dimensional Electrophoresis Gel Images

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2002-01-01

    This thesis describes and proposes solutions to some of the currently most important problems in pattern recognition and image analysis of two-dimensional gel electrophoresis (2DGE) images. 2DGE is the leading technique to separate individual proteins in biological samples with many biological...... and pharmaceutical applications, e.g., drug development. The technique results in an image, where the proteins appear as dark spots on a bright background. However, the analysis of these images is very time consuming and requires a large amount of manual work so there is a great need for fast, objective, and robust...... methods based on image analysis techniques in order to significantly accelerate this key technology. The methods described and developed fall into three categories: image segmentation, point pattern matching, and a unified approach simultaneously segmentation the image and matching the spots. The main...

  4. On wakefields with two-dimensional planar geometry

    International Nuclear Information System (INIS)

    Chao, A.W.; Bane, K.L.F.

    1996-10-01

    In order to reach higher acceleration gradients in linear accelerators, it is advantageous to use a higher accelerating RF frequency, which in turn requires smaller accelerating structures. As the structure size becomes smaller, rectangular structures become increasingly interesting because they are easier to construct than cylindrically symmetric ones. One drawback of small structures, however, is that the wakefields generated by the beam in such structures tend to be strong. Recently, it has been suggested that one way of ameliorating this problem is to use rectangular structures that are very flat and to use flat beams. In the limiting case of a very flat planar geometry, the problem resembles a purely two-dimensional (2-D) problem, the wakefields of which have been studied

  5. Three-dimensional versus two-dimensional vision in laparoscopy

    DEFF Research Database (Denmark)

    Sørensen, Stine D; Savran, Mona Meral; Konge, Lars

    2016-01-01

    were cohort size and characteristics, skill trained or operation performed, instrument used, outcome measures, and conclusions. Two independent authors performed the search and data extraction. RESULTS: Three hundred and forty articles were screened for eligibility, and 31 RCTs were included...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...... in the review. Three trials were carried out in a clinical setting, and 28 trials used a simulated setting. Time was used as an outcome measure in all of the trials, and number of errors was used in 19 out of 31 trials. Twenty-two out of 31 trials (71 %) showed a reduction in performance time, and 12 out of 19...

  6. Two-dimensional echocardiographic features of right ventricular infarction

    International Nuclear Information System (INIS)

    D'Arcy, B.; Nanda, N.C.

    1982-01-01

    Real-time, two-dimensional echocardiographic studies were performed in 10 patients with acute myocardial infarction who had clinical features suggestive of right ventricular involvement. All patients showed right ventricular wall motion abnormalities. In the four-chamber view, seven patients showed akinesis of the entire right ventricular diaphragmatic wall and three showed akinesis of segments of the diaphragmatic wall. Segmental dyskinetic areas involving the right ventricular free wall were identified in four patients. One patient showed a large right ventricular apical aneurysm. Other echocardiographic features included enlargement of the right ventricle in eight cases, paradoxical ventricular septal motion in seven cases, tricuspid incompetence in eight cases, dilation of the stomach in four cases and localized pericardial effusion in two cases. Right ventricular infarction was confirmed by radionuclide methods in seven patients, at surgery in one patient and at autopsy in two patients

  7. Drifting plasmons in open two-dimensional channels: modal analysis

    International Nuclear Information System (INIS)

    Sydoruk, O

    2013-01-01

    Understanding the properties of plasmons in two-dimensional channels is important for developing methods of terahertz generation. This paper presents a modal analysis of plasmonic reflection in open channels supporting dc currents. As it shows, the plasmons can be amplified upon reflection if a dc current flows away from a conducting boundary; de-amplification occurs for the opposite current direction. The problem is solved analytically, based on a perturbation calculation, and numerically, and agreement between the methods is demonstrated. The power radiated by a channel is found to be negligible, and plasmon reflection in open channels is shown to be similar to that in closed channels. Based on this similarity, the oscillator designs developed earlier for closed channels could be applicable also for open ones. The results develop the modal-decomposition technique further as an instrument for the design of terahertz plasmonic sources. (paper)

  8. Suspension and simple optical characterization of two-dimensional membranes

    Science.gov (United States)

    Northeast, David B.; Knobel, Robert G.

    2018-03-01

    We report on a method for suspending two-dimensional crystal materials in an electronic circuit using an only photoresists and solvents. Graphene and NbSe2 are suspended tens of nanometers above metal electrodes with clamping diameters of several microns. The optical cavity formed from the membrane/air/metal structures enables a quick method to measure the number of layers and the gap separation using comparisons between the expected colour and optical microscope images. This characterization technique can be used with just an illuminated microscope with a digital camera which makes it adaptable to environments where other means of characterization are not possible, such as inside nitrogen glove boxes used in handling oxygen-sensitive materials.

  9. Two-dimensional void reconstruction by neutron transmission

    International Nuclear Information System (INIS)

    Zakaib, G.D.; Harms, A.A.; Vlachopoulos, J.

    1978-01-01

    Contemporary algebraic reconstruction methods are utilized in investigating the two-dimensional void distribution in a water analog from neutron transmission measurements. It is sought to ultimately apply these techniques to the determination of time-averaged void distribution in two-phase flow systems as well as for potential usage in neutron radiography. Initially, projection data were obtained from a digitized model of a hypothetical two-phase representation and later from neutron beam traverses across a voided methacrylate plastic model. From 10 to 15 views were incorporated, and decoupling of overlapped measurements was utilized to afford greater resolution. In general, the additive Algebraic Reconstruction Technique yielded the best reconstructions, with others showing promise for noisy data. Results indicate the need for some further development of the method in interpreting real data

  10. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.

    Science.gov (United States)

    Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P

    2015-12-18

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.

  11. Selective growth of two-dimensional phosphorene on catalyst surface.

    Science.gov (United States)

    Qiu, L; Dong, J C; Ding, F

    2018-02-01

    Although the study of black phosphorene (BP) and its isomers has attracted enormous attention, the method of synthesizing high-quality samples in a large area is still pending. Here we explore the potential of using the chemical vapor deposition method to synthesize large-area two-dimensional (2D) phosphorene films on metal surfaces. Our ab initio calculations show that BP can be synthesized by using tin (Sn) as a catalyst, while one of its isomers, blue phosphorene (BLP), is very possible to be synthesized by using most other metals, such as Ag and Au. Besides, our study also suggests that the large binding energy between the 2D phosphorene and the active metal substrate may prohibit the exfoliation of the 2D phosphorene for real applications and, therefore, tin, silver and gold are predicted to be the most suitable catalysts for the synthesis of BP and BLP.

  12. Two-dimensional electronic spectroscopy with birefringent wedges

    Energy Technology Data Exchange (ETDEWEB)

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  13. Cooperation in two-dimensional mixed-games

    International Nuclear Information System (INIS)

    Amaral, Marco A; Silva, Jafferson K L da; Wardil, Lucas

    2015-01-01

    Evolutionary game theory is a common framework to study the evolution of cooperation, where it is usually assumed that the same game is played in all interactions. Here, we investigate a model where the game that is played by two individuals is uniformly drawn from a sample of two different games. Using the master equation approach we show that the random mixture of two games is equivalent to play the average game when (i) the strategies are statistically independent of the game distribution and (ii) the transition rates are linear functions of the payoffs. We also use Monte-Carlo simulations in a two-dimensional lattice and mean-field techniques to investigate the scenario when the two above conditions do not hold. We find that even outside of such conditions, several quantities characterizing the mixed-games are still the same as the ones obtained in the average game when the two games are not very different. (paper)

  14. Charge ordering in two-dimensional ionic liquids

    Science.gov (United States)

    Perera, Aurélien; Urbic, Tomaz

    2018-04-01

    The structural properties of model two-dimensional (2D) ionic liquids are examined, with a particular focus on the charge ordering process, with the use of computer simulation and integral equation theories. The influence of the logarithmic form of the Coulomb interaction, versus that of a 3D screened interaction form, is analysed. Charge order is found to hold and to be analogous for both interaction models, despite their very different form. The influence of charge ordering in the low density regime is discussed in relation to well known properties of 2D Coulomb fluids, such as the Kosterlitz-Thouless transition and criticality. The present study suggests the existence of a stable thermodynamic labile cluster phase, implying the existence of a liquid-liquid "transition" above the liquid-gas binodal. The liquid-gas and Kosterlitz-Thouless transitions would then take place inside the predicted cluster phase.

  15. Spin precession in inversion-asymmetric two-dimensional systems

    International Nuclear Information System (INIS)

    Liu, M.-H.; Chang, C.-R.

    2006-01-01

    We present a theoretical method to calculate the expectation value of spin in an inversion-asymmetric two-dimensional (2D) system with respect to an arbitrarily spin-polarized electron state, injected via an ideal point contact. The 2D system is confined in a [0 0 1]-grown quantum well, where both the Rashba and the Dresselhaus spin-orbit couplings are taken into account. The obtained analytical results allow more concrete description of the spatial behaviors of the spin precession caused individually by the Rashba and the Dresselhaus terms. Applying the calculation on the Datta-Das spin-FET, whose original design considers only the Rashba effect inside the channel, we investigate the possible influence due to the Dresselhaus spin-orbit coupling. Concluded solution is the choice of ±[1±10], in particular [1 1 0], as the channel direction

  16. Entropic Barriers for Two-Dimensional Quantum Memories

    Science.gov (United States)

    Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.

    2014-03-01

    Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.

  17. Thermoelectric transport in two-dimensional giant Rashba systems

    Science.gov (United States)

    Xiao, Cong; Li, Dingping; Ma, Zhongshui; Niu, Qian

    Thermoelectric transport in strongly spin-orbit coupled two-dimensional Rashba systems is studied using the analytical solution of the linearized Boltzmann equation. To highlight the effects of inter-band scattering, we assume point-like potential impurities, and obtain the band-and energy-dependent transport relaxation times. Unconventional transport behaviors arise when the Fermi level lies near or below the band crossing point (BCP), such as the non-Drude electrical conducivity below the BCP, the failure of the standard Mott relation linking the Peltier coefficient to the electrical conductivity near the BCP, the enhancement of diffusion thermopower and figure of merit below the BCP, the zero-field Hall coefficient which is not inversely proportional to and not a monotonic function of the carrier density, the enhanced Nernst coefficient below the BCP, and the enhanced current-induced spin-polarization efficiency.

  18. Advancements of two dimensional correlation spectroscopy in protein researches.

    Science.gov (United States)

    Tao, Yanchun; Wu, Yuqing; Zhang, Liping

    2018-05-15

    The developments of two-dimensional correlation spectroscopy (2DCOS) applications in protein studies are discussed, especially for the past two decades. The powerful utilities of 2DCOS combined with various analytical techniques in protein studies are summarized. The emphasis is on the vibration spectroscopic techniques including IR, NIR, Raman and optical activity (ROA), as well as vibration circular dichroism (VCD) and fluorescence spectroscopy. In addition, some new developments, such as hetero-spectral 2DCOS, moving-window correlation, and model based correlation, are also reviewed for their utility in the investigation of the secondary structure, denaturation, folding and unfolding changes of protein. Finally, the new possibility and challenges of 2DCOS in protein research are highlighted as well. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Sample preparation guidelines for two-dimensional electrophoresis.

    Science.gov (United States)

    Posch, Anton

    2014-12-01

    Sample preparation is one of the key technologies for successful two-dimensional electrophoresis (2DE). Due to the great diversity of protein sample types and sources, no single sample preparation method works with all proteins; for any sample the optimum procedure must be determined empirically. This review is meant to provide a broad overview of the most important principles in sample preparation in order to avoid a multitude of possible pitfalls. Sample preparation protocols from the expert in the field were screened and evaluated. On the basis of these protocols and my own comprehensive practical experience important guidelines are given in this review. The presented guidelines will facilitate straightforward protocol development for researchers new to gel-based proteomics. In addition the available choices are rationalized in order to successfully prepare a protein sample for 2DE separations. The strategies described here are not limited to 2DE and can also be applied to other protein separation techniques.

  20. Thermal conductivity of disordered two-dimensional binary alloys.

    Science.gov (United States)

    Zhou, Yang; Guo, Zhi-Xin; Cao, Hai-Yuan; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao

    2016-10-20

    Using non-equilibrium molecular dynamics simulations, we have studied the effect of disorder on the thermal conductivity of two-dimensional (2D) C 1-x N x alloys. We find that the thermal conductivity not only depends on the substitution concentration of nitrogen, but also strongly depends on the disorder distribution. A general linear relationship is revealed between the thermal conductivity and the participation ratio of phonons in 2D alloys. Localization mode analysis further indicates that the thermal conductivity variation in the ordered alloys can be attributed to the number of inequivalent atoms. As for the disordered alloys, we find that the thermal conductivity variation can be described by a simple linear formula with the disorder degree and the substitution concentration. The present study suggests some general guidance for phonon manipulation and thermal engineering in low dimensional alloys.