WorldWideScience

Sample records for two-dimensional axially-symmetric geometry

  1. Axially Symmetric Cosmological Mesonic Stiff Fluid Models in Lyra's Geometry

    CERN Document Server

    Gad, Ragab M

    2009-01-01

    In this paper, we obtained a new class of axially symmetric cosmological mesonic stiff fluid models in the context of Lyra's geometry. Expressions for the energy, pressure and the massless scalar field are derived by considering the time dependent displacement field. We found that the mesonic scalar field depends on only $t$ coordinate. Some physical properties of the obtained models are discussed.

  2. The geometrical theory of diffraction for axially symmetric reflectors

    DEFF Research Database (Denmark)

    Rusch, W.; Sørensen, O.

    1975-01-01

    The geometrical theory of diffraction (GTD) (cf. [1], for example) may be applied advantageously to many axially symmetric reflector antenna geometries. The material in this communication presents analytical, computational, and experimental results for commonly encountered reflector geometries...

  3. Generalized geometry of two-dimensional vacua

    CERN Document Server

    Rosa, Dario

    2013-01-01

    We derive the conditions for unbroken supersymmetry for a Mink_2, (2,0) vacuum, arising from Type II supergravity on a compact eight-dimensional manifold M_8. When specialized to internal manifolds enjoying SU(4)xSU(4) structure the resulting system is elegantly rewritten in terms of generalized complex geometry. This particular class of vacua violates the correspondence between supersymmetry conditions and calibrations conditions of D branes (supersymmetry-calibrations correspondence). Our analysis includes and extends previous results about the failure of the supersymmetry-calibrations correspondence, and confirms the existence of a precise relation between such a failure and a subset of the supersymmetry conditions.

  4. Axially Symmetric, Spatially Homothetic Spacetimes

    CERN Document Server

    Wagh, S M; Wagh, Sanjay M.; Govinder, Keshlan S.

    2002-01-01

    We show that the existence of appropriate spatial homothetic Killing vectors is directly related to the separability of the metric functions for axially symmetric spacetimes. The density profile for such spacetimes is (spatially) arbitrary and admits any equation of state for the matter in the spacetime. When used for studying axisymmetric gravitational collapse, such solutions do not result in a locally naked singularity.

  5. Thermophoresis of Axially Symmetric Bodies

    Science.gov (United States)

    2007-11-02

    Sweden Abstract. Thermophoresis of axially symmetric bodies is investigated to first order in the Knudsen-mimber, Kn. The study is made in the limit...derived. Asymptotic solutions are studied. INTRODUCTION Thermophoresis as a phenomenon has been known for a long time, and several authors have approached

  6. Matrix calculus for axially symmetric polarized beam.

    Science.gov (United States)

    Matsuo, Shigeki

    2011-06-20

    The Jones calculus is a well known method for analyzing the polarization of a fully polarized beam. It deals with a beam having spatially homogeneous polarization. In recent years, axially symmetric polarized beams, where the polarization is not homogeneous in its cross section, have attracted great interest. In the present article, we show the formula for the rotation of beams and optical elements on the angularly variant term-added Jones calculus, which is required for analyzing axially symmetric beams. In addition, we introduce an extension of the Jones calculus: use of the polar coordinate basis. With this calculus, the representation of some angularly variant beams and optical elements are simplified and become intuitive. We show definitions, examples, and conversion formulas between different notations.

  7. Scalar Resonances in Axially Symmetric Spacetimes

    CERN Document Server

    Ranea-Sandoval, Ignacio F

    2015-01-01

    We study properties of resonant solutions to the scalar wave equation in several axially symmetric spacetimes. We prove that non-axial resonant modes do not exist neither in the Lanczos dust cylinder, the $(2+1)$ extreme BTZ spacetime nor in a class of simple rotating wormhole solutions. Moreover, we find unstable solutions to the wave equation in the Lanczos dust cylinder and in the $r^2 <0$ region of the extreme $(2+1)$ BTZ spacetime, two solutions that possess closed timelike curves. Similarities with previous results obtained for the Kerr spacetime are explored.

  8. Calculation of the electrical of induction heating coils in two dimensional axissymmetric geometry

    Energy Technology Data Exchange (ETDEWEB)

    Nerg, J.; Partanen, J. [Lappeenranta University of Technology (Finland). Department of Energy Technology, Laboratory of Electrical Engineering

    1997-12-31

    The effect of the workpiece temperature on the electrical parameters of a plane, spiral inductor is discussed. The effect of workpiece temperature on the electrical efficiency, power transfer to the workpiece and electromagnetic distortion are also presented. Calculation is performed in two dimensional axissymmetric geometry using a FEM program. (orig.) 5 refs.

  9. On Stationary Axially Symmetric Solutions in Brans-Dicke Theory

    CERN Document Server

    Kirezli, Pınar

    2015-01-01

    Stationary axially symmetric Brans-Dicke-Maxwell solutions are re-examined in the framework of the Brans-Dicke theory. We see that, employing a particular parametrization of the standard axially symmetric metric simplifies the procedure of obtaining the Ernst equations for axially symmetric electro-vacuum space-times for this theory. This analysis also permit us to construct a two parameter extension in both Jordan and Einstein frames of an old solution generating technique frequently used to construct axially symmetric solutions for Brans-Dicke theory from a seed solution of General Relativity. As applications of this technique, several known and new solutions are constructed including a general axially symmetric BD-Maxwell solution of Plebanski-Demianski with vanishing cosmological constant, i.e. the Kinnersley solution and general magnetized Kerr-Newman type solutions. Some physical properties and circular motion of test particles for a particular subclass of Kinnersley solution, i.e. Kerr-Newman-NUT type ...

  10. Axially Symmetric Post-Newtonian Stellar Systems

    Directory of Open Access Journals (Sweden)

    Camilo Akímushkin

    2010-06-01

    Full Text Available We introduce a method to obtain self-consistent, axially symmetric disklike stellar models in the first post-Newtonian (1PN approximation. By using in the field equations of the 1PN approximation a distribution function (DF corresponding to a Newtonian model, two fundamental equations determining the 1PN corrections are obtained. The rotation curves of the corrected models differs from the classical ones and the corrections are clearly appreciable with values of the mass and radius of a typical galaxy. On the other hand, the relativistic mass correction can be ignored for all models. Resumen. Presentamos un método para obtener modelos estelares discoidales, axialmente simétricos, auto-consistentes en la primera aproximación post-Newtoniana (1PN. Usando en las ecuaciones de campo de la aproximación 1PN una función de distribución conocida (DF que corresponde a un modelo Newtoniano, se obtienen dos ecuaciones fundamentales para determinar las correcciones 1PN. Las curvas de rotación de los modelos corregidos difieren de las clásicas y las correcciones son claramente apreciables con los valores de la masa y el radio de una galaxia típica. Por otro lado, la corrección relativista de la masa se puede ignorar para todos los modelos.

  11. Development of Particle-in-Cell Simulation in a Two Dimensional Trench Geometry

    CERN Document Server

    Lin, Tai-Lu

    2016-01-01

    A two dimensional electrostatic Particle-in-Cell simulation code is developed to investigate anisotropy of ions in a trench geometry for plasma etching. The numerical simulation results suggest that if the trench width is larger than Debye length scale, anisotropy can be lost due to potential development across the trench. Furthermore, the effects of ion charge build up on the trench bottom is investigated, which can degrade the anisotropy.

  12. A Volume-Weighting Cloud-in-Cell Model for Particle Simulation of Axially Symmetric Plasmas

    Institute of Scientific and Technical Information of China (English)

    李永东; 何锋; 刘纯亮

    2005-01-01

    A volume-weighting cloud-in-cell (VW-CIC) model is developed to implement the particle-in-cell (PIC) simulation in axially symmetric systems. This model gives a first-order accuracy in the cylindrical system, and it is incorporated into a PIC code. A planar diode with a finite-radius circular emitter is simulated with the code. The simulation results show that the VW-CIC model has a better accuracy and a lower noise than the conventional area-weighting cloud-in-cell (AW-CIC) model, especially on those points near the axis. The two-dimensional (2-D) space-charge-limited current density obtained from VW-CIC model is in better agreement with Lau's analytical result. This model is more suitable for 2.5-D PIC simulation of axially symmetric plasmas.

  13. The Axially Symmetric Ejecta of Supernova 1987A

    CERN Document Server

    Wang, L; Höflich, P; Khokhlov, A; Baade, D; Branch, D; Challis, P M; Filippenko, A V; Fransson, C; Garnavich, P M; Kirshner, R P; Lundqvist, P; McCray, R; Panagia, N; Pun, C S J; Phillips, M M; Sonneborn, G; Suntzeff, N B

    2002-01-01

    Extensive early observations proved that the ejecta of supernova 1987A (SN 1987A) are aspherical. Fifteen years after the supernova explosion, the Hubble Space Telescope has resolved the rapidly expanding ejecta. The late-time images and spectroscopy provide a geometrical picture that is consistent with early observations and suggests a highly structured, axially symmetric geometry. We present here a new synthesis of the old and new data. We show that the Bochum event, presumably a clump of $^{56}$Ni, and the late-time image, the locus of excitation by $^{44}$Ti, are most naturally accounted for by sharing a common position angle of about 14\\degree, the same as the mystery spot and early speckle data on the ejecta, and that they are both oriented along the axis of the inner circumstellar ring at 45\\degree to the plane of the sky. We also demonstrate that the polarization represents a prolate geometry with the same position angle and axis as the early speckle data and the late-time image and hence that the geo...

  14. Hybrid numerical scheme for nonlinear two-dimensional phase-change problems with the irregular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Lin Jaeyuh [Chang Jung Univ., Tainan (Taiwan, Province of China); Chen Hantaw [National Cheng Kung Univ., Tainan (Taiwan, Province of China). Dept. of Mechanical Engineering

    1997-09-01

    A hybrid numerical scheme combining the Laplace transform and control-volume methods is presented to solve nonlinear two-dimensional phase-change problems with the irregular geometry. The Laplace transform method is applied to deal with the time domain, and then the control-volume method is used to discretize the transformed system in the space domain. Nonlinear terms induced by the temperature-dependent thermal properties are linearized by using the Taylor series approximation. Control-volume meshes in the solid and liquid regions during simulations are generated by using the discrete transfinite mapping method. The location of the phase-change interface and the isothermal distributions are determined. Comparison of these results with previous results shows that the present numerical scheme has good accuracy for two-dimensional phase-change problems. (orig.). With 10 figs.

  15. Axially symmetric volume constrained anisotropic mean curvature flow

    CERN Document Server

    Palmer, Bennett

    2011-01-01

    We study the long time existence theory for a non local flow associated to a free boundary problem for a trapped non liquid drop. The drop has free boundary components on two horizontal plates and its free energy is anisotropic and axially symmetric. For axially symmetric initial surfaces with sufficiently large volume, we show that the flow exists for all time. Numerical simulations of the curvature flow are presented.

  16. A Hybrid Nodal Method for Time-Dependent Incompressible Flow in Two-Dimensional Arbitrary Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Toreja, A J; Uddin, R

    2002-10-21

    A hybrid nodal-integral/finite-analytic method (NI-FAM) is developed for time-dependent, incompressible flow in two-dimensional arbitrary geometries. In this hybrid approach, the computational domain is divided into parallelepiped and wedge-shaped space-time nodes (cells). The conventional nodal integral method (NIM) is applied to the interfaces between adjacent parallelepiped nodes (cells), while a finite analytic approach is applied to the interfaces between parallelepiped and wedge-shaped nodes (cells). In this paper, the hybrid method is formally developed and an application of the NI-FAM to fluid flow in an enclosed cavity is presented. Results are compared with those obtained using a commercial computational fluid dynamics code.

  17. Simulations of Viscous Accretion Flow around Black Holes in Two-Dimensional Cylindrical Geometry

    CERN Document Server

    Lee, Seong-Jae; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu

    2016-01-01

    We simulate shock-free and shocked viscous accretion flow onto a black hole in a two dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian Total Variation Diminishing (LTVD) and remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. Inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any QPO-like activity developed. The steady state shocked solution in the inviscid, as well as, in the viscous regime, matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. Such oscillation of the inner part of disk is interpreted as the source of QPO in hard X-rays observed in micro-qua...

  18. A cell-centered lagrangian scheme in two-dimensional cylindrical geometry

    Institute of Scientific and Technical Information of China (English)

    SHEN ZhiJun; YUAN GuangWei; YUE JingYan; LIU XueZhe

    2008-01-01

    A new Lagrangian cell-centered scheme for two-dimensional compressible flows in planar geometry is proposed by Malre et al. The main new feature of the algorithm is that the vertex velocities and the numerical fluxes through the cell interfaces are all evaluated in a coherent manner contrary to standard approaches. In this paper the method introduced by Malre et al. is extended for the equations of Lagrangian gas dynamics in cylindrical symmetry. Two different schemes are proposed, whose difference is that one uses volume weighting and the other area weighting in the discretization of the momentum equation. In the both schemes the conservation of total energy is ensured, and the nodal solver is adopted which has the same formulation as that in Cartesian coordinates. The volume weighting scheme preserves the momentum conservation and the area-weighting scheme preserves spherical symmetry. The numerical examples demonstrate our theoretical considerations and the robustness of the new method.

  19. An axially symmetric solution of metric-affine gravity

    CERN Document Server

    Vlachynsky, E J; Obukhov, Yu N; Hehl, F W

    1996-01-01

    We present an exact stationary {\\it axially symmetric} vacuum solution of metric-affine gravity (MAG) which generalises the recently reported spherically symmetric solution. Besides the metric, it carries nonmetricity and torsion as post-Riemannian geometrical structures. The parameters of the solution are interpreted as mass and angular momentum and as dilation, shear and spin charges.

  20. On the generation techniques of axially symmetric stationary metrics

    Indian Academy of Sciences (India)

    S Chaudhuri

    2002-03-01

    In the present paper, a relationship between the method of Gutsunaev–Manko and the soliton technique (for two-soliton solutions) of Belinskii–Zakharov, for generating solutions of axially symmetric stationary space-times in general relativity is discussed.

  1. Axially symmetric solutions in f(R)-gravity

    CERN Document Server

    Capozziello, Salvatore; Stabile, Arturo

    2009-01-01

    Axially symmetric solutions for f(R)-gravity can be derived starting from exact spherically symmetric solutions. The method takes advantage of a complex coordinate transformation previously developed by Newman and Janis in General Relativity. An example is worked out to show the general validity of the approach.

  2. Axially symmetric solutions in f(R)-gravity

    Energy Technology Data Exchange (ETDEWEB)

    Capozziello, Salvatore; De Laurentis, Mariafelicia [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' (Italy); Stabile, Arturo, E-mail: capozziello@na.infn.i [Dipartimento di Ingegneria, Universita del Sannio, Benevento, C.so Garibaldi 107, I-80125 Benevento (Italy)

    2010-08-21

    Axially symmetric solutions for f(R)-gravity can be derived starting from exact spherically symmetric solutions achieved by Noether symmetries. The method takes advantage of a complex coordinate transformation previously developed by Newman and Janis in general relativity. An example is worked out to show the general validity of the approach. The physical properties of the solution are also considered.

  3. Finite Difference Solution for Biopotentials of Axially Symmetric Cells

    Science.gov (United States)

    Klee, Maurice; Plonsey, Robert

    1972-01-01

    The finite difference equations necessary for calculating the three-dimensional, time-varying biopotentials within and surrounding axially symmetric cells are presented. The method of sucessive overrelaxation is employed to solve these equations and is shown to be rapidly convergent and accurate for the exemplary problem of a spheroidal cell under uniform field stimulation. PMID:4655665

  4. Axially symmetric pseudo-Newtonian hydrodynamics code

    CERN Document Server

    Kim, Jinho; Choptuik, Matthew William; Lee, Hyung Mok

    2012-01-01

    We develop a numerical hydrodynamics code using a pseudo-Newtonian formulation that uses the weak field approximation for the geometry, and a generalized source term for the Poisson equation that takes into account relativistic effects. The code was designed to treat moderately relativistic systems such as rapidly rotating neutron stars. The hydrodynamic equations are solved using a finite volume method with High Resolution Shock Capturing (HRSC) techniques. We implement several different slope limiters for second order reconstruction schemes and also investigate higher order reconstructions. We use the method of lines (MoL) to convert the mixed spatial-time partial differential equations into ordinary differential equations (ODEs) that depend only on time. These ODEs are solved using 2nd and 3rd order Runge-Kutta methods. The Poisson equation for the gravitational potential is solved with a multigrid method. In order to confirm the validity of our code, we carry out four different tests including one and two...

  5. Consideration of a ultracold neutron source in two-dimensional cylindrical geometry by taking simulated boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, R., E-mail: gheisari@pgu.ac.ir [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Nuclear Energy Research Center, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Firoozabadi, M. M.; Mohammadi, H. [Department of Physics, University of Birjand, Birjand 97175 (Iran, Islamic Republic of)

    2014-01-15

    A new idea to calculate ultracold neutron (UCN) production by using Monte Carlo simulation method to calculate the cold neutron (CN) flux and an analytical approach to calculate the UCN production from the simulated CN flux was given. A super-thermal source (UCN source) was modeled based on an arrangement of D{sub 2}O and solid D{sub 2} (sD{sub 2}). The D{sub 2}O was investigated as the neutron moderator, and sD{sub 2} as the converter. In order to determine the required parameters, a two-dimensional (2D) neutron balance equation written in Matlab was combined with the MCNPX simulation code. The 2D neutron-transport equation in cylindrical (ρ − z) geometry was considered for 330 neutron energy groups in the sD{sub 2}. The 2D balance equation for UCN and CN was solved using simulated CN flux as boundary value. The UCN source dimensions were calculated for the development of the next UCN source. In the optimal condition, the UCN flux and the UCN production rate (averaged over the sD{sub 2} volume) equal to 6.79 × 10{sup 6} cm{sup −2}s{sup −1} and 2.20 ×10{sup 5} cm{sup −3}s{sup −1}, respectively.

  6. A cell-centered lagrangian scheme in two-dimensional cylindrical geometry

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new Lagrangian cell-centered scheme for two-dimensional compressible flows in planar geometry is proposed by Maire et al.The main new feature of the algorithm is that the vertex velocities and the numerical fluxes through the cell interfaces are all evaluated in a coherent manner contrary to standard approaches.In this paper the method introduced by Maire et al.is extended for the equations of Lagrangian gas dynamics in cylindrical symmetry.Two different schemes are proposed,whose difference is that one uses volume weighting and the other area weighting in the discretization of the momentum equation.In the both schemes the conservation of total energy is ensured,and the nodal solver is adopted which has the same formulation as that in Cartesian coordinates.The volume weighting scheme preserves the momentum conservation and the area-weighting scheme preserves spherical symmetry.The numerical examples demonstrate our theoretical considerations and the robustness of the new method.

  7. Consideration of a ultracold neutron source in two-dimensional cylindrical geometry by taking simulated boundaries

    Science.gov (United States)

    Gheisari, R.; Firoozabadi, M. M.; Mohammadi, H.

    2014-01-01

    A new idea to calculate ultracold neutron (UCN) production by using Monte Carlo simulation method to calculate the cold neutron (CN) flux and an analytical approach to calculate the UCN production from the simulated CN flux was given. A super-thermal source (UCN source) was modeled based on an arrangement of D2O and solid D2 (sD2). The D2O was investigated as the neutron moderator, and sD2 as the converter. In order to determine the required parameters, a two-dimensional (2D) neutron balance equation written in Matlab was combined with the MCNPX simulation code. The 2D neutron-transport equation in cylindrical (ρ - z) geometry was considered for 330 neutron energy groups in the sD2. The 2D balance equation for UCN and CN was solved using simulated CN flux as boundary value. The UCN source dimensions were calculated for the development of the next UCN source. In the optimal condition, the UCN flux and the UCN production rate (averaged over the sD2 volume) equal to 6.79 × 106 cm-2s-1 and 2.20 ×105 cm-3s-1, respectively.

  8. Simulations of Viscous Accretion Flow around Black Holes in a Two-dimensional Cylindrical Geometry

    Science.gov (United States)

    Lee, Seong-Jae; Chattopadhyay, Indranil; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu

    2016-11-01

    We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as in the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.

  9. Consideration of a ultracold neutron source in two-dimensional cylindrical geometry by taking simulated boundaries

    Directory of Open Access Journals (Sweden)

    R. Gheisari

    2014-01-01

    Full Text Available A new idea to calculate ultracold neutron (UCN production by using Monte Carlo simulation method to calculate the cold neutron (CN flux and an analytical approach to calculate the UCN production from the simulated CN flux was given. A super-thermal source (UCN source was modeled based on an arrangement of D2O and solid D2 (sD2. The D2O was investigated as the neutron moderator, and sD2 as the converter. In order to determine the required parameters, a two-dimensional (2D neutron balance equation written in Matlab was combined with the MCNPX simulation code. The 2D neutron-transport equation in cylindrical (ρ − z geometry was considered for 330 neutron energy groups in the sD2. The 2D balance equation for UCN and CN was solved using simulated CN flux as boundary value. The UCN source dimensions were calculated for the development of the next UCN source. In the optimal condition, the UCN flux and the UCN production rate (averaged over the sD2 volume equal to 6.79 × 106 cm−2s−1 and 2.20 ×105 cm−3s−1, respectively.

  10. Dynamics and statics of flexible axially symmetric shallow shells

    OpenAIRE

    2006-01-01

    In this work, we propose the method for the investigation of stochastic vibrations of deterministic mechanical systems represented by axially symmetric spherical shells. These structure members are widely used as sensitive elements of pressure measuring devices in various branches of measuring and control industry, machine design, and so forth. The proposed method can be easily extended for the investigation of shallow spherical shells, goffer-type membranes, and so on. T...

  11. EBQ code: transport of space-charge beams in axially symmetric devices

    Energy Technology Data Exchange (ETDEWEB)

    Paul, A.C.

    1982-11-01

    Such general-purpose space charge codes as EGUN, BATES, WOLF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present.

  12. Revised NASA axially symmetric ring model for coupled-cavity traveling-wave tubes

    Science.gov (United States)

    Wilson, Jeffrey D.

    1987-01-01

    A versatile large-signal, two-dimensional computer program is used by NASA to model coupled-cavity travelling-wave tubes (TWTs). In this model, the electron beam is divided into a series of disks, each of which is further divided into axially symmetric rings which can expand and contract. The trajectories of the electron rings and the radiofrequency (RF) fields are determined from the calculated axial and radial space-charge, RF, and magnetic forces as the rings pass through a sequence of cavities. By varying electrical and geometric properties of individual cavities, the model is capable of simulating severs, velocity tapers, and voltage jumps. The calculated electron ring trajectories can be used in designing magnetic focusing and multidepressed collectors. The details of using the program are presented, and results are compared with experimental data.

  13. On the geometry of classically integrable two-dimensional non-linear sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Mohammedi, N., E-mail: nouri@lmpt.univ-tours.f [Laboratoire de Mathematiques et Physique Theorique (CNRS - UMR 6083), Universite Francois Rabelais de Tours, Faculte des Sciences et Techniques, Parc de Grandmont, F-37200 Tours (France)

    2010-11-11

    A master equation expressing the zero curvature representation of the equations of motion of a two-dimensional non-linear sigma models is found. The geometrical properties of this equation are outlined. Special attention is paid to those representations possessing a spectral parameter. Furthermore, a closer connection between integrability and T-duality transformations is emphasised. Finally, new integrable non-linear sigma models are found and all their corresponding Lax pairs depend on a spectral parameter.

  14. Nonlinear kinetic modeling and simulations of Raman scattering in a two-dimensional geometry

    Directory of Open Access Journals (Sweden)

    Bénisti Didier

    2013-11-01

    Full Text Available In this paper, we present our nonlinear kinetic modeling of stimulated Raman scattering (SRS by the means of envelope equations, whose coefficients have been derived using a mixture of perturbative and adiabatic calculations. First examples of the numerical resolution of these envelope equations in a two-dimensional homogeneous plasma are given, and the results are compared against those of particle-in-cell (PIC simulations. These preliminary comparisons are encouraging since our envelope code provides threshold intensities consistent with those of PIC simulations while requiring computational resources reduced by 4 to 5 orders of magnitude compared to full-kinetic codes.

  15. Hilbert-Schmidt Geometry of n-Level Jakobczyk-Siennicki Two-Dimensional Quantum Systems

    CERN Document Server

    Slater, P B

    2005-01-01

    Jakobczyk and Siennicki studied two-dimensional sections of a set of Bloch vectors corresponding to n x n density matrices of two-qubit systems (that is, the case n=4). They found essentially five different types of (nontrivial) separability regimes. We compute the Euclidean/Hilbert-Schmidt (HS) separability probabilities assigned to these regimes, and conduct parallel two-dimensional section analyses for the cases n=6,8,9 and 10. We obtain a very wide variety of exact HS-probabilities. For n>6, the probabilities are those of having a partial positive transpose (PPT). For the n=6 case, we also obtain biseparability probabilities; in the n=8,9 instances, bi-PPT probabilities; and for n=8, tri-PPT probabilities. By far, the most frequently recorded probability for n>4 is Pi/4 = 0.785398$. We also conduct a number of related analyses, pertaining to the (one-dimensional) boundaries (both exterior and interior) of the separability and PPT domains, and discuss some exact calculations pertaining to the 9-dimensional...

  16. Design and rigorous analysis of generalized axially- symmetric dual-reflector antennas

    Science.gov (United States)

    Moreira, Fernando J. S.

    1997-10-01

    The development of reflector antennas is continuously driven by ever increasing performance requirements, creating a demand for improved design and analysis tools. Ideally, the antenna synthesis should rely on general closed-form design equations (to establish the initial geometry and performance), as well as on accurate analysis techniques (to tune up the antenna performance by accounting for all pertinent electrical effects). Driven by these motivations, this dissertation provides the required formulation for the rigorous (in a numerical sense) analysis of axially-symmetric dual-reflector antennas and for their effective design. The rigorous analysis is performed using integral-equation techniques, which permit the inclusion of all relevant antenna components (i.e., reflector surfaces and feed structure), with the exception of the supporting struts and radomes. These techniques allow the electrical performance of a designed antenna to be accurately determined, hence minimizing the use of hardware models. The design portion starts with a unified investigation of generalized classical axially-symmetric dual-reflector antennas- conic-section generated configurations that minimize the main-reflector scattering towards the subreflector while providing a uniform-phase aperture illumination. It is shown that all possible configurations can be grouped in four basic categories. Using Geometrical Optics principles, useful closed-form design expressions are obtained, allowing a straightforward determination of the initial geometry and its upper-bound high-frequency performance. The improvement of the antenna radiation characteristics through the reflector shaping is also explored. An amplitude distribution is proposed for the shaped-antenna aperture field (with constant phase), providing high efficiency while controlling the sidelobe envelope. The diffraction and spillover effects are also investigated using Geometrical Theory of Diffraction, yielding useful formulas and

  17. Evaporative cooling of reactive polar molecules confined in a two-dimensional geometry

    CERN Document Server

    Zhu, Bihui; Rey, Ana M; Holland, Murray J

    2013-01-01

    Recent experimental developments in the loading of ultracold KRb molecules into quasi-two-dimensional traps, combined with the ability to tune the ratio between elastic and loss (inelastic/reactive) collisions through application of an external electric field, are opening the door to achieving efficient evaporative cooling of reactive polar molecules. In this paper, we use Monte Carlo simulations and semianalytic models to study theoretically the experimental parameter regimes in which evaporative cooling is feasible under current trapping conditions. We investigate the effect of the anisotropic character of dipole-dipole collisions and reduced dimensionality on evaporative cooling. We also present an analysis of the experimentally relevant anti-evaporation effects that are induced by chemical reactions that take place when more than one axial vibrational state is populated.

  18. Non-Abelian fields in AdS$_4$ spacetime: axially symmetric, composite configurations

    CERN Document Server

    Kichakova, Olga; Radu, Eugen; Shnir, Yasha

    2014-01-01

    We construct new finite energy regular solutions in Einstein-Yang-Mills-SU(2) theory. They are static, axially symmetric and approach at infinity the anti-de Sitter spacetime background. These configurations are characterized by a pair of integers $(m, n)$, where $m$ is related to the polar angle and $n$ to the azimuthal angle, being related to the known flat space monopole-antimonopole chains and vortex rings. Generically, they describe composite configurations with several individual components, possesing a nonzero magnetic charge, even in the absence of a Higgs field. Such Yang-Mills configurations exist already in the probe limit, the AdS geometry supplying the attractive force needed to balance the repulsive force of Yang-Mills gauge interactions. The gravitating solutions are constructed by numerically solving the elliptic Einstein-DeTurck--Yang-Mills equations. The variation of the gravitational coupling constant $\\alpha$ reveals the existence of two branches of gravitating solutions which bifurcate at...

  19. A Method for Geometry Optimization in a Simple Model of Two-Dimensional Heat Transfer

    CERN Document Server

    Peng, Xiaohui; Protas, Bartosz

    2013-01-01

    This investigation is motivated by the problem of optimal design of cooling elements in modern battery systems. We consider a simple model of two-dimensional steady-state heat conduction described by elliptic partial differential equations and involving a one-dimensional cooling element represented by a contour on which interface boundary conditions are specified. The problem consists in finding an optimal shape of the cooling element which will ensure that the solution in a given region is close (in the least squares sense) to some prescribed target distribution. We formulate this problem as PDE-constrained optimization and the locally optimal contour shapes are found using a gradient-based descent algorithm in which the Sobolev shape gradients are obtained using methods of the shape-differential calculus. The main novelty of this work is an accurate and efficient approach to the evaluation of the shape gradients based on a boundary-integral formulation which exploits certain analytical properties of the sol...

  20. KP solitons and the Grassmannians combinatorics and geometry of two-dimensional wave patterns

    CERN Document Server

    Kodama, Yuji

    2017-01-01

    This is the first book to treat combinatorial and geometric aspects of two-dimensional solitons. Based on recent research by the author and his collaborators, the book presents new developments focused on an interplay between the theory of solitons and the combinatorics of finite-dimensional Grassmannians, in particular, the totally nonnegative (TNN) parts of the Grassmannians. The book begins with a brief introduction to the theory of the Kadomtsev–Petviashvili (KP) equation and its soliton solutions, called the KP solitons. Owing to the nonlinearity in the KP equation, the KP solitons form very complex but interesting web-like patterns in two dimensions. These patterns are referred to as soliton graphs. The main aim of the book is to investigate the detailed structure of the soliton graphs and to classify these graphs. It turns out that the problem has an intimate connection with the study of the TNN part of the Grassmannians. The book also provides an elementary introduction to the recent development of ...

  1. Solving the problem of elasticity for round thick plates at axially symmetric strain

    Directory of Open Access Journals (Sweden)

    Oleksiy Hvertsev

    2016-12-01

    Full Text Available An exact solution of the equations of elasticity for round plates loaded axially symmetric. The problem of bending round plates, which are under the influence of normal forces attached to any law to load any type of resistance. It is shown that pasture circular plate under axially symmetric load leads to appearance of temperature field.

  2. Neutronics code VALE for two-dimensional triagonal (hexagonal) and three-dimensional geometries

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Fowler, T.B.

    1981-08-01

    This report documents the computer code VALE designed to solve multigroup neutronics problems with the diffusion theory approximation to neutron transport for a triagonal arrangement of mesh points on planes in two- and three-dimensional geometry. This code parallels the VENTURE neutronics code in the local computation system, making exposure and fuel management capabilities available. It uses and generates interface data files adopted in the cooperative effort sponsored by Reactor Physics RRT Division of the US DOE. The programming in FORTRAN is straightforward, although data is transferred in blocks between auxiliary storage devices and main core, and direct access schemes are used. The size of problems which can be handled is essentially limited only by cost of calculation since the arrays are variably dimensioned. The memory requirement is held down while data transfer during iteration is increased only as necessary with problem size. There is provision for the more common boundary conditions including the repeating boundary, 180/sup 0/ rotational symmetry, and the rotational symmetry conditions for the 30/sup 0/, 60/sup 0/, and 120/sup 0/ triangular grids on planes. A variety of types of problems may be solved: the usual neutron flux eignevalue problem, or a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations. The adjoint problem and fixed source problem may be solved, as well as the dominating higher harmonic, or the importance problem for an arbitrary fixed source.

  3. Two-dimensional, hybrid model of glow discharge in hollow cathode geometries

    Energy Technology Data Exchange (ETDEWEB)

    Fiala, A.; Pitchford, L.C.; Boeuf, J.P. [Universite Paul Sabatier, Toulouse (France)

    1995-12-31

    Low pressure glow discharges in plane-plane geometries have been studied extensively over the years and most of their features are known from experiments and numerical simulation. If a plane cathode is replaced by a cathode with some hollow structure, then, for a certain range of conditions, the negative glows of opposite (adjacent) cathode walls overlap and the discharge behaviour dramatically changes. The voltage is lower at a constant current and the current is even several orders of magnitude higher for a given voltage than for the plane cathode. At the same time, the intensity of the light emission from the discharge considerably increases. This effect is called the hollow cathode effect. There are several physical phenomena which could be responsible for the big efficiency of the hollow cathode discharges. The recent investigations based on the Monte Carlo simulation of the electron kinetics have shown that the trapping of energetic electrons in the hollow cathode cavity can explain the order of magnitude of the hollow cathode effect. The configuration of the discharge tube presented in fig. 1 is used here to study the behaviour of glow discharges in a hollow cathode means of numerical simulation.

  4. Dynamics and statics of flexible axially symmetric shallow shells

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available In this work, we propose the method for the investigation of stochastic vibrations of deterministic mechanical systems represented by axially symmetric spherical shells. These structure members are widely used as sensitive elements of pressure measuring devices in various branches of measuring and control industry, machine design, and so forth. The proposed method can be easily extended for the investigation of shallow spherical shells, goffer-type membranes, and so on. The so-called charts of control parameters for a shell subjected to a transversal uniformly distributed and local harmonic loading force and resistance moment are constructed. The scenarios of the transition of vibration of shallow-type system into chaotic state are investigated with the use of the theory of differential equations and the theory of nonlinear dynamics. The method of the control of chaotic vibrations of flexible spherical shells subjected to a transversal harmonic load through a synchronized action of either harmonic resistance moment or force is proposed, illustrated, and discussed.

  5. Statistical mechanics of two-dimensional shuffled foams: geometry-topology correlation in small or large disorder limits.

    Science.gov (United States)

    Durand, Marc; Kraynik, Andrew M; van Swol, Frank; Käfer, Jos; Quilliet, Catherine; Cox, Simon; Ataei Talebi, Shirin; Graner, François

    2014-06-01

    Bubble monolayers are model systems for experiments and simulations of two-dimensional packing problems of deformable objects. We explore the relation between the distributions of the number of bubble sides (topology) and the bubble areas (geometry) in the low liquid fraction limit. We use a statistical model [M. Durand, Europhys. Lett. 90, 60002 (2010)] which takes into account Plateau laws. We predict the correlation between geometrical disorder (bubble size dispersity) and topological disorder (width of bubble side number distribution) over an extended range of bubble size dispersities. Extensive data sets arising from shuffled foam experiments, surface evolver simulations, and cellular Potts model simulations all collapse surprisingly well and coincide with the model predictions, even at extremely high size dispersity. At moderate size dispersity, we recover our earlier approximate predictions [M. Durand, J. Kafer, C. Quilliet, S. Cox, S. A. Talebi, and F. Graner, Phys. Rev. Lett. 107, 168304 (2011)]. At extremely low dispersity, when approaching the perfectly regular honeycomb pattern, we study how both geometrical and topological disorders vanish. We identify a crystallization mechanism and explore it quantitatively in the case of bidisperse foams. Due to the deformability of the bubbles, foams can crystallize over a larger range of size dispersities than hard disks. The model predicts that the crystallization transition occurs when the ratio of largest to smallest bubble radii is 1.4.

  6. White matter biomarkers from fast protocols using axially symmetric diffusion kurtosis imaging

    CERN Document Server

    Hansen, Brian; Shemesh, Noam; Lund, Torben E; Sangill, Ryan; Østergaard, Leif; Jespersen, Sune N

    2016-01-01

    White matter tract integrity (WMTI) can be used to characterize tissue microstructure in areas with axisymmetric fiber bundles. Several WMTI biomarkers have now been validated against microscopy and provided promising results in studies of brain development and aging, as well as in a number of brain disorders. In a clinical setting, however, the diffusion kurtosis imaging (DKI) protocol utilized as part of WMTI imaging may be prohibitively long. Consequently, the diagnostic value of the WMTI parameters is rarely explored outside of dedicated animal studies and clinical studies of slowly progressing diseases. Here, we evaluate WMTI based on recently introduced axially symmetric DKI which has lower data demand than conventional DKI. We compare WMTI parameters derived from conventional DKI to those from axially symmetric DKI and to parameters calculated analytically from the axially symmetric tensors. We also assess the effect of the imposed symmetry on the kurtosis fractional anisotropy (KFA). We employ numeric...

  7. Minimum Ballistic Factor Problem of Slender Axial Symmetric Missiles

    Directory of Open Access Journals (Sweden)

    V. B. Tawakley

    1979-01-01

    Full Text Available The problem of determining the geometry of slender, axisymmetric missiles of minimum ballistic factor in hypersonic flow has been solved via the calculus of variations under the assumptions that the flow is Newtonian and the surface averaged skin-friction coefficient is constant. The study has been made for conditions of given length and diameter, given diameter and surfacearea, and given surface area and length. The earlier investigations/sup 8/ where only regular shapes were determined has been extended to cover those class of bodies which consist of regular shapes followed or preceded by zero slope shapes.

  8. Mathematical Model of Induction Heating Processes in Axial Symmetric Inductor-Detail Systems

    Directory of Open Access Journals (Sweden)

    Maik Streblau

    2014-05-01

    Full Text Available The wide variety of models for analysis of processes in the inductor-detail systems makes it necessary to summarize them. This is a difficult task because of the variety of inductor-detail system configurations. This paper aims to present a multi physics mathematical model for complex analysis of electromagnetic and thermal fields in axial symmetric systems inductor-detail.

  9. Existence of axially symmetric solutions in SU(2)-Yang-Mills and related theories

    CERN Document Server

    Hannibal, L; Hannibal, Ludger; Ossietzky, Carl von

    1999-01-01

    It is shown that the static axially symmetric solutions of SU(2) Einstein-Yang-Mills-Dilaton theory constructed by Kleihaus and Kunz are gauge-equivalent to two-parameter families of embedded abelian solutions, characterized by mass and magnetic dipole moment. The existence of other particle-like solutions is excluded.

  10. Qualitative behavior of axial-symmetric solutions of elliptic free boundary problems

    Directory of Open Access Journals (Sweden)

    Andrew F. Acker

    1997-01-01

    Full Text Available axial-symmetric solutions and qualitative geometric properties of the free boundary are compared to those of the fixed boundary for the axial and radial directions. Counterexamples obtained previously by the first author show that our results cannot hold in the same generality as those for similar free boundary problems in R^2.

  11. Decreasing "circumference" for increasing "radius" in axially symmetric gravitating systems

    CERN Document Server

    Lubo, M

    2001-01-01

    Apart from the flat space with an angular deficit, Einstein general relativity possesses another cylindrically symmetric solution. Because this configuration displays circles whose "circumferences" tend to zero when their "radius" go to infinity, it has not received much attention in the past. We propose a geometric interpretation of this feature and find that it implies field boundary conditions different from the ones found in the literature if one considers a source consisting of the scalar and the vector fields of a U(1) system . To obtain a non increasing energy density the gauge symmetry must be unbroken . For the Higgs potential this is achieved only with a vanishing vacuum expectation value but then the solution has a null scalar field. A non trivial scalar behaviour is exhibited for a potential of sixth order. The trajectories of test particles in this geometry are studied, its causal structure discussed. We find that this bosonic background can support a normalizable fermionic condensate but not suc...

  12. User's manual for EVITS: a steady state fluids code for complex two-dimensional geometries

    Energy Technology Data Exchange (ETDEWEB)

    Domanus, H.M.

    1976-07-01

    A 2-D computer code, EVITS, has been developed for estimating steady state, incompressible, isothermal flow fields in complex geometries. A vorticity-stream function formulation is used along with a model to resolve viscous effects at solid boundaries. Sufficient geometry and boundary type options are included within the code so that a large number of flow situations can be specified without modifying the program. All instructions to the code are via an input dataset. Detailed instructions for preparing the user oriented input, along with examples, are included in this users' manual.

  13. Axially Symmetric Bianchi Type-I Bulk-Viscous Cosmological Models with Time-Dependent and

    Indian Academy of Sciences (India)

    Nawsad Ali

    2013-09-01

    The present study deals with spatially homogeneous and anisotropic axially symmetric Bianchi type-I cosmological model with time variable cosmological term in the presence of bulk viscous fluid. The Einstein’s field equations are solved explicitly by time varying deceleration parameter . Consequences of the four cases of phenomenological decay of have been discussed which are consistent with observations. Physical and kinematical parameters of the models are discussed.

  14. Nonexistence of interactions between axially symmetric massive scalar field and perfect fluid distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tarachand, R.K.; Singh, N.I.

    1988-07-01

    Considering the axially symmetric Einstein-Rosen metric, the problem of massive scalar field interactions in the presence of perfect fluid distribution has been studied, and it has been observed that there cannot exist any solution for the coupled massive scalar field and perfect fluid distribution for the metric. The problem reduces to the finding of interactions between zero-mass scalar field and stiff fluid.

  15. Axially Symmetric Shear-free Fluids in $f(R,T)$ Gravity

    CERN Document Server

    Noureen, Ifra

    2016-01-01

    In this work we have discussed the implications of shear-free condition on axially symmetric anisotropic gravitating objects in $f(R,T)$ theory. Restricted axial symmetry ignoring rotation and reflection enteries is taken into account for establishment of instability range. Implementation of linear perturbation on constitutive modified dynamical equations yield evolution equation. This equation associates adiabatic index $\\Gamma$ with material and dark source components defining stable and unstable regions in Newtonian (N) and post-Newtonian (pN) approximations.

  16. The diagonal and off-diagonal AC conductivity of two-dimensional electron gases with contactless Corbino geometry in the quantum Hall regime

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Hansen, Ole Per

    1996-01-01

    We have investigated the AC conductivity elements in the quantum Hall regime of two-dimensional electron gases coupled capacitively to electrodes with Corbino geometry. The samples are GaAlAs/GaAs single heterostructures, and the measurements are made at low frequencies, up to 20 kHz. The diagonal...... conductivity is derived from magnetocapacitance measurements. It increases with increasing frequency according to a power law at integer filling factors. The exponent of the power law depends on both temperature and filling factor. Ratios between Hall conductivities at different filling factors are obtained...

  17. The influence of foot geometry on the calcaneal osteotomy angle based on two-dimensional static force analyses

    NARCIS (Netherlands)

    Reilingh, M.L.; Tuijthof, G.J.M.; Van Dijk, C.N.; Blankevoort, L.

    2011-01-01

    Background: Malalignment of the hindfoot can be corrected with a calcaneal osteotomy (CO). A well-selected osteotomy angle in the sagittal plane will reduce the shear force in the osteotomy plane while walking. The purpose was to determine the presence of a relationship between the foot geometry and

  18. FINITE ELEMENT FOR STRESS-STRAIN STATE MODELING OF TWO-LAYERED AXIALLY SYMMETRIC SHELLS

    Directory of Open Access Journals (Sweden)

    K. S. Kurochka

    2015-07-01

    Full Text Available Subject of Research. Computation of composite material designs requires application of numerical methods. The finiteelement method usage is connected with surface approximation problems. Application of volumetric and laminar elements leads to systems with large sizes and a great amount of computation. The objective of this paper is to present an equivalent two-layer mathematical model for evaluation of displacements and stresses of cross-ply laminated cone shells subjected to uniformly distributed load. An axially symmetric element for shell problems is described. Method. Axially symmetric finite element is proposed to be applied in calculations with use of correlation for the inner work of each layer separately. It gives the possibility to take into account geometric and physical nonlinearities and non-uniformity in the layers of the shell. Discrete mathematical model is created on the base of the finite-element method with the use of possible motions principle and Kirchhoff–Love assumptions. Hermite element is chosen as a finite one. Cone shell deflection is considered as the quantity sought for. Main Results. One-layered and two-layered cone shells have been considered for proposed mathematical model verification with known analytical and numerical analytical solutions, respectively. The axial displacements of the two-layered cone are measured with an error not exceeding 5.4 % for the number of finite elements equal to 30. The proposed mathematical model requires fewer nodes to define the finite element meshing of the system and much less computation time. Thereby time for finding solution decreases considerably. Practical Relevance. Proposed model is applicable for computation of multilayered designs under axially symmetric loads: composite high-pressure bottles, cylinder shaped fiberglass pipes, reservoirs for explosives and flammable materials, oil and gas storage tanks.

  19. Stability Analysis of Restricted Axial Symmetric Collapse in $f(R)$ Gravity

    CERN Document Server

    Sharif, M

    2014-01-01

    In this paper, we analyze stability regions of a non-static restricted class of axially symmetric spacetime with anisotropic matter distribution. We develop dynamical as well as collapse equations within the framework of proposed perturbation technique for $f(R)=R+{\\epsilon}R^2$ model and explore dynamical instabilities at Newtonian and post-Newtonian regimes. It is concluded that radial profile of physical parameters like pressure anisotropy, energy density and higher curvature terms of the $f(R)$ model affect the instability ranges.

  20. Axially symmetric, asymptotically flat vacuum metric with a naked singularity and closed timelike curves

    CERN Document Server

    Sarma, Debojit; Patgiri, Mahadev

    2016-01-01

    We present an axially symmetric, asymptotically flat empty space solution of the Einstein field equations containing a naked singularity. The spacetime is regular everywhere except on the symmetry axis where it possess a true curvature singularity. The spacetime is of type D in the Petrov classification scheme and is locally isometric to the metrics of case IV in the Kinnersley classification of type D vacuum metrics. Additionally, the spacetime also shows the evolution of closed timelike curves (CTCs) from an initial hypersurface free from CTCs.

  1. Carbon-13 and tin-119 relaxation studies of some axially symmetrical organotin compounds

    Science.gov (United States)

    Chapelle, S.; Granger, P.

    We have studied a variety of axially symmetrical tin compounds by 119Sn and 13C NMR. Tin was observed at two field strengths and, except for Ph 3SnCl, T1 is field independent and governed mainly by spin-rotation. A chemical-shift anisotropy of 136 ppm is observed for 119Sn in Ph 3SnCl. Deverell's relationship provides a good estimate of the values of the spin-rotational constants and the theory of Woessner, Snowden, and Huntress leads to the values of the rotational diffusion constants.

  2. A numerical study of planar and axially-symmetric sudden expansion flows

    Science.gov (United States)

    Napolitano, M.; Cinnella, P.

    The present study is concerned with the numerical prediction of planar and axially symmetric sudden expansion flows, using the Navier-Stokes as well as the boundary-layer equations. The vorticity/steam-function Navier-Stokes equations are solved by means of a robust multigrid block-line-Gauss-Seidel method. The corresponding boundary-layer equations are solved at every longitudinal station by means of an incremental block-implicit scheme, using the Newton method combined with a deferred correction strategy to achieve fast convergence on the nonlinear terms. Accurate solutions are obtained.

  3. The relation of edge confinement to global confinement in ASDEX Upgrade (Axially Symmetric Divertor Experiment)

    Energy Technology Data Exchange (ETDEWEB)

    Pitcher, C.S.; Boozer, A.H.; Murmann, H.; Schweinzer, J.; Suttrop, W.; Salzmann, H. [Max-Planck-Institut fuer Plasmaphysik, IPP-EURATOM Association, D--85748 Garching (Germany); ASDEX Upgrade Team% NBI Group

    1997-07-01

    Experimental evidence is presented from the ASDEX Upgrade (Axially Symmetric Divertor Experiment) tokamak [{ital Plasma Physics and Controlled Nuclear Fusion Research 1993} (International Atomic Energy Agency, Vienna, 1994), Vol. I, p. 127] of a robust relation between the edge radial pressure gradient and the global confinement of the plasma. This relation transcends the power flowing across flux surfaces near the edge and thus suggests that the usual model of cross-field heat transport, where local gradients increase with increasing local power flow, is not appropriate. {copyright} {ital 1997 American Institute of Physics.}

  4. Experimental Modeling of the Electron Beam Focusing Regimesin the Axially-Symmetric Systems

    Directory of Open Access Journals (Sweden)

    I.V. Barsuk

    2014-04-01

    Full Text Available The paper describes the results of the experimental research of the volt-ampere characteristics of the three-electrode electron gun. Such systems are widely used in the electron-ray devices meant for getting visible image on the screen, and in microwave devices, such as TWT, BWT, as well. On the basis of the experimental results practical recommendations of how to choose the optimal voltage regimes on the focusing electrodes were made, which allows to form paraxial axially-symmetric beams with the diameter in crossover about 0.05-0.5 mm and beam current up to 30 mA.

  5. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    1990-07-01

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.

  6. The Bondi-Sachs metric at the vertex of a null cone: axially symmetric vacuum solutions

    CERN Document Server

    Mädler, Thomas

    2012-01-01

    In the Bondi-Sachs formulation of General Relativity space-time is foliated via a family of null cones. If these null cones are defined such that their vertices are traced by a regular world-line then the metric tensor has to obey regularity conditions at the vertices. We explore these regularity conditions when the world line is a time-like geodesic. In particular, we solve the Einstein equations for the Bondi-Sachs metric near the vertices for axially symmetric vacuum space- times. The metric is calculated up to third order corrections with respect to a flat metric along the time-like geodesic, as this is the lowest order where non- linear coupling of the metric coefficients occurs. We also determine the boundary conditions of the metric to arbitrary order of these corrections when a linearized and axially symmetric vacuum space-time is assumed. In both cases we find that (i) the initial data on the null cone must have a very rigid angular structure for the vertex to be a regular point, and (ii) the initial...

  7. Axially symmetric static sources: A general framework and some analytical solutions

    CERN Document Server

    Herrera, L; Ibañez, J; Ospino, J

    2013-01-01

    We provide all basic equations and concepts required to carry out a general study on axially symmetric static sources. The Einstein equations and the conservation equations are written down for a general anisotropic static fluid endowed with axial symmetry. The structure scalars are calculated and the inhomogeneity factors are identified. Finally some exact analytical solutions were found. One of these solutions describes an incompressible spheroid with isotropic pressure and becomes the well known interior Schwarzschild solution in the spherically symmetric limit, however it cannot be matched smoothly to any Weyl exterior metric. Another family of solutions was found that corresponds to an anisotropic fluid distribution and can in principle be matched to a Weyl exterior.

  8. Axially Symmetric-dS Solution in Teleparallel f(T Gravity Theories

    Directory of Open Access Journals (Sweden)

    Gamal G. L. Nashed

    2015-01-01

    Full Text Available We apply a tetrad field with six unknown functions to Einstein field equations. Exact vacuum solution, which represents axially symmetric-dS spacetime, is derived. We multiply the tetrad field of the derived solution by a local Lorentz transformation which involves a generalization of the angle ϕ and get a new tetrad field. Using this tetrad, we get a differential equation from the scalar torsion T=TαμνSαμν. Solving this differential equation we obtain a solution to the f(T gravity theories under certain conditions on the form of f(T and its first derivatives. Finally, we calculate the scalars of Riemann Christoffel tensor, Ricci tensor, Ricci scalar, torsion tensor, and its contraction to explain the singularities associated with this solution.

  9. On the equivalence of approximate stationary axially symmetric solutions of Einstein field equations

    CERN Document Server

    Boshkayev, Kuantay; Toktarbay, Saken; Zhami, Bakytzhan

    2015-01-01

    We study stationary axially symmetric solutions of the Einstein vacuum field equations that can be used to describe the gravitational field of astrophysical compact objects in the limiting case of slow rotation and slight deformation. We derive explicitly the exterior Sedrakyan-Chubaryan approximate solution, and express it in analytical form, which makes it practical in the context of astrophysical applications. In the limiting case of vanishing angular momentum, the solution reduces to the well-known Schwarzschild solution in vacuum. We demonstrate that the new solution is equivalent to the exterior Hartle-Thorne solution. We establish the mathematical equivalence between the Sedrakyan-Chubaryan, Fock-Abdildin and Hartle-Thorne formalisms.

  10. Axially symmetric anisotropic string cosmological models in Saez-Ballester theory of gravitation

    Science.gov (United States)

    Kanakavalli, T.; Rao, G. Ananda; Reddy, D. R. K.

    2017-02-01

    Field equations of a scalar-tensor theory of gravitation proposed by Saez and Ballester (Phys. Lett. A 113:467, 1986) are derived with the help of a spatially homogeneous axially symmetric anisotropic Bianchi type metric in the presence of cosmic string source. To obtain determinate solutions of the field equations we have used the fact that the scalar expansion is proportional to shear scalar and the equations of state which correspond to geometric, Takabayasi and massive strings. It is found that geometric and massive strings do not coexist with the Saez-Ballester Scalar field. However, Takabayasi string which survives has been determined. Also, physical discussion of the dynamical parameters of the model is presented.

  11. New classes of bi-axially symmetric solutions to four-dimensional Vasiliev higher spin gravity

    CERN Document Server

    Sundell, Per

    2016-01-01

    We present new infinite-dimensional spaces of bi-axially symmetric asymptotically anti-de Sitter solutions to four-dimensional Vasiliev higher spin gravity, obtained by modifications of the Ansatz used in arXiv:1107.1217, which gave rise to a Type-D solution space. The current Ansatz is based on internal semigroup algebras (without identity) generated by exponentials formed out of the bi-axial symmetry generators. After having switched on the vacuum gauge function, the resulting generalized Weyl tensor is given by the sum of two generalized Petrov type-D tensors, and the twistor space connections are smooth in twistor space over finite regions of spacetime. We provide evidence for that the linearized twistor space connection can be brought to Vasiliev gauge.

  12. On the equivalence of approximate stationary axially symmetric solutions of the Einstein field equations

    Science.gov (United States)

    Boshkayev, Kuantay; Quevedo, Hernando; Toktarbay, Saken; Zhami, Bakytzhan; Abishev, Medeu

    2016-10-01

    We study stationary axially symmetric solutions of the Einstein vacuum field equations that can be used to describe the gravitational field of astrophysical compact objects in the limiting case of slow rotation and slight deformation. We derive explicitly the exterior Sedrakyan-Chubaryan approximate solution, and express it in analytical form, which makes it practical in the context of astrophysical applications. In the limiting case of vanishing angular momentum, the solution reduces to the well-known Schwarzschild solution in vacuum. We demonstrate that the new solution is equivalent to the exterior Hartle-Thorne solution. We establish the mathematical equivalence between the Sedrakyan-Chubaryan, Fock-Abdildin and Hartle-Thorne formalisms.

  13. Microscopic derivation of nuclear rotation-vibration model, axially symmetric case

    CERN Document Server

    Gulshani, Parviz

    2015-01-01

    We derive from first principles the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude, and provides microscopic expressions for the interaction operators among the rotation, vibration, and intrinsic motions, for the moment of inertia, vibration mass, and for the deformation variables. The method uses canonical transformations to collective co-ordinates, followed by a constrained variational method, with the associated constraints imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For deformed harmonic oscillator mean-field potentials, these equations are solved in closed forms for the energies, moments of inertia, quadrupole moments and transition...

  14. The axial symmetric vibrations of cylindrical shell, filled by the flowing Gas-Liquid mixture

    Directory of Open Access Journals (Sweden)

    Grigoryan Sh.H.

    2011-09-01

    Full Text Available The problem of axial symmetric self–vibrations of the infinite long shell, filled by flowing gas bubbles of large and small sizes in fluid mixture is considered. The subsonic and supersonic regimes of the mixture flow are discussed. For vibration frequencies of the system under consideration are shown that shell frequencies with big bubbles–liquids mixture exceed the frequencies of system of with small gas bubbles–liquid mixture. In subsonic regime increasing of shell thickness brings to increasing of shell frequencies, as in case of shell with pure fluid. In subsonic regime the frequencies are increasing with decreasing of the flowing velocity, on the contrary, brings to decreasing of frequencies, similar to the case of shell with the pure fluid.

  15. An FFT-accelerated fdtd scheme with exact absorbing conditions for characterizing axially symmetric resonant structures

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    An accurate and efficient finite-difference time-domain (FDTD) method for characterizing transient waves interactions on axially symmetric structures is presented. The method achieves its accuracy and efficiency by employing localized and/or fast Fourier transform (FFT) accelerated exact absorbing conditions (EACs). The paper details the derivation of the EACs, discusses their implementation and discretization in an FDTD method, and proposes utilization of a blocked-FFT based algorithm for accelerating the computation of temporal convolutions present in nonlocal EACs. The proposed method allows transient analyses to be carried for long time intervals without any loss of accuracy and provides reliable numerical data pertinent to physical processes under resonant conditions. This renders the method highly useful in characterization of high-Q microwave radiators and energy compressors. Numerical results that demonstrate the accuracy and efficiency of the method are presented.

  16. Report on the Dynamical Evolution of an Axially Symmetric Quasar Model

    Indian Academy of Sciences (India)

    N. J. Papadopoulos; N. D. Caranicolas

    2006-12-01

    The role of the angular momentum in the regular or chaotic character of motion in an axially symmetric quasar model is examined. It is found that, for a given value of the critical angular momentum , there are two values of the mass of the nucleus for which transition from regular to chaotic motion occurs. The [-] relationship shows a linear dependence for the time independent model and an exponential dependence for the evolving model. Both cases are explained using theoretical arguments together with some numerical evidence. The evolution of the orbits is studied, as mass is transported from the disk to the nucleus. The results are compared with the outcomes derived for galactic models with massive nuclei.

  17. Comments on "Existence of axially symmetric solutions in SU(2)-Yang Mills and related theories [hep-th/9907222]"

    CERN Document Server

    Kleihaus, B; Kunz, Jutta

    1999-01-01

    In [hep-th/9907222] Hannibal claims to exclude the existence of particle-like static axially symmetric non-abelian solutions in SU(2) Einstein-Yang-Mills-dilaton theory. His argument is based on the asymptotic behaviour of such solutions. Here we disprove his claim by giving explicitly the asymptotic form of non-abelian solutions with winding number n=2.

  18. The analytic continuation of solutions of the generalized axially symmetric Helmholtz equation

    Science.gov (United States)

    Millar, R. F.

    1983-12-01

    The analytic continuation of a solution of the generalized axially symmetric Helmholtz equation u xx + u yy + (2α/ x) u x + k 2 u = 0is examined. A representation in terms of boundary data and the complex Riemann function is given for the continuation of the solution to an analytic boundary value problem; this also provides the solution of the analytic Cauchy problem on an analytic arc. Integral representations are found for the Riemann function, and the axial behaviour of the Riemann function is determined and used to recover a representation for the solution in terms of analytic axial data, as given originally by Henrici. For an exterior boundary value problem in which the axial values of the solution are defined on two disjoint, semi-infinite segments of the axis, it is shown that the two functions are not analytic continuations of one an-other and that a certain linear combination of them is an entire function. As an example, for α = 1/2 it is shown that the continuation of an exterior solution for a prolate spheroidal boundary is logarithmically infinite on the interfocal segment. A further special case, one that involves wave scattering by slender bodies of revolution for which the solution may be represented as a superposition over axial singularities, is briefly examined; properties of the axial values which are forced by this representation are determined and, where comparison is possible, shown to be consistent with the present work.

  19. Approximate axially symmetric solution of the Weyl-Dirac theory of gravitation and the spiral galactic rotation problem

    CERN Document Server

    Babourova, O V; Kudlaev, P E

    2016-01-01

    On the basis of the Poincare-Weyl gauge theory of gravitation, a new conformal Weyl-Dirac theory of gravitation is proposed, which is a gravitational theory in Cartan-Weyl spacetime with the Dirac scalar field representing the dark matter model. A static approximate axially symmetric solution of the field equations in vacuum is obtained. On the base of this solution in the Newtonian approximation one considers the problem of rotation velocities in spiral components of galaxies.

  20. Verification of electrical spin injection into InGaAs two-dimensional electron gas from CoFe electrode by four-terminal non-local geometry

    Science.gov (United States)

    Hidaka, S.; Kondo, T.; Akabori, M.; Yamada, S.

    2013-12-01

    We performed electrical spin injection into In0.75Ga0.25As two-dimensional electron gases from Co0.8Fe0.2 electrodes by four-terminal non-local spin-valve (NLSV) measurement. We observed clear SV signals in NL resistance at 1.5 K. From the electrode spacing dependence of the signals, we estimated spin diffusion length and spin polarization to be ˜5.1 μm and ˜5.7 %, respectively. These are larger than those reported in similar systems.

  1. Verification of electrical spin injection into InGaAs two-dimensional electron gas from CoFe electrode by four-terminal non-local geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, S.; Kondo, T.; Akabori, M.; Yamada, S. [Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2013-12-04

    We performed electrical spin injection into In{sub 0.75}Ga{sub 0.25}As two-dimensional electron gases from Co{sub 0.8}Fe{sub 0.2} electrodes by four-terminal non-local spin-valve (NLSV) measurement. We observed clear SV signals in NL resistance at 1.5 K. From the electrode spacing dependence of the signals, we estimated spin diffusion length and spin polarization to be ∼5.1 μm and ∼5.7 %, respectively. These are larger than those reported in similar systems.

  2. Wide low-mass binary model for the origin of axially symmetric non-thermal radio sources

    Energy Technology Data Exchange (ETDEWEB)

    Kool, M. de; Heuvel, E.P.J. van den

    1985-10-17

    An accreting binary model has been proposed by recent workers to account for the origin of the axially symmetric non-thermal radio sources. The authors show that the only type of binary system that can produce the observed structural properties, is a relatively wide neutron star binary, in which the companion of the neutron star is a low-mass giant. Binaries of this type are expected to resemble closely the eight brightest galactic bulge X-ray sources as well as the progenitors of the two wide radio pulsar binaries.

  3. On stability of uniformly-accelerated motions of an axially-symmetric heavy rigid body in an ideal fluid

    DEFF Research Database (Denmark)

    Deriabine, Mikhail

    2003-01-01

    We consider the problem of heavy rigid body dynamics in an infinite volume of an ideal incompressible fluid performing a potential motion. If the body is axially-symmetric, then the system admits partial solutions, when the axis of symmetry is vertical, and the body sinks and rotates around its...... symmetry axis. These solutions were found by V.A.Steklov already at the end of the 19th century, and he also pointed out that in general these motions are unstable (as they are uniformly accelerated).Here we consider the more delicate question, namely we derive the conditions for stability of the rotation...

  4. Development of a Two-Dimensional/Axisymmetric implicit Navier-Stokes solver using flux-difference splitting concepts and fully general geometry

    Science.gov (United States)

    Hindman, R. G.

    1985-09-01

    Theoretical background and several basic test cases are presented for a new, time dependent Navier-Stokes solver for two-dimensional and axisymmetric flows. The goal of the effort is to invoke state-of-the-art computational fluid dynamics (CFD) technology to improve modeling of viscous phenomenal and to increase the robustness of CFD analysis. The original motivation was inadequate representation of supersonic ramp-induced separation by existing CFD codes. The present work addresses that inadequacy by using modern numerical methods which accurately model signal propagation in high-speed fluid flow. This technique solves the Navier-Stokes equations in general curvilinear coordinates in a four-sided domain bounded by a wall, and upper boundary opposite the wall, an inflow boundary, and an outflow boundary. The interior algorithm is a flux-difference splitting method similar to that of Yang, Lombard, and Bershader, but is blended into a second order, implicit factored delta form. With implicitly treated boundary conditions, the solution is performed using a block tridiagonal method followed by an explicit updating of the boundaries. The resulting scheme satisfies the global conversation requirement to within the order of accuracy of the algorithm. The grid is generated using a relaxation Poisson solver. A systematic and rigorous development of the complete method is presented. Initial steps in code validation include successful reproduction of Couette and Blasius solutions.

  5. Two-dimensional model of the Penning discharge in a cylindrical chamber with the axial magnetic field

    Science.gov (United States)

    Surzhikov, S. T.

    2017-08-01

    The drift-diffusion model of a Penning discharge in molecular hydrogen under pressures of about 1 Torr with regard to the external electric circuit has been proposed. A two-dimensional axially symmetric discharge geometry with a cylindrical anode and flat cathodes perpendicular to the symmetry axis has been investigated. An external magnetic field of about 0.1 T is applied in the axial direction. Using the developed drift-diffusion model, the electrodynamic structure of a Penning discharge in the pressure range of 0.5-5 Torr at a current source voltage of 200-500 V is numerically simulated. The evolution of the discharge electrodynamic structure upon pressure variations in zero magnetic field (the classical glow discharge mode) and in the axial magnetic field (Penning discharge) has been studied using numerical experiments. The theoretical predictions of the existence of an averaged electron and ion motion in a Penning discharge both in the axial and radial directions and in the azimuthal direction have been confirmed by the calculations.

  6. Approximate calculation of electronic energy levels of axially symmetric quantum dot and quantum ring by using energy dependent effective mass

    Institute of Scientific and Technical Information of China (English)

    Liu Yu-Min; Yu Zhong-Yuan

    2009-01-01

    Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, their simplified axially symmetric shapes are utilized in our analysis. The energy dependent effective mass is taken into account in solving the Schrodinger equations in the single band effective mass approximation. The calculated results show that the energy dependent effective mass should be considered only for relatively small volume quantum dots or small quantum rings. For large size quantum materials, both the energy dependent effective mass and the parabolic effective mass can give the same results. The energy states and the effective masses of the quantum dot and the quantum ring as a function of geometric parameters are also discussed in detail.

  7. Lie map for the nonlinear transport of continuous intense beams in the axial-symmetric electrostatic fields

    Institute of Scientific and Technical Information of China (English)

    Jianqin Lü; Xiaosong Zhao

    2008-01-01

    Nonlinear transport of intense continuous beam in the axial-symmetric electrostatic fields is analyzed with the Lie algebraic method.The K-V particle distribution is adopted in the analysis. The results obtained can be used in the calculations of the intense continuous beam dynamics in the beam optical systems consisting of drift spaces, electrostatic lenses, and DC electrostatic accelerating tubes. A com-puter code has been designed for practical simulations. To meet the needs of accurate calculation, all the elements are divided into many small segments, the electric fields in each segment are regarded as uniform fields, and the dividing points are treated as thin lenses. Iter-ation procedures are adopted in the code to obtain self-consistent solutions. The code can be used to design low energy dc beam transport systems, electrostatic accelerators, and ion implantation machines.

  8. Photon spheres in Einstein and Einstein-Gauss-Bonnet theories and circular null geodesics in axially-symmetric spacetimes

    CERN Document Server

    Gallo, Emanuel

    2015-01-01

    In this article we extend a recent theorem proven by Hod (Phys. Lett. B, {\\bf 727}, 345--348, 2013) to $n$-dimensional Einstein and Einstein-Gauss-Bonnet theories, which gives an upper bound for the photon sphere radii of spherically symmetric black holes. As applications of these results we give a universal upper bound for the real part of quasinormal modes in the WKB limit and a universal lower bound for the position of the first relativistic image in the strong lensing regime produced by these type of black holes. For the axially-symmetric case, we also make some general comments (independent of the underlying gravitational theory) on the relation between circular null geodesics and the fastest way to circle a black hole.

  9. Comment on "Singularities in axially symmetric solutions of Einstein-Yang Mills and related theories, by Ludger Hannibal, [hep-th/9903063]"

    CERN Document Server

    Kleihaus, B

    1999-01-01

    We point out that the statements in [hep-th/9903063] concerning the regularity of static axially symmetric solutions in Yang-Mills-dilaton (YMD) [1] and Einstein-Yang-Mills(-dilaton) (EYMD) theory [2,3] are incorrect, and that the non-singular local gauge potential of the YMD solutions [4] is twice differentiable.

  10. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator

    Science.gov (United States)

    Andersson, P.; Andersson-Sunden, E.; Sjöstrand, H.; Jacobsson-Svärd, S.

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm-1, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful indication

  11. Deformations of Axially Symmetric Initial Data and the Mass-Angular Momentum Inequality

    CERN Document Server

    Cha, Ye Sle

    2014-01-01

    We show how to reduce the general formulation of the mass-angular momentum inequality, for axisymmetric initial data of the Einstein equations, to the known maximal case whenever a geometrically motivated system of equations admits a solution. This procedure is based on a certain deformation of the initial data which preserves the relevant geometry, while achieving the maximal condition and its implied inequality (in a weak sense) for the scalar curvature; this answers a question posed by R. Schoen. The primary equation involved, bears a strong resemblance to the Jang-type equations studied in the context of the positive mass theorem and the Penrose inequality. Each equation in the system is analyzed in detail individually, and it is shown that appropriate existence/uniqueness results hold with the solution satisfying desired asymptotics. Lastly, it is shown that the same reduction argument applies to the basic inequality yielding a lower bound for the area of black holes in terms of mass and angular momentum...

  12. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  13. Two dimensional vernier

    Science.gov (United States)

    Juday, Richard D. (Inventor)

    1992-01-01

    A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.

  14. Non-stationary axially symmetric goal of thermo-elasticity for a fixed rigid circular multi-layer plate

    Directory of Open Access Journals (Sweden)

    Shlyakhin Dmitry

    2017-01-01

    Full Text Available This paper considers axially symmetric goal of thermos–elasticity for a fixed rigid circular multi-layer isotropic plate with non–stationary heat flows on its front faces. The mathematical model is presented in the form of a not self–adjoint system that includes differential motion equations and a linear equation of the thermal-elastic state in a three-dimensional model. A new closed solution in an unconnected setting is built by the method of finite integral transformation. At the same time, a standardization procedure is conducted at each stage of the solution, which allows to implement an appropriate conversion algorithm. The calculated ratios provide an opportunity to perform a qualitative and quantitative analysis of the associated temperature and mechanical fields and also to examine stress–strain behaviour of the multi–layer systems both under the local thermal shock, which is observed, for example, in the interaction with the laser beam and in the case of uneven unsteady surface heating, which is frequent during the operation of protective construction structures.

  15. Two-dimensional optical spectroscopy

    CERN Document Server

    Cho, Minhaeng

    2009-01-01

    Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.

  16. Two dimensional axisymmetric smooth lattice Ricci flow

    CERN Document Server

    Brewin, Leo

    2015-01-01

    A lattice based method will be presented for numerical investigations of Ricci flow. The method will be applied to the particular case of 2-dimensional axially symmetric initial data on manifolds with S^2 topology. Results will be presented that show that the method works well and agrees with results obtained using contemporary finite difference methods.

  17. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  18. Effect of an axially-symmetric cyclonic vortex on the sea surface temperature in the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, E.E.; Mendoza, V.M.; Adem, J. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: eevu@atmosfera.unam.mx

    2006-04-15

    A model for the mixed layer of the Gulf of Mexico has been used to determine the effect that an idealized cyclonic vortex has in the sea surface temperature. The model consists of the equations of conservation of thermal energy and this of balance between mechanical energy and thermal energy, last based on the Kraus-Turner theory; both equations are vertically integrated in the mixed layer. As atmospheric forcing, we prescribe the surface wind associated with an axially-symmetric cyclonic vortex characterized by two parameters: the maximum tangential velocity and the radius at which that velocity is reached. The values of these two parameters, which depend on the position of the vortex, correspond to two cases: hurricane Hilda, which crossed the central part of the Gulf of Mexico between September 29 and October 3, 1964 and hurricane Gilbert whose trajectory between 11 and 17 September, 1988 crossed the Caribbean Sea, the Yucatan Peninsula and the southwest Gulf of Mexico. The results show that a cyclonic vortex with such characteristics, produce during its passage by the sea vertical turbulent water transport through the thermocline (entrainment) that is able to cool down the mixed layer in several degrees and increases the thermocline depth in several meters, in agreement with the observations. [Spanish] Se aplica un modelo de capa de mezcla para el Golfo de Mexico con el objeto de determinar el efecto de un vortice ciclonico idealizado sobre la temperatura de la superficie del mar. El modelo consiste basicamente de dos ecuaciones, la de conservacion de energia termica y la de balance entre energia mecanica y energia termica, esta ultima derivada de la teoria de Kraus-Turner; ambas ecuaciones son verticalmente integradas y acopladas en la capa de mezcla. Como forzamiento atmosferico sobre la superficie del mar se prescribe el viento asociado a un vortice ciclonico axialmente simetrico caracterizado por dos parametros: la velocidad tangencial maxima y el radio al

  19. Generation of radially polarized high energy mid-infrared optical vortex by use of a passive axially symmetric ZnSe waveplate

    Energy Technology Data Exchange (ETDEWEB)

    Wakayama, Toshitaka, E-mail: wakayama@saitama-med.ac.jp; Yonemura, Motoki [School of Biomedical Engineering, Saitama Medical University, Yamane 1397-1, Hidaka, Saitama 350-1241 (Japan); Oikawa, Hiroki; Sasanuma, Atsushi; Arai, Goki; Fujii, Yusuke [Department of Electrical and Electronic Engineering, Faculty of Engineering, Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Dinh, Thanh-Hung; Otani, Yukitoshi [Center for Optical Research & Education (CORE), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Higashiguchi, Takeshi, E-mail: higashi@cc.utsunomiya-u.ac.jp [Department of Electrical and Electronic Engineering, Faculty of Engineering, Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Center for Optical Research & Education (CORE), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Sakaue, Kazuyuki, E-mail: kazuyuki.sakaue@aoni.waseda.jp [Waseda Institute for Advanced Study, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan); Washio, Masakazu [Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan); Miura, Taisuke, E-mail: miura@fzu.cz [HiLASE Centre, Institute of Physics CAS, Za radnicí 828, 252 41, Dolní Břežany (Czech Republic); Takahashi, Akihiko [Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582 (Japan); Nakamura, Daisuke; Okada, Tatsuo [Graduate School of Information Sciences and Electrical Engineering, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)

    2015-08-24

    We demonstrated the generation of the intense radially polarized mid-infrared optical vortex at a wavelength of 10.6 μm by use of a passive axially symmetric zinc selenide (ZnSe) waveplate with high energy pulse throughput. The phase of the radially polarized optical vortex with the degree of polarization of 0.95 was spirally distributed in regard to the angle. The converted laser beam energy of about 2.6 mJ per pulse was obtained at the input pulse energy of 4.9 mJ, corresponding to the energy conversion efficiency of 56%.

  20. On the appearance of a system of ring vortices in the mixing layer of axially symmetric turbulent jets under acoustic action

    Science.gov (United States)

    Pimshtein, V. G.

    2016-07-01

    The shadow visualization method is applied to study the process of loss of stability of the mixing layer of a subsonic axially symmetric turbulent jet under longitudinal internal action of saw-tooth sound waves of finite amplitude. Such action leads to the formation of a system of ring vortices in the mixing layer at the frequency of its intrinsic instability. The interaction of the vortices can be accompanied by sound emission. A similar phenomenon is also observed in turbulent jets for small supercritical pressure fluctuations on a nozzle.

  1. Dynamics of film. [two dimensional continua theory

    Science.gov (United States)

    Zak, M.

    1979-01-01

    The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.

  2. Specification of a Two-Dimensional Test Case

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    This paper describes the geometry and other boundary conditions for a test case which can be used to test different two-dimensional CFD codes in the lEA Annex 20 work. The given supply opening is large compared with practical openings. Therefore, this geometry will reduce the need for a high number...... of grid points in the wall jet region....

  3. MULTI2D - a computer code for two-dimensional radiation hydrodynamics

    Science.gov (United States)

    Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.

    2009-06-01

    required. Nature of problem: In inertial confinement fusion and related experiments with lasers and particle beams, energy transport by thermal radiation becomes important. Under these conditions, the radiation field strongly interacts with the hydrodynamic motion through emission and absorption processes. Solution method: The equations of radiation transfer coupled with Lagrangian hydrodynamics, heat diffusion and beam tracing (laser or ions) are solved, in two-dimensional axial-symmetric geometry ( R-Z coordinates) using a fractional step scheme. Radiation transfer is solved with angular resolution. Matter properties are either interpolated from tables (equations-of-state and opacities) or computed by user routines (conductivities and beam attenuation). Restrictions: The code has been designed for typical conditions prevailing in inertial confinement fusion (ns time scale, matter states close to local thermodynamical equilibrium, negligible radiation pressure, …). Although a wider range of situations can be treated, extrapolations to regions beyond this design range need special care. Unusual features: A special computer language, called r94, is used at top levels of the code. These parts have to be converted to standard C by a translation program (supplied as part of the package). Due to the complexity of code (hydro-code, grid generation, user interface, graphic post-processor, translator program, installation scripts) extensive manuals are supplied as part of the package. Running time: 567 seconds for the example supplied.

  4. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...

  5. Reversing-pulse electric birefringence of multicomponent systems: the formulation and signal simulation for two axially symmetric components in equilibrium and the appearance of unusual signal patterns.

    Science.gov (United States)

    Yamaoka, Kiwamu

    2007-04-15

    This paper consists of two parts on reversing-pulse electric birefringence (RPEB) signal patterns. The first is the theoretical formulation of two axially symmetric models coexisting in equilibrium in solution. The present RPEB theory is based on the original Tinoco-Yamaoka theory with classical electric dipole moments, which was recently modified and extended by Yamaoka, Sasai, and Kohno to include various electric and optical parameters and most importantly the ion-fluctuation dipole moment (1/2) along the longitudinal direction of axially symmetric molecules. The theory contains the electric polarizability anisotropy Deltaalpha', which can be either positive or negative in relation to the shape of components. The overall signal can be expressed as the sum of the fractions of two components in proportions to the coefficient F(1) or F(2) (=1-F(1)). The second part is the simulation of theoretical RPEB curves for the two-component system with various sets of electric and hydrodynamic parameters for hypothetical but interesting cases. In consideration of the decay behavior, calculated decay curves were compared with experimentally conceivable signals, classifying them into three categories according to cases: F(1)>1, 0signal in buildup and reverse transients reveals the mechanism of field orientation and electro-optic properties of molecules in solution. The ratio q=/ktDeltaalpha(') is the crucial factor that controls the pattern of RPEB signals. If q value of one component is positive and the other is negative, the simulated RPEB curves are characterized by three cases: q>0, q0 or qsignals. If -1signal patterns appears.

  6. Two dimensional unstable scar statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  7. Two-Dimensional Vernier Scale

    Science.gov (United States)

    Juday, Richard D.

    1992-01-01

    Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.

  8. Analysis of axially symmetric wire antennas by the use of exact kernel of electric field integral equation

    Directory of Open Access Journals (Sweden)

    Krneta Aleksandra J.

    2016-01-01

    Full Text Available The paper presents a new method for the analysis of wire antennas with axial symmetry. Truncated cones have been applied to precisely model antenna geometry, while the exact kernel of the electric field integral equation has been used for computation. Accuracy and efficiency of the method has been further increased by the use of higher order basis functions for current expansion, and by selecting integration methods based on singularity cancelation techniques for the calculation of potential and impedance integrals. The method has been applied to the analysis of a typical dipole antenna, thick dipole antenna and a coaxial line. The obtained results verify the high accuracy of the method. [Projekat Ministarstva nauke Republike Srbije, br. TR-32005

  9. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...

  10. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  11. Two-dimensional manifold with point-like defects

    CERN Document Server

    Gani, Vakhid A; Rubin, Sergei G

    2014-01-01

    We study a class of two-dimensional extra spaces isomorphic to the $S^2$ sphere in the framework of the multidimensional gravitation. We show that there exists a family of stationary metrics that depend on the initial (boundary) conditions. All these geometries have a singular point. We also discuss the possibility for these deformed extra spaces to be considered as dark matter candidates.

  12. Two-dimensional quantum repeaters

    Science.gov (United States)

    Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.

    2016-11-01

    The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.

  13. Two-dimensional capillary origami

    Science.gov (United States)

    Brubaker, N. D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.

  14. Two-dimensional cubic convolution.

    Science.gov (United States)

    Reichenbach, Stephen E; Geng, Frank

    2003-01-01

    The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.

  15. Calculation of the Pressure Distribution on Bodies of Revolution in the Subsonic Flow of a Gas. Part 1; Axially Symmetrical Flow

    Science.gov (United States)

    Bilharz, Herbert; Hoelder, Ernst

    1947-01-01

    The present report concerns a method of computing the velocity and pressure distributions on bodies of revolution in axially symmetrical flow in the subsonic range. The differential equation for the velocity potential Phi of a compressible fluid motion is linearized tn the conventional manner, and then put in the form Delta(Phi) = 0 by affine transformation. The quantity Phi represents the velocity potential of a fictitious incompressible flow, for which a constant superposition of sources by sections is secured by a method patterned after von Karman which must comply with the boundary condition delta(phi)/delta(n) = 0 at the originally specified contour. This requirement yields for the "pseudo-stream function" psi a differential equation which must be fulfilled for as many points on the contour as source lengths are assumed. In this manner, the problem of defining the still unknown source intensities is reduced to the solution of an inhomogeneous equation system. The pressure distribution is then determined with the aid of Bernoulli's equation and adiabatic equation of state. Lastly, the pressure distributions in compressible and incompressible medium are compared on a model problem.

  16. Geometry

    CERN Document Server

    Pedoe, Dan

    1988-01-01

    ""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he

  17. Classifying Two-dimensional Hyporeductive Triple Algebras

    CERN Document Server

    Issa, A Nourou

    2010-01-01

    Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.

  18. Integral transformation of the Navier-Stokes equations for laminar flow in channels of arbitrary two-dimensional geometry; Transformacao integral das equacoes de Navier-Stokes para escoamento laminar em canais de geometria bidimensional arbitraria

    Energy Technology Data Exchange (ETDEWEB)

    Perez Guerrero, Jesus Salvador

    1995-12-31

    Laminar developing flow in channels of arbitrary geometry was studied by solving the Navier-Stokes equations in the stream function-only formulation through the Generalized Integral Transform Technique (GITT). The stream function is expanded in an infinite system based on eigenfunctions obtained by considering solely the diffusive terms of the original formulation. The Navier-Stokes equations are transformed into an infinite system of ordinary differential equations, by using the transformation and inversion formulae. For computational purposes, the infinite series is truncated, according to an automatic error control procedure. The ordinary differential is solved through well-established scientific subroutines from widely available mathematical libraries. The classical problem of developing flow between parallel-plates is analysed first, as for both uniform and irrotational inlet conditions. The effect of truncating the duct length in the accuracy of the obtained solution is studied. A convergence analysis of the results obtained by the GITT is performed and compared with results obtained by finite difference and finite element methods, for different values of Reynolds number. The problem of flow over a backward-facing step then follows. Comparisons with experimental results in the literature indicate an excellent agreement. The numerical co-validation was established for a test case, and perfect agreement is reached against results considered as benchmarks in the recent literature. The results were shown to be physically more reasonable than others obtained by purely numerical methods, in particular for situations where three-dimensional effects are identified. Finally, a test problem for an irregular by shoped duct was studied and compared against results found in the literature, with good agreement and excellent convergence rates for the stream function field along the whole channel, for different values of Reynolds number. (author) 78 refs., 24 figs., 14 tabs.

  19. Two-dimensional function photonic crystals

    CERN Document Server

    Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu

    2016-01-01

    In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.

  20. A new series of short axially symmetrically and asymmetrically 1,3,6,8-tetrasubstituted pyrenes with two types of substituents: Syntheses, structures, photophysical properties and electroluminescence

    Science.gov (United States)

    Zhang, Ran; Zhang, Tengfei; Xu, Lu; Han, Fangfang; Zhao, Yun; Ni, Zhonghai

    2017-01-01

    A new series of short axially symmetrically (4a and 4b) and asymmetrically (4c and 4d) 1,3,6,8-tetrasubstituted pyrene-based compounds with two phenyl moieties and two diphenylamine units on the pyrene core were designed and synthesized based on stepwise synthetic strategy. These compounds were structurally characterized and their photoelectric properties were investigated by spectroscopy, electrochemical and theoretical studies. The structures of 4a and 4b were determined by single-crystal X-ray diffraction analysis, indicating that the compounds are twisted by the peripheral substituents and the intermolecular π-π interactions have been efficiently interrupted. The four compounds exhibit high absolute fluorescence quantum yields (VF) in dichloromethane (83.31-88.45%) and moderate VFs in film states (20.78-38.68%). In addition, compounds 4a and 4b display relatively higher absolute VFs than those of 4c and 4d in film states. All the compounds exhibit high thermal stability with decomposition temperatures above 358 °C and the values of 4c and 4d are higher than 4a and 4b. Compounds 4a and 4b can form morphologically stable amorphous thin films with Tg values of 146 °C and 149 °C, respectively. However, there are no obvious Tg observed in compounds 4c and 4d. Electroluminescent devices using 4a and 4b as doped emission layer show promising device performance with low turn-on voltage (3.0 V), maximum brightness around 15100 cd/m2 and 16100 cd/m2, maximum luminance efficiency of 12.4 cd/A and 13.6 cd/A and maximum external quantum efficiency of 5.34% and 5.63%, respectively.

  1. Perspective: Two-dimensional resonance Raman spectroscopy

    Science.gov (United States)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-11-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.

  2. Hadamard States and Two-dimensional Gravity

    CERN Document Server

    Salehi, H

    2001-01-01

    We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.

  3. Topological defects in two-dimensional crystals

    OpenAIRE

    Chen, Yong; Qi, Wei-Kai

    2008-01-01

    By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.

  4. Field computation for two-dimensional array transducers with limited diffraction array beams.

    Science.gov (United States)

    Lu, Jian-Yu; Cheng, Jiqi

    2005-10-01

    A method is developed for calculating fields produced with a two-dimensional (2D) array transducer. This method decomposes an arbitrary 2D aperture weighting function into a set of limited diffraction array beams. Using the analytical expressions of limited diffraction beams, arbitrary continuous wave (cw) or pulse wave (pw) fields of 2D arrays can be obtained with a simple superposition of these beams. In addition, this method can be simplified and applied to a 1D array transducer of a finite or infinite elevation height. For beams produced with axially symmetric aperture weighting functions, this method can be reduced to the Fourier-Bessel method studied previously where an annular array transducer can be used. The advantage of the method is that it is accurate and computationally efficient, especially in regions that are not far from the surface of the transducer (near field), where it is important for medical imaging. Both computer simulations and a synthetic array experiment are carried out to verify the method. Results (Bessel beam, focused Gaussian beam, X wave and asymmetric array beams) show that the method is accurate as compared to that using the Rayleigh-Sommerfeld diffraction formula and agrees well with the experiment.

  5. Study of Two-Dimensional Materials with Honeycomb Geometry

    NARCIS (Netherlands)

    Boneschanscher, M.P.

    2014-01-01

    Honeycomb structures have already fascinated mankind since ancient times. They were observed in various natural occurring phenomena, from the structure of the beehive of the honeybee that granted the structure its name, to the inner structure of butterfly wings, bones, and insect eyes. The honeycomb

  6. Relativistic sonic geometry for isothermal accretion in the Schwarzschild metric

    OpenAIRE

    Shaikh, Md Arif; Firdousi, Ivleena; Das, Tapas K

    2016-01-01

    The velocity potential, mass accretion rate and the Bernoulli's Constant corresponding to the general relativistic isothermal accretion in the Schwarzschild metric have been linearly perturbed, both for spherical as well as the axially symmetric flow to demonstrate the emergence of the embedded curved sonic manifold. Except the conformal factors, the relativistic acoustic geometry remains invariant irrespective of the physical quantity getting perturbed. The acoustic surface gravity has been ...

  7. Strongly interacting two-dimensional Dirac fermions

    NARCIS (Netherlands)

    Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.

    2009-01-01

    We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature

  8. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  9. Atom-Based Geometrical Fingerprinting of Conformal Two-Dimensional Materials

    Science.gov (United States)

    Mehboudi, Mehrshad

    The shape of two-dimensional materials plays a significant role on their chemical and physical properties. Two-dimensional materials are basic meshes that are formed by mesh points (vertices) given by atomic positions, and connecting lines (edges) between points given by chemical bonds. Therefore the study of local shape and geometry of two-dimensional materials is a fundamental prerequisite to investigate physical and chemical properties. Hereby the use of discrete geometry to discuss the shape of two-dimensional materials is initiated. The local geometry of a surface embodied in 3D space is determined using four invariant numbers from the metric and curvature tensors which indicates how much the surface is stretched and curved under a deformation as compared to a reference pre-deformed conformation. Many different disciplines advance theories on conformal two-dimensional materials by relying on continuum mechanics and fitting continuum surfaces to the shape of conformal two-dimensional materials. However two-dimensional materials are inherently discrete. The continuum models are only applicable when the size of two-dimensional materials is significantly large and the deformation is less than a few percent. In this research, the knowledge of discrete differential geometry was used to tell the local shape of conformal two-dimensional materials. Three kind of two-dimensional materials are discussed: 1) one atom thickness structures such as graphene and hexagonal boron nitride; 2) high and low buckled 2D meshes like stanene, leadene, aluminum phosphate; and, 3) multi layer 2D materials such as Bi2Se3 and WSe2. The lattice structures of these materials were created by designing a mechanical model - the mechanical model was devised in the form of a Gaussian bump and density-functional theory was used to inform the local height; and, the local geometries are also discussed.

  10. Two Dimensional Plasmonic Cavities on Moire Surfaces

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla

    2010-03-01

    We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.

  11. Two-dimensional function photonic crystals

    Science.gov (United States)

    Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng

    2017-01-01

    In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.

  12. Two-Dimensional Planetary Surface Lander

    Science.gov (United States)

    Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.

    2014-06-01

    A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.

  13. Topological defect motifs in two-dimensional Coulomb clusters

    CERN Document Server

    Radzvilavičius, A; 10.1088/0953-8984/23/38/385301

    2012-01-01

    The most energetically favourable arrangement of low-density electrons in an infinite two-dimensional plane is the ordered triangular Wigner lattice. However, in most instances of contemporary interest one deals instead with finite clusters of strongly interacting particles localized in potential traps, for example, in complex plasmas. In the current contribution we study distribution of topological defects in two-dimensional Coulomb clusters with parabolic lateral confinement. The minima hopping algorithm based on molecular dynamics is used to efficiently locate the ground- and low-energy metastable states, and their structure is analyzed by means of the Delaunay triangulation. The size, structure and distribution of geometry-induced lattice imperfections strongly depends on the system size and the energetic state. Besides isolated disclinations and dislocations, classification of defect motifs includes defect compounds --- grain boundaries, rosette defects, vacancies and interstitial particles. Proliferatio...

  14. Interpolation by two-dimensional cubic convolution

    Science.gov (United States)

    Shi, Jiazheng; Reichenbach, Stephen E.

    2003-08-01

    This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.

  15. Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence.

    Science.gov (United States)

    Servidio, S; Matthaeus, W H; Shay, M A; Cassak, P A; Dmitruk, P

    2009-03-20

    Systematic analysis of numerical simulations of two-dimensional magnetohydrodynamic turbulence reveals the presence of a large number of X-type neutral points where magnetic reconnection occurs. We examine the statistical properties of this ensemble of reconnection events that are spontaneously generated by turbulence. The associated reconnection rates are distributed over a wide range of values and scales with the geometry of the diffusion region. Locally, these events can be described through a variant of the Sweet-Parker model, in which the parameters are externally controlled by turbulence. This new perspective on reconnection is relevant in space and astrophysical contexts, where plasma is generally in a fully turbulent regime.

  16. Synthesis of two-dimensional materials for beyond graphene devices

    Science.gov (United States)

    Zhang, Kehao; Eichfeld, Sarah; Leach, Jacob; Metzger, Bob; Lin, Yu-Chuan; Evans, Keith; Robinson, Joshua A.

    2015-05-01

    In this paper, we present an overview of the currently employed techniques to synthesize two-dimensional materials, focusing on MoS2 and WSe2, and summarize the progress reported to-date. Here we discuss the importance of controlling reactor geometries to improve film uniformity and quality for MoS2 through a combination of modeling and experimental design. In addition, development of processes scalable to provide wafer scale uniformity is explored using synthesis of WSe2 via metal-organic chemical vapor deposition. Finally, we discuss the impact of each of these processes for TMD synthesis on epitaxial graphene.

  17. TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)

    2015-11-20

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.

  18. Two dimensional topology of cosmological reionization

    CERN Document Server

    Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan

    2015-01-01

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.

  19. Matching Two-dimensional Gel Electrophoresis' Spots

    DEFF Research Database (Denmark)

    Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza

    2012-01-01

    This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...

  20. Mobility anisotropy of two-dimensional semiconductors

    Science.gov (United States)

    Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong

    2016-12-01

    The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.

  1. Towards two-dimensional search engines

    OpenAIRE

    Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.

    2011-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...

  2. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Kronecker Product of Two-dimensional Arrays

    Institute of Scientific and Technical Information of China (English)

    Lei Hu

    2006-01-01

    Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.

  4. Two-Dimensional Toda-Heisenberg Lattice

    Directory of Open Access Journals (Sweden)

    Vadim E. Vekslerchik

    2013-06-01

    Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.

  5. A novel two dimensional particle velocity sensor

    NARCIS (Netherlands)

    Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.

    2013-01-01

    In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica

  6. Two-dimensional microstrip detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.

  7. Two-dimensional magma-repository interactions

    NARCIS (Netherlands)

    Bokhove, O.

    2001-01-01

    Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of

  8. Two-dimensional subwavelength plasmonic lattice solitons

    CERN Document Server

    Ye, F; Hu, B; Panoiu, N C

    2010-01-01

    We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai

  9. A two-dimensional Dirac fermion microscope

    DEFF Research Database (Denmark)

    Bøggild, Peter; Caridad, Jose; Stampfer, Christoph

    2017-01-01

    in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...

  10. Two-Dimensional (2D) Polygonal Electromagnetic Cloaks

    Institute of Scientific and Technical Information of China (English)

    LI Chao; YAO Kan; LI Fang

    2009-01-01

    Transformation optics offers remarkable control over electromagnetic fields and opens an exciting gateway to design 'invisible cloak devices' recently.We present an important class of two-dimensional (2D) cloaks with polygon geometries.Explicit expressions of transformed medium parameters are derived with their unique properties investigated.It is found that the elements of diagonalized permittivity tensors are always positive within an irregular polygon cloak besides one element diverges to plus infinity and the other two become zero at the inner boundary.At most positions,the principle axes of permittivity tensors do not align with position vectors.An irregular polygon cloak is designed and its invisibility to external electromagnetic waves is numerically verified.Since polygon cloaks can be tailored to resemble any objects,the transformation is finally generalized to the realization of 2D cloaks with arbitrary geometries.

  11. Swimming of Vorticella in two-dimensional confinements

    Science.gov (United States)

    Sotelo, Luz; Park, Young-Gil; Jung, Sunghwan; Ryu, Sangjin

    2015-03-01

    Vorticellais a ciliate observed in the stalked sessile form (trophont), which consists of an inverted bell-shaped cell body (zooid) and a slender stalk attaching the zooid to a substrate. Having circular cilia bands around the oral part, the stalkless zooid of Vorticella can serve as a model system for microorganism swimming. Here we present how the stalkess trophont zooid of Vorticella swims in two-dimensional confined geometries which are similar to the Hele-Shaw cell. Having harvested stalkless Vorticella zooids, we observed their swimming in water between two glass surfaces using video microscopy. Based on measured swimming trajectories and distributions of zooid orientation and swimming velocity, we analyzed how Vorticella's swimming mobility was influenced by the geometry constraints. Supported by First Award grant from Nebraska EPSCoR.

  12. Two-dimensional random arrays for real time volumetric imaging

    DEFF Research Database (Denmark)

    Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.

    1994-01-01

    Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...

  13. Republication of: New solutions to Einstein's equations of gravitation. B. Explicit determination of static, axially symmetric fields. By Rudolf Bach. With a supplement on the static two-body problem. By H. Weyl.

    Science.gov (United States)

    Bach, Rudolf; Weyl, Hermann

    2012-03-01

    This is the English translation of the third of a series of 3 papers by Hermann Weyl (the third one jointly with Rudolf Bach), first published in 1917-1922, in which the authors derived and discussed the now-famous Weyl two-body static axially symmetric vacuum solution of Einstein's equations. The English translations of the other two papers are published alongside this one. The papers have been selected by the Editors of General Relativity and Gravitation for re-publication in the Golden Oldies series of the journal. This republication is accompanied by an editorial note written by Gernot Neugebauer, David Petroff and Bahram Mashhoon, and by a brief biography of R. Bach, written by H. Goenner.

  14. Electronics based on two-dimensional materials.

    Science.gov (United States)

    Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi

    2014-10-01

    The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.

  15. Two-dimensional ranking of Wikipedia articles

    Science.gov (United States)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  16. Two-Dimensional NMR Lineshape Analysis

    Science.gov (United States)

    Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John

    2016-04-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.

  17. Towards two-dimensional search engines

    CERN Document Server

    Ermann, Leonardo; Shepelyansky, Dima L

    2011-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.

  18. Toward two-dimensional search engines

    Science.gov (United States)

    Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.

    2012-07-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.

  19. A two-dimensional Dirac fermion microscope

    Science.gov (United States)

    Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-01

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  20. A two-dimensional Dirac fermion microscope.

    Science.gov (United States)

    Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-09

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  1. Two-Dimensional Scheduling: A Review

    Directory of Open Access Journals (Sweden)

    Zhuolei Xiao

    2013-07-01

    Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.

  2. Two dimensional fermions in four dimensional YM

    CERN Document Server

    Narayanan, R

    2009-01-01

    Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.

  3. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  4. String breaking in two-dimensional QCD

    CERN Document Server

    Hornbostel, K J

    1999-01-01

    I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.

  5. Two-dimensional supramolecular electron spin arrays.

    Science.gov (United States)

    Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya

    2013-05-07

    A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Two dimensional echocardiographic detection of intraatrial masses.

    Science.gov (United States)

    DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S

    1981-11-01

    With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.

  7. Weakly disordered two-dimensional Frenkel excitons

    Science.gov (United States)

    Boukahil, A.; Zettili, Nouredine

    2004-03-01

    We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.

  8. Two-dimensional photonic crystal surfactant detection.

    Science.gov (United States)

    Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A

    2012-08-07

    We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.

  9. Theory of two-dimensional transformations

    OpenAIRE

    Kanayama, Yutaka J.; Krahn, Gary W.

    1998-01-01

    The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...

  10. Two-dimensional ranking of Wikipedia articles

    CERN Document Server

    Zhirov, A O; Shepelyansky, D L

    2010-01-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  11. Mobility anisotropy of two-dimensional semiconductors

    CERN Document Server

    Lang, Haifeng; Liu, Zhirong

    2016-01-01

    The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.

  12. Sums of two-dimensional spectral triples

    DEFF Research Database (Denmark)

    Christensen, Erik; Ivan, Cristina

    2007-01-01

    construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....

  13. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;

    1996-01-01

    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  14. Two-dimensional gauge theoretic supergravities

    Science.gov (United States)

    Cangemi, D.; Leblanc, M.

    1994-05-01

    We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.

  15. Two-Dimensional Theory of Scientific Representation

    Directory of Open Access Journals (Sweden)

    A Yaghmaie

    2013-03-01

    Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.

  16. Two-dimensional shape memory graphene oxide

    Science.gov (United States)

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-06-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.

  17. Flat Chern band in a two-dimensional organometallic framework.

    Science.gov (United States)

    Liu, Zheng; Wang, Zheng-Fei; Mei, Jia-Wei; Wu, Yong-Shi; Liu, Feng

    2013-03-01

    By combining exotic band dispersion with nontrivial band topology, an interesting type of band structure, namely, the flat Chern band, has recently been proposed to spawn high-temperature fractional quantum Hall states. Despite the proposal of several theoretical lattice models, however, it remains doubtful whether such a "romance of flatland" could exist in a real material. Here, we present a first-principles design of a two-dimensional indium-phenylene organometallic framework that realizes a nearly flat Chern band right around the Fermi level by combining lattice geometry, spin-orbit coupling, and ferromagnetism. An effective four-band model is constructed to reproduce the first-principles results. Our design, in addition, provides a general strategy to synthesize topologically nontrivial materials by virtue of organic chemistry and nanotechnology.

  18. Two-dimensional electronic spectroscopy with birefringent wedges

    Energy Technology Data Exchange (ETDEWEB)

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  19. Patched Green's function techniques for two-dimensional systems

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Lin, Jun

    2015-01-01

    We present a numerically efficient technique to evaluate the Green's function for extended two-dimensional systems without relying on periodic boundary conditions. Different regions of interest, or “patches,” are connected using self-energy terms which encode the information of the extended parts...... of the system. The calculation scheme uses a combination of analytic expressions for the Green's function of infinite pristine systems and an adaptive recursive Green's function technique for the patches. The method allows for an efficient calculation of both local electronic and transport properties, as well...... as the inclusion of multiple probes in arbitrary geometries embedded in extended samples. We apply the patched Green's function method to evaluate the local densities of states and transmission properties of graphene systems with two kinds of deviations from the pristine structure: bubbles and perforations...

  20. Nematic Equilibria on a Two-Dimensional Annulus

    KAUST Repository

    Lewis, A. H.

    2017-01-16

    We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.

  1. Isolated structures in two-dimensional optical superlattice

    Science.gov (United States)

    Zou, Xin-Hao; Yang, Bao-Guo; Xu, Xia; Tang, Peng-Ju; Zhou, Xiao-Ji

    2017-10-01

    Overlaying commensurate optical lattices with various configurations called superlattices can lead to exotic lattice topologies and, in turn, a discovery of novel physics. In this study, by overlapping the maxima of lattices, a new isolated structure is created, while the interference of minima can generate various "sublattice" patterns. Three different kinds of primitive lattices are used to demonstrate isolated square, triangular, and hexagonal "sublattice" structures in a two-dimensional optical superlattice, the patterns of which can be manipulated dynamically by tuning the polarization, frequency, and intensity of laser beams. In addition, we propose the method of altering the relative phase to adjust the tunneling amplitudes in "sublattices". Our configurations provide unique opportunities to study particle entanglement in "lattices" formed by intersecting wells and to implement special quantum logic gates in exotic lattice geometries.

  2. Light transport and localization in two-dimensional correlated disorder

    CERN Document Server

    Conley, Gaurasundar M; Pratesi, Filippo; Vynck, Kevin; Wiersma, Diederik S

    2013-01-01

    Structural correlations in disordered media are known to affect significantly the propagation of waves. In this article, we theoretically investigate the transport and localization of light in two-dimensional photonic structures with short-range correlated disorder. The problem is tackled semi-analytically using the Baus-Colot model for the structure factor of correlated media and a modified independent scattering approximation. We find that short-range correlations make it possible to easily tune the transport mean free path by more than a factor of 2 and the related localization length over several orders of magnitude. This trend is confirmed by numerical finite-difference time-domain calculations. This study therefore shows that disorder engineering can offer fine control over light transport and localization in planar geometries, which may open new opportunities in both fundamental and applied photonics research.

  3. Many body localization in two dimensional square and triangular lattices

    CERN Document Server

    Gonzalez-Garcia, L; Paredes, R

    2016-01-01

    Ultracold interacting Bose atoms placed in disordered two dimensional optical lattices with square and triangular symmetries are found to be localized above a certain disorder strength amplitude. From a Gross-Pitaevskii mean analysis we determine the localization length as a function of the disorder strength and investigate the energy spectrum in terms of the disorder magnitude. We found that the localization length is observed to decrease faster in triangular geometries than in square ones. In the presence of a harmonic confinement localization is observed at the center of the trap. The analysis of the energy spectrum reveals that discrete energy levels acquire a finite width that is always smaller than the distance among energy levels.

  4. Isolated Structures in Two-Dimensional Optical Superlattice

    CERN Document Server

    Zou, Xinhao; Xu, Xia; Tang, Pengju; Zhou, Xiaoji

    2016-01-01

    Overlaying commensurate optical lattices with various configurations called superlattices can lead to exotic lattice topologies and, in turn, a discovery of novel physics. In this study, by overlapping the maxima of lattices, a new isolated structure is created, while the interference of minima can generate various "sublattice" patterns. Three different kinds of primitive lattices are used to demonstrate isolated square, triangular, and hexagonal "sublattice" structures in a two-dimensional optical superlattice, the patterns of which can be manipulated dynamically by tuning the polarization, frequency, and intensity of laser beams. In addition, we propose the method of altering the relative phase to adjust the tunneling amplitudes in "sublattices." Our configurations provide unique opportunities to study particle entanglement in "lattices" formed by intersecting wells and to implement special quantum logic gates in exotic lattice geometries.

  5. Existence and Stability of Two-Dimensional Compact-Like Discrete Breathers in Discrete Two-Dimensional Monatomic Square Lattices

    Institute of Scientific and Technical Information of China (English)

    XU Quan; TIAN Qiang

    2007-01-01

    Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.

  6. 多种气膜冷却形式下轴对称矢量喷管壁温计算研究%Numerical Study on Film Cooling and Wall Temperature of Vectored Axial-symmetric Nozzle

    Institute of Scientific and Technical Information of China (English)

    薛航; 陈徐屹; 张小英

    2014-01-01

    The study on the cooling structure of vectoring nozzle is very essential for developing the vectoring propulsion technology in aero-engine .To study the cooling technology of the heat shield on the axial-symmetric vectoring nozzle with 20° deflection ,the heat balance equation based on heat transfer of nozzle has been devel-oped and solved with Newton-Rafael method to give wall temperature .Heat transfer of film cooling is computed with empirical formula of cooling effectiveness .And radiative heating from the gas is computed with net radia-tion analysis method in an enclosure .To verify the computation method ,wall temperature of a certain axial-symmetric nozzle in after burning condition is computed and compared with the results of reference .Study shows that the heat shield plays a good cooling part for convergent part of nozzle with film cooling reducing its temperature remarkably .Compared with convergent part of nozzle which is protected by the heat shield ,tem-perature of the divergent section of nozzle is much higher and needs further cooling .%航空发动机矢量喷管的冷却结构设计是研究矢量推进技术应用的关键问题之一。针对某偏转20°轴对称矢量喷管隔热屏采用的十种气膜冷却结构,建立基于壁面传热的热平衡方程,采用牛顿-拉斐尔森迭代法得出十种冷却结构下壁面及隔热屏的温度。其中气膜冷却采用有效温比经验公式计算,燃气辐射采用封闭腔净辐射分析法计算,并把本文计算的壁温与文献结果进行对比分析。结果表明:隔热屏对喷管收敛段有很好的冷却作用,采用气膜冷却可显著降低其温度;相对于受隔热屏保护的收敛段而言,喷管扩张段的受热形势较为严峻,温度更高,其冷却有待加强。

  7. Two dimensional simulation of direct methanol fuel cell : a new (embedded) type of current collectors

    OpenAIRE

    Kulikovsky, A. A.; Divisek, J.; Kornyshev, Yu. M.

    2000-01-01

    A two-dimensional numerical model of the direct methanol fuel cell with gas fuel is developed. Simulation of the cell with current collectors of conventional geometry reveal the formation of fuel-depleted, "shaded" regions in the cathode and anode catalyst layers. These regions are positioned in front of current collectors, farther from the gas channel windows. Another disadvantage of the conventional geometry is the concentration of electron current at the edges of current collectors. Based ...

  8. Continuum probe two-dimensional electronic spectroscopy of the photosystem II reaction center

    Directory of Open Access Journals (Sweden)

    Ogilvie J. P.

    2013-03-01

    Full Text Available We report two-dimensional electronic spectroscopy of the photosystem II reaction center, collected in the pump-probe geometry employing a continuum probe. This enables observation of ion bands that report on intermediates in the charge separation process.

  9. Two-dimensional analysis of the interdigited back-contact solar cell

    Science.gov (United States)

    Chin, D. J.; Navon, D. H.

    1981-02-01

    The behavior of the interdigited back-contact solar cell (IBC) under high illuminating levels has been analyzed by two-dimensional numerical techniques. The effects of cell geometry and surface recombination on efficiency are examined. The IBC cell with a doping gradient at the front surface is also considered.

  10. Optimal excitation of two dimensional Holmboe instabilities

    CERN Document Server

    Constantinou, Navid C

    2010-01-01

    Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...

  11. Phonon hydrodynamics in two-dimensional materials.

    Science.gov (United States)

    Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola

    2015-03-06

    The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.

  12. Probabilistic Universality in two-dimensional Dynamics

    CERN Document Server

    Lyubich, Mikhail

    2011-01-01

    In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.

  13. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    A M Shaikh; S S Desai; A K Patra

    2004-08-01

    A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.

  14. Two-dimensional heterostructures for energy storage

    Science.gov (United States)

    Pomerantseva, Ekaterina; Gogotsi, Yury

    2017-07-01

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  15. Rationally synthesized two-dimensional polymers.

    Science.gov (United States)

    Colson, John W; Dichtel, William R

    2013-06-01

    Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.

  16. Janus Spectra in Two-Dimensional Flows

    Science.gov (United States)

    Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki

    2016-09-01

    In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.

  17. Local doping of two-dimensional materials

    Science.gov (United States)

    Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.

  18. Two-dimensional fourier transform spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    DeFlores, Lauren; Tokmakoff, Andrei

    2016-10-25

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  19. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  20. FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP

    Institute of Scientific and Technical Information of China (English)

    Chen Jiangfeng; Yuan Baozong; Pei Bingnan

    2008-01-01

    Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.

  1. Equivalency of two-dimensional algebras

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica

    2011-07-01

    Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)

  2. Two-Dimensional Nucleation of Ice from Supercooled Water

    Science.gov (United States)

    Seeley, L. H.; Seidler, G. T.

    2001-03-01

    Heterogeneous nucleation is the initial formation of a stable phase from a metastable phase in the presence of a catalyzing surface. This ubiquitous process has consequences ranging from metallurgy to the formation of kidney stones. Heterogeneous nucleation of ice plays a central role in cloud formation, suggesting one possible connection between anthropogenic pollutants and global climate. A key topic in the theory of nucleation is the geometry of the critical nucleus. Standard nucleation theories generally predict a compact critical nucleus with a surface of roughly constant curvature. We report measurements of the temperature dependent nucleation rate of ice from water samples supporting aliphatic alcohol Langmuir films. We use classical nucleation theory to extract thermodynamic parameters from the measured nucleation rates. From these parameters we conclude that both the effective free energy barrier and the molecular kinetics of nucleation are dominated by the physics at the interface. Our results give self-consistent evidence that the geometry of the critical nucleus in this system is essentially two-dimensional.

  3. On numerical evaluation of two-dimensional phase integrals

    DEFF Research Database (Denmark)

    Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans

    1975-01-01

    The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....

  4. Janus spectra in two-dimensional flows

    CERN Document Server

    Liu, Chien-Chia; Chakraborty, Pinaki

    2016-01-01

    In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...

  5. Comparative Two-Dimensional Fluorescence Gel Electrophoresis.

    Science.gov (United States)

    Ackermann, Doreen; König, Simone

    2018-01-01

    Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.

  6. Two-dimensional hexagonal semiconductors beyond graphene

    Science.gov (United States)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-12-01

    The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.

  7. Two-Dimensional Phononic Crystals: Disorder Matters.

    Science.gov (United States)

    Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M

    2016-09-14

    The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.

  8. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  9. Radiation effects on two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)

    2016-12-15

    The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Photodetectors based on two dimensional materials

    Science.gov (United States)

    Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen

    2016-09-01

    Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  11. Asymptotics for Two-dimensional Atoms

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip

    2012-01-01

    We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....

  12. Predicting Two-Dimensional Silicon Carbide Monolayers.

    Science.gov (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

  13. Methods for two-dimensional cell confinement.

    Science.gov (United States)

    Le Berre, Maël; Zlotek-Zlotkiewicz, Ewa; Bonazzi, Daria; Lautenschlaeger, Franziska; Piel, Matthieu

    2014-01-01

    Protocols described in this chapter relate to a method to dynamically confine cells in two dimensions with various microenvironments. It can be used to impose on cells a given height, with an accuracy of less than 100 nm on large surfaces (cm(2)). The method is based on the gentle application of a modified glass coverslip onto a standard cell culture. Depending on the preparation, this confinement slide can impose on the cells a given geometry but also an environment of controlled stiffness, controlled adhesion, or a more complex environment. An advantage is that the method is compatible with most optical microscopy technologies and molecular biology protocols allowing advanced analysis of confined cells. In this chapter, we first explain the principle and issues of using these slides to confine cells in a controlled geometry and describe their fabrication. Finally, we discuss how the nature of the confinement slide can vary and provide an alternative method to confine cells with gels of controlled rigidity.

  14. On the large-scale structure and spectral dynamics of two-dimensional turbulence in a periodic channel

    NARCIS (Netherlands)

    Kramer, W.; Clercx, H.J.H.; van Heijst, G.J.F.

    2008-01-01

    This paper reports on a numerical study of forced two-dimensional turbulence in a periodic channel with flat no-slip walls. Since corners or curved domain boundaries, which are met in the standard rectangular, square, or circular geometries, are absent in this geometry, the (statistical) analysis of

  15. Interaction of two-dimensional magnetoexcitons

    Science.gov (United States)

    Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.

    2017-04-01

    We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .

  16. Two-dimensional materials and their prospects in transistor electronics.

    Science.gov (United States)

    Schwierz, F; Pezoldt, J; Granzner, R

    2015-05-14

    During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.

  17. 轴对称磁场的束流光学及其在ECR离子源中的应用%Beam optics of axially symmetric magnetic lens and its applications in ECR ion source

    Institute of Scientific and Technical Information of China (English)

    盛丽娜; 宋明涛

    2007-01-01

    In an axially symmetric magnetic field, charged particles move along the axis and rotate around the axis at the same time. Accordingly, the transverse motion can be decomposed into two parts, the focusing movement and the rotation of the meridian plane, and the 4-dimensional transfer matrix can be expressed as the product of a focusing matrix and two rotation matrices. The overall transfer matrix is re-derived in this article with the rotation matrices and the focusing matrix. Then the corresponding sigma matrix is given to further estimate the beam emittance extracted from electron cyclotron resonance ion source. The second moment of the beam distribution function is discussed in detail.%带电粒子在轴对称磁场中一边沿着对称轴向前运动,一边绕对称轴旋转.所以横向运动可以分解为两部分:聚焦运动和子午面的旋转.因此,4维横向传输矩阵可以表示为聚焦矩阵和旋转矩阵的乘积.用旋转矩阵和聚焦矩阵重新推导了总的传输矩阵.然后给出了相应的相椭圆系数矩阵来进一步估算从ECR离子源引出束流的发射度.详细地讨论了束流分布函数的二次矩.

  18. Ultrafast two dimensional infrared chemical exchange spectroscopy

    Science.gov (United States)

    Fayer, Michael

    2011-03-01

    The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific

  19. Molecular assembly on two-dimensional materials

    Science.gov (United States)

    Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter

    2017-02-01

    Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging

  20. Wave Propagation through Axially Symmetric Dielectric Shells.

    Science.gov (United States)

    1981-06-01

    1-8 2..2 Sc lr .o en i.. . . . . ..........eo oe e .eoe. o. eeeeo. oo....... 2 1 1.2 Baekground: Analytical Methods Based on Flat Sheet Appr oatei...Fields Near a Radome Consist of Constituent Waves. 1-2 - -t . -__-_-_-_-_-_-_..._._._._._._. 1.2 BACKGROUND: ANALYTICAL METHODS BASED ON FLAT SHEET...2.4.2. So A2 ikR x (4 ) = (K-1) E feik Cos2 dado dz (2-100) x 2 R2 o where = (aa - ap cos - zz’) R - 1 (2-101) and -11 = [6 (a+6p)-6 (a-6p)-a 1. (2

  1. Axially Symmetric Post-Newtonian Stellar Systems

    Directory of Open Access Journals (Sweden)

    Camilo Akímushkin

    2010-01-01

    Full Text Available Presentamos un método para obtener modelos estelares discoidales, axialmente simétricos, auto-consistentes en la primera aproximación post-Newtoniana (1PN. Usando en las ecuaciones de campo de la aproximación 1PN una función de distribución conocida (DF que corresponde a un modelo Newtoniano, se obtienen dos ecuaciones fundamentales para determinar las correcciones 1PN. Las curvas de rotación de los modelos corregidos difieren de las clásicas y las correcciones son claramente apreciables con los valores de la masa y el radio de una galaxia típica. Por otro lado, la corrección relativista de la masa se puede ignorar para todos los modelos.

  2. Characterization of axially-symmetric magnetic elds

    CERN Document Server

    AUTHOR|(CDS)2087237; Buzio, Marco

    In solenoids for particle accelerators, the magnetic field is usually mapped by means of 3D Hall-sensing systems through a burdensome and costly procedure. A further problem arises from a coherent treatment between the beam physics requirements, the qualification of numerical models, the design and manufacturing of the magnet, and the magnetic measurements. For example, when the magnet is misaligned with respect to the longitudinal direction of the mapper, the fringe field shows spurious components. A method was therefore developed for measuring the magnetic field of axisymmetric magnets by exploiting their inherent symmetry. The method yields a measurement of the magnetic flux linked with a pair of sensing coils as a function of their longitudinal position. An induction transducer, sensitive to the longitudinal and radial components of the solenoid under test, has been designed and constructed. A transport system moves the transducer along the magnet axis, covering the full length of the magnet and including...

  3. The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time

    Science.gov (United States)

    Matsyuk, Roman Ya.

    2008-02-01

    The variational principle and the corresponding differential equation for geodesic circles in two dimensional (pseudo)-Riemannian space are being discovered. The relationship with the physical notion of uniformly accelerated relativistic particle is emphasized. The known form of spin-curvature interaction emerges due to the presence of second order derivatives in the expression for the Lagrange function. The variational equation itself reduces to the unique invariant variational equation of constant Frenet curvature in two dimensional (pseudo)-Euclidean geometry.

  4. The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time

    CERN Document Server

    Matsyuk, Roman Ya

    2008-01-01

    The variational principle and the corresponding differential equation for geodesic circles in two dimensional (pseudo)-Riemannian space are being discovered. The relationship with the physical notion of uniformly accelerated relativistic particle is emphasized. The known form of spin-curvature interaction emerges due to the presence of second order derivatives in the expression for the Lagrange function. The variational equation itself reduces to the unique invariant variational equation of constant Frenet curvature in two dimensional (pseudo)-Euclidean geometry.

  5. The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time

    Directory of Open Access Journals (Sweden)

    Roman Ya. Matsyuk

    2008-02-01

    Full Text Available The variational principle and the corresponding differential equation for geodesic circles in two dimensional (pseudo-Riemannian space are being discovered. The relationship with the physical notion of uniformly accelerated relativistic particle is emphasized. The known form of spin-curvature interaction emerges due to the presence of second order derivatives in the expression for the Lagrange function. The variational equation itself reduces to the unique invariant variational equation of constant Frenet curvature in two dimensional (pseudo-Euclidean geometry.

  6. Curved Two-Dimensional Electron Systems in Semiconductor Nanoscrolls

    Science.gov (United States)

    Peters, Karen; Mendach, Stefan; Hansen, Wolfgang

    The perfect control of strain and layer thickness in epitaxial semiconductor bilayers is employed to fabricate semiconductor nanoscrolls with precisely adjusted scroll diameter ranging between a few nanometers and several tens of microns. Furthermore, semiconductor heteroepitaxy allows us to incorporate quantum objects such as quantum wells, quantum dots, or modulation doped low-dimensional carrier systems into the nanoscrolls. In this review, we summarize techniques that we have developed to fabricate semiconductor nanoscrolls with well-defined location, orientation, geometry, and winding number. We focus on magneto-transport studies of curved two-dimensional electron systems in such nanoscrolls. An externally applied magnetic field results in a strongly modulated normal-to-surface component leading to magnetic barriers, reflection of edge channels, and local spin currents. The observations are compared to finite-element calculations and discussed on the basis of simple models taking into account the influence of a locally modulated state density on the conductivity. In particular, it is shown that the observations in high magnetic fields can be well described considering the transport in edge channels according to the Landauer-Büttiker model if additional magnetic field induced channels aligned along magnetic barriers are accounted for.

  7. Interaction of two-dimensional impulsively started airfoils

    Institute of Scientific and Technical Information of China (English)

    WU Fu-bing; ZENG Nian-dong; ZHANG Liang; WU De-ming

    2004-01-01

    Continuous vorticity panels were used to model general unsteady inviscid, incompressible, two-dimensional flows. The geometry of thc airfoil was approximated by series of short straight segments having endpoints that lie on the actual surface. A piecewise linear, continuous distribution of vorticity over the airfoil surface was used to generate disturbance flow. The no-penetration condition was imposed at the midpoint of each segment and at discrete times. The wake was simulated by a system of point vortices, which moved at local fluid velocity. At each time step, a new wake panel with uniform vorticity distribution was attached to the trailing edge, and the condition of constant circulation around the airfoil and wake was imposed. A new expression for Kutta condition was developed to study the interference effect between two impulsively started NACA0012 airfoils. The tandem arrangement was found to be the most effective to enhance the lift of the rear airfoil. The interference effect between tidal turbine blades was shown clearly.

  8. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures

    Science.gov (United States)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2012-01-01

    A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.

  9. Two dimensional discriminant neighborhood preserving embedding in face recognition

    Science.gov (United States)

    Pang, Meng; Jiang, Jifeng; Lin, Chuang; Wang, Binghui

    2015-03-01

    One of the key issues of face recognition is to extract the features of face images. In this paper, we propose a novel method, named two-dimensional discriminant neighborhood preserving embedding (2DDNPE), for image feature extraction and face recognition. 2DDNPE benefits from four techniques, i.e., neighborhood preserving embedding (NPE), locality preserving projection (LPP), image based projection and Fisher criterion. Firstly, NPE and LPP are two popular manifold learning techniques which can optimally preserve the local geometry structures of the original samples from different angles. Secondly, image based projection enables us to directly extract the optimal projection vectors from twodimensional image matrices rather than vectors, which avoids the small sample size problem as well as reserves useful structural information embedded in the original images. Finally, the Fisher criterion applied in 2DDNPE can boost face recognition rates by minimizing the within-class distance, while maximizing the between-class distance. To evaluate the performance of 2DDNPE, several experiments are conducted on the ORL and Yale face datasets. The results corroborate that 2DDNPE outperforms the existing 1D feature extraction methods, such as NPE, LPP, LDA and PCA across all experiments with respect to recognition rate and training time. 2DDNPE also delivers consistently promising results compared with other competing 2D methods such as 2DNPP, 2DLPP, 2DLDA and 2DPCA.

  10. Photonics and optoelectronics of two-dimensional materials beyond graphene

    Science.gov (United States)

    Ponraj, Joice Sophia; Xu, Zai-Quan; Chander Dhanabalan, Sathish; Mu, Haoran; Wang, Yusheng; Yuan, Jian; Li, Pengfei; Thakur, Siddharatha; Ashrafi, Mursal; Mccoubrey, Kenneth; Zhang, Yupeng; Li, Shaojuan; Zhang, Han; Bao, Qiaoliang

    2016-11-01

    Apart from conventional materials, the study of two-dimensional (2D) materials has emerged as a significant field of study for a variety of applications. Graphene-like 2D materials are important elements of potential optoelectronics applications due to their exceptional electronic and optical properties. The processing of these materials towards the realization of devices has been one of the main motivations for the recent development of photonics and optoelectronics. The recent progress in photonic devices based on graphene-like 2D materials, especially topological insulators (TIs) and transition metal dichalcogenides (TMDs) with the methodology level discussions from the viewpoint of state-of-the-art designs in device geometry and materials are detailed in this review. We have started the article with an overview of the electronic properties and continued by highlighting their linear and nonlinear optical properties. The production of TIs and TMDs by different methods is detailed. The following main applications focused towards device fabrication are elaborated: (1) photodetectors, (2) photovoltaic devices, (3) light-emitting devices, (4) flexible devices and (5) laser applications. The possibility of employing these 2D materials in different fields is also suggested based on their properties in the prospective part. This review will not only greatly complement the detailed knowledge of the device physics of these materials, but also provide contemporary perception for the researchers who wish to consider these materials for various applications by following the path of graphene.

  11. The convolution theorem for two-dimensional continuous wavelet transform

    Institute of Scientific and Technical Information of China (English)

    ZHANG CHI

    2013-01-01

    In this paper , application of two -dimensional continuous wavelet transform to image processes is studied. We first show that the convolution and correlation of two continuous wavelets satisfy the required admissibility and regularity conditions ,and then we derive the convolution and correlation theorem for two-dimensional continuous wavelet transform. Finally, we present numerical example showing the usefulness of applying the convolution theorem for two -dimensional continuous wavelet transform to perform image restoration in the presence of additive noise.

  12. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays

    Science.gov (United States)

    Barredo, Daniel; de Léséleuc, Sylvain; Lienhard, Vincent; Lahaye, Thierry; Browaeys, Antoine

    2016-11-01

    Large arrays of individually controlled atoms trapped in optical tweezers are a very promising platform for quantum engineering applications. However, deterministic loading of the traps is experimentally challenging. We demonstrate the preparation of fully loaded two-dimensional arrays of up to ~50 microtraps, each containing a single atom and arranged in arbitrary geometries. Starting from initially larger, half-filled matrices of randomly loaded traps, we obtain user-defined target arrays at unit filling. This is achieved with a real-time control system and a moving optical tweezers, which together enable a sequence of rapid atom moves depending on the initial distribution of the atoms in the arrays. These results open exciting prospects for quantum engineering with neutral atoms in tunable two-dimensional geometries.

  13. Ohmic lines for one-dimensional in-line and two-dimensional cylindrical Josephson junctions

    DEFF Research Database (Denmark)

    Helweg, C.; Levring, O. A.; Samuelsen, Mogens Rugholm;

    1985-01-01

    Expressions for the ohmic lines in the IV characteristic for one-dimensional in-line geometry Josephson junctions as well as for two-dimensional cylindrical Josephson junctions are presented. The expressions are compared to numerical simulations of Josephson junctions using the fluxon model; the ......; however, depending on the initial conditions we find 1/2 and 1/3 harmonic generation. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  14. An immersed interface method for two-dimensional modelling of stratified flow in pipes

    OpenAIRE

    Berthelsen, Petter Andreas

    2004-01-01

    This thesis deals with the construction of a numerical method for solving two-dimensional elliptic interface problems, such as fully developed stratified flow in pipes. Interface problems are characterized by its non-smooth and often discontinuous behaviour along a sharp boundary separating the fluids or other materials. Classical numerical schemes are not suitable for these problems due to the irregular geometry of the interface. Standard finite difference discretization across the interface...

  15. Optimisation of interdigitated back contacts solar cells by two-dimensional numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nichiporuk, O.; Kaminski, A.; Lemiti, M.; Fave, A. [Instituit National des Sciences Appliquees Lyon, Villeurbanne (France). Lab. de Physique de la Matiere; Skryshevsky, V. [National Taras Shevchenko Univ., Kiev (Ukraine). Radiophysics Dept.

    2005-04-01

    In this paper we present the results of the simulation of interdigitated back contacts solar cell on thin-film ({approx}{mu}m) silicon layer. The influence of several parameters (surface recombination rate, substrate thickness and type, diffusion length, device geometry, doping levels) on device characteristics are simulated using the accurate two-dimensional numerical simulator DESSIS that allows to optimise the cell design. (Author)

  16. Two-dimensional MHD model of the Jovian magnetodisk

    Science.gov (United States)

    Kislov, R. A.; Malova, H. V.; Vasko, I. Y.

    2015-09-01

    A self-consistent stationary axially symmetric MHD model of the Jovian magnetodisk is constructed. This model is a generalization of the models of plane current sheets that have been proposed earlier in order to describe the structure of the current sheet in the magnetotail of the Earth [1, 2]. The model takes centrifugal force, which is induced by the corotation electric field, and the azimuthal magnetic field into account. The configurations of the magnetic field lines for the isothermic (plasma temperature assumed to be constant) and the isentropic (plasma entropy assumed to be constant) models of the magnetodisk are determined. The dependence of the thickness of the magnetodisk on the distance to Jupiter is obtained. The thickness of the magnetodisk and the magnetic field distribution in the isothermic and isentropic models are similar. The inclusion of a low background plasma pressure results in a considerable reduction in the thickness of the magnetodisk. This effect may be attributed to the fact that centrifugal force prevails over the pressure gradient at large distances from the planet. The mechanism of unipolar induction and the related large-scale current system are analyzed. The direct and return Birkeland currents are determined in the approximation of a weak azimuthal magnetic field. The modeling results agree with theoretical estimates from other studies and experimental data.

  17. A Method to Formulate the Unit Cell for Density Functional Theory (DFT) Calculations of the Electronic Band Structure of Heterostructures of Two-dimensional Nanosheets

    Science.gov (United States)

    2015-04-01

    distribution is unlimited. i CONTENTS Page Introduction 1 Two-dimensional Material Geometry and Analogs with Close-packed Systems 1 Matching...distribution is unlimited. 1 INTRODUCTION Two-dimensional (2D) material heterostructures offer novel and compelling electronic and optical...methods have undoubtedly been created for matching lattice constants of dissimilar nanomaterials , very few are actually covered explicitly in literature

  18. A two-dimensional Euler solution for an unbladed jet engine configuration

    Science.gov (United States)

    Stewart, Mark E. M.

    1992-01-01

    A two dimensional, nonaxisymmetric Euler solution in a geometry representative of a jet engine configuration without blades is presented. The domain, including internal and external flow, is covered with a multiblock grid. In order to construct this grid, a domain decomposition technique is used to subdivide the domain, and smooth grids are dimensioned and placed in each block. The Euler solution is verified by examining five theoretical properties. The result demonstrates techniques for performing numerical solutions in complex geometries and provides a foundation for complete engine throughflow calculations.

  19. The Chandrasekhar's Equation for Two-Dimensional Hypothetical White Dwarfs

    CERN Document Server

    De, Sanchari

    2014-01-01

    In this article we have extended the original work of Chandrasekhar on the structure of white dwarfs to the two-dimensional case. Although such two-dimensional stellar objects are hypothetical in nature, we strongly believe that the work presented in this article may be prescribed as Master of Science level class problem for the students in physics.

  20. Beginning Introductory Physics with Two-Dimensional Motion

    Science.gov (United States)

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  1. Spatiotemporal surface solitons in two-dimensional photonic lattices.

    Science.gov (United States)

    Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S

    2007-11-01

    We analyze spatiotemporal light localization in truncated two-dimensional photonic lattices and demonstrate the existence of two-dimensional surface light bullets localized in the lattice corners or the edges. We study the families of the spatiotemporal surface solitons and their properties such as bistability and compare them with the modes located deep inside the photonic lattice.

  2. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;

    2004-01-01

    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...

  3. Mechanics of Apparent Horizon in Two Dimensional Dilaton Gravity

    CERN Document Server

    Cai, Rong-Gen

    2016-01-01

    In this article, we give a definition of apparent horizon in a two dimensional general dilaton gravity theory. With this definition, we construct the mechanics of the apparent horizon by introducing a quasi-local energy of the theory. Our discussion generalizes the apparent horizons mechanics in general spherically symmetric spactimes in four or higher dimensions to the two dimensional dilaton gravity case.

  4. Topological aspect of disclinations in two-dimensional crystals

    Institute of Scientific and Technical Information of China (English)

    Qi Wei-Kai; Zhu Tao; Chen Yong; Ren Ji-Rong

    2009-01-01

    By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given.

  5. Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations

    Directory of Open Access Journals (Sweden)

    Chunrong Zhu

    2016-11-01

    Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.

  6. Two-dimensional protonic percolation on lightly hydrated purple membrane.

    Science.gov (United States)

    Rupley, J A; Siemankowski, L; Careri, G; Bruni, F

    1988-12-01

    The capacitance and dielectric loss factor were measured for a sample of purple membrane of Halobacterium halobium as a function of hydration level (0.017 to >0.2 g of water/g of membrane) and frequency (10 kHz to 10 MHz). The capacitance and the derived conductivity show explosive growth above a threshold hydration level, h(c) approximately 0.0456. The conductivity shows a deuterium isotope effect, H/(2)H = 1.38, in close agreement with expectation for a protonic process. The level h(c) is frequency independent and shows no deuterium isotope effect. These properties are analogous to those found for lysozyme in a related study. Protonic conduction for the purple membrane can be considered, as for lysozyme, within the framework of a percolation model. The critical exponent, t, which describes the conductivity of a percolative system near the threshold, has the value 1.23. This number is in close agreement with expectation from theory for a two-dimensional percolative process. The dielectric properties of the purple membrane are more complex than those of lysozyme, seen in the value of h(c) and in the frequency and hydration dependence of the loss factor. There appear to be preferred regions of proton conduction. The percolation model is based upon stochastic behavior of a system partially populated with conducting elements. This model suggests that ion transport in membranes and its control can be based on pathways formed of randomly connected conducting elements and that a fixed geometry (a proton wire) is not the only possible basis for a mechanism of conduction.

  7. Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice

    Institute of Scientific and Technical Information of China (English)

    XU Quan; QIANG Tian

    2009-01-01

    We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling.Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive)and the center of the two-dimensional gap breather (on a light or a heavy atom).

  8. Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway

    Science.gov (United States)

    2012-09-01

    ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located

  9. RESEARCH ON TWO-DIMENSIONAL LDA FOR FACE RECOGNITION

    Institute of Scientific and Technical Information of China (English)

    Han Ke; Zhu Xiuchang

    2006-01-01

    The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective.

  10. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  11. Impact of geometry parameters on the thrust and infrared radiation characteristics of two-dimensional ejector nozzle%二元引射喷管几何特征参数对推力及红外特性的影响

    Institute of Scientific and Technical Information of China (English)

    刘福城; 吉洪湖; 林兰之; 黄伟; 刘常春; 斯仁

    2011-01-01

    采用数值模拟的方法研究了二元引射喷管间距比变化和面积比变化对推力特性和3~5μm波段红外辐射特性的影响.排气系统的流场采用了商用软件计算,红外辐射特征采用了自主开发的软件(NU-AA-IR)进行计算.结果表明:间距比变化和面积比变化对二元引射喷管的推力系数和引射流量比有不同程度的影响.在小方向角范围内,间距比和面积比的变化对宽边探测平面上的积分辐射强度影响较大,最大降幅为30%左右,而对窄边探测平面上的积分辐射强度影响较小;二元引射喷管相对于二元喷管的红外辐射特性最大降幅为50%左右.%The thrust and infrared radiation (IR) characteristics in the waveband of 3 ~ 5 μm of two-dimensional (2-D) ejector nozzle were studied numerically. The flow field of the exhaust jet was calculated with commercial software. The infrared radiation characteristics were calculated with an IR analysis software (NUAA-IR) developed by our research group. The results show that spacing ratio and area ratio have different impacts on the thrust ratio and mass-flow ratio of the 2-D ejector nozzle. Spacing ratio and area ratio have greater impact on wide detected plane within a small azimuth angles. In relation to a 2-D nozzle, the integral IR intensity of a 2-D ejector nozzle can be reduced about 50%.

  12. Surface Reconstruction-Induced Coincidence Lattice Formation Between Two-Dimensionally Bonded Materials and a Three-Dimensionally Bonded Substrate

    NARCIS (Netherlands)

    Boschker, Jos E.; Momand, Jamo; Bragaglia, Valeria; Wang, Ruining; Perumal, Karthick; Giussani, Alessandro; Kooi, Bart J.; Riechert, Henning; Calarco, Raffaella

    2014-01-01

    Sb2Te3 films are used for studying the epitaxial registry between two-dimensionally bonded (2D) materials and three-dimensional bonded (3D) substrates. In contrast to the growth of 3D materials, it is found that the formation of coincidence lattices between Sb2Te3 and Si(111) depends on the geometry

  13. A study of two-dimensional magnetic polaron

    Institute of Scientific and Technical Information of China (English)

    LIU; Tao; ZHANG; Huaihong; FENG; Mang; WANG; Kelin

    2006-01-01

    By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.

  14. UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    袁光伟; 沈智军; 闫伟

    2003-01-01

    In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.

  15. Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal

    DEFF Research Database (Denmark)

    Lebech, Bente; Bak, P.

    1979-01-01

    The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....

  16. Entanglement Entropy for time dependent two dimensional holographic superconductor

    CERN Document Server

    Mazhari, N S; Myrzakulov, Kairat; Myrzakulov, R

    2016-01-01

    We studied entanglement entropy for a time dependent two dimensional holographic superconductor. We showed that the conserved charge of the system plays the role of the critical parameter to have condensation.

  17. Decoherence in a Landau Quantized Two Dimensional Electron Gas

    Directory of Open Access Journals (Sweden)

    McGill Stephen A.

    2013-03-01

    Full Text Available We have studied the dynamics of a high mobility two-dimensional electron gas as a function of temperature. The presence of satellite reflections in the sample and magnet can be modeled in the time-domain.

  18. Quantization of Two-Dimensional Gravity with Dynamical Torsion

    CERN Document Server

    Lavrov, P M

    1999-01-01

    We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.

  19. Spatiotemporal dissipative solitons in two-dimensional photonic lattices.

    Science.gov (United States)

    Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S

    2008-11-01

    We analyze spatiotemporal dissipative solitons in two-dimensional photonic lattices in the presence of gain and loss. In the framework of the continuous-discrete cubic-quintic Ginzburg-Landau model, we demonstrate the existence of novel classes of two-dimensional spatiotemporal dissipative lattice solitons, which also include surface solitons located in the corners or at the edges of the truncated two-dimensional photonic lattice. We find the domains of existence and stability of such spatiotemporal dissipative solitons in the relevant parameter space, for both on-site and intersite lattice solitons. We show that the on-site solitons are stable in the whole domain of their existence, whereas most of the intersite solitons are unstable. We describe the scenarios of the instability-induced dynamics of dissipative solitons in two-dimensional lattices.

  20. Bound states of two-dimensional relativistic harmonic oscillators

    Institute of Scientific and Technical Information of China (English)

    Qiang Wen-Chao

    2004-01-01

    We give the exact normalized bound state wavefunctions and energy expressions of the Klein-Gordon and Dirac equations with equal scalar and vector harmonic oscillator potentials in the two-dimensional space.

  1. A two-dimensional polymer prepared by organic synthesis.

    Science.gov (United States)

    Kissel, Patrick; Erni, Rolf; Schweizer, W Bernd; Rossell, Marta D; King, Benjamin T; Bauer, Thomas; Götzinger, Stephan; Schlüter, A Dieter; Sakamoto, Junji

    2012-02-05

    Synthetic polymers are widely used materials, as attested by a production of more than 200 millions of tons per year, and are typically composed of linear repeat units. They may also be branched or irregularly crosslinked. Here, we introduce a two-dimensional polymer with internal periodicity composed of areal repeat units. This is an extension of Staudinger's polymerization concept (to form macromolecules by covalently linking repeat units together), but in two dimensions. A well-known example of such a two-dimensional polymer is graphene, but its thermolytic synthesis precludes molecular design on demand. Here, we have rationally synthesized an ordered, non-equilibrium two-dimensional polymer far beyond molecular dimensions. The procedure includes the crystallization of a specifically designed photoreactive monomer into a layered structure, a photo-polymerization step within the crystal and a solvent-induced delamination step that isolates individual two-dimensional polymers as free-standing, monolayered molecular sheets.

  2. Second invariant for two-dimensional classical super systems

    Indian Academy of Sciences (India)

    S C Mishra; Roshan Lal; Veena Mishra

    2003-10-01

    Construction of superpotentials for two-dimensional classical super systems (for ≥ 2) is carried out. Some interesting potentials have been studied in their super form and also their integrability.

  3. Spacetime and Euclidean Geometry

    CERN Document Server

    Brill, D R; Brill, Dieter; Jacobson, Ted

    2004-01-01

    Using only the principle of relativity and Euclidean geometry we show in this pedagogical article that the square of proper time or length in a two-dimensional spacetime diagram is proportional to the Euclidean area of the corresponding causal domain. We use this relation to derive the Minkowski line element by two geometric proofs of the "spacetime Pythagoras theorem".

  4. Spacetime and Euclidean geometry

    Science.gov (United States)

    Brill, Dieter; Jacobson, Ted

    2006-04-01

    Using only the principle of relativity and Euclidean geometry we show in this pedagogical article that the square of proper time or length in a two-dimensional spacetime diagram is proportional to the Euclidean area of the corresponding causal domain. We use this relation to derive the Minkowski line element by two geometric proofs of the spacetime Pythagoras theorem.

  5. Extreme paths in oriented two-dimensional percolation

    OpenAIRE

    Andjel, E. D.; Gray, L. F.

    2016-01-01

    International audience; A useful result about leftmost and rightmost paths in two dimensional bond percolation is proved. This result was introduced without proof in \\cite{G} in the context of the contact process in continuous time. As discussed here, it also holds for several related models, including the discrete time contact process and two dimensional site percolation. Among the consequences are a natural monotonicity in the probability of percolation between different sites and a somewha...

  6. Two Dimensional Nucleation Process by Monte Carlo Simulation

    OpenAIRE

    T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University

    1997-01-01

    Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...

  7. Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers

    Science.gov (United States)

    2016-06-15

    polymers . 2. Introduction . Research objectives: This research aims to study the physical (van der Waals forces: crystal epitaxy and π-π...AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4054 5c.  PROGRAM ELEMENT

  8. Two-Dimensional Weak Pseudomanifolds on Eight Vertices

    Indian Academy of Sciences (India)

    Basudeb Datta; Nandini Nilakantan

    2002-05-01

    We explicitly determine all the two-dimensional weak pseudomanifolds on 8 vertices. We prove that there are (up to isomorphism) exactly 95 such weak pseudomanifolds, 44 of which are combinatorial 2-manifolds. These 95 weak pseudomanifolds triangulate 16 topological spaces. As a consequence, we prove that there are exactly three 8-vertex two-dimensional orientable pseudomanifolds which allow degree three maps to the 4-vertex 2-sphere.

  9. Two-Dimensional Materials for Sensing: Graphene and Beyond

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese

    2015-09-01

    Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.

  10. A geometrical approach to two-dimensional Conformal Field Theory

    Science.gov (United States)

    Dijkgraaf, Robertus Henricus

    1989-09-01

    manifold obtained as the quotient of a smooth manifold by a discrete group. In Chapter 6 our considerations will be of a somewhat complementary nature. We will investigate models with central charge c = 1 by deformation techniques. The central charge is a fundamental parameter in any conformal invariant model, and the value c = 1 is of considerable interest, since it forms in many ways a threshold value. For c 1 is still very much terra incognita. Our results give a partial classification for the intermediate case of c = 1 models. The formulation of these c = 1 CFT's on surfaces of arbitrary topology is central in Chapter 7. Here we will provide many explicit results that provide illustrations for our more abstract discussions of higher genus quantities in Chapters 3 and 1. Unfortunately, our calculations will become at this point rather technical, since we have to make extensive use of the mathematics of Riemann surfaces and their coverings. Finally, in Chapter 8 we leave the two-dimensional point of view that we have been so loyal to up to then , and ascend to threedimensions where we meet topological gauge theories. These so-called Chern-Simons theories encode in a very economic way much of the structure of two-dimensional (rational) conformal field theories, and this direction is generally seen to be very promising. We will show in particular how many of our results of Chapter 5 have a natural interpretation in three dimensions.

  11. Two-Dimensional Rotating Stall Analysis in a Wide Vaneless Diffuser

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We report a numerical study on the vaneless diffuser core flow instability in centrifugal compressors. The analysis is performed for the purpose of better understanding of the rotating stall flow mechanism in radial vaneless diffusers. Since the analysis is restricted to the two-dimensional core flow, the effect of the wall boundary layers is neglected. A commercial code with the standard incompressible viscous flow solver is applied to model the vaneless diffuser core flow in the plane parallel to the diffuser walls. At the diffuser inlet, rotating jet-wake velocity pattern is prescribed and at the diffuser outlet constant static pressure is assumed. Under these circumstances, two-dimensional rotating flow instability similar to rotating stall is found to exist. Performed parameter analysis reveals that this instability is strongly influenced by the diffuser geometry and the inlet and outlet flow conditions.

  12. Electrical transport across metal/two-dimensional carbon junctions: Edge versus side contacts

    Directory of Open Access Journals (Sweden)

    Yihong Wu

    2012-03-01

    Full Text Available Metal/two-dimensional carbon junctions are characterized by using a nanoprobe in an ultrahigh vacuum environment. Significant differences were found in bias voltage (V dependence of differential conductance (dI/dV between edge- and side-contact; the former exhibits a clear linear relationship (i.e., dI/dV ∝ V, whereas the latter is characterized by a nonlinear dependence, dI/dV ∝ V3/2. Theoretical calculations confirm the experimental results, which are due to the robust two-dimensional nature of the carbon materials under study. Our work demonstrates the importance of contact geometry in graphene-based electronic devices.

  13. Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space

    CERN Document Server

    Setter, Ophir

    2009-05-01

    We present a general framework for computing two-dimensional Voronoi diagrams of different classes of sites under various distance functions. The framework is sufficiently general to support diagrams embedded on a family of two-dimensional parametric surfaces in $R^3$. The computation of the diagrams is carried out through the construction of envelopes of surfaces in 3-space provided by CGAL (the Computational Geometry Algorithm Library). The construction of the envelopes follows a divide-and-conquer approach. A straightforward application of the divide-and-conquer approach for computing Voronoi diagrams yields algorithms that are inefficient in the worst case. We prove that through randomization the expected running time becomes near-optimal in the worst case. We show how to employ our framework to realize various types of Voronoi diagrams with different properties by providing implementations for a vast collection of commonly used Voronoi diagrams. We also show how to apply the new framework and other exist...

  14. How effective is graphene nanopore geometry on DNA sequencing?

    CERN Document Server

    Satarifard, Vahid; Ejtehadi, Mohammad Reza

    2015-01-01

    In this paper we investigate the effects of graphene nanopore geometry on homopolymer ssDNA pulling process through nanopore using steered molecular dynamic (SMD) simulations. Different graphene nanopores are examined including axially symmetric and asymmetric monolayer graphene nanopores as well as five layer graphene polyhedral crystals (GPC). The pulling force profile, moving fashion of ssDNA, work done in irreversible DNA pulling and orientations of DNA bases near the nanopore are assessed. Simulation results demonstrate the strong effect of the pore shape as well as geometrical symmetry on free energy barrier, orientations and dynamic of DNA translocation through graphene nanopore. Our study proposes that the symmetric circular geometry of monolayer graphene nanopore with high pulling velocity can be used for DNA sequencing.

  15. The use of virtual reality to reimagine two-dimensional representations of three-dimensional spaces

    Science.gov (United States)

    Fath, Elaine

    2015-03-01

    A familiar realm in the world of two-dimensional art is the craft of taking a flat canvas and creating, through color, size, and perspective, the illusion of a three-dimensional space. Using well-explored tricks of logic and sight, impossible landscapes such as those by surrealists de Chirico or Salvador Dalí seem to be windows into new and incredible spaces which appear to be simultaneously feasible and utterly nonsensical. As real-time 3D imaging becomes increasingly prevalent as an artistic medium, this process takes on an additional layer of depth: no longer is two-dimensional space restricted to strategies of light, color, line and geometry to create the impression of a three-dimensional space. A digital interactive environment is a space laid out in three dimensions, allowing the user to explore impossible environments in a way that feels very real. In this project, surrealist two-dimensional art was researched and reimagined: what would stepping into a de Chirico or a Magritte look and feel like, if the depth and distance created by light and geometry were not simply single-perspective illusions, but fully formed and explorable spaces? 3D environment-building software is allowing us to step into these impossible spaces in ways that 2D representations leave us yearning for. This art project explores what we gain--and what gets left behind--when these impossible spaces become doors, rather than windows. Using sketching, Maya 3D rendering software, and the Unity Engine, surrealist art was reimagined as a fully navigable real-time digital environment. The surrealist movement and its key artists were researched for their use of color, geometry, texture, and space and how these elements contributed to their work as a whole, which often conveys feelings of unexpectedness or uneasiness. The end goal was to preserve these feelings while allowing the viewer to actively engage with the space.

  16. Pythagoras's theorem on a two-dimensional lattice from a `natural' Dirac operator and Connes's distance formula

    Science.gov (United States)

    Dai, Jian; Song, Xing-Chang

    2001-07-01

    One of the key ingredients of Connes's noncommutative geometry is a generalized Dirac operator which induces a metric (Connes's distance) on the pure state space. We generalize such a Dirac operator devised by Dimakis et al, whose Connes distance recovers the linear distance on an one-dimensional lattice, to the two-dimensional case. This Dirac operator has the local eigenvalue property and induces a Euclidean distance on this two-dimensional lattice, which is referred to as `natural'. This kind of Dirac operator can be easily generalized into any higher-dimensional lattices.

  17. Two-dimensional microwave band-gap structures of different dielectric materials

    Indian Academy of Sciences (India)

    E D V Nagesh; G Santosh Babu; V Subramanian; V Sivasubramanian; V R K Murthy

    2005-12-01

    We report the use of low dielectric constant materials to form two-dimensional microwave band-gap structures for achieving high gap-to-midgap ratio. The variable parameters chosen are the lattice spacing and the geometric structure. The selected geometries are square and triangular and the materials chosen are PTFE ( = 2.1), PVC ( = 2.38) and glass ( = 5.5). Using the plane-wave expansion method, proper lattice spacing is selected for each structure and material. The observed experimental results are analyzed with the help of the theoretical prediction.

  18. Conformal mapping technique for two-dimensional porous media and jet impingement heat transfer

    Science.gov (United States)

    Siegel, R.

    1974-01-01

    Transpiration cooling and liquid metals both provide highly effective heat transfer. Using Darcy's law in porous media and the inviscid approximation for liquid metals, the local fluid velocity in these flows equals the gradient of a potential. The energy equation and flow region are simplified when transformed into potential plane coordinates. In these coordinates, the present problems are reduced to heat conduction solutions which are mapped into the physical geometry. Results are obtained for a porous region with simultaneously prescribed surface temperature and heat flux, heat transfer in a two-dimensional porous bed, and heat transfer for two liquid metal slot jets impinging on a heated plate.

  19. Two-dimensional hydrodynamic flow focusing in a microfluidic platform featuring a monolithic integrated glass micronozzle

    Science.gov (United States)

    Liu, Yifan; Shen, Yusheng; Duan, Lian; Yobas, Levent

    2016-10-01

    Two-dimensional hydrodynamic flow focusing is demonstrated through a microfluidic device featuring a monolithic integrated glass micronozzle inside a flow-focusing geometry. Such a coaxial configuration allows simple one-step focusing of a sample fluid stream, jetted from the micronozzle tip, in both in-plane and out-of-plane directions. The width of the focused filament can be precisely controlled and further scaled down to the submicrometer regime to facilitate rapid hydrodynamic mixing. Fluorescence quenching experiments reveal ultra-fast microsecond mixing of the denaturant into the focused filament. This device offers new possibilities to a set of applications such as the study of protein folding kinetics.

  20. Dynamic Effective Medium Theory for Two-Dimensional Non-Magnetic Metamaterial Lattices using Multipole Expansion

    CERN Document Server

    Chremmos, Ioannis; Giamalaki, Melpomeni; Yannopapas, Vassilios; Paspalakis, Emmanuel

    2014-01-01

    We present a formulation for deriving effective medium properties of infinitely periodic two-dimensional metamaterial lattice structures beyond the static and quasi-static limits. We utilize the multipole expansions, where the polarization currents associated with the supported Bloch modes are expressed via the electric dipole, magnetic dipole, and electric quadrupole moments per unit length. We then propose a method to calculate the Bloch modes based on the lattice geometry and individual unit element structure. The results revert to well-known formulas in the quasistatic limit and are useful for the homogenization of nanorod-type metamaterials which are frequently used in optical applications.

  1. Exact two-body solutions and quantum defect theory of two-dimensional dipolar quantum gas

    Science.gov (United States)

    Jie, Jianwen; Qi, Ran

    2016-10-01

    In this paper, we provide the two-body exact solutions of the two-dimensional (2D) Schrödinger equation with isotropic +/- 1/{r}3 interactions. An analytic quantum defect theory is constructed based on these solutions and it is applied to investigate the scattering properties as well as two-body bound states of an ultracold polar molecules confined in a quasi-2D geometry. Interestingly, we find that for the attractive case, the scattering resonance happens simultaneously in all partial waves, which has not been observed in other systems. The effect of this feature on the scattering phase shift across such resonances is also illustrated.

  2. Static internal performance of a two-dimensional convergent-divergent nozzle with thrust vectoring

    Science.gov (United States)

    Bare, E. Ann; Reubush, David E.

    1987-01-01

    A parametric investigation of the static internal performance of multifunction two-dimensional convergent-divergent nozzles has been made in the static test facility of the Langley 16-Foot Transonic Tunnel. All nozzles had a constant throat area and aspect ratio. The effects of upper and lower flap angles, divergent flap length, throat approach angle, sidewall containment, and throat geometry were determined. All nozzles were tested at a thrust vector angle that varied from 5.60 tp 23.00 deg. The nozzle pressure ratio was varied up to 10 for all configurations.

  3. Tracking dynamics of two-dimensional continuous attractor neural networks

    Science.gov (United States)

    Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si

    2009-12-01

    We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.

  4. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

    Science.gov (United States)

    Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S

    2012-11-01

    The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.

  5. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  6. Control Operator for the Two-Dimensional Energized Wave Equation

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU

    2006-07-01

    Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.

  7. Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis

    CERN Document Server

    Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J

    2012-01-01

    Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...

  8. A two-dimensional spin liquid in quantum kagome ice.

    Science.gov (United States)

    Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G

    2015-06-22

    Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.

  9. Spectral Radiative Properties of Two-Dimensional Rough Surfaces

    Science.gov (United States)

    Xuan, Yimin; Han, Yuge; Zhou, Yue

    2012-12-01

    Spectral radiative properties of two-dimensional rough surfaces are important for both academic research and practical applications. Besides material properties, surface structures have impact on the spectral radiative properties of rough surfaces. Based on the finite difference time domain algorithm, this paper studies the spectral energy propagation process on a two-dimensional rough surface and analyzes the effect of different factors such as the surface structure, angle, and polarization state of the incident wave on the spectral radiative properties of the two-dimensional rough surface. To quantitatively investigate the spatial distribution of energy reflected from the rough surface, the concept of the bidirectional reflectance distribution function is introduced. Correlation analysis between the reflectance and different impact factors is conducted to evaluate the influence degree. Comparison between the theoretical and experimental data is given to elucidate the accuracy of the computational code. This study is beneficial to optimizing the surface structures of optoelectronic devices such as solar cells.

  10. Two dimensional convolute integers for machine vision and image recognition

    Science.gov (United States)

    Edwards, Thomas R.

    1988-01-01

    Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.

  11. Optical modulators with two-dimensional layered materials

    CERN Document Server

    Sun, Zhipei; Wang, Feng

    2016-01-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.

  12. Two-dimensional superconductors with atomic-scale thickness

    Science.gov (United States)

    Uchihashi, Takashi

    2017-01-01

    Recent progress in two-dimensional superconductors with atomic-scale thickness is reviewed mainly from the experimental point of view. The superconducting systems treated here involve a variety of materials and forms: elemental metal ultrathin films and atomic layers on semiconductor surfaces; interfaces and superlattices of heterostructures made of cuprates, perovskite oxides, and rare-earth metal heavy-fermion compounds; interfaces of electric-double-layer transistors; graphene and atomic sheets of transition metal dichalcogenide; iron selenide and organic conductors on oxide and metal surfaces, respectively. Unique phenomena arising from the ultimate two dimensionality of the system and the physics behind them are discussed.

  13. TreePM Method for Two-Dimensional Cosmological Simulations

    Indian Academy of Sciences (India)

    Suryadeep Ray

    2004-09-01

    We describe the two-dimensional TreePM method in this paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle–Mesh method. We describe the splitting of force between the PM and the Tree parts. We also estimate error in force for a realistic configuration. Finally, we discuss some tests of the code.

  14. Singular analysis of two-dimensional bifurcation system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bifurcation properties of two-dimensional bifurcation system are studied in this paper.Universal unfolding and transition sets of the bifurcation equations are obtained.The whole parametric plane is divided into several different persistent regions according to the type of motion,and the different qualitative bifurcation diagrams in different persistent regions are given.The bifurcation properties of the two-dimensional bifurcation system are compared with its reduced one-dimensional system.It is found that the system which is reduced to one dimension has lost many bifurcation properties.

  15. Critical Behaviour of a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1976-01-01

    A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....

  16. Nonlinear excitations in two-dimensional molecular structures with impurities

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth

    1995-01-01

    We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....

  17. Vortices in the Two-Dimensional Simple Exclusion Process

    Science.gov (United States)

    Bodineau, T.; Derrida, B.; Lebowitz, Joel L.

    2008-06-01

    We show that the fluctuations of the partial current in two dimensional diffusive systems are dominated by vortices leading to a different scaling from the one predicted by the hydrodynamic large deviation theory. This is supported by exact computations of the variance of partial current fluctuations for the symmetric simple exclusion process on general graphs. On a two-dimensional torus, our exact expressions are compared to the results of numerical simulations. They confirm the logarithmic dependence on the system size of the fluctuations of the partial flux. The impact of the vortices on the validity of the fluctuation relation for partial currents is also discussed in an Appendix.

  18. Two-dimensional hazard estimation for longevity analysis

    DEFF Research Database (Denmark)

    Fledelius, Peter; Guillen, M.; Nielsen, J.P.

    2004-01-01

    the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used......We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... for analysis of economic implications arising from mortality changes....

  19. Field analysis of two-dimensional focusing grating couplers

    Science.gov (United States)

    Borsboom, P.-P.; Frankena, H. J.

    1995-05-01

    A different technique was developed by which several two-dimensional dielectric optical gratings, consisting 100 or more corrugations, were treated in a numerical reliable approach. The numerical examples that were presented were restricted to gratings made up of sequences of waveguide sections symmetric about the x = 0 plane. The newly developed method was effectively used to investigate the field produced by a two-dimensional focusing grating coupler. Focal-region fields were determined for three symmetrical gratings with 19, 50, and 124 corrugations. For focusing grating coupler with limited length, high-frequency intensity variations were noted in the focal region.

  20. Self-assembly of two-dimensional DNA crystals

    Institute of Scientific and Technical Information of China (English)

    SONG Cheng; CHEN Yaqing; WEI Shuai; YOU Xiaozeng; XIAO Shoujun

    2004-01-01

    Self-assembly of synthetic oligonucleotides into two-dimensional lattices presents a 'bottom-up' approach to the fabrication of devices on nanometer scale. We report the design and observation of two-dimensional crystalline forms of DNAs that are composed of twenty-one plane oligonucleotides and one phosphate-modified oligonucleotide. These synthetic sequences are designed to self-assemble into four double-crossover (DX) DNA tiles. The 'sticky ends' of these tiles that associate according to Watson-Crick's base pairing are programmed to build up specific periodic patterns upto tens of microns. The patterned crystals are visualized by the transmission electron microscopy.

  1. Dynamics of vortex interactions in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.

    2002-01-01

    a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 a(c) ...The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...

  2. Two-dimensional assignment with merged measurements using Langrangrian relaxation

    Science.gov (United States)

    Briers, Mark; Maskell, Simon; Philpott, Mark

    2004-01-01

    Closely spaced targets can result in merged measurements, which complicate data association. Such merged measurements violate any assumption that each measurement relates to a single target. As a result, it is not possible to use the auction algorithm in its simplest form (or other two-dimensional assignment algorithms) to solve the two-dimensional target-to-measurement assignment problem. We propose an approach that uses the auction algorithm together with Lagrangian relaxation to incorporate the additional constraints resulting from the presence of merged measurements. We conclude with some simulated results displaying the concepts introduced, and discuss the application of this research within a particle filter context.

  3. Two-dimensional lattice Boltzmann model for magnetohydrodynamics.

    Science.gov (United States)

    Schaffenberger, Werner; Hanslmeier, Arnold

    2002-10-01

    We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.

  4. Quasinormal frequencies of asymptotically flat two-dimensional black holes

    CERN Document Server

    Lopez-Ortega, A

    2011-01-01

    We discuss whether the minimally coupled massless Klein-Gordon and Dirac fields have well defined quasinormal modes in single horizon, asymptotically flat two-dimensional black holes. To get the result we solve the equations of motion in the massless limit and we also calculate the effective potentials of Schrodinger type equations. Furthermore we calculate exactly the quasinormal frequencies of the Dirac field propagating in the two-dimensional uncharged Witten black hole. We compare our results on its quasinormal frequencies with other already published.

  5. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank

    2014-01-01

    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...

  6. Observation of a pairing pseudogap in a two-dimensional Fermi gas.

    Science.gov (United States)

    Feld, Michael; Fröhlich, Bernd; Vogt, Enrico; Koschorreck, Marco; Köhl, Michael

    2011-11-30

    Pairing of fermions is ubiquitous in nature, underlying many phenomena. Examples include superconductivity, superfluidity of (3)He, the anomalous rotation of neutron stars, and the crossover between Bose-Einstein condensation of dimers and the BCS (Bardeen, Cooper and Schrieffer) regime in strongly interacting Fermi gases. When confined to two dimensions, interacting many-body systems show even more subtle effects, many of which are not understood at a fundamental level. Most striking is the (as yet unexplained) phenomenon of high-temperature superconductivity in copper oxides, which is intimately related to the two-dimensional geometry of the crystal structure. In particular, it is not understood how the many-body pairing is established at high temperature, and whether it precedes superconductivity. Here we report the observation of a many-body pairing gap above the superfluid transition temperature in a harmonically trapped, two-dimensional atomic Fermi gas in the regime of strong coupling. Our measurements of the spectral function of the gas are performed using momentum-resolved photoemission spectroscopy, analogous to angle-resolved photoemission spectroscopy in the solid state. Our observations mark a significant step in the emulation of layered two-dimensional strongly correlated superconductors using ultracold atomic gases.

  7. On some classes of two-dimensional local models in discrete two-dimensional monatomic FPU lattice with cubic and quartic potential

    Institute of Scientific and Technical Information of China (English)

    Xu Quan; Tian Qiang

    2009-01-01

    This paper discusses the two-dimensional discrete monatomic Fermi-Pasta-Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather.

  8. Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting

    Science.gov (United States)

    Chen, Leiming; Lee, Chiu Fan; Toner, John

    2016-07-01

    Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.

  9. Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy

    NARCIS (Netherlands)

    Jansen, Thomas L. C.; Knoester, Jasper

    We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,

  10. The partition function of two-dimensional string theory

    Science.gov (United States)

    Dijkgraaf, Robbert; Moore, Gregory; Plesser, Ronen

    1993-04-01

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c = 1 system to KP flow nd W 1 + ∞ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.

  11. The partition function of two-dimensional string theory

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. (School of Natural Sciences, Inst. for Advanced Study, Princeton, NJ (United States) Dept. of Mathematics, Univ. Amsterdam (Netherlands)); Moore, G.; Plesser, R. (Dept. of Physics, Yale Univ., New Haven, CT (United States))

    1993-04-12

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c=1 system to KP flow and W[sub 1+[infinity

  12. Two-Dimensional Electronic Spectroscopy of a Model Dimer System

    Directory of Open Access Journals (Sweden)

    Prokhorenko V.I.

    2013-03-01

    Full Text Available Two-dimensional spectra of a dimer were measured to determine the timescale for electronic decoherence at room temperature. Anti-correlated beats in the crosspeaks were observed only during the period corresponding to the measured homogeneous lifetime.

  13. Torque magnetometry studies of two-dimensional electron systems

    NARCIS (Netherlands)

    Schaapman, Maaike Ruth

    2004-01-01

    This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting

  14. Low-frequency scattering from two-dimensional perfect conductors

    DEFF Research Database (Denmark)

    Hansen, Thorkild; Yaghjian, A.D

    1991-01-01

    Exact expressions have been obtained for the leading terms in the low-frequency expansions of the far fields scattered from three different types of two-dimensional perfect conductors: a cylinder with finite cross section, a cylindrical bump on an infinite ground plane, and a cylindrical dent...

  15. Two-Dimensional Mesoscale-Ordered Conducting Polymers

    NARCIS (Netherlands)

    Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang

    2016-01-01

    Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of assem

  16. Piezoelectricity and Piezomagnetism: Duality in two-dimensional checkerboards

    Science.gov (United States)

    Fel, Leonid G.

    2002-05-01

    The duality approach in two-dimensional two-component regular checkerboards is extended to piezoelectricity and piezomagnetism. The relation between the effective piezoelectric and piezomagnetic moduli is found for a checkerboard with the p6'mm'-plane symmetry group (dichromatic triangle).

  17. Operator splitting for two-dimensional incompressible fluid equations

    CERN Document Server

    Holden, Helge; Karper, Trygve K

    2011-01-01

    We analyze splitting algorithms for a class of two-dimensional fluid equations, which includes the incompressible Navier-Stokes equations and the surface quasi-geostrophic equation. Our main result is that the Godunov and Strang splitting methods converge with the expected rates provided the initial data are sufficiently regular.

  18. Chaotic dynamics for two-dimensional tent maps

    Science.gov (United States)

    Pumariño, Antonio; Ángel Rodríguez, José; Carles Tatjer, Joan; Vigil, Enrique

    2015-02-01

    For a two-dimensional extension of the classical one-dimensional family of tent maps, we prove the existence of an open set of parameters for which the respective transformation presents a strange attractor with two positive Lyapounov exponents. Moreover, periodic orbits are dense on this attractor and the attractor supports a unique ergodic invariant probability measure.

  19. Divorticity and dihelicity in two-dimensional hydrodynamics

    DEFF Research Database (Denmark)

    Shivamoggi, B.K.; van Heijst, G.J.F.; Juul Rasmussen, Jens

    2010-01-01

    A framework is developed based on the concepts of divorticity B (≡×ω, ω being the vorticity) and dihelicity g (≡vB) for discussing the theoretical structure underlying two-dimensional (2D) hydrodynamics. This formulation leads to the global and Lagrange invariants that could impose significant...

  20. Spin-orbit torques in two-dimensional Rashba ferromagnets

    NARCIS (Netherlands)

    Qaiumzadeh, A.; Duine, R. A.|info:eu-repo/dai/nl/304830127; Titov, M.

    2015-01-01

    Magnetization dynamics in single-domain ferromagnets can be triggered by a charge current if the spin-orbit coupling is sufficiently strong. We apply functional Keldysh theory to investigate spin-orbit torques in metallic two-dimensional Rashba ferromagnets in the presence of spin-dependent

  1. Numerical blowup in two-dimensional Boussinesq equations

    CERN Document Server

    Yin, Zhaohua

    2009-01-01

    In this paper, we perform a three-stage numerical relay to investigate the finite time singularity in the two-dimensional Boussinesq approximation equations. The initial asymmetric condition is the middle-stage output of a $2048^2$ run, the highest resolution in our study is $40960^2$, and some signals of numerical blowup are observed.

  2. Exact two-dimensional superconformal R symmetry and c extremization.

    Science.gov (United States)

    Benini, Francesco; Bobev, Nikolay

    2013-02-08

    We uncover a general principle dubbed c extremization, which determines the exact R symmetry of a two-dimensional unitary superconformal field theory with N=(0,2) supersymmetry. To illustrate its utility, we study superconformal theories obtained by twisted compactifications of four-dimensional N=4 super-Yang-Mills theory on Riemann surfaces and construct their gravity duals.

  3. Zero sound in a two-dimensional dipolar Fermi gas

    NARCIS (Netherlands)

    Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.

    2013-01-01

    We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean-f

  4. Topology optimization of two-dimensional elastic wave barriers

    DEFF Research Database (Denmark)

    Van Hoorickx, C.; Sigmund, Ole; Schevenels, M.

    2016-01-01

    Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is insert...

  5. Non perturbative methods in two dimensional quantum field theory

    CERN Document Server

    Abdalla, Elcio; Rothe, Klaus D

    1991-01-01

    This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.

  6. Thermodynamics of Two-Dimensional Black-Holes

    OpenAIRE

    Nappi, Chiara R.; Pasquinucci, Andrea

    1992-01-01

    We explore the thermodynamics of a general class of two dimensional dilatonic black-holes. A simple prescription is given that allows us to compute the mass, entropy and thermodynamic potentials, with results in agreement with those obtained by other methods, when available.

  7. Influence of index contrast in two dimensional photonic crystal lasers

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner;

    2010-01-01

    The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavit...

  8. Magnetic order in two-dimensional nanoparticle assemblies

    NARCIS (Netherlands)

    Georgescu, M

    2008-01-01

    This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the

  9. Dynamical phase transitions in the two-dimensional ANNNI model

    Energy Technology Data Exchange (ETDEWEB)

    Barber, M.N.; Derrida, B.

    1988-06-01

    We study the phase diagram of the two-dimensional anisotropic next-nearest neighbor Ising (ANNNI) model by comparing the time evolution of two distinct spin configurations submitted to the same thermal noise. We clearly se several dynamical transitions between ferromagnetic, paramagnetic, antiphase, and floating phases. These dynamical transitions seem to occur rather close to the transition lines determined previously in the literature.

  10. Two-dimensional static black holes with pointlike sources

    CERN Document Server

    Melis, M

    2004-01-01

    We study the static black hole solutions of generalized two-dimensional dilaton-gravity theories generated by pointlike mass sources, in the hypothesis that the matter is conformally coupled. We also discuss the motion of test particles. Due to conformal coupling, these follow the geodesics of a metric obtained by rescaling the canonical metric with the dilaton.

  11. Magnetic order in two-dimensional nanoparticle assemblies

    NARCIS (Netherlands)

    Georgescu, M

    2008-01-01

    This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the r

  12. Two-Dimensional Chirality in Three-Dimensional Chemistry.

    Science.gov (United States)

    Wintner, Claude E.

    1983-01-01

    The concept of two-dimensional chirality is used to enhance students' understanding of three-dimensional stereochemistry. This chirality is used as a key to teaching/understanding such concepts as enaniotropism, diastereotopism, pseudoasymmetry, retention/inversion of configuration, and stereochemical results of addition to double bonds. (JN)

  13. Field analysis of two-dimensional focusing grating

    NARCIS (Netherlands)

    Borsboom, P.P.; Frankena, H.J.

    1995-01-01

    The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal regi

  14. Torque magnetometry studies of two-dimensional electron systems

    NARCIS (Netherlands)

    Schaapman, Maaike Ruth

    2004-01-01

    This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting

  15. Two-Dimensional Mesoscale-Ordered Conducting Polymers

    NARCIS (Netherlands)

    Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang

    2016-01-01

    Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of

  16. Vibrations of Thin Piezoelectric Shallow Shells: Two-Dimensional Approximation

    Indian Academy of Sciences (India)

    N Sabu

    2003-08-01

    In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

  17. Two-dimensional effects in nonlinear Kronig-Penney models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim

    1997-01-01

    An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...

  18. Forensic potential of comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.

    2016-01-01

    In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o

  19. Easy interpretation of optical two-dimensional correlation spectra

    NARCIS (Netherlands)

    Lazonder, K.; Pshenichnikov, M.S.; Wiersma, D.A.

    2006-01-01

    We demonstrate that the value of the underlying frequency-frequency correlation function can be retrieved from a two-dimensional optical correlation spectrum through a simple relationship. The proposed method yields both intuitive clues and a quantitative measure of the dynamics of the system. The t

  20. Two Dimensional F(R) Horava-Lifshitz Gravity

    CERN Document Server

    Kluson, J

    2016-01-01

    We study two-dimensional F(R) Horava-Lifshitz gravity from the Hamiltonian point of view. We determine constraints structure with emphasis on the careful separation of the second class constraints and global first class constraints. We determine number of physical degrees of freedom and also discuss gauge fixing of the global first class constraints.

  1. Localization of Tight Closure in Two-Dimensional Rings

    Indian Academy of Sciences (India)

    Kamran Divaani-Aazar; Massoud Tousi

    2005-02-01

    It is shown that tight closure commutes with localization in any two-dimensional ring of prime characteristic if either is a Nagata ring or possesses a weak test element. Moreover, it is proved that tight closure commutes with localization at height one prime ideals in any ring of prime characteristic.

  2. Cryptanalysis of the Two-Dimensional Circulation Encryption Algorithm

    Directory of Open Access Journals (Sweden)

    Bart Preneel

    2005-07-01

    Full Text Available We analyze the security of the two-dimensional circulation encryption algorithm (TDCEA, recently published by Chen et al. in this journal. We show that there are several flaws in the algorithm and describe some attacks. We also address performance issues in current cryptographic designs.

  3. New directions in science and technology: two-dimensional crystals

    Energy Technology Data Exchange (ETDEWEB)

    Neto, A H Castro [Graphene Research Centre, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Novoselov, K, E-mail: phycastr@nus.edu.sg, E-mail: konstantin.novoselov@manchester.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2011-08-15

    Graphene is possibly one of the largest and fastest growing fields in condensed matter research. However, graphene is only one example in a large class of two-dimensional crystals with unusual properties. In this paper we briefly review the properties of graphene and look at the exciting possibilities that lie ahead.

  4. Boundary-value problems for two-dimensional canonical systems

    NARCIS (Netherlands)

    Hassi, Seppo; De Snoo, H; Winkler, Henrik

    2000-01-01

    The two-dimensional canonical system Jy' = -lHy where the nonnegative Hamiltonian matrix function H(x) is trace-normed on (0,∞) has been studied in a function-theoretic way by L. de Branges. We show that the Hamiltonian system induces a closed symmetric relation which can be reduced to a, not necess

  5. On the continua in two-dimensional nonadiabatic magnetohydrodynamic spectra

    NARCIS (Netherlands)

    De Ploey, A.; Van der Linden, R. A. M.; Belien, A. J. C.

    2000-01-01

    The equations for the continuous subspectra of the linear magnetohydrodynamic (MHD) normal modes spectrum of two-dimensional (2D) plasmas are derived in general curvilinear coordinates, taking nonadiabatic effects in the energy equation into account. Previously published derivations of continuous sp

  6. Dislocation climb in two-dimensional discrete dislocation dynamics

    NARCIS (Netherlands)

    Davoudi, K.M.; Nicola, L.; Vlassak, J.J.

    2012-01-01

    In this paper, dislocation climb is incorporated in a two-dimensional discrete dislocation dynamics model. Calculations are carried out for polycrystalline thin films, passivated on one or both surfaces. Climb allows dislocations to escape from dislocation pile-ups and reduces the strain-hardening r

  7. SAR Processing Based On Two-Dimensional Transfer Function

    Science.gov (United States)

    Chang, Chi-Yung; Jin, Michael Y.; Curlander, John C.

    1994-01-01

    Exact transfer function, ETF, is two-dimensional transfer function that constitutes basis of improved frequency-domain-convolution algorithm for processing synthetic-aperture-radar, SAR data. ETF incorporates terms that account for Doppler effect of motion of radar relative to scanned ground area and for antenna squint angle. Algorithm based on ETF outperforms others.

  8. Sound waves in two-dimensional ducts with sinusoidal walls

    Science.gov (United States)

    Nayfeh, A. H.

    1974-01-01

    The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.

  9. Confined two-dimensional fermions at finite density

    CERN Document Server

    De Francia, M; Loewe, M; Santangelo, E M; De Francia, M; Falomir, H; Loewe, M; Santangelo, E M

    1995-01-01

    We introduce the chemical potential in a system of two-dimensional massless fermions, confined to a finite region, by imposing twisted boundary conditions in the Euclidean time direction. We explore in this simple model the application of functional techniques which could be used in more complicated situations.

  10. Imperfect two-dimensional topological insulator field-effect transistors

    Science.gov (United States)

    Vandenberghe, William G.; Fischetti, Massimo V.

    2017-01-01

    To overcome the challenge of using two-dimensional materials for nanoelectronic devices, we propose two-dimensional topological insulator field-effect transistors that switch based on the modulation of scattering. We model transistors made of two-dimensional topological insulator ribbons accounting for scattering with phonons and imperfections. In the on-state, the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the topologically protected edge states even in the presence of imperfections. In the off-state the Fermi level moves into the bandgap and electrons suffer from severe back-scattering. An off-current more than two-orders below the on-current is demonstrated and a high on-current is maintained even in the presence of imperfections. At low drain-source bias, the output characteristics are like those of conventional field-effect transistors, at large drain-source bias negative differential resistance is revealed. Complementary n- and p-type devices can be made enabling high-performance and low-power electronic circuits using imperfect two-dimensional topological insulators. PMID:28106059

  11. Bounds on the capacity of constrained two-dimensional codes

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Justesen, Jørn

    2000-01-01

    Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run...

  12. Miniature sensor for two-dimensional magnetic field distributions

    NARCIS (Netherlands)

    Fluitman, J.H.J.; Krabbe, H.W.

    1972-01-01

    Describes a simple method of production of a sensor for two-dimensional magnetic field distributions. The sensor consists of a strip of Ni-Fe(81-19), of which the magnetoresistance is utilized. Typical dimensions of the strip, placed at the edge of a glass substrate, are: length 100 mu m, width 2 or

  13. Forensic potential of comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.

    2016-01-01

    In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o

  14. Spontaneous emission in two-dimensional photonic crystal microcavities

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2000-01-01

    The properties of the radiation field in a two-dimensional photonic crystal with and without a microcavity introduced are investigated through the concept of the position-dependent photon density of states. The position-dependent rate of spontaneous radiative decay for a two-level atom with random...

  15. Linkage analysis by two-dimensional DNA typing

    NARCIS (Netherlands)

    te Meerman, G J; Mullaart, E; van der Meulen, M A; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J

    1993-01-01

    In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core pro

  16. Phase conjugated Andreev backscattering in two-dimensional ballistic cavities

    NARCIS (Netherlands)

    Morpurgo, A.F.; Holl, S.; Wees, B.J.van; Klapwijk, T.M; Borghs, G.

    1997-01-01

    We have experimentally investigated transport in two-dimensional ballistic cavities connected to a point contact and to two superconducting electrodes with a tunable macroscopic phase difference. The point contact resistance oscillates as a function of the phase difference in a way which reflects

  17. Instability of two-dimensional heterotic stringy black holes

    CERN Document Server

    Azreg-Ainou, M

    1999-01-01

    We solve the eigenvalue problem of general relativity for the case of charged black holes in two-dimensional heterotic string theory, derived by McGuigan et al. For the case of $m^{2}>q^{2}$, we find a physically acceptable time-dependent growing mode; thus the black hole is unstable. The extremal case $m^{2}=q^{2}$ is stable.

  18. Two Dimensional Tensor Product B-Spline Wavelet Scaling Functions for the Solution of Two-Dimensional Unsteady Diffusion Equations

    Institute of Scientific and Technical Information of China (English)

    XIONG Lei; LI haijiao; ZHANG Lewen

    2008-01-01

    The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions, 4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.

  19. Geometry from Information Geometry

    CERN Document Server

    Caticha, Ariel

    2015-01-01

    We use the method of maximum entropy to model physical space as a curved statistical manifold. It is then natural to use information geometry to explain the geometry of space. We find that the resultant information metric does not describe the full geometry of space but only its conformal geometry -- the geometry up to local changes of scale. Remarkably, this is precisely what is needed to model "physical" space in general relativity.

  20. Implementation of the Log-Conformation Formulation for Two-Dimensional Viscoelastic Flow

    CERN Document Server

    Jensen, K E; Okkels, F

    2015-01-01

    We have implemented the log-conformation method for two-dimensional viscoelastic flow in COMSOL, a commercial high-level finite element package. The code is verified for an Oldroyd-B fluid flowing past a confined cylinder. We are also able to describe the well-known bistability of the viscoelastic flow in a cross-slot geometry for a FENE-CR fluid, and we describe the changes required for performing simulations with the Phan-Thien-Tanner (PTT), Giesekus and FENE-P models. Finally, we calculate the flow of a FENE-CR fluid in a geometry with three in- and outlets. The implementation is included in the supplementary material, and we hope that it can inspire new as well as experienced researchers in the field of differential constitutive equations for viscoelastic flow.

  1. Spectral evolution of two-dimensional kinetic plasma turbulence in the wavenumber-frequency domain

    CERN Document Server

    Comişel, H; Narita, Y; Motschmann, U

    2013-01-01

    We present a method for studying the evolution of plasma turbulence by tracking dispersion relations in the energy spectrum in the wavenumber-frequency domain. We apply hybrid plasma simulations in a simplified two-dimensional geometry to demonstrate our method and its applicability to plasma turbulence in the ion kinetic regime. We identify four dispersion relations: ion-Bernstein waves, oblique whistler waves, oblique Alfv\\'en/ion-cyclotron waves, and a zero-frequency mode. The energy partition and frequency broadening are evaluated for these modes. The method allows us to determine the evolution of decaying plasma turbulence in our restricted geometry and shows that it cascades along the dispersion relations during the early phase with an increasing broadening around the dispersion relations.

  2. Theory of the vortex-clustering transition in a confined two-dimensional quantum fluid

    CERN Document Server

    Yu, Xiaoquan; Nian, Jun; Reeves, Matthew T; Bradley, Ashton S

    2016-01-01

    Clustering of like-sign vortices in a planar bounded domain is known to occur at negative temperature, a phenomenon that Onsager demonstrated to be a consequence of bounded phase space. In a confined superfluid, quantized vortices can support such an ordered phase, provided they evolve as an almost isolated subsystem containing sufficient energy. A detailed theoretical understanding of the statistical mechanics of such states thus requires a microcanonical approach. Here we develop an analytical theory of the vortex clustering transition in a neutral system of quantum vortices confined to a two-dimensional disk geometry, within the microcanonical ensemble. As the system energy increases above a critical value, the system develops global order via the emergence of a macroscopic dipole structure from the homogeneous phase of vortices, spontaneously breaking the Z2 symmetry associated with invariance under vortex circulation exchange, and the rotational SO(2) symmetry due to the disk geometry. The dipole structu...

  3. Numerical Algorithms for Two-Dimensional Dry Granular Flow with Deformable Elastic Grain

    Energy Technology Data Exchange (ETDEWEB)

    Boateng, H A; Elander, V; Jin, C; Li, Y; Vasquez, P; Fast, P

    2005-08-11

    The authors consider the dynamics of interacting elastic disks in the plane. This is an experimentally realizable two-dimensional model of dry granular flow where the stresses can be visualized using the photoelastic effect. As the elastic disks move in a vacuum, they interact through collisions with each other and with the surrounding geometry. Because of the finite propagation speed of deformations inside each grain it can be difficult to capture computationally even simple experiments involving just a few interacting grains. The goal of this project is to improve our ability to simulate dense granular flow in complex geometry. They begin this process by reviewing some past work, how they can improve upon previous work. the focus of this project is on capturing the elastic dynamics of each grain in an approximate, computationally tractable, model that can be coupled to a molecular dynamics scheme.

  4. Donor-bound electron states in a two-dimensional quantum ring under uniform magnetic field

    Institute of Scientific and Technical Information of China (English)

    Jia Bo-Yong; Yu Zhong-Yuan; Liu Yu-Min; Han Li-Hong; Yao Wen-Jie; Feng Hao; Ye Han

    2011-01-01

    The electron states in a two-dimensional GaAs/AlGaAs quantum ring are theoretically studied in effective mass approximation. On-centre donor impurity and uniform magnetic field perpendicular to the ring plane are taken into account. The energy spectrum with different angular momentum changes dramatically with the geometry of the ring.The donor impurity reduces the energies with an almost fixed value; however, the magnetic field alters energies in a more complex way. For example, energy levels under magnetic field will cross each other when increasing the inner radius and outer radius of the ring, leading to the fact that the arrangement of energy levels is distinct in certain geometry of the ring. Moreover, energy levels with negative angular momentum exhibit the non-monotonous dependence on the increasing magnetic field.

  5. Conformal invariance and stochastic Loewner evolution processes in two-dimensional Ising spin glasses.

    Science.gov (United States)

    Amoruso, C; Hartmann, A K; Hastings, M B; Moore, M A

    2006-12-31

    We present numerical evidence that the techniques of conformal field theory might be applicable to two-dimensional Ising spin glasses with Gaussian bond distributions. It is shown that certain domain wall distributions in one geometry can be related to that in a second geometry by a conformal transformation. We also present direct evidence that the domain walls are stochastic Loewner (SLE) processes with kappa approximately 2.1. An argument is given that their fractal dimension d(f) is related to their interface energy exponent theta by d(f) - 1 = 3/[4(3 + theta)], which is consistent with the commonly quoted values d(f) approximately 1.27 and theta approximately -0.28.

  6. First operation of a powerful FEL with two-dimensional distributed feedback

    CERN Document Server

    Agarin, N V; Bobylev, V B; Ginzburg, N S; Ivanenko, V G; Kalinin, P V; Kuznetsov, S A; Peskov, N Yu; Sergeev, A S; Sinitsky, S L; Stepanov, V D

    2000-01-01

    A W-band (75 GHz) FEL of planar geometry driven by a sheet electron beam was realised using the pulse accelerator ELMI (0.8 MeV/3 kA/5 mu s). To provide the spatial coherence of radiation from different parts of the electron beam with a cross-section of 0.4x12 cm two-dimensional distributed feedback systems have been employed using a 2-D Bragg resonator of planar geometry. The resonator consisted of two 2-D Bragg reflectors separated by a regular waveguide section. The total energy in the microwave pulse of microsecond duration was 100 J corresponding to a power of approx 100 MW. The main component of the FEL radiation spectrum was at 75 GHz that corresponded to the zone of effective Bragg reflection found from 'cold' microwave testing of the resonator. The experimental data compared well with the results of theoretical analysis.

  7. Electrodynamics and spacetime geometry: Astrophysical applications

    Science.gov (United States)

    Cabral, Francisco; Lobo, Francisco S. N.

    2017-07-01

    After a brief review of the foundations of (pre-metric) electromagnetism, we explore some physical consequences of electrodynamics in curved spacetime. In general, new electromagnetic couplings and related phenomena are induced by the spacetime curvature. The applications of astrophysical interest considered here correspond essentially to the following geometries: the Schwarzschild spacetime and the spacetime around a rotating spherical mass in the weak field and slow rotation regime. In the latter, we use the Parameterised Post-Newtonian (PPN) formalism. We also explore the hypothesis that the electric and magnetic properties of vacuum reflect the spacetime isometries. Therefore, the permittivity and permeability tensors should not be considered homogeneous and isotropic a priori. For spherical geometries we consider the effect of relaxing the homogeneity assumption in the constitutive relations between the fields and excitations. This affects the generalized Gauss and Maxwell-Ampère laws, where the electric permittivity and magnetic permeability in vacuum depend on the radial coordinate in accordance with the local isometries of space. For the axially symmetric geometries we relax both the assumptions of homogeneity and isotropy. We explore simple solutions and discuss the physical implications related to different phenomena, such as the decay of electromagnetic fields in the presence of gravity, magnetic terms in Gauss law due to the gravitomagnetism of the spacetime around rotating objects, a frame-dragging effect on electric fields and the possibility of a spatial (radial) variability of the velocity of light in vacuum around spherical astrophysical objects for strong gravitational fields.

  8. Students' Misconceptions and Errors in Transformation Geometry

    Science.gov (United States)

    Ada, Tuba; Kurtulus, Aytac

    2010-01-01

    This study analyses the students' performances in two-dimensional transformation geometry and explores the mistakes made by the students taking the analytic geometry course given by researchers. An examination was given to students of Education Faculties who have taken the analytic geometry course at Eskisehir Osmangazi University in Turkey. The…

  9. A two-dimensional Segmented Boundary Algorithm for complex moving solid boundaries in Smoothed Particle Hydrodynamics

    Science.gov (United States)

    Khorasanizade, Sh.; Sousa, J. M. M.

    2016-03-01

    A Segmented Boundary Algorithm (SBA) is proposed to deal with complex boundaries and moving bodies in Smoothed Particle Hydrodynamics (SPH). Boundaries are formed in this algorithm with chains of lines obtained from the decomposition of two-dimensional objects, based on simple line geometry. Various two-dimensional, viscous fluid flow cases have been studied here using a truly incompressible SPH method with the aim of assessing the capabilities of the SBA. Firstly, the flow over a stationary circular cylinder in a plane channel was analyzed at steady and unsteady regimes, for a single value of blockage ratio. Subsequently, the flow produced by a moving circular cylinder with a prescribed acceleration inside a plane channel was investigated as well. Next, the simulation of the flow generated by the impulsive start of a flat plate, again inside a plane channel, has been carried out. This was followed by the study of confined sedimentation of an elliptic body subjected to gravity, for various density ratios. The set of test cases was completed with the simulation of periodic flow around a sunflower-shaped object. Extensive comparisons of the results obtained here with published data have demonstrated the accuracy and effectiveness of the proposed algorithms, namely in cases involving complex geometries and moving bodies.

  10. Two-Dimensional Supersymmetric Sigma Models on Almost-Product Manifolds and Non-Geometry

    NARCIS (Netherlands)

    Stojevic, V.

    2010-01-01

    We show that the superconformal symmetries of the (1,1) sigma model decompose into a set of more refined symmetries when the target space admits projectors $P_{\\pm}$, and the orthogonal complements $Q_{\\pm}$, covariantly constant with respect to the two natural torsionful connections $\

  11. Unsteady two-dimensional potential-flow model for thin variable geometry airfoils

    DEFF Research Database (Denmark)

    Gaunaa, Mac

    2010-01-01

    as in classic thin-airfoil theory, and the deflection of the airfoil is given by superposition of chord-wise deflection mode shapes. It is shown from the expressions for the forces that the influence from the shed vorticity in the wake is described by the same time lag for all chord-wise positions...... on the airfoil. This time-lag term can be approximated using an indicial function approach, making the practical calculation of the aerodynamic response numerically very efficient by use of Duhamel superposition. Furthermore, the indicial function expressions for the time-lag terms are formulated...

  12. Topology Change and the Emergence of Geometry in Two Dimensional Causal Quantum Gravity

    NARCIS (Netherlands)

    Westra, W.

    2007-01-01

    Despite many attempts, gravity has vigorously resisted a unification with the laws of quantum mechanics. Besides a plethora of technical issues, one is also faced with many interesting conceptual problems. The study of quantum gravity in lower dimensional models ameliorates the technical difficultie

  13. Stress Wave Propagation in Two-dimensional Buckyball Lattice

    Science.gov (United States)

    Xu, Jun; Zheng, Bowen

    2016-11-01

    Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices.

  14. The separation of whale myoglobins with two-dimensional electrophoresis.

    Science.gov (United States)

    Spicer, G S

    1988-10-01

    Five myoglobins (sperm whale, Sei whale, Hubbs' beaked whale, pilot whale, and Amazon River dolphin) were examined using two-dimensional electrophoresis. Previous reports indicated that none of these proteins could be separated by using denaturing (in the presence of 8-9 M urea) isoelectric focusing. This result is confirmed in the present study. However, all the proteins could be separated by using denaturing nonequilibrium pH-gradient electrophoresis in the first dimension. Additionally, all the myoglobins have characteristic mobilities in the second dimension (sodium dodecyl sulfate), but these mobilities do not correspond to the molecular weights of the proteins. We conclude that two-dimensional electrophoresis can be more sensitive to differences in primary protein structure than previous studies indicate and that the assessment seems to be incorrect that this technique can separate only proteins that have a unit charge difference.

  15. Entanglement Entropy in Two-Dimensional String Theory.

    Science.gov (United States)

    Hartnoll, Sean A; Mazenc, Edward A

    2015-09-18

    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.

  16. The Persistence Problem in Two-Dimensional Fluid Turbulence

    CERN Document Server

    Perlekar, Prasad; Mitra, Dhrubaditya; Pandit, Rahul

    2010-01-01

    We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter {\\Lambda} to distinguish between vortical and extensional regions. We then use a direct numerical simulation (DNS) of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with a universal exponent {\\theta} = 3.1 \\pm 0.2.

  17. On Dirichlet eigenvectors for neutral two-dimensional Markov chains

    CERN Document Server

    Champagnat, Nicolas; Miclo, Laurent

    2012-01-01

    We consider a general class of discrete, two-dimensional Markov chains modeling the dynamics of a population with two types, without mutation or immigration, and neutral in the sense that type has no influence on each individual's birth or death parameters. We prove that all the eigenvectors of the corresponding transition matrix or infinitesimal generator \\Pi\\ can be expressed as the product of "universal" polynomials of two variables, depending on each type's size but not on the specific transitions of the dynamics, and functions depending only on the total population size. These eigenvectors appear to be Dirichlet eigenvectors for \\Pi\\ on the complement of triangular subdomains, and as a consequence the corresponding eigenvalues are ordered in a specific way. As an application, we study the quasistationary behavior of finite, nearly neutral, two-dimensional Markov chains, absorbed in the sense that 0 is an absorbing state for each component of the process.

  18. Statistical mechanics of two-dimensional and geophysical flows

    CERN Document Server

    Bouchet, Freddy

    2011-01-01

    The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter's troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. The equilibrium microcanonical measure is built from the Liouville theorem. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equi...

  19. Two-dimensional hazard estimation for longevity analysis

    DEFF Research Database (Denmark)

    Fledelius, Peter; Guillen, M.; Nielsen, J.P.

    2004-01-01

    We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used...... for prediction purposes. However, we suggest that life insurance companies use the estimation technique and the cross-validation for bandwidth selection when analyzing their portfolio mortality. The non-parametric approach may give valuable information prior to developing more sophisticated prediction models...

  20. Analysis of one dimensional and two dimensional fuzzy controllers

    Institute of Scientific and Technical Information of China (English)

    Ban Xiaojun; Gao Xiaozhi; Huang Xianlin; Wu Tianbao

    2006-01-01

    The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail.The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.

  1. Extension of modified power method to two-dimensional problems

    Science.gov (United States)

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung

    2016-09-01

    In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. The stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem.

  2. Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation

    Directory of Open Access Journals (Sweden)

    Panjit MUSIK

    2004-01-01

    Full Text Available This paper presents a simulation of incompressible viscous flow within a two-dimensional square cavity. The objective is to develop a method originated from Lattice Gas (cellular Automata (LGA, which utilises discrete lattice as well as discrete time and can be parallelised easily. Lattice Boltzmann Method (LBM, known as discrete Lattice kinetics which provide an alternative for solving the Navier–Stokes equations and are generally used for fluid simulation, is chosen for the study. A specific two-dimensional nine-velocity square Lattice model (D2Q9 Model is used in the simulation with the velocity at the top of the cavity kept fixed. LBM is an efficient method for reproducing the dynamics of cavity flow and the results which are comparable to those of previous work.

  3. Transport behavior of water molecules through two-dimensional nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chongqin; Li, Hui; Meng, Sheng, E-mail: smeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-11-14

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  4. Transport behavior of water molecules through two-dimensional nanopores

    Science.gov (United States)

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-11-01

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  5. Thermodynamics of two-dimensional Yukawa systems across coupling regimes

    Science.gov (United States)

    Kryuchkov, Nikita P.; Khrapak, Sergey A.; Yurchenko, Stanislav O.

    2017-04-01

    Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crystalline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained and accurate physically motivated fits are proposed. This allows us to put forward simple practical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation method is applied to describe pair correlations and hence thermodynamic properties. It is shown that the finite-temperature effects can be accounted for by using simple correction of peaks in the pair correlation function. The corresponding correction coefficients are evaluated using MD simulation. The relevance of the obtained results in the context of colloidal systems, complex (dusty) plasmas, and ions absorbed to interfaces in electrolytes is pointed out.

  6. Topological states in two-dimensional hexagon lattice bilayers

    Science.gov (United States)

    Zhang, Ming-Ming; Xu, Lei; Zhang, Jun

    2016-10-01

    We investigate the topological states of the two-dimensional hexagon lattice bilayer. The system exhibits a quantum valley Hall (QVH) state when the interlayer interaction t⊥ is smaller than the nearest neighbor hopping energy t, and then translates to a trivial band insulator state when t⊥ / t > 1. Interestingly, the system is found to be a single-edge QVH state with t⊥ / t = 1. The topological phase transition also can be presented via changing bias voltage and sublattice potential in the system. The QVH states have different edge modes carrying valley current but no net charge current. The bias voltage and external electric field can be tuned easily in experiments, so the present results will provide potential application in valleytronics based on the two-dimensional hexagon lattice.

  7. CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION

    Directory of Open Access Journals (Sweden)

    Toth Reka

    2010-12-01

    Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.

  8. Two-dimensional magnetostriction under vector magnetic characteristic

    Science.gov (United States)

    Wakabayashi, D.; Enokizono, M.

    2015-05-01

    This paper presents two-dimensional magnetostriction of electrical steel sheet under vector magnetic characteristic. In conventional measurement method using Single Sheet Tester, the magnetic flux density, the magnetic field strength, and the magnetostriction have been measured in one direction. However, an angle between the magnetic flux density vector and the magnetic field strength vector exists because the magnetic property is vector quantity. An angle between the magnetic flux density vector and the direction of maximum magnetostriction also exists. We developed a new measurement method, which enables measurement of these angles. The vector magnetic characteristic and the two-dimensional magnetostriction have been measured using the new measurement method. The BH and Bλ curves considering the angles are shown in this paper. The analyzed results considering the angles are also made clear.

  9. Phase separation under two-dimensional Poiseuille flow.

    Science.gov (United States)

    Kiwata, H

    2001-05-01

    The spinodal decomposition of a two-dimensional binary fluid under Poiseuille flow is studied by numerical simulation. We investigated time dependence of domain sizes in directions parallel and perpendicular to the flow. In an effective region of the flow, the power-law growth of a characteristic length in the direction parallel to the flow changes from the diffusive regime with the growth exponent alpha=1/3 to a new regime. The scaling invariance of the growth in the perpendicular direction is destroyed after the diffusive regime. A recurrent prevalence of thick and thin domains which determines log-time periodic oscillations has not been observed in our model. The growth exponents in the infinite system under two-dimensional Poiseuille flow are obtained by the renormalization group.

  10. Two-dimensional localized structures in harmonically forced oscillatory systems

    Science.gov (United States)

    Ma, Y.-P.; Knobloch, E.

    2016-12-01

    Two-dimensional spatially localized structures in the complex Ginzburg-Landau equation with 1:1 resonance are studied near the simultaneous presence of a steady front between two spatially homogeneous equilibria and a supercritical Turing bifurcation on one of them. The bifurcation structures of steady circular fronts and localized target patterns are computed in the Turing-stable and Turing-unstable regimes. In particular, localized target patterns grow along the solution branch via ring insertion at the core in a process reminiscent of defect-mediated snaking in one spatial dimension. Stability of axisymmetric solutions on these branches with respect to axisymmetric and nonaxisymmetric perturbations is determined, and parameter regimes with stable axisymmetric oscillons are identified. Direct numerical simulations reveal novel depinning dynamics of localized target patterns in the radial direction, and of circular and planar localized hexagonal patterns in the fully two-dimensional system.

  11. Enstrophy inertial range dynamics in generalized two-dimensional turbulence

    Science.gov (United States)

    Iwayama, Takahiro; Watanabe, Takeshi

    2016-07-01

    We show that the transition to a k-1 spectrum in the enstrophy inertial range of generalized two-dimensional turbulence can be derived analytically using the eddy damped quasinormal Markovianized (EDQNM) closure. The governing equation for the generalized two-dimensional fluid system includes a nonlinear term with a real parameter α . This parameter controls the relationship between the stream function and generalized vorticity and the nonlocality of the dynamics. An asymptotic analysis accounting for the overwhelming dominance of nonlocal triads allows the k-1 spectrum to be derived based upon a scaling analysis. We thereby provide a detailed analytical explanation for the scaling transition that occurs in the enstrophy inertial range at α =2 in terms of the spectral dynamics of the EDQNM closure, which extends and enhances the usual phenomenological explanations.

  12. Folding two dimensional crystals by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2014-12-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.

  13. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine

    2004-01-01

    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...

  14. Two-dimensional model of elastically coupled molecular motors

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong-Wei; Wen Shu-Tang; Chen Gai-Rong; Li Yu-Xiao; Cao Zhong-Xing; Li Wei

    2012-01-01

    A flashing ratchet model of a two-headed molecular motor in a two-dimensional potential is proposed to simulate the hand-over-hand motion of kinesins.Extensive Langevin simulations of the model are performed.We discuss the dependences of motion and efficiency on the model parameters,including the external force and the temperature.A good qualitative agreement with the expected behavior is observed.

  15. Conductivity of a two-dimensional guiding center plasma.

    Science.gov (United States)

    Montgomery, D.; Tappert, F.

    1972-01-01

    The Kubo method is used to calculate the electrical conductivity of a two-dimensional, strongly magnetized plasma. The particles interact through (logarithmic) electrostatic potentials and move with their guiding center drift velocities (Taylor-McNamara model). The thermal equilibrium dc conductivity can be evaluated analytically, but the ac conductivity involves numerical solution of a differential equation. Both conductivities fall off as the inverse first power of the magnetic field strength.

  16. Minor magnetization loops in two-dimensional dipolar Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Sarjala, M. [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland); Seppaelae, E.T., E-mail: eira.seppala@nokia.co [Nokia Research Center, Itaemerenkatu 11-13, FI-00180 Helsinki (Finland); Alava, M.J., E-mail: mikko.alava@tkk.f [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland)

    2011-05-15

    The two-dimensional dipolar Ising model is investigated for the relaxation and dynamics of minor magnetization loops. Monte Carlo simulations show that in a stripe phase an exponential decrease can be found for the magnetization maxima of the loops, M{approx}exp(-{alpha}N{sub l}) where N{sub l} is the number of loops. We discuss the limits of this behavior and its relation to the equilibrium phase diagram of the model.

  17. Cryptography Using Multiple Two-Dimensional Chaotic Maps

    Directory of Open Access Journals (Sweden)

    Ibrahim S. I. Abuhaiba

    2012-08-01

    Full Text Available In this paper, a symmetric key block cipher cryptosystem is proposed, involving multiple two-dimensional chaotic maps and using 128-bits external secret key. Computer simulations indicate that the cipher has good diffusion and confusion properties with respect to the plaintext and the key. Moreover, it produces ciphertext with random distribution. The computation time is much less than previous related works. Theoretic analysis verifies its superiority to previous cryptosystems against different types of attacks.

  18. A UNIVERSAL VARIATIONAL FORMULATION FOR TWO DIMENSIONAL FLUID MECHANICS

    Institute of Scientific and Technical Information of China (English)

    何吉欢

    2001-01-01

    A universal variational formulation for two dimensional fluid mechanics is obtained, which is subject to the so-called parameter-constrained equations (the relationship between parameters in two governing equations). By eliminating the constraints, the generalized variational principle (GVPs) can be readily derived from the formulation. The formulation can be applied to any conditions in case the governing equations can be converted into conservative forms. Some illustrative examples are given to testify the effectiveness and simplicity of the method.

  19. Nonlocal bottleneck effect in two-dimensional turbulence

    CERN Document Server

    Biskamp, D; Schwarz, E

    1998-01-01

    The bottleneck pileup in the energy spectrum is investigated for several two-dimensional (2D) turbulence systems by numerical simulation using high-order diffusion terms to amplify the effect, which is weak for normal diffusion. For 2D magnetohydrodynamic (MHD) turbulence, 2D electron MHD (EMHD) turbulence and 2D thermal convection, which all exhibit direct energy cascades, a nonlocal behavior is found resulting in a logarithmic enhancement of the spectrum.

  20. Level crossings in complex two-dimensional potentials

    Indian Academy of Sciences (India)

    Qing-Hai Wang

    2009-08-01

    Two-dimensional $\\mathcal{PT}$-symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both potentials respect the $\\mathcal{PT}$ symmetry, the complex energy eigenvalues appear when level crossing happens between same parity eigenstates.

  1. Extraction of plant proteins for two-dimensional electrophoresis

    OpenAIRE

    Granier, Fabienne

    1988-01-01

    Three different extraction procedures for two-dimensional electrophoresis of plant proteins are compared: (i) extraction of soluble proteins with a nondenaturing Tris-buffer, (ii) denaturing extraction in presence of sodium dodecyl sulfate at elevated temperature allowing the solubilization of membrane proteins in addition to a recovery of soluble proteins, and (iii) a trichloroacetic acid-acetone procedure allowing the direct precipitation of total proteins.

  2. Lyapunov Computational Method for Two-Dimensional Boussinesq Equation

    CERN Document Server

    Mabrouk, Anouar Ben

    2010-01-01

    A numerical method is developed leading to Lyapunov operators to approximate the solution of two-dimensional Boussinesq equation. It consists of an order reduction method and a finite difference discretization. It is proved to be uniquely solvable and analyzed for local truncation error for consistency. The stability is checked by using Lyapunov criterion and the convergence is studied. Some numerical implementations are provided at the end of the paper to validate the theoretical results.

  3. Complex dynamical invariants for two-dimensional complex potentials

    Indian Academy of Sciences (India)

    J S Virdi; F Chand; C N Kumar; S C Mishra

    2012-08-01

    Complex dynamical invariants are searched out for two-dimensional complex potentials using rationalization method within the framework of an extended complex phase space characterized by $x = x_{1} + ip_{3}. y = x_{2} + ip_{4}, p_{x} = p_{1} + ix_{3}, p_{y} = p_{2} + ix_{4}$. It is found that the cubic oscillator and shifted harmonic oscillator admit quadratic complex invariants. THe obtained invariants may be useful for studying non-Hermitian Hamiltonian systems.

  4. Two-dimensional hydrogen negative ion in a magnetic field

    Institute of Scientific and Technical Information of China (English)

    Xie Wen-Fang

    2004-01-01

    Making use of the adiabatic hyperspherical approach, we report a calculation for the energy spectrum of the ground and low-excited states of a two-dimensional hydrogen negative ion H- in a magnetic field. The results show that the ground and low-excited states of H- in low-dimensional space are more stable than those in three-dimensional space and there may exist more bound states.

  5. А heuristic algorithm for two-dimensional strip packing problem

    OpenAIRE

    Dayong, Cao; Kotov, V.M.

    2011-01-01

    In this paper, we construct an improved best-fit heuristic algorithm for two-dimensional rectangular strip packing problem (2D-RSPP), and compare it with some heuristic and metaheuristic algorithms from literatures. The experimental results show that BFBCC could produce satisfied packing layouts than these methods, especially for the large problem of 50 items or more, BFBCC could get better results in shorter time.

  6. Chronology Protection in Two-Dimensional Dilaton Gravity

    CERN Document Server

    Mishima, T; Mishima, Takashi; Nakamichi, Akika

    1994-01-01

    The global structure of 1 + 1 dimensional compact Universe is studied in two-dimensional model of dilaton gravity. First we give a classical solution corresponding to the spacetime in which a closed time-like curve appears, and show the instability of this spacetime due to the existence of matters. We also observe quantum version of such a spacetime having closed timelike curves never reappear unless the parameters are fine-tuned.

  7. Phase Transitions in Two-Dimensional Traffic Flow Models

    CERN Document Server

    Cuesta, J A; Molera, J M; Cuesta, José A; Martinez, Froilán C; Molera, Juan M

    1993-01-01

    Abstract: We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.

  8. Phase Transitions in Two-Dimensional Traffic Flow Models

    CERN Document Server

    Cuesta, José A; Molera, Juan M; Escuela, Angel Sánchez; 10.1103/PhysRevE.48.R4175

    2009-01-01

    We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.

  9. SU(1,2) invariance in two-dimensional oscillator

    CERN Document Server

    Krivonos, Sergey

    2016-01-01

    Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756[hep-th], with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written it terms of the oscillator variables.

  10. Multiple Potts Models Coupled to Two-Dimensional Quantum Gravity

    CERN Document Server

    Baillie, C F

    1992-01-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of {\\it multiple} $q=2,3,4$ state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the $c>1$ region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for $c>1$. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for $c>1$.

  11. Multiple Potts models coupled to two-dimensional quantum gravity

    Science.gov (United States)

    Baillie, C. F.; Johnston, D. A.

    1992-07-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of multiple q=2, 3, 4 state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the c>1 region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for c>1. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for c>1.

  12. Colloidal interactions in two-dimensional nematic emulsions

    Indian Academy of Sciences (India)

    N M Silvestre; P Patrício; M M Telo Da Gama

    2005-06-01

    We review theoretical and experimental work on colloidal interactions in two-dimensional (2D) nematic emulsions. We pay particular attention to the effects of (i) the nematic elastic constants, (ii) the size of the colloids, and (iii) the boundary conditions at the particles and the container. We consider the interactions between colloids and fluid (deformable) interfaces and the shape of fluid colloids in smectic-C films.

  13. Thermal diode from two-dimensional asymmetrical Ising lattices.

    Science.gov (United States)

    Wang, Lei; Li, Baowen

    2011-06-01

    Two-dimensional asymmetrical Ising models consisting of two weakly coupled dissimilar segments, coupled to heat baths with different temperatures at the two ends, are studied by Monte Carlo simulations. The heat rectifying effect, namely asymmetric heat conduction, is clearly observed. The underlying mechanisms are the different temperature dependencies of thermal conductivity κ at two dissimilar segments and the match (mismatch) of flipping frequencies of the interface spins.

  14. Numerical Study of Two-Dimensional Viscous Flow over Dams

    Institute of Scientific and Technical Information of China (English)

    王利兵; 刘宇陆; 涂敏杰

    2003-01-01

    In this paper, the characteristics of two-dimensional viscous flow over two dams were numerically investigated. The results show that the behavior of the vortices is closely related to the space between two dams, water depth, Fr number and Reynolds number. In addition, the flow properties behind each dam are different, and the changes over two dams are more complex than over one dam. Finally, the relevant turbulent characteristics were analyzed.

  15. Spirals and Skyrmions in two dimensional oxide heterostructures.

    Science.gov (United States)

    Li, Xiaopeng; Liu, W Vincent; Balents, Leon

    2014-02-14

    We construct the general free energy governing long-wavelength magnetism in two dimensional oxide heterostructures, which applies irrespective of the microscopic mechanism for magnetism. This leads, in the relevant regime of weak but non-negligible spin-orbit coupling, to a rich phase diagram containing in-plane ferromagnetic, spiral, cone, and Skyrmion lattice phases, as well as a nematic state stabilized by thermal fluctuations.

  16. Acoustic Bloch oscillations in a two-dimensional phononic crystal.

    Science.gov (United States)

    He, Zhaojian; Peng, Shasha; Cai, Feiyan; Ke, Manzhu; Liu, Zhengyou

    2007-11-01

    We report the observation of acoustic Bloch oscillations at megahertz frequency in a two-dimensional phononic crystal. By creating periodically arrayed cavities with a decreasing gradient in width along one direction in the phononic crystal, acoustic Wannier-Stark ladders are created in the frequency domain. The oscillatory motion of an incident Gaussian pulse inside the sample is demonstrated by both simulation and experiment.

  17. Exact analytic flux distributions for two-dimensional solar concentrators.

    Science.gov (United States)

    Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M

    2013-07-01

    A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers.

  18. Tricritical behavior in a two-dimensional field theory

    Science.gov (United States)

    Hamber, Herbert

    1980-05-01

    The critical behavior of a two-dimensional scalar Euclidean field theory with a potential term that allows for three minima is analyzed using an approximate position-space renormalization-group transformation on the equivalent quantum spin Hamiltonian. The global phase diagram shows a tricritical point separating a critical line from a line of first-order transitions. Other critical properties are examined, and good agreement is found with results on classical spin models belonging to the same universality class.

  19. Quantum entanglement in a two-dimensional ion trap

    Institute of Scientific and Technical Information of China (English)

    王成志; 方卯发

    2003-01-01

    In this paper, we investigate the quantum entanglement in a two-dimensional ion trap system. We discuss the quantum entanglement between the ion and phonons by using reduced entropy, and that between two degrees of freedom of the vibrational motion along x and y directions by using quantum relative entropy. We discuss also the influence of initial state of the system on the quantum entanglement and the relation between two entanglements in the trapped ion system.

  20. Coll Positioning systems: a two-dimensional approach

    CERN Document Server

    Ferrando, J J

    2006-01-01

    The basic elements of Coll positioning systems (n clocks broadcasting electromagnetic signals in a n-dimensional space-time) are presented in the two-dimensional case. This simplified approach allows us to explain and to analyze the properties and interest of these relativistic positioning systems. The positioning system defined in flat metric by two geodesic clocks is analyzed. The interest of the Coll systems in gravimetry is pointed out.

  1. Two-dimensional correlation spectroscopy in polymer study

    Science.gov (United States)

    Park, Yeonju; Noda, Isao; Jung, Young Mee

    2015-01-01

    This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286

  2. Interior design of a two-dimensional semiclassic black hole

    CERN Document Server

    Levanony, Dana; 10.1103/PhysRevD.80.084008

    2009-01-01

    We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. The field equations admit two types of singularities, and their local asymptotic structure is investigated. One of these singularities is found to develop, as a spacelike singularity, inside the black hole. We then study the internal structure of the evaporating black hole from the horizon to the singularity.

  3. Towards a two dimensional model of surface piezoelectricity

    OpenAIRE

    Monge Víllora, Oscar

    2016-01-01

    We want to understand the behaviour of flexoelectricity and surface piezoelectricity and distinguish them in order to go deep into the controversies of the filed. This motivate the construction of a model of continuum flexoelectric theory. The model proposed is a two-dimensional model that integrates the electromechanical equations that include the elastic, dielectric, piezoelectric and flexoelectric effect on a rectangular sample. As the flexoelectric and the surface piezoelectric effects ap...

  4. Velocity Statistics in the Two-Dimensional Granular Turbulence

    OpenAIRE

    Isobe, Masaharu

    2003-01-01

    We studied the macroscopic statistical properties on the freely evolving quasi-elastic hard disk (granular) system by performing a large-scale (up to a few million particles) event-driven molecular dynamics systematically and found that remarkably analogous to an enstrophy cascade process in the decaying two-dimensional fluid turbulence. There are four typical stages in the freely evolving inelastic hard disk system, which are homogeneous, shearing (vortex), clustering and final state. In the...

  5. Statistical study of approximations to two dimensional inviscid turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Glaz, H.M.

    1977-09-01

    A numerical technique is developed for studying the ergodic and mixing hypotheses for the dynamical systems arising from the truncated Fourier transformed two-dimensional inviscid Navier-Stokes equations. This method has the advantage of exactly conserving energy and entropy (i.e., total vorticity) in the inviscid case except for numerical error in solving the ordinary differential equations. The development of the mathematical model as an approximation to a real physical (turbulent) flow and the numerical results obtained are discussed.

  6. Static Structure of Two-Dimensional Granular Chain

    Institute of Scientific and Technical Information of China (English)

    WEN Ping-Ping; LI Liang-Sheng; ZHENG Ning; SHI Qing-Fan

    2010-01-01

    @@ Static packing structures of two-dimensional granular chains are investigated experimentally.It is shown that the packing density approximates the saturation with the exponential law as the length of chain increases.The packing structures are globally disordered,while the local square crystallization is found by using the radial distribution function.This characteristic phase of chain packing is similar to a liquid crystal state,and has properties between a conventional liquid and solid crystal.

  7. THE DEGENERACY PROBLEM OF TWO-DIMENSIONAL LINEAR RECURRING ARRAYS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The degeneracy degree and degeneracy position sets of a wo-dimensional linear recurrence relation set are characterized. The fact that a linear recurring array is essentially a doubly periodic array is shown. By using the Grbner base theory, a calculation formula for degeneracy degree is given and the existence of a special degeneracy position set is proved. In the present paper, the degeneracy problem of the two-dimensional linear recurring arrays is completely solved.

  8. Two-Dimensional Identification of Fetal Tooth Germs.

    Science.gov (United States)

    Seabra, Mariana; Vaz, Paula; Valente, Francisco; Braga, Ana; Felino, António

    2017-03-01

      To demonstrate the efficiency and applicability of two-dimensional ultrasonography in the identification of tooth germs and in the assessment of potential pathology.   Observational, descriptive, cross-sectional study.   Prenatal Diagnosis Unit of Centro Hospitalar de Vila Nova de Gaia / Espinho-Empresa Pública in Portugal.   A total of 157 white pregnant women (median age, 32 years; range, 14 to 47 years) undergoing routine ultrasound exams.   Description of the fetal tooth germs, as visualized by two-dimensional ultrasonography, including results from prior fetal biometry and detailed screening for malformations.   In the first trimester group, ultrasonography identified 10 tooth germs in the maxilla and 10 tooth germs in the mandible in all fetuses except for one who presented eight maxillary tooth germs. This case was associated with a chromosomal abnormality (trisomy 13) with a bilateral cleft palate. In the second and third trimesters group, ultrasonography identified a larger range of tooth germs: 81.2% of fetuses showed 10 tooth germs in the maxilla and 85.0% of fetuses had 10 tooth germs in the mandible. Hypodontia was more prevalent in the maxilla than in the mandible, which led us to use qualitative two-dimensional ultrasonography to analyze the possible association between hypodontia and other variables such as fetal pathology, markers, head, nuchal, face, and spine.   We recommend using this method as the first exam to evaluate fetal morphology and also to help establish accurate diagnosis of abnormalities in pregnancy.

  9. Electromagnetically induced two-dimensional grating assisted by incoherent pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn

    2017-04-25

    We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.

  10. a First Cryptosystem for Security of Two-Dimensional Data

    Science.gov (United States)

    Mishra, D. C.; Sharma, Himani; Sharma, R. K.; Kumar, Naveen

    In this paper, we present a novel technique for security of two-dimensional data with the help of cryptography and steganography. The presented approach provides multilayered security of two-dimensional data. First layer security was developed by cryptography and second layer by steganography. The advantage of steganography is that the intended secret message does not attract attention to itself as an object of scrutiny. This paper proposes a novel approach for encryption and decryption of information in the form of Word Data (.doc file), PDF document (.pdf file), Text document, Gray-scale images, and RGB images, etc. by using Vigenere Cipher (VC) associated with Discrete Fourier Transform (DFT) and then hiding the data behind the RGB image (i.e. steganography). Earlier developed techniques provide security of either PDF data, doc data, text data or image data, but not for all types of two-dimensional data and existing techniques used either cryptography or steganography for security. But proposed approach is suitable for all types of data and designed for security of information by cryptography and steganography. The experimental results for Word Data, PDF document, Text document, Gray-scale images and RGB images support the robustness and appropriateness for secure transmission of these data. The security analysis shows that the presented technique is immune from cryptanalytic. This technique further provides security while decryption as a check on behind which RGB color the information is hidden.

  11. Two-dimensional capillary electrophoresis using tangentially connected capillaries.

    Science.gov (United States)

    Sahlin, Eskil

    2007-06-22

    A novel type of fused silica capillary system is described where channels with circular cross-sections are tangentially in contact with each other and connected through a small opening at the contact area. Since the channels are not crossing each other in the same plane, the capillaries can easily be filled with different solutions, i.e. different solutions will be in contact with each other at the contact point. The system has been used to perform different types of two-dimensional separations and the complete system is fully automated where a high voltage switch is used to control the location of the high voltage in the system. Using two model compounds it is demonstrated that a type of two-dimensional separation can be performed using capillary zone electrophoresis at two different pH values. It is also shown that a compound with acid/base properties can be concentrated using a dynamic pH junction mechanism when transferred from the first separation to the second separation. In addition, the system has been used to perform a comprehensive two-dimensional capillary electrophoresis separation of tryptic digest of bovine serum albumin using capillary zone electrophoresis followed by micellar electrokinetic chromatography.

  12. A Two-dimensional Magnetohydrodynamics Scheme for General Unstructured Grids

    Science.gov (United States)

    Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.

    2007-05-01

    We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALEs). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of divB by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for which multidimensional radiation magnetohydrodynamics (RMHD) is relevant.

  13. Procedures for two-dimensional electrophoresis of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tollaksen, S.L.; Giometti, C.S.

    1996-10-01

    High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.

  14. A two-dimensional analytical model of petroleum vapor intrusion

    Science.gov (United States)

    Yao, Yijun; Verginelli, Iason; Suuberg, Eric M.

    2016-02-01

    In this study we present an analytical solution of a two-dimensional petroleum vapor intrusion model, which incorporates a steady-state diffusion-dominated vapor transport in a homogeneous soil and piecewise first-order aerobic biodegradation limited by oxygen availability. This new model can help practitioners to easily generate two-dimensional soil gas concentration profiles for both hydrocarbons and oxygen and estimate hydrocarbon indoor air concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics and building features. The soil gas concentration profiles generated by this new model are shown in good agreement with three-dimensional numerical simulations and two-dimensional measured soil gas data from a field study. This implies that for cases involving diffusion dominated soil gas transport, steady state conditions and homogenous source and soil, this analytical model can be used as a fast and easy-to-use risk screening tool by replicating the results of 3-D numerical simulations but with much less computational effort.

  15. Strongly correlated two-dimensional plasma explored from entropy measurements.

    Science.gov (United States)

    Kuntsevich, A Y; Tupikov, Y V; Pudalov, V M; Burmistrov, I S

    2015-06-23

    Charged plasma and Fermi liquid are two distinct states of electronic matter intrinsic to dilute two-dimensional electron systems at elevated and low temperatures, respectively. Probing their thermodynamics represents challenge because of lack of an adequate technique. Here, we report a thermodynamic method to measure the entropy per electron in gated structures. Our technique appears to be three orders of magnitude superior in sensitivity to a.c. calorimetry, allowing entropy measurements with only 10(8) electrons. This enables us to investigate the correlated plasma regime, previously inaccessible experimentally in two-dimensional electron systems in semiconductors. In experiments with clean two-dimensional electron system in silicon-based structures, we traced entropy evolution from the plasma to Fermi liquid regime by varying electron density. We reveal that the correlated plasma regime can be mapped onto the ordinary non-degenerate Fermi gas with an interaction-enhanced temperature-dependent effective mass. Our method opens up new horizons in studies of low-dimensional electron systems.

  16. Augmented reality simulator for training in two-dimensional echocardiography.

    Science.gov (United States)

    Weidenbach, M; Wick, C; Pieper, S; Quast, K J; Fox, T; Grunst, G; Redel, D A

    2000-02-01

    In two-dimensional echocardiography the sonographer must synthesize multiple tomographic slices into a mental three-dimensional (3D) model of the heart. Computer graphics and virtual reality environments are ideal to visualize complex 3D spatial relationships. In augmented reality (AR) applications, real and virtual image data are linked, to increase the information content. In the presented AR simulator a 3D surface model of the human heart is linked with echocardiographic volume data sets. The 3D echocardiographic data sets are registered with the heart model to establish spatial and temporal congruence. The heart model, together with an animated ultrasound sector represents a reference scenario, which displays the currently selected two-dimensional echocardiographic cutting plane calculated from the volume data set. Modifications of the cutting plane within the echocardiographic data are transferred and visualized simultaneously and in real time within the reference scenario. The trainee can interactively explore the 3D heart model and the registered 3D echocardiographic data sets by an animated ultrasound probe, whose position is controlled by an electromagnetic tracking system. The tracking system is attached to a dummy transducer and placed on a plastic puppet to give a realistic impression of a two-dimensional echocardiographic examination.

  17. Experimental realization of two-dimensional boron sheets.

    Science.gov (United States)

    Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui

    2016-06-01

    A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp(2) hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.

  18. Two-dimensional oxides: multifunctional materials for advanced technologies.

    Science.gov (United States)

    Pacchioni, Gianfranco

    2012-08-13

    The last decade has seen spectacular progress in the design, preparation, and characterization down to the atomic scale of oxide ultrathin films of few nanometers thickness grown on a different material. This has paved the way towards several sophisticated applications in advanced technologies. By playing around with the low-dimensionality of the oxide layer, which sometimes leads to truly two-dimensional systems, one can exploit new properties and functionalities that are not present in the corresponding bulk materials or thick films. In this review we provide some clues about the most recent advances in the design of these systems based on modern electronic structure theory and on their preparation and characterization with specifically developed growth techniques and analytical methods. We show how two-dimensional oxides can be used in mature technologies by providing added value to existing materials, or in new technologies based on completely new paradigms. The fields in which two-dimensional oxides are used are classified based on the properties that are exploited, chemical or physical. With respect to chemical properties we discuss use of oxide ultrathin films in catalysis, solid oxide fuel cells, gas sensors, corrosion protection, and biocompatible materials; regarding the physical properties we discuss metal-oxide field effect transistors and memristors, spintronic devices, ferroelectrics and thermoelectrics, and solar energy materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sufficient Controllability Condition for Affine Systems with Two-Dimensional Control and Two-Dimensional Zero Dynamics

    Directory of Open Access Journals (Sweden)

    D. A. Fetisov

    2015-01-01

    Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved

  20. Two-Dimensional Breather Lattice Solutions and Compact-Like Discrete Breathers and Their Stability in Discrete Two-Dimensional Monatomic β-FPU Lattice

    Institute of Scientific and Technical Information of China (English)

    XU Quan; TIAN Qiang

    2009-01-01

    We restrict our attention to the discrete two-dimensional monatomic β-FPU lattice. We look for twodimensional breather lattice solutions and two-dimensional compact-like discrete breathers by using trying method and analyze their stability by using Aubry's linearly stable theory. We obtain the conditions of existence and stability of two-dimensional breather lattice solutions and two-dimensional compact-like discrete breathers in the discrete twodimensional monatomic β-FPU lattice.

  1. Simulation in water of a two-dimensional model of existing turbulences while a ladle is poured; Simulacao em agua com modelo bidimensional de turbulencias existentes durante o vazamento de uma panela de aco

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Cunha Ferreira, Marcelo de [Mannesmann SA, Belo Horizonte, MG (Brazil); Jacobi, Hatto; Wuennenberg, Klaus [Mannesmann-Forschungsinstitut GmbH, Duisburg (Germany)

    1992-12-31

    It is described a two dimensional model made to study how different geometries influence existing current and turbulences while a ladle equipped with sliding gates is poured. (author). 17 refs., 12 figs., 1 tab.

  2. The characters of nonlinear vibration in the two-dimensional discrete monoatomic lattice

    Institute of Scientific and Technical Information of China (English)

    XU Quan; TIAN Qiang

    2005-01-01

    The two-dimensional discrete monoatomic lattice is analyzed. Taking nearest-neighbor interaction into account, the characters of the nonlinear vibration in two-dimensional discrete monoatomic lattice are described by the two-dimensional cubic nonlinear Schrodinger equation. Considering the quartic nonlinear potential, the two-dimensional discrete-soliton trains and the solutions perturbed by the neck mode are presented.

  3. Nonlinear acoustic propagation in two-dimensional ducts

    Science.gov (United States)

    Nayfeh, A. H.; Tsai, M.-S.

    1974-01-01

    The method of multiple scales is used to obtain a second-order uniformly valid expansion for the nonlinear acoustic wave propagation in a two-dimensional duct whose walls are treated with a nonlinear acoustic material. The wave propagation in the duct is characterized by the unsteady nonlinear Euler equations. The results show that nonlinear effects tend to flatten and broaden the absorption versus frequency curve, in qualitative agreement with the experimental observations. Moreover, the effect of the gas nonlinearity increases with increasing sound frequency, whereas the effect of the material nonlinearity decreases with increasing sound frequency.

  4. Two-dimensional dispersive shock waves in dissipative optical media

    CERN Document Server

    Kartashov, Yaroslav V

    2013-01-01

    We study generation of two-dimensional dispersive shock waves and oblique dark solitons upon interaction of tilted plane waves with negative refractive index defects embedded into defocusing material with linear gain and two-photon absorption. Different evolution regimes are encountered including the formation of well-localized disturbances for input tilts below critical one, and generation of extended shock waves containing multiple intensity oscillations in the "upstream" region and gradually vanishing oblique dark solitons in "downstream" region for input tilts exceeding critical one. The generation of stable dispersive shock waves is possible only below certain critical defect strength.

  5. Three-dimensional versus two-dimensional vision in laparoscopy

    DEFF Research Database (Denmark)

    Sørensen, Stine Maya Dreier; Savran, Mona M; Konge, Lars;

    2016-01-01

    BACKGROUND: Laparoscopic surgery is widely used, and results in accelerated patient recovery time and hospital stay were compared with laparotomy. However, laparoscopic surgery is more challenging compared with open surgery, in part because surgeons must operate in a three-dimensional (3D) space...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...

  6. The Rare Two-Dimensional Materials with Dirac Cones

    OpenAIRE

    Wang, Jinying; Deng, Shibin; Liu, Zhongfan; Liu, Zhirong

    2014-01-01

    Inspired by the great development of graphene, more and more works have been conducted to seek new two-dimensional (2D) materials with Dirac cones. Although 2D Dirac materials possess many novel properties and physics, they are rare compared with the numerous 2D materials. To provide explanation for the rarity of 2D Dirac materials as well as clues in searching for new Dirac systems, here we review the recent theoretical aspects of various 2D Dirac materials, including graphene, silicene, ger...

  7. Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices.

    Science.gov (United States)

    Wang, Lei; Hu, Bambi; Li, Baowen

    2012-10-01

    Heat conduction in three two-dimensional (2D) momentum-conserving nonlinear lattices are numerically calculated via both nonequilibrium heat-bath and equilibrium Green-Kubo algorithms. It is expected by mainstream theories that heat conduction in such 2D lattices is divergent and the thermal conductivity κ increases with lattice length N logarithmically. Our simulations for the purely quartic lattice firmly confirm it. However, very robust finite-size effects are observed in the calculations for the other two lattices, which well explain some existing studies and imply the extreme difficulties in observing their true asymptotic behaviors with affordable computation resources.

  8. Two-dimensionally confined topological edge states in photonic crystals

    Science.gov (United States)

    Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-11-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.

  9. Two-Dimensionally Confined Topological Edge States in Photonic Crystals

    CERN Document Server

    Barik, Sabyasachi; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-01-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.

  10. Theories on Frustrated Electrons in Two-Dimensional Organic Solids

    Directory of Open Access Journals (Sweden)

    Chisa Hotta

    2012-08-01

    Full Text Available Two-dimensional quarter-filled organic solids are a promising class of materials to realize the strongly correlated insulating states called dimer Mott insulator and charge order. In their conducting layer, the molecules form anisotropic triangular lattices, harboring geometrical frustration effect, which could give rise to many interesting states of matter in the two insulators and in the metals adjacent to them. This review is concerned with the theoretical studies on such issue over the past ten years, and provides the systematic understanding on exotic metals, dielectrics, and spin liquids, which are the consequences of the competing correlation and fluctuation under frustration.

  11. Wake-induced bending of two-dimensional plasma crystals

    Energy Technology Data Exchange (ETDEWEB)

    Röcker, T. B., E-mail: tbr@mpe.mpg.de; Ivlev, A. V., E-mail: ivlev@mpe.mpg.de; Zhdanov, S. K.; Morfill, G. E. [Max Planck Institute for Extraterrestrial Physics, 85741 Garching (Germany); Couëdel, L. [CNRS, Aix-Marseille-Université, Laboratoire de Physique des Interactions Ioniques et Moléculaires, UMR 7345, 13397 Marseille Cedex 20 (France)

    2014-07-15

    It is shown that the wake-mediated interactions between microparticles in a two-dimensional plasma crystal affect the shape of the monolayer, making it non-flat. The equilibrium shape is calculated for various distributions of the particle number density in the monolayer. For typical experimental conditions, the levitation height of particles in the center of the crystal can be noticeably smaller than at the periphery. It is suggested that the effect of wake-induced bending can be utilized in experiments, to deduce important characteristics of the interparticle interaction.

  12. Wake-induced bending of two-dimensional plasma crystals

    CERN Document Server

    Röcker, T B; Zhdanov, S K; Couëdel, L; Morfill, G E

    2014-01-01

    It is shown that the wake-mediated interactions between microparticles in a two-dimensional plasma crystal affect the shape of the monolayer, making it non-flat. The equilibrium shape is calculated for various distributions of the particle number density in the monolayer. For typical experimental conditions, the levitation height of particles in the center of the crystal can be noticeably smaller than at the periphery. It is suggested that the effect of wake-induced bending can be utilized in experiments, to deduce important characteristics of the interparticle interaction.

  13. Corner wetting transition in the two-dimensional Ising model

    Science.gov (United States)

    Lipowski, Adam

    1998-07-01

    We study the interfacial behavior of the two-dimensional Ising model at the corner of weakened bonds. Monte Carlo simulations results show that the interface is pinned to the corner at a lower temperature than a certain temperature Tcw at which it undergoes a corner wetting transition. The temperature Tcw is substantially lower than the temperature of the ordinary wetting transition with a line of weakened bonds. A solid-on-solid-like model is proposed, which provides a supplementary description of the corner wetting transition.

  14. Dynamic Multiscaling in Two-dimensional Fluid Turbulence

    CERN Document Server

    Ray, Samriddhi Sankar; Perlekar, Prasad; Pandit, Rahul

    2011-01-01

    We obtain, by extensive direct numerical simulations, time-dependent and equal-time structure functions for the vorticity, in both quasi-Lagrangian and Eulerian frames, for the direct-cascade regime in two-dimensional fluid turbulence with air-drag-induced friction. We show that different ways of extracting time scales from these time-dependent structure functions lead to different dynamic-multiscaling exponents, which are related to equal-time multiscaling exponents by different classes of bridge relations; for a representative value of the friction we verify that, given our error bars, these bridge relations hold.

  15. Absolute band gaps in two-dimensional graphite photonic crystal

    Institute of Scientific and Technical Information of China (English)

    Gaoxin Qiu(仇高新); Fanglei Lin(林芳蕾); Hua Wang(王华); Yongping Li(李永平)

    2003-01-01

    The off-plane propagation of electromagnetic (EM) waves in a two-dimensional (2D) graphite photoniccrystal structure was studied using transfer matrix method. Transmission spectra calculations indicatethat such a 2D structure has a common band gap from 0.202 to 0.2035 c/a for both H and E polarizationsand for all off-plane angles form 0° up to 90°. The presence of such an absolute band gap implies that 2Dgraphite photonic crystal, which is much easier and more feasible to fabricate, can exhibit some propertiesof a three-dimensional (3D) photonic crystal.

  16. Kinetic analysis of two dimensional metallic grating Cerenkov maser

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Ding [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-08-15

    The dispersion relation of two dimensional metallic grating Cerenkov maser has been given by using kinetic analysis, in which the influence of electron movement is directly considered without using an equivalent dielectric medium assumption. The effects of structural parameters and beam state on the interaction gain and synchronous frequency have also been investigated in detail by numerical calculations. To an illustrative case, the quantitative relations produced from varying the gap distance between electron beam and metallic grating, beam current, electron transverse to axial velocity ratio, and electron axial velocity spread have been obtained. The developed method can be used to predict the real interaction system performances.

  17. Mean flow generation in rotating anelastic two-dimensional convection

    CERN Document Server

    Currie, Laura K

    2016-01-01

    We investigate the processes that lead to the generation of mean flows in two-dimensional anelastic convection. The simple model consists of a plane layer that is rotating about an axis inclined to gravity. The results are two-fold: firstly we numerically investigate the onset of convection in three-dimensions, paying particular attention to the role of stratification and highlight a curious symmetry. Secondly, we investigate the mechanisms that drive both zonal and meridional flows in two dimensions. We find that, in general, non-trivial Reynolds stresses can lead to systematic flows and, using statistical measures, we quantify the role of stratification in modifying the coherence of these flows.

  18. Duality, Monodromy and Integrability of Two Dimensional String Effective Action

    CERN Document Server

    Das, A; Melikyan, A; Das, Ashok

    2002-01-01

    The monodromy matrix, ${\\hat{\\cal M}}$, is constructed for two dimensional tree level string effective action. The pole structure of ${\\hat{\\cal M}}$ is derived using its factorizability property. It is found that the monodromy matrix transforms non-trivially under the non-compact T-duality group, which leaves the effective action invariant and this can be used to construct the monodromy matrix for more complicated backgrounds starting from simpler ones. We construct, explicitly, ${\\hat{\\cal M}}$ for the exactly solvable Nappi-Witten model, both when B=0 and $B\

  19. Homogenization of Two-Dimensional Phononic Crystals at Low Frequencies

    Institute of Scientific and Technical Information of China (English)

    NI Qing; CHENG Jian-Chun

    2005-01-01

    @@ Effective velocities of elastic waves propagating in two-dimensional phononic crystal at low frequencies are analysed theoretically, and exact analytical formulas for effective velocities of elastic waves are derived according to the method presented by Krokhin et al. [Phys. Rev. Lett. 91 (2003) 264302]. Numerical calculations for phononic crystals consisted of array of Pb cylinders embedded in epoxy show that the composites have distinct anisotropy at low filling fraction. The anisotropy increases as the filling fraction increases, while as the filling fraction closes to the limitation, the anisotropy decreases.

  20. Electronic Transmission Properties of Two-Dimensional Quasi-Lattice

    Institute of Scientific and Technical Information of China (English)

    侯志林; 傅秀军; 刘有延

    2002-01-01

    In the framework of the tight binding model, the electronic transmission properties of two-dimensional Penrose lattices with free boundary conditions are studied using the generalized eigenfunction method (Phys. Rev. B 60(1999)13444). The electronic transmission coefficients for Penrose lattices with different sizes and widths are calculated, and the result shows strong energy dependence because of the quasiperiodic structure and quantum coherent effect. Around the Fermi level E = 0, there is an energy region with zero transmission amplitudes,which suggests that the studied systems are insulating. The spatial distributions of several typical electronic states with different transmission coefficients are plotted to display the propagation process.

  1. Two-dimensional conformal field theory and the butterfly effect

    CERN Document Server

    Roberts, Daniel A

    2014-01-01

    We study chaotic dynamics in two-dimensional conformal field theory through out-of-time order thermal correlators of the form $\\langle W(t)VW(t)V\\rangle$. We reproduce bulk calculations similar to those of [1], by studying the large $c$ Virasoro identity block. The contribution of this block to the above correlation function begins to decrease exponentially after a delay of $\\sim t_* - \\frac{\\beta}{2\\pi}\\log \\beta^2E_w E_v$, where $t_*$ is the scrambling time $\\frac{\\beta}{2\\pi}\\log c$, and $E_w,E_v$ are the energy scales of the $W,V$ operators.

  2. Two-Dimensional Gel Electrophoresis: A Reference Protocol.

    Science.gov (United States)

    Saia-Cereda, Veronica M; Aquino, Adriano; Guest, Paul C; Martins-de-Souza, Daniel

    2017-01-01

    Two-dimensional gel electrophoresis (2DE) has been a mainstay of proteomic techniques for more than four decades. It was even in use for several years before the term proteomics was actually coined in the early 1990s. Over this time, it has been used in the study of many diseases including cancer, diabetes, heart disease, and psychiatric disorders through the proteomic analysis of body fluids and tissues. This chapter presents a general protocol which can be applied in the study of biological samples such as blood serum or plasma and multiple tissues including the brain.

  3. Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis

    Science.gov (United States)

    2014-01-01

    Gel- based proteomics is one of the most versatile methods for fractionating protein complexes. Among these methods, two dimensional- polyacrylamide gel electrophoresis (2-DE) represents a mainstay orthogonal approach, which is popularly used to simultaneously fractionate, identify, and quantify proteins when coupled with mass spectrometric identification or other immunological tests. Although 2-DE was first introduced more than three decades ago, several challenges and limitations to its utility still exist. This review discusses the principles of 2-DE as well as both recent methodological advances and new applications. PMID:24735559

  4. Size-dispersity effects in two-dimensional melting.

    Science.gov (United States)

    Watanabe, Hiroshi; Yukawa, Satoshi; Ito, Nobuyasu

    2005-01-01

    In order to investigate the effect of size dispersity on two-dimensional melting transitions, hard-disk systems with equimolar bidispersity are studied by means of particle dynamics simulations. From the nonequilibrium relaxation behaviors of bond-orientational order parameters, we find that (i) there is a critical dispersity at which the melting transition of the hexagonal solid vanishes and (ii) the quadratic structure is metastable in a certain region of the dispersity-density parameter space. These results suggest that the dispersity not only destroys order but produces new structures under certain specific conditions.

  5. Human muscle proteins: analysis by two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  6. The XY model coupled to two-dimensional quantum gravity

    Science.gov (United States)

    Baillie, C. F.; Johnston, D. A.

    1992-09-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we discovered in our earlier work on various Potts models with the same value of the central charge, c, carries over to the XY model, which has c=1.

  7. Two-dimensional chiral topological superconductivity in Shiba lattices

    Science.gov (United States)

    Li, Jian; Neupert, Titus; Wang, Zhijun; MacDonald, A. H.; Yazdani, A.; Bernevig, B. Andrei

    2016-07-01

    The chiral p-wave superconductor is the archetypal example of a state of matter that supports non-Abelian anyons, a highly desired type of exotic quasiparticle. With this, it is foundational for the distant goal of building a topological quantum computer. While some candidate materials for bulk chiral superconductors exist, they are subject of an ongoing debate about their actual paring state. Here we propose an alternative route to chiral superconductivity, consisting of the surface of an ordinary superconductor decorated with a two-dimensional lattice of magnetic impurities. We furthermore identify a promising experimental platform to realize this proposal.

  8. Field analysis of two-dimensional focusing grating

    OpenAIRE

    Borsboom, P.P.; Frankena, H.J.

    1995-01-01

    The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity distribution in the focal region agrees well with the approximate predictions of geo...

  9. Field analysis of two-dimensional integrated optical gratings

    Science.gov (United States)

    Borsboom, P.-P.; Frankena, H. J.

    1995-05-01

    A rigorous technique to determine the field scattered by a two-dimensional rectangular grating made up of many corrugations was developed. In this method, the grating was deemed as a sequence of two types of waveguide sections, alternatingly connected by step discontinuities. A matrix was derived that described the entire rectangular grating by integrating the separate steps and waveguide sections. With the proposed technique, several configuration were analyzed. The obtained results showed good consistency with the consequences of previous studies. Furthermore, to examine the numerical stability of the proposed method, the length of the grating was increased and obtained results for a grating with 100 periods.

  10. Numerical Simulation of Two-dimensional Nonlinear Sloshing Problems

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Numerical simulation of a two-dimensional nonlinearsloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liquid sloshing in a rectangular container subjected to a horizontal excitation is simulated using these two theories. Numerical results are obtained and comparisons are made. It is found that a good agreement is obtained for the case of small amplitude oscillation. For the situation of large amplitude excitation, although the differences between using the two theories are obvious the second order solution can still exhibit typical nonlinear features of nonlinear wave.

  11. Finite Element Analysis to Two-Dimensional Nonlinear Sloshing Problems

    Institute of Scientific and Technical Information of China (English)

    严承华; 王赤忠; 程尔升

    2001-01-01

    A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domainsecond order theory of water waves. Liquid sloshing in a rectangular container subjected to a horizontal excitation is sim-ulated by the finite element method. Comparisons between the two theories are made based on their numerical results. Itis found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur forlarge amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features ofnonlinear wave and can be used instead of the fully nonlinear theory.

  12. Graphene and Two-Dimensional Materials for Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Andreas Bablich

    2016-03-01

    Full Text Available This article reviews optoelectronic devices based on graphene and related two-dimensional (2D materials. The review includes basic considerations of process technology, including demonstrations of 2D heterostructure growth, and comments on the scalability and manufacturability of the growth methods. We then assess the potential of graphene-based transparent conducting electrodes. A major part of the review describes photodetectors based on lateral graphene p-n junctions and Schottky diodes. Finally, the progress in vertical devices made from 2D/3D heterojunctions, as well as all-2D heterostructures is discussed.

  13. Two-dimensional carbon fundamental properties, synthesis, characterization, and applications

    CERN Document Server

    Yihong, Wu; Ting, Yu

    2013-01-01

    After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC, chemical synthesis of graphene on metal, and chemical vapor deposition of vertically aligned carbon nanosheets or nanowalls. One chapter is dedicated to characterization of 2D nanocarbon using Raman spectroscopy. It provides extensive coverage for a

  14. AN APPROACH IN MODELING TWO-DIMENSIONAL PARTIALLY CAVITATING FLOW

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An approach of modeling viscosity, unsteady partially cavitating flows around lifting bodies is presented. By employing an one-fluid Navier-Stokers solver, the algorithm is proved to be able to handle two-dimensional laminar cavitating flows at moderate Reynolds number. Based on the state equation of water-vapor mixture, the constructive relations of densities and pressures are established. To numerically simulate the cavity wall, different pseudo transition of density models are presumed. The finite-volume method is adopted and the algorithm can be extended to three-dimensional cavitating flows.

  15. The problem of friction in two-dimensional relative motion

    CERN Document Server

    Grech, D K; Grech, Dariusz; Mazur, Zygmunt

    2000-01-01

    We analyse a mechanical system in two-dimensional relative motion with friction. Although the system is simple, the peculiar interplay between two kinetic friction forces and gravity leads to the wide range of admissible solutions exceeding most intuitive expectations. In particular, the strong qualitative dependence between behaviour of the system, boundary conditions and parameters involved in its description is emphasised. The problem is intended to be discussed in theoretical framework and might be of interest for physics and mechanics students as well as for physics teachers.

  16. Optimum high temperature strength of two-dimensional nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Monclús, M. A.; Molina-Aldareguía, J. M., E-mail: jon.molina@imdea.org [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Zheng, S. J.; Mayeur, J. R.; Beyerlein, I. J.; Mara, N. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Polcar, T. [Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Llorca, J. [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid (Spain)

    2013-11-01

    High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.

  17. Quantum computation with two-dimensional graphene quantum dots

    Institute of Scientific and Technical Information of China (English)

    Li Jie-Sen; Li Zhi-Bing; Yao Dao-Xin

    2012-01-01

    We study an array of graphene nano sheets that form a two-dimensional S =1/2 Kagome spin lattice used for quantum computation.The edge states of the graphene nano sheets axe used to form quantum dots to confine electrons and perform the computation.We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots.It is shown that both schemes contain a great amount of information for quantum computation.The corresponding gate operations are also proposed.

  18. Complex Saddles in Two-dimensional Gauge Theory

    CERN Document Server

    Buividovich, P V; Valgushev, S N

    2015-01-01

    We study numerically the saddle point structure of two-dimensional (2D) lattice gauge theory, represented by the Gross-Witten-Wadia unitary matrix model. The saddle points are in general complex-valued, even though the original integration variables and action are real. We confirm the trans-series/instanton gas structure in the weak-coupling phase, and identify a new complex-saddle interpretation of non-perturbative effects in the strong-coupling phase. In both phases, eigenvalue tunneling refers to eigenvalues moving off the real interval, into the complex plane, and the weak-to-strong coupling phase transition is driven by saddle condensation.

  19. Band alignment of two-dimensional lateral heterostructures

    CERN Document Server

    Zhang, Junfeng; Xie, Weiyu; Zhang, S B

    2016-01-01

    Band alignment in two-dimensional (2D) lateral heterostructures is fundamentally different from three-dimensional (3D), as Schottky barrier height is at the Schottky-Mott limit and band offset is at the Anderson limit, regardless interfacial conditions. This robustness arises because, in the asymptotic limit, effect of interfacial dipole vanishes. First-principles calculations of graphene/h-BN and MoS2/WS2 show that 2D junction width W is typically an order of magnitude longer than 3D. Therefore, heterostructures with dimension less than W can also be made, leading to tunable band alignment.

  20. Topological Quantum Optics in Two-Dimensional Atomic Arrays

    Science.gov (United States)

    Perczel, J.; Borregaard, J.; Chang, D. E.; Pichler, H.; Yelin, S. F.; Zoller, P.; Lukin, M. D.

    2017-07-01

    We demonstrate that two-dimensional atomic emitter arrays with subwavelength spacing constitute topologically protected quantum optical systems where the photon propagation is robust against large imperfections while losses associated with free space emission are strongly suppressed. Breaking time-reversal symmetry with a magnetic field results in gapped photonic bands with nontrivial Chern numbers and topologically protected, long-lived edge states. Due to the inherent nonlinearity of constituent emitters, such systems provide a platform for exploring quantum optical analogs of interacting topological systems.

  1. Elastic models of defects in two-dimensional crystals

    Science.gov (United States)

    Kolesnikova, A. L.; Orlova, T. S.; Hussainova, I.; Romanov, A. E.

    2014-12-01

    Elastic models of defects in two-dimensional (2D) crystals are presented in terms of continuum mechanics. The models are based on the classification of defects, which is founded on the dimensionality of the specification region of their self-distortions, i.e., lattice distortions associated with the formation of defects. The elastic field of an infinitesimal dislocation loop in a film is calculated for the first time. The fields of the center of dilatation, dislocation, disclination, and circular inclusion in planar 2D elastic media, namely, nanofilms and graphenes, are considered. Elastic fields of defects in 2D and 3D crystals are compared.

  2. On two-dimensional magnetic reconnection with nonuniform resistivity

    Science.gov (United States)

    Malyshkin, Leonid M.; Kulsrud, Russell M.

    2010-12-01

    In this paper, two theoretical approaches for the calculation of the rate of quasi-stationary, two-dimensional magnetic reconnection with nonuniform anomalous resistivity are considered in the framework of incompressible magnetohydrodynamics (MHD). In the first, 'global' equations approach, the MHD equations are approximately solved for a whole reconnection layer, including the upstream and downstream regions and the layer center. In the second, 'local' equations approach, the equations are solved across the reconnection layer, including only the upstream region and the layer center. Both approaches give the same approximate answer for the reconnection rate. Our theoretical model is in agreement with the results of recent simulations of reconnection with spatially nonuniform resistivity.

  3. Optimum high temperature strength of two-dimensional nanocomposites

    Directory of Open Access Journals (Sweden)

    M. A. Monclús

    2013-11-01

    Full Text Available High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.

  4. Quantum skyrmions in two-dimensional chiral magnets

    Science.gov (United States)

    Takashima, Rina; Ishizuka, Hiroaki; Balents, Leon

    2016-10-01

    We study the quantum mechanics of magnetic skyrmions in the vicinity of the skyrmion-crystal to ferromagnet phase boundary in two-dimensional magnets. We show that the skyrmion excitation has an energy dispersion that splits into multiple bands due to the combination of magnus force and the underlying lattice. Condensation of the skyrmions can give rise to an intermediate phase between the skyrmion crystal and ferromagnet: a quantum liquid, in which skyrmions are not spatially localized. We show that the critical behavior depends on the spin size S and the topological number of the skyrmion. Experimental signatures of quantum skyrmions in inelastic neutron-scattering measurements are also discussed.

  5. Local kinetic effects in two-dimensional plasma turbulence.

    Science.gov (United States)

    Servidio, S; Valentini, F; Califano, F; Veltri, P

    2012-01-27

    Using direct numerical simulations of a hybrid Vlasov-Maxwell model, kinetic processes are investigated in a two-dimensional turbulent plasma. In the turbulent regime, kinetic effects manifest through a deformation of the ion distribution function. These patterns of non-Maxwellian features are concentrated in space nearby regions of strong magnetic activity: the distribution function is modulated by the magnetic topology, and can elongate along or across the local magnetic field. These results open a new path on the study of kinetic processes such as heating, particle acceleration, and temperature anisotropy, commonly observed in astrophysical and laboratory plasmas.

  6. Drift modes of a quasi-two-dimensional current sheet

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V.; Malova, Kh. V.; Popov, V. Yu.; Zelenyi, L. M. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2012-03-15

    Stability of a plasma configuration consisting of a thin one-dimensional current sheet embedded into a two-dimensional background current sheet is studied. Drift modes developing in plasma as unstable waves along the current direction are considered. Dispersion relations for kink and sausage perturbation modes are obtained depending on the ratio of parameters of thin and background current sheets. It is shown that the existence of the background sheet results in a decrease in the instability growth rates and a significant increase in the perturbation wavelengths. The role of drift modes in the excitation of oscillations observed in the current sheet of the Earth's magnetotail is discussed.

  7. Magnetic quantum dot in two-dimensional topological insulators

    Science.gov (United States)

    Li, Guo; Zhu, Jia-Lin; Yang, Ning

    2017-03-01

    Magnetic quantum dots in two-dimensional band and topological insulators are studied by solving the modified Dirac model under nonuniform magnetic fields. The Landau levels split into discrete states with certain angular momentum. The states splitting from the zero Landau levels lie in the energy gap for topological insulators but are out of the gap for band insulators. It is found that the ground states oscillate between the spin-up and spin-down states when the magnetic field or the dot size changes. The oscillation manifests itself as changes of sign and strength of charge currents near the dot's edge.

  8. Mass/Count Variation: A Mereological, Two-Dimensional Semantics

    Directory of Open Access Journals (Sweden)

    Peter R Sutton

    2016-12-01

    Full Text Available We argue that two types of context are central to grounding the semantics for the mass/count distinction. We combine and develop the accounts of Rothstein (2010 and Landman (2011, which emphasize (non-overlap at a context. We also adopt some parts of Chierchia’s (2010 account which uses precisifying contexts. We unite these strands in a two-dimensional semantics that covers a wide range of the puzzling variation data in mass/count lexicalization. Most importantly, it predicts where we should expect to find such variation for some classes of nouns but not for others, and also explains why.

  9. A two-dimensional approach to relativistic positioning systems

    CERN Document Server

    Coll, B; Morales, J A; Coll, Bartolom\\'{e}; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-01-01

    A relativistic positioning system is a physical realization of a coordinate system consisting in four clocks in arbitrary motion broadcasting their proper times. The basic elements of the relativistic positioning systems are presented in the two-dimensional case. This simplified approach allow to explain and to analyze the properties and interest of these new systems. The positioning system defined by geodesic emitters in flat metric is developed in detail. The information that the data generated by a relativistic positioning system give on the space-time metric interval is analyzed, and the interest of these results in gravimetry is pointed out.

  10. Dynamical matrix of two-dimensional electron crystals

    Science.gov (United States)

    Côté, R.; Lemonde, M.-A.; Doiron, C. B.; Ettouhami, A. M.

    2008-03-01

    In a quantizing magnetic field, the two-dimensional electron gas has a rich phase diagram with broken translational symmetry phases such as Wigner, bubble, and stripe crystals. In this paper, we derive a method to obtain the dynamical matrix of these crystals from a calculation of the density response function performed in the generalized random-phase approximation (GRPA). We discuss the validity of our method by comparing the dynamical matrix calculated from the GRPA with that obtained from standard elasticity theory with the elastic coefficients obtained from a calculation of the deformation energy of the crystal.

  11. Two-dimensional transport study of scrape off layer plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Nobuyuki [Interdisciplinary Graduate School of Advanced Energy Engineering Sciences, Kyushu University, Fukuoka (Japan); Yagi, Masatoshi; Itoh, Sanae-I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1999-09-01

    Two-dimensional transport code is developed to analyzed the heat pulse propagation in the scrape-off layer plasma. The classical and anomalous transport models are considered as a thermal diffusivity perpendicular to the magnetic field. On the other hand, the classical transport model is chosen as a thermal diffusivity parallel to the magnetic field. The heat deposition profiles are evaluated for various kinds of transport models. It is found that the heat pulse which arrives at the divertor plate due to the classical transport is largest compared with other models. The steady state temperate profiles of the electron and ion are also discussed. (author)

  12. Consistent theory of turbulent transport in two-dimensional magnetohydrodynamics.

    Science.gov (United States)

    Kim, Eun-jin

    2006-03-03

    A theory of turbulent transport is presented in two-dimensional magnetohydrodynamics with background shear and magnetic fields. We provide theoretical predictions for the transport of magnetic flux, momentum, and particles and turbulent intensities, which show stronger reduction compared with the hydrodynamic case, with different dependences on shearing rate, magnetic field, and values of viscosity, Ohmic diffusion, and particle diffusivity. In particular, particle transport is more severely suppressed than momentum transport, effectively leading to a more efficient momentum transport. The role of magnetic fields in quenching transport without altering the amplitude of flow velocity and in inhibiting the generation of shear flows is elucidated. Implications of the results are discussed.

  13. Deformable two-dimensional photonic crystal slab for cavity optomechanics

    CERN Document Server

    Antoni, T; Briant, T; Cohadon, P -F; Heidmann, A; Braive, R; Beveratos, A; Abram, I; Gatiet, L Le; Sagnes, I; Robert-Philip, I

    2011-01-01

    We have designed photonic crystal suspended membranes with optimized optical and mechanical properties for cavity optomechanics. Such resonators sustain vibration modes in the megahertz range with quality factors of a few thousand. Thanks to a two-dimensional square lattice of holes, their reflectivity at normal incidence at 1064 nm reaches values as high as 95%. These two features, combined with the very low mass of the membrane, open the way to the use of such periodic structures as deformable end-mirrors in Fabry-Perot cavities for the investigation of cavity optomechanical effects

  14. Magnetization of two-dimensional superconductors with defects

    CERN Document Server

    Kashurnikov, V A; Zyubin, M V

    2002-01-01

    The new method for modeling the layered high-temperature superconductors magnetization with defects, based on the Monte-Carlo algorithm, is developed. Minimization of the free energy functional of the vortex two-dimensional system made it possible to obtain the equilibrium vortex density configurations and calculate the magnetization of the superconductor with the arbitrary defects distribution in the wide range of temperatures. The magnetic induction profiles and magnetic flux distribution inside the superconductor, proving the applicability of the Bean model, are calculated

  15. The XY Model Coupled to Two-Dimensional Quantum Gravity

    CERN Document Server

    Baillie, C F; 10.1016/0370-2693(92)91037-A

    2009-01-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we discovered in our earlier work on various Potts models with the same value of the central charge, $c$, carries over to the XY model, which has $c=1$.

  16. Smoothed Particle Hydrodynamics Method for Two-dimensional Stefan Problem

    CERN Document Server

    Tarwidi, Dede

    2016-01-01

    Smoothed particle hydrodynamics (SPH) is developed for modelling of melting and solidification. Enthalpy method is used to solve heat conduction equations which involved moving interface between phases. At first, we study the melting of floating ice in the water for two-dimensional system. The ice objects are assumed as solid particles floating in fluid particles. The fluid and solid motion are governed by Navier-Stokes equation and basic rigid dynamics equation, respectively. We also propose a strategy to separate solid particles due to melting and solidification. Numerical results are obtained and plotted for several initial conditions.

  17. A Direct Two-Dimensional Pressure Formulation in Molecular Dynamics

    CERN Document Server

    YD, Sumith

    2016-01-01

    Two-dimensional (2D) pressure field estimation in molecular dynamics (MD) simulations has been done using three-dimensional (3D) pressure field calculations followed by averaging, which is computationally expensive due to 3D convolutions. In this work, we develop a direct 2D pressure field estimation method which is much faster than 3D methods without losing accuracy. The method is validated with MD simulations on two systems: a liquid film and a cylindrical drop of argon suspended in surrounding vapor.

  18. Two-Dimensional Change Detection Methods Remote Sensing Applications

    CERN Document Server

    Ilsever, Murat

    2012-01-01

    Change detection using remotely sensed images has many applications, such as urban monitoring, land-cover change analysis, and disaster management. This work investigates two-dimensional change detection methods. The existing methods in the literature are grouped into four categories: pixel-based, transformation-based, texture analysis-based, and structure-based. In addition to testing existing methods, four new change detection methods are introduced: fuzzy logic-based, shadow detection-based, local feature-based, and bipartite graph matching-based. The latter two methods form the basis for a

  19. Comprehensive two-dimensional river ice model based on boundary-fitted coordinate transformation method

    Directory of Open Access Journals (Sweden)

    Ze-yu MAO

    2014-01-01

    Full Text Available River ice is a natural phenomenon in cold regions, influenced by meteorology, geomorphology, and hydraulic conditions. River ice processes involve complex interactions between hydrodynamic, mechanical, and thermal processes, and they are also influenced by weather and hydrologic conditions. Because natural rivers are serpentine, with bends, narrows, and straight reaches, the commonly-used one-dimensional river ice models and two-dimensional models based on the rectangular Cartesian coordinates are incapable of simulating the physical phenomena accurately. In order to accurately simulate the complicated river geometry and overcome the difficulties of numerical simulation resulting from both complex boundaries and differences between length and width scales, a two-dimensional river ice numerical model based on a boundary-fitted coordinate transformation method was developed. The presented model considers the influence of the frazil ice accumulation under ice cover and the shape of the leading edge of ice cover during the freezing process. The model is capable of determining the velocity field, the distribution of water temperature, the concentration distribution of frazil ice, the transport of floating ice, the progression, stability, and thawing of ice cover, and the transport, accumulation, and erosion of ice under ice cover. A MacCormack scheme was used to solve the equations numerically. The model was validated with field observations from the Hequ Reach of the Yellow River. Comparison of simulation results with field data indicates that the model is capable of simulating the river ice process with high accuracy.

  20. Improved Implementation of Point Location in General Two-Dimensional Subdivisions

    CERN Document Server

    Hemmer, Michael; Halperin, Dan

    2012-01-01

    We present a major revamp of the point-location data structure for general two-dimensional subdivisions via randomized incremental construction, implemented in CGAL, the Computational Geometry Algorithms Library. We can now guarantee that the constructed directed acyclic graph G is of linear size and provides logarithmic query time. Via the construction of the Voronoi diagram for a given point set S of size n, this also enables nearest-neighbor queries in guaranteed O(log n) time. Another major innovation is the support of general unbounded subdivisions as well as subdivisions of two-dimensional parametric surfaces such as spheres, tori, cylinders. The implementation is exact, complete, and general; i.e., it can also handle non-linear subdivisions. Like the previous version, the data structure supports modifications of the subdivision, such as insertions and deletions of edges, after the initial preprocessing. A major challenge is to retain the expected O(n log n) preprocessing time while providing the above ...