Sample records for two-dimensional anti-de sitter

  1. Mass in anti-de Sitter spaces

    International Nuclear Information System (INIS)

    Liu, James T.; Sabra, W.A.


    The boundary stress tensor approach has proven extremely useful in defining mass and angular momentum in asymptotically anti-de Sitter spaces with CFT duals. An integral part of this method is the use of boundary counterterms to regulate the gravitational action and stress tensor. In the presence of matter, however, ambiguities may arise that are related to the addition of possible finite counterterms. We demonstrate this explicitly for R-charged black holes in AdS 5 , where introduction of a finite counterterm proportional to φ 2 is necessary to properly reproduce the expected mass/charge relation for the black holes

  2. Superfield approach to anti de Sitter supersymmetry

    International Nuclear Information System (INIS)

    Ivanov, E.A.


    A self-contained superfield approach to global supersymmetry in anti de Sitter space (OSp(1.4)) is developed. General transformation laws for OSp(1.4)-superfields are established, and all basic elements of the OSp(1.4)-covariant formalism in the real basis, such as covariant superfield derivatives, invariant integration measure over the superspace OSp(1.4)/O(1.3), etc., are explicitly given. The reducibility questions are analyzed and realizations of OSp(1.4) in the left- and right-handed chiral superspaces are found

  3. Localized Gravity on Branes in anti-de Sitter Spaces


    Halyo, Edi


    We discuss the conditions under which 4D gravity is localized on domain walls in 5D anti-de Sitter spaces. Our approach is based on considering the limits in which the localized gravity decouples. We find that gravity is localized if the wall is located a finite distance from the boundary of the anti-de Sitter space and has a finite tension. In addition, it has to be a $\\delta$-function source of gravity.

  4. Remarks on quantum field theory on de Sitter and anti-de Sitter ...

    Indian Academy of Sciences (India)


    Jun 14, 2012 ... Quantum field theory on de Sitter and anti-de Sitter space-times the permuted extended tuboids contains all the non-coinciding points of the 'Euclidean' de Sitter world, i.e.. {(z1,..., zn) ∈ Sn d : zj = zk. ∀ j = k}. (3.19). 3.4 Perturbation theory. Perturbation theory can be set up in de Sitter space-time, as it is a ...

  5. Radial dimensional reduction: (anti) de Sitter theories from flat (United States)

    Biswas, Tirthabir; Siegel, Warren


    We propose a new form of dimensional reduction that constrains dilatation instead of a component of momentum. It corresponds to replacing toroidal compactification in a cartesian coordinate with that in the logarithm of the radius. Massive theories in de Sitter or anti de Sitter space are thus produced from massless (scale invariant) theories in one higher space or time dimension. As an example, we derive free massive actions for arbitrary representations of the (anti) de Sitter group in arbitrary dimensions. (Previous general results were restricted to symmetric tensors.) We also discuss generalizations to interacting theories.

  6. Remarks on quantum field theory on de Sitter and anti-de Sitter ...

    Indian Academy of Sciences (India)


    Jun 14, 2012 ... The literature devoted to quantum field theory (QFT) on the de Sitter and anti-de Sitter space-times is enormous. This short review is limited to work done in recent years with the authors quoted in the abstract. The most significant results described here are the two explicit Källén–Lehmann representations ...

  7. Consistent higher derivative gravitational theories with stable de Sitter and anti-de Sitter backgrounds

    NARCIS (Netherlands)

    Biswas, Tirthabir; Koshelev, Alexey S.; Mazumdar, Anupam


    In this paper we provide the criteria for any generally covariant, parity preserving, and torsion-free theory of gravity to possess a stable de Sitter (dS) or anti-de Sitter (AdS) background. By stability we mean the absence of tachyonic or ghostlike states in the perturbative spectrum that can lead

  8. Quantum fields in anti-de Sitter wormholes


    Barcelo, Carlos; Garay, Luis J.


    We study the effects of asymptotically anti-de Sitter wormholes in low-energy field theory and give a general prescription for obtaining the local effective interaction terms induced by them. The choice of vacuum for the matter fields selects a basis of the Hilbert space of anti-de Sitter wormholes whose elements can be interpreted as states containing a given number of particles. This interpretation is subject to the same kind of ambiguity in the definition of a particle as that arising from...

  9. Penrose inequality in anti-de Sitter space (United States)

    Husain, Viqar; Singh, Suprit


    For asymptotically flat spacetimes the Penrose inequality gives an initial data test for the weak cosmic censorship hypothesis. We give a formulation of this inequality for asymptotically anti-de Sitter (AAdS) spacetimes, and show that the inequality holds for time asymmetric data in spherical symmetry. Our analysis is motivated by the constant-negative-spatial-curvature form of the AdS black hole metric.

  10. On electric field in anti-de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Lee Yen, E-mail:, E-mail:, E-mail:; Yan, Chew Xiao, E-mail:, E-mail:, E-mail:; Ching, Dennis Ling Chuan, E-mail:, E-mail:, E-mail: [Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, Bandar Seri Iskandar, Tronoh 31750, Perak (Malaysia)


    In this paper we calculate the electromagnetic field produced using retarded Green's function in Anti-de Sitter spacetime (AdS). Since this spacetime is non-globally hyperbolic and has no Cauchy surface, we only consider the field originated from a charge moving along its geodesic in the region consists of points covered by future null geodesic of the charge.

  11. Instability of charged anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Gwak, Bogeun; Lee, Bum-Hoon; Ro, Daeho


    We have studied the instability of charged anti-de Sitter black holes in four- or higher-dimensions under fragmentation. The unstable black holes under fragmentation can be broken into two black holes. Instability depends not only on the mass and charge of the black hole but also on the ratio between the fragmented black hole and its predecessor. We have found that the near extremal black holes are unstable, and Schwarzschild-AdS black holes are stable. These are qualitatively similar to black holes in four dimensions and higher. The detailed instabilities are numerically investigated.

  12. The broken string in Anti-de Sitter space (United States)

    Vegh, David


    This paper describes an efficient method for solving the classical string equations of motion in (2+1)-dimensional anti-de Sitter spacetime. Exact string solutions are identified that are the analogs of piecewise linear strings in flat space. They can be used to approximate any smooth string motion to arbitrary accuracy. Cusps on the string move with the speed of light and their collisions are described by a reflection formula. Explicit examples are shown with the string ending on two boundary quarks. The technique is ideally suited for numerical simulations.

  13. Cosmic censorship of rotating Anti-de Sitter black hole

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Bogeun; Lee, Bum-Hoon, E-mail:, E-mail: [Center for Quantum Spacetime, Sogang University, Seoul 04107 (Korea, Republic of)


    We test the validity of cosmic censorship in the rotating anti-de Sitter black hole. For this purpose, we investigate whether the extremal black hole can be overspun by the particle absorption. The particle absorption will change the mass and angular momentum of the black hole, which is analyzed using the Hamilton-Jacobi equations consistent with the laws of thermodynamics. We have found that the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid.

  14. Analytical Solutions of the Gravitational Field Equations in de Sitter and Anti-de Sitter Spacetimes (United States)

    Da Rocha, R.; Capelas Oliveira, E.


    The generalized Laplace partial differential equation, describing gravitational fields, is investigated in de Sitter spacetime from several metric approaches—such as the Riemann, Beltrami, Börner-Dürr, and Prasad metrics—and analytical solutions of the derived Riccati radial differential equations are explicitly obtained. All angular differential equations trivially have solutions given by the spherical harmonics and all radial differential equations can be written as Riccati ordinary differential equations, which analytical solutions involve hypergeometric and Bessel functions. In particular, the radial differential equations predict the behavior of the gravitational field in de Sitter and anti-de Sitter spacetimes, and can shed new light on the investigations of quasinormal modes of perturbations of electromagnetic and gravitational fields in black hole neighborhood. The discussion concerning the geometry of de Sitter and anti-de Sitter spacetimes is not complete without mentioning how the wave equation behaves on such a background. It will prove convenient to begin with a discussion of the Laplace equation on hyperbolic space, partly since this is of interest in itself and also because the wave equation can be investigated by means of an analytic continuation from the hyperbolic space. We also solve the Laplace equation associated to the Prasad metric. After introducing the so called internal and external spaces—corresponding to the symmetry groups SO(3,2) and SO(4,1) respectively—we show that both radial differential equations can be led to Riccati ordinary differential equations, which solutions are given in terms of associated Legendre functions. For the Prasad metric with the radius of the universe independent of the parametrization, the internal and external metrics are shown to be of AdS-Schwarzschild-like type, and also the radial field equations arising are shown to be equivalent to Riccati equations whose solutions can be written in terms of

  15. Black hole remnant in asymptotic anti-de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wen-Yu [Chung Yuan Christian University, Department of Physics, Center for High Energy Physics, Chung Li City (China); National Taiwan University, Leung Center for Cosmology and Particle Astrophysics, Taipei (China); Wu, Shang-Yu [National Chiao Tung University, Department of Electrophysics, Hsinchu (China)


    The solution of a remnant was suggested for the black hole ground state after surface gravity is corrected for the loop quantum effect. On the other hand, a Schwarzschild black hole in asymptotic anti-de Sitter space would tunnel into the thermal soliton solution known as the Hawking-Page phase transition. In this letter, we investigate the low temperature phase of a three-dimensional Banados-Teitelboim-Zanelli (BTZ) black hole and four-dimensional AdS Schwarzschild black hole. We find that the thermal soliton is energetically favored rather than the remnant solution at low temperature in three dimensions, while a Planck-size remnant is still possible in four dimensions. Though the BTZ remnant seems energetically disfavored, we argue that it is still possible to find in the overcooled phase if strings were present, and its implication is discussed. (orig.)

  16. Black hole remnant in asymptotic anti-de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wen-Yu, E-mail: [Department of Physics, Center for High Energy Physics, Chung Yuan Christian University, Chung Li City, Taiwan (China); Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, 106, Taipei, Taiwan (China); Wu, Shang-Yu, E-mail: [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China)


    The solution of a remnant was suggested for the black hole ground state after surface gravity is corrected for the loop quantum effect. On the other hand, a Schwarzschild black hole in asymptotic anti-de Sitter space would tunnel into the thermal soliton solution known as the Hawking–Page phase transition. In this letter, we investigate the low temperature phase of a three-dimensional Banados–Teitelboim–Zanelli (BTZ) black hole and four-dimensional AdS Schwarzschild black hole. We find that the thermal soliton is energetically favored rather than the remnant solution at low temperature in three dimensions, while a Planck-size remnant is still possible in four dimensions. Though the BTZ remnant seems energetically disfavored, we argue that it is still possible to find in the overcooled phase if strings were present, and its implication is discussed.

  17. Supersymmetry of anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Caldarelli, Marco M.; Klemm, Dietmar


    We examine supersymmetry of four-dimensional asymptotically anti-de Sitter (AdS) dyonic black holes in the context of gauged N = 2 supergravity. Our calculations concentrate on black holes with unusual topology and their rotating generalizations, but we also reconsider the spherical rotating dyonic Ker-Newman-AdS black hole, whose supersymmetry properties have previously been investigated by Kostelecky and Perry within another approach. We find that in the case of spherical, toroidal or cylindrical event horizon topology, the black holes must rotate in order to preserve some supersymmetry; the non-rotating supersymmetric configurations representing naked singularities. However, we show that this is no more true for black holes whose event horizons are Riemann surfaces of genus g > 1, where we find a non-rotating extremal solitonic black hole carrying magnetic charge and permitting one Killing spinor. For the non-rotating supersymmetric configurations of various topologies, all Killing spinors are explicitly constructed

  18. Flow equation, conformal symmetry, and anti-de Sitter geometry (United States)

    Aoki, Sinya; Yokoyama, Shuichi


    We argue that the anti-de Sitter (AdS) geometry in d+1 dimensions naturally emerges from an arbitrary conformal field theory in d dimensions using the free flow equation. We first show that an induced metric defined from the flowed field generally corresponds to the quantum information metric, called the Bures or Helstrom metric, if the flowed field is normalized appropriately. We next verify that the induced metric computed explicitly with the free flow equation always becomes the AdS metric when the theory is conformal. We finally prove that the conformal symmetry in d dimensions converts to the AdS isometry in d+1 dimensions after d-dimensional quantum averaging. This guarantees the emergence of AdS geometry without explicit calculation.

  19. Supersymmetry breaking in anti-de Sitter space

    International Nuclear Information System (INIS)

    Burgess, C.P.


    The quantum properties of supergravity theories on a four-dimensional anti-de Sitter space background are investigated. It is shown that if supersymmetry is unbroken at the classical level then the one-loop vacuum is supersymmetric if and only if the one-loop vacuum energy vanishes. The unrenormalized vacuum energy is calculated and shown to be zero in an arbitrary theory if the classical background in supersymmetric, thereby showing that one-loop corrections always respect the supersymmetry of the vacuum. Although the bare vacuum energy vanishes, the renormalized vacuum energy need not. The renormalized vacuum energy is shown to be determined by the infinite part of the one-loop effective action, and so is easily calculable. The resulting quantum correction to the background curvature is calculated and shown to vanish in any supersymmetric one-loop finite theory on AdS. In all cases calculated the quantum corrections, if nonzero, tend to reduce the background curvature

  20. Covariant fields on anti-de Sitter spacetimes (United States)

    Cotăescu, Ion I.


    The covariant free fields of any spin on anti-de Sitter (AdS) spacetimes are studied, pointing out that these transform under isometries according to covariant representations (CRs) of the AdS isometry group, induced by those of the Lorentz group. Applying the method of ladder operators, it is shown that the CRs with unique spin are equivalent with discrete unitary irreducible representations (UIRs) of positive energy of the universal covering group of the isometry one. The action of the Casimir operators is studied finding how the weights of these representations (reps.) may depend on the mass and spin of the covariant field. The conclusion is that on AdS spacetime, one cannot formulate a universal mass condition as in special relativity.

  1. Difference between anti-de Sitter and de Sitter spaces: wave equation approach

    International Nuclear Information System (INIS)

    Myung, Y S; Kim, N J


    We study the wave equation for a massive scalar field in three-dimensional anti-de Sitter (AdS) black hole and de Sitter (dS) spaces to find what are the differences and similarities between the two spaces. Here the AdS black hole is provided by the J = 0 BTZ black hole. To investigate its event (cosmological) horizons, we compute the absorption cross section, quasinormal modes and study the AdS(dS)/CFT correspondences. Although there remains an unclear point in defining the ingoing flux near infinity of the BTZ black hole, quasi-normal modes are obtained and the AdS/CFT correspondence is confirmed. However, we do not find quasi-normal modes and thus do not confirm the assumed dS/CFT correspondence. This difference between AdS black hole and dS spaces is very interesting, because their global structures are similar to each other

  2. Heavy-Ion Collisions and Black Holes in Anti-de-Sitter Space

    CERN Document Server

    Ellis, John R.


    Recent developments linking non-perturbative quantum gauge theories in Minkowski space to classical gravity theories in anti-de-Sitter space are reviewed at a simple level. It is suggested how these spectacular advances may be extended to discuss the quark-gluon phase transition in terms of black holes in anti-de-Sitter space, with possible relevance to heavy-ion collisions.

  3. Rotation induced break down of Weak Equivalence Principle in Schwarzschild?(Anti-) de Sitter Geometry (United States)

    Khayrul, Hasan, M.; Sultana, Kausari; Shahjalal, Md.


    We probe the plausibility of weak equivalence principle for a circular motion at the radial distance of photon sphere of the Schwarzschild?(Anti-)de Sitter black hole. We switch the static Schwarzschild?(Anti-)de Sitter space-time to rotational by means of the transformation with constant angular velocity. The fiducial observers revolving along the trajectory of photon orbit of the Schwarzschild?(Anti-)de Sitter black hole are supposed to agree on the result of any physical experiment when their angular velocities are uniform, which give rise to the constancy in their accelerations, meaning the observers are equivalent. Our study, in contrast, finds that the observers do not measure similar results, claiming the invalidity of the principle of weak equivalence. However, the aim of our work is not to defy the principle absolutely, rather we focus our attention on the very cause for which the dispute arises, namely the rotational motion.

  4. Phase space localization for anti-de Sitter quantum mechanics and its zero curvature limit (United States)

    Elgradechi, Amine M.


    Using techniques of geometric quantization and SO(sub 0)(3,2)-coherent states, a notion of optimal localization on phase space is defined for the quantum theory of a massive and spinning particle in anti-de Sitter space time. It is shown that this notion disappears in the zero curvature limit, providing one with a concrete example of the regularizing character of the constant (nonzero) curvature of the anti-de Sitter space time. As a byproduct a geometric characterization of masslessness is obtained.

  5. Some exact solutions for maximally symmetric topological defects in Anti de Sitter space (United States)

    Alvarez, Orlando; Haddad, Matthew


    We obtain exact analytical solutions for a class of SO( l) Higgs field theories in a non-dynamic background n-dimensional anti de Sitter space. These finite transverse energy solutions are maximally symmetric p-dimensional topological defects where n = ( p + 1) + l. The radius of curvature of anti de Sitter space provides an extra length scale that allows us to study the equations of motion in a limit where the masses of the Higgs field and the massive vector bosons are both vanishing. We call this the double BPS limit. In anti de Sitter space, the equations of motion depend on both p and l. The exact analytical solutions are expressed in terms of standard special functions. The known exact analytical solutions are for kink-like defects ( p = 0 , 1 , 2 , . . . ; l = 1), vortex-like defects ( p = 1 , 2 , 3; l = 2), and the 't Hooft-Polyakov monopole ( p = 0; l = 3). A bonus is that the double BPS limit automatically gives a maximally symmetric classical glueball type solution. In certain cases where we did not find an analytic solution, we present numerical solutions to the equations of motion. The asymptotically exponentially increasing volume with distance of anti de Sitter space imposes different constraints than those found in the study of defects in Minkowski space.

  6. Noncommutative Relativistic Spacetimes and Worldlines from 2 + 1 Quantum (Anti-de Sitter Groups

    Directory of Open Access Journals (Sweden)

    Ángel Ballesteros


    Full Text Available The κ-deformation of the (2 + 1D anti-de Sitter, Poincaré, and de Sitter groups is presented through a unified approach in which the curvature of the spacetime (or the cosmological constant is considered as an explicit parameter. The Drinfel’d-double and the Poisson–Lie structure underlying the κ-deformation are explicitly given, and the three quantum kinematical groups are obtained as quantizations of such Poisson–Lie algebras. As a consequence, the noncommutative (2 + 1D spacetimes that generalize the κ-Minkowski space to the (anti-de Sitter ones are obtained. Moreover, noncommutative 4D spaces of (time-like geodesics can be defined, and they can be interpreted as a novel possibility to introduce noncommutative worldlines. Furthermore, quantum (anti-de Sitter algebras are presented both in the known basis related to 2 + 1 quantum gravity and in a new one which generalizes the bicrossproduct one. In this framework, the quantum deformation parameter is related to the Planck length, and the existence of a kind of “duality” between the cosmological constant and the Planck scale is also envisaged.

  7. Discrete Torsion, (Anti) de Sitter D4-Brane and Tunneling (United States)

    Singh, Abhishek K.; Pandey, P. K.; Singh, Sunita; Kar, Supriya


    We obtain quantum geometries on a vacuum created pair of a (DDbar)3-brane, at a Big Bang singularity, by a local two form on a D4-brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DDbar)-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D4-brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole.

  8. Discrete Torsion, (Anti) de Sitter D4-Brane and Tunneling

    International Nuclear Information System (INIS)

    Singh, Abhishek K.; Pandey, P.K.; Singh, Sunita; Kar, Supriya


    We obtain quantum geometries on a vacuum created pair of a (DD ¯ ) 3 -brane, at a Big Bang singularity, by a local two form on a D 4 -brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DD ¯ )-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D 4 -brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole

  9. Quantum corrections in thermal states of fermions on anti-de Sitter space-time (United States)

    Ambruş, Victor E.; Winstanley, Elizabeth


    We study the energy density and pressure of a relativistic thermal gas of massless fermions on four-dimensional Minkowski and anti-de Sitter space-times using relativistic kinetic theory. The corresponding quantum field theory quantities are given by components of the renormalized expectation value of the stress-energy tensor operator acting on a thermal state. On Minkowski space-time, the renormalized vacuum expectation value of the stress-energy tensor is by definition zero, while on anti-de Sitter space-time the vacuum contribution to this expectation value is in general nonzero. We compare the properties of the vacuum and thermal expectation values of the energy density and pressure for massless fermions and discuss the circumstances in which the thermal contribution dominates over the vacuum one.

  10. Entanglement entropy of black holes and anti-de Sitter space/conformal-field-theory correspondence. (United States)

    Solodukhin, Sergey N


    A recent proposal by Ryu and Takayanagi for a holographic interpretation of entanglement entropy in conformal field theories dual to supergravity on anti-de Sitter space is generalized to include entanglement entropy of black holes living on the boundary of anti-de Sitter space. The generalized proposal is verified in boundary dimensions d=2 and d=4 for both the uv-divergent and uv-finite terms. In dimension d=4 an expansion of entanglement entropy in terms of size L of the subsystem outside the black hole is considered. A new term in the entropy of dual strongly coupled conformal-field theory, which universally grows as L(2)lnL and is proportional to the value of the obstruction tensor at the black hole horizon, is predicted.

  11. Delayed collapses of Bose-Einstein condensates in relation to anti-de Sitter gravity. (United States)

    Biasi, Anxo F; Mas, Javier; Paredes, Angel


    We numerically investigate spherically symmetric collapses in the Gross-Pitaevskii equation with attractive nonlinearity in a harmonic potential. Even below threshold for direct collapse, the wave function bounces off from the origin and may eventually become singular after a number of oscillations in the trapping potential. This is reminiscent of the evolution of Einstein gravity sourced by a scalar field in anti de Sitter space where collapse corresponds to black-hole formation. We carefully examine the long time evolution of the wave function for continuous families of initial states in order to sharpen out this qualitative coincidence which may bring new insights in both directions. On the one hand, we comment on possible implications for the so-called Bosenova collapses in cold atom Bose-Einstein condensates. On the other hand, Gross-Pitaevskii provides a toy model to study the relevance of either the resonance conditions or the nonlinearity for the problem of anti de Sitter instability.

  12. Stability of anti-de sitter space in Einstein-Gauss-Bonnet gravity. (United States)

    Deppe, Nils; Kolly, Allison; Frey, Andrew; Kunstatter, Gabor


    Recently it has been argued that in Einstein gravity anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dimensions, spherically symmetric Einstein-Gauss-Bonnet gravity has two key features: Choptuik scaling exhibits a radius gap, and the mass function goes to a finite value as the horizon radius vanishes. These suggest that black holes will not form dynamically if the total mass-energy content of the spacetime is too small, thereby restoring the stability of anti-de Sitter spacetime in this context. We support this claim with numerical simulations and uncover a rich structure in horizon radii and formation times as a function of perturbation amplitude.

  13. Violating the Weak Cosmic Censorship Conjecture in Four-Dimensional Anti-de Sitter Space (United States)

    Crisford, Toby; Santos, Jorge E.


    We consider time-dependent solutions of the Einstein-Maxwell equations using anti-de Sitter (AdS) boundary conditions, and provide the first counterexample to the weak cosmic censorship conjecture in four spacetime dimensions. Our counterexample is entirely formulated in the Poincaré patch of AdS. We claim that our results have important consequences for quantum gravity, most notably to the weak gravity conjecture.

  14. Anti-de-Sitter regular electric multipoles: towards Einstein-Maxwell-AdS solitons


    Herdeiro, Carlos; Radu, Eugen


    We discuss electrostatics in Anti-de-Sitter ($AdS$) spacetime, in global coordinates. We observe that the multipolar expansion has two crucial differences to that in Minkowski spacetime. First, there are everywhere regular solutions, with finite energy, for every multipole moment except for the monopole. Second, all multipole moments decay with the same inverse power of the areal radius, $1/r$, as spatial infinity is approached. The first observation suggests there may be regular, self-gravit...

  15. Viscous plasma evolution from gravity using anti-de sitter/conformal-field-theory correspondence. (United States)

    Janik, Romuald A


    We analyze the anti-de Sitter/conformal-field-theory dual geometry of an expanding boost-invariant plasma. We show that the requirement of nonsingularity of the dual geometry for leading and subasymptotic times predicts, without any further assumptions about gauge theory dynamics, hydrodynamic expansion of the plasma with viscosity coefficient exactly matching the one obtained earlier in the static case by Policastro, Son, and Starinets.

  16. Generic cosmic-censorship violation in anti-de Sitter space. (United States)

    Hertog, Thomas; Horowitz, Gary T; Maeda, Kengo


    We consider (four-dimensional) gravity coupled to a scalar field with potential V(phi). The potential satisfies the positive energy theorem for solutions that asymptotically tend to a negative local minimum. We show that for a large class of such potentials, there is an open set of smooth initial data that evolve to naked singularities. Hence cosmic censorship does not hold for certain reasonable matter theories in asymptotically anti-de Sitter spacetimes. The asymptotically flat case is more subtle. We suspect that potentials with a local Minkowski minimum may similarly lead to violations of cosmic censorship in asymptotically flat spacetimes, but we do not have definite results.

  17. Abundant stable gauge field hair for black holes in anti-de Sitter space. (United States)

    Baxter, J E; Helbling, Marc; Winstanley, Elizabeth


    We present new hairy black hole solutions of SU(N) Einstein-Yang-Mills (EYM) theory in asymptotically anti-de Sitter (AdS) space. These black holes are described by N+1 independent parameters and have N-1 independent gauge field degrees of freedom. Solutions in which all gauge field functions have no zeros exist for all N, and for a sufficiently large (and negative) cosmological constant. At least some of these solutions are shown to be stable under classical, linear, spherically symmetric perturbations. Therefore there is no upper bound on the amount of stable gauge field hair with which a black hole in AdS can be endowed.

  18. Bjorken flow from an anti-de Sitter space Schwarzschild black hole. (United States)

    Alsup, James; Siopsis, George


    We consider a large black hole in asymptotically anti-de Sitter spacetime of arbitrary dimension with a Minkowski boundary. By performing an appropriate slicing as we approach the boundary, we obtain via holographic renormalization a gauge theory fluid obeying Bjorken hydrodynamics in the limit of large longitudinal proper time. The metric we obtain reproduces to leading order the metric recently found as a direct solution of the Einstein equations in five dimensions. Our results are also in agreement with recent exact results in three dimensions.

  19. Reissner–Nordström Anti-de Sitter Black Holes in Mimetic F(R Gravity

    Directory of Open Access Journals (Sweden)

    V. K. Oikonomou


    Full Text Available In this paper, we study under which conditions the Reissner–Nordström anti-de Sitter black hole can be a solution of the vacuum mimetic F ( R gravity with Lagrange multiplier and mimetic scalar potential. As the author demonstrates, the resulting picture in the mimetic F ( R gravity case is a trivial extension of the standard F ( R approach, and in effect, the metric perturbations in the mimetic F ( R gravity case, for the Reissner–Nordström anti-de Sitter black hole metric, at the first order of the perturbed variables are the same at the leading order.

  20. Anti-de Sitter gravity associated with the supergroup $SU(1,1|2)\\times SU(1,1|2)$


    David, Justin R.


    We construct the anti-de Sitter supergravity in three dimensions associated with the supergroup $SU(1,1|2)\\times SU(1,1|2)$. The field content and the action are inferred using the fact that $AdS$ supergravity theories in three dimensions are Chern-Simons theories.

  1. Real forms of complex quantum anti-de-Sitter algebra Uq(Sp(4;C)) and their contraction schemes

    International Nuclear Information System (INIS)

    Lukierski, J.; Nowicki, A.; Ruegg, H.


    We describe four types of inner involutions of the Cartan-Weyl basis providing (for vertical strokeqvertical stroke=1 and q real) three types of real quantum Lie algebras: U q (O(3, 2)) (quantum D=4 anti-de-Sitter), U q (O(4, 1)) (quantum D=4 de-Sitter) and U q (O(5)). We give also two types of inner involutions of the Cartan-Chevalley basis of U q (Sp(4; C)) which cannot be extended to inner involutions of the Cartan-Weyl basis. We outline twelve contraction schemes for quantum D=4 anti-de-Sitter algebra. All these contractions provide four commuting translation generators, but only two (one for vertical strokeqvertical stroke=1, the second for q real) lead to the quantum Poincare algebra with an undeformed space rotation O(3) subalgebra. (orig.)

  2. Hawking evaporation time scale of topological black holes in anti-de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yen Chin, E-mail:


    It was recently pointed out that if an absorbing boundary condition is imposed at infinity, an asymptotically anti-de Sitter Schwarzschild black hole with a spherical horizon takes only a finite amount of time to evaporate away even if its initial mass is arbitrarily large. We show that this is a rather generic property in AdS spacetimes: regardless of their horizon topologies, neutral AdS black holes in general relativity take about the same amount of time to evaporate down to the same size of order L, the AdS length scale. Our discussion focuses on the case in which the black hole has toral event horizon. A brief comment is made on the hyperbolic case, i.e. for black holes with negatively curved horizons.

  3. Anti-De Sitter Space, Thermal Phase Transition, and Confinement in Gauge Theories (United States)

    Witten, Edward


    The correspondence between supergravity (and string theory) on AdS space and boundary conformal field theory relates the thermodynamics of N = 4 super Yang-Mills theory in four dimensions to the thermodynamics of Schwarzschild black holes in Anti-de Sitter space. In this description, quantum phenomena such as the spontaneous breaking of the center of the gauge group, magnetic confinement, and the mass gap are coded in classical geometry. The correspondence makes it manifest that the entropy of a very large AdS Schwarzschild black hole must scale "holographically" with the volume of its horizon. By similar methods, one can also make a speculative proposal for the description of large N gauge theories in four dimensions without supersymmetry.

  4. Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability. (United States)

    Bosch, Pablo; Green, Stephen R; Lehner, Luis


    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.

  5. Spin Interaction under the Collision of Two Kerr-(Anti-de Sitter Black Holes

    Directory of Open Access Journals (Sweden)

    Bogeun Gwak


    Full Text Available We investigate herein the spin interaction during collisions between Kerr-(anti-de Sitter black holes. The spin interaction potential depends on the relative rotation directions of the black holes, and this potential can be released as gravitational radiation upon collision. The energy of the radiation depends on the cosmological constant and corresponds to the spin interaction potential in the limit that one of the black holes has negligibly small mass and angular momentum. We then determine the approximate overall behaviors of the upper bounds on the radiation using thermodynamics. The results indicate that the spin interaction can consistently contribute to the radiation. In addition, the radiation depends on the stability of the black hole produced by the collision.

  6. Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space

    International Nuclear Information System (INIS)

    Alday, Luis F.; Maldacena, Juan


    We consider minimal surfaces in three dimensional anti-de-Sitter space that end at the AdS boundary on a polygon given by a sequence of null segments. The problem can be reduced to a certain generalized Sinh-Gordon equation and to SU(2) Hitchin equations. We describe in detail the mathematical problem that needs to be solved. This problem is mathematically the same as the one studied by Gaiotto, Moore and Neitzke in the context of the moduli space of certain supersymmetric theories. Using their results we can find the explicit answer for the area of a surface that ends on an eight-sided polygon. Via the gauge/gravity duality this can also be interpreted as a certain eight-gluon scattering amplitude at strong coupling. In addition, we give fairly explicit solutions for regular polygons.

  7. Simulation of black hole collisions in asymptotically Anti-de Sitter spacetimes. (United States)

    Bantilan, Hans; Romatschke, Paul


    We present results from the evolution of spacetimes that describe the merger of asymptotically global anti-de Sitter black holes in 5D with an SO(3) symmetry. Prompt scalar field collapse provides us with a mechanism for producing distinct trapped regions on the initial slice, associated with black holes initially at rest. We evolve these black holes towards a merger, and follow the subsequent ring down. The boundary stress tensor of the dual conformal field theory is conformally related to a stress tensor in Minkowski space that inherits an axial symmetry from the bulk SO(3). We compare this boundary stress tensor to its hydrodynamic counterpart with viscous corrections of up to second order, and compare the conformally related stress tensor to ideal hydrodynamic simulations in Minkowski space, initialized at various time slices of the boundary data. Our findings reveal far-from-hydrodynamic behavior at early times, with a transition to ideal hydrodynamics at late times.

  8. Non-topological gravitating defects in five-dimensional anti-de Sitter space

    CERN Document Server

    Giovannini, Massimo


    A class of five-dimensional warped solutions is presented. The geometry is everywhere regular and tends to five-dimensional anti-de Sitter space for large absolute values of the bulk coordinate. The physical features of the solutions change depending on the value of an integer parameter. In particular, a set of solutions describes generalized gravitating kinks where the scalar field interpolates between two different minima of the potential. The other category of solutions describes instead gravitating defects where the scalar profile is always finite and reaches the same constant asymptote both for positive and negative values of the bulk coordinate. In this sense the profiles are non-topological. The physical features of the zero modes are discussed.

  9. From the Schwarzschild Anti-de Sitter Black Hole to the Conformal Field Theory

    Directory of Open Access Journals (Sweden)

    Akram Sadat Sefiedgar


    Full Text Available The emergence of the quantum gravitational effects in a very high energy regime necessitates some corrections to the thermodynamics of black holes. In this letter, we investigate a possible modification to the thermodynamics of Schwarzschild anti-de Sitter (SAdS black holes due to rainbow gravity model. Using the correspondence between a (d+1-dimensional SAdS black hole and a conformal filed theory in d-dimensional spacetime, one may find the corrections to the Cardy-Verlinde formula from the modified thermodynamics of the black hole. Furthermore, we show that the corrected Cardy-Verlinde formula can also be derived by redefining the Virasoro operator and the central charge.

  10. Graviton n-point functions for UV-complete theories in Anti-de Sitter space

    CERN Document Server

    Brustein, Ram


    We calculate graviton n-point functions in an anti-de Sitter black brane background for effective gravity theories whose linearized equations of motion have at most two time derivatives. We compare the n-point functions in Einstein gravity to those in theories whose leading correction is quadratic in the Riemann tensor. The comparison is made for any number of gravitons and for all physical graviton modes in a kinematic region for which the leading correction can significantly modify the Einstein result. We find that the n-point functions of Einstein gravity depend on at most a single angle, whereas those of the corrected theories may depend on two angles. For the four-point functions, Einstein gravity exhibits linear dependence on the Mandelstam variable s versus a quadratic dependence on s for the corrected theory.

  11. The holographic Hadamard condition on asymptotically anti-de Sitter spacetimes (United States)

    Wrochna, Michał


    In the setting of asymptotically anti-de Sitter spacetimes, we consider Klein-Gordon fields subject to Dirichlet boundary conditions, with mass satisfying the Breitenlohner-Freedman bound. We introduce a condition on the b-wave front set of two-point functions of quantum fields, which locally in the bulk amounts to the usual Hadamard condition, and which moreover allows to estimate wave front sets for the holographically induced theory on the boundary. We prove the existence of two-point functions satisfying this condition and show their uniqueness modulo terms that have smooth Schwartz kernel in the bulk and have smooth restriction to the boundary. Finally, using Vasy's propagation of singularities theorem, we prove an analogue of Duistermaat and Hörmander's theorem on distinguished parametrices.

  12. Holographic calculations of Euclidean Wilson loop correlator in Euclidean anti-de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Ziama, Sannah [Department of Physics and Astronomy, University of Kentucky,505 Rose Street, Lexington, KY 40506-0055 (United States)


    The correlation functions of two or more Euclidean Wilson loops of various shapes in Euclidean anti-de Sitter space are computed by considering the minimal area surfaces connecting the loops. The surfaces are parametrized by Riemann theta functions associated with genus three hyperelliptic Riemann surfaces. In the case of two loops, the distance L by which they are separated can be adjusted by continuously varying a specific branch point of the auxiliary Riemann surface. When L is much larger than the characteristic size of the loops, then the loops are approximately regarded as local operators and their correlator as the correlator of two local operators. Similarly, when a loop is very small compared to the size of another loop, the small loop is considered as a local operator corresponding to a light supergravity mode.

  13. Thermodynamic stability of asymptotically anti-de Sitter rotating black holes in higher dimensions

    International Nuclear Information System (INIS)

    Dolan, Brian P


    Conditions for thermodynamic stability of asymptotically anti-de Sitter (AdS) rotating black holes in D-dimensions are determined. Local thermodynamic stability requires not only positivity conditions on the specific heat and the moment of inertia tensor but it is also necessary that the adiabatic compressibility be positive. It is shown that, in the absence of a cosmological constant, neither rotation nor charge is sufficient to ensure full local thermodynamic stability of a black hole. Thermodynamic stability properties of AdS Myers–Perry black holes are investigated for both singly spinning and multi-spinning black holes. Simple expressions are obtained for the specific heat and moment of inertia tensor in any dimension. An analytic expression is obtained for the boundary of the region of parameter space in which such space-times are thermodynamically stable. (paper)

  14. Quantum groups, roots of unity and particles on quantized Anti-de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Steinacker, Harold [Univ. of California, Berkeley, CA (United States). Dept. of Physics


    Quantum groups in general and the quantum Anti-de Sitter group Uq(so(2,3)) in particular are studied from the point of view of quantum field theory. The author shows that if q is a suitable root of unity, there exist finite-dimensional, unitary representations corresponding to essentially all the classical one-particle representations with (half) integer spin, with the same structure at low energies as in the classical case. In the massless case for spin ≥ 1, "naive" representations are unitarizable only after factoring out a subspace of "pure gauges", as classically. Unitary many-particle representations are defined, with the correct classical limit. Furthermore, the author identifies a remarkable element Q in the center of Uq(g), which plays the role of a BRST operator in the case of Uq(so(2,3)) at roots of unity, for any spin ≥ 1. The associated ghosts are an intrinsic part of the indecomposable representations. The author shows how to define an involution on algebras of creation and anihilation operators at roots of unity, in an example corresponding to non-identical particles. It is shown how nonabelian gauge fields appear naturally in this framework, without having to define connections on fiber bundles. Integration on Quantum Euclidean space and sphere and on Anti-de Sitter space is studied as well. The author gives a conjecture how Q can be used in general to analyze the structure of indecomposable representations, and to define a new, completely reducible associative (tensor) product of representations at roots of unity, which generalizes the standard "truncated" tensor product as well as many-particle representations.

  15. Gravitational quasinormal modes of static Einstein-Gauss-Bonnet anti-de Sitter black holes (United States)

    Ma, Hong; Li, Jin


    In this paper, we describe quasinormal modes (QNMs) for gravitational perturbations of Einstein-Gauss-Bonnet black holes (BHs) in higher dimensional spacetimes, and derive the corresponding parameters of such black holes in three types of spacetime (flat, de Sitter (dS) and anti-de Sitter (AdS)). Our attention is concentrated on discussing the (in)stability of Einstein-Gauss-Bonnet AdS BHs through the temporal evolution of all types of gravitational perturbation fields (tensor, vector and scalar). It is concluded that the potential functions in vector and scalar gravitational perturbations have negative regions, which suppress quasinormal ringing. Furthermore, the influences of the Gauss-Bonnet coupling parameter α, the number of dimensions n and the angular momentum quantum number l on the Einstein-Gauss-Bonnet AdS BHs quasinormal spectrum are analyzed. The QNM frequencies have greater oscillation and lower damping rate with the growth of α. This indicates that QNM frequencies become increasingly unstable with large α. Meanwhile, the dynamic evolutions of the perturbation field are compliant with the results of computation from the Horowitz and Hubeny method. Because the number of extra dimensions is connected with the string scale, the relationship between α and properties of Einstein-Gauss-Bonnet AdS BHs might be beneficial for the exploitation of string theory and extra-dimensional brane worlds. Supported by FAPESP (2012/08934-0), National Natural Science Foundation of China (11205254, 11178018, 11375279, 11605015), the Natural Science Foundation Project of CQ CSTC (2011BB0052), and the Fundamental Research Funds for the Central Universities (106112016CDJXY300002, 106112017CDJXFLX0014, CDJRC10300003)

  16. Eikonal instability of Gauss-Bonnet-(anti-)-de Sitter black holes (United States)

    Konoplya, R. A.; Zhidenko, A.


    Here we have shown that asymptotically anti-de Sitter (AdS) black holes in the Einstein-Gauss-Bonnet (GB) theory are unstable under linear perturbations of space-time in some region of parameters. This (eikonal) instability develops at high multipole numbers. We found the exact parametric regions of the eikonal instability and extended this consideration to asymptotically flat and de Sitter cases. The approach to the threshold of instability is driven by purely imaginary quasinormal modes, which are similar to those found recently in Grozdanov, Kaplis, and Starinets, [J. High Energy Phys. 07 (2016) 151, 10.1007/JHEP07(2016)151] for the higher curvature corrected black hole with the planar horizon. The found instability may indicate limits of holographic applicability of the GB-AdS backgrounds. Recently, through the analysis of critical behavior in AdS space-time in the presence of the Gauss-Bonnet term, it was shown [Deppe et al, Phys. Rev. Lett. 114, 071102 (2015), 10.1103/PhysRevLett.114.071102], that, if the total energy content of the AdS space-time is small, then no black holes can be formed with mass less than some critical value. A similar mass gap was also found when considering collapse of mass shells in asymptotically flat Gauss-Bonnet theories [Frolov, Phys. Rev. Lett. 115, 051102 (2015), 10.1103/PhysRevLett.115.051102]. The found instability of all sufficiently small Einstein-Gauss-Bonnet-AdS, dS and asymptotically flat black holes may explain the existing mass gaps in their formation.

  17. Geodesic Motions near a Five-dimensional Reissner–Nordström Anti-de Sitter black hole

    International Nuclear Information System (INIS)

    Guha, Sarbari; Bhattacharya, Pinaki


    We have studied the geodesics of neutral particles near a non-rotating, charged five-dimensional Reissner–Nordström Anti-de Sitter black hole using the effective potential analysis and the dynamical systems analysis. The effective potential analysis is used to determine the location of the horizon and to study radial and circular trajectories. The dynamical systems method is used to determine the stability and the fixed points of the phase trajectories.

  18. Stable monopole and dyon solutions in the einstein-yang-mills theory in asymptotically anti-de sitter space (United States)

    Bjoraker; Hosotani


    A continuum of new monopole and dyon solutions in the Einstein-Yang-Mills theory in asymptotically anti-de Sitter space are found. They are regular everywhere and specified by their mass and their non-Abelian electric and magnetic charges. A class of monopole solutions which have no node in non-Abelian magnetic fields is shown to be stable against spherically symmetric linear perturbations.

  19. Perturbation of Large Anti-deSitter Black Holes and AdS/CFT Correspondence (United States)

    Ahmadzadegan, Aida

    As the main goal of this thesis, the canonical form of the perturbation metric of anti-de Sitter black holes in four dimensions is derived by choosing the Regge-Wheeler gauge in the standard Schwarzschild coordinates (t, r, theta, ϕ). By assuming the perturbations to be small, the differential equations governing the perturbations are obtained from the equations deltaRmunu(h ) = 0. Then, by taking the limit of m > > R where R is the radius of AdS space, the perturbation metric and field equations of large AdS black holes are found. Finally, under the shadow of AdS/CFT correspondence, these perturbations can be compared to their corresponding three-dimensional theory of fluid dynamics on the dual space, R x S2. Furthermore, by using the definitions of stress-energy tensor and its perturbation, we can find energy density, pressure and shear viscosity which are the quantities we need to describe the behavior of the fluid on the boundary of the AdS space.

  20. Thin-shell bubbles and information loss problem in anti de Sitter background

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Misao [Yukawa Institute for Theoretical Physics,Kyoto University, Kyoto 606-8502 (Japan); Tomsk State Pedagogical University,634050 Tomsk (Russian Federation); Yeom, Dong-han [Yukawa Institute for Theoretical Physics,Kyoto University, Kyoto 606-8502 (Japan); Leung Center for Cosmology and Particle Astrophysics, National Taiwan University,Taipei 10617, Taiwan (China)


    We study the motion of thin-shell bubbles and their tunneling in anti de Sitter (AdS) background. We are interested in the case when the outside of a shell is a Schwarzschild-AdS space (false vacuum) and the inside of it is an AdS space with a lower vacuum energy (true vacuum). If a collapsing true vacuum bubble is created, classically it will form a Schwarzschild-AdS black hole. However, this collapsing bubble can tunnel to a bouncing bubble that moves out to spatial infinity. Then, although the classical causal structure of a collapsing true vacuum bubble has the singularity and the event horizon, quantum mechanically the wavefunction has support for a history without any singularity nor event horizon which is mediated by the non-perturbative, quantum tunneling effect. This may be regarded an explicit example that shows the unitarity of an asymptotic observer in AdS, while a classical observer who only follows the most probable history effectively lose information due to the formation of an event horizon.

  1. Spherical and planar three-dimensional anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Zanchin, Vilson T; Miranda, Alex S


    The technique of dimensional reduction was used in a recent paper (Zanchin V T, Kleber A and Lemos J P S 2002 Phys. Rev. D 66 064022) where a three-dimensional (3D) Einstein-Maxwell-dilaton theory was built from the usual four-dimensional (4D) Einstein-Maxwell-Hilbert action for general relativity. Starting from a class of 4D toroidal black holes in asymptotically anti-de Sitter (AdS) spacetimes several 3D black holes were obtained and studied in such a context. In the present work we choose a particular case of the 3D action which presents Maxwell field, dilaton field and an extra scalar field, besides gravity field and a negative cosmological constant, and obtain new 3D static black hole solutions whose horizons may have spherical or planar topology. We show that there is a 3D static spherically symmetric solution analogous to the 4D Reissner-Nordstroem-AdS black hole, and obtain other new 3D black holes with planar topology. From the static spherical solutions, new rotating 3D black holes are also obtained and analysed in some detail

  2. Quintessence Reissner Nordström Anti de Sitter Black Holes and Joule Thomson Effect (United States)

    Ghaffarnejad, H.; Yaraie, E.; Farsam, M.


    In this work we investigate corrections of the quintessence regime of the dark energy on the Joule-Thomson (JT) effect of the Reissner Nordström anti de Sitter (RNAdS) black hole. The quintessence dark energy has equation of state as p q = ω ρ q in which -1Hawking temperature on the T-P plan. We determine position of the inverse point versus different numerical values of the mass M and the charge Q of the quintessence AdS RN black hole. The cooling-heating phase transition (JT effect) is happened for M > Q in which the causal singularity is still covered by the horizon. Our calculations show sensitivity of the inverse point {T i , P i } position on the T-P plan to existence of the quintessence dark energy just for large numerical values of the AdS RN black holes charge Q. In other words the quintessence dark energy dose not affect on position of the inverse point when the AdS RN black hole takes on small charges.

  3. Covariant anomalies and Hawking radiation from charged rotating black strings in anti-de Sitter spacetimes

    International Nuclear Information System (INIS)

    Peng Junjin; Wu Shuangqing


    Motivated by the success of the recently proposed method of anomaly cancellation to derive Hawking fluxes from black hole horizons of spacetimes in various dimensions, we have further extended the covariant anomaly cancellation method shortly simplified by Banerjee and Kulkarni to explore the Hawking radiation of the (3+1)-dimensional charged rotating black strings and their higher dimensional extensions in anti-de Sitter spacetimes, whose horizons are not spherical but can be toroidal, cylindrical or planar, according to their global identifications. It should be emphasized that our analysis presented here is very general in the sense that the determinant of the reduced (1+1)-dimensional effective metric from these black strings need not be equal to one (√(-g)≠1). Our results indicate that the gauge and energy-momentum fluxes needed to cancel the (1+1)-dimensional covariant gauge and gravitational anomalies are compatible with the Hawking fluxes. Besides, thermodynamics of these black strings are studied in the case of a variable cosmological constant

  4. Dirac perturbations on Schwarzschild-anti-de Sitter spacetimes: Generic boundary conditions and new quasinormal modes (United States)

    Wang, Mengjie; Herdeiro, Carlos; Jing, Jiliang


    We study Dirac quasinormal modes of Schwarzschild-anti-de Sitter (Schwarzschild-AdS) black holes, following the generic principle for allowed boundary conditions proposed in [M. Wang, C. Herdeiro, and M. O. P. Sampaio, Phys. Rev. D 92, 124006 (2015)., 10.1103/PhysRevD.92.124006]. After deriving the equations of motion for Dirac fields on the aforementioned background, we impose vanishing energy flux boundary conditions to solve these equations. We find a set of two Robin boundary conditions are allowed. These two boundary conditions are used to calculate Dirac normal modes on empty AdS and quasinormal modes on Schwarzschild-AdS black holes. In the former case, we recover the known normal modes of empty AdS; in the latter case, the two sets of Robin boundary conditions lead to two different branches of quasinormal modes. The impact on these modes of the black hole size, the angular momentum quantum number and the overtone number are discussed. Our results show that vanishing energy flux boundary conditions are a robust principle, applicable not only to bosonic fields but also to fermionic fields.

  5. Rainbow valley of colored (anti) de Sitter gravity in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Seungho; Joung, Euihun; Mkrtchyan, Karapet; Rey, Soo-Jong [School of Physics & Astronomy and Center for Theoretical Physics, Seoul National University,Seoul 08826 (Korea, Republic of); Gauge, Gravity & Strings, Center for Theoretical Physics of the Universe,Institute for Basic Sciences,Daejeon 34047 (Korea, Republic of)


    We propose a theory of three-dimensional (anti) de Sitter gravity carrying Chan-Paton color charges. We define the theory by Chern-Simons formulation with the gauge algebra (gl{sub 2}⊕gl{sub 2})⊗u(N), obtaining a color-decorated version of interacting spin-one and spin-two fields. We also describe the theory in metric formulation and show that, among N{sup 2} massless spin-two fields, only the singlet one plays the role of metric graviton whereas the rest behave as colored spinning matter that strongly interacts at large N. Remarkably, these colored spinning matter acts as Higgs field and generates a non-trivial potential of staircase shape. At each extremum labelled by k=0,…,[((N−1)/2)], the u(N) color gauge symmetry is spontaneously broken down to u(N−k)⊕u(k) and provides different (A)dS backgrounds with the cosmological constants ((N/(N−2k))){sup 2} Λ. When this symmetry breaking takes place, the spin-two Goldstone modes combine with (or are eaten by) the spin-one gauge fields to become partially-massless spin-two fields. We discuss various aspects of this theory and highlight physical implications.

  6. Critical phenomena of regular black holes in anti-de Sitter space-time

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhong-Ying [Peking University, Center for High Energy Physics, Beijing (China)


    In General Relativity, addressing coupling to a non-linear electromagnetic field, together with a negative cosmological constant, we obtain the general static spherical symmetric black hole solution with magnetic charges, which is asymptotic to anti-de Sitter (AdS) space-times. In particular, for a degenerate case the solution becomes a Hayward-AdS black hole, which is regular everywhere in the full space-time. The existence of such a regular black hole solution preserves the weak energy condition, while the strong energy condition is violated. We then derive the first law and the Smarr formula of the black hole solution. We further discuss its thermodynamic properties and study the critical phenomena in the extended phase space where the cosmological constant is treated as a thermodynamic variable as well as the parameter associated with the non-linear electrodynamics. We obtain many interesting results such as: the Maxwell equal area law in the P-V (or S-T) diagram is violated and consequently the critical point (T{sub *},P{sub *}) of the first order small-large black hole transition does not coincide with the inflection point (T{sub c},P{sub c}) of the isotherms; the Clapeyron equation describing the coexistence curve of the Van der Waals (vdW) fluid is no longer valid; the heat capacity at constant pressure is finite at the critical point; the various exponents near the critical point are also different from those of the vdW fluid. (orig.)

  7. Spacetime Singularity Resolution by M-Theory Fivebranes: Calibrated Geometry, Anti-de Sitter Solutions and Special Holonomy Metrics (United States)

    Conamhna, Oisín A. P. Mac


    The supergravity description of various configurations of supersymmetric M-fivebranes wrapped on calibrated cycles of special holonomy manifolds is studied. The description is provided by solutions of eleven-dimensional supergravity which interpolate smoothly between a special holonomy manifold and an event horizon with Anti-de Sitter geometry. For known examples of Anti-de Sitter solutions, the associated special holonomy metric is derived. One explicit Anti-de Sitter solution of M-theory is so treated for fivebranes wrapping each of the following cycles: Kähler cycles in Calabi-Yau two, three- and four-folds; special lagrangian cycles in three- and four-folds; associative three- and co-associative four-cycles in G 2 manifolds; complex lagrangian four-cycles in Sp(2) manifolds; and Cayley four-cycles in Spin(7) manifolds. In each case, the associated special holonomy metric is singular, and is a hyperbolic analogue of a known metric. The analogous known metrics are respectively: Eguchi-Hanson, the resolved conifold and the four-fold resolved conifold; the deformed conifold, and the Stenzel four-fold metric; the Bryant-Salamon-Gibbons-Page-Pope G 2 metrics on an {mathbb{R}^4} bundle over S 3, and an {mathbb{R}^3} bundle over S 4 or {mathbb{CP}^2} ; the Calabi hyper-Kähler metric on {T^*mathbb{CP}^2} ; and the Bryant-Salamon-Gibbons-Page-Pope Spin(7) metric on an {mathbb{R}^4} bundle over S 4. By the AdS/CFT correspondence, a conformal field theory is associated to each of the new singular special holonomy metrics, and defines the quantum gravitational physics of the resolution of their singularities.

  8. The zero mass limit of Kerr and Kerr-(anti-)de-Sitter space-times: exact solutions and wormholes (United States)

    Birkandan, T.; Hortaçsu, M.


    Heun-type exact solutions emerge for both the radial and the angular equations for the case of a scalar particle coupled to the zero mass limit of both the Kerr and Kerr-(anti)de-Sitter spacetime. Since any type D metric has Heun-type solutions, it is interesting that this property is retained in the zero mass case. This work further refutes the claims that M going to zero limit of the Kerr metric is both locally and globally the same as the Minkowski metric.

  9. Correspondence between nonrelativistic anti-de Sitter space and conformal field theory, and aging-gravity duality. (United States)

    Minic, Djordje; Pleimling, Michel


    We point out that the recent discussion of nonrelativistic anti-de Sitter space and conformal field theory correspondence has a direct application in nonequilibrium statistical physics, a fact which has not been emphasized in the recent literature on the subject. In particular, we propose a duality between aging in systems far from equilibrium characterized by the dynamical exponent z=2 and gravity in a specific background. The key ingredient in our proposal is the recent geometric realization of the Schrödinger group. We also discuss the relevance of the proposed correspondence for the more general aging phenomena in systems where the value of the dynamical exponent is different from 2.

  10. A detailed analytic study of the asymptotic quasinormal modes of Schwarzschild-anti de Sitter black holes

    International Nuclear Information System (INIS)

    Daghigh, Ramin G; Green, Michael D


    We analyze analytically the asymptotic regions of the quasinormal mode frequency spectra with infinitely large overtone numbers for D-dimensional Schwarzschild black holes in anti de Sitter spacetimes. In this limit, we confirm the analytic results obtained previously in the literature using different methods. In addition, we show that in certain spacetime dimensions these techniques imply the existence of other regions of the asymptotic quasinormal mode frequency spectrum which have not previously appeared in the literature. For large black holes, some of these modes have a damping rate of 1.2T H , where T H is the Hawking temperature. This is less than the damping rate of the lowest overtone quasinormal mode calculated by other authors. It is not completely clear whether these modes actually exist or are an artifact of an unknown flaw in the analytic techniques being used. We discuss the possibility of the existence of these modes and explore some of the consequences. We also examine the possible connection between the asymptotic quasinormal modes of Schwarzschild-anti de Sitter black holes and the quantum level spacing of their horizon area spectrum.

  11. Finite upper bound for the Hawking decay time of an arbitrarily large black hole in anti-de Sitter spacetime (United States)

    Page, Don N.


    In an asymptotically flat spacetime of dimension d >3 and with the Newtonian gravitational constant G , a spherical black hole of initial horizon radius rh and mass M ˜rhd -3/G has a total decay time to Hawking emission of td˜rhd -1/G ˜G2 /(d -3 )M(d -1 )/(d -3 ) which grows without bound as the radius rh and mass M are taken to infinity. However, in asymptotically anti-de Sitter spacetime with a length scale ℓ and with absorbing boundary conditions at infinity, the total Hawking decay time does not diverge as the mass and radius go to infinity but instead remains bounded by a time of the order of ℓd-1/G .

  12. Fermion tunnels of higher-dimensional anti-de Sitter Schwarzschild black hole and its corrected entropy

    Energy Technology Data Exchange (ETDEWEB)

    Lin Kai, E-mail: [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China); Yang Shuzheng, E-mail: [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China)


    Applying the method beyond semiclassical approximation, fermion tunneling from higher-dimensional anti-de Sitter Schwarzschild black hole is researched. In our work, the 'tortoise' coordinate transformation is introduced to simplify Dirac equation, so that the equation proves that only the (r-t) sector is important to our research. Because we only need to study the (r-t) sector, the Dirac equation is decomposed into several pairs of equations spontaneously, and we then prove the components of wave functions are proportional to each other in every pair of equations. Therefore, the suitable action forms of the wave functions are obtained, and finally the correctional Hawking temperature and entropy can be determined via the method beyond semiclassical approximation.

  13. Quasilocal thermodynamics of Kerr and Kerr--anti-de Sitter spacetimes and the AdS/CFT correspondence

    International Nuclear Information System (INIS)

    Dehghani, M. H.; Mann, R. B.


    We consider the quasilocal thermodynamics of rotating black holes in asymptotically flat and asymptotically anti--de Sitter (AdS) spacetimes. Using the minimal number of intrinsic boundary counterterms inspired by the AdS/conformal field theory correspondence, we find that we are able to carry out an analysis of the thermodynamics of these black holes for virtually all possible values of the rotation parameter and cosmological constant that leave the quasilocal boundary well defined, going well beyond what is possible with background subtraction methods. Specifically, we compute the quasilocal energy E and angular momentum J for arbitrary values of the rotation, mass, and cosmological constant parameters for the (3+1)-dimensional Kerr, Kerr-AdS black holes, and (2+1)-dimensional Banados-Teitelboim-Zannelli (BTZ) black hole. We perform a quasilocal stability analysis and find phase behavior that is commensurate with previous analyses carried out at infinity

  14. Applications of gauge/gravity dualities with charged Anti-de Sitter black holes

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Viviane Theresa


    In this thesis, we deal with different applications of the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence. The AdS/CFT correspondence, which is also more generally referred to as gauge/gravity duality, is a conjectured duality in superstring theory between strongly-coupled four-dimensional N=4 superconformal Yang-Mills theory and weakly-coupled type IIB string theory in five-dimensional AdS spacetime. This duality provides a powerful method to investigate strongly-coupled low-energy systems in four dimensions by substitutionally carrying out calculations in five-dimensional weakly-coupled supergravity. In this work, we use the AdS/CFT correspondence to explore three different strongly-coupled systems, namely a brane world accommodating a strongly-coupled field theory, a strongly-coupled fluid on a three-sphere and a strongly-coupled p-wave superfluid. In all these cases, the dual supergravity descriptions involve charged AdS black holes. The first system studied here is a Randall-Sundrum brane world moving in the background of a five-dimensional non-extremal black hole of N=2 gauged supergravity. The equations of motion of the brane are found to be equal to the Friedmann-Robertson-Walker (FRW) equations for a closed universe. The closed brane universe has special thermodynamic properties. The energy of the brane field theory exhibits a subextensive Casimir contribution, and the entropy can be expressed as a Cardy-Verlinde-type formula. We show that the equations for both quantities can take forms that strongly resemble the two FRW equations. At the horizon of the black hole, these two sets of equations are shown to even merge with each other which might suggest the existence of a common underlying theory. In addition, as a by-product result, the non-extremal black hole solutions considered here are found to admit an alternative description in terms of first-order flow equations similar to those which are well-known from the attractor mechanism of

  15. Discrete Torsion, (Anti) de Sitter D{sub 4}-Brane and Tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Abhishek K.; Pandey, P.K.; Singh, Sunita; Kar, Supriya, E-mail:


    We obtain quantum geometries on a vacuum created pair of a (DD{sup ¯}){sub 3}-brane, at a Big Bang singularity, by a local two form on a D{sub 4}-brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DD{sup ¯})-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D{sub 4}-brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole.

  16. Quasinormal modes of a massless charged scalar field on a small Reissner-Nordstroem-anti-de Sitter black hole

    International Nuclear Information System (INIS)

    Uchikata, Nami; Yoshida, Shijun


    We investigate quasinormal modes of a massless charged scalar field on a small Reissner-Nordstroem-anti-de Sitter (RN-AdS) black hole both with analytical and numerical approaches. In the analytical approach, by using the small black hole approximation (r + + /L→0, where r + and L stand for the black hole event horizon radius and the AdS scale, respectively. We then show that the small RN-AdS black hole is unstable if its quasinormal modes satisfy the superradiance condition and that the instability condition of the RN-AdS black hole in the limit of r + /L→0 is given by Q>(3/eL)Q c , where Q, Q c , and e are the charge of the black hole, the critical (maximum) charge of the black hole, and the charge of the scalar field, respectively. In the numerical approach, we calculate the quasinormal modes for the small RN-AdS black holes with r + + =0.2L, 0.1L, and 0.01L become unstable against scalar perturbations with eL=4 when the charge of the black hole satisfies Q > or approx. 0.8Q c , 0.78Q c , and 0.76Q c , respectively.

  17. Superradiant instability of D-dimensional Reissner-Nordström-anti-de Sitter black hole mirror system (United States)

    Huang, Yang; Liu, Dao-Jun; Li, Xin-Zhou

    In this paper, a detailed analysis for superradiant stability of the system composed by a D-dimensional Reissner-Nordström-anti-de Sitter (RN-AdS) black hole and a reflecting mirror under charged scalar perturbations are presented in the linear regime. It is found that the stability of the system is heavily affected by the mirror radius as well as the mass of the scalar perturbation, AdS radius and the dimension of spacetime. In a higher dimensional spacetime, the degree of instability of the superradiant modes will be severely weakened. Nevertheless, the degree of instability can be magnified significantly by choosing a suitable value of the mirror radius. Remarkably, when the mirror radius is smaller than a threshold value the system becomes stable. We also find that massive charged scalar fields cannot trigger the instabilities in the background of D-dimensional asymptotically flat RN black hole. For a given scalar charge, a small RN-AdS black hole can be superradiantly unstable, while a large one may be always stable under charged scalar field with or without a reflecting mirror. We also show that these results can be easily expounded and understood with the help of factorized potential analysis.

  18. Phase structure of the Born-Infeld-anti-de Sitter black holes probed by non-local observables

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Xiong [Chongqing Jiaotong University, School of Material Science and Engineering, Chongqing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); Liu, Xian-Ming [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA (United States); Hubei University for Nationalities, Center for Theoretical Physics, School of Sciences, Enshi, Hubei (China); Li, Li-Fang [Chinese Academy of Sciences, State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Beijing (China)


    With the non-local observables such as two point correlation function and holographic entanglement entropy, we probe the phase structure of the Born-Infeld-anti-de Sitter black holes. For the case bQ > 0.5, where b is the Born-Infeld parameter and Q is the charge of the black hole, the phase structure is found to be similar to that of the Van der Waals phase transition, namely the black hole undergoes a first order phase transition and a second order phase transition before it reaches a stable phase. While for the case bQ < 0.5, a new phase branch emerges besides the Van der Waals phase transition. For the first order phase transition, the equal area law is checked, and for the second order phase transition, the critical exponent of the heat capacity is obtained. All these results are found to be the same as that observed in the entropy-temperature plane. (orig.)

  19. M-theory and stringy corrections to anti-de Sitter black holes and conformal field theories

    International Nuclear Information System (INIS)

    Caldarelli, Marco M.; Klemm, Dietmar


    We consider black holes in anti-de Sitter space AdS p+2 (p = 2, 3, 5), which have hyperbolic, flat or spherical event horizons. The O(α' 3 ) corrections (or the leading corrections in powers of the eleven-dimensional Planck length, in the case of M-theory compactifications) to the black hole metrics are computed for the various topologies and dimensions. We investigate the consequences of the stringy or M-theory corrections for the black hole thermodynamics. In particular, we show the emergence of a stable branch of small spherical black holes. Surprisingly, for any of the considered dimension and topologies, the corrected thermodynamical quantities turn out to coincide with those calculated within a simplified approach, which uses only the unperturbed metric. We obtain the corrected Hawking-Page transition temperature for black holes with spherical horizons, and show that for p = 3 this phase transition disappears at a value of α' considerably smaller than that estimated previously by Gao and Li. Using the AdS/CFT correspondence, we determine the S 1 x S 3 N = 4 SYM phase diagram for sufficiently large 't Hooft coupling, and show that the critical point at which the Hawking-Page transition disappears (the correspondence point of Horowitz-Polchinski), occurs at g 2 YM N ∼ 20.5. The d = 4 and d = 7 black hole phase diagrams are also determined, and connection is made with the corresponding boundary CFTs. Finally, for flat and hyperbolic horizons, we show that the leading stringy or M-theory corrections do not give rise to any phase transition. However, if the horizon is compactified to a torus T p or to a quotient of hyperbolic space, H p /Γ, the appearance of light winding modes around non-contractible cycles signal new phase transitions, which in the toroidal case have previously been discussed by Barbon et al. We comment on these phase transitions for SYM on H p /Γ and on T p , when the moduli of the torus are taken into account

  20. Gravitational energy, momentum and angular momentum of Schwarzschild Anti-de Sitter space-times in the teleparallel equivalent of general relativity (United States)

    Nashed, Gamal G. L.


    We give a class of spherically symmetric-Anti de Sitter (Ads), exact solution in the teleparallel equivalent of general relativity (TEGR). The solution depends on an arbitrary function {F}(R) and reproduce the metric of Schwarzschild Ads space-time. In the context of the Hamiltonian formulation of the TEGR we compute the gravitational energy of this class. The calculation is carried out by means of an expression for the energy of the gravitational field that naturally arises from the integral form of the constraint equations of the formalism. We show that the form of the energy depends on the arbitrary function. We make a constrain on this arbitrary function to give the correct form of energy.

  1. Di-jet conical correlations associated with heavy quark jets in anti-de sitter space/conformal field theory correspondence. (United States)

    Noronha, Jorge; Gyulassy, Miklos; Torrieri, Giorgio


    We show that far zone Mach and diffusion wake "holograms" produced by supersonic strings in anti-de Sitter space/conformal field theory (AdS/CFT) correspondence do not lead to observable conical angular correlations in the strict N_{c}-->infinity supergravity limit if Cooper-Frye hadronization is assumed. However, a special nonequilibrium "neck" zone near the jet is shown to produce an apparent sonic boom azimuthal angle distribution that is roughly independent of the heavy quark's velocity. Our results indicate that a measurement of the dependence of the away-side correlations on the velocity of associated identified heavy quark jets at the BNL Relativistic Heavy Ion Collider and CERN LHC will provide a direct test of the nonperturbative dynamics involved in the coupling between jets and the strongly coupled quark-gluon plasma implied by AdS/CFT correspondence.

  2. Time evolutions of scalar field perturbations in D-dimensional Reissner–Nordström Anti-de Sitter black holes

    Directory of Open Access Journals (Sweden)

    Ran Li


    Full Text Available Reissner–Nordström Anti-de Sitter (RNAdS black holes are unstable against the charged scalar field perturbations due to the well-known superradiance phenomenon. We present the time domain analysis of charged scalar field perturbations in the RNAdS black hole background in general dimensions. We show that the instabilities of charged scalar field can be explicitly illustrated from the time profiles of evolving scalar field. By using the Prony method to fit the time evolution data, we confirm the mode that dominates the long time behavior of scalar field is in accordance with the quasinormal mode from the frequency domain analysis. The superradiance origin of the instability can also be demonstrated by comparing the real part of the dominant mode with the superradiant condition of charged scalar field. It is shown that all the unstable modes are superradiant, which is consistent with the analytical result in the frequency domain analysis. Furthermore, we also confirm there exists the rapid exponential growing modes in the RNAdS case, which makes the RNAdS black hole a good test ground to investigate the nonlinear evolution of superradiant instability.

  3. Quantization of a scalar field in two Poincaré patches of anti-de Sitter space and AdS/CFT

    Directory of Open Access Journals (Sweden)

    Ippei Fujisawa


    Full Text Available Two sets of modes of a massive free scalar field are quantized in a pair of Poincaré patches of Lorentzian anti-de Sitter (AdS space, AdSd+1 (d≥2. It is shown that in Poincaré coordinates (r,t,x→, the two boundaries at r=±∞ are connected. When the scalar mass m satisfies a condition 0<ν=(d2/4+(mℓ2<1, there exist two sets of mode solutions to Klein–Gordon equation, with distinct fall-off behaviors at the boundary. By using the fact that the boundaries at r=±∞ are connected, a conserved Klein–Gordon norm can be defined for these two sets of scalar modes, and these modes are canonically quantized. Energy is also conserved. A prescription within the approximation of semi-classical gravity is presented for computing two- and three-point functions of the operators in the boundary CFT, which correspond to the two fall-off behaviours of scalar field solutions.

  4. Hamiltonian thermodynamics of d-dimensional (d≥4) Reissner-Nordstroem-anti-de Sitter black holes with spherical, planar, and hyperbolic topology

    International Nuclear Information System (INIS)

    Dias, Goncalo A. S.; Lemos, Jose P. S.


    The Hamiltonian thermodynamics formalism is applied to the general d-dimensional Reissner-Nordstroem-anti-de Sitter black hole with spherical, planar, and hyperbolic horizon topology. After writing its action and performing a Legendre transformation, surface terms are added in order to guarantee a well-defined variational principle with which to obtain sensible equations of motion, and also to allow later on the thermodynamical analysis. Then a Kuchar canonical transformation is done, which changes from the metric canonical coordinates to the physical parameters coordinates. Again, a well-defined variational principle is guaranteed through boundary terms. These terms influence the falloff conditions of the variables and at the same time the form of the new Lagrange multipliers. Reduction to the true degrees of freedom is performed, which are the conserved mass and charge of the black hole. Upon quantization a Lorentzian partition function Z is written for the grand canonical ensemble, where the temperature T and the electric potential φ are fixed at infinity. After imposing Euclidean boundary conditions on the partition function, the respective effective action I * , and thus the thermodynamical partition function, is determined for any dimension d and topology k. This is a quite general action. Several previous results can be then condensed in our single general formula for the effective action I * . Phase transitions are studied for the spherical case, and it is shown that all the other topologies have no phase transitions. A parallel with the Bose-Einstein condensation can be established. Finally, the expected values of energy, charge, and entropy are determined for the black hole solution.

  5. Anti-de Sitter gravitational collapse

    CERN Document Server

    Husain, V; Preston, B; Birukou, M


    We describe a formalism for studying spherically symmetric collapse of the massless scalar field in any spacetime dimension, and for any value of the cosmological constant LAMBDA. The formalism is used for numerical simulations of gravitational collapse in four spacetime dimensions with negative LAMBDA. We observe critical behaviour at the onset of black-hole formation, and find that the critical exponent is independent of LAMBDA. (letter to the editor)

  6. Higher Spins without (Anti-de Sitter

    Directory of Open Access Journals (Sweden)

    Stefan Prohazka


    Full Text Available Can the holographic principle be extended beyond the well-known AdS/CFT correspondence? During the last couple of years, there has been a substantial amount of research trying to find answers for this question. In this work, we provide a review of recent developments of three-dimensional theories of gravity with higher spin symmetries. We focus in particular on a proposed holographic duality involving asymptotically flat spacetimes and higher spin extended bms 3 symmetries. In addition, we also discuss developments concerning relativistic and nonrelativistic higher spin algebras. As a special case, Carroll gravity will be discussed in detail.

  7. Toward de Sitter space from ten dimensions (United States)

    Moritz, Jakob; Retolaza, Ander; Westphal, Alexander


    Using a 10D lift of nonperturbative volume stabilization in type IIB string theory, we study the limitations for obtaining de Sitter vacua. Based on this we find that the simplest Kachru, Kallosh, Linde, and Trivedi vacua with a single Kähler modulus stabilized by a gaugino condensate cannot be uplifted to de Sitter. Rather, the uplift flattens out due to stronger backreaction on the volume modulus than has previously been anticipated, resulting in vacua which are metastable and supersymmetry breaking, but that are always anti-de Sitter (AdS). However, we also show that setups such as racetrack stabilization can avoid this issue. In these models it is possible to obtain supersymmetric AdS vacua with a cosmological constant that can be tuned to zero while retaining finite moduli stabilization. In this regime, it seems that de Sitter uplifts are possible with negligible backreaction on the internal volume. We exhibit this behavior also from the 10D perspective.

  8. Two-dimensional errors

    International Nuclear Information System (INIS)



    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  9. The de Sitter relativistic top theory

    International Nuclear Information System (INIS)

    Armenta, J.; Nieto, J.A.


    We discuss the relativistic top theory from the point of view of the de Sitter (or anti-de Sitter) group. Our treatment rests on the Hanson-Regge spherical relativistic top Lagrangian formulation. We propose an alternative method for studying spinning objects via Kaluza-Klein theory. In particular, we derive the relativistic top equations of motion starting with the geodesic equation for a point particle in 4+N dimensions. We compare our approach with Fukuyama's formulation of spinning objects, which is also based on Kaluza-Klein theory. We also report a generalization of our approach to a 4+N+D dimensional theory

  10. Non-linear realization of supersymmetry in de Sitter space

    CERN Document Server

    Zumino, B


    The author derives the non-linear transformation law and the non- linear Lagrangian for a Goldstone spinor corresponding to spontaneous breaking of global supersymmetry in a de Sitter space with O(3,2) invariance (anti de Sitter space). With a suitable choice of the Goldstone spinor field the Lagrangian agrees with the form suggested by the coupling to supergravity. The construction is also valid for the case of extended supersymmetry. (21 refs).

  11. Integrable two dimensional supersystems

    International Nuclear Information System (INIS)

    Tripathy, K.C.; Tripathy, L.K.


    The integrability of two dimensional time-dependent classical systems is examined in N=2 superspace using Dirac's second class constraints. The invariants involving quadratic powers in velocities for super harmonic oscillator and super Kepler potentials have been derived. (author). 5 refs

  12. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert


    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  13. Two-dimensional ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)


    The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)

  14. Holographic central charge for 2-dimensional de Sitter space

    International Nuclear Information System (INIS)

    Medved, A.J.M.


    Recently, investigations have begun into a holographic duality for two-dimensional de Sitter space. In this paper we evaluate the associated central charge, using a modified version of the canonical Hamiltonian method that was first advocated by Catelani and co-workers. Our computation agrees with that of a prior work (Cadoni et al.), but we argue that the method used here is, perhaps, aesthetically preferable on holographic grounds. We also confirm an agreement between the Cardy and thermodynamic entropy, thus providing further support for the conjectured two-dimensional de Sitter-conformal field theory correspondence

  15. Holographic thermalization in charged dilaton anti-de Sitter spacetime

    Directory of Open Access Journals (Sweden)

    Shao-Jun Zhang


    Full Text Available We study holographic thermalization in spacetimes with a chemical potential and a non-trivial dilaton field. Three non-local observables are used to probe the whole process and investigate the effect of the ratio of the chemical potential over temperature χ and the dilaton-Maxwell coupling constant α. It is found that the saturation time is not always a monotonically increasing function of χ, the situation depends on α. When 0≤α≤1, larger χ yields longer saturation time, while for α>1, the situation becomes more complex. More interesting, we found that although α indeed has influence on the whole thermalization process, it nearly does not affect the saturation time, which indicates the universality of the saturation time for the dual one-parameter field theories.

  16. Expanding plasmas from anti de Sitter black holes

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Giancarlo [Instituto de Fisica, Universidade de Sao Paulo, Departamento de Fisica Matematica, Sao Paulo (Brazil)


    We introduce a new foliation of AdS{sub 5} black holes such that the conformal boundary takes the form of a 4-dimensional FLRW spacetime with scale factor a(t). The foliation employs Eddington-Finkelstein-like coordinates and is applicable to a large class of AdS black holes, supported by matter fields or not, considerably extending previous efforts in the literature. We argue that the holographic dual picture of a CFT plasma on a FLRW background provides an interesting prototype to study the nonequilibrium dynamics of expanding plasmas and use holographic renormalization to extract the renormalized energy-momentum tensor of the dual plasma. We illustrate the procedure for three black holes of interest, namely AdS-Schwarzschild, AdS-Gauss-Bonnet, and AdS-Reissner-Nordstroem. For the latter, as a by-product, we show that the nonequilibrium dynamics of a CFT plasma subject to a quench in the chemical potential (i.e., a time-dependent chemical potential) resembles a cosmological evolution with the scale factor a(t) being inversely related to the quench profile μ(t). (orig.)

  17. Configurational entropy of anti-de Sitter black holes (United States)

    Braga, Nelson R. F.; da Rocha, Roldão


    Recent studies indicate that the configurational entropy is an useful tool to investigate the stability and (or) the relative dominance of states for diverse physical systems. Recent examples comprise the connection between the variation of this quantity and the relative fraction of light mesons and glueballs observed in hadronic processes. Here we develop a technique for defining a configurational entropy for an AdS-Schwarzschild black hole. The achieved result corroborates consistency with the Hawking-Page phase transition. Namely, the dominance of the black hole configurational entropy will be shown to increase with the temperature. In order to verify the consistency of the new procedure developed here, we also consider the case of black holes in flat space-time. For such a black hole, it is known that evaporation leads to instability. The configurational entropy obtained for the flat space case is thoroughly consistent with the physical expectation. In fact, we show that the smaller the black holes, the more unstable they are. So, the configurational entropy furnishes a reliable measure for stability of black holes.

  18. Configurational entropy of anti-de Sitter black holes

    Directory of Open Access Journals (Sweden)

    Nelson R.F. Braga


    Full Text Available Recent studies indicate that the configurational entropy is an useful tool to investigate the stability and (or the relative dominance of states for diverse physical systems. Recent examples comprise the connection between the variation of this quantity and the relative fraction of light mesons and glueballs observed in hadronic processes. Here we develop a technique for defining a configurational entropy for an AdS-Schwarzschild black hole. The achieved result corroborates consistency with the Hawking–Page phase transition. Namely, the dominance of the black hole configurational entropy will be shown to increase with the temperature. In order to verify the consistency of the new procedure developed here, we also consider the case of black holes in flat space-time. For such a black hole, it is known that evaporation leads to instability. The configurational entropy obtained for the flat space case is thoroughly consistent with the physical expectation. In fact, we show that the smaller the black holes, the more unstable they are. So, the configurational entropy furnishes a reliable measure for stability of black holes.

  19. Configurational entropy of anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Braga, Nelson R.F.; Rocha, Roldão da


    Recent studies indicate that the configurational entropy is an useful tool to investigate the stability and (or) the relative dominance of states for diverse physical systems. Recent examples comprise the connection between the variation of this quantity and the relative fraction of light mesons and glueballs observed in hadronic processes. Here we develop a technique for defining a configurational entropy for an AdS-Schwarzschild black hole. The achieved result corroborates consistency with the Hawking–Page phase transition. Namely, the dominance of the black hole configurational entropy will be shown to increase with the temperature. In order to verify the consistency of the new procedure developed here, we also consider the case of black holes in flat space-time. For such a black hole, it is known that evaporation leads to instability. The configurational entropy obtained for the flat space case is thoroughly consistent with the physical expectation. In fact, we show that the smaller the black holes, the more unstable they are. So, the configurational entropy furnishes a reliable measure for stability of black holes.

  20. BRST quantization in anti-de Sitter space

    CERN Document Server

    Kallosh, Renata E


    We discuss the status of the superstring theory on ad S/sub 5/*S/sup 5/ space and difficulties with its quantization due to the nonlinear realization of the SU(2,2 4) superconformal symmetry. We propose a toy model in two dimensions where this symmetry is realized linearly and supertwistors are used as `quarks' of this supergroup. A possible relation between the string theory and the toy model is studied in the case of a massive particle propagating in AdS/sub 5/ space: a generalized twistor construction is shown to lead to a quadratic action and simple BRST quantization. We hope that these results will help to also eventually quantize the string on ad S/sub 5/*S/sup 5/. (10 refs).

  1. Configurational entropy of anti-de Sitter black holes

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Nelson R.F., E-mail: [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil); Rocha, Roldão da, E-mail: [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC – UFABC, 09210-580, Santo André (Brazil)


    Recent studies indicate that the configurational entropy is an useful tool to investigate the stability and (or) the relative dominance of states for diverse physical systems. Recent examples comprise the connection between the variation of this quantity and the relative fraction of light mesons and glueballs observed in hadronic processes. Here we develop a technique for defining a configurational entropy for an AdS-Schwarzschild black hole. The achieved result corroborates consistency with the Hawking–Page phase transition. Namely, the dominance of the black hole configurational entropy will be shown to increase with the temperature. In order to verify the consistency of the new procedure developed here, we also consider the case of black holes in flat space-time. For such a black hole, it is known that evaporation leads to instability. The configurational entropy obtained for the flat space case is thoroughly consistent with the physical expectation. In fact, we show that the smaller the black holes, the more unstable they are. So, the configurational entropy furnishes a reliable measure for stability of black holes.

  2. Two-dimensional Kaehler Einstein spaces and gravitational instantons

    International Nuclear Information System (INIS)

    Tseytlin, A.A.


    A new class of solutions of the euclidean Einstein equations with Λ-term ( A-class ) is found by solving the complex two-dimensional Kaehler Einstein equations with the following realization of complex metrics. The A-Class includes two gravitational instantons already known: the CP 2 and the Eguchi-Hanson metric, and allows a U(1)-generalized spin structure. It is shown that all Einstein euclidean two-axial Bianchi type IX metrics are exhausted by the Taub-NUT-de Sitter family and the A-class. (orig.)

  3. Quasi-two-dimensional holography

    International Nuclear Information System (INIS)

    Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.


    The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de

  4. de Sitter special relativity

    International Nuclear Information System (INIS)

    Aldrovandi, R; Almeida, J P Beltran; Pereira, J G


    A special relativity based on the de Sitter group is introduced, which is a theory that might hold up in the presence of a non-vanishing cosmological constant. Like ordinary special relativity, it retains the quotient character of spacetime, and a notion of homogeneity. As a consequence, the underlying spacetime will be a de Sitter spacetime, whose associated kinematics will differ from that of ordinary special relativity. The corresponding modified notions of energy and momentum are obtained, and the exact relationship between them, which is invariant under a re-scaling of the involved quantities, explicitly exhibited. Since the de Sitter group can be considered a particular deformation of the Poincare group, this theory turns out to be a specific kind of deformed (or doubly) special relativity. Some experimental consequences, as well as the causal structure of spacetime-modified by the presence of the de Sitter horizon-are briefly discussed

  5. Two dimensional plasma simulation code

    International Nuclear Information System (INIS)

    Hazak, G.; Boneh, Y.; Goshen, Sh.; Oreg, J.


    An electrostatic two-dimensional particle code for plasma simulation is described. Boundary conditions which take into account the finiteness of the system are presented. An analytic solution for the case of crossed fields plasma acceleration is derived. This solution serves as a check on a computer test run

  6. De Sitter projective relativity

    CERN Document Server

    Licata, Ignazio; Benedetto, Elmo


    This book presents the Projective approach to de Sitter Relativity. It traces the development of renewed interest in models of the universe at constant positive curvature such as "vacuum" geometry. The De Sitter Theory of Relativity, formulated in 1917 with Willem De Sitter's solution of the Einstein equations, was used in different fields during the 1950s and 1960s, in the work of H. Bacry, J.M. LevyLeblond and F.Gursey, to name some important contributors. From the 1960s to 1980s, L. Fantappié and G. Arcidiacono provided an elegant group approach to the De Sitter universe putting the basis for special and general projective relativity. Today such suggestions flow into a unitary scenario, and this way the De Sitter Relativity is no more a "missing opportunity" (F. Dyson, 1972), but has a central role in theoretical physics. In this volume a systematic presentation is given of the De Sitter Projective relativity, with the recent developments in projective general relativity and quantum cosmology.

  7. Two dimensional image correlation processor (United States)

    Yao, Shi-Kai


    Two dimensional images are converted into a very long 1-dimensional data stream by means of raster scan. It is shown that the 1-dimensional correlation function of such long data streams is equivalent to the raster scan converted data of 2-dimensional correlation function of images. Real time correlation of high resolution two-dimensional images has been demonstrated using commercially available components. The advantages of this approach includes programmable electronics reference images, easy interface to objects of interest using conventional image collection optics, real time operation with high resolution images using off-the shelf components, and usefulness in the form of either black and white or full colored images. Such system would be versatile enough for robotics vision, optical inspection, and other pattern recognition and identification applications.

  8. Two-dimensional topological photonics (United States)

    Khanikaev, Alexander B.; Shvets, Gennady


    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  9. Two-dimensional critical phenomena

    International Nuclear Information System (INIS)

    Saleur, H.


    Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr

  10. de Sitter space as a tensor network: Cosmic no-hair, complementarity, and complexity (United States)

    Bao, Ning; Cao, ChunJun; Carroll, Sean M.; Chatwin-Davies, Aidan


    We investigate the proposed connection between de Sitter spacetime and the multiscale entanglement renormalization ansatz (MERA) tensor network, and ask what can be learned via such a construction. We show that the quantum state obeys a cosmic no-hair theorem: the reduced density operator describing a causal patch of the MERA asymptotes to a fixed point of a quantum channel, just as spacetimes with a positive cosmological constant asymptote to de Sitter space. The MERA is potentially compatible with a weak form of complementarity (local physics only describes single patches at a time, but the overall Hilbert space is infinite dimensional) or, with certain specific modifications to the tensor structure, a strong form (the entire theory describes only a single patch plus its horizon, in a finite-dimensional Hilbert space). We also suggest that de Sitter evolution has an interpretation in terms of circuit complexity, as has been conjectured for anti-de Sitter space.

  11. Two-dimensional capillary origami

    International Nuclear Information System (INIS)

    Brubaker, N.D.; Lega, J.


    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  12. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail:; Lega, J., E-mail:


    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  13. Two-dimensional Quantum Gravity (United States)

    Rolf, Juri


    This Ph.D. thesis pursues two goals: The study of the geometrical structure of two-dimensional quantum gravity and in particular its fractal nature. To address these questions we review the continuum formalism of quantum gravity with special focus on the scaling properties of the theory. We discuss several concepts of fractal dimensions which characterize the extrinsic and intrinsic geometry of quantum gravity. This work is partly based on work done in collaboration with Jan Ambjørn, Dimitrij Boulatov, Jakob L. Nielsen and Yoshiyuki Watabiki (1997). The other goal is the discussion of the discretization of quantum gravity and to address the so called quantum failure of Regge calculus. We review dynamical triangulations and show that it agrees with the continuum theory in two dimensions. Then we discuss Regge calculus and prove that a continuum limit cannot be taken in a sensible way and that it does not reproduce continuum results. This work is partly based on work done in collaboration with Jan Ambjørn, Jakob L. Nielsen and George Savvidy (1997).

  14. Simple de Sitter solutions

    International Nuclear Information System (INIS)

    Silverstein, Eva


    We present a framework for de Sitter model building in type IIA string theory, illustrated with specific examples. We find metastable de Sitter (dS) minima of the potential for moduli obtained from a compactification on a product of two nil three-manifolds (which have negative scalar curvature) combined with orientifolds, branes, fractional Chern-Simons forms, and fluxes. As a discrete quantum number is taken large, the curvature, field strengths, inverse volume, and four-dimensional string coupling become parametrically small, and the de Sitter Hubble scale can be tuned parametrically smaller than the scales of the moduli, Kaluza Klein (KK), and winding mode masses. A subtle point in the construction is that although the curvature remains consistently weak, the circle fibers of the nilmanifolds become very small in this limit (though this is avoided in illustrative solutions at modest values of the parameters). In the simplest version of the construction, the heaviest moduli masses are parametrically of the same order as the lightest KK and winding masses. However, we provide a method for separating these marginally overlapping scales, and more generally the underlying supersymmetry of the model protects against large corrections to the low-energy moduli potential

  15. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole


    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  16. Graviatoms with de Sitter Interior

    Directory of Open Access Journals (Sweden)

    Irina Dymnikova


    Full Text Available We present a graviatom with de Sitter interior as a new candidate to atomic dark matter generically related to a vacuum dark energy through its de Sitter vacuum interior. It is a gravitationally bound quantum system consisting of a nucleus represented by a regular primordial black hole (RPBH, its remnant or gravitational vacuum soliton G-lump, and a charged particle. We estimate probability of formation of RPBHs and G-lumps in the early Universe and evaluate energy spectrum and electromagnetic radiation of graviatom which can in principle bear information about a fundamental symmetry scale responsible for de Sitter interior and serve as its observational signatures.

  17. Ringing in de Sitter spacetime

    Directory of Open Access Journals (Sweden)

    Alex Buchel


    Full Text Available Hydrodynamics is a universal effective theory describing relaxation of quantum field theories towards equilibrium. Massive QFTs in de Sitter spacetime are never at equilibrium. We use holographic gauge theory/gravity correspondence to describe relaxation of a QFT to its Bunch–Davies vacuum — an attractor of its late-time dynamics. Specifically, we compute the analogue of the quasinormal modes describing the relaxation of a holographic toy model QFT in de Sitter.

  18. Development of Two-Dimensional NMR

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...

  19. Conoscopic holography: two-dimensional numerical reconstructions. (United States)

    Mugnier, L M; Sirat, G Y; Charlot, D


    Conoscopic holography is an incoherent light holographic technique based on the properties of crystal optics. We present experimental results of the numerical reconstruction of a two-dimensional object from its conoscopic hologram.

  20. CFT description of three-dimensional Kerr-de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Fjelstad, Jens E-mail:; Hwang, Stephen E-mail:; Maansson, Teresia E-mail:


    We describe three-dimensional Kerr-de Sitter space using similar methods as recently applied to the BTZ black hole. A rigorous form of the classical connection between gravity in three dimensions and two-dimensional conformal field theory is employed, where the fundamental degrees of freedom are described in terms of two dependent SL(2,C) currents. In contrast to the BTZ case, however, quantization does not give the Bekenstein-Hawking entropy connected to the cosmological horizon of Kerr-de Sitter space.

  1. CFT description of three-dimensional Kerr-de Sitter spacetime

    International Nuclear Information System (INIS)

    Fjelstad, Jens; Hwang, Stephen; Maansson, Teresia


    We describe three-dimensional Kerr-de Sitter space using similar methods as recently applied to the BTZ black hole. A rigorous form of the classical connection between gravity in three dimensions and two-dimensional conformal field theory is employed, where the fundamental degrees of freedom are described in terms of two dependent SL(2,C) currents. In contrast to the BTZ case, however, quantization does not give the Bekenstein-Hawking entropy connected to the cosmological horizon of Kerr-de Sitter space


    International Nuclear Information System (INIS)

    Wang, Yougang; Xu, Yidong; Chen, Xuelei; Park, Changbom; Kim, Juhan


    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array

  3. Dirac cones in two-dimensional borane (United States)

    Martinez-Canales, Miguel; Galeev, Timur R.; Boldyrev, Alexander I.; Pickard, Chris J.


    We introduce two-dimensional borane, a single-layered material of BH stoichiometry, with promising electronic properties. We show that, according to density functional theory calculations, two-dimensional borane is semimetallic, with two symmetry-related Dirac cones meeting right at the Fermi energy Ef. The curvature of the cones is lower than in graphene, thus closer to the ideal linear dispersion. Its structure, formed by a puckered trigonal boron network with hydrogen atoms connected to each boron atom, can be understood as distorted, hydrogenated borophene [Mannix et al., Science 350, 1513 (2015), 10.1126/science.aad1080]. Chemical bonding analysis reveals the boron layer in the network being bound by delocalized four-center two-electron σ bonds. Finally, we suggest high pressure could be a feasible route to synthesize two-dimensional borane.

  4. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B


    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  5. Dipolar vortices in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Hesthaven, J.S.; Lynov, Jens-Peter


    The dynamics of dipolar vortex solutions to the two-dimensional Euler equations is studied. A new type of nonlinear dipole is found and its dynamics in a slightly viscous system is compared with the dynamics of the Lamb dipole. The evolution of dipolar structures from an initial turbulent patch...

  6. Analytical simulation of two dimensional advection dispersion ...

    African Journals Online (AJOL)

    The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...

  7. Analytical Simulation of Two Dimensional Advection Dispersion ...

    African Journals Online (AJOL)


    ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...

  8. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons.

  9. Stability of two-dimensional vorticity filaments

    International Nuclear Information System (INIS)

    Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.


    We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability

  10. Two-dimensional membranes in motion

    NARCIS (Netherlands)

    Davidovikj, D.


    This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research

  11. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao


    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Sums of two-dimensional spectral triples

    DEFF Research Database (Denmark)

    Christensen, Erik; Ivan, Cristina


    We study countable sums of two dimensional modules for the continuous complex functions on a compact metric space and show that it is possible to construct a spectral triple which gives the original metric back. This spectral triple will be finitely summable for any positive parameter. We also co...

  13. A novel two dimensional particle velocity sensor

    NARCIS (Netherlands)

    Pjetri, O.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.


    In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to

  14. Two-dimensional microstrip detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)


    Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.

  15. Two-dimensional sensitivity calculation code: SENSETWO

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.


    A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)

  16. Two-dimensional ranking of Wikipedia articles (United States)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.


    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  17. Two-dimensional confinement of heavy fermions

    International Nuclear Information System (INIS)

    Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito


    Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)

  18. Toward two-dimensional search engines

    International Nuclear Information System (INIS)

    Ermann, L; Shepelyansky, D L; Chepelianskii, A D


    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)

  19. Plasmonics with two-dimensional conductors (United States)

    Yoon, Hosang; Yeung, Kitty Y. M.; Kim, Philip; Ham, Donhee


    A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics. PMID:24567472

  20. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou


    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  1. Superintegrability on the two dimensional hyperboloid

    International Nuclear Information System (INIS)

    Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr


    This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out

  2. Gyroscope with two-dimensional optomechanical mirror (United States)

    Davuluri, Sankar; Li, Kai; Li, Yong


    We propose an application of two-dimensional optomechanical oscillator as a gyroscope by detecting the Coriolis force which is modulated at the natural frequency of the optomechanical oscillator. Dependence of gyroscope's sensitivity on shot noise, back-action noise, thermal noise, and input laser power is studied. At optimal input laser power, the gyroscope's sensitivity can be improved by increasing the mass or by decreasing the temperature and decay rate of the mechanical oscillator. When the mechanical oscillator's thermal occupation number, n th, is zero, sensitivity improves with decrease in frequency of the mechanical oscillator. For {n}{{th}}\\gg 1, the sensitivity is independent of the mechanical oscillator's frequency.

  3. Versatile two-dimensional transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Canulescu, Stela; Affannoukoué, Kévin; Döbeli, Max

    Two-dimensional transition metal dichalcogenides (2D-TMDCs), such as MoS2, have emerged as a new class of semiconducting materials with distinct optical and electrical properties. The availability of 2D-TMDCs with distinct band gaps allows for unlimited combinations of TMDC monolayers (MLs...... vacancies. We have found that the absorption spectra of the MoS2 films exhibit distinct excitonic peaks at ~1.8 and ~2 eV when grown in the presence of a sulfur evaporation beam as compared to those deposited in vacuum. The structure of the PLD-grown MoS2 films will be further discussed based Raman...

  4. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko


    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  5. Thermodynamics of Born-Infeld-anti-de Sitter black holes in the grand canonical ensemble

    International Nuclear Information System (INIS)

    Fernando, Sharmanthie


    The main objective of this paper is to study thermodynamics and stability of static electrically charged Born-Infeld black holes in AdS space in D=4. The Euclidean action for the grand canonical ensemble is computed with the appropriate boundary terms. The thermodynamical quantities such as the Gibbs free energy, entropy and specific heat of the black holes are derived from it. The global stability of black holes are studied in detail by studying the free energy for various potentials. For small values of the potential, we find that there is a Hawking-Page phase transition between a BIAdS black hole and the thermal-AdS space. For large potentials, the black hole phase is dominant and is preferred over the thermal-AdS space. Local stability is studied by computing the specific heat for constant potentials. The nonextreme black holes have two branches: small black holes are unstable and the large black holes are stable. The extreme black holes are shown to be stable both globally as well as locally. In addition to the thermodynamics, we also show that the phase structure relating the mass M and the charge Q of the black holes is similar to the liquid-gas-solid phase diagram

  6. One-loop effective action and Schwinger effect in (anti-) de Sitter space (United States)

    Cai, Rong-Gen; Kim, Sang Pyo


    We study the Schwinger mechanism by a uniform electric field in dS2 and AdS2 and the curvature effect on the Schwinger effect, and further propose a thermal interpretation of the Schwinger formula in terms of the Gibbons-Hawking temperature and the Unruh temperature for an accelerating charge in dS2 and an analogous expression in AdS2. The exact one-loop effective action is found in the proper-time integral in each space, which is determined by the effective mass, the Maxwell scalar, and the scalar curvature, and whose pole structure gives the imaginary part of the effective action and the exact pair-production rate. The exact pair-production rate is also given the thermal interpretation.

  7. The large dimension limit of a small black hole instability in anti-de Sitter space (United States)

    Herzog, Christopher P.; Kim, Youngshin


    We study the dynamics of a black hole in an asymptotically AdS d × S d space-time in the limit of a large number of dimensions, d → ∞. Such a black hole is known to become dynamically unstable below a critical radius. We derive the dispersion relation for the quasinormal mode that governs this instability in an expansion in 1 /d. We also provide a full nonlinear analysis of the instability at leading order in 1 /d. We find solutions that resemble the lumpy black spots and black belts previously constructed numerically for small d, breaking the SO( d + 1) rotational symmetry of the sphere down to SO( d). We are also able to follow the time evolution of the instability. Due possibly to limitations in our analysis, our time dependent simulations do not settle down to stationary solutions. This work has relevance for strongly interacting gauge theories; through the AdS/CFT correspondence, the special case d = 5 corresponds to maximally supersymmetric Yang-Mills theory on a spatial S 3 in the microcanonical ensemble and in a strong coupling and large number of colors limit.

  8. Gyromagnetic ratio of charged Kerr-anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Aliev, Alikram N


    We examine the gyromagnetic ratios of rotating and charged AdS black holes in four and higher spacetime dimensions. We compute the gyromagnetic ratio for Kerr-AdS black holes with an arbitrary electric charge in four dimensions and show that it corresponds to g = 2 irrespective of the AdS nature of the spacetime. We also compute the gyromagnetic ratio for Kerr-AdS black holes with a single angular momentum and with a test electric charge in all higher dimensions. The gyromagnetic ratio crucially depends on the dimensionless ratio of the rotation parameter to the curvature radius of the AdS background. At the critical limit, when the boundary Einstein universe is rotating at the speed of light, it exhibits a striking feature leading to g 2 regardless of the spacetime dimension. Next, we extend our consideration to include the exact metric for five-dimensional rotating charged black holes in minimal gauged supergravity. We show that the value of the gyromagnetic ratio found in the 'test-charge' approach remains unchanged for these black holes

  9. On a Canonical Quantization of 3D Anti de Sitter Pure Gravity

    CERN Document Server

    Kim, Jihun


    We perform a canonical quantization of pure gravity on AdS3 using as a technical tool its equivalence at the classical level with a Chern-Simons theory with gauge group SL(2,R)xSL(2,R). We first quantize the theory canonically on an asymptotically AdS space --which is topologically the real line times a Riemann surface with one connected boundary. Using the "constrain first" approach we reduce canonical quantization to quantization of orbits of the Virasoro group and Kaehler quantization of Teichmuller space. After explicitly computing the Kaehler form for the torus with one boundary component and after extending that result to higher genus, we recover known results, such as that wave functions of SL(2,R) Chern-Simons theory are conformal blocks. We find new restrictions on the Hilbert space of pure gravity by imposing invariance under large diffeomorphisms and normalizability of the wave function. The Hilbert space of pure gravity is shown to be the target space of Conformal Field Theories with continuous sp...

  10. On a canonical quantization of 3D Anti de Sitter pure gravity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihun [Center for Cosmology and Particle Physics, Department of Physics,New York University, 4 Washington Place, New York, NY 10003 (United States); Porrati, Massimo [Center for Cosmology and Particle Physics, Department of Physics,New York University, 4 Washington Place, New York, NY 10003 (United States); CERN PH-TH, CH 1211,Geneva 23 (Switzerland)


    We perform a canonical quantization of pure gravity on AdS{sub 3} using as a technical tool its equivalence at the classical level with a Chern-Simons theory with gauge group SL(2,ℝ)×SL(2,ℝ). We first quantize the theory canonically on an asymptotically AdS space –which is topologically the real line times a Riemann surface with one connected boundary. Using the “constrain first” approach we reduce canonical quantization to quantization of orbits of the Virasoro group and Kähler quantization of Teichmüller space. After explicitly computing the Kähler form for the torus with one boundary component and after extending that result to higher genus, we recover known results, such as that wave functions of SL(2,ℝ) Chern-Simons theory are conformal blocks. We find new restrictions on the Hilbert space of pure gravity by imposing invariance under large diffeomorphisms and normalizability of the wave function. The Hilbert space of pure gravity is shown to be the target space of Conformal Field Theories with continuous spectrum and a lower bound on operator dimensions. A projection defined by topology changing amplitudes in Euclidean gravity is proposed. It defines an invariant subspace that allows for a dual interpretation in terms of a Liouville CFT. Problems and features of the CFT dual are assessed and a new definition of the Hilbert space, exempt from those problems, is proposed in the case of highly-curved AdS{sub 3}.

  11. On a canonical quantization of 3D Anti de Sitter pure gravity (United States)

    Kim, Jihun; Porrati, Massimo


    We perform a canonical quantization of pure gravity on AdS 3 using as a technical tool its equivalence at the classical level with a Chern-Simons theory with gauge group SL(2,{R})× SL(2,{R}) . We first quantize the theory canonically on an asymptotically AdS space -which is topologically the real line times a Riemann surface with one connected boundary. Using the "constrain first" approach we reduce canonical quantization to quantization of orbits of the Virasoro group and Kähler quantization of Teichmüller space. After explicitly computing the Kähler form for the torus with one boundary component and after extending that result to higher genus, we recover known results, such as that wave functions of SL(2,{R}) Chern-Simons theory are conformal blocks. We find new restrictions on the Hilbert space of pure gravity by imposing invariance under large diffeomorphisms and normalizability of the wave function. The Hilbert space of pure gravity is shown to be the target space of Conformal Field Theories with continuous spectrum and a lower bound on operator dimensions. A projection defined by topology changing amplitudes in Euclidean gravity is proposed. It defines an invariant subspace that allows for a dual interpretation in terms of a Liouville CFT. Problems and features of the CFT dual are assessed and a new definition of the Hilbert space, exempt from those problems, is proposed in the case of highly-curved AdS 3.

  12. Characterizing asymptotically anti-de Sitter black holes with abundant stable gauge field hair

    International Nuclear Information System (INIS)

    Shepherd, Ben L; Winstanley, Elizabeth


    In the light of the 'no-hair' conjecture, we revisit stable black holes in su(N) Einstein-Yang-Mills theory with a negative cosmological constant Λ. These black holes are endowed with copious amounts of gauge field hair, and we address the question of whether these black holes can be uniquely characterized by their mass and a set of global non-Abelian charges defined far from the black hole. For the su(3) case, we present numerical evidence that stable black hole configurations are fixed by their mass and two non-Abelian charges. For general N, we argue that the mass and N - 1 non-Abelian charges are sufficient to characterize large stable black holes, in keeping with the spirit of the 'no-hair' conjecture, at least in the limit of very large |Λ| and for a subspace containing stable black holes (and possibly some unstable ones as well). (paper)

  13. The rest mass of an asymptotically Anti-de Sitter spacetime


    Chen, Po-Ning; Hung, Pei-Ken; Wang, Mu-Tao; Yau, Shing-Tung


    We study the space of Killing fields on the four dimensional AdS spacetime $AdS^{3,1}$. Two subsets $\\mathcal{S}$ and $\\mathcal{O}$ are identified: $\\mathcal{S}$ (the spinor Killing fields) is constructed from imaginary Killing spinors, and $\\mathcal{O}$ (the observer Killing fields) consists of all hypersurface orthogonal, future timelike unit Killing fields. When the cosmology constant vanishes, or in the Minkowski spacetime case, these two subsets have the same convex hull in the space of ...

  14. Asymptotically spacelike warped anti-de Sitter spacetimes in generalized minimal massive gravity (United States)

    Setare, M. R.; Adami, H.


    In this paper we show that warped AdS3 black hole spacetime is a solution of the generalized minimal massive gravity (GMMG) and introduce suitable boundary conditions for asymptotically warped AdS3 spacetimes. Then we find the Killing vector fields such that transformations generated by them preserve the considered boundary conditions. We calculate the conserved charges which correspond to the obtained Killing vector fields and show that the algebra of the asymptotic conserved charges is given as the semi direct product of the Virasoro algebra with U(1) current algebra. We use a particular Sugawara construction to reconstruct the conformal algebra. Thus, we are allowed to use the Cardy formula to calculate the entropy of the warped black hole. We demonstrate that the gravitational entropy of the warped black hole exactly coincides with what we obtain via Cardy’s formula. As we expect, the warped Cardy formula also gives us exactly the same result as we obtain from the usual Cardy’s formula. We calculate mass and angular momentum of the warped black hole and then check that obtained mass, angular momentum and entropy to satisfy the first law of the black hole mechanics. According to the results of this paper we believe that the dual theory of the warped AdS3 black hole solution of GMMG is a warped CFT.

  15. Perturbative quantization of superstring theory in Anti de-Sitter spaces

    Energy Technology Data Exchange (ETDEWEB)

    Sundin, Per


    In this thesis we study superstring theory on AdS{sub 5} x S{sup 5}, AdS{sub 3} x S{sup 3} and AdS{sub 4} x CP{sub 3}. A shared feature of each theory is that their corresponding symmetry algebras allows for a decomposition under a Z{sub 4} grading. The grading can be realized through an automorphism which allows for a convenient construction of the string Lagrangians directly in terms of graded components. We adopt a uniform light-cone gauge and expand in a near plane wave limit, or equivalently, an expansion in transverse string coordinates. With a main focus on the two critical string theories, we perform a perturbative quantization up to quartic order in the number of fields. Each string theory is, through holographic descriptions, conjectured to be dual to lower dimensional gauge theories. The conjectures imply that the conformal dimensions of single trace operators in gauge theory should be equal to the energy of string states. What is more, through the use of integrable methods, one can write down a set of Bethe equations whose solutions encode the full spectral problem. One main theme of this thesis is to match the predictions of these equations, written in a language suitable for the light-cone gauge we employ, against explicit string theory calculations. We do this for a large class of string states and the perfect agreement we find lends strong support for the validity of the conjectures. (orig.)

  16. Asymptotically spacelike warped anti-de Sitter spacetimes in generalized minimal massive gravity

    International Nuclear Information System (INIS)

    Setare, M R; Adami, H


    In this paper we show that warped AdS 3 black hole spacetime is a solution of the generalized minimal massive gravity (GMMG) and introduce suitable boundary conditions for asymptotically warped AdS 3 spacetimes. Then we find the Killing vector fields such that transformations generated by them preserve the considered boundary conditions. We calculate the conserved charges which correspond to the obtained Killing vector fields and show that the algebra of the asymptotic conserved charges is given as the semi direct product of the Virasoro algebra with U (1) current algebra. We use a particular Sugawara construction to reconstruct the conformal algebra. Thus, we are allowed to use the Cardy formula to calculate the entropy of the warped black hole. We demonstrate that the gravitational entropy of the warped black hole exactly coincides with what we obtain via Cardy’s formula. As we expect, the warped Cardy formula also gives us exactly the same result as we obtain from the usual Cardy’s formula. We calculate mass and angular momentum of the warped black hole and then check that obtained mass, angular momentum and entropy to satisfy the first law of the black hole mechanics. According to the results of this paper we believe that the dual theory of the warped AdS 3 black hole solution of GMMG is a warped CFT. (paper)

  17. The gravitational exclusion principle and null states in anti-de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Alejandra; Maloney, Alexander [Department of Physics, McGill University, Montreal, QC (Canada); Hartman, Thomas [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ (United States)


    The holographic principle implies a vast reduction in the number of degrees of freedom of quantum gravity. This idea can be made precise in AdS{sub 3}, where the the stringy or gravitational exclusion principle asserts that certain perturbative excitations are not present in the exact quantum spectrum. We show that this effect is visible directly in the bulk gravity theory: the norm of the offending linearized state is zero or negative. When the norm is negative, the theory is signalling its own breakdown as an effective field theory; this provides a perturbative bulk explanation for the stringy exclusion principle. When the norm vanishes the bulk state is null rather than physical. This implies that certain non-trivial diffeomorphisms must be regarded as gauge symmetries rather than spectrum-generating elements of the asymptotic symmetry group. This leads to subtle effects in the computation of one-loop determinants for Einstein gravity, higher spin theories and topologically massive gravity in AdS{sub 3}. In particular, heat kernel methods do not capture the correct spectrum of a theory with null states. Communicated by S Ross

  18. Parallel comprehensive two-dimensional gas chromatography. (United States)

    Yan, DanDan; Tedone, Laura; Koutoulis, Anthony; Whittock, Simon P; Shellie, Robert A


    We introduce an information rich analytical approach called parallel comprehensive two-dimensional gas chromatography (2GC×2GC). This parallel chromatography approach splits injected samples into two independent two-dimensional column ensembles and provides two GC×GC separations by using contra-directional thermal modulation. The first-dimension ( 1 D) and second-dimension ( 2 D) columns are connected using planar three-port microchannel devices, which are supplied with supplementary flow via two pressure controller modules. Precise carrier gas flow control at the junction of the 1 D and 2 D columns permits independent control of flow conditions in each separation column. The 2GC×2GC approach provides two entirely independent GC×GC separations for each injection. Analysis of hop (Humulus lupulus L.) essential oils is used to demonstrate the capability of the approach. The analytical performance of each GC×GC separation in the 2GC×2GC experiment is comparable to individual GC×GC separation with matching column configurations. The peak capacity of 2GC×2GC is about 2 times than that of single GC×GC system. The dual 2D chromatograms produced by this single detector system provide complementary separations and additional identification information by harnessing different selectivity provided by the four separation columns. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Flow transitions in two-dimensional foams. (United States)

    Gilbreth, Christopher; Sullivan, Scott; Dennin, Michael


    For sufficiently slow rates of strain, flowing foam can exhibit inhomogeneous flows. The nature of these flows is an area of active study in both two-dimensional model foams and three dimensional foam. Recent work in three-dimensional foam has identified three distinct regimes of flow [S. Rodts, J. C. Baudez, and P. Coussot, Europhys. Lett. 69, 636 (2005)]. Two of these regimes are identified with continuum behavior (full flow and shear banding), and the third regime is identified as a discrete regime exhibiting extreme localization. In this paper, the discrete regime is studied in more detail using a model two-dimensional foam: a bubble raft. We characterize the behavior of the bubble raft subjected to a constant rate of strain as a function of time, system size, and applied rate of strain. We observe localized flow that is consistent with the coexistence of a power-law fluid with rigid-body rotation. As a function of applied rate of strain, there is a transition from a continuum description of the flow to discrete flow when the thickness of the flow region is approximately ten bubbles. This occurs at an applied rotation rate of approximately 0.07 s-1.

  20. Two dimensional NMR studies of polysaccharides

    International Nuclear Information System (INIS)

    Byrd, R.A.; Egan, W.; Summers, M.F.


    Polysaccharides are very important components in the immune response system. Capsular polysaccharides and lipopolysaccharides occupy cell surface sites of bacteria, play key roles in recognition and some have been used to develop vaccines. Consequently, the ability to determine chemical structures of these systems is vital to an understanding of their immunogenic action. The authors have been utilizing recently developed two-dimensional homonuclear and heteronuclear correlation spectroscopy for unambiguous assignment and structure determination of a number of polysaccharides. In particular, the 1 H-detected heteronuclear correlation experiments are essential to the rapid and sensitive determination of these structures. Linkage sites are determined by independent polarization transfer experiments and multiple quantum correlation experiments. These methods permit the complete structure determination on very small amounts of the polysaccharides. They present the results of a number of structural determinations and discuss the limits of these experiments in terms of their applications to polysaccharides

  1. Two-dimensional fourier transform spectrometer (United States)

    DeFlores, Lauren; Tokmakoff, Andrei


    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  2. Two-dimensional materials for ultrafast lasers

    International Nuclear Information System (INIS)

    Wang Fengqiu


    As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)

  3. Two dimensional generalizations of the Newcomb equation

    International Nuclear Information System (INIS)

    Dewar, R.L.; Pletzer, A.


    The Bineau reduction to scalar form of the equation governing ideal, zero frequency linearized displacements from a hydromagnetic equilibrium possessing a continuous symmetry is performed in 'universal coordinates', applicable to both the toroidal and helical cases. The resulting generalized Newcomb equation (GNE) has in general a more complicated form than the corresponding one dimensional equation obtained by Newcomb in the case of circular cylindrical symmetry, but in this cylindrical case , the equation can be transformed to that of Newcomb. In the two dimensional case there is a transformation which leaves the form of the GNE invariant and simplifies the Frobenius expansion about a rational surface, especially in the limit of zero pressure gradient. The Frobenius expansions about a mode rational surface is developed and the connection with Hamiltonian transformation theory is shown. 17 refs

  4. Ward identities in two-dimensional gravity

    International Nuclear Information System (INIS)

    Polchinski, J.


    We study the decoupling of null states in two-dimensional gravity, using methods of critical string theory. We identify a family of null states which fail to decouple due to curvature and boundary terms. This gives relations involving amplitudes at different genus. At genus zero, these determine certain operator product coefficients. At genus one, they determine the partition function. At higher genus, we obtain a relation similar in form to the Painleve equation, but due to an incomplete understanding of a certain ghost/curvature term we do not have a closed relation for the partition function. Our results appear to correspond to the L 0 and L 1 equations in the topological and matrix model approaches. (orig.)

  5. Two dimensional compass model with Heisenberg interactions (United States)

    Pires, A. S. T.


    We consider a two dimensional compass model with a next and a next near Heisenberg term. The interactions are of two types: frustrated near neighbor compass interactions of amplitudes Jx and Jy, and next and next near neighbor Heisenberg interactions with exchanges J1 and J2 respectively. The Heisenberg interactions are isotropic in spin space, but the compass interactions depend on the bond direction. The ground state of the pure compass model is degenerated with a complex phase diagram. This degeneracy is removed by the Heisenberg terms leading to the arising of a magnetically ordered phase with a preferred direction. We calculate the phase diagrams at zero temperature for the case where, for J2 = 0, we have an antiferromagnetic ground state. We show that varying the value of J2, a magnetically disordered phase can be reached for small values of the compass interactions. We also calculate the critical temperature for a specified value of parameters.

  6. Strategies for Interpreting Two Dimensional Microwave Spectra (United States)

    Martin-Drumel, Marie-Aline; Crabtree, Kyle N.; Buchanan, Zachary


    Microwave spectroscopy can uniquely identify molecules because their rotational energy levels are sensitive to the three principal moments of inertia. However, a priori predictions of a molecule's structure have traditionally been required to enable efficient assignment of the rotational spectrum. Recently, automated microwave double resonance spectroscopy (AMDOR) has been employed to rapidly generate two dimensional spectra based on transitions that share a common rotational level, which may enable automated extraction of rotational constants without any prior estimates of molecular structure. Algorithms used to date for AMDOR have relied on making several initial assumptions about the nature of a subset of the linked transitions, followed by testing possible assignments by "brute force." In this talk, we will discuss new strategies for interpreting AMDOR spectra, using eugenol as a test case, as well as prospects for library-free, automated identification of the molecules in a volatile mixture.

  7. Modified black holes in two dimensional gravity

    International Nuclear Information System (INIS)

    Mohammedi, N.


    The SL(2,R)/U(1) gauged WZWN model is modified by a topological term and the accompanying change in the geometry of the two dimensional target space is determined. The possibility of this additional term arises from a symmetry in the general formalism of gauging an isometry subgroup of a non-linear sigma model with an antisymmetric tensor. It is shown, in particular, that the space-time exhibits some general singularities for which the recently found black hole is just a special case. From a conformal field theory point of view and for special values of the unitary representation of SL(2,R), this topological term can be interpreted as a small perturbation by a (1,1) conformal operator of the gauged WZWN action. (author). 26 refs

  8. Thermal properties of two-dimensional materials

    International Nuclear Information System (INIS)

    Zhang Gang; Zhang Yong-Wei


    Two-dimensional (2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides (e.g., MoS 2 and WS 2 ), have attracted a great deal of attention recently due to their extraordinary structural, mechanical, and physical properties. In particular, 2D materials have shown great potential for thermal management and thermoelectric energy generation. In this article, we review the recent advances in the study of thermal properties of 2D materials. We first review some important aspects in thermal conductivity of graphene and discuss the possibility to enhance the ultra-high thermal conductivity of graphene. Next, we discuss thermal conductivity of MoS 2 and the new strategy for thermal management of MoS 2 device. Subsequently, we discuss the anisotropic thermal properties of phosphorene. Finally, we review the application of 2D materials in thermal devices, including thermal rectifier and thermal modulator. (topical reviews)

  9. Two-dimensional heterostructures for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States); Pomerantseva, Ekaterina [Drexel Univ., Philadelphia, PA (United States)


    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  10. Two-dimensional electroacoustic waves in silicene (United States)

    Zhukov, Alexander V.; Bouffanais, Roland; Konobeeva, Natalia N.; Belonenko, Mikhail B.


    In this letter, we investigate the propagation of two-dimensional electromagnetic waves in a piezoelectric medium built upon silicene. Ultrashort optical pulses of Gaussian form are considered to probe this medium. On the basis of Maxwell's equations supplemented with the wave equation for the medium's displacement vector, we obtain the effective governing equation for the vector potential associated with the electromagnetic field, as well as the component of the displacement vector. The dependence of the pulse shape on the bandgap in silicene and the piezoelectric coefficient of the medium was analyzed, thereby revealing a nontrivial triadic interplay between the characteristics of the pulse dynamics, the electronic properties of silicene, and the electrically induced mechanical vibrations of the medium. In particular, we uncovered the possibility for an amplification of the pulse amplitude through the tuning of the piezoelectric coefficient. This property could potentially offer promising prospects for the development of amplification devices for the optoelectronics industry.

  11. Equivalency of two-dimensional algebras

    International Nuclear Information System (INIS)

    Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.


    Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)

  12. Noncommutative de Sitter and FRW spaces

    International Nuclear Information System (INIS)

    Burić, Maja; Madore, John


    Several versions of fuzzy four-dimensional de Sitter space are constructed using the noncommutative frame formalism. Although all noncommutative spacetimes which are found have commutative de Sitter metric as a classical limit, the algebras and the differential calculi which define them have many differences, which we derive and discuss

  13. Noncommutative de Sitter and FRW spaces

    Energy Technology Data Exchange (ETDEWEB)

    Burić, Maja, E-mail: [Faculty of Physics, University of Belgrade, P.O. Box 44, 11001, Belgrade (Serbia); Madore, John, E-mail: [Laboratoire de Physique Théorique, 91405, Orsay (France)


    Several versions of fuzzy four-dimensional de Sitter space are constructed using the noncommutative frame formalism. Although all noncommutative spacetimes which are found have commutative de Sitter metric as a classical limit, the algebras and the differential calculi which define them have many differences, which we derive and discuss.

  14. Radiation effects on two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)


    The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Photodetectors based on two dimensional materials (United States)

    Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen


    Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  16. Two-dimensional topological photonic systems (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng


    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  17. Two-dimensional atomic crystals beyond graphene (United States)

    Kaul, Anupama B.


    Carbon-based nanostructures have been the center of intense research and development for more than two decades now. Of these materials, graphene, a two-dimensional (2D) layered material system, has had a significant impact on science and technology over the past decade after monolayers of this material were experimentally isolated in 2004. The recent emergence of other classes of 2D graphene-like layered materials has added yet more exciting dimensions for research in exploring the diverse properties and applications arising from these 2D material systems. For example, hexagonal-BN, a layered material closest in structure to graphene, is an insulator, while NbSe2, a transition metal di-chalcogenide, is metallic and monolayers of other transition metal di-chalcogenides such as MoS2 are direct band-gap semiconductors. The rich spectrum of properties that 2D layered material systems offer can potentially be engineered ondemand, and creates exciting prospects for using such materials in applications ranging from electronics, sensing, photonics, energy harvesting and flexible electronics over the coming years.

  18. Seismic isolation of two dimensional periodic foundations

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Y.; Mo, Y. L., E-mail: [University of Houston, Houston, Texas 77004 (United States); Laskar, A. [Indian Institute of Technology Bombay, Powai, Mumbai (India); Cheng, Z.; Shi, Z. [Beijing Jiaotong University, Beijing (China); Menq, F. [University of Texas, Austin, Texas 78712 (United States); Tang, Y. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)


    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  19. Comparative Two-Dimensional Fluorescence Gel Electrophoresis. (United States)

    Ackermann, Doreen; König, Simone


    Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.

  20. Stress distribution in two-dimensional silos (United States)

    Blanco-Rodríguez, Rodolfo; Pérez-Ángel, Gabriel


    Simulations of a polydispersed two-dimensional silo were performed using molecular dynamics, with different numbers of grains reaching up to 64 000, verifying numerically the model derived by Janssen and also the main assumption that the walls carry part of the weight due to the static friction between grains with themselves and those with the silo's walls. We vary the friction coefficient, the radii dispersity, the silo width, and the size of grains. We find that the Janssen's model becomes less relevant as the the silo width increases since the behavior of the stresses becomes more hydrostatic. Likewise, we get the normal and tangential stress distribution on the walls evidencing the existence of points of maximum stress. We also obtained the stress matrix with which we observe zones of concentration of load, located always at a height around two thirds of the granular columns. Finally, we observe that the size of the grains affects the distribution of stresses, increasing the weight on the bottom and reducing the normal stress on the walls, as the grains are made smaller (for the same total mass of the granulate), giving again a more hydrostatic and therefore less Janssen-type behavior for the weight of the column.

  1. Asymptotics for Two-dimensional Atoms

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip


    We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....

  2. Two-dimensional bipolar junction transistors (United States)

    Gharekhanlou, Behnaz; Khorasani, Sina; Sarvari, Reza


    Recent development in fabrication technology of planar two-dimensional (2D) materials has introduced the possibility of numerous novel applications. Our recent analysis has revealed that by definition of p-n junctions through appropriate patterned doping of 2D semiconductors, ideal exponential I-V characteristics may be expected. However, the theory of 2D junctions turns out to be very different to that of standard bulk junctions. Based on this theory of 2D diodes, we construct for the first time a model to describe 2D bipolar junction transistors (2D-BJTs). We derive the small-signal equivalent model, and estimate the performance of a 2D-BJT device based on graphone as the example material. A current gain of about 138 and maximum threshold frequency of 77 GHz, together with a power-delay product of only 4 fJ per 1 μm lateral width is expected at an operating voltage of 5 V. In addition, we derive the necessary formulae and a new approximate solution for the continuity equation in the 2D configuration, which have been verified against numerical solutions.

  3. Building an explicit de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Louis, Jan [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik; Rummel, Markus; Valandro, Roberto [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie


    We construct an explicit example of a de Sitter vacuum in type IIB string theory that realizes the proposal of Kaehler uplifting. As the large volume limit in this method depends on the rank of the largest condensing gauge group we carry out a scan of gauge group ranks over the Kreuzer-Skarke set of toric Calabi-Yau threefolds. We find large numbers of models with the largest gauge group factor easily exceeding a rank of one hundred. We construct a global model with Kaehler uplifting on a two-parameter model on CP{sup 4}{sub 11169}, by an explicit analysis from both the type IIB and F-theory point of view. The explicitness of the construction lies in the realization of a D7 brane configuration, gauge flux and RR and NS flux choices, such that all known consistency conditions are met and the geometric moduli are stabilized in a metastable de Sitter vacuum with spontaneous GUT scale supersymmetry breaking driven by an F-term of the Kaehler moduli.

  4. Interaction of two-dimensional magnetoexcitons (United States)

    Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.


    We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .

  5. Dynamics of two-dimensional bubbles (United States)

    Piedra, Saúl; Ramos, Eduardo; Herrera, J. Ramón


    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.

  6. Two-dimensional silica opens new perspectives (United States)

    Büchner, Christin; Heyde, Markus


    In recent years, silica films have emerged as a novel class of two-dimensional (2D) materials. Several groups succeeded in epitaxial growth of ultrathin SiO2 layers using different growth methods and various substrates. The structures consist of tetrahedral [SiO4] building blocks in two mirror symmetrical planes, connected via oxygen bridges. This arrangement is called a silica bilayer as it is the thinnest 2D arrangement with the stoichiometry SiO2 known today. With all bonds saturated within the nano-sheet, the interaction with the substrate is based on van der Waals forces. Complex ring networks are observed, including hexagonal honeycomb lattices, point defects and domain boundaries, as well as amorphous domains. The network structures are highly tuneable through variation of the substrate, deposition parameters, cooling procedure, introducing dopants or intercalating small species. The amorphous networks and structural defects were resolved with atomic resolution microscopy and modeled with density functional theory and molecular dynamics. Such data contribute to our understanding of the formation and characteristic motifs of glassy systems. Growth studies and doping with other chemical elements reveal ways to tune ring sizes and defects as well as chemical reactivities. The pristine films have been utilized as molecular sieves and for confining molecules in nanocatalysis. Post growth hydroxylation can be used to tweak the reactivity as well. The electronic properties of silica bilayers are favourable for using silica as insulators in 2D material stacks. Due to the fully saturated atomic structure, the bilayer interacts weakly with the substrate and can be described as quasi-freestanding. Recently, a mm-scale film transfer under structure retention has been demonstrated. The chemical and mechanical stability of silica bilayers is very promising for technological applications in 2D heterostacks. Due to the impact of this bilayer system for glass science

  7. Two-dimensional vibrational-electronic spectroscopy (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira


    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  8. Quantum break-time of de Sitter (United States)

    Dvali, Gia; Gómez, César; Zell, Sebastian


    The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. The mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S-matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/N-effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N. We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10100 years old in its entire classical history.

  9. Group averaging for de Sitter free fields

    Energy Technology Data Exchange (ETDEWEB)

    Marolf, Donald; Morrison, Ian A, E-mail: marolf@physics.ucsb.ed, E-mail: ian_morrison@physics.ucsb.ed [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)


    Perturbative gravity about global de Sitter space is subject to linearization-stability constraints. Such constraints imply that quantum states of matter fields couple consistently to gravity only if the matter state has vanishing de Sitter charges, i.e. only if the state is invariant under the symmetries of de Sitter space. As noted by Higuchi, the usual Fock spaces for matter fields contain no de Sitter-invariant states except the vacuum, though a new Hilbert space of de Sitter-invariant states can be constructed via so-called group-averaging techniques. We study this construction for free scalar fields of arbitrary positive mass in any dimension, and for linear vector and tensor gauge fields in any dimension. Our main result is to show in each case that group averaging converges for states containing a sufficient number of particles. We consider general N-particle states with smooth wavefunctions, though we obtain somewhat stronger results when the wavefunctions are finite linear combinations of de Sitter harmonics. Along the way we obtain explicit expressions for general boost matrix elements in a familiar basis.

  10. Lie algebra contractions on two-dimensional hyperboloid

    International Nuclear Information System (INIS)

    Pogosyan, G. S.; Yakhno, A.


    The Inoenue-Wigner contraction from the SO(2, 1) group to the Euclidean E(2) and E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the four corresponding two-dimensional homogeneous spaces: two-dimensional hyperboloids and two-dimensional Euclidean and pseudo-Euclidean spaces. We show how the nine systems of coordinates on the two-dimensional hyperboloids contracted to the four systems of coordinates on E 2 and eight on E 1,1 . The text was submitted by the authors in English.

  11. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine


    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...

  12. Optimizing separations in online comprehensive two-dimensional liquid chromatography

    NARCIS (Netherlands)

    Pirok, Bob W.J.; Gargano, Andrea F.G.; Schoenmakers, Peter J.


    Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular

  13. Beginning Introductory Physics with Two-Dimensional Motion (United States)

    Huggins, Elisha


    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  14. Two-dimensional black holes and non-commutative spaces

    International Nuclear Information System (INIS)

    Sadeghi, J.


    We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon

  15. Inflation as de Sitter instability

    Energy Technology Data Exchange (ETDEWEB)

    Cadoni, Mariano; Franzin, Edgardo [Universita di Cagliari, Cittadella Universitaria, Dipartimento di Fisica, Monserrato (Italy); INFN, Sezione di Cagliari, Monserrato (Italy); Mignemi, Salvatore [INFN, Sezione di Cagliari, Monserrato (Italy); Universita di Cagliari, Dipartimento di Matematica e Informatica, Cagliari (Italy)


    We consider cosmological inflation generated by a scalar field slowly rolling off from a de Sitter maximum of its potential. The models belong to the class of hilltop models and represent the most general model of this kind in which the scalar potential can be written as the sum of two exponentials. The minimally coupled Einstein-scalar gravity theory obtained in this way is the cosmological version of a two-scale generalization of known holographic models, allowing for solitonic solutions interpolating between an AdS spacetime in the infrared and scaling solutions in the ultraviolet. We then investigate cosmological inflation in the slow-roll approximation. Our model reproduces correctly, for a wide range of its parameters, the most recent experimental data for the power spectrum of primordial perturbations. Moreover, it predicts inflation at energy scales of four to five orders of magnitude below the Planck scale. At the onset of inflation, the mass of the tachyonic excitation, i.e. of the inflaton, turns out to be seven to eight orders of magnitude smaller than the Planck mass. (orig.)

  16. De Sitter thin brane model (United States)

    Nishi, Masato


    We discuss the large mass hierarchy problem in a braneworld model which represents our acceleratively expanding universe. The Randall-Sundrum (RS) model with one extra warped dimension added to a flat four-dimensional space-time cannot describe our expanding universe. Here, we study instead the de Sitter thin brane model. This is described by the same action as that for the RS model, but the four-dimensional space-time on the branes is dS_4. We study the model for both the cases of positive five-dimensional cosmological constant Λ_5 and a negative one. In the positive Λ_5 case, the four-dimensional large hierarchy necessitates a five-dimensional large hierarchy, and we cannot get a natural explanation. On the other hand, in the negative Λ_5 case, the large hierarchy is naturally realized in the five-dimensional theory in the same manner as in the RS model. Moreover, another large hierarchy between the Hubble parameter and the Planck scale is realized by the O(10^2) hierarchy of the five-dimensional quantities. Finally, we find that the lightest mass of the massive Kaluza-Klein modes and the intervals of the mass spectrum are of order 10^2 GeV, which are the same as in the RS case and do not depend on the value of the Hubble parameter.

  17. Density fluctuations in the de Sitter universe

    International Nuclear Information System (INIS)

    Banerjee, N.; Mallik, S.


    The de Sitter space-time appears to be the most widely chosen manifold to study quantum field theories on curved space-time. The reason is, of course, its high symmetry and the related fact that the mode functions can be obtained exactly in terms of known functions. Thus the different problems of quantization on curved space-time, like the non-uniqueness of the vacuum, regularization and renormalization of the stress tensor, have all been studied extensively in this model. The other reason of interest in the de Sitter geometry is related to the inflationary scenario of the early universe. For a brief period, the energy density of the false (symmetric) vacuum may dominate the total energy density, giving rise to de Sitter space-time. The resulting inflation may solve a number of outstanding problems of cosmology and particle physics. The properties of a Higgs-type scalar field theory is of central importance in the investigation of such a scenario. In this paper, a scalar Higgs field theory in de Sitter space-time has been investigated using the real time formulation of Semenoff and Weiss. The authors calculate the two-point function at late times and use it to obtain a general expression for the amplitude of fluctuation in energy density on scales which come out of the de Sitter horizon

  18. Optimizing separations in online comprehensive two-dimensional liquid chromatography. (United States)

    Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J


    Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.

  19. Third sound in one and two dimensional modulated structures

    International Nuclear Information System (INIS)

    Komuro, T.; Kawashima, H., Shirahama, K.; Kono, K.


    An experimental technique is developed to study acoustic transmission in one and two dimensional modulated structures by employing third sound of a superfluid helium film. In particular, the Penrose lattice, which is a two dimensional quasiperiodic structure, is studied. In two dimensions, the scattering of third sound is weaker than in one dimension. Nevertheless, the authors find that the transmission spectrum in the Penrose lattice, which is a two dimensional prototype of the quasicrystal, is observable if the helium film thickness is chosen around 5 atomic layers. The transmission spectra in the Penrose lattice are explained in terms of dynamical theory of diffraction

  20. Stability analysis of two-dimensional digital recursive filters (United States)

    Alexander, W. E.; Pruess, S. A.


    A new approach to the stability problem for the two-dimensional digital recursive filter is presented. The bivariate difference equation representation of the two-dimensional recursive digital filter is converted to a multiinput-multioutput (MIMO) system similar to the state-space representation of the one-dimensional digital recursive filter. In this paper, a pseudo-state representation is used and three coefficient matrices are obtained. A general theorem for stability of two-dimensional digital recursive filters is derived and a very useful theorem is presented which expresses sufficient requirements for instability in terms of the spectral radii of these matrices.


    Directory of Open Access Journals (Sweden)

    Nikola Stefanović


    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  2. Numerical evaluation of two-dimensional harmonic polylogarithms

    CERN Document Server

    Gehrmann, T


    The two-dimensional harmonic polylogarithms $\\G(\\vec{a}(z);y)$, a generalization of the harmonic polylogarithms, themselves a generalization of Nielsen's polylogarithms, appear in analytic calculations of multi-loop radiative corrections in quantum field theory. We present an algorithm for the numerical evaluation of two-dimensional harmonic polylogarithms, with the two arguments $y,z$ varying in the triangle $0\\le y \\le 1$, $ 0\\le z \\le 1$, $\\ 0\\le (y+z) \\le 1$. This algorithm is implemented into a {\\tt FORTRAN} subroutine {\\tt tdhpl} to compute two-dimensional harmonic polylogarithms up to weight 4.

  3. Towards de Sitter from 10D

    International Nuclear Information System (INIS)

    Moritz, Jakob; Retaloza, Ander; Westphal, Alexander


    Using a 10D lift of non-perturbative volume stabilization in type IIB string theory we study the limitations for obtaining de Sitter vacua. Based on this we find that the simplest KKLT vacua with a single Kahler modulus stabilized by a gaugino condensate cannot be uplifted to de Sitter. Rather, the uplift flattens out due to stronger backreaction on the volume modulus than has previously been anticipated, resulting in vacua which are meta-stable and SUSY breaking, but that are always AdS. However, we also show that setups such as racetrack stabilization can avoid this issue. In these models it is possible to obtain supersymmetric AdS vacua with a cosmological constant that can be tuned to zero while retaining finite moduli stabilization. In this regime, it seems that de Sitter uplifts are possible with negligible backreaction on the internal volume. We exhibit this behavior also from the 10D perspective.

  4. Decay of the de Sitter vacuum (United States)

    Anderson, Paul R.; Mottola, Emil; Sanders, Dillon H.


    The decay rate of the Bunch-Davies state of a massive scalar field in the expanding flat spatial sections of de Sitter space is determined by an analysis of the particle pair creation process in real time. The Feynman definition of particle and antiparticle Fourier mode solutions of the scalar wave equation and their adiabatic phase analytically continued to the complexified time domain show conclusively that the Bunch-Davies state is not the vacuum state at late times. The closely analogous creation of charged particle pairs in a uniform electric field is reviewed and Schwinger's result for the vacuum decay rate is recovered by this same real time analysis. The vacuum decay rate in each case is also calculated by switching the background field on adiabatically, allowing it to act for a very long time, and then adiabatically switching it off again. In both the uniform electric field and de Sitter cases, the particles created while the field is switched on are verified to be real, in the sense that they persist in the final asymptotic flat zero-field region. In the de Sitter case, there is an interesting residual dependence of the rate on how the de Sitter phase is ended, indicating a greater sensitivity to spatial boundary conditions. The electric current of the created particles in the E -field case and their energy density and pressure in the de Sitter case are also computed, and the magnitude of their backreaction effects on the background field estimated. Possible consequences of the Hubble scale instability of the de Sitter vacuum for cosmology, vacuum dark energy, and the cosmological "constant" problem are discussed.

  5. Phase transitions in de Sitter space

    Directory of Open Access Journals (Sweden)

    Alexander Vilenkin


    Full Text Available An effective potential in de Sitter space is calculated for a model of two interacting scalar fields in one-loop approximation and in a self-consistent approximation which takes into account an infinite set of diagrams. Various approaches to renormalization in de Sitter space are discussed. The results are applied to analyze the phase transition in the Hawking-Moss version of the inflationary universe scenario. Requiring that inflation is sufficiently large, we derive constraints on the parameters of the model.

  6. Quasinormal modes in pure de Sitter spacetimes

    International Nuclear Information System (INIS)

    Du Daping; Wang Bin; Su Ruheng


    We have studied scalar perturbations as well as fermion perturbations in pure de Sitter spacetimes. For scalar perturbations we have shown that well-defined quasinormal modes in d-dimensions can exist provided that the mass of scalar field m>(d-1/2l). The quasinormal modes of fermion perturbations in three and four dimensional cases have also been investigated. We found that different from other dimensional cases, in the three dimensional pure de Sitter spacetime there is no quasinormal mode for the s-wave. This interesting difference caused by the spacial dimensions is true for both scalar and fermion perturbations

  7. Micromachined two dimensional resistor arrays for determination of gas parameters

    NARCIS (Netherlands)

    van Baar, J.J.J.; Verwey, Willem B.; Dijkstra, Mindert; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of

  8. Proteome research : two-dimensional gel electrophoresis and identification methods

    National Research Council Canada - National Science Library

    Rabilloud, Thierry, 1961


    "Two-dimensional electrophoresis is the central methodology in proteome research, and the state of the art is described in detail in this text, together with extensive coverage of the detection methods available...

  9. 1/f noise in two-dimensional fluids

    International Nuclear Information System (INIS)

    Cable, S.B.; Tajima, T.


    We derive an exact result on the velocity fluctuation power spectrum of an incompressible two-dimensional fluid. Employing the fluctuation-dissipation relationship and the enstrophy conversation, we obtain the frequency spectrum of a 1/f form

  10. Partition function of the two-dimensional nearest neighbour Ising ...

    Indian Academy of Sciences (India)

    Abstract. The partition function for two-dimensional nearest neighbour Ising model in a non-zero magnetic field have been derived for a finite square lattice of 16, 25, 36 and 64 sites with the help of ...

  11. Multisoliton formula for completely integrable two-dimensional systems

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.; Chudnovsky, G.V.


    For general two-dimensional completely integrable systems, the exact formulae for multisoliton type solutions are given. The formulae are obtained algebrically from solutions of two linear partial differential equations

  12. Coherent Response of Two Dimensional Electron Gas probed by Two Dimensional Fourier Transform Spectroscopy (United States)

    Paul, Jagannath

    Advent of ultrashort lasers made it possible to probe various scattering phenomena in materials that occur in a time scale on the order of few femtoseconds to several tens of picoseconds. Nonlinear optical spectroscopy techniques, such as pump-probe, transient four wave mixing (TFWM), etc., are very common to study the carrier dynamics in various material systems. In time domain, the transient FWM uses several ultrashort pulses separated by time delays to obtain the information of dephasing and population relaxation times, which are very important parameters that govern the carrier dynamics of materials. A recently developed multidimensional nonlinear optical spectroscopy is an enhanced version of TFWM which keeps track of two time delays simultaneously and correlate them in the frequency domain with the aid of Fourier transform in a two dimensional map. Using this technique, the nonlinear complex signal field is characterized both in amplitude and phase. Furthermore, this technique allows us to identify the coupling between resonances which are rather difficult to interpret from time domain measurements. This work focuses on the study of the coherent response of a two dimensional electron gas formed in a modulation doped GaAs/AlGaAs quantum well both at zero and at high magnetic fields. In modulation doped quantum wells, the excitons are formed as a result of the inter- actions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the formation of Mahan excitons, which is also referred to as Fermi edge singularity (FES). Polarization and temperature dependent rephasing 2DFT spectra in combination with TI-FWM measurements, provides insight into the dephasing mechanism of the heavy hole (HH) Mahan exciton. In addition to that strong quantum coherence between the HH and LH Mahan excitons is observed, which is rather surprising at this high doping concentration. The binding energy of Mahan excitons is expected to be greatly

  13. Structures of two-dimensional three-body systems

    International Nuclear Information System (INIS)

    Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.


    Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)

  14. The Two-Dimensional Analogue of General Relativity


    Lemos, José P. S.; Sá, Paulo M.


    General Relativity in three or more dimensions can be obtained by taking the limit $\\omega\\rightarrow\\infty$ in the Brans-Dicke theory. In two dimensions General Relativity is an unacceptable theory. We show that the two-dimensional closest analogue of General Relativity is a theory that also arises in the limit $\\omega\\rightarrow\\infty$ of the two-dimensional Brans-Dicke theory.

  15. Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal

    DEFF Research Database (Denmark)

    Lebech, Bente; Bak, P.


    The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern.......The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....

  16. Two-dimensional multifractal cross-correlation analysis

    International Nuclear Information System (INIS)

    Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong


    Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.

  17. The theory of critical phenomena in two-dimensional systems

    International Nuclear Information System (INIS)

    Olvera de la C, M.


    An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)

  18. Two-Dimensional Materials for Sensing: Graphene and Beyond

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese


    Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.

  19. Flux compactifications, gauge algebras and De Sitter

    NARCIS (Netherlands)

    Dibitetto, Giuseppe; Linares, Roman; Roest, Diederik


    The introduction of (non-)geometric fluxes allows for N = 1 moduli stabilisation in a De Sitter vacuum. The aim of this Letter is to assess to what extent this is true in N = 4 compactifications. First we identify the correct gauge algebra in terms of gauge and (non-)geometric fluxes. We then show

  20. de Sitter thermodynamics: A glimpse into nonequilibrium

    International Nuclear Information System (INIS)

    Aros, Rodrigo


    In this article it is shown that the thermodynamical evolution of a Schwarzschild de Sitter space is the evaporation of its black hole. The result is extended in higher dimensions to Lovelock theories of gravity with a single positive cosmological constant

  1. Transforming to Lorentz gauge on de Sitter

    NARCIS (Netherlands)

    Miao, S. P.; Tsamis, N.C.; Woodard, R.P.


    We demonstrate that certain gauge fixing functionals cannot be added to the action on backgrounds such as de Sitter, in which a linearization instability is present. We also construct the field-dependent gauge transformation that carries the electromagnetic vector potential from a convenient, non-de

  2. Charged black lens in de Sitter space (United States)

    Tomizawa, Shinya


    We obtain a charged black lens solution in the five-dimensional Einstein-Maxwell-Chern-Simons theory with a positive cosmological constant. It is shown that the solution obtained here describes the formation of a black hole with the spatial cross section of a sphere from that of the lens space of L (n ,1 ) in five-dimensional de Sitter space.

  3. Krein Spaces in de Sitter Quantum Theories

    Czech Academy of Sciences Publication Activity Database

    Gazeau, J.P.; Siegl, Petr; Youssef, A.


    Roč. 6, - (2010), 011/1-011/23 ISSN 1815-0659 Institutional research plan: CEZ:AV0Z10480505 Keywords : de Sitter group * undecomposable representations * Krein spaces Subject RIV: BE - Theoretical Physics Impact factor: 0.856, year: 2010

  4. Traditional Semiconductors in the Two-Dimensional Limit (United States)

    Lucking, Michael C.; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S. B.


    Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.

  5. Two dimensional convolute integers for machine vision and image recognition (United States)

    Edwards, Thomas R.


    Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.

  6. Two-Dimensional Superfluidity of Exciton Polaritons Requires Strong Anisotropy

    Directory of Open Access Journals (Sweden)

    Ehud Altman


    Full Text Available Fluids of exciton polaritons, excitations of two-dimensional quantum wells in optical cavities, show collective phenomena akin to Bose condensation. However, a fundamental difference from standard condensates stems from the finite lifetime of these excitations, which necessitates continuous driving to maintain a steady state. A basic question is whether a two-dimensional condensate with long-range algebraic correlations can exist under these nonequilibrium conditions. Here, we show that such driven two-dimensional Bose systems cannot exhibit algebraic superfluid order except in low-symmetry, strongly anisotropic systems. Our result implies, in particular, that recent apparent evidence for Bose condensation of exciton polaritons must be an intermediate-scale crossover phenomenon, while the true long-distance correlations fall off exponentially. We obtain these results through a mapping of the long-wavelength condensate dynamics onto the anisotropic Kardar-Parisi-Zhang equation.

  7. Hamiltonian formalism of two-dimensional Vlasov kinetic equation. (United States)

    Pavlov, Maxim V


    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  8. A nonperturbative treatment of two-dimensional quantum gravity

    International Nuclear Information System (INIS)

    Gross, D.J.; Migdal, A.A.


    We propose a nonperturbative definition of two-dimensional quantum gravity, based on a double scaling limit of the random matrix model. We develop an operator formalism for utilizing the method of orthogonal polynomials that allows us to solve the matrix models to all orders in the genus expansion. Using this formalism we derive an exact differential equation for the partition function of two-dimensional gravity as a function of the string coupling constant that governs the genus expansion of two-dimensional surfaces, and discuss its properties and consequences. We construct and discuss the correlation functions of an infinite set of pointlike and loop operators to all orders in the genus expansion. (orig.)

  9. Control Operator for the Two-Dimensional Energized Wave Equation

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU


    Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.

  10. Critical Behaviour of a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.


    A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphous...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....

  11. Nonlinear excitations in two-dimensional molecular structures with impurities

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth


    We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....

  12. Two-dimensional nonlinear equations of supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Savel'ev, M.V.


    Supersymmetric generalization of two-dimensional nonlinear dynamical equations of gauge theories is presented. The nontrivial dynamics of a physical system in the supersymmetry and supergravity theories for (2+2)-dimensions is described by the integrable embeddings of Vsub(2/2) superspace into the flat enveloping superspace Rsub(N/M), supplied with the structure of a Lie superalgebra. An equation is derived which describes a supersymmetric generalization of the two-dimensional Toda lattice. It contains both super-Liouville and Sinh-Gordon equations

  13. Two-dimensional SCFTs from D3-branes

    Energy Technology Data Exchange (ETDEWEB)

    Benini, Francesco [Blackett Laboratory, Imperial College London,South Kensington Campus, London SW7 2AZ (United Kingdom); International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); Bobev, Nikolay [Instituut voor Theoretische Fysica, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Crichigno, P. Marcos [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,Leuvenlaan 4, 3854 CE Utrecht (Netherlands)


    We find a large class of two-dimensional N=(0,2) SCFTs obtained by compactifying four-dimensional N=1 quiver gauge theories on a Riemann surface. We study these theories using anomalies and c-extremization. The gravitational duals to these fixed points are new AdS{sub 3} solutions of IIB supergravity which we exhibit explicitly. Along the way we uncover a universal relation between the conformal anomaly coefficients of four-dimensional and two-dimensional SCFTs connected by an RG flow across dimensions. We also observe an interesting novel phenomenon in which the superconformal R-symmetry mixes with baryonic symmetries along the RG flow.

  14. Densis. Densimetric representation of two-dimensional matrices

    International Nuclear Information System (INIS)

    Los Arcos Merino, J.M.


    Densis is a Fortran V program which allows off-line control of a Calcomp digital plotter, to represent a two-dimensional matrix of numerical elements in the form of a variable shading intensity map in two colours. Each matrix element is associated to a square of a grid which is traced over by lines whose number is a function of the element value according to a selected scale. Program features, subroutine structure and running instructions, are described. Some typical results, for gamma-gamma coincidence experimental data and a sampled two-dimensional function, are indicated. (author)

  15. Quantum melting of a two-dimensional Wigner crystal (United States)

    Dolgopolov, V. T.


    The paper reviews theoretical predictions about the behavior of two-dimensional low-density electron systems at nearly absolute zero temperatures, including the formation of an electron (Wigner) crystal, crystal melting at a critical electron density, and transitions between crystal modifications in more complex (for example, two-layer) systems. The paper presents experimental results obtained from real two-dimensional systems in which the nonconducting (solid) state of the electronic system with indications of collective localization is actually realized. Experimental methods for detecting a quantum liquid–solid phase interface are discussed.

  16. Two dimensional nonlinear spectral estimation techniques for breast cancer localization

    International Nuclear Information System (INIS)

    Stathaki, P.T.; Constantinides, A.G.


    In this paper the problem of image texture analysis in the presence of noise is examined from a higher-order statistical perspective. The approach taken involves the use of two dimensional second order Volterra filters where the filter weights are derived from third order cumulants of the two dimensional signal. The specific application contained in this contribution is in mammography, an area in which it is difficult to discern the appropriate features. The paper describes the fundamental issues of the various components of the approach. The results of the entire texture modelling, classification and segmentation scheme contained in this paper are very encouraging

  17. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank


    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...... with nonlocal Einstein-Podolsky-Rosen entanglement....

  18. Chiral anomaly, fermionic determinant and two dimensional models

    International Nuclear Information System (INIS)

    Rego Monteiro, M.A. do.


    The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt

  19. Two-dimensional spin diffusion in multiterminal lateral spin valves (United States)

    Saha, D.; Basu, D.; Holub, M.; Bhattacharya, P.


    The effects of two-dimensional spin diffusion on spin extraction in lateral semiconductor spin valves have been investigated experimentally and theoretically. A ferromagnetic collector terminal of variable size is placed between the ferromagnetic electron spin injector and detector of a conventional lateral spin valve for spin extraction. It is observed that transverse spin diffusion beneath the collector terminal plays an important role along with the conventional longitudinal spin diffusion in describing the overall transport of spin carriers. Two-dimensional spin diffusion reduces the perturbation of the channel electrochemical potentials and improves spin extraction.

  20. Cosmic curvature from de Sitter equilibrium cosmology. (United States)

    Albrecht, Andreas


    I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.

  1. Representing the vacuum polarization on de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Katie E.; Woodard, Richard P. [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States); Prokopec, Tomislav [Institute of Theoretical Physics (ITP) and Spinoza Institute, Utrecht University, Postbus 80195, 3508 TD Utrecht (Netherlands)


    Previous studies of the vacuum polarization on de Sitter have demonstrated that there is a simple, noncovariant representation of it in which the physics is transparent. There is also a cumbersome, covariant representation in which the physics is obscure. Despite being unwieldy, the latter form has a powerful appeal for those who are concerned about de Sitter invariance. We show that nothing is lost by employing the simple, noncovariant representation because there is a closed form procedure for converting its structure functions to those of the covariant representation. We also present a vastly improved technique for reading off the noncovariant structure functions from the primitive diagrams. And we discuss the issue of representing the vacuum polarization for a general metric background.

  2. Longitudinal and transverse modes dispersion in two-dimensional ...

    African Journals Online (AJOL)

    The dynamical properties of two-dimensional Yukawa fluids in the domain of weak and intermediate coupling parameters were analyzed through molecular dynamics (MD) simulation. The dispersion relation for both the longitudinal and transverse modes were obtained and compared with random phase approximation ...

  3. Two-dimensional static deformation of an anisotropic medium

    Indian Academy of Sciences (India)

    The problem of two-dimensional static deformation of a monoclinic elastic medium has been studied using the eigenvalue method, following a Fourier transform. We have obtained expressions for displacements and stresses for the medium in the transformed domain. As an application of the above theory, the particular ...

  4. Types of two-dimensional N = 4 superconformal field theories

    Indian Academy of Sciences (India)

    Superconformal field theory; free field realization; string theory; AdS-CFT correspon- dence. PACS Nos 11.25.Hf; 11.25.-w; 11.30.Ly; 11.30.Pb. Conformal symmetries in two space-time dimensions have been very extensively studied owing to their applications both in string theory and two-dimensional statistical systems.

  5. Conformal QED in two-dimensional topological insulators

    NARCIS (Netherlands)

    Menezes Silva Da Costa, Natália; Palumbo, Giandomenico; de Morais Smith, Cristiane


    It has been shown recently that local four-fermion interactions on the edges of two-dimensional time-reversal-invariant topological insulators give rise to a new non-Fermi-liquid phase, called helical Luttinger liquid (HLL). In this work, we provide a first-principle derivation of this

  6. Stress and mixed boundary conditions for two-dimensional ...

    Indian Academy of Sciences (India)

    For plate bending and stretching problems in two-dimensional (2D) dodecagonal quasi-crystal (QC) media, the reciprocal theorem and the general solution for QCs are applied in a novel way to obtain the appropriate stress and mixed boundary conditions accurate to all order. The method developed by Gregory and Wan is ...

  7. Two-dimensional profiling of Xanthomonas campestris pv. viticola ...

    African Journals Online (AJOL)

    However, the analysis of the 2D-PAGE gel images revealed a larger number of spots in the lysis method when compared to the others. Taking ... Keywords: Bacterial canker, Vitis vinifera, proteomics, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2D-PAGE).

  8. Vortex scaling ranges in two-dimensional turbulence (United States)

    Burgess, B. H.; Dritschel, D. G.; Scott, R. K.


    We survey the role of coherent vortices in two-dimensional turbulence, including formation mechanisms, implications for classical similarity and inertial range theories, and characteristics of the vortex populations. We review early work on the spatial and temporal scaling properties of vortices in freely evolving turbulence and more recent developments, including a spatiotemporal scaling theory for vortices in the forced inverse energy cascade. We emphasize that Kraichnan-Batchelor similarity theories and vortex scaling theories are best viewed as complementary and together provide a more complete description of two-dimensional turbulence. In particular, similarity theory has a continued role in describing the weak filamentary sea between the vortices. Moreover, we locate both classical inertial and vortex scaling ranges within the broader framework of scaling in far-from-equilibrium systems, which generically exhibit multiple fixed point solutions with distinct scaling behaviour. We describe how stationary transport in a range of scales comoving with the dilatation of flow features, as measured by the growth in vortex area, constrains the vortex number density in both freely evolving and forced two-dimensional turbulence. The new theories for coherent vortices reveal previously hidden nontrivial scaling, point to new dynamical understanding, and provide a novel exciting window into two-dimensional turbulence.

  9. Two-dimensional effects in nonlinear Kronig-Penney models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim


    An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...

  10. Two-dimensional hazard estimation for longevity analysis

    DEFF Research Database (Denmark)

    Fledelius, Peter; Guillen, M.; Nielsen, J.P.


    We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface i...... for analysis of economic implications arising from mortality changes....

  11. Solitary wave solutions of two-dimensional nonlinear Kadomtsev ...

    Indian Academy of Sciences (India)


    Sep 13, 2017 ... Home; Journals; Pramana – Journal of Physics; Volume 89; Issue 3. Solitary wave solutions of ... Nonlinear two-dimensional Kadomtsev–Petviashvili (KP) equation governs the behaviour of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions. By using the reductive ...

  12. Image Making in Two Dimensional Art; Experiences with Straw and ...

    African Journals Online (AJOL)

    Image making in art is professionally referred to as bust in Sculpture andPortraiture in Painting. ... havebeen used to achieve these forms of art; like clay cement, marble, stone,different metals and, fibre glass in the three dimensional form; We also have Pencil, Charcoal Pastel and, Acrylic oil-paint in two dimensional form.

  13. Seismically constrained two-dimensional crustal thermal structure of ...

    Indian Academy of Sciences (India)

    The temperature field within the crust is closely related to tectonic history as well as many other geological processes inside the earth. Therefore, knowledge of the crustal thermal structure of a region is of great importance for its tectonophysical studies. This work deals with the two-dimensional thermal modelling to ...

  14. (Bombyx mori L.) using two-dimensional polyacrylami

    Indian Academy of Sciences (India)


    Fountoulakis M, Schuller E, Hardmeier R, Berndt P and Lubec. G 1999 Rat brain proteins: Two-dimensional protein data- base and variation in the expression level; Electrophoresis 20. 3527–3579. Hiroshi Fujii, Junji Tochinara, Yutaka Kawaguchi and Sakagu- chi B 1988 Existence of carotenoids binding protein in larval.

  15. Solitary wave solutions of two-dimensional nonlinear Kadomtsev ...

    Indian Academy of Sciences (India)

    Aly R Seadawy


    Sep 13, 2017 ... We considered the two-dimensional DASWs in colli- sionless, unmagnetized cold plasma consisting of dust fluid, ions and electrons. The dynamics of DASWs is governed by the normalized fluid equations of nonlin- ear continuity (1), nonlinear motion of system (2) and. (3) and linear Poisson equation (4) as.

  16. Polaron dynamics in a two-dimensional anharmonic Holstein model

    DEFF Research Database (Denmark)

    Zolotaryuk, Yaroslav; Christiansen, Peter Leth; Juul Rasmussen, Jens


    A generalized two-dimensional semiclassical :Holstein model with a realistic on-site potential that contains anharmonicity is studied. More precisely, the lattice subsystem of anharmonic on-site oscillators is supposed to have a restricting core. The core plays the role of an effective saturation...

  17. Sound waves in two-dimensional ducts with sinusoidal walls (United States)

    Nayfeh, A. H.


    The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.

  18. Two-dimensional NMR studies of allyl palladium complexes of ...

    Indian Academy of Sciences (India)


    h3-Allyl complexes are intermediates in organic synthetic reactions such as allylic alkylation and amination. There is growing interest in understanding the structures of chiral h3-allyl intermediates as this would help to unravel the mechanism of enantioselective C–C bond forming reactions. Two-dimensional NMR study is a.

  19. Vibrations of thin piezoelectric shallow shells: Two-dimensional ...

    Indian Academy of Sciences (India)

    In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

  20. Magnetoelectronic transport of the two-dimensional electron gas in ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 72; Issue 2 ... CdSe quantum wells; 2D electron gas; magneto-electronic transport. Abstract. Hall mobility and magnetoresistance coefficient for the two-dimensional (2D) electron transport parallel to the heterojunction interfaces in a single quantum well of CdSe are ...

  1. g Algebra and two-dimensional quasiexactly solvable Hamiltonian ...

    Indian Academy of Sciences (India)

    g2 algebra via one special representation in the x–y two-dimensional space. Then, by choosing an appropriate set of ..... Gen. 40, 212 (2005). [3] S Grigorian and S T Yau, Commun. Math. Phys. 287, 459 (2009). [4] L Fernandez-Jambrina and L M Gonzalez-Romero, Class. Quant. Grav. 16, 953 (1999). [5] A Belhaj, J. Phys.

  2. Two-Dimensional Light Diffraction from an EPROM Chip (United States)

    Ekkens, Tom


    In introductory physics classes, a laser pointer and a compact disc are all the items required to illustrate diffraction of light in a single dimension. If a two-dimensional diffraction pattern is desired, double axis diffraction grating material is available or a CCD sensor can be extracted from an unused electronics device. This article presents…

  3. Avoiding acidic region streaking in two-dimensional gel ...

    Indian Academy of Sciences (India)


    Jul 21, 2014 ... used, as an alternative for costly 2DE-quantification kits. Our designed protocols are ..... 7 IPG 17 cm strips: (i) made by OP then DNase/RNase treated and (ii) made by OP with optimized IEF. (D) 2DE image of (i) E. coli ..... Proteomic analysis of human saliva from lung cancer patients using two-dimensional ...

  4. Solar Internal Rotation and Dynamo Waves: A Two Dimensional ...

    Indian Academy of Sciences (India)


    Solar Internal Rotation and Dynamo Waves: A Two Dimensional. Asymptotic Solution in the Convection Zone ... We calculate here a spatial 2 D structure of the mean magnetic field, adopting real profiles of the solar internal ... of the asymptotic solution in low (middle) and high (right panel) latitudes. field is shifted towards the ...

  5. Two-dimensional models in statistical mechanics and field theory

    International Nuclear Information System (INIS)

    Koberle, R.


    Several features of two-dimensional models in statistical mechanics and Field theory, such as, lattice quantum chromodynamics, Z(N), Gross-Neveu and CP N-1 are discussed. The problems of confinement and dynamical mass generation are also analyzed. (L.C.) [pt

  6. Two-Dimensional Mesoscale-Ordered Conducting Polymers

    NARCIS (Netherlands)

    Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang


    Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of

  7. Two-dimensional generalized harmonic oscillators and their Darboux partners

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel


    We construct two-dimensional Darboux partners of the shifted harmonic oscillator potential and of an isotonic oscillator potential belonging to the Smorodinsky–Winternitz class of superintegrable systems. The transformed solutions, their potentials and the corresponding discrete energy spectra are computed in explicit form. (paper)

  8. Two-dimensional weak pseudomanifolds on eight vertices

    Indian Academy of Sciences (India)

    We explicitly determine all the two-dimensional weak pseudomanifolds on 8 vertices. We prove that there are (up to isomorphism) exactly 95 such weak pseudomanifolds, 44 of which are combinatorial 2-manifolds. These 95 weak pseudomanifolds triangulate 16 topological spaces. As a consequence, we prove that there ...

  9. Inter-layer Cooper pairing of two-dimensional electrons

    International Nuclear Information System (INIS)

    Inoue, Masahiro; Takemori, Tadashi; Yoshizaki, Ryozo; Sakudo, Tunetaro; Ohtaka, Kazuo


    The authors point out the possibility that the high transition temperatures of the recently discovered oxide superconductors are dominantly caused by the inter-layer Cooper pairing of two-dimensional electrons that are coupled through the exchange of three-dimensional phonons. (author)

  10. Symmetry Reductions of Two-Dimensional Variable Coefficient Burgers Equation (United States)

    Zhang, Xiao-Ling; Li, Biao


    By use of a direct method, we discuss symmetries and reductions of the two-dimensional Burgers equation with variable coefficient (VCBurgers). Five types of symmetry-reducing VCBurgers to (1+1)-dimensional partial differential equation and three types of symmetry reducing VCBurgers to ordinary differential equation are obtained.

  11. Interior design of a two-dimensional semiclassical black hole

    International Nuclear Information System (INIS)

    Levanony, Dana; Ori, Amos


    We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.

  12. Interior design of a two-dimensional semiclassical black hole (United States)

    Levanony, Dana; Ori, Amos


    We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.

  13. Vibrations of thin piezoelectric shallow shells: Two-dimensional ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two- dimensional eigenvalue problem. Keywords. Vibrations; piezoelectricity ...

  14. Two-dimensional microwave band-gap structures of different ...

    Indian Academy of Sciences (India)

    Abstract. We report the use of low dielectric constant materials to form two- dimensional microwave band-gap structures for achieving high gap-to-midgap ratio. The variable parameters chosen are the lattice spacing and the geometric structure. The se- lected geometries are square and triangular and the materials chosen ...

  15. Nonlinear dynamic characterization of two-dimensional materials

    NARCIS (Netherlands)

    Davidovikj, D.; Alijani, F.; Cartamil Bueno, S.J.; van der Zant, H.S.J.; Amabili, M.; Steeneken, P.G.


    Owing to their atomic-scale thickness, the resonances of two-dimensional (2D) material membranes show signatures of nonlinearities at forces of only a few picoNewtons. Although the linear dynamics of membranes is well understood, the exact relation between the nonlinear response and the resonator's

  16. Two-Dimensional Fourier Transform Analysis of Helicopter Flyover Noise (United States)

    SantaMaria, Odilyn L.; Farassat, F.; Morris, Philip J.


    A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to separate main rotor and tail rotor noise. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.

  17. Level crossings in complex two-dimensional potentials

    Indian Academy of Sciences (India)

    Two-dimensional P T -symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both ...

  18. Image Making in Two Dimensional Art; Experiences with Straw and ...

    African Journals Online (AJOL)

    Image making in art is professionally referred to as bust in Sculpture andPortraiture in Painting. It is an art form executed in three dimensional (3D)and two dimensional (2D) formats respectively. Uncountable materials havebeen used to achieve these forms of art; like clay cement, marble, stone,different metals and, fibre ...

  19. Optical properties of two-dimensional magnetoelectric point scattering lattices

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann; Sersic, Ivana; Koenderink, A. Femius


    We explore the electrodynamic coupling between a plane wave and an infinite two-dimensional periodic lattice of magnetoelectric point scatterers, deriving a semianalytical theory with consistent treatment of radiation damping, retardation, and energy conservation. We apply the theory to arrays...

  20. Magnetoelectronic transport of the two-dimensional electron gas in ...

    Indian Academy of Sciences (India)

    Abstract. Hall mobility and magnetoresistance coefficient for the two-dimensional (2D) electron transport parallel to the heterojunction interfaces in a single quantum well of. CdSe are calculated with a numerical iterative technique in the framework of Fermi–Dirac statistics. Lattice scatterings due to polar-mode longitudinal ...

  1. Divorticity and dihelicity in two-dimensional hydrodynamics

    DEFF Research Database (Denmark)

    Shivamoggi, B.K.; van Heijst, G.J.F.; Juul Rasmussen, Jens


    A framework is developed based on the concepts of divorticity B (≡×ω, ω being the vorticity) and dihelicity g (≡vB) for discussing the theoretical structure underlying two-dimensional (2D) hydrodynamics. This formulation leads to the global and Lagrange invariants that could impose significant...... constraints on the evolution of divorticity lines in 2D hydrodynamics....

  2. Supersymmetric quantum mechanics for two-dimensional disk

    Indian Academy of Sciences (India)

    Supersymmetric quantum mechanics for two-dimensional disk. AKIRA SUZUKI1, RANABIR DUTT2 and RAJAT K BHADURI1,3. 1Department of Physics, Tokyo University of Science, Tokyo 162-8601, Japan. 2Department of Physics, Visva Bharati University, Santiniketan 731 235, India. 3Department of Physics and ...

  3. Phase conjugated Andreev backscattering in two-dimensional ballistic cavities

    NARCIS (Netherlands)

    Morpurgo, A.F.; Holl, S.; Wees, B.J.van; Klapwijk, T.M; Borghs, G.


    We have experimentally investigated transport in two-dimensional ballistic cavities connected to a point contact and to two superconducting electrodes with a tunable macroscopic phase difference. The point contact resistance oscillates as a function of the phase difference in a way which reflects

  4. Noninteracting beams of ballistic two-dimensional electrons

    International Nuclear Information System (INIS)

    Spector, J.; Stormer, H.L.; Baldwin, K.W.; Pfeiffer, L.N.; West, K.W.


    We demonstrate that two beams of two-dimensional ballistic electrons in a GaAs-AlGaAs heterostructure can penetrate each other with negligible mutual interaction analogous to the penetration of two optical beams. This allows electrical signal channels to intersect in the same plane with negligible crosstalk between the channels

  5. Two-dimensional optimization of free-electron-laser designs (United States)

    Prosnitz, D.; Haas, R.A.


    Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  6. Protein mapping by two-dimensional high performance liquid chromatography

    NARCIS (Netherlands)

    Wagner, K.; Racaityte, K.; Unger, K.K.; Miliotis, T.; Edholm, L.E.; Bischoff, Rainer; Marko-Varga, G


    Current developments in drug discovery in the pharmaceutical industry require highly efficient analytical systems for protein mapping providing high resolution, robustness, sensitivity, reproducibility and a high throughput of samples. The potential of two-dimensional (2D) HPLC as a complementary

  7. Colloidal interactions in two-dimensional nematic emulsions

    Indian Academy of Sciences (India)

    These were reported to lead to a variety of novel self-organized colloidal structures, such as linear chains [5,6], periodic lattices [7], anisotropic clusters [3], and cellular structures [8] that are stabilized, in general, by topological defects. More recently, two-dimensional (2D) inverted nematic emulsions were also stud- ied and ...

  8. Tagging multiphoton ionization events by two-dimensional photoelectron spectroscopy

    NARCIS (Netherlands)

    de Groot, Mattijs; Broos, Jaap; Buma, Wybren Jan


    Two-dimensional photoelectron spectroscopy has been used to supply process-specific labels to multiphoton ionization events. Employing these tags, the authors can construct excitation and photoelectron spectra along predefined excitation routes in the neutral manifold and ionization routes to the

  9. A very useful experiment of two dimensional po- tential mapping ...

    Indian Academy of Sciences (India)

    A very useful experiment of two dimensional po- tential mapping, namely electrolytic tank model, for graduate and post graduate level physics stu- dents is given here. Laplace's equation is solved for the above and the results are compared with the experiment. The agreement· is so good that this is extended to complex ...

  10. Bounds on the capacity of constrained two-dimensional codes

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Justesen, Jørn


    Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run...

  11. Complex dynamical invariants for two-dimensional complex potentials

    Indian Academy of Sciences (India)

    Abstract. Complex dynamical invariants are searched out for two-dimensional complex poten- tials using rationalization method within the framework of an extended complex phase space characterized by x = x1 + ip3, y = x2 + ip4, px = p1 + ix3, py = p2 + ix4. It is found that the cubic oscillator and shifted harmonic oscillator ...

  12. Level crossings in complex two-dimensional potentials

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 73; Issue 2. Level crossings in complex two-dimensional potentials. Qing-Hai Wang. Volume 73 Issue 2 August 2009 pp ... Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both potentials respect the P T symmetry, the ...

  13. Weakly nonlinear analysis of two dimensional sheared granular flow

    NARCIS (Netherlands)

    Saitoh, K.; Hayakawa, Hisao


    Weakly nonlinear analysis of a two dimensional sheared granular flow is carried out under the Lees-Edwards boundary condition. We derive the time dependent Ginzburg–Landau equation of a disturbance amplitude starting from a set of granular hydrodynamic equations and discuss the bifurcation of the

  14. Fermi liquid of two-dimensional polar molecules

    NARCIS (Netherlands)

    Lu, Z.K; Shlyapnikov, G.V.


    We study Fermi-liquid properties of a weakly interacting two-dimensional gas of single-component fermionic polar molecules with dipole moments d oriented perpendicularly to the plane of their translational motion. This geometry allows the minimization of inelastic losses due to chemical reactions

  15. Zero sound in a two-dimensional dipolar Fermi gas

    NARCIS (Netherlands)

    Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.


    We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both

  16. Two-dimensional gel electrophoresis analysis of different parts of ...

    African Journals Online (AJOL)

    Two-dimensional gel electrophoresis analysis of different parts of Panax quinquefolius L. root. ... From these results it was concluded that proteomic analysis method was an effective way to identify the different parts of quinquefolius L. root. These findings may contribute to further understanding of the physiological ...

  17. TreePM Method for Two-Dimensional Cosmological Simulations ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle– ..... ment, we need less than 75 MB of RAM for a simulation with 10242 particles on a. 10242 grid.

  18. Nonexistence of extremal de Sitter black rings (United States)

    Khuri, Marcus; Woolgar, Eric


    We show that near-horizon geometries in the presence of a positive cosmological constant cannot exist with ring topology. In particular, de Sitter black rings with vanishing surface gravity do not exist. Our result relies on a known mathematical theorem which is a straightforward consequence of a type of energy condition for a modified Ricci tensor, similar to the curvature-dimension conditions for the m-Bakry-Émery-Ricci tensor.

  19. ''Massless'' vector field in de Sitter universe

    International Nuclear Information System (INIS)

    Garidi, T.; Gazeau, J.-P.; Rouhani, S.; Takook, M. V.


    We proceed to the quantization of the massless vector field in the de Sitter (dS) space. This work is the natural continuation of a previous article devoted to the quantization of the dS massive vector field [J. P. Gazeau and M. V. Takook, J. Math. Phys. 41, 5920 (2000); T. Garidi et al., ibid. 43, 6379 (2002).] The term ''massless'' is used by reference to conformal invariance and propagation on the dS lightcone whereas ''massive'' refers to those dS fields which unambiguously contract to Minkowskian massive fields at zero curvature. Due to the combined occurrences of gauge invariance and indefinite metric, the covariant quantization of the massless vector field requires an indecomposable representation of the de Sitter group. We work with the gauge fixing corresponding to the simplest Gupta-Bleuler structure. The field operator is defined with the help of coordinate-independent de Sitter waves (the modes). The latter are simple to manipulate and most adapted to group theoretical approaches. The physical states characterized by the divergencelessness condition are, for instance, easy to identify. The whole construction is based on analyticity requirements in the complexified pseudo-Riemannian manifold for the modes and the two-point function

  20. ``Massless'' vector field in de Sitter universe (United States)

    Garidi, T.; Gazeau, J.-P.; Rouhani, S.; Takook, M. V.


    We proceed to the quantization of the massless vector field in the de Sitter (dS) space. This work is the natural continuation of a previous article devoted to the quantization of the dS massive vector field [J. P. Gazeau and M. V. Takook, J. Math. Phys. 41, 5920 (2000); T. Garidi et al., ibid. 43, 6379 (2002).] The term ``massless'' is used by reference to conformal invariance and propagation on the dS lightcone whereas ``massive'' refers to those dS fields which unambiguously contract to Minkowskian massive fields at zero curvature. Due to the combined occurrences of gauge invariance and indefinite metric, the covariant quantization of the massless vector field requires an indecomposable representation of the de Sitter group. We work with the gauge fixing corresponding to the simplest Gupta-Bleuler structure. The field operator is defined with the help of coordinate-independent de Sitter waves (the modes). The latter are simple to manipulate and most adapted to group theoretical approaches. The physical states characterized by the divergencelessness condition are, for instance, easy to identify. The whole construction is based on analyticity requirements in the complexified pseudo-Riemannian manifold for the modes and the two-point function.

  1. Tuning spin transport across two-dimensional organometallic junctions (United States)

    Liu, Shuanglong; Wang, Yun-Peng; Li, Xiangguo; Fry, James N.; Cheng, Hai-Ping


    We study via first-principles modeling and simulation two-dimensional spintronic junctions made of metal-organic frameworks consisting of two Mn-phthalocyanine ferromagnetic metal leads and semiconducting Ni-phthalocyanine channels of various lengths. These systems exhibit a large tunneling magnetoresistance ratio; the transmission functions of such junctions can be tuned using gate voltage by three orders of magnitude. We find that the origin of this drastic change lies in the orbital alignment and hybridization between the leads and the center electronic states. With physical insight into the observed on-off phenomenon, we predict a gate-controlled spin current switch based on two-dimensional crystallines and offer general guidelines for designing spin junctions using 2D materials.

  2. Entanglement Entropy in Two-Dimensional String Theory. (United States)

    Hartnoll, Sean A; Mazenc, Edward A


    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.

  3. Duality-invariant class of two-dimensional field theories

    CERN Document Server

    Sfetsos, K


    We construct a new class of two-dimensional field theories with target spaces that are finite multiparameter deformations of the usual coset G/H-spaces. They arise naturally, when certain models, related by Poisson-Lie T-duality, develop a local gauge invariance at specific points of their classical moduli space. We show that canonical equivalences in this context can be formulated in loop space in terms of parafermionic-type algebras with a central extension. We find that the corresponding generating functionals are non-polynomial in the derivatives of the fields with respect to the space-like variable. After constructing models with three- and two-dimensional targets, we study renormalization group flows in this context. In the ultraviolet, in some cases, the target space of the theory reduces to a coset space or there is a fixed point where the theory becomes free.

  4. Transient two-dimensional fuel-concentration measurement technique (United States)

    Konishi, Tadashi; Naka, Syuji; Ito, Akihiko; Saito, Kozo


    We propose a nonintrusive experimental technique, the transient fuel-concentration measurement technique (TFMT), that is capable of being used to measure two-dimensional profiles of transient fuel concentrations over an open liquid fuel surface. The TFMT is based on single-wavelength holographic interferometry; its response time is less than 1 s and spatial resolution is 0.1 mol. % /0.1 mm. It was applied to measure both methanol vapor and n-propanol vapor concentrations. To assess the accuracy of the technique, our results were compared with steady-state methanol and n-propanol fuel-vapor concentrations measured by other researchers with a microsampling technique combined with gas chromatography. We found the TFMT to be accurate for on-line monitoring of two-dimensional profiles of fuel-vapor concentrations.

  5. Quasi-two-dimensional thermoelectricity in SnSe (United States)

    Tayari, V.; Senkovskiy, B. V.; Rybkovskiy, D.; Ehlen, N.; Fedorov, A.; Chen, C.-Y.; Avila, J.; Asensio, M.; Perucchi, A.; di Pietro, P.; Yashina, L.; Fakih, I.; Hemsworth, N.; Petrescu, M.; Gervais, G.; Grüneis, A.; Szkopek, T.


    Stannous selenide is a layered semiconductor that is a polar analog of black phosphorus and of great interest as a thermoelectric material. Unusually, hole doped SnSe supports a large Seebeck coefficient at high conductivity, which has not been explained to date. Angle-resolved photoemission spectroscopy, optical reflection spectroscopy, and magnetotransport measurements reveal a multiple-valley valence-band structure and a quasi-two-dimensional dispersion, realizing a Hicks-Dresselhaus thermoelectric contributing to the high Seebeck coefficient at high carrier density. We further demonstrate that the hole accumulation layer in exfoliated SnSe transistors exhibits a field effect mobility of up to 250 cm2/V s at T =1.3 K . SnSe is thus found to be a high-quality quasi-two-dimensional semiconductor ideal for thermoelectric applications.

  6. Two dimensional analytical model for a reconfigurable field effect transistor (United States)

    Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.


    This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.

  7. Recombination in one- and two-dimensional fitness landscapes. (United States)

    Avetisyan, Zh; Saakian, David B


    We consider many-site mutation-recombination models of molecular evolution, where fitness is a function of a Hamming distance from one (one-dimensional case) or two (two-dimensional case) sequences. For the one-dimensional case, we calculate the population distribution dynamics for a model with zero fitness and an arbitrary symmetric initial distribution and find an error threshold transition point in the single-peak fitness model for a given initial symmetric distribution. We calculate the recombination period in the case of a single-peak fitness function, when the original population is located at one sequence, at some Hamming distance from the peak configuration. Steady-state fitness is calculated with finite genome length corrections. We derive analytical equations for the two-dimensional mutation-recombination model.

  8. Two-dimensional time dependent Riemann solvers for neutron transport

    International Nuclear Information System (INIS)

    Brunner, Thomas A.; Holloway, James Paul


    A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem

  9. Dynamics of vortex interactions in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.


    The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...... a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 ... is effectively producing small scale structures and the relation to the enstrophy "cascade" in developed 2D turbulence is discussed. The influence of finite viscosity on the merging is also investigated. Additionally, we examine vortex interactions on a finite domain, and discuss the results in connection...

  10. Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas

    International Nuclear Information System (INIS)

    Valeo, E.J.; Kramer, G.J.; Nazikian, R.


    A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed

  11. Vortex annihilation and inverse cascades in two dimensional superfluid turbulence (United States)

    Lucas, Andrew; Chesler, Paul M.


    The dynamics of a dilute mixture of vortices and antivortices in a turbulent two-dimensional superfluid at finite temperature is well described by first order Hall-Vinen-Iordanskii equations, or dissipative point vortex dynamics. These equations are governed by a single dimensionless parameter: the ratio of the strength of drag forces to Magnus forces on vortices. When this parameter is small, we demonstrate using numerical simulations that the resulting superfluid enjoys an inverse energy cascade where small scale stirring leads to large scale vortex clustering. We argue analytically and numerically that the vortex annihilation rate in a laminar flow may be parametrically smaller than the rate in a turbulent flow with an inverse cascade. This suggests a new way to detect inverse cascades in experiments on two-dimensional superfluid turbulence using cold atomic gases, where traditional probes of turbulence such as the energy spectrum are not currently accessible.

  12. Two-dimensional turbulence in three-dimensional flows (United States)

    Xia, H.; Francois, N.


    This paper presents a review of experiments performed in three-dimensional flows that show behaviour associated with two-dimensional turbulence. Experiments reveal the presence of the inverse energy cascade in two different systems, namely, flows in thick fluid layers driven electromagnetically and the Faraday wave driven flows. In thick fluid layers, large-scale coherent structures can shear off the vertical eddies and reinforce the planarity of the flow. Such structures are either self-generated or externally imposed. In the Faraday wave driven flows, a seemingly three-dimensional flow is shown to be actually two-dimensional when it is averaged over several Faraday wave periods. In this system, a coupling between the wave motion and 2D hydrodynamic turbulence is uncovered.


    Directory of Open Access Journals (Sweden)

    Toth Reka


    Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.

  14. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine


    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...

  15. Two-dimensional cephalometry and computerized orthognathic surgical treatment planning. (United States)

    Kusnoto, Budi


    Cephalometric radiographs provide for standardized skull/facial views that allow for comparison over time to assess growth in an individual, and to compare that individual against standardized population norms. Cephalometric analysis and surgical prediction are done by robust cephalometric imaging software that can rapidly analyze the radiograph, and retrace and recalculate the analysis for a variety of possible surgical outcomes; however, the validity of the prediction depends on the accuracy of the records, the algorithm specific to the software, and the specifics of the patient population. Three-dimensional digital imaging to replace conventional two-dimensional photographic images and CT scans, with corresponding cephalometric analysis to replace two-dimensional cephalometric films, is already on the horizon.

  16. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: [Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Zhang, Meiyun; Long, Shibing [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Lian, Xiaojuan; Miao, Feng [National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Larcher, Luca [DISMI, Università di Modena e Reggio Emilia, 42122 Reggio Emilia (Italy); Wu, Ernest [IBM Research Division, Essex Junction, Vermont 05452 (United States)


    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  17. The stability of a two-dimensional rising bubble

    International Nuclear Information System (INIS)

    Nie, Q.; Tanveer, S.


    The stability of an inviscid two-dimensional bubble subject to two-dimensional disturbances is considered and the bubbles are found to be linearly stable for all Weber numbers, for which a steady solution is known. Certain aspects of the nonlinear initial value problem are also studied. An initial condition that consists of a superposition of a suitable symmetric eigenmode (of the linear stability operator) on a steady state is found to result in pinching of the bubble neck as it tends to oscillate about the steady state. An estimate of the threshold amplitude of such a disturbance needed to cause breakup of a large aspect ratio bubble is obtained. The presence of gravity appears to inhibit this pinching process

  18. Linear negative magnetoresistance in two-dimensional Lorentz gases (United States)

    Schluck, J.; Hund, M.; Heckenthaler, T.; Heinzel, T.; Siboni, N. H.; Horbach, J.; Pierz, K.; Schumacher, H. W.; Kazazis, D.; Gennser, U.; Mailly, D.


    Two-dimensional Lorentz gases formed by obstacles in the shape of circles, squares, and retroreflectors are reported to show a pronounced linear negative magnetoresistance at small magnetic fields. For circular obstacles at low number densities, our results agree with the predictions of a model based on classical retroreflection. In extension to the existing theoretical models, we find that the normalized magnetoresistance slope depends on the obstacle shape and increases as the number density of the obstacles is increased. The peaks are furthermore suppressed by in-plane magnetic fields as well as by elevated temperatures. These results suggest that classical retroreflection can form a significant contribution to the magnetoresistivity of two-dimensional Lorentz gases, while contributions from weak localization cannot be excluded, in particular for large obstacle densities.

  19. Directional detection of dark matter with two-dimensional targets

    Directory of Open Access Journals (Sweden)

    Yonit Hochberg


    Full Text Available We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. We show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. This proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.

  20. Directional detection of dark matter with two-dimensional targets (United States)

    Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Tully, Christopher G.; Zurek, Kathryn M.


    We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. We show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. This proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.

  1. Robust L1-norm two-dimensional linear discriminant analysis. (United States)

    Li, Chun-Na; Shao, Yuan-Hai; Deng, Nai-Yang


    In this paper, we propose an L1-norm two-dimensional linear discriminant analysis (L1-2DLDA) with robust performance. Different from the conventional two-dimensional linear discriminant analysis with L2-norm (L2-2DLDA), where the optimization problem is transferred to a generalized eigenvalue problem, the optimization problem in our L1-2DLDA is solved by a simple justifiable iterative technique, and its convergence is guaranteed. Compared with L2-2DLDA, our L1-2DLDA is more robust to outliers and noises since the L1-norm is used. This is supported by our preliminary experiments on toy example and face datasets, which show the improvement of our L1-2DLDA over L2-2DLDA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Folding two dimensional crystals by swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Ochedowski, Oliver; Bukowska, Hanna; Freire Soler, Victor M.; Brökers, Lara; Ban-d'Etat, Brigitte; Lebius, Henning; Schleberger, Marika


    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS 2 and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS 2 does not

  3. Folding two dimensional crystals by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)


    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.

  4. Logarithmic Superdiffusion in Two Dimensional Driven Lattice Gases (United States)

    Krug, J.; Neiss, R. A.; Schadschneider, A.; Schmidt, J.


    The spreading of density fluctuations in two-dimensional driven diffusive systems is marginally anomalous. Mode coupling theory predicts that the diffusivity in the direction of the drive diverges with time as (ln t)^{2/3} with a prefactor depending on the macroscopic current-density relation and the diffusion tensor of the fluctuating hydrodynamic field equation. Here we present the first numerical verification of this behavior for a particular version of the two-dimensional asymmetric exclusion process. Particles jump strictly asymmetrically along one of the lattice directions and symmetrically along the other, and an anisotropy parameter p governs the ratio between the two rates. Using a novel massively parallel coupling algorithm that strongly reduces the fluctuations in the numerical estimate of the two-point correlation function, we are able to accurately determine the exponent of the logarithmic correction. In addition, the variation of the prefactor with p provides a stringent test of mode coupling theory.

  5. Constraints and hidden symmetry in two-dimensional gravity

    Energy Technology Data Exchange (ETDEWEB)

    Barcelos-Neto, J. (Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21945-970 (Brazil))


    We study the hidden symmetry of Polyakov two-dimensional gravity by means of first-class constraints. These are obtained from the combination of Fourier mode expansions of the usual (second-class) constraints of the theory. We show that, more than the usual SL(2,[ital R]), there is a hidden Virasoro symmetry in the theory. The results of the above analysis are also confirmed from the point of view of a geometrical symplectic treatment.

  6. Two-dimensional simulation of the MHD stability, (1)

    International Nuclear Information System (INIS)

    Kurita, Gen-ichi; Amano, Tsuneo.


    The two-dimensional computer code has been prepared to study MHD stability of an axisymmetric toroidal plasma with and without the surrounding vacuum region. It also includes the effect of magnetic surfaces with non-circular cross sections. The linearized equations of motion are solved as an initial value problem. The results by computer simulation are compared with those by the theory for the cylindrical plasma; they are in good agreement. (auth.)

  7. Decaying Two-Dimensional Turbulence in a Circular Container


    Schneider, Kai; Farge, Marie


    We present direct numerical simulations of two-dimensional decaying turbulence at initial Reynolds number 5×104 in a circular container with no-slip boundary conditions. Starting with random initial conditions the flow rapidly exhibits self-organization into coherent vortices. We study their formation and the role of the viscous boundary layer on the production and decay of integral quantities. The no-slip wall produces vortices which are injected into the bulk flow and tend to compensate the...

  8. Stochastic and collisional diffusion in two-dimensional periodic flows

    International Nuclear Information System (INIS)

    Doxas, I.; Horton, W.; Berk, H.L.


    The global effective diffusion coefficient D* for a two-dimensional system of convective rolls with a time dependent perturbation added, is calculated. The perturbation produces a background diffusion coefficient D, which is calculated analytically using the Menlikov-Arnold integral. This intrinsic diffusion coefficient is then enhanced by the unperturbed flow, to produce the global effective diffusion coefficient D*, which we can calculate theoretically for a certain range of parameters. The theoretical value agrees well with numerical simulations. 23 refs., 4 figs

  9. An energy principle for two-dimensional collisionless relativistic plasmas

    International Nuclear Information System (INIS)

    Otto, A.; Schindler, K.


    Using relativistic Vlasov theory an energy principle for two-dimensional plasmas is derived, which provides a sufficient and necessary criterion for the stability of relativistic plasma equilibria. This energy principle includes charge separating effects since the exact Poisson equation was taken into consideration. Applying the variational principle to the case of the relativistic plane plasma sheet, the same marginal wave length is found as in the non-relativistic case. (author)

  10. New Two-Dimensional Polynomial Failure Criteria for Composite Materials


    Zhao, Shi Yang; Xue, Pu


    The in-plane damage behavior and material properties of the composite material are very complex. At present, a large number of two-dimensional failure criteria, such as Chang-Chang criteria, have been proposed to predict the damage process of composite structures under loading. However, there is still no good criterion to realize it with both enough accuracy and computational performance. All these criteria cannot be adjusted by experimental data. Therefore, any special properties of composit...

  11. Two-dimensional heat conducting simulation of plasma armatures

    International Nuclear Information System (INIS)

    Huerta, M.A.; Boynton, G.


    This paper reports on our development of a two-dimensional MHD code to simulate internal motions in a railgun plasma armature. The authors use the equations of resistive MHD, with Ohmic heating, and radiation heat transport. The authors use a Flux Corrected Transport code to advance all quantities in time. Our runs show the development of complex flows, subsequent shedding of secondary arcs, and a drop in the acceleration of the armature

  12. Topological field theories and two-dimensional instantons

    International Nuclear Information System (INIS)

    Schaposnik, F.A.


    In this paper, the author discusses some topics related to the recently developed Topological Field Theories (TFTs). The first part is devoted to a discussion on how a TFT can be quantized using techniques which are well-known from the study of gauge theories. Then the author describes the results that we have obtained in collaboration with George Thompson in the study of a two-dimensional TFT related to the Abelian Higgs model

  13. Pseudospectral reduction of incompressible two-dimensional turbulence (United States)

    Bowman, John C.; Roberts, Malcolm


    Spectral reduction was originally formulated entirely in the wavenumber domain as a coarse-grained wavenumber convolution in which bins of modes interact with enhanced coupling coefficients. A Liouville theorem leads to inviscid equipartition solutions when each bin contains the same number of modes. A pseudospectral implementation of spectral reduction which enjoys the efficiency of the fast Fourier transform is described. The model compares well with full pseudospectral simulations of the two-dimensional forced-dissipative energy and enstrophy cascades.

  14. Warranty menu design for a two-dimensional warranty

    International Nuclear Information System (INIS)

    Ye, Zhi-Sheng; Murthy, D.N. Pra


    Fierce competitions in the commercial product market have forced manufacturers to provide customer-friendly warranties with a view to achieving higher customer satisfaction and increasing the market share. This study proposes a strategy that offers customers a two-dimensional warranty menu with a number of warranty choices, called a flexible warranty policy. We investigate the design of a flexible two-dimensional warranty policy that contains a number of rectangular regions. This warranty policy is obtained by dividing customers into several groups according to their use rates and providing each group a germane warranty region. Consumers choose a favorable one from the menu according to their usage behaviors. Evidently, this flexible warranty policy is attractive to users of different usage behaviors, and thus, it gives the manufacturer a good position in advertising the product. When consumers are unaware about their use rates upon purchase, we consider a fixed two-dimensional warranty policy with a stair-case warranty region and show that it is equivalent to the flexible policy. Such an equivalence reveals the inherent relationship between the rectangular warranty policy, the L-shape warranty policy, the step-stair warranty policy and the iso-probability of failure warranty policy that were extensively discussed in the literature. - Highlights: • We design a two-dimensional warranty menu with a number of warranty choices. • Consumers can choose a favorable one from the menu as per their usage behavior. • We further consider a fixed 2D warranty policy with a stair-case warranty region. • We show the equivalence of the two warranty policies.

  15. Stability theory for a two-dimensional channel (United States)

    Troshkin, O. V.


    A scheme for deriving conditions for the nonlinear stability of an ideal or viscous incompressible steady flow in a two-dimensional channel that is periodic in one direction is described. A lower bound for the main factor ensuring the stability of the Reynolds-Kolmogorov sinusoidal flow with no-slip conditions (short wavelength stability) is improved. A condition for the stability of a vortex strip modeling Richtmyer-Meshkov fluid vortices (long wavelength stability) is presented.

  16. Effective mass of two-dimensional He3

    International Nuclear Information System (INIS)

    Boronat, J.; Casulleras, J.; Grau, V.; Krotscheck, E.; Springer, J.


    We use structural information from diffusion Monte Carlo calculations for two-dimensional He 3 to calculate the effective mass. Static effective interactions are constructed from the density and spin-structure functions using sum rules. We find that both spin and density fluctuations contribute about equally to the effective mass. Our results show, in agreement with recent experiments, a flattening of the single-particle self-energy with increasing density, which eventually leads to a divergent effective mass

  17. SU(1,2) invariance in two-dimensional oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Krivonos, Sergey [Bogoliubov Laboratory of Theoretical Physics,Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nersessian, Armen [Yerevan State University,1 Alex Manoogian St., Yerevan, 0025 (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)


    Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756, with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written in terms of the oscillator variables.

  18. Two-dimensional gel electrophoretic method for mapping DNA replicons.


    Nawotka, K A; Huberman, J A


    We describe in detail a method which allows determination of the directions of replication fork movement through segments of DNA for which cloned probes are available. The method uses two-dimensional neutral-alkaline agarose gel electrophoresis followed by hybridization with short probe sequences. The nascent strands of replicating molecules form an arc separated from parental and nonreplicating strands. The closer a probe is to its replication origin or to the origin-proximal end of its rest...

  19. On Two-Dimensional Quaternion Wigner-Ville Distribution

    Directory of Open Access Journals (Sweden)

    Mawardi Bahri


    Full Text Available We present the two-dimensional quaternion Wigner-Ville distribution (QWVD. The transform is constructed by substituting the Fourier transform kernel with the quaternion Fourier transform (QFT kernel in the classical Wigner-Ville distribution definition. Based on the properties of quaternions and the QFT kernel we obtain three types of the QWVD. We discuss some useful properties of various definitions for the QWVD, which are extensions of the classical Wigner-Ville distribution properties.

  20. Acoustic transparency in two-dimensional sonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Dehesa, Jose; Torrent, Daniel [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/ Camino de Vera s/n, E-46022 Valencia (Spain); Cai Liangwu [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)], E-mail:


    Acoustic transparency is studied in two-dimensional sonic crystals consisting of hexagonal distributions of cylinders with continuously varying properties. The transparency condition is achieved by selectively closing the acoustic bandgaps, which are governed by the structure factor of the cylindrical scatterers. It is shown here that cylindrical scatterers with the proposed continuously varying properties are physically realizable by using metafluids based on sonic crystals. The feasibility of this proposal is analyzed by a numerical experiment based on multiple scattering theory.

  1. Analysis of two dimensional signals via curvelet transform (United States)

    Lech, W.; Wójcik, W.; Kotyra, A.; Popiel, P.; Duk, M.


    This paper describes an application of curvelet transform analysis problem of interferometric images. Comparing to two-dimensional wavelet transform, curvelet transform has higher time-frequency resolution. This article includes numerical experiments, which were executed on random interferometric image. In the result of nonlinear approximations, curvelet transform obtains matrix with smaller number of coefficients than is guaranteed by wavelet transform. Additionally, denoising simulations show that curvelet could be a very good tool to remove noise from images.

  2. On the Initial Singularity Problem in Two Dimensional Quantum Cosmology


    Gamboa, J.


    The problem of how to put interactions in two-dimensional quantum gravity in the strong coupling regime is studied. It shows that the most general interaction consistent with this symmetry is a Liouville term that contain two parameters $(\\alpha, \\beta)$ satisfying the algebraic relation $2\\beta - \\alpha =2$ in order to assure the closure of the diffeomorphism algebra. The model is classically soluble and it contains as general solution the temporal singularity. The theory is quantized and we...

  3. Negative differential Rashba effect in two-dimensional hole systems


    Habib, B.; Tutuc, E.; Melinte, S.; Shayegan, M.; Wasserman, D.; Lyon, S. A.; Winkler, R.


    We demonstrate experimentally and theoretically that two-dimensional (2D) heavy hole systems in single heterostructures exhibit a \\emph{decrease} in spin-orbit interaction-induced spin splitting with an increase in perpendicular electric field. Using front and back gates, we measure the spin splitting as a function of applied electric field while keeping the density constant. Our results are in contrast to the more familiar case of 2D electrons where spin splitting increases with electric field.

  4. Spontaneous spiral formation in two-dimensional oscillatory media (United States)

    Kettunen, Petteri; Amemiya, Takashi; Ohmori, Takao; Yamaguchi, Tomohiko


    Computational studies of pattern formation in a modified Oregonator model of the Belousov-Zhabotinsky reaction is described. Initially inactive two-dimensional reaction media with an immobilized catalyst is connected to a reservoir of fresh reactants through a set of discrete points distributed randomly over the interphase surface. It is shown that the diffusion of reactants combined with oscillatory reaction kinetics can give rise to spontaneous spiral formation and phase waves.

  5. Canard solutions of two-dimensional singularly perturbed systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xianfeng [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China)]. E-mail:; Yu Pei [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Applied Mathematics, University of Western Ontario London, Ont., N6A 5B7 (Canada); Han Maoan [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Weijiang [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China)


    In this paper, some new lemmas on asymptotic analysis are established. We apply an asymptotic method to study generalized two-dimensional singularly perturbed systems with one parameter, whose critical manifold has an m-22 th-order degenerate extreme point. Certain sufficient conditions are obtained for the existence of canard solutions, which are the extension and correction of some existing results. Finally, one numerical example is given.

  6. Quantum oscillations in quasi-two-dimensional conductors

    CERN Document Server

    Galbova, O


    The electronic absorption of sound waves in quasi-two-dimensional conductors in strong magnetic fields, is investigated theoretically. A longitudinal acoustic wave, propagating along the normal n-> to the layer of quasi-two-dimensional conductor (k-> = left brace 0,0,k right brace; u-> = left brace 0,0,u right brace) in magnetic field (B-> = left brace 0, 0, B right brace), is considered. The quasiclassical approach for this geometry is of no interest, due to the absence of interaction between electromagnetic and acoustic waves. The problem is of interest in strong magnetic field when quantization of the charge carriers energy levels takes place. The quantum oscillations in the sound absorption coefficient, as a function of the magnetic field, are theoretically observed. The experimental study of the quantum oscillations in quasi-two-dimensional conductors makes it possible to solve the inverse problem of determining from experimental data the extrema closed sections of the Fermi surface by a plane p sub z = ...

  7. Electromagnetically induced two-dimensional grating assisted by incoherent pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail:


    We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.

  8. Observations of two-dimensional monolayer zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Trilochan, E-mail: [Department of Physics and Nanotechnology, SRM University, Kattankulathur, 603203 Tamilnadu (India); Nayak, Sanjeev K. [Institute of Physics, Martin Luther University Halle-Wittenberg, Von Seckendorff Platz 1, 06120 Halle (Germany); Chelliah, Pandian [Department of Physics and Nanotechnology, SRM University, Kattankulathur, 603203 Tamilnadu (India); Rath, Manasa K.; Parida, Bhaskar [Division of Advanced Materials Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of)


    Highlights: • Synthesis of planer ZnO nanostructure. • Observation of multilayered and monolayer ZnO. • DFT calculation of (10-10), (11-20) and (0 0 0 1) planes of ZnO. • Stability of non-polar (10-10) and (11-20) planes of ZnO. - Abstract: This letter reports the observations of planar two-dimensional ZnO synthesized using the hydrothermal growth technique. High-resolution transmission electron microscopy revealed the formation of a two-dimensional honeycomb lattice and aggregated structures of layered ZnO. The nonpolar (10-10) and (11-20) planes were present in the X-ray diffraction patterns, but the characteristic (0 0 0 1) peak of bulk ZnO was absent. The study found that nonpolar freestanding ZnO structures composed of a single or few layers may be more stable and may have a higher probability of formation than their polar counterparts. The stability of the nonpolar two-dimensional hexagonal ZnO slabs is supported by density functional theory studies.

  9. Two-Dimensional Identification of Fetal Tooth Germs. (United States)

    Seabra, Mariana; Vaz, Paula; Valente, Francisco; Braga, Ana; Felino, António


      To demonstrate the efficiency and applicability of two-dimensional ultrasonography in the identification of tooth germs and in the assessment of potential pathology.   Observational, descriptive, cross-sectional study.   Prenatal Diagnosis Unit of Centro Hospitalar de Vila Nova de Gaia / Espinho-Empresa Pública in Portugal.   A total of 157 white pregnant women (median age, 32 years; range, 14 to 47 years) undergoing routine ultrasound exams.   Description of the fetal tooth germs, as visualized by two-dimensional ultrasonography, including results from prior fetal biometry and detailed screening for malformations.   In the first trimester group, ultrasonography identified 10 tooth germs in the maxilla and 10 tooth germs in the mandible in all fetuses except for one who presented eight maxillary tooth germs. This case was associated with a chromosomal abnormality (trisomy 13) with a bilateral cleft palate. In the second and third trimesters group, ultrasonography identified a larger range of tooth germs: 81.2% of fetuses showed 10 tooth germs in the maxilla and 85.0% of fetuses had 10 tooth germs in the mandible. Hypodontia was more prevalent in the maxilla than in the mandible, which led us to use qualitative two-dimensional ultrasonography to analyze the possible association between hypodontia and other variables such as fetal pathology, markers, head, nuchal, face, and spine.   We recommend using this method as the first exam to evaluate fetal morphology and also to help establish accurate diagnosis of abnormalities in pregnancy.

  10. H₂ sensing properties of two-dimensional zinc oxide nanostructures. (United States)

    Tonezzer, Matteo; Iannotta, Salvatore


    In this work we have grown particular zinc oxide two-dimensional nanostructures which are essentially a series of hexagonal very thin sheets. The hexagonal wurtzite crystal structure gives them their peculiar shape, whose dimensions are few microns wide, with a thickness in the order of 25 nm. Such kind of nanostructure, grown by thermal oxidation of evaporated metallic zinc on a silica substrate, has been used to fabricate conductometric gas sensors, investigated then for hydrogen gas detection. The "depletion layer sensing mechanism" is clarified, explaining how the geometrical factors of one- and two-dimensional nanostructures affect their sensing parameters. The comparison with one-dimensional ZnO nanowires based structures shows that two-dimensional nanostructures are ideal for gas sensing, due to their tiny thickness, which is comparable to the depletion-layer thickness, and their large cross-section, which increases the base current, thus lowering the limit of detection. The response to H₂ has been found good even to sub-ppm concentrations, with response and recovery times shorter than 18s in the whole range of H₂ concentrations investigated (500 ppb-10 ppm). The limit of detection has been found around 200 ppb for H₂ gas even at relatively low working temperature (175 °C). Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Procedures for two-dimensional electrophoresis of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tollaksen, S.L.; Giometti, C.S.


    High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.

  12. Analysis techniques for two-dimensional infrared data (United States)

    Winter, E. M.; Smith, M. C.


    In order to evaluate infrared detection and remote sensing systems, it is necessary to know the characteristics of the observational environment. For both scanning and staring sensors, the spatial characteristics of the background may be more of a limitation to the performance of a remote sensor than system noise. This limitation is the so-called spatial clutter limit and may be important for systems design of many earth application and surveillance sensors. The data used in this study is two dimensional radiometric data obtained as part of the continuing NASA remote sensing programs. Typical data sources are the Landsat multi-spectral scanner (1.1 micrometers), the airborne heat capacity mapping radiometer (10.5 - 12.5 micrometers) and various infrared data sets acquired by low altitude aircraft. Techniques used for the statistical analysis of one dimensional infrared data, such as power spectral density (PSD), exceedance statistics, etc. are investigated for two dimensional applicability. Also treated are two dimensional extensions of these techniques (2D PSD, etc.), and special techniques developed for the analysis of 2D data.

  13. Sufficient Controllability Condition for Affine Systems with Two-Dimensional Control and Two-Dimensional Zero Dynamics

    Directory of Open Access Journals (Sweden)

    D. A. Fetisov


    Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved

  14. Nonequilibrium Dynamics of the σ-Model Modes on the de Sitter Space

    Directory of Open Access Journals (Sweden)

    Ion V. Vancea


    Full Text Available The two-dimensional σ-model with the de Sitter target space is locally canonic in the north pole diamond of the Penrose diagram in the cosmological gauge. The left and right moving modes on the cylindrical base space are entangled among themselves and interact with the de Sitter metric. Firstly, we show that the untangled oscillators can be obtained from the entangled operators by applying a set of Bogoliubov transformations constrained by the requirement that the partial evolution generator be diagonal. Secondly, we determine the nonequilibrium dynamics of the untangled modes in the nonequilibrium thermofield dynamics formalism. The thermal modes are represented as thermal doublet oscillators that satisfy partial evolution equations of Heisenberg-type. From these we compute the local free one-body propagator of an arbitrary mode between two times. Thirdly, we discuss the field representation of the thermal modes. We show that there is a set of thermal doublet fields that satisfy the equal time canonical commutation relations, are solutions to the σ-model equations of motion, and can be decomposed in terms of thermal doublet oscillators. Finally, we construct a local partial evolution functional of Hamilton-like form for the thermal doublet fields.

  15. Quantum field theory in curved space-times: with an application to the reduced model of deSitter universe

    International Nuclear Information System (INIS)

    Peter, I. J.


    The work deals with space-times with fixed background metric. The topics were arranged in a straight course, the first chapter collects basic facts on Lorentzian manifolds as time-orientability, causal structure, ... Further free neutral scalar fields and spinor fields described by the Klein-Gordon equation resp. the Dirac equation are dealt with. Having in mind the construction of the Weyl algebra and the Fermi algebra in the second chapter, it was put emphasis on the structure of the spaces of solutions of these equations: In the first case the space of solutions is a symplectic vector space in a canonical manner, in the second case a Hilbert space. It was made some effort to stay as general as possible. Most of the material in the second chapter already exists for several years, but it is largely scattered over various journal articles. In the third chapter the construction of a vacuum on the special example of deSitter universe is described. A close investigation of a recent work by J. Bros and U. Moschella made it possible to refine a result concerning temperature felt by an accelerated observer in deSitter space. The last part of this thesis is concerned with vacua for spinor fields on the two-dimensional deSitter universe. A procedure introduced by R. Haag, H. Narnhofer and U. Stein for four dimensional space-times does not seem to work in two dimensions. (author)

  16. De Sitter structured connection and gauge translations

    International Nuclear Information System (INIS)

    Aldinger, R.R.


    A local gauge field description of space-time is discussed using fiber bundle techniques as a theoretical framework. The basic idea is to endow ordinary Minkowski space, M 4 , with a somewhat richer structure than that implied by relativity by attaching to each position x epsilon M 4 a copy of a four-dimensional micro-space of constant curvature characterized by an elementary subatomic length parameter R of the order of a Fermi, thus allowing for additional internal degrees-of-freedom. Therefore, two sets of variables are introduced: (i) the usual space-time variables x which determine an element of M 4 and (ii) a second set zeta which are elements of an internal space F (which is identified with the fiber of a bundle constructed over M 4 ). Consequently, they consider a fiber bundle E(B,F,G,P) constructed over a four-dimensional base manifold B (which is taken to be the usual Minkowski space, M 4 ), possessing a four-dimensional fiber F, and associated with the principal bundle P=P(B,G) (on which the connection is defined). The structural (gauge) group G of the bundle plays the role of an internal symmetry group and therefore determines the possible motions of the internal degrees-of-freedom belonging to the fibers. As fiber they choose a four-dimensional pseudo-Riemannian space of constant (negative) curvature R:F = SO(4,1)/SO(3,1) (i.e., a de Sitter space) which contains, at each point of contact with base manifold M 4 , a tangent space which is isomorphic to Minkowski space. The structural group of the bundle is a de Sitter SO(4,1) which contains a Lorentz subgroup and a four parameter family of transformations (the de Sitter boosts), which in the limit R → ∞ corresponding to translations. 10 references

  17. De Sitter universes and the emerging landscape in string theory

    Indian Academy of Sciences (India)

    gravity coupled to a positive cosmological constant gives rise to an exponentially expanding solution, called the de Sitter ... Thus thinking of this question brings us to the frontiers of our understanding of string ... calculated, and those with a positive value give rise to de Sitter universes. In the rest of this article I will describe a ...

  18. Compact space-like hypersurfaces in de Sitter space


    Jinchi Lv


    We present some integral formulas for compact space-like hypersurfaces in de Sitter space and some equivalent characterizations for totally umbilical compact space-like hypersurfaces in de Sitter space in terms of mean curvature and higher-order mean curvatures.

  19. Analytic extension of the Schwarzschild-de Sitter metric

    International Nuclear Information System (INIS)

    Bazanski, S.L.; Ferrari, V.


    In this paper, co-ordinates are derived that are regular, respectively, in the neighbourhood of the two horizons which exist in the so-called Schwarzschild-de Sitter solution known in general relativity, and it is constructed a manifold that is the analytic extension of the manifold being the domain of classical Schwarzschild-de Sitter co-ordinates

  20. Constraining de Sitter Space in String Theory. (United States)

    Kutasov, David; Maxfield, Travis; Melnikov, Ilarion; Sethi, Savdeep


    We argue that the heterotic string does not have classical vacua corresponding to de Sitter space-times of dimension four or higher. The same conclusion applies to type II vacua in the absence of Ramond-Ramond fluxes. Our argument extends prior supergravity no-go results to regimes of high curvature. We discuss the interpretation of the heterotic result from the perspective of dual type II orientifold constructions. Our result suggests that the genericity arguments used in string landscape discussions should be viewed with caution.

  1. Pair of accelerated black holes in a de Sitter background: The dS C metric

    International Nuclear Information System (INIS)

    Dias, Oscar J.C.; Lemos, Jose P.S.


    Following the work of Kinnersley and Walker for flat spacetimes, we analyzed the anti-de Sitter C metric in a previous paper. In this paper we study the de Sitter C metric (dS C metric). The C metric with a generic cosmological constant and other extra parameters was introduced by Plebanski and Demianski. When one then sets to zero some of the extra parameters, and works with a positive cosmological constant, one has the dS C metric which has been analyzed and physically interpreted by Podolsky and Griffiths. It describes a pair of accelerated black holes in the dS background with the acceleration being provided (in addition to the cosmological constant) by a strut that pushes away the two black holes or, alternatively, by a string that pulls them. We extend their analysis mainly in four directions. First, we draw the Carter-Penrose diagrams of the massless uncharged dS C metric, of the massive uncharged dS C metric and of the massive charged dS C metric. These diagrams allow us to clearly identify the presence of two dS black holes and to conclude that they cannot interact gravitationally. Second, we reexamine the embedding of the dS C metric in the 5D Minkowski spacetime and we represent the motion of the dS C metric origin in the dS 4-hyperboloid as well as the localization of the strut. Third, we comment on the physical properties of the strut that connects the two black holes. Finally, we find the range of parameters that correspond to nonextreme black holes, extreme black holes, and naked particles

  2. Statistical mechanics of two-dimensional and geophysical flows

    International Nuclear Information System (INIS)

    Bouchet, Freddy; Venaille, Antoine


    The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. After a brief presentation of the 2D Euler and quasi-geostrophic equations, the specificity of two-dimensional and geophysical turbulence is emphasized. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations and mean field approach) and thermodynamic concepts (ensemble inequivalence and negative heat capacity) are briefly explained and described. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations is provided. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equilibrium steady states. In this last case, forces and dissipation are in a statistical balance; fluxes of conserved quantity characterize the system and microcanonical or other equilibrium measures no longer describe the system.

  3. Two-dimensional polyacrylamide gel electrophoresis of intracellular proteins

    International Nuclear Information System (INIS)

    Ojima, N.; Sakamoto, T.; Yamashita, M.


    Since two-dimensional electrophoresis was established by O'Farrell for analysis of intracellular proteins of Escherichia coli, it has been applied to separation of proteins of animal cells and tissues, and especially to identification of stress proteins. Using this technique, proteins are separated by isoelectric focusing containing 8 m urea in the first dimension and by SDS-PAGE in the second dimension. The gels are stained with Coomassie Blue R-250 dye, followed by silver staining. In the case of radio-labeled proteins, the gels are dried and then autoradiographed. In order to identify a specific protein separated by two-dimensional electrophoresis, a technique determining the N-terminal amino acid sequence of the protein has been developed recently. After the proteins in the gel were electrotransferred to a polyvinylidene difluoride membrane, the membrane was stained for protein with Commassie Blue and a stained membrane fragment was applied to a protein sequencer. Our recent studies demonstrated that fish cells newly synthesized various proteins in response to heat shock, cold nd osmotic stresses. For example, when cellular proteins extracted from cold-treated rainbow trout cells were subjected to two-dimensional gel electrophoresis, the 70 kDa protein was found to be synthesized during the cold-treatment. N-Terminal sequence analysis showed that the cold-inducible protein was a homolog of mammalian valosin-containing protein and yeast cell division cycle gene product CDC48p. Furthermore, the sequence data were useful for preparing PCR primers and a rabbit antibody against a synthetic peptide to analyze a role for the protein in the function of trout cells and mechanisms for regulation

  4. Graphene and Two-Dimensional Materials for Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Andreas Bablich


    Full Text Available This article reviews optoelectronic devices based on graphene and related two-dimensional (2D materials. The review includes basic considerations of process technology, including demonstrations of 2D heterostructure growth, and comments on the scalability and manufacturability of the growth methods. We then assess the potential of graphene-based transparent conducting electrodes. A major part of the review describes photodetectors based on lateral graphene p-n junctions and Schottky diodes. Finally, the progress in vertical devices made from 2D/3D heterojunctions, as well as all-2D heterostructures is discussed.

  5. Network patterns in exponentially growing two-dimensional biofilms (United States)

    Zachreson, Cameron; Yap, Xinhui; Gloag, Erin S.; Shimoni, Raz; Whitchurch, Cynthia B.; Toth, Milos


    Anisotropic collective patterns occur frequently in the morphogenesis of two-dimensional biofilms. These patterns are often attributed to growth regulation mechanisms and differentiation based on gradients of diffusing nutrients and signaling molecules. Here, we employ a model of bacterial growth dynamics to show that even in the absence of growth regulation or differentiation, confinement by an enclosing medium such as agar can itself lead to stable pattern formation over time scales that are employed in experiments. The underlying mechanism relies on path formation through physical deformation of the enclosing environment.

  6. Two-dimensional carbon fundamental properties, synthesis, characterization, and applications

    CERN Document Server

    Yihong, Wu; Ting, Yu


    After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC, chemical synthesis of graphene on metal, and chemical vapor deposition of vertically aligned carbon nanosheets or nanowalls. One chapter is dedicated to characterization of 2D nanocarbon using Raman spectroscopy. It provides extensive coverage for a

  7. Two-dimensional Lagrangian simulation of suspended sediment (United States)

    Schoellhamer, David H.


    A two-dimensional laterally averaged model for suspended sediment transport in steady gradually varied flow that is based on the Lagrangian reference frame is presented. The layered Lagrangian transport model (LLTM) for suspended sediment performs laterally averaged concentration. The elevations of nearly horizontal streamlines and the simulation time step are selected to optimize model stability and efficiency. The computational elements are parcels of water that are moved along the streamlines in the Lagrangian sense and are mixed with neighboring parcels. Three applications show that the LLTM can accurately simulate theoretical and empirical nonequilibrium suspended sediment distributions and slug injections of suspended sediment in a laboratory flume.

  8. Blind deconvolution of two-dimensional complex data

    Energy Technology Data Exchange (ETDEWEB)

    Ghiglia, D.C.; Romero, L.A.


    Inspired by the work of Lane and Bates on automatic multidimensional deconvolution, the authors have developed a systematic approach and an operational code for performing the deconvolution of multiply-convolved two-dimensional complex data sets in the absence of noise. They explain, in some detail, the major algorithmic steps, where noise or numerical errors can cause problems, their approach in dealing with numerical rounding errors, and where special noise-mitigating techniques can be used toward making blind deconvolution practical. Several examples of deconvolved imagery are presented, and future research directions are noted.

  9. Two-dimensional collapse calculations of cylindrical clouds

    International Nuclear Information System (INIS)

    Bastien, P.; Mitalas, R.


    A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)

  10. Focused two-dimensional antiscatter grid for mammography

    International Nuclear Information System (INIS)

    Makarova, O.V.; Moldovan, N.; Tang, C.-M.; Mancini, D.C.; Divan, R.; Zyryanov, V.N.; Ryding, D.C.; Yaeger, J.; Liu, C.


    We are developing freestanding high-aspect-ratio, focused, two-dimensional antiscatter grids for mammography using deep x-ray lithography and copper electroforming. The exposure is performed using x-rays from bending magnet beamline 2-BM at the Advanced Photon Source (APS) of Argonne National Laboratory. A 2.8-mm-thick prototype freestanding copper antiscatter grid with 25 (micro)m-wide parallel cell walls and 550 (micro)m periodicity has been fabricated. The progress in developing a dynamic double-exposure technique to create the grid with the cell walls aligned to a point x-ray source of the mammography system is discussed

  11. Optical Two Dimensional Fourier Transform Spectroscopy of Layered Metal Dichalcogenides (United States)

    Dey, P.; Paul, J.; Stevens, C. E.; Kovalyuk, Z. D.; Kudrynskyi, Z. R.; Romero, A. H.; Cantarero, A.; Hilton, D. J.; Shan, J.; Karaiskaj, D.; Z. D. Kovalyuk; Z. R. Kudrynskyi Collaboration; A. H. Romero Collaboration; A. Cantarero Collaboration; D. J. Hilton Collaboration; J. Shan Collaboration


    Nonlinear two-dimensional Fourier transform (2DFT) measurements were used to study the mechanism of excitonic dephasing and probe the electronic structure of the excitonic ground state in layered metal dichalcogenides. Temperature-dependent 2DFT measurements were performed to probe exciton-phonon interactions. Excitation density dependent 2DFT measurements reveal exciton-exciton and exciton-carrier scattering, and the lower limit for the homogeneous linewidth of excitons on positively and negatively doped samples. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0012635.

  12. Quantum computation with two-dimensional graphene quantum dots

    International Nuclear Information System (INIS)

    Li Jie-Sen; Li Zhi-Bing; Yao Dao-Xin


    We study an array of graphene nano sheets that form a two-dimensional S = 1/2 Kagome spin lattice used for quantum computation. The edge states of the graphene nano sheets are used to form quantum dots to confine electrons and perform the computation. We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots. It is shown that both schemes contain a great amount of information for quantum computation. The corresponding gate operations are also proposed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Quantum algebras for two-dimensional Cayley-Klein Geometries

    International Nuclear Information System (INIS)

    Herranz, F.J.; Ballesteros, A.; Olmo, M.A. del; Santander, M.


    Simultaneous quantization of the quasi-simple groups of motions of the nine two-dimensional Cayley-Klein geometries is obtained by defining a deformed Hopf structure on their enveloping algebras. The spaces of points and lines of the classical CK geometries are homogeneous spaces of their motion groups. Both the well known classical non-euclidean geometries and the (1+1) kinematical geometries are included within this scheme. Their corresponding quantum algebras preserve a scheme of contractions, symmetries and dualities based on the classical one. (Author)

  14. Graphene surface plasmon bandgap based on two dimensional Si gratings

    Directory of Open Access Journals (Sweden)

    Yueke Wang


    Full Text Available A graphene/Si system, which is composed of a two-dimensional subwavelength silicon gratings and a graphene sheet, is designed to realize the complete band gap in infrared region for graphene surface plasmons (GSPs theoretically. The complete band gap originates from the strong scatterings, which is caused by the periodical distribution of effective refractive index. The band structure has been calculated using the plane wave expansion method, and full wave numerical simulations are conducted by finite element method. Thanks to the tunable permittivity of graphene, the band structure can be easily tuned, which provides a way to manipulate in-plane GSPs’ propagation.

  15. Two-Dimensional Electron System in Electromagnetic Radiation Field (United States)

    Lungu, Radu Paul; Manolescu, Andrei

    We consider a two-dimensional electron gas in the presence of a monochromatic linear polarized electromagnetic field, within the Floquet formalism. The Floquet states have a simple relation with the energy eigenstates in the absence of the field. Therefore the single-particle and the two-particle Green functions of the many-body system with Coulomb interactions, in the radiation field, can be formally calculated by the standard diagrammatic techniques, as for the conservative system. We derive the elementary excitations of quasi-particle type, the plasma dispersion relation, and the ground state quasi-energy, and we relate them to the corresponding results for the conservative system.

  16. Saddle-points of a two dimensional random lattice theory

    International Nuclear Information System (INIS)

    Pertermann, D.


    A two dimensional random lattice theory with a free massless scalar field is considered. We analyse the field theoretic generating functional for any given choice of positions of the lattice sites. Asking for saddle-points of this generating functional with respect to the positions we find the hexagonal lattice and a triangulated version of the hypercubic lattice as candidates. The investigation of the neighbourhood of a single lattice site yields triangulated rectangles and regular polygons extremizing the above generating functional on the local level. (author)

  17. Two-dimensional N = 2 Super-Yang-Mills Theory

    Directory of Open Access Journals (Sweden)

    August Daniel


    Full Text Available Supersymmetry is one of the possible scenarios for physics beyond the standard model. The building blocks of this scenario are supersymmetric gauge theories. In our work we study the N = 1 Super-Yang-Mills (SYM theory with gauge group SU(2 dimensionally reduced to two-dimensional N = 2 SYM theory. In our lattice formulation we break supersymmetry and chiral symmetry explicitly while preserving R symmetry. By fine tuning the bar-mass of the fermions in the Lagrangian we construct a supersymmetric continuum theory. To this aim we carefully investigate mass spectra and Ward identities, which both show a clear signal of supersymmetry restoration in the continuum limit.

  18. Quantum skyrmions in two-dimensional chiral magnets (United States)

    Takashima, Rina; Ishizuka, Hiroaki; Balents, Leon


    We study the quantum mechanics of magnetic skyrmions in the vicinity of the skyrmion-crystal to ferromagnet phase boundary in two-dimensional magnets. We show that the skyrmion excitation has an energy dispersion that splits into multiple bands due to the combination of magnus force and the underlying lattice. Condensation of the skyrmions can give rise to an intermediate phase between the skyrmion crystal and ferromagnet: a quantum liquid, in which skyrmions are not spatially localized. We show that the critical behavior depends on the spin size S and the topological number of the skyrmion. Experimental signatures of quantum skyrmions in inelastic neutron-scattering measurements are also discussed.

  19. Thermal neutron diffraction on two-dimensional lattices

    International Nuclear Information System (INIS)

    Stern, T.


    This thesis deals with the problem of neutron diffraction from a two-dimensional lattice. The neutron spin is not taken into account. Firstly the scalar wave field is treated by means of differential equations (Helmholtz) and secondly by the equivalent integral equation formulation (Kirchoff-Weber). Finally, using the methods of the Green function, the reflected and transmitted wave fields are represented as integral transformations of a certain source function. In respect to the calculation of the amplitudes of the diffraction waves the third method seems to be the best one for the purpose of the physical interpretation and the applicability of numerical methods. (C.R.)

  20. Stable corrugated state of the two-dimensional electron gas

    International Nuclear Information System (INIS)

    Mendez-Moreno, R.M.; Moreno, M.; Ortiz, M.A.


    A corrugated and stable ground state is found for the two-dimensional electron gas in both the normal paramagnetic and the fully polarized phases. The self-consistent Hartree-Fock method is used with a modulated set of trial wave functions within the deformable jellium model. The results for high metallic densities reproduce the usual noncorrugated ferromagnetic electron-gas behavior. A transition to a paramagnetic corrugated state for values of r s ∼6.5 is predicted. At lower densities r s ∼30, a second transition to a corrugated ferromagnetic phase is suggested

  1. Quantum wells physics and electronics of two-dimensional systems

    CERN Document Server

    Shik, A


    This invaluable book is devoted to the physics, technology and device applications of semiconductor structures with ultrathin layers where the electronic properties are governed by the quantum-mechanical laws. Such structures called quantum wells or structures with the two-dimensional electron gas, have become one of the most actively investigated objects in modern solid state physics. Electronic properties of quantum wells differ dramatically from those of bulk semiconductors, which allows one to observe new types of physical phenomena, such as the quantum Hall effect and many other so-far-un

  2. Pattern formation in two-dimensional square-shoulder systems

    International Nuclear Information System (INIS)

    Fornleitner, Julia; Kahl, Gerhard


    Using a highly efficient and reliable optimization tool that is based on ideas of genetic algorithms, we have systematically studied the pattern formation of the two-dimensional square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures emerge from this investigation as we vary the shoulder width. With increasing pressure three structural archetypes could be identified: cluster lattices, where clusters of particles occupy the sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with high coordination numbers. The internal complexity of these structures increases with increasing shoulder width.

  3. Field analysis of two-dimensional focusing grating


    Borsboom, P.P.; Frankena, H.J.


    The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity distribution in the focal region agrees well with the approximate predictions of geo...

  4. The Penalty Cost Functional for the Two-Dimensional

    Directory of Open Access Journals (Sweden)

    Victor Onomza WAZIRI


    Full Text Available This paper constructs the penalty cost functional for optimizing the two-dimensional control operator of the energized wave equation. In some multiplier methods such as the Lagrange multipliers and Pontrygean maximum principle, the cost of merging the constraint equation to the integral quadratic objective functional to obtain an unconstraint equation is normally guessed or obtained from the first partial derivatives of the unconstrained equation. The Extended Conjugate Gradient Method (ECGM necessitates that the penalty cost be sequentially obtained algebraically. The ECGM problem contains a functional which is completely given in terms of state and time spatial dependent variables.

  5. Quasi-integrability and two-dimensional QCD

    International Nuclear Information System (INIS)

    Abdalla, E.; Mohayaee, R.


    The notion of integrability in two-dimensional QCD is discussed. We show that in spite of an infinite number of conserved charges, particle production is not entirely suppressed. This phenomenon, which we call quasi-integrability, is explained in terms of quantum corrections to the combined algebra of higher-conserved and spectrum-generating currents. We predict the qualitative form of particle production probabilities and verify that they are in agreement with numerical data. We also discuss four-dimensional self-dual Yang-Mills theory in the light of our results. (author). 25 refs, 4 figs, 1 tab

  6. Two-dimensional fermionic correlations in topologically nontrivial backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Manias, M.V.; Naon, C.M.; Trobo, M.L. (Departamento de Fisica, Universidad Nacional de La Plata, Casilla de Correo No. 67, 1900 La Plata, Buenos Aires (Argentina))


    By using a path-integral approach to the study of two-dimensional massless fermionic models in nontrivial sectors, we compute certain special correlation functions which are nonvanishing only when nontrivial topology is taken into account. In particular, we derive the first explicit expression for the so-called nonminimal Green's function. We introduce one specific topological charge distribution for which this correlation function takes a simple form. We also comment on the application of our results to the analysis of massive fermions in topological backgrounds.

  7. On bosonization ambiguities of two dimensional quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dias, S.A.; Silva Neto, M.B.


    We study bosonization ambiguities in two dimensional quantum electrodynamics in the presence and in the absence of topologically charged gauge fields. The computation of fermionic correlation functions gives us a mechanism to fix the ambiguities in nontrivial topologies, provided that we do not allow changes of sector as we evaluate functional integrals. This removes an infinite arbitrariness from the theory. In the case of trivial topologies, we find upper and lower bounds for the Jackiw-Rajaraman parameter, corresponding to the limiting cases of regularizations which preserve gauge or chiral symmetry. (author). 19 refs.

  8. Ultrafast Charge Transfer Visualized by Two-Dimensional Electronic Spectroscopy

    Directory of Open Access Journals (Sweden)

    Mančal T.


    Full Text Available Two-dimensional electronic spectroscopy (2D-ES is used to investigate ultrafast excited-state dynamics in a lutetium bisphthalocyanine dimer. Following optical excitation, a chain of electron and hole transfer steps gives rise to characteristic cross-peak dynamics in the electronic 2D spectra. The combination of density matrix propagation and quantum chemical calculations results in a molecular view of the charge transfer dynamics and highlights the role of the counter-ion in providing an energetic perturbation which promotes charge transfer across the complex.

  9. Two-dimensional Bose and Fermi gases beyond weak coupling (United States)

    França, Guilherme; LeClair, André; Squires, Joshua


    Using a formalism based on the two-body S-matrix we study two-dimensional Bose and Fermi gases with both attractive and repulsive interactions. Approximate analytic expressions, valid at weak coupling and beyond, are developed and applied to the Berezinskii-Kosterlitz-Thouless (BKT) transition. We successfully recover the correct logarithmic functional form of the critical chemical potential and density for the Bose gas. For fermions, the BKT critical temperature is calculated in BCS and BEC regimes through consideration of Tan’s contact.

  10. Mass/Count Variation: A Mereological, Two-Dimensional Semantics

    Directory of Open Access Journals (Sweden)

    Peter R Sutton


    Full Text Available We argue that two types of context are central to grounding the semantics for the mass/count distinction. We combine and develop the accounts of Rothstein (2010 and Landman (2011, which emphasize (non-overlap at a context. We also adopt some parts of Chierchia’s (2010 account which uses precisifying contexts. We unite these strands in a two-dimensional semantics that covers a wide range of the puzzling variation data in mass/count lexicalization. Most importantly, it predicts where we should expect to find such variation for some classes of nouns but not for others, and also explains why.

  11. Anisotropic mass density by two-dimensional acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera s/n, E-46022 Valencia (Spain)], E-mail:


    We show that specially designed two-dimensional arrangements of full elastic cylinders embedded in a nonviscous fluid or gas define (in the homogenization limit) a new class of acoustic metamaterials characterized by a dynamical effective mass density that is anisotropic. Here, analytic expressions for the dynamical mass density and the effective sound velocity tensors are derived in the long wavelength limit. Both show an explicit dependence on the lattice filling fraction, the elastic properties of cylinders relative to the background, their positions in the unit cell, and their multiple scattering interactions. Several examples of these metamaterials are reported and discussed.

  12. Minimal quantization of two-dimensional models with chiral anomalies

    International Nuclear Information System (INIS)

    Ilieva, N.


    Two-dimensional gauge models with chiral anomalies - ''left-handed'' QED and the chiral Schwinger model, are quantized consistently in the frames of the minimal quantization method. The choice of the cone time as a physical time for system of quantization is motivated. The well-known mass spectrum is found but with a fixed value of the regularization parameter a=2. Such a unique solution is obtained due to the strong requirement of consistency of the minimal quantization that reflects in the physically motivated choice of the time axis

  13. Magnetism and pairing of two-dimensional trapped fermions. (United States)

    Chiesa, Simone; Varney, Christopher N; Rigol, Marcos; Scalettar, Richard T


    The emergence of local phases in a trapped two-component Fermi gas in an optical lattice is studied using quantum Monte Carlo simulations. We treat temperatures that are comparable to or lower than those presently achievable in experiments and large enough systems that both magnetic and paired phases can be detected by inspection of the behavior of suitable short-range correlations. We use the latter to suggest the interaction strength and temperature range at which experimental observation of incipient magnetism and d-wave pairing are more likely and evaluate the relation between entropy and temperature in two-dimensional confined fermionic systems.

  14. Confinement and dynamical regulation in two-dimensional convective turbulence

    DEFF Research Database (Denmark)

    Bian, N.H.; Garcia, O.E.


    In this work the nature of confinement improvement implied by the self-consistent generation of mean flows in two-dimensional convective turbulence is studied. The confinement variations are linked to two distinct regulation mechanisms which are also shown to be at the origin of low......-frequency bursting in the fluctuation level and the convective heat flux integral, both resulting in a state of large-scale intermittency. The first one involves the control of convective transport by sheared mean flows. This regulation relies on the conservative transfer of kinetic energy from tilted fluctuations...

  15. Cavalier perspective plots of two-dimensional matrices. Program Stereo

    International Nuclear Information System (INIS)

    Los Arcos Merino, J.M.


    The program Stereo allows representation of a two-dimensional matrix containing numerical data, in the form of a cavalier perspective, isometric or not, with an angle variable between 0 deg and 180 deg. The representation is in histogram form for each matrix row and those curves which fall behind higher curves and therefore would not be seen are suppressed. It has been written in Fortran V for a Calcomp-936 digital plotter operating off-line with a Univac 1106 computer. Drawing method, subroutine structure and running instructions are described in this paper. (author)

  16. A Chain-Detection Algorithm for Two-Dimensional Grids


    Bonham, Paul; Iqbal, Azlan


    We describe a general method of detecting valid chains or links of pieces on a two-dimensional grid. Specifically, using the example of the chess variant known as Switch-Side Chain-Chess (SSCC). Presently, no foolproof method of detecting such chains in any given chess position is known and existing graph theory, to our knowledge, is unable to fully address this problem either. We therefore propose a solution implemented and tested using the C++ programming language. We have been unable to fi...

  17. Inverse radiative transfer problems in two-dimensional heterogeneous media

    International Nuclear Information System (INIS)

    Tito, Mariella Janette Berrocal


    The analysis of inverse problems in participating media where emission, absorption and scattering take place has several relevant applications in engineering and medicine. Some of the techniques developed for the solution of inverse problems have as a first step the solution of the direct problem. In this work the discrete ordinates method has been used for the solution of the linearized Boltzmann equation in two dimensional cartesian geometry. The Levenberg - Marquardt method has been used for the solution of the inverse problem of internal source and absorption and scattering coefficient estimation. (author)

  18. Stable two-dimensional dispersion-managed soliton

    International Nuclear Information System (INIS)

    Abdullaev, Fatkhulla Kh.; Baizakov, Bakhtiyor B.; Salerno, Mario


    The existence of a dispersion-managed soliton in two-dimensional nonlinear Schroedinger equation with periodically varying dispersion has been explored. The averaged equations for the soliton width and chirp are obtained which successfully describe the long time evolution of the soliton. The slow dynamics of the soliton around the fixed points for the width and chirp are investigated and the corresponding frequencies are calculated. Analytical predictions are confirmed by direct partial differential equation (PDE) and ordinary differential equation (ODE) simulations. Application to a Bose-Einstein condensate in optical lattice is discussed. The existence of a dispersion-managed matter-wave soliton in such system is shown

  19. The emergence of geometry: a two-dimensional toy model

    CERN Document Server

    Alfaro, Jorge; Puigdomenech, Daniel


    We review the similarities between the effective chiral lagrangrian, relevant for low-energy strong interactions, and the Einstein-Hilbert action. We use these analogies to suggest a specific mechanism whereby gravitons would emerge as Goldstone bosons of a global SO(D) X GL(D) symmetry broken down to SO(D) by fermion condensation. We propose a two-dimensional toy model where a dynamical zwei-bein is generated from a topological theory without any pre-existing metric structure, the space being endowed only with an affine connection. A metric appears only after the symmetry breaking; thus the notion of distance is an induced effective one. In spite of several non-standard features this simple toy model appears to be renormalizable and at long distances is described by an effective lagrangian that corresponds to that of two-dimensional gravity (Liouville theory). The induced cosmological constant is related to the dynamical mass M acquired by the fermion fields in the breaking, which also acts as an infrared re...

  20. A microprocessor based on a two-dimensional semiconductor (United States)

    Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas


    The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor--molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.

  1. Two-dimensional theory and simulation of free electron lasers

    International Nuclear Information System (INIS)

    Kwan, T.J.T.; Cary, J.R.


    Two-dimensional homogeneous theory of free-electron lasers with a wiggler magnetic field of constant wavelength is formulated. It has been found from the theory that waves propagating obliquely with respect to the electron beam are always unstable with appreciable growth rates; therefore, mode competition among the on-axis and off-axis modes is an important consideration in the design of the free-electron laser. Furthermore, electromagnetic waves with group velocities opposite to the direction of electron beam propagation are absolutely unstable if k/sub o/v/sub o/ > ω/sub pe/(1/γ/sup 3/2/ + 1/γ/sup 1/2/). Due to strong nonlinear saturation levels of the low-frequency absolute instability, the dynamics of the electron beam and the generation of the high-frequency electromagnetic radiation can be severely affected. Two-dimensional particle simulations show that the efficiency of generation of the on-axis high-frequency electromagnetic wave decreases significantly due to instability of the off-axis modes. In addition, complete disruption of the electron beam and laser oscillation due to the onset of the absolute instability have been observed in simulations

  2. Growth and characterization of two-dimensional nanostructures

    International Nuclear Information System (INIS)

    Herrera Sancho, Oscar Andrey


    Two dimensional nanostructures of palladium, nickel, silver and gadolinium were grown by means of physical evaporation in atmospheres of high vacuum and ultra high vacuum. The qualitative characterization, in situ, of the nanostructures was carried out with techniques of surface analysis: Auger electron spectroscopy and X-ray photoelectron spectroscopy (XPS). The model for the quantification of contaminants in the nanostructures, was proposed by Seah and Shirley, and was made using the spectra XPS measured in situ in the atmospheres of vacuum. For the two-dimensional nanostructures of gadolinium of thicknesses 8 Å, 16 Å, 24 Å, 32 Å, 36 Å, 44 Å, 50 Å, 61 Å, 77 Å, 81 Å, 92 Å and 101 Å, were obtained optical spectra of transmission measured in situ. An band of absorption centered at approximately 2,40 eV is obtained by an increase in the dynamic conductivity from the optical constants, i.e. refractive index and extinction coefficient, of the nanostructure of gadolinium. In addition, the optical constants for the gadolinium nanostructures have presented a maximum of 80 Å of thickness and then it was continued a decreasing tendency toward the values that were reported in the literature for bulk of gadolinium. (author) [es

  3. Two-dimensional photonic crystal polarizer modulated by silicon resin (United States)

    Tan, Chunhua; Huang, Xuguang


    Photonic crystals(PCs)have many potential applications because of their ability to control light-wave propagation. In this paper, we theoretically investigate the tunability of light propagation in photonic crystal waveguides in two-dimensional photonic crystals with square lattices composed of heat-resistant silicon resin. Waveguides can be obtained by the infiltration of silicon resin into air regions in two-dimensional photonic crystals composed of air holes with square lattices of dielectric cylinders. The refractive index of silicon resin can be changed by manipulating the temperature of the sample. Numerical simulation by solving Maxwell's equations using the plane wave expansion(PWE) method shows that the band gaps can be continuously tuned by silicon resin, accordingly the light propagation in photonic crystal waveguides can be controlled. The band gap is analyzed in the temperature range of 20°C-120°C. In our work, the gap map for a square lattice of dielectric cylinders is also simulated. The method can separate TM- and TE-polarized modes in the waveguide. Such a mechanism of band gap adjustment should open up a new application for designing field-sensitive polarizer in photonic integrated circuits.

  4. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuanhu [Univ. of California, Berkeley, CA (United States)


    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.

  5. Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis (United States)

    Murphy, Sandra; Dowling, Paul; Ohlendieck, Kay


    The pioneering work by Patrick H. O’Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry 1975, 250, 4007–4021). The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O’Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins. PMID:28248237

  6. Human lymphocyte polymorphisms detected by quantitative two-dimensional electrophoresis

    International Nuclear Information System (INIS)

    Goldman, D.; Merril, C.R.


    A survey of 186 soluble lymphocyte proteins for genetic polymorphism was carried out utilizing two-dimensional electrophoresis of 14 C-labeled phytohemagglutinin (PHA)-stimulated human lymphocyte proteins. Nineteen of these proteins exhibited positional variation consistent with independent genetic polymorphism in a primary sample of 28 individuals. Each of these polymorphisms was characterized by quantitative gene-dosage dependence insofar as the heterozygous phenotype expressed approximately 50% of each allelic gene product as was seen in homozygotes. Patterns observed were also identical in monozygotic twins, replicate samples, and replicate gels. The three expected phenotypes (two homozygotes and a heterozygote) were observed in each of 10 of these polymorphisms while the remaining nine had one of the homozygous classes absent. The presence of the three phenotypes, the demonstration of gene-dosage dependence, and our own and previous pedigree analysis of certain of these polymorphisms supports the genetic basis of these variants. Based on this data, the frequency of polymorphic loci for man is: P . 19/186 . .102, and the average heterozygosity is .024. This estimate is approximately 1/3 to 1/2 the rate of polymorphism previously estimated for man in other studies using one-dimensional electrophoresis of isozyme loci. The newly described polymorphisms and others which should be detectable in larger protein surveys with two-dimensional electrophoresis hold promise as genetic markers of the human genome for use in gene mapping and pedigree analyses

  7. Numerical method for two-dimensional unsteady reacting flows

    International Nuclear Information System (INIS)

    Butler, T.D.; O'Rourke, P.J.


    A method that numerically solves the full two-dimensional, time-dependent Navier-Stokes equations with species transport, mixing, and chemical reaction between species is presented. The generality of the formulation permits the solution of flows in which deflagrations, detonations, or transitions from deflagration to detonation are found. The solution procedure is embodied in the RICE computer program. RICE is an Eulerian finite difference computer code that uses the Implicit Continuous-fluid Eulerian (ICE) technique to solve the governing equations. One first presents the differential equations of motion and the solution procedure of the Rice program. Next, a method is described for artificially thickening the combustion zone to dimensions resolvable by the computational mesh. This is done in such a way that the physical flame speed and jump conditions across the flame front are preserved. Finally, the results of two example calculations are presented. In the first, the artificial thickening technique is used to solve a one-dimensional laminar flame problem. In the second, the results of a full two-dimensional calculation of unsteady combustion in two connected chambers are detailed

  8. Strain-engineered growth of two-dimensional materials. (United States)

    Ahn, Geun Ho; Amani, Matin; Rasool, Haider; Lien, Der-Hsien; Mastandrea, James P; Ager Iii, Joel W; Dubey, Madan; Chrzan, Daryl C; Minor, Andrew M; Javey, Ali


    The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates. For two-dimensional (2D) semiconductors, this is not feasible as they typically do not interact epitaxially with the substrate. Here, we demonstrate controlled strain engineering of 2D semiconductors during synthesis by utilizing the thermal coefficient of expansion mismatch between the substrate and semiconductor. Using WSe 2 as a model system, we demonstrate stable built-in strains ranging from 1% tensile to 0.2% compressive on substrates with different thermal coefficient of expansion. Consequently, we observe a dramatic modulation of the band structure, manifested by a strain-driven indirect-to-direct bandgap transition and brightening of the dark exciton in bilayer and monolayer WSe 2 , respectively. The growth method developed here should enable flexibility in design of more sophisticated devices based on 2D materials.Strain engineering is an essential tool for modifying local electronic properties in silicon-based electronics. Here, Ahn et al. demonstrate control of biaxial strain in two-dimensional materials based on the growth substrate, enabling more complex low-dimensional electronics.

  9. Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal

    International Nuclear Information System (INIS)

    Konno, R; Hatayama, N; Takahashi, Y; Nakano, H


    Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal is investigated according to the recent theoretical development of magneto-volume effect for the three-dimensional weak ferromagnets. We particularly focus on the T 2 -linear thermal expansion of magnetic origin at low temperatures, so far disregarded by conventional theories. As the effect of thermal spin fluctuations we have found that the T-linear thermal expansion coefficient shows strong enhancement by assuming the double Lorentzian form of the non-interacting dynamical susceptibility justified in the small wave-number and low frequency region. It grows faster in proportional to y -1/2 as we approach the magnetic instability point than two-dimensional nearly antiferromagnetic metals with ln(1/y s ) dependence, where y and y s are the inverses of the reduced uniform and staggered magnetic susceptibilities, respectively. Our result is consistent with the Grueneisen's relation between the thermal expansion coefficient and the specific heat at low temperatures. In 2-dimensional electron gas we find that the thermal expansion coefficient is divergent with a finite y when the higher order term of non-interacting dynamical susceptibility is taken into account.

  10. Flexoelectricity in two-dimensional crystalline and biological membranes (United States)

    Ahmadpoor, Fatemeh; Sharma, Pradeep


    The ability of a material to convert electrical stimuli into mechanical deformation, i.e. piezoelectricity, is a remarkable property of a rather small subset of insulating materials. The phenomenon of flexoelectricity, on the other hand, is universal. All dielectrics exhibit the flexoelectric effect whereby non-uniform strain (or strain gradients) can polarize the material and conversely non-uniform electric fields may cause mechanical deformation. The flexoelectric effect is strongly enhanced at the nanoscale and accordingly, all two-dimensional membranes of atomistic scale thickness exhibit a strong two-way coupling between the curvature and electric field. In this review, we highlight the recent advances made in our understanding of flexoelectricity in two-dimensional (2D) membranes--whether the crystalline ones such as dielectric graphene nanoribbons or the soft lipid bilayer membranes that are ubiquitous in biology. Aside from the fundamental mechanisms, phenomenology, and recent findings, we focus on rapidly emerging directions in this field and discuss applications such as energy harvesting, understanding of the mammalian hearing mechanism and ion transport among others.

  11. Two-Dimensional Gel Electrophoresis and 2D-DIGE. (United States)

    Meleady, Paula


    Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) continues to be one of the most versatile and widely used techniques to study the proteome of a biological system. In particular, a modified version of 2D-PAGE, two-dimensional difference gel electrophoresis (2D-DIGE), which uses differential labeling of protein samples with up to three fluorescent tags, offers greater sensitivity and reproducibility over conventional 2D-PAGE gels for differential quantitative analysis of protein expression between experimental groups. Both these methods have distinct advantages in the separation and identification of thousands of individual proteins species including protein isoforms and post-translational modifications. This review will discuss the principles of 2D-PAGE and 2D-DIGE including limitations to the methods. 2D-PAGE and 2D-DIGE continue to be popular methods in bioprocessing-related research (particularly on recombinant Chinese hamster ovary cells), which will also be discussed in the review chapter.

  12. On Space Efficient Two Dimensional Range Minimum Data Structures

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Davoodi, Pooya; Rao, S. Srinivasa


    of the problem, the lower bound is tight up to a constant factor. In two dimensions, we complement the lower bound with an indexing data structure of size O(N/c) bits which can be preprocessed in O(N) time to support O(clog 2 c) query time. For c=O(1), this is the first O(1) query time algorithm using a data......The two dimensional range minimum query problem is to preprocess a static m by n matrix (two dimensional array) A of size N=m⋅n, such that subsequent queries, asking for the position of the minimum element in a rectangular range within A, can be answered efficiently. We study the trade-off between...... the space and query time of the problem. We show that every algorithm enabled to access A during the query and using a data structure of size O(N/c) bits requires Ω(c) query time, for any c where 1≤c≤N. This lower bound holds for arrays of any dimension. In particular, for the one dimensional version...

  13. On Space Efficient Two Dimensional Range Minimum Data Structures

    DEFF Research Database (Denmark)

    Davoodi, Pooya; Brodal, Gerth Stølting; Rao, S. Srinivasa


    , the lower bound is tight up to a constant factor. In two dimensions, we complement the lower bound with an indexing data structure of size O(N/c) bits additional space which can be preprocessed in O(N) time and achieves O(clog2 c) query time. For c = O(1), this is the first O(1) query time algorithm using......The two dimensional range minimum query problem is to preprocess a static two dimensional m by n array A of size N = m · n, such that subsequent queries, asking for the position of the minimum element in a rectangular range within A, can be answered efficiently. We study the trade-off between...... optimal O(N) bits additional space. For the case where queries can not probe A, we give a data structure of size O(N· min {m,logn}) bits with O(1) query time, assuming m ≤ n. This leaves a gap to the lower bound of Ω(Nlogm) bits for this version of the problem....

  14. Development of two dimensional electrophoresis method using single chain DNA

    International Nuclear Information System (INIS)

    Ikeda, Junichi; Hidaka, So


    By combining a separation method due to molecular weight and a method to distinguish difference of mono-bases, it was aimed to develop a two dimensional single chain DNA labeled with Radioisotope (RI). From electrophoretic pattern difference of parent and variant strands, it was investigated to isolate the root module implantation control gene. At first, a Single Strand Conformation Polymorphism (SSCP) method using concentration gradient gel was investigated. As a result, it was formed that intervals between double chain and single chain DNAs expanded, but intervals of both single chain DNAs did not expand. On next, combination of non-modified acrylic amide electrophoresis method and Denaturing Gradient-Gel Electrophoresis (DGGE) method was examined. As a result, hybrid DNA developed by two dimensional electrophoresis arranged on two lines. But, among them a band of DNA modified by high concentration of urea could not be found. Therefore, in this fiscal year's experiments, no preferable result could be obtained. By the used method, it was thought to be impossible to detect the differences. (G.K.)

  15. Berezinskii–Kosterlitz–Thouless transition and two-dimensional melting (United States)

    Ryzhov, V. N.; Tareyeva, E. E.; Fomin, Yu D.; Tsiok, E. N.


    The main aspects of the theory of phase transitions in two-dimensional degenerate systems (Berezinskii–Kosterlitz–Thouless, or BKT, transitions) are reviewed in detail, including the transition mechanism, the renormalization group as a tool for describing the transition, and how the transition scenario can possibly depend on the core energy of topological defects (in particular, in thin superconducting films). Various melting scenarios in two-dimensional systems are analyzed, and the current status of actual experiments and computer simulations in the field is examined. Whereas in three dimensions melting always occurs as a single first-order transition, in two dimensions, as shown by Halperin, Nelson, and Young, melting via two continuous BKT transitions with an intermediate hexatic phase characterized by quasi-long-range orientational order is possible. But there is also a possibility for a first-order phase transition to occur. Recently, one further melting scenario, different from that occurring in the Berezinskii–Kosterlitz–Thouless–Halperin–Nelson–Young theory, has been proposed, according to which a solid can melt in two stages: a continuous BKT-type solid–hexatic transition and then a first-order hexatic-phase–isotropic-liquid phase transition. Particular attention is given to the melting scenario as a function of the potential shape and to the random pinning effect on two-dimensional melting. In particular, it is shown that random pinning can alter the melting scenario fundamentally in the case of a first-order transition. Also considered is the melting of systems with potentials having a negative curvature in the repulsion region–potentials that are successfully used in describing the anomalous properties of water in two dimensions. This review is an extended version of the report “Old and new in the physics of phase transitions” presented at the scientific session of the Physical Sciences Division of the Russian Academy of

  16. Optimal Padding for the Two-Dimensional Fast Fourier Transform (United States)

    Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.


    One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that

  17. Electrical and optoelectronic properties of two-dimensional materials (United States)

    Wang, Qiaoming

    Electrical and optoelectronic properties of bulk semiconductor materials have been extensively explored in last century. However, when reduced to one-dimensional and two-dimensional, many semiconductors start to show unique electrical and optoelectronic behaviors. In this dissertation, electrical and optoelectronic properties of one-dimensional (nanowires) and two-dimensional semiconductor materials are investigated by various techniques, including scanning photocurrent microscopy, scanning Kelvin probe microscopy, Raman spectroscopy, photoluminescence, and finite-element simulations. In our work, gate-tunable photocurrent in ZnO nanowires has been observed under optical excitation in the visible regime, which originates from the nanowire/substrate interface states. This gate tunability in the visible regime can be used to enhance the photon absorption efficiency, and suppress the undesirable visible-light photodetection in ZnO-based solar cells. The power conversion efficiency of CuInSe2/CdS core-shell nanowire solar cells has been investigated. The highest power conversion efficiency per unit area/volume is achieved with core diameter of 50 nm and the thinnest shell thickness. The existence of the optimal geometrical parameters is due to a combined effect of optical resonances and carrier transport/dynamics. Significant current crowding in two-dimensional black phosphorus field-effect transistors has been found, which has been significantly underestimated by the commonly used transmission-line model. This current crowding can lead to Joule heating close to the contacts. New van der Waals metal-semiconductor junctions have been mechanically constructed and systematically studied. The photocurrent on junction area has been demonstrated to originate from the photothermal effect rather than the photovoltaic effect. Our findings suggest that a reasonable control of interface/surface state properties can enable new and beneficial functionalities in nanostructures. We

  18. Principle of space existence and De Sitter metric

    International Nuclear Information System (INIS)

    Mal'tsev, V.K.


    The selection principle for the solutions of the Einstein equations suggested in a series of papers implies the existence of space (g ik ≠ 0) only in the presence of matter (T ik ≠0). This selection principle (principle of space existence, in the Markov terminology) implies, in the general case, the absence of the cosmological solution with the De Sitter metric. On the other hand, the De Sitter metric is necessary for describing both inflation and deflation periods of the Universe. It is shown that the De Sitter metric is also allowed by the selection principle under discussion if the metric experiences the evolution into the Friedmann metric

  19. Intruder Motion in Two-Dimensional Shaken Granular Beds

    International Nuclear Information System (INIS)

    Ma Huan-Ping; Lv Yong-Jun; Zheng Ning; Shi Qing-Fan; Li Liang-Sheng


    The dynamical behavior of an intruder immersed in a two-dimensional shaken granular bed is experimentally investigated. With two types of background particles, f−Γ phase diagrams depicting the intruder's motion are measured and compared. It is found that even with the same size and density ratio of the intruder to the background particles, the intruder exhibits a distinct behavior at given vibrational conditions: rising behavior in one granular bed; sinking behavior in another granular bed. We slightly tune the size and density ratio to confirm the reliability of the experimental results. In addition, we examine the influences of interstitial air, convection and the initial position on the intruder's motion, speculating that the opposite motion could be traced to the material properties of the background particles

  20. Two-dimensional neutron scintillation detector with optimal gamma discrimination

    International Nuclear Information System (INIS)

    Kanyo, M.; Reinartz, R.; Schelten, J.; Mueller, K.D.


    The gamma sensitivity of a two-dimensional scintillation neutron detector based on position sensitive photomultipliers (Hamamatsu R2387 PM) has been minimized by a digital differential discrimination unit. Since the photomultiplier gain is position-dependent by ±25% a discrimination unit was developed where digital upper and lower discrimination levels are set due to the position-dependent photomultiplier gain obtained from calibration measurements. By this method narrow discriminator windows can be used to reduce the gamma background drastically without effecting the neutron sensitivity of the detector. The new discrimination method and its performance tested by neutron measurements will be described. Experimental results concerning spatial resolution and γ-sensitivity are presented

  1. Analysis of Two-Dimensional Electrophoresis Gel Images

    DEFF Research Database (Denmark)

    Pedersen, Lars


    This thesis describes and proposes solutions to some of the currently most important problems in pattern recognition and image analysis of two-dimensional gel electrophoresis (2DGE) images. 2DGE is the leading technique to separate individual proteins in biological samples with many biological...... and pharmaceutical applications, e.g., drug development. The technique results in an image, where the proteins appear as dark spots on a bright background. However, the analysis of these images is very time consuming and requires a large amount of manual work so there is a great need for fast, objective, and robust...... methods based on image analysis techniques in order to significantly accelerate this key technology. The methods described and developed fall into three categories: image segmentation, point pattern matching, and a unified approach simultaneously segmentation the image and matching the spots. The main...

  2. On wakefields with two-dimensional planar geometry

    International Nuclear Information System (INIS)

    Chao, A.W.; Bane, K.L.F.


    In order to reach higher acceleration gradients in linear accelerators, it is advantageous to use a higher accelerating RF frequency, which in turn requires smaller accelerating structures. As the structure size becomes smaller, rectangular structures become increasingly interesting because they are easier to construct than cylindrically symmetric ones. One drawback of small structures, however, is that the wakefields generated by the beam in such structures tend to be strong. Recently, it has been suggested that one way of ameliorating this problem is to use rectangular structures that are very flat and to use flat beams. In the limiting case of a very flat planar geometry, the problem resembles a purely two-dimensional (2-D) problem, the wakefields of which have been studied

  3. Three-dimensional versus two-dimensional vision in laparoscopy

    DEFF Research Database (Denmark)

    Sørensen, Stine D; Savran, Mona Meral; Konge, Lars


    were cohort size and characteristics, skill trained or operation performed, instrument used, outcome measures, and conclusions. Two independent authors performed the search and data extraction. RESULTS: Three hundred and forty articles were screened for eligibility, and 31 RCTs were included...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...... in the review. Three trials were carried out in a clinical setting, and 28 trials used a simulated setting. Time was used as an outcome measure in all of the trials, and number of errors was used in 19 out of 31 trials. Twenty-two out of 31 trials (71 %) showed a reduction in performance time, and 12 out of 19...

  4. Two-dimensional echocardiographic features of right ventricular infarction

    International Nuclear Information System (INIS)

    D'Arcy, B.; Nanda, N.C.


    Real-time, two-dimensional echocardiographic studies were performed in 10 patients with acute myocardial infarction who had clinical features suggestive of right ventricular involvement. All patients showed right ventricular wall motion abnormalities. In the four-chamber view, seven patients showed akinesis of the entire right ventricular diaphragmatic wall and three showed akinesis of segments of the diaphragmatic wall. Segmental dyskinetic areas involving the right ventricular free wall were identified in four patients. One patient showed a large right ventricular apical aneurysm. Other echocardiographic features included enlargement of the right ventricle in eight cases, paradoxical ventricular septal motion in seven cases, tricuspid incompetence in eight cases, dilation of the stomach in four cases and localized pericardial effusion in two cases. Right ventricular infarction was confirmed by radionuclide methods in seven patients, at surgery in one patient and at autopsy in two patients

  5. Drifting plasmons in open two-dimensional channels: modal analysis

    International Nuclear Information System (INIS)

    Sydoruk, O


    Understanding the properties of plasmons in two-dimensional channels is important for developing methods of terahertz generation. This paper presents a modal analysis of plasmonic reflection in open channels supporting dc currents. As it shows, the plasmons can be amplified upon reflection if a dc current flows away from a conducting boundary; de-amplification occurs for the opposite current direction. The problem is solved analytically, based on a perturbation calculation, and numerically, and agreement between the methods is demonstrated. The power radiated by a channel is found to be negligible, and plasmon reflection in open channels is shown to be similar to that in closed channels. Based on this similarity, the oscillator designs developed earlier for closed channels could be applicable also for open ones. The results develop the modal-decomposition technique further as an instrument for the design of terahertz plasmonic sources. (paper)

  6. Discrete formulation for two-dimensional multigroup neutron diffusion equations

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Salehi, Ali A.; Shahriari, Majid


    The objective of this paper is to introduce a new numerical method for neutronic calculation in a reactor core. This method can produce the final finite form of the neutron diffusion equation by classifying the neutronic variables and using two kinds of cell complexes without starting from the conventional differential form of the neutron diffusion equation. The method with linear interpolation produces the same convergence as the linear continuous finite element method. The quadratic interpolation is proven; the convergence order depends on the shape of the dual cell. The maximum convergence order is achieved by choosing the dual cell based on two Gauss' points. The accuracy of the method was examined with a well-known IAEA two-dimensional benchmark problem. The numerical results demonstrate the effectiveness of the new method

  7. Suspension and simple optical characterization of two-dimensional membranes (United States)

    Northeast, David B.; Knobel, Robert G.


    We report on a method for suspending two-dimensional crystal materials in an electronic circuit using an only photoresists and solvents. Graphene and NbSe2 are suspended tens of nanometers above metal electrodes with clamping diameters of several microns. The optical cavity formed from the membrane/air/metal structures enables a quick method to measure the number of layers and the gap separation using comparisons between the expected colour and optical microscope images. This characterization technique can be used with just an illuminated microscope with a digital camera which makes it adaptable to environments where other means of characterization are not possible, such as inside nitrogen glove boxes used in handling oxygen-sensitive materials.

  8. Two-dimensional void reconstruction by neutron transmission

    International Nuclear Information System (INIS)

    Zakaib, G.D.; Harms, A.A.; Vlachopoulos, J.


    Contemporary algebraic reconstruction methods are utilized in investigating the two-dimensional void distribution in a water analog from neutron transmission measurements. It is sought to ultimately apply these techniques to the determination of time-averaged void distribution in two-phase flow systems as well as for potential usage in neutron radiography. Initially, projection data were obtained from a digitized model of a hypothetical two-phase representation and later from neutron beam traverses across a voided methacrylate plastic model. From 10 to 15 views were incorporated, and decoupling of overlapped measurements was utilized to afford greater resolution. In general, the additive Algebraic Reconstruction Technique yielded the best reconstructions, with others showing promise for noisy data. Results indicate the need for some further development of the method in interpreting real data

  9. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. (United States)

    Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P


    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.

  10. Selective growth of two-dimensional phosphorene on catalyst surface. (United States)

    Qiu, L; Dong, J C; Ding, F


    Although the study of black phosphorene (BP) and its isomers has attracted enormous attention, the method of synthesizing high-quality samples in a large area is still pending. Here we explore the potential of using the chemical vapor deposition method to synthesize large-area two-dimensional (2D) phosphorene films on metal surfaces. Our ab initio calculations show that BP can be synthesized by using tin (Sn) as a catalyst, while one of its isomers, blue phosphorene (BLP), is very possible to be synthesized by using most other metals, such as Ag and Au. Besides, our study also suggests that the large binding energy between the 2D phosphorene and the active metal substrate may prohibit the exfoliation of the 2D phosphorene for real applications and, therefore, tin, silver and gold are predicted to be the most suitable catalysts for the synthesis of BP and BLP.

  11. Two-dimensional electronic spectroscopy with birefringent wedges

    Energy Technology Data Exchange (ETDEWEB)

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)


    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  12. Cooperation in two-dimensional mixed-games

    International Nuclear Information System (INIS)

    Amaral, Marco A; Silva, Jafferson K L da; Wardil, Lucas


    Evolutionary game theory is a common framework to study the evolution of cooperation, where it is usually assumed that the same game is played in all interactions. Here, we investigate a model where the game that is played by two individuals is uniformly drawn from a sample of two different games. Using the master equation approach we show that the random mixture of two games is equivalent to play the average game when (i) the strategies are statistically independent of the game distribution and (ii) the transition rates are linear functions of the payoffs. We also use Monte-Carlo simulations in a two-dimensional lattice and mean-field techniques to investigate the scenario when the two above conditions do not hold. We find that even outside of such conditions, several quantities characterizing the mixed-games are still the same as the ones obtained in the average game when the two games are not very different. (paper)

  13. Charge ordering in two-dimensional ionic liquids (United States)

    Perera, Aurélien; Urbic, Tomaz


    The structural properties of model two-dimensional (2D) ionic liquids are examined, with a particular focus on the charge ordering process, with the use of computer simulation and integral equation theories. The influence of the logarithmic form of the Coulomb interaction, versus that of a 3D screened interaction form, is analysed. Charge order is found to hold and to be analogous for both interaction models, despite their very different form. The influence of charge ordering in the low density regime is discussed in relation to well known properties of 2D Coulomb fluids, such as the Kosterlitz-Thouless transition and criticality. The present study suggests the existence of a stable thermodynamic labile cluster phase, implying the existence of a liquid-liquid "transition" above the liquid-gas binodal. The liquid-gas and Kosterlitz-Thouless transitions would then take place inside the predicted cluster phase.

  14. Spin precession in inversion-asymmetric two-dimensional systems

    International Nuclear Information System (INIS)

    Liu, M.-H.; Chang, C.-R.


    We present a theoretical method to calculate the expectation value of spin in an inversion-asymmetric two-dimensional (2D) system with respect to an arbitrarily spin-polarized electron state, injected via an ideal point contact. The 2D system is confined in a [0 0 1]-grown quantum well, where both the Rashba and the Dresselhaus spin-orbit couplings are taken into account. The obtained analytical results allow more concrete description of the spatial behaviors of the spin precession caused individually by the Rashba and the Dresselhaus terms. Applying the calculation on the Datta-Das spin-FET, whose original design considers only the Rashba effect inside the channel, we investigate the possible influence due to the Dresselhaus spin-orbit coupling. Concluded solution is the choice of ±[1±10], in particular [1 1 0], as the channel direction

  15. Entropic Barriers for Two-Dimensional Quantum Memories (United States)

    Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.


    Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.

  16. Thermoelectric transport in two-dimensional giant Rashba systems (United States)

    Xiao, Cong; Li, Dingping; Ma, Zhongshui; Niu, Qian

    Thermoelectric transport in strongly spin-orbit coupled two-dimensional Rashba systems is studied using the analytical solution of the linearized Boltzmann equation. To highlight the effects of inter-band scattering, we assume point-like potential impurities, and obtain the band-and energy-dependent transport relaxation times. Unconventional transport behaviors arise when the Fermi level lies near or below the band crossing point (BCP), such as the non-Drude electrical conducivity below the BCP, the failure of the standard Mott relation linking the Peltier coefficient to the electrical conductivity near the BCP, the enhancement of diffusion thermopower and figure of merit below the BCP, the zero-field Hall coefficient which is not inversely proportional to and not a monotonic function of the carrier density, the enhanced Nernst coefficient below the BCP, and the enhanced current-induced spin-polarization efficiency.

  17. Advancements of two dimensional correlation spectroscopy in protein researches. (United States)

    Tao, Yanchun; Wu, Yuqing; Zhang, Liping


    The developments of two-dimensional correlation spectroscopy (2DCOS) applications in protein studies are discussed, especially for the past two decades. The powerful utilities of 2DCOS combined with various analytical techniques in protein studies are summarized. The emphasis is on the vibration spectroscopic techniques including IR, NIR, Raman and optical activity (ROA), as well as vibration circular dichroism (VCD) and fluorescence spectroscopy. In addition, some new developments, such as hetero-spectral 2DCOS, moving-window correlation, and model based correlation, are also reviewed for their utility in the investigation of the secondary structure, denaturation, folding and unfolding changes of protein. Finally, the new possibility and challenges of 2DCOS in protein research are highlighted as well. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Sample preparation guidelines for two-dimensional electrophoresis. (United States)

    Posch, Anton


    Sample preparation is one of the key technologies for successful two-dimensional electrophoresis (2DE). Due to the great diversity of protein sample types and sources, no single sample preparation method works with all proteins; for any sample the optimum procedure must be determined empirically. This review is meant to provide a broad overview of the most important principles in sample preparation in order to avoid a multitude of possible pitfalls. Sample preparation protocols from the expert in the field were screened and evaluated. On the basis of these protocols and my own comprehensive practical experience important guidelines are given in this review. The presented guidelines will facilitate straightforward protocol development for researchers new to gel-based proteomics. In addition the available choices are rationalized in order to successfully prepare a protein sample for 2DE separations. The strategies described here are not limited to 2DE and can also be applied to other protein separation techniques.

  19. Thermal conductivity of disordered two-dimensional binary alloys. (United States)

    Zhou, Yang; Guo, Zhi-Xin; Cao, Hai-Yuan; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao


    Using non-equilibrium molecular dynamics simulations, we have studied the effect of disorder on the thermal conductivity of two-dimensional (2D) C 1-x N x alloys. We find that the thermal conductivity not only depends on the substitution concentration of nitrogen, but also strongly depends on the disorder distribution. A general linear relationship is revealed between the thermal conductivity and the participation ratio of phonons in 2D alloys. Localization mode analysis further indicates that the thermal conductivity variation in the ordered alloys can be attributed to the number of inequivalent atoms. As for the disordered alloys, we find that the thermal conductivity variation can be described by a simple linear formula with the disorder degree and the substitution concentration. The present study suggests some general guidance for phonon manipulation and thermal engineering in low dimensional alloys.

  20. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals. (United States)

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong


    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  1. Two-dimensional plasma photonic crystals in dielectric barrier discharge

    International Nuclear Information System (INIS)

    Fan Weili; Dong Lifang; Zhang Xinchun


    A series of two-dimensional plasma photonic crystals have been obtained by filaments' self-organization in atmospheric dielectric barrier discharge with two water electrodes, which undergo the transition from square to square superlattice and finally to the hexagon. The spatio-temporal behaviors of the plasma photonic crystals in nanosecond scale have been studied by optical method, which show that the plasma photonic crystal is actually an integration of different transient sublattices. The photonic band diagrams of the transverse electric (TE) mode and transverse magnetic mode for each sublattice of these plasma photonic crystals have been investigated theoretically. A wide complete band gap is formed in the hexagonal plasma photonic crystal with the TE mode. The changes of the band edge frequencies and the band gap widths in the evolvement of different structures are studied. A kind of tunable plasma photonic crystal which can be controlled both in space and time is suggested.

  2. Electromagnetic two-dimensional analysis of trapped-ion eigenmodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.; Rewoldt, G.


    A two-dimensional electromagnetic analysis of the trapped-ion instability for the tokamak case with ..beta.. not equal to 0 has been made, based on previous work in the electrostatic limit. The quasineutrality condition and the component of Ampere's law along the equilibrium magnetic field are solved for the perturbed electrostatic potential and the component of the perturbed vector potential along the equilibrium magnetic field. The general integro-differential equations are converted into a matrix eigenvalue-eigenfunction problem by expanding in cubic B-spline finite elements in the minor radius and in Fourier harmonics in the poloidal angle. A model MHD equilibrium with circular, concentric magnetic surfaces and large aspect ratio is used which is consistent with our assemption that B << 1. The effect on the trapped-ion mode of including these electromagnetic extensions to the calculation is considered, and the temperature (and ..beta..) scaling of the mode frequency is shown and discussed.

  3. Nematic Equilibria on a Two-Dimensional Annulus

    KAUST Repository

    Lewis, A. H.


    We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.

  4. Self-organized defect strings in two-dimensional crystals. (United States)

    Lechner, Wolfgang; Polster, David; Maret, Georg; Keim, Peter; Dellago, Christoph


    Using experiments with single-particle resolution and computer simulations we study the collective behavior of multiple vacancies injected into two-dimensional crystals. We find that the defects assemble into linear strings, terminated by dislocations with antiparallel Burgers vectors. We show that these defect strings propagate through the crystal in a succession of rapid one-dimensional gliding and rare rotations. While the rotation rate decreases exponentially with the number of defects in the string, the diffusion constant is constant for large strings. By monitoring the separation of the dislocations at the end points, we measure their effective interactions with high precision beyond their spontaneous formation and annihilation, and we explain the double-well form of the dislocation interaction in terms of continuum elasticity theory.

  5. Stopping power of two-dimensional spin quantum electron gases (United States)

    Zhang, Ya; Jiang, Wei; Yi, Lin


    Quantum effects can contribute significantly to the electronic stopping powers in the interactions between the fast moving beams and the degenerate electron gases. From the Pauli equation, the spin quantum hydrodynamic (SQHD) model is derived and used to calculate the stopping power and the induced electron density for protons moving above a two-dimensional (2D) electron gas with considering spin effect under an external in-plane magnetic field. In our calculation, the stopping power is not only modulated by the spin direction, but also varied with the strength of the spin effect. It is demonstrated that the spin effect can obviously enhance or reduce the stopping power of a 2D electron gas within a laboratory magnetic field condition (several tens of Tesla), thus a negative stopping power appears at some specific proton velocity, which implies the protons drain energy from the Pauli gas, showing another significant example of the low-dimensional physics.

  6. Photostrictive Two-Dimensional Materials in the Monochalcogenide Family (United States)

    Haleoot, Raad; Paillard, Charles; Kaloni, Thaneshwor P.; Mehboudi, Mehrshad; Xu, Bin; Bellaiche, L.; Barraza-Lopez, Salvador


    Photostriction is predicted for group-IV monochalcogenide monolayers, two-dimensional ferroelectrics with rectangular unit cells (the lattice vector a1 is larger than a2) and an intrinsic dipole moment parallel to a1. Photostriction is found to be related to the structural change induced by a screened electric polarization (i.e., a converse piezoelectric effect) in photoexcited electronic states with either px or py (in-plane) orbital symmetry that leads to a compression of a1 and a comparatively smaller increase of a2 for a reduced unit cell area. The structural change documented here is 10 times larger than that observed in BiFeO3 , making monochalcogenide monolayers an ultimate platform for this effect. This structural modification should be observable under experimentally feasible densities of photexcited carriers on samples that have been grown already, having a potential usefulness for light-induced, remote mechano-optoelectronic applications.

  7. Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Young S. Shin


    Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.

  8. Rigorous results in space-periodic two-dimensional turbulence (United States)

    Kuksin, Sergei; Shirikyan, Armen


    We survey the recent advance in the rigorous qualitative theory of the 2d stochastic Navier-Stokes system that is relevant to the description of turbulence in two-dimensional fluids. After discussing briefly the initial-boundary value problem and the associated Markov process, we formulate results on the existence, uniqueness, and mixing of a stationary measure. We next turn to various consequences of these properties: strong law of large numbers, central limit theorem, and random attractors related to a unique stationary measure. We also discuss the Donsker-Varadhan and Freidlin-Wentzell type large deviations, the inviscid limit, and asymptotic results in 3d thin domains. We conclude with some open problems.

  9. Superconductivity in engineered two-dimensional electron gases (United States)

    Chubukov, Andrey V.; Kivelson, Steven A.


    We consider Kohn-Luttinger mechanism for superconductivity in a two-dimensional electron gas confined to a narrow well between two grounded metallic planes with two occupied subbands with Fermi momenta kF L>kF S . On the basis of a perturbative analysis, we conclude that non-s -wave superconductivity emerges even when the bands are parabolic. We analyze the conditions that maximize Tc as a function of the distance to the metallic planes, the ratio kF L/kF S , and rs, which measures the strength of Coulomb correlations. The largest attraction is in p -wave and d -wave channels, of which p wave is typically the strongest. For rs=O (1 ) we estimate that the dimensionless coupling λ ≈10-1 , but it likely continues increasing for larger rs (where we lose theoretical control).

  10. Effective-range dependence of two-dimensional Fermi gases (United States)

    Schonenberg, L. M.; Verpoort, P. C.; Conduit, G. J.


    The Feshbach resonance provides precise control over the scattering length and effective range of interactions between ultracold atoms. We propose the ultratransferable pseudopotential to model effective interaction ranges -1.5 ≤kF2Reff2≤0 , where Reff is the effective range and kF is the Fermi wave vector, describing narrow to broad Feshbach resonances. We develop a mean-field treatment and exploit the pseudopotential to perform a variational and diffusion Monte Carlo study of the ground state of the two-dimensional Fermi gas, reporting on the ground-state energy, contact, condensate fraction, momentum distribution, and pair-correlation functions as a function of the effective interaction range across the BEC-BCS crossover. The limit kF2Reff2→-∞ is a gas of bosons with zero binding energy, whereas ln(kFa )→-∞ corresponds to noninteracting bosons with infinite binding energy.

  11. Fluid dynamics of two-dimensional pollination in Ruppia maritima (United States)

    Musunuri, Naga; Bunker, Daniel; Pell, Susan; Pell, Fischer; Singh, Pushpendra


    The aim of this work is to understand the physics underlying the mechanisms of two-dimensional aquatic pollen dispersal, known as hydrophily. We observed two mechanisms by which the pollen released from male inflorescences of Ruppia maritima is adsorbed on a water surface: (i) inflorescences rise above the surface and after they mature their pollen mass falls onto the surface as clumps and disperses on the surface; (ii) inflorescences remain below the surface and produce air bubbles which carry their pollen mass to the surface where it disperses. In both cases dispersed pollen masses combined under the action of capillary forces to form pollen rafts. This increases the probability of pollination since the capillary force on a pollen raft towards a stigma is much larger than on a single pollen grain. The presence of a trace amount of surfactant can disrupt the pollination process so that the pollen is not transported or captured on the water surface. National Science Foundation.

  12. Two-dimensional assemblies from crystallizable homopolymers with charged termini (United States)

    He, Xiaoming; Hsiao, Ming-Siao; Boott, Charlotte E.; Harniman, Robert L.; Nazemi, Ali; Li, Xiaoyu; Winnik, Mitchell A.; Manners, Ian


    The creation of shaped, uniform and colloidally stable two-dimensional (2D) assemblies by bottom-up methods represents a challenge of widespread current interest for a variety of applications. Herein, we describe the utilization of surface charge to stabilize self-assembled planar structures that are formed from crystallizable polymer precursors by a seeded growth approach. Addition of crystallizable homopolymers with charged end-groups to seeds generated by the sonication of block copolymer micelles with crystalline cores yields uniform platelet micelles with controlled dimensions. Significantly, the seeded growth approach is characterized by a morphological memory effect whereby the origin of the seed, which can involve a quasi-hexagonal or rectangular 2D platelet precursor, dictates the observed 2D platelet shape. This new strategy is illustrated using two different polymer systems, and opens the door to the construction of 2D hierarchical structures with broad utility.

  13. Splitting rules for spectra of two-dimensional Fibonacci quasilattices (United States)

    Yang, Xiangbo; Liu, Youyan


    In the framework of the single-electron tight-binding on-site model, after establishing the method of constructing a class of two-dimensional Fibonacci quasilattices, we have studied the rules of energy spectra splitting for these quasilattices by means of a decomposition-decimation method based on the renormalization-group technique. Under the first approximation, the analytic results show that there exist only six kinds of clusters and the electronic energy bands split as type Y and consist of nine subbands. Instead of the on-site model, the transfer model should be used for the higher hierarchy of the spectra, the electronic energy spectra split as type F. The analytic results are confirmed by numerical simulations.

  14. Soliton nanoantennas in two-dimensional arrays of quantum dots (United States)

    Gligorić, G.; Maluckov, A.; Hadžievski, Lj; Slepyan, G. Ya; Malomed, B. A.


    We consider two-dimensional (2D) arrays of self-organized semiconductor quantum dots (QDs) strongly interacting with electromagnetic field in the regime of Rabi oscillations. The QD array built of two-level states is modelled by two coupled systems of discrete nonlinear Schrödinger equations. Localized modes in the form of single-peaked fundamental and vortical stationary Rabi solitons and self-trapped breathers have been found. The results for the stability, mobility and radiative properties of the Rabi modes suggest a concept of a self-assembled 2D soliton-based nano-antenna, which is stable against imperfections In particular, we discuss the implementation of such a nano-antenna in the form of surface plasmon solitons in graphene, and illustrate possibilities to control their operation by means of optical tools.

  15. Oscillation of Two-Dimensional Neutral Delay Dynamic Systems

    Directory of Open Access Journals (Sweden)

    Xinli Zhang


    Full Text Available We consider a class of nonlinear two-dimensional dynamic systems of the neutral type (x(t-a(tx(τ1(tΔ=p(tf1(y(t, yΔ(t=-q(tf2(x(τ2(t. We obtain sufficient conditions for all solutions of the system to be oscillatory. Our oscillation results when a(t=0 improve the oscillation results for dynamic systems on time scales that have been established by Fu and Lin (2010, since our results do not restrict to the case where f(u=u. Also, as a special case when =ℝ, our results do not require an to be a positive real sequence. Some examples are given to illustrate the main results.

  16. The first principle calculation of two-dimensional Dirac materials (United States)

    Lu, Jin


    As the size of integrated device becoming increasingly small, from the last century, semiconductor industry is facing the enormous challenge to break the Moore’s law. The development of calculation, communication and automatic control have emergent expectation of new materials at the aspect of semiconductor industrial technology and science. In spite of silicon device, searching the alternative material with outstanding electronic properties has always been a research point. As the discovery of graphene, the research of two-dimensional Dirac material starts to express new vitality. This essay studied the development calculation of 2D material’s mobility and introduce some detailed information of some approximation method of the first principle calculation.

  17. Persistence of Precursor Waves in Two-dimensional Relativistic Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro [Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Matsumoto, Yosuke, E-mail: [Department of Physics, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522 (Japan)


    We investigated the efficiency of coherent upstream large-amplitude electromagnetic wave emission via synchrotron maser instability in relativistic magnetized shocks using two-dimensional particle-in-cell simulations. We considered a purely perpendicular shock in an electron–positron plasma. The coherent wave emission efficiency was measured as a function of the magnetization parameter σ , which is defined as the ratio of the Poynting flux to the kinetic energy flux. The wave amplitude was systematically smaller than that observed in one-dimensional simulations. However, it continued to persist, even at a considerably low magnetization rate, where the Weibel instability dominated the shock transition. The emitted electromagnetic waves were sufficiently strong to disturb the upstream medium, and transverse filamentary density structures of substantial amplitude were produced. Based on this result, we discuss the possibility of the wakefield acceleration model to produce nonthermal electrons in a relativistic magnetized ion–electron shock.

  18. Two-dimensional spectrophotometry of planetary nebulae by CCD imaging

    International Nuclear Information System (INIS)

    Jacoby, G.H.; Africano, J.L.; Quigley, R.J.; Western Washington Univ., Bellingham, WA)


    The spatial distribution of the electron temperature and density and the ionic abundances of O(+), O(2+), N(+), and S(+) have been derived from CCD images of the planetary nebulae NGC 40 and NGC 6826 taken in the important emission lines of forbidden O II, forbidden O III, H-beta, forbidden N II, and forbidden S II. The steps required in the derivation of the absolute fluxes, line, ratios, and ionic abundances are outlined and then discussed in greater detail. The results show that the CCD imaging technique for two-dimensional spectrophotometry can effectively compete with classical spectrophotometry, providing the added benefits of complete spatial coverage at seeing-disk spatial resolution. The multiplexing in the spatial dimension, however, results in a loss of spectral information, since only one emission line is observed at any one time. 37 references

  19. Flat Chern Band in a Two-Dimensional Organometallic Framework (United States)

    Liu, Zheng; Wang, Zheng-Fei; Mei, Jia-Wei; Wu, Yong-Shi; Liu, Feng


    By combining exotic band dispersion with nontrivial band topology, an interesting type of band structure, namely, the flat Chern band, has recently been proposed to spawn high-temperature fractional quantum Hall states. Despite the proposal of several theoretical lattice models, however, it remains doubtful whether such a “romance of flatland” could exist in a real material. Here, we present a first-principles design of a two-dimensional indium-phenylene organometallic framework that realizes a nearly flat Chern band right around the Fermi level by combining lattice geometry, spin-orbit coupling, and ferromagnetism. An effective four-band model is constructed to reproduce the first-principles results. Our design, in addition, provides a general strategy to synthesize topologically nontrivial materials by virtue of organic chemistry and nanotechnology.

  20. Two-dimensional analysis of motion artifacts, including flow effects

    International Nuclear Information System (INIS)

    Litt, A.M.; Brody, A.S.; Spangler, R.A.; Scott, P.D.


    The effects of motion on magnetic resonance images have been theoretically analyzed for the case of a point-like object in simple harmonic motion and for other one-dimensional trajectories. The authors of this paper extend this analysis to a generalized two-dimensional magnetization with an arbitrary motion trajectory. The authors provide specific solutions for the clinically relevant cases of the cross-sections of cylindrical objects in the body, such as the aorta, which has a roughly one-dimensional, simple harmonic motion during respiration. By extending the solution to include inhomogeneous magnetizations, the authors present a model which allows the effects of motion artifacts and flow artifacts to be analyzed simultaneously

  1. Custom acetabular component design with interactive two-dimensional CT

    International Nuclear Information System (INIS)

    Magid, D.; Millet, C.; Brooker, A.F. Jr.; Fishman, E.K.


    This paper reports on a revision of failed acetabular components that must accommodate existing segmental and cavitary bone defects and global loss of bone stock. Two-dimensional CT can be used to determine which patients may benefit from a custom acetabulum and to design such a prosthesis. Ninety-one sequential failed hip arthroplasties were reviewed to find 12 potential custom cup candidates, of whom seven underwent CT assessment and subsequent cup design and placement. Coronal and sagittal CT was used to review existing bone stock and bone defects, to measure and map the contour of the defect into which the new cup must fit and to determine the precise placement, angulation, and depth of screw holes to provide purchase for the new cup. A template was produced for approval, followed by cup manufacture and placement

  2. Statistical thermodynamics of a two-dimensional relativistic gas. (United States)

    Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood


    In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any).

  3. Two-dimensional atom localization induced by a squeezed vacuum (United States)

    Wang, Fei; Xu, Jun


    A scheme of two-dimensional (2D) atom localization induced by a squeezed vacuum is proposed, in which the three-level V-type atoms interact with two classical standing-wave fields. It is found that when the environment is changed from an ordinary vacuum to a squeezed vacuum, the 2D atom localization is realized by detecting the position-dependent resonance fluorescence spectrum. For comparison, we demonstrate that the atom localization originating from the quantum interference effect is distinct from that induced by a squeezed vacuum. Furthermore, the combined effects of the squeezed vacuum and quantum interference are also discussed under appropriate conditions. The internal physical mechanism is analyzed in terms of dressed-state representation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574179 and 11204099) and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFC1148).

  4. Efficient two-dimensional compressive sensing in MIMO radar (United States)

    Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad


    Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.

  5. Two-dimensional fruit ripeness estimation using thermal imaging (United States)

    Sumriddetchkajorn, Sarun; Intaravanne, Yuttana


    Some green fruits do not change their color from green to yellow when being ripe. As a result, ripeness estimation via color and fluorescent analytical approaches cannot be applied. In this article, we propose and show for the first time how a thermal imaging camera can be used to two-dimensionally classify fruits into different ripeness levels. Our key idea relies on the fact that the mature fruits have higher heat capacity than the immature ones and therefore the change in surface temperature overtime is slower. Our experimental proof of concept using a thermal imaging camera shows a promising result in non-destructively identifying three different ripeness levels of mangoes Mangifera indica L.

  6. Sieving hydrogen isotopes through two-dimensional crystals. (United States)

    Lozada-Hidalgo, M; Hu, S; Marshall, O; Mishchenko, A; Grigorenko, A N; Dryfe, R A W; Radha, B; Grigorieva, I V; Geim, A K


    One-atom-thick crystals are impermeable to atoms and molecules, but hydrogen ions (thermal protons) penetrate through them. We show that monolayers of graphene and boron nitride can be used to separate hydrogen ion isotopes. Using electrical measurements and mass spectrometry, we found that deuterons permeate through these crystals much slower than protons, resulting in a separation factor of ≈10 at room temperature. The isotope effect is attributed to a difference of ≈60 milli-electron volts between zero-point energies of incident protons and deuterons, which translates into the equivalent difference in the activation barriers posed by two-dimensional crystals. In addition to providing insight into the proton transport mechanism, the demonstrated approach offers a competitive and scalable way for hydrogen isotope enrichment. Copyright © 2016, American Association for the Advancement of Science.

  7. Seismic isolation of buildings on two dimensional phononic crystal foundation (United States)

    Han, Lin; Li, Xiao-mei; Zhang, Yan


    In order to realize the seismic isolation of buildings, we establish the two dimensional phononic crystal (PC) foundation which has the cell with the size close to the regular concrete test specimens, and is composed of the concrete base, rubber coating and lead cylindrical core. We study the in-plane band gap (BG) characteristics in it, through the analysis of the frequency dispersion relation and frequency response result. To lower the start BG frequency to the seismic frequency range, we also study the influences of material parameters (the elastic modulus of coating and density of cylindrical core) and geometry parameters (the thickness of coating, radius of cylindrical core and lattice constant) on BG ranges. The study could help to design the PC foundation for seismic isolation of building.

  8. Two-Dimensional Organic-Inorganic Hybrid Perovskite Photonic Films. (United States)

    Meng, Ke; Gao, Shanshan; Wu, Longlong; Wang, Geng; Liu, Xin; Chen, Gang; Liu, Zhou; Chen, Gang


    Organic-inorganic hybrid perovskites have created enormous expectations for low-cost and high-performance optoelectronic devices. In prospect, future advancements may derive from reaping novel electrical and optical properties beyond pristine perovskites through microscopic structure design and engineering. Herein, we report the successful preparation of two-dimensional inverse-opal perovskite (IOP) photonic films, featuring unique nanostructures and vivid colors. Further compositional and structural managements promise optical property and energy level tunability of the IOP films. They are further functionalized in solar cells, resulting in colorful devices with respectable power conversion efficiency. Such concept has not been previously applied for perovskite-based solar cells, which could open a route for more versatile optoelectronic devices.

  9. Patched Green's function techniques for two-dimensional systems

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Lin, Jun


    We present a numerically efficient technique to evaluate the Green's function for extended two-dimensional systems without relying on periodic boundary conditions. Different regions of interest, or “patches,” are connected using self-energy terms which encode the information of the extended parts...... of the system. The calculation scheme uses a combination of analytic expressions for the Green's function of infinite pristine systems and an adaptive recursive Green's function technique for the patches. The method allows for an efficient calculation of both local electronic and transport properties, as well...... as the inclusion of multiple probes in arbitrary geometries embedded in extended samples. We apply the patched Green's function method to evaluate the local densities of states and transmission properties of graphene systems with two kinds of deviations from the pristine structure: bubbles and perforations...

  10. Two dimensional tunable photonic crystals and n doped semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, Hussein A. [Dept. of Physics, Faculty of Sciences, Beni-Suef University (Egypt); El-Naggar, Sahar A. [Dept. of Engineering Math. and Physics, Faculty of Engineering, Cairo University, Giza (Egypt); Aly, Arafa H., E-mail: [Dept. of Physics, Faculty of Sciences, Beni-Suef University (Egypt)


    In this paper, we theoretically investigate the effect of the doping concentration on the properties of two dimensional semiconductor photonic band structures. We consider two structures; type I(II) that is composed of n doped semiconductor (air) rods arranged into a square lattice of air (n doped semiconductor). We consider three different shapes of rods. Our numerical method is based on the frequency dependent plane wave expansion method. The numerical results show that the photonic band gaps in type II are more sensitive to the changes in the doping concentration than those of type I. In addition, the width of the gap of type II is less sensitive to the shape of the rods than that of type I. Moreover, the cutoff frequency can be strongly tuned by the doping concentrations. Our structures could be of technical use in optical electronics for semiconductor applications.

  11. Two-dimensional wave propagation in layered periodic media

    KAUST Repository

    Quezada de Luna, Manuel


    We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.

  12. Internal optical bistability of quasi-two-dimensional semiconductor nanoheterostructures (United States)

    Derevyanchuk, Oleksandr V.; Kramar, Natalia K.; Kramar, Valeriy M.


    We represent the results of numerical computations of the frequency and temperature domains of possible realization of internal optical bistability in flat quasi-two-dimensional semiconductor nanoheterostructures with a single quantum well (i.e., nanofilms). Particular computations have been made for a nanofilm of layered semiconductor PbI2 embedded in dielectric medium, i.e. ethylene-methacrylic acid (E-MAA) copolymer. It is shown that an increase in the nanofilm's thickness leads to a long-wave shift of the frequency range of the manifestation the phenomenon of bistability, to increase the size of the hysteresis loop, as well as to the expansion of the temperature interval at which the realization of this phenomenon is possible.

  13. Two-dimensional random arrays for real time volumetric imaging

    DEFF Research Database (Denmark)

    Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.


    real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive......Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...

  14. Two-dimensional electronic spectroscopy with birefringent wedges (United States)

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio


    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  15. Acoustic resonances in two-dimensional radial sonic crystal shells

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel; Sanchez-Dehesa, Jose, E-mail: jsdehesa@upvnet.upv.e [Wave Phenomena Group, Departamento de Ingenieria Electronica, Universidad Politecnica de Valencia, C/Camino de Vera s.n., E-46022 Valencia (Spain)


    Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction that verify the Bloch theorem and are possible only if certain specially designed acoustic metamaterials with mass density anisotropy can be engineered (see Torrent and Sanchez-Dehesa 2009 Phys. Rev. Lett. 103 064301). A comprehensive analysis of two-dimensional (2D) RSC shells is reported here. A given shell is in fact a circular slab with a central cavity. These finite crystal structures contain Fabry-Perot-like resonances and modes strongly localized at the central cavity. Semi-analytical expressions are developed to obtain the quality factors of the different resonances, their symmetry features and their excitation properties. The results reported here are completely general and can be extended to equivalent 3D spherical shells and to their photonic counterparts.

  16. Acoustic metamaterials for new two-dimensional sonic devices

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera sn, E-46022 Valencia (Spain)


    It has been shown that two-dimensional arrays of rigid or fluidlike cylinders in a fluid or a gas define, in the limit of large wavelengths, a class of acoustic metamaterials whose effective parameters (sound velocity and density) can be tailored up to a certain limit. This work goes a step further by considering arrays of solid cylinders in which the elastic properties of cylinders are taken into account. We have also treated mixtures of two different elastic cylinders. It is shown that both effects broaden the range of acoustic parameters available for designing metamaterials. For example, it is predicted that metamaterials with perfect matching of impedance with air are now possible by using aerogel and rigid cylinders equally distributed in a square lattice. As a potential application of the proposed metamaterial, we present a gradient index lens for airborne sound (i.e. a sonic Wood lens) whose functionality is demonstrated by multiple scattering simulations.

  17. Acoustic resonances in two-dimensional radial sonic crystal shells (United States)

    Torrent, Daniel; Sánchez-Dehesa, José


    Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction that verify the Bloch theorem and are possible only if certain specially designed acoustic metamaterials with mass density anisotropy can be engineered (see Torrent and Sánchez-Dehesa 2009 Phys. Rev. Lett. 103 064301). A comprehensive analysis of two-dimensional (2D) RSC shells is reported here. A given shell is in fact a circular slab with a central cavity. These finite crystal structures contain Fabry-Perot-like resonances and modes strongly localized at the central cavity. Semi-analytical expressions are developed to obtain the quality factors of the different resonances, their symmetry features and their excitation properties. The results reported here are completely general and can be extended to equivalent 3D spherical shells and to their photonic counterparts.

  18. The encoding complexity of two dimensional range minimum data structures

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Brodnik, Andrej; Davoodi, Pooya


    In the two-dimensional range minimum query problem an input matrix A of dimension m ×n, m ≤ n, has to be preprocessed into a data structure such that given a query rectangle within the matrix, the position of a minimum element within the query range can be reported. We consider the space complexity...... of the encoding variant of the problem where queries have access to the constructed data structure but can not access the input matrix A, i.e. all information must be encoded in the data structure. Previously it was known how to solve the problem with space O(mn min {m,logn}) bits (and with constant query time...

  19. Two-dimensional echocardiographic features of right ventricular infarction

    Energy Technology Data Exchange (ETDEWEB)

    D' Arcy, B. (University of Rochester School of Medicine, NY); Nanda, N.C.


    Real-time, two-dimensional echocardiographic studies were performed in 10 patients with acute myocardial infarction who had clinical features suggestive of right ventricular involvement. All patients showed right ventricular wall motion abnormalities. In the four-chamber view, seven patients showed akinesis of the entire right ventricular diaphragmatic wall and three showed akinesis of segments of the diaphragmatic wall. Segmental dyskinetic areas involving the right ventricular free wall were identified in four patients. One patient showed a large right ventricular apical aneurysm. Other echocardiographic features included enlargement of the right ventricle in eight cases, paradoxical ventricular septal motion in seven cases, tricuspid incompetence in eight cases, dilation of the stomach in four cases and localized pericardial effusion in two cases. Right ventricular infarction was confirmed by radionuclide methods in seven patients, at surgery in one patient and at autopsy in two patients.

  20. Global geometry of two-dimensional charged black holes

    International Nuclear Information System (INIS)

    Frolov, Andrei V.; Kristjansson, Kristjan R.; Thorlacius, Larus


    The semiclassical geometry of charged black holes is studied in the context of a two-dimensional dilaton gravity model where effects due to pair-creation of charged particles can be included in a systematic way. The classical mass-inflation instability of the Cauchy horizon is amplified and we find that gravitational collapse of charged matter results in a spacelike singularity that precludes any extension of the spacetime geometry. At the classical level, a static solution describing an eternal black hole has timelike singularities and multiple asymptotic regions. The corresponding semiclassical solution, on the other hand, has a spacelike singularity and a Penrose diagram like that of an electrically neutral black hole. Extremal black holes are destabilized by pair-creation of charged particles. There is a maximally charged solution for a given black hole mass but the corresponding geometry is not extremal. Our numerical data exhibits critical behavior at the threshold for black hole formation

  1. Unruly topologies in two-dimensional quantum gravity

    International Nuclear Information System (INIS)

    Hartle, J.B.


    A sum over histories formulation of quantum geometry could involve sums over different topologies as well as sums over different metrics. In classical gravity a geometry is a manifold with a metric, but it is difficult to implement a sum over manifolds in quantum gravity. In this difficulty, motivation is found for including in the sum over histories, geometries defined on more general objects than manifolds-unruly topologies. In simplicial two-dimensional quantum gravity a class of simplicial complexes is found to which the gravitational action can be extended, for which sums over the class are straightforwardly defined, and for which a manifold dominates the sum in the classical limit. The situation in higher dimensions is discussed. (author)

  2. The two-dimensional reactor dynamic program TINTE. Pt. 1

    International Nuclear Information System (INIS)

    Gerwin, H.


    The TINTE code deals with the nuclear and the thermal transient behaviour of an HTR taking into consideration the mutual feedback effects in two-dimensional r-z-geometry. Initial equations, approximations and solution procedures are compiled in this first part of the description. This involves the following subproblems: Time-dependent neutron flux calculation. Time-dependent heat source distribution (local and non-local fractions). Time-dependent heat transport from the fuel to the fuel element surface. Time-dependent global temperature distribution. Glas-flow even under natural circulation conditions for both a given total mass flow and a given pressure difference. Convection and its feedback to the circulation. The iterations of subproblem solutions, necessary because of the separate treatment, are discussed for both the transient case and of the determination of the steady initial state. (orig.) [de

  3. Evaporation effect on two-dimensional wicking in porous media. (United States)

    Benner, Eric M; Petsev, Dimiter N


    We analyze the effect of evaporation on expanding capillary flow for losses normal to the plane of a two-dimensional porous medium using the potential flow theory formulation of the Lucas-Washburn method. Evaporation induces a finite steady state liquid flux on capillary flows into fan-shaped domains which is significantly greater than the flux into media of constant cross section. We introduce the evaporation-capillary number, a new dimensionless quantity, which governs the frontal motion when multiplied by the scaled time. This governing product divides the wicking behavior into simple regimes of capillary dominated flow and evaporative steady state, as well as the intermediate regime of evaporation influenced capillary driven motion. We also show flow dimensionality and evaporation reduce the propagation rate of the wet front relative to the Lucas-Washburn law. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Two dimensional analysis of a high temperature gaseous radiation receiver (United States)

    Mcfall, K. A.; Mattick, A. T.


    The characteristics of the Flowing Gas Radiation Receiver (FGRR), a device that absorbs solar radiation volumetrically in a gas to produce high temperatures for space propulsion and power applications, are analyzed using a two-dimensional axisymmetric numerical model of the flow and radiation fields within a diffusely reflecting channel. The results show that an FGRR system is capable of generating temperatures in excess of 3000 K with collection efficiencies of approximately 75 percent for a channel with a reflectivity of 0.9. For a collinear radiation source, outflow temperatures of 3193 and 3092 K were achieved for axial and radial flow inputs, respectively, with receiver efficiencies of 0.82 and 0.76.

  5. Two dimensional radiated power diagnostics on Alcator C-Moda) (United States)

    Reinke, M. L.; Hutchinson, I. H.


    The radiated power diagnostics for the Alcator C-Mod tokamak have been upgraded to measure two dimensional structure of the photon emissivity profile in order to investigate poloidal asymmetries in the core radiation. Commonly utilized unbiased absolute extreme ultraviolet (AXUV) diode arrays view the plasma along five different horizontal planes. The layout of the diagnostic set is shown and the results from calibrations and recent experiments are discussed. Data showing a significant, 30%-40%, inboard/outboard emissivity asymmetry during ELM-free H-mode are presented. The ability to use AXUV diode arrays to measure absolute radiated power is explored by comparing diode and resistive bolometer-based emissivity profiles for highly radiative L-mode plasmas seeded with argon. Emissivity profiles match in the core but disagree radially outward resulting in an underprediction of Prad of nearly 50% by the diodes compared to Prad determined using resistive bolometers.

  6. Incoherent control and entanglement for two-dimensional coupled systems

    International Nuclear Information System (INIS)

    Romano, Raffaele; D'Alessandro, Domenico


    We investigate accessibility and controllability of a quantum system S coupled to a quantum probe P, both described by two-dimensional Hilbert spaces, under the hypothesis that the external control affects only P. In this context accessibility and controllability properties describe to what extent it is possible to drive the state of the system S by acting on P and using the interaction between the two systems. We give necessary and sufficient conditions for these properties and we discuss the relation with the entangling capability of the interaction between S and P. In particular, we show that controllability can be expressed in terms of the SWAP and √(SWAP) operators acting on the composite system

  7. Review—Two-Dimensional Layered Materials for Energy Storage Applications

    KAUST Repository

    Kumar, Pushpendra


    Rechargeable batteries are most important energy storage devices in modern society with the rapid development and increasing demand for handy electronic devices and electric vehicles. The higher surface-to-volume ratio two-dimensional (2D) materials, especially transition metal dichalcogenides (TMDCs) and transition metal carbide/nitrite generally referred as MXene, have attracted intensive research activities due to their fascinating physical/chemical properties with extensive applications. One of the growing applications is to use these 2D materials as potential electrodes for rechargeable batteries and electrochemical capacitors. This review is an attempt to summarize the research and development of TMDCs, MXenes and their hybrid structures in energy storage systems. (C) The Author(s) 2016. Published by ECS. All rights reserved.

  8. Ghost inflation and de Sitter entropy (United States)

    Jazayeri, Sadra; Mukohyama, Shinji; Saitou, Rio; Watanabe, Yota


    In the setup of ghost condensation model the generalized second law of black hole thermodynamics can be respected under a radiatively stable assumption that couplings between the field responsible for ghost condensate and matter fields such as those in the Standard Model are suppressed by the Planck scale. Since not only black holes but also cosmology are expected to play important roles towards our better understanding of gravity, we consider a cosmological setup to test the theory of ghost condensation. In particular we shall show that the de Sitter entropy bound proposed by Arkani-Hamed, et al. is satisfied if ghost inflation happened in the early epoch of our universe and if there remains a tiny positive cosmological constant in the future infinity. We then propose a notion of cosmological Page time after inflation.

  9. Fuzzy Euclidean wormholes in de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pisin; Hu, Yao-Chieh; Yeom, Dong-han, E-mail:, E-mail:, E-mail: [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China)


    We investigate Euclidean wormholes in Einstein gravity with a massless scalar field in de Sitter space. Euclidean wormholes are possible due to the analytic continuation of the time as well as complexification of fields, where we need to impose the classicality after the Wick-rotation to the Lorentzian signatures. For some parameters, wormholes are preferred than Hawking-Moss instantons, and hence wormholes can be more fundamental than Hawking-Moss type instantons. Euclidean wormholes can be interpreted in three ways: (1) classical big bounce, (2) either tunneling from a small to a large universe or a creation of a collapsing and an expanding universe from nothing, and (3) either a transition from a contracting to a bouncing phase or a creation of two expanding universes from nothing. These various interpretations shed some light on challenges of singularities. In addition, these will help to understand tensions between various kinds of quantum gravity theories.

  10. Two dimensional hydrodynamic modeling of a high latitude braided river (United States)

    Humphries, E.; Pavelsky, T.; Bates, P. D.


    Rivers are a fundamental resource to physical, ecologic and human systems, yet quantification of river flow in high-latitude environments remains limited due to the prevalence of complex morphologies, remote locations and sparse in situ monitoring equipment. Advances in hydrodynamic modeling and remote sensing technology allow us to address questions such as: How well can two-dimensional models simulate a flood wave in a highly 3-dimensional braided river environment, and how does the structure of such a flood wave differ from flow down a similar-sized single-channel river? Here, we use the raster-based hydrodynamic model LISFLOOD-FP to simulate flood waves, discharge, water surface height, and velocity measurements over a ~70 km reach of the Tanana River in Alaska. In order to use LISFLOOD-FP a digital elevation model (DEM) fused with detailed bathymetric data is required. During summer 2013, we surveyed 220,000 bathymetric points along the study reach using an echo sounder system connected to a high-precision GPS unit. The measurements are interpolated to a smooth bathymetric surface, using Topo to Raster interpolation, and combined with an existing five meter DEM (Alaska IfSAR) to create a seamless river terrain model. Flood waves are simulated using varying complexities in model solvers, then compared to gauge records and water logger data to assess major sources of model uncertainty. Velocity and flow direction maps are also assessed and quantified for detailed analysis of braided channel flow. The most accurate model output occurs with using the full two-dimensional model structure, and major inaccuracies appear to be related to DEM quality and roughness values. Future work will intercompare model outputs with extensive ground measurements and new data from AirSWOT, an airborne analog for the Surface Water and Ocean Topography (SWOT) mission, which aims to provide high-resolution measurements of terrestrial and ocean water surface elevations globally.

  11. Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D J; Smith, R F; Bolme, C; Celliers, P; Collins, G


    We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISAR optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.

  12. A de Sitter tachyon thick braneworld

    Energy Technology Data Exchange (ETDEWEB)

    Germán, Gabriel; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apdo. Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Mora-Luna, Refugio Rigel [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, C.P. 58040, Morelia, Michoacán (Mexico); Rocha, Roldão da, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Rua Santa Adélia, 166 09210-170, Santo André, SP (Brazil)


    Among the multiple 5D thick braneworld models that have been proposed in the last years, in order to address several open problems in modern physics, there is a specific one involving a tachyonic bulk scalar field. Delving into this framework, a thick braneworld with a cosmological background induced on the brane is here investigated. The respective field equations — derived from the model with a warped 5D geometry — are highly non-linear equations, admitting a non-trivial solution for the warp factor and the tachyon scalar field as well, in a de Sitter 4D cosmological background. Moreover, the non-linear tachyonic scalar field, that generates the brane in complicity with warped gravity, has the form of a kink-like configuration. Notwithstanding, the non-linear field equations restricting character does not allow one to easily find thick brane solutions with a decaying warp factor which leads to the localization of 4D gravity and other matter fields. We derive such a thick brane configuration altogether in this tachyon-gravity setup. When analyzing the spectrum of gravity fluctuations in the transverse traceless sector, the 4D gravity is shown to be localized due to the presence of a single zero mode bound state, separated by a continuum of massive Kaluza-Klein (KK) modes by a mass gap. It contrasts with previous results, where there is a KK massive bound excitation providing no clear physical interpretation. The mass gap is determined by the scale of the metric parameter H. Finally, the corrections to Newton's law in this model are computed and shown to decay exponentially. It is in full compliance to corrections reported in previous results (up to a constant factor) within similar braneworlds with induced 4D de Sitter metric, despite the fact that the warp factor and the massive modes have a different form.

  13. Topotactic transformations of superstructures: from thin films to two-dimensional networks to nested two-dimensional networks. (United States)

    Guo, Chuan Fei; Cao, Sihai; Zhang, Jianming; Tang, Haoying; Guo, Shengming; Tian, Ye; Liu, Qian


    Design and synthesis of super-nanostructures is one of the key and prominent topics in nanotechnology. Here we propose a novel methodology for synthesizing complex hierarchical superstructures using sacrificial templates composed of ordered two-dimensional (2D) nanostructures through lattice-directed topotactic transformations. The fabricated superstructures are nested 2D orthogonal Bi(2)S(3) networks composed of nanorods. Further investigation indicates that the lattice matching between the product and sacrificial template is the dominant mechanism for the formation of the superstructures, which agrees well with the simulation results based on an anisotropic nucleation and growth analysis. Our approach may provide a promising way toward a lattice-directed nonlithographic nanofabrication technique for making functional porous nanoarchitectures and electronic devices. © 2011 American Chemical Society

  14. Area spectrum of the D-dimensional de Sitter spacetime

    International Nuclear Information System (INIS)

    Lopez-Ortega, A.


    The determination of the quantum area spectrum of a black hole horizon by means of its asymptotic quasinormal frequencies has been explored recently. We believe that for D-dimensional de Sitter horizon we must study if the idea works. Thus taking into account the local description of the thermodynamics of horizons proposed by Padmanabhan and the results of Hod, Kunstatter, and Maggiore we study the area spectrum of the D-dimensional de Sitter horizon.

  15. Gravity mediated Dark Matter models in the de Sitter space


    Vancea, Ion V.


    In this paper, we generalize the simplified Dark Matter models with graviton mediator to the curved space-time, in particular to the de Sitter space. We obtain the generating functional of the Green's functions in the Euclidean de Sitter space for the covariant free gravitons. We determine the generating functional of the interacting theory between Dark Matter particles and the covariant gravitons. Also, we calculate explicitly the 2-point and 3-point interacting Green's functions for the sym...


    National Aeronautics and Space Administration — The GPM Ground Validation Two-Dimensional Video Disdrometer (2DVD) GCPEX dataset was collected by the Two-Dimensional Video Disdrometer (2DVD) data, which was...


    National Aeronautics and Space Administration — The GPM Ground Validation Two-Dimensional Video Disdrometer (2DVD) NSSTC dataset was collected by the Two-Dimensional Video Disdrometer (2DVD), which uses two high...

  18. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Foteinopoulou, Stavroula [Iowa State Univ., Ames, IA (United States)


    In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates

  19. A two-dimensional mathematical model of percutaneous drug absorption

    Directory of Open Access Journals (Sweden)

    Kubota K


    Full Text Available Abstract Background When a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, r. The values of r depend on the amount of diffusion and the normalized skin-capillary clearence. It is defined as the ratio of the steady-state drug concentration at the skin-capillary boundary to that at the skin-surface in one-dimensional models. The present paper studies the effect of the parameter values, when the region of contact of the skin with the drug, is a line segment on the skin surface. Methods Though a simple one-dimensional model is often useful to describe percutaneous drug absorption, it may be better represented by multi-dimensional models. A two-dimensional mathematical model is developed for percutaneous absorption of a drug, which may be used when the diffusion of the drug in the direction parallel to the skin surface must be examined, as well as in the direction into the skin, examined in one-dimensional models. This model consists of a linear second-order parabolic equation with appropriate initial conditions and boundary conditions. These boundary conditions are of Dirichlet type, Neumann type or Robin type. A finite-difference method which maintains second-order accuracy in space along the boundary, is developed to solve the parabolic equation. Extrapolation in time is applied to improve the accuracy in time. Solution of the parabolic equation gives the concentration of the drug in the skin at a given time. Results Simulation of the numerical methods described is carried out with various values of the parameter r. The illustrations are given in the form of figures. Conclusion Based on the values of r, conclusions are drawn about (1 the flow rate of the drug, (2 the flux and the cumulative amount of drug eliminated into the receptor cell, (3 the steady-state value of the flux, (4 the time to reach the steady

  20. Development of two-dimensional interdigitated center of pressure sensor (United States)

    Yoo, Byungseok; Pines, Darryll J.


    This paper presents the development of a two-dimensional (2D) flexible patch sensor to detect and monitor the center of pressure (CoP) location and the total magnitude of a spatially distributed pressure to the specific surface areas of engineering structures. The CoP sensor with the contact mode induced by a pressure distribution was formulated by force sensitive resistor technology and was mainly composed of a thin conductive polymer layer, adhesive spacers, and two interdigitated patterned electrode films with unique sensing aperture shadings. By properly mapping the interdigitated electrode patterns to the top and bottom surfaces of the conductive polymer, the proposed sensor ideally enables to measure an overall applied pressure level and its centroid location within a predetermined sensing region in real-time. The CoP sensor containing 36 sensing sections within a dimension of around 3 × 3 inches was prototyped and experimentally investigated to verify its capability to identify the CoP location and magnitude due to the presence of a permanent magnet-based local pressure distribution. Only five electric wires connected to the CoP sensor to inspect the pressure-sensing positions of 36 segments. The evaluation results of the measured sensor data demonstrate good agreements with the actual test parameters such as the total pressure and its centroid position with about 5% locational error. However, to provide accurate information on the overall pressure range, the compensation factors must be determined and applied to the individual sensing sections of the sensor.