Analytical solutions of the two-dimensional Dirac equation for a topological channel intersection
Anglin, J. R.; Schulz, A.
2017-01-01
Numerical simulations in a tight-binding model have shown that an intersection of topologically protected one-dimensional chiral channels can function as a beam splitter for noninteracting fermions on a two-dimensional lattice [Qiao, Jung, and MacDonald, Nano Lett. 11, 3453 (2011), 10.1021/nl201941f; Qiao et al., Phys. Rev. Lett. 112, 206601 (2014), 10.1103/PhysRevLett.112.206601]. Here we confirm this result analytically in the corresponding continuum k .p model, by solving the associated two-dimensional Dirac equation, in the presence of a "checkerboard" potential that provides a right-angled intersection between two zero-line modes. The method by which we obtain our analytical solutions is systematic and potentially generalizable to similar problems involving intersections of one-dimensional systems.
Analytic Solution for Two-Dimensional Heat Equation for an Ellipse Region
Directory of Open Access Journals (Sweden)
Nurcan Baykus Savasaneril
2016-01-01
Full Text Available In this study, an altenative method is presented for the solution of two-dimensional heat equation in an ellipse region. In this method, the solution function of the problem is based on the Green, and therefore on elliptic functions. To do this, it is made use of the basic consepts associated with elliptic integrals, conformal mappings and Green functions.
Institute of Scientific and Technical Information of China (English)
XING Yong-Zhong
2009-01-01
The analytical solution of a multidimensional Langevin equation at the overdamping limit is obtained and the probability of particles passing over a two-dimensional saddle point is discussed. These results may break a path for studying further the fusion in superheavy elements synthesis.
Analytic solution of a relativistic two-dimensional hydrogen-like atom in a constant magnetic field
Energy Technology Data Exchange (ETDEWEB)
Villalba, V.M. [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Centro de Fisica; Pino, R. [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Centro de Fisica]|[Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apdo 21827, Caracas 1020-A (Venezuela)
1998-01-26
We obtain exact solutions of the Klein-Gordon and Pauli-Schroedinger equations for a two-dimensional hydrogen-like atom in the presence of a constant magnetic field. Analytic solutions for the energy spectrum are obtained for particular values of the magnetic field strength. The results are compared to those obtained in the non-relativistic and spinless case. We obtain that the relativistic spectrum does not present s states. (orig.). 7 refs.
Shen, Yang; Qiu, Chenchen; Li, Yande; Shi, Wen; Rui, Xiaoxi
2017-01-01
China is a country with vast territory, but economic development and population growth have reduced the usable land resources in recent years. Therefore, reclamation by pumping and filling is carried out in eastern coastal regions of China in order to meet the needs of urbanization. However, large areas of reclaimed land need rapid drainage consolidation treatment. Based on past researches on how to improve the treatment efficiency of soft clay using vacuum preloading combined with electro-osmosis, a two-dimensional drainage plane model was proposed according to the Terzaghi and Esrig consolidation theory. However, the analytical solution using two-dimensional plane model was never involved. Current analytical solutions can't have a thorough theoretical analysis of practical engineering and give relevant guidance. Considering the smearing effect and the rectangle arrangement pattern, an analytical solution is derived to describe the behavior of pore-water and the consolidation process by using EKG (electro-kinetic geo synthetics) materials. The functions of EKG materials include drainage, electric conduction and corrosion resistance. Comparison with test results is carried out to verify the analytical solution. It is found that the measured value is larger than the applied vacuum degree because of the stacking effect of the vacuum preloading and electro-osmosis. The trends of the mean measured value and the mean analytical value processes are comparable. Therefore, the consolidation model can accurately assess the change in pore-water pressure and the consolidation process during vacuum preloading combined with electro-osmosis.
Directory of Open Access Journals (Sweden)
Mohammad Mehdi Rashidi
2008-01-01
Full Text Available The flow of a viscous incompressible fluid between two parallel plates due to the normal motion of the plates is investigated. The unsteady Navier-Stokes equations are reduced to a nonlinear fourth-order differential equation by using similarity solutions. Homotopy analysis method (HAM is used to solve this nonlinear equation analytically. The convergence of the obtained series solution is carefully analyzed. The validity of our solutions is verified by the numerical results obtained by fourth-order Runge-Kutta.
Two dimensional analytical solution for a partially vegetated compound channel flow
Institute of Scientific and Technical Information of China (English)
HUAI Wen-xin; XU Zhi-gang; YANG Zhong-hua; ZENG Yu-hong
2008-01-01
The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the unit volume where the effect of the vegetation on the flow is considered as a drag force item. The compound channel is di- vided into 3 sub-regions in the transverse direction, and the coefficients in every region's differential equations were solved simultaneously. Thus, the analytical solution of the transverse distribution of the depth-averaged velocity for uniform flow in a partially vege- tated compound channel was obtained. The results can be used to predict the transverse distribution of bed shear stress, which has an important effect on the transportation of sediment. By comparing the analytical results with the measured data, the analytical so- lution in this paper is shown to be sufficiently accurate to predict most hydraulic features for engineering design purposes.
Directory of Open Access Journals (Sweden)
M. R. Astaraki
2012-01-01
Full Text Available In the present study analytical solution for forced convection heat transfer in a circular duct with a special boundary condition has been presented, because the external wall temperature is a periodic function of axial direction. Local energy balance equation is written with reference to the fully developed regime. Also governing equations are two-dimensionally solved, and the effect of duct wall thickness has been considered. The temperature distribution of fluid and solid phases is assumed as a periodic function of axial direction and finally temperature distribution in the flow field, solid wall, and local Nusselt number, is obtained analytically.
Energy Technology Data Exchange (ETDEWEB)
Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang [Department of Physics, Ho Chi Minh City University of Pedagogy, 280 An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam)
2013-05-15
The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schroedinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for various physical analyses and the method used here could also be applied to other atomic systems.
Zech, Alraune; Attinger, Sabine
2016-05-01
A new method is presented which allows interpreting steady-state pumping tests in heterogeneous isotropic transmissivity fields. In contrast to mean uniform flow, pumping test drawdowns in heterogeneous media cannot be described by a single effective or equivalent value of hydraulic transmissivity. An effective description of transmissivity is required, being a function of the radial distance to the well and including the parameters of log-transmissivity: mean, variance, and correlation length. Such a model is provided by the upscaling procedure radial coarse graining, which describes the transition of near-well to far-field transmissivity effectively. Based on this approach, an analytical solution for a steady-state pumping test drawdown is deduced. The so-called effective well flow solution is derived for two cases: the ensemble mean of pumping tests and the drawdown within an individual heterogeneous transmissivity field. The analytical form of the solution allows inversely estimating the parameters of aquifer heterogeneity. For comparison with the effective well flow solution, virtual pumping tests are performed and analysed for both cases, the ensemble mean drawdown and pumping tests at individual transmissivity fields. Interpretation of ensemble mean drawdowns showed proof of the upscaling method. The effective well flow solution reproduces the drawdown for two-dimensional pumping tests in heterogeneous media in contrast to Thiem's solution for homogeneous media. Multiple pumping tests conducted at different locations within an individual transmissivity field are analysed, making use of the effective well flow solution to show that all statistical parameters of aquifer heterogeneity can be inferred under field conditions. Thus, the presented method is a promising tool with which to estimate parameters of aquifer heterogeneity, in particular variance and horizontal correlation length of log-transmissivity fields from steady-state pumping test measurements.
Energy Technology Data Exchange (ETDEWEB)
Filho, J. F. P. [Institute de Matematica, Estatistica e Fisica, Universidade Federal do Rio Grande, Av. Italia, s/n, 96203-900 Rio Grande, RS (Brazil); Barichello, L. B. [Institute de Matematica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91509-900 Porto Alegre, RS (Brazil)
2013-07-01
In this work, an analytical discrete ordinates method is used to solve a nodal formulation of a neutron transport problem in x, y-geometry. The proposed approach leads to an important reduction in the order of the associated eigenvalue systems, when combined with the classical level symmetric quadrature scheme. Auxiliary equations are proposed, as usually required for nodal methods, to express the unknown fluxes at the boundary introduced as additional unknowns in the integrated equations. Numerical results, for the problem defined by a two-dimensional region with a spatially constant and isotropically emitting source, are presented and compared with those available in the literature. (authors)
A two-dimensional analytical model of petroleum vapor intrusion
Yao, Yijun; Verginelli, Iason; Suuberg, Eric M.
2016-02-01
In this study we present an analytical solution of a two-dimensional petroleum vapor intrusion model, which incorporates a steady-state diffusion-dominated vapor transport in a homogeneous soil and piecewise first-order aerobic biodegradation limited by oxygen availability. This new model can help practitioners to easily generate two-dimensional soil gas concentration profiles for both hydrocarbons and oxygen and estimate hydrocarbon indoor air concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics and building features. The soil gas concentration profiles generated by this new model are shown in good agreement with three-dimensional numerical simulations and two-dimensional measured soil gas data from a field study. This implies that for cases involving diffusion dominated soil gas transport, steady state conditions and homogenous source and soil, this analytical model can be used as a fast and easy-to-use risk screening tool by replicating the results of 3-D numerical simulations but with much less computational effort.
Ionic solutions of two-dimensional materials
Cullen, Patrick L.; Cox, Kathleen M.; Bin Subhan, Mohammed K.; Picco, Loren; Payton, Oliver D.; Buckley, David J.; Miller, Thomas S.; Hodge, Stephen A.; Skipper, Neal T.; Tileli, Vasiliki; Howard, Christopher A.
2016-11-01
Strategies for forming liquid dispersions of nanomaterials typically focus on retarding reaggregation, for example via surface modification, as opposed to promoting the thermodynamically driven dissolution common for molecule-sized species. Here we demonstrate the true dissolution of a wide range of important 2D nanomaterials by forming layered material salts that spontaneously dissolve in polar solvents yielding ionic solutions. The benign dissolution advantageously maintains the morphology of the starting material, is stable against reaggregation and can achieve solutions containing exclusively individualized monolayers. Importantly, the charge on the anionic nanosheet solutes is reversible, enables targeted deposition over large areas via electroplating and can initiate novel self-assembly upon drying. Our findings thus reveal a unique solution-like behaviour for 2D materials that enables their scalable production and controlled manipulation.
Exact analytic flux distributions for two-dimensional solar concentrators.
Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M
2013-07-01
A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers.
Institute of Scientific and Technical Information of China (English)
LIN Chang; ZHANG Xiu-Lian
2005-01-01
The nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation is analytically investigated by using the formally variable separation approach. New analytical solutions for the governing equation of this system have been obtained for dust acoustic waves in a dust plasma for the first time. We derive exact analytical expressions for the general case of the nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation.
Crowdy, Darren
2015-06-01
A one parameter family of analytical solutions for the equilibrium shapes of two-dimensional charged conducting droplets on a substrate with 90° contact angle is presented. The solutions exhibit the tendency to dewet at the droplet centre as the electrostatic stress increases. Such electrostatic deformations are believed to underlie the recently observed stick-slip dynamics of nanodroplets on substrates. Our theoretical results complement a number of other recent analytical and numerical studies of this phenomenon.
A two-dimensional analytical model for short channel junctionless double-gate MOSFETs
Jiang, Chunsheng; Liang, Renrong; Wang, Jing; Xu, Jun
2015-05-01
A physics-based analytical model of electrostatic potential for short-channel junctionless double-gate MOSFETs (JLDGMTs) operated in the subthreshold regime is proposed, in which the full two-dimensional (2-D) Poisson's equation is solved in channel region by a method of series expansion similar to Green's function. The expression of the proposed electrostatic potential is completely rigorous and explicit. Based on this expression, analytical models of threshold voltage, subthreshold swing, and subthreshold drain current for JLDGMTs were derived. Subthreshold behavior was studied in detail by changing different device parameters and bias conditions, including doping concentration, channel thickness, gate length, gate oxide thickness, drain voltage, and gate voltage. Results predicted by all the analytical models agree well with numerical solutions from the 2-D simulator. These analytical models can be used to investigate the operating mechanisms of nanoscale JLDGMTs and to optimize their device performance.
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Using a polarization method, the scattering problem for a two-dimensional inclusion embedded in infinite piezoelectric/piezomagnetic matrices is investigated. To achieve the purpose, the polarization method for a two-dimensional piezoelectric/piezo-magnetic "comparison body" is formulated. For simple harmonic motion, kernel of the polarization method reduces to a 2-D time-harmonic Green's function, which is ob-tained using the Radon transform. The expression is further simplified under condi-tions of low frequency of the incident wave and small diameter of the inclusion. Some analytical expressions are obtained. The analytical solutions for generalized piezoelec-tric/piezomagnetic anisotropic composites are given followed by simplified results for piezoelectric composites. Based on the latter results, two numerical results are provided for an elliptical cylindrical inclusion in a PZT-5H-matrix, showing the effect of different factors including size, shape, material properties, and piezoelectricity on the scattering cross-section.
Exact two-body solutions and quantum defect theory of two-dimensional dipolar quantum gas
Jie, Jianwen; Qi, Ran
2016-10-01
In this paper, we provide the two-body exact solutions of the two-dimensional (2D) Schrödinger equation with isotropic +/- 1/{r}3 interactions. An analytic quantum defect theory is constructed based on these solutions and it is applied to investigate the scattering properties as well as two-body bound states of an ultracold polar molecules confined in a quasi-2D geometry. Interestingly, we find that for the attractive case, the scattering resonance happens simultaneously in all partial waves, which has not been observed in other systems. The effect of this feature on the scattering phase shift across such resonances is also illustrated.
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2009-01-01
We restrict our attention to the discrete two-dimensional monatomic β-FPU lattice. We look for twodimensional breather lattice solutions and two-dimensional compact-like discrete breathers by using trying method and analyze their stability by using Aubry's linearly stable theory. We obtain the conditions of existence and stability of two-dimensional breather lattice solutions and two-dimensional compact-like discrete breathers in the discrete twodimensional monatomic β-FPU lattice.
Analytical two-dimensional model of solar cell current-voltage characteristics
Energy Technology Data Exchange (ETDEWEB)
Caldararu, F.; Caldararu, M.; Nan, S.; Nicolaescu, D.; Vasile, S. (ICCE, Bucharest (RO). R and D Center for Electron Devices)
1991-06-01
This paper describes an analytical two-dimensional model for pn junction solar cell I-V characteristic. In order to solve the two-dimensional equations for the minority carrier concentration the Laplace transformation method is used. The model eliminates Hovel's assumptions concerning a one-dimensional model and provides an I-V characteristic that is simpler than those derived from the one-dimensional model. The method can be extended to any other device with two-dimensional symmetry. (author).
Exact solutions of a two-dimensional cubic–quintic discrete nonlinear Schrödinger equation
DEFF Research Database (Denmark)
Khare, Avinash; Rasmussen, Kim Ø; Samuelsen, Mogens Rugholm
2011-01-01
We show that a two-dimensional generalized cubic–quintic Ablowitz–Ladik lattice admits periodic solutions that can be expressed in analytical form. The framework for the stability analysis of these solutions is developed and applied to reveal the intricate stability behavior of this nonlinear sys...
Two Dimensional Analytical Modeling for SOI and SON MOSFET and Their Performance Comparison
Directory of Open Access Journals (Sweden)
Saptarsi Ghosh
2011-01-01
Full Text Available During last few decade continuous device performance improvements have been achieved through a combination of device scaling, new device structures and material property improvement to its fundamental limits. Conventional silicon (bulk CMOS technology can’t overcome the fundamental physical limitations belong to sub-micro or nanometer region which leads to alternative device technology like Silicon-on-Insulator (SOI technology and its recent innovative modification Silicon-On-Nothing (SON MOSFET. Analytical simulation is very important to understand the relative performance of those devices under different structural and operational parameter variations. For present analytical simulation asymmetric structure of Silicon-On-Insulator (SOI MOSFET and Silicon-On-Nothing (SON MOSFET are considered. The proposed structure of SON MOSFET is similar to that of the SOI MOSFET with the only exception being the oxide layer here is substituted with air which has much lower permittivity than Silicon-dioxide. Variation of threshold voltage against effective channel lengths is compared for both the structures. From our simulation it is observed that the proposed SON model has lower drain to source current (IDS than SOI model. In our modeling based on solution of two dimensional Poisson’s equation short channel effects such as DIBL and fringing field effects are also taken into account. SON is found to provide better suppression of SCE s than SOI. The results predicted by our analytical simulation hold good agreement with experimental results.
Two-dimensional analytical models for asymmetric fully depleted double-gate strained silicon MOSFETs
Institute of Scientific and Technical Information of China (English)
Liu Hong-Xia; Li Jin; Li Bin; Cao Lei; Yuan Bo
2011-01-01
This paper develops the simple and accurate two-dimensional analytical models for new asymmetric double-gate fully depleted strained-Si MOSFET. The models mainly include the analytical equations of the surface potential, surface electric field and threshold voltage, which are derived by solving two dimensional Poisson equation in strained-Si layer.The models are verified by numerical simulation. Besides offering the physical insight into device physics in the model,the new structure also provides the basic designing guidance for further immunity of short channel effect and drain-induced barrier-lowering of CMOS-based devices in nanometre scale.
A Two-Dimensional Analytic Thermal Model for a High-Speed PMSM Magnet
CSIR Research Space (South Africa)
Grobler, AJ
2015-11-01
Full Text Available TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 62, NO. 11, NOVEMBER 2015 A Two-Dimensional Analytic Thermal Model for a High-Speed PMSM Magnet Andries J. Groblera, Stanley Robert Holmb, and George van Schoorc a School of Electrical, Electronic...
Indian Academy of Sciences (India)
ALY R SEADAWY
2017-09-01
Nonlinear two-dimensional Kadomtsev–Petviashvili (KP) equation governs the behaviour of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions. By using the reductive perturbation method, the two-dimensional dust-acoustic solitary waves (DASWs) in unmagnetized cold plasma consisting of dust fluid, ions and electrons lead to a KP equation. We derived the solitary travelling wave solutions of the twodimensional nonlinear KP equation by implementing sech–tanh, sinh–cosh, extended direct algebraic and fraction direct algebraicmethods. We found the electrostatic field potential and electric field in the form travellingwave solutions for two-dimensional nonlinear KP equation. The solutions for the KP equation obtained by using these methods can be demonstrated precisely and efficiency. As an illustration, we used the readymade package of $\\it{Mathematica}$ program 10.1 to solve the original problem. These solutions are in good agreement with the analytical one.
Solution of Two-Dimensional Viscous Flow Driven by Motion of Flexible Walls
Directory of Open Access Journals (Sweden)
Mohamed Gad-el-Hak
2010-03-01
Full Text Available An exact solution of the Navier–Stokes equations for a flow driven by motion of flexible wall is developed. A simple two-dimensional channel with deforming walls is considered as domain. The governing equations are linearized for low Reynolds number and large Womersley number Newtonian flows. Appropriate boundary conditions for general deformation are decomposed into harmonic excitations in space by Fourier series decomposition. A model of harmonic boundary deformation is considered and results are compared with computational fluid dynamics predictions. The results of velocity profiles across the channel and the centerline velocities of the channel are in good agreement with CFD solution. The analytical model developed provides quantitative descriptions of the flow field for a wide spectrum of actuating frequnecy and boundary conditions. The presented model can be used as an effective framework for preliminary design and optimization of displacement micropumps and other miniature applications.
Exact analytical solutions for ADAFs
Habibi, Asiyeh; Shadmehri, Mohsen
2016-01-01
We obtain two-dimensional exact analytic solutions for the structure of the hot accretion flows without wind. We assume that the only non-zero component of the stress tensor is $T_{r\\varphi}$. Furthermore we assume that the value of viscosity coefficient $\\alpha$ varies with $\\theta$. We find radially self-similar solutions and compare them with the numerical and the analytical solutions already studied in the literature. The no-wind solution obtained in this paper may be applied to the nuclei of some cool-core clusters.
Two-Dimensional Rectangular Stock Cutting Problem and Solution Methods
Institute of Scientific and Technical Information of China (English)
Zhao Hui; Yu Liang; Ning Tao; Xi Ping
2001-01-01
Optimal layout of rectangular stock cutting is still in great demand from industry for diversified applications. This paper introduces four basic solution methods to the problem: linear programming, dynamic programming, tree search and heuristic approach. A prototype of application software is developed to verify the pros and cons of various approaches.
Efficient solution of two-dimensional steady separated flows
Napolitano, M.
This work is concerned with the numerical solution of 2D incompressible steady laminar separated flows at moderate-to-high values of Re. The vorticity-stream function Navier-Stokes equations, as well as approximate models based upon the boundary-layer theory, will be considered. The main objective of the paper is to present the development of an efficient approach for solving a class of problems usually referred to as high Re weakly separated flows. A description is given of a block-alternating-direction-implicit method, which applies the approximate factorization scheme of Beam and Warming to the vorticity-stream function equations, using the delta form of the deferred correction procedure of Khosla and Rubin to combine the stability of upwind schemes with the accuracy of central differences. The logical steps which led to the development of a more efficient incremental block-line Gauss-Seidel method and to a simple multigrid strategy particularly suited for this kind of numerical scheme are then outlined. Finally, benchmark-quality solutions for separated flows inside diffusers and channels with smooth as well as sudden expansions are presented.
General solution of the Dirac equation for quasi-two-dimensional electrons
Energy Technology Data Exchange (ETDEWEB)
Eremko, Alexander, E-mail: eremko@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Str., 14-b, Kyiv, 03680 (Ukraine); Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Str., 14-b, Kyiv, 03680 (Ukraine); Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Str., 14-b, Kyiv, 03680 (Ukraine); National Technical University of Ukraine “KPI”, Peremohy av., 37, Kyiv, 03056 (Ukraine)
2016-06-15
The general solution of the Dirac equation for quasi-two-dimensional electrons confined in an asymmetric quantum well, is found. The energy spectrum of such a system is exactly calculated using special unitary operator and is shown to depend on the electron spin polarization. This solution contains free parameters, whose variation continuously transforms one known particular solution into another. As an example, two different cases are considered in detail: electron in a deep and in a strongly asymmetric shallow quantum well. The effective mass renormalized by relativistic corrections and Bychkov–Rashba coefficients are analytically obtained for both cases. It is demonstrated that the general solution transforms to the particular solutions, found previously (Eremko et al., 2015) with the use of spin invariants. The general solution allows to establish conditions at which a specific (accompanied or non-accompanied by Rashba splitting) spin state can be realized. These results can prompt the ways to control the spin degree of freedom via the synthesis of spintronic heterostructures with the required properties.
Du, Yijun; Segall, Paul; Gao, Huajian
1994-07-01
Quasi-static elastic dislocations in a homogeneous elastic half-space are commonly used to model earthquake faulting processes. Recent studies of the 1989 Kalapana, Hawaii, and Loma Prieta, California, earthquakes suggest that spatial variations in elastic properties are necessary to reconcile geodetic and seismic results. In this paper, we use a moduli perturbation approach to investigate the effect of lateral and vertical variations in elastic properties on the elastic fields produced by dislocations. The method is simple, efficient, and in some cases leads to closed form solutions. The zero-order solution is simply the solution for a homogeneous body. The first-order correction for elastic heterogeneity is given by a volume integral involving the spatial variations in moduli, the displacements due to a dislocation in a homogeneous half-space, and the half-space Green's function. The same representation can be also used to obtain higher-order solutions. If there are only piecewise constant variations in shear modulus, the volume integral can be reduced to a surface integral (or line integral in two-dimensions). Comparisons with the analytical solutions for a screw dislocation in a layered medium suggest that the perturbation solutions are valid for nearly an order of magnitude variation in modulus. It is shown that a simple two-dimensional model with both vertical and lateral variations in the elastic properties may explain a large part of the discrepancy between seismic and geodetically inferred fault depths for the 1989 Kalapana, Hawaii, earthquake.
Two-dimensional thermoelasticity solution for functionally graded thick beams
Institute of Scientific and Technical Information of China (English)
Lü; Chaofeng
2006-01-01
[1]Suresh S,Mortensen A.Fundamentals of Functionally Graded Materials.London:IOM Communications,1998[2]Wetherhold R C,Seelman S,Wang J Z.The use of functionally graded materials to eliminate or control thermal deformation.Compos Sci Technol,1996,56:1099―1104[3]Almajid A,Taya M,Hudnut S.Analysis of out-of-plane displacement and stress field in a piezo-composite plate with functionally graded microstructure.Int J Solids Struct,2001,38:3377―3391[4]Wu X H,Chen C Q,Shen Y P,et al.A high order theory for functionally graded piezoelectric shells.Int J Solids Struct,2002,39:5325―5344[5]Ootao Y,Tanigawa Y.Three-dimensional transient piezothermo-elasticity in functional graded rectangular plate bonded to a piezoelectric plate.Int J Solids Struct,2000,37:4377―4401[6]Chen W Q,Ding H J.On free vibration of a functionally graded piezoelectric rectangular plate.Acta Mech,2002,153:207―216[7]Chen W Q,Bian Z G,Lv C F,et al.3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid.Int J Solids Struct,2004,41:947―964[8]Zhong Z,Shang E T.Exact analysis of simply supported functionally graded piezothermoelectric plates.J Intell Mater Syst Struct,2005,16:643―651[9]Sankar B V.An elasticity solution for functionally graded beams.Compos Sci Technol,2001,61:689―696[10]Sankar B V,Tzeng J T.Thermal stresses in functionally graded beams.AIAA J,2002,40:1228―1232[11]Zhu H,Sankar B V.A combined Fourier series-Galerkin method for the analysis of functionally graded beams.J Appl Mech-Trans ASME,2004,71:421―424[12]Chen W Q,Lv C F,Bian Z G.Elasticity solution for free vibration of laminated beams.Compos Struct,2003,62:75―82[13]Nagem R J,Williams J H.Dynamic analysis of large space structures using transfer matrices and joint coupling matrices.Mech Struct Mach,1989,17:349―371[14]Ding H J,Chen W Q,Zhang L C.Elasticity of Transversely Isotropic Materials.Dordrecht:Springer-Verlag,2006[15]Shu C.Differential Quadrature and Its
Zabihi, F.; Saffarian, M.
2016-07-01
The aim of this article is to obtain the numerical solution of the two-dimensional KdV-Burgers equation. We construct the solution by using a different approach, that is based on using collocation points. The solution is based on using the thin plate splines radial basis function, which builds an approximated solution with discretizing the time and the space to small steps. We use a predictor-corrector scheme to avoid solving the nonlinear system. The results of numerical experiments are compared with analytical solutions to confirm the accuracy and efficiency of the presented scheme.
Numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity
Korepanov, V. V.; Matveenko, V. P.; Fedorov, A. Yu.; Shardakov, I. N.
2013-07-01
An algorithm for the numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity is considered. The algorithm is based on separation of a power-law dependence from the finite-element solution in a neighborhood of singular points in the domain under study, where singular solutions are possible. The obtained power-law dependencies allow one to conclude whether the stresses have singularities and what the character of these singularities is. The algorithm was tested for problems of classical elasticity by comparing the stress singularity exponents obtained by the proposed method and from known analytic solutions. Problems with various cases of singular points, namely, body surface points at which either the smoothness of the surface is violated, or the type of boundary conditions is changed, or distinct materials are in contact, are considered as applications. The stress singularity exponents obtained by using the models of classical and asymmetric elasticity are compared. It is shown that, in the case of cracks, the stress singularity exponents are the same for the elasticity models under study, but for other cases of singular points, the stress singularity exponents obtained on the basis of asymmetric elasticity have insignificant quantitative distinctions from the solutions of the classical elasticity.
A two-dimensional analytical model of laminar flame in lycopodium dust particles
Energy Technology Data Exchange (ETDEWEB)
Rahbari, Alireza [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Shakibi, Ashkan [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Bidabadi, Mehdi [Combustion Research Laboratory, Narmak, Tehran (Iran, Islamic Republic of)
2015-09-15
A two-dimensional analytical model is presented to determine the flame speed and temperature distribution of micro-sized lycopodium dust particles. This model is based on the assumptions that the particle burning rate in the flame front is controlled by the process of oxygen diffusion and the flame structure consists of preheat, reaction and post flame zones. In the first step, the energy conservation equations for fuel-lean condition are expressed in two dimensions, and then these differential equations are solved using the required boundary condition and matching the temperature and heat flux at the interfacial boundaries. Consequently, the obtained flame temperature and flame speed distributions in terms of different particle diameters and equivalence ratio for lean mixture are compared with the corresponding experimental data for lycopodium dust particles. Consequently, it is shown that this two-dimensional model demonstrates better agreement with the experimental results compared to the previous models.
Khare, Avinash; Samuelsen, Mogens R; Saxena, Avadh; 10.1088/1751-8113/43/37/375209
2010-01-01
We show that the two-dimensional, nonlinear Schr\\"odinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show that the effective Peierls-Nabarro barrier for the pulse-like soliton solution is zero.
DEFF Research Database (Denmark)
Khare, A.; Rasmussen, K. O.; Samuelsen, Mogens Rugholm
2010-01-01
We show that the two-dimensional, nonlinear Schrodinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show that the e......We show that the two-dimensional, nonlinear Schrodinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show...
Institute of Scientific and Technical Information of China (English)
XIONG Lei; LI haijiao; ZHANG Lewen
2008-01-01
The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions, 4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.
Highly accurate analytical energy of a two-dimensional exciton in a constant magnetic field
Energy Technology Data Exchange (ETDEWEB)
Hoang, Ngoc-Tram D. [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Nguyen, Duy-Anh P. [Department of Natural Science, Thu Dau Mot University, 6, Tran Van On Street, Thu Dau Mot City, Binh Duong Province (Viet Nam); Hoang, Van-Hung [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Le, Van-Hoang, E-mail: levanhoang@tdt.edu.vn [Atomic Molecular and Optical Physics Research Group, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam)
2016-08-15
Explicit expressions are given for analytically describing the dependence of the energy of a two-dimensional exciton on magnetic field intensity. These expressions are highly accurate with the precision of up to three decimal places for the whole range of the magnetic field intensity. The results are shown for the ground state and some excited states; moreover, we have all formulae to obtain similar expressions of any excited state. Analysis of numerical results shows that the precision of three decimal places is maintained for the excited states with the principal quantum number of up to n=100.
Soliton solutions of the two-dimensional KdV-Burgers equation by homotopy perturbation method
Energy Technology Data Exchange (ETDEWEB)
Molabahrami, A. [Department of Mathematics, Ilam University, PO Box 69315516, Ilam (Iran, Islamic Republic of)], E-mail: a_m_bahrami@yahoo.com; Khani, F. [Department of Mathematics, Ilam University, PO Box 69315516, Ilam (Iran, Islamic Republic of); Bakhtar Institute of Higher Education, PO Box 696, Ilam (Iran, Islamic Republic of)], E-mail: farzad_khani59@yahoo.com; Hamedi-Nezhad, S. [Bakhtar Institute of Higher Education, PO Box 696, Ilam (Iran, Islamic Republic of)
2007-10-29
In this Letter, the He's homotopy perturbation method (HPM) to finding the soliton solutions of the two-dimensional Korteweg-de Vries Burgers' equation (tdKdVB) for the initial conditions was applied. Numerical solutions of the equation were obtained. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. The results reveal that the HPM is very effective and simple.
Exact solutions and conservation laws of the system of two-dimensional viscous Burgers equations
Abdulwahhab, Muhammad Alim
2016-10-01
Fluid turbulence is one of the phenomena that has been studied extensively for many decades. Due to its huge practical importance in fluid dynamics, various models have been developed to capture both the indispensable physical quality and the mathematical structure of turbulent fluid flow. Among the prominent equations used for gaining in-depth insight of fluid turbulence is the two-dimensional Burgers equations. Its solutions have been studied by researchers through various methods, most of which are numerical. Being a simplified form of the two-dimensional Navier-Stokes equations and its wide range of applicability in various fields of science and engineering, development of computationally efficient methods for the solution of the two-dimensional Burgers equations is still an active field of research. In this study, Lie symmetry method is used to perform detailed analysis on the system of two-dimensional Burgers equations. Optimal system of one-dimensional subalgebras up to conjugacy is derived and used to obtain distinct exact solutions. These solutions not only help in understanding the physical effects of the model problem but also, can serve as benchmarks for constructing algorithms and validation of numerical solutions of the system of Burgers equations under consideration at finite Reynolds numbers. Independent and nontrivial conserved vectors are also constructed.
Regularity of Stagnation Point-form Solutions of the Two-dimensional Euler Equations
Sarria, Alejandro
2013-01-01
A class of semi-bounded solutions of the two-dimensional incompressible Euler equations, satisfying either periodic or Dirichlet boundary conditions, is examined. For smooth initial data, new blowup criteria in terms of the initial concavity profile is presented and the effects that the boundary conditions have on the global regularity of solutions is discussed. In particular, by deriving a formula for a general solution along Lagrangian trajectories, we describe how p...
Inflation Cosmological Solutions in Two-Dimensional Brans-Dicke Gravity Model
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The purpose of this paper is to study cosmological properties of two-dimensional Brans-Dicke gravity model. For massless scalar field, the new cosmological solutions are found by integration of field equation, these solutions correspond to the inflation solutions with positive cosmological constant. The result of this paper show that the inflation process of universe is controlled by the classical and quantum effect of the scalar field.
Directory of Open Access Journals (Sweden)
Taha Aziz
2013-01-01
Full Text Available The simplest equation method is employed to construct some new exact closed-form solutions of the general Prandtl's boundary layer equation for two-dimensional flow with vanishing or uniform mainstream velocity. We obtain solutions for the case when the simplest equation is the Bernoulli equation or the Riccati equation. Prandtl's boundary layer equation arises in the study of various physical models of fluid dynamics. Thus finding the exact solutions of this equation is of great importance and interest.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper we investigate the two-dimensional compressible isentropic Euler equations for Chaplygin gases. Under the assumption that the initial data is close to a constant state and the vorticity of the initial velocity vanishes, we prove the global existence of the smooth solution to the Cauchy problem for twodimensional flow of Chaplygin gases.
EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS FOR TWO-DIMENSIONAL MODIFIED NAVIER-STOKES EQUATIONS
Institute of Scientific and Technical Information of China (English)
赵才地
2004-01-01
This paper studies a two-dimensional modified Navier-stokes equations. The author shows the existence and uniqueness of weak solutions for this equation by Galerkin method in bounded domains. The result is further extended to the case of unbounded channel-like domains.
Generalized scale-invariant solutions to the two-dimensional stationary Navier-Stokes equations
Guillod, Julien
2014-01-01
New explicit solutions to the incompressible Navier-Stokes equations in $\\mathbb{R}^{2}\\setminus\\left\\{ \\boldsymbol{0}\\right\\}$ are determined, which generalize the scale-invariant solutions found by Hamel. These new solutions are invariant under a particular combination of the scaling and rotational symmetries. They are the only solutions invariant under this new symmetry in the same way as the Hamel solutions are the only scale-invariant solutions. While the Hamel solutions are parameterized by a discrete parameter $n$, the flux $\\Phi$ and an angle $\\theta_{0}$, the new solutions generalize the Hamel solutions by introducing an additional parameter $a$ which produces a rotation. The new solutions decay like $\\left|\\boldsymbol{x}\\right|^{-1}$ as the Hamel solutions, and exhibit spiral behavior. The new variety of asymptotes induced by the existence of these solutions further emphasizes the difficulties faced when trying to establish the asymptotic behavior of the Navier-Stokes equations in a two-dimensional ...
A Numerical Solution of the Two-Dimensional Fusion Problem with Convective Boundary Conditions
Gülkaç, Vildan
2010-01-01
In this paper, we present an LOD method for solving the two-dimensional fusion problem with convective boundary conditions. In this study, we extend our earlier work [1] on the solution of the two-dimensional fusion problem by considering a class of time-split finite-difference methods, namely locally one-dimensional (LOD) schemes. In addition, following the idea of Douglas [2, 3], a Douglas-like splitting scheme is presented. A stability analysis by Fourier series method (von Neumann stability) of the scheme is also investigated. Computational results obtained by the present method are in excellent agreement with the results reported previously by other research.
Directory of Open Access Journals (Sweden)
M. P. Markakis
2010-01-01
Full Text Available Through a suitable ad hoc assumption, a nonlinear PDE governing a three-dimensional weak, irrotational, steady vector field is reduced to a system of two nonlinear ODEs: the first of which corresponds to the two-dimensional case, while the second involves also the third field component. By using several analytical tools as well as linear approximations based on the weakness of the field, the first equation is transformed to an Abel differential equation which is solved parametrically. Thus, we obtain the two components of the field as explicit functions of a parameter. The derived solution is applied to the two-dimensional small perturbation frictionless flow past solid surfaces with either sinusoidal or parabolic geometry, where the plane velocities are evaluated over the body's surface in the case of a subsonic flow.
Energy Technology Data Exchange (ETDEWEB)
Basso Barichello, Liliane; Dias da Cunha, Rudnei [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst. de Matematica; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada
2015-05-15
A nodal formulation of a fixed-source two-dimensional neutron transport problem, in Cartesian geometry, defined in a heterogeneous medium, is solved by an analytical approach. Explicit expressions, in terms of the spatial variables, are derived for averaged fluxes in each region in which the domain is subdivided. The procedure is an extension of an analytical discrete ordinates method, the ADO method, for the solution of the two-dimensional homogeneous medium case. The scheme is developed from the discrete ordinates version of the two-dimensional transport equation along with the level symmetric quadrature scheme. As usual for nodal schemes, relations between the averaged fluxes and the unknown angular fluxes at the contours are introduced as auxiliary equations. Numerical results are in agreement with results available in the literature.
Analytical description of critical dynamics for two-dimensional dissipative nonlinear maps
Energy Technology Data Exchange (ETDEWEB)
Méndez-Bermúdez, J.A. [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570 (Mexico); Oliveira, Juliano A. de [UNESP – Univ. Estadual Paulista, Câmpus de São João da Boa Vista, Av. Professora Isette Corrêa Fontão, 505, Jardim Santa Rita das Areias, 13876-750 São João da Boa Vista, SP (Brazil); Leonel, Edson D. [Departamento de Física, UNESP – Univ. Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900 Rio Claro, SP (Brazil); Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste (Italy)
2016-05-20
The critical dynamics near the transition from unlimited to limited action diffusion for two families of well known dissipative nonlinear maps, namely the dissipative standard and dissipative discontinuous maps, is characterized by the use of an analytical approach. The approach is applied to explicitly obtain the average squared action as a function of the (discrete) time and the parameters controlling nonlinearity and dissipation. This allows to obtain a set of critical exponents so far obtained numerically in the literature. The theoretical predictions are verified by extensive numerical simulations. We conclude that all possible dynamical cases, independently on the map parameter values and initial conditions, collapse into the universal exponential decay of the properly normalized average squared action as a function of a normalized time. The formalism developed here can be extended to many other different types of mappings therefore making the methodology generic and robust. - Highlights: • We analytically approach scaling properties of a family of two-dimensional dissipative nonlinear maps. • We derive universal scaling functions that were obtained before only approximately. • We predict the unexpected condition where diffusion and dissipation compensate each other exactly. • We find a new universal scaling function that embraces all possible dissipative behaviors.
Two-dimensional Green`s function Poisson solution appropriate for cylindrical-symmetry simulations
Energy Technology Data Exchange (ETDEWEB)
Riley, M.E.
1998-04-01
This report describes the numerical procedure used to implement the Green`s function method for solving the Poisson equation in two-dimensional (r,z) cylindrical coordinates. The procedure can determine the solution to a problem with any or all of the applied voltage boundary conditions, dielectric media, floating (insulated) conducting media, dielectric surface charging, and volumetric space charge. The numerical solution is reasonably fast, and the dimension of the linear problem to be solved is that of the number of elements needed to represent the surfaces, not the whole computational volume. The method of solution is useful in the simulation of plasma particle motion in the vicinity of complex surface structures as found in microelectronics plasma processing applications. This report is a stand-alone supplement to the previous Sandia Technical Report SAND98-0537 presenting the two-dimensional Cartesian Poisson solver.
Kuiper, Logan K
2016-01-01
An approximate solution to the two dimensional Navier Stokes equation with periodic boundary conditions is obtained by representing the x any y components of fluid velocity with complex Fourier basis vectors. The chosen space of basis vectors is finite to allow for numerical calculations, but of variable size. Comparisons of the resulting approximate solutions as they vary with the size of the chosen vector space allow for extrapolation to an infinite basis vector space. Results suggest that such a solution, with the full basis vector space and which would give the exact solution, would fail for certain initial velocity configurations when initial velocity and time t exceed certain limits.
Solution of the two- dimensional heat equation for a rectangular plate
Directory of Open Access Journals (Sweden)
Nurcan BAYKUŞ SAVAŞANERİL
2015-11-01
Full Text Available Laplace equation is a fundamental equation of applied mathematics. Important phenomena in engineering and physics, such as steady-state temperature distribution, electrostatic potential and fluid flow, are modeled by means of this equation. The Laplace equation which satisfies boundary values is known as the Dirichlet problem. The solutions to the Dirichlet problem form one of the most celebrated topics in the area of applied mathematics. In this study, a novel method is presented for the solution of two-dimensional heat equation for a rectangular plate. In this alternative method, the solution function of the problem is based on the Green function, and therefore on elliptic functions.
A two-dimensional Euler solution for an unbladed jet engine configuration
Stewart, Mark E. M.
1992-01-01
A two dimensional, nonaxisymmetric Euler solution in a geometry representative of a jet engine configuration without blades is presented. The domain, including internal and external flow, is covered with a multiblock grid. In order to construct this grid, a domain decomposition technique is used to subdivide the domain, and smooth grids are dimensioned and placed in each block. The Euler solution is verified by examining five theoretical properties. The result demonstrates techniques for performing numerical solutions in complex geometries and provides a foundation for complete engine throughflow calculations.
Directory of Open Access Journals (Sweden)
Sohrab Bazm
2016-02-01
Full Text Available In this study, the Bernoulli polynomials are used to obtain an approximate solution of a class of nonlinear two-dimensional integral equations. To this aim, the operational matrices of integration and the product for Bernoulli polynomials are derived and utilized to reduce the considered problem to a system of nonlinear algebraic equations. Some examples are presented to illustrate the efficiency and accuracy of the method.
Block copolymer micelle coronas as quasi-two-dimensional dilute or semidilute polymer solutions
DEFF Research Database (Denmark)
Svaneborg, C.; Pedersen, J.S.
2001-01-01
Chain-chain interactions in a corona of polymers tethered to a spherical core under good solvent conditions are studied using Monte Carlo simulations. The total scattering function of the corona as well as different partial contributions are sampled. By combining the different contributions...... in a self-consistent approach, it is demonstrated that the corona can be regarded as a quasi-two-dimensional polymer solution, with a concentration dependence analogous to that of an ordinary polymer solution. Scattering due to the corona profile and density fluctuation correlations are separated...
Two-dimensional motion of unstable steps induced by flow in solution
Sato, Masahide
2011-01-01
By carrying out Monte Carlo simulation, we study step instabilities during crystal growth from solution. In previous studies [M. Sato. J. Phys. Soc. Jpn. 79 (2010) 064606; M. Sato, J. Cryst. Growth 318 (2011) 5; M. Sato. J. Phys. Soc. Jpn. 80 (2011) 024604], we used a one-dimensional model, so that we were unable to study another type of instability, step wandering. In this research, we use a two-dimensional model to study both step wandering and step bunching. When the flow of solutes is in ...
On the Classical Solutions of Two Dimensional Inviscid Rotating Shallow Water System
Cheng, Bin
2009-01-01
We prove global existence and asymptotic behavior of classical solutions for two dimensional inviscid Rotating Shallow Water system with small initial data subject to the zero-relative-vorticity constraint. One of the key steps is a reformulation of the problem into a symmetric quasilinear Klein-Gordon system, for which the global existence of classical solutions is then proved with combination of the vector field approach and the normal forms. We also probe the case of general initial data and reveal a lower bound for the lifespan that is almost inversely proportional to the size of the initial relative vorticity.
Computer model of two-dimensional solute transport and dispersion in ground water
Konikow, Leonard F.; Bredehoeft, J.D.
1978-01-01
This report presents a model that simulates solute transport in flowing ground water. The model is both general and flexible in that it can be applied to a wide range of problem types. It is applicable to one- or two-dimensional problems involving steady-state or transient flow. The model computes changes in concentration over time caused by the processes of convective transport, hydrodynamic dispersion, and mixing (or dilution) from fluid sources. The model assumes that the solute is non-reactive and that gradients of fluid density, viscosity, and temperature do not affect the velocity distribution. However, the aquifer may be heterogeneous and (or) anisotropic. The model couples the ground-water flow equation with the solute-transport equation. The digital computer program uses an alternating-direction implicit procedure to solve a finite-difference approximation to the ground-water flow equation, and it uses the method of characteristics to solve the solute-transport equation. The latter uses a particle- tracking procedure to represent convective transport and a two-step explicit procedure to solve a finite-difference equation that describes the effects of hydrodynamic dispersion, fluid sources and sinks, and divergence of velocity. This explicit procedure has several stability criteria, but the consequent time-step limitations are automatically determined by the program. The report includes a listing of the computer program, which is written in FORTRAN IV and contains about 2,000 lines. The model is based on a rectangular, block-centered, finite difference grid. It allows the specification of any number of injection or withdrawal wells and of spatially varying diffuse recharge or discharge, saturated thickness, transmissivity, boundary conditions, and initial heads and concentrations. The program also permits the designation of up to five nodes as observation points, for which a summary table of head and concentration versus time is printed at the end of the
Anti-periodic traveling wave solution to a forced two-dimensional generalized KdV-Burgers equation
Institute of Scientific and Technical Information of China (English)
TAN Junyu
2003-01-01
The anti-periodic traveling wave solutions to a forced two-dimensional generalized KdV-Burgers equation are studied.Some theorems concerning the boundness, existence and uniqueness of the solution to this equation are proved.
Exact Solutions of Two-dimensional and Tri-dimensional Consolidation Equations
Di Francesco, Romolo
2011-01-01
The exact solution of Terzaghi's consolidation equation has further highlighted the limits of this theory in the one-dimensional field as, like Taylor's approximate solution, it overestimates the decay times of the phenomenon; on the other hand, one only needs to think about the accumulation pattern of sedimentary-basin soils to understand how their internal structure fits in more with the model of transversely isotropic medium, so as to result in the development of two- and three-dimensional consolidation models. This is the reason why, using Terzaghi's theory and his exact solution as starting point, two-dimensional and three-dimensional consolidation equations have been proposed, in an attempt to find their corresponding exact solutions which constitute more reliable forecasting models. Lastly, results show how this phenomenon is predominantly influenced by the dimensions of the horizontal plane affected by soil consolidation and permeabilities that behave according to three coordinate axes.
Small global solutions to the damped two-dimensional Boussinesq equations
Adhikari, Dhanapati; Cao, Chongsheng; Wu, Jiahong; Xu, Xiaojing
The two-dimensional (2D) incompressible Euler equations have been thoroughly investigated and the resolution of the global (in time) existence and uniqueness issue is currently in a satisfactory status. In contrast, the global regularity problem concerning the 2D inviscid Boussinesq equations remains widely open. In an attempt to understand this problem, we examine the damped 2D Boussinesq equations and study how damping affects the regularity of solutions. Since the damping effect is insufficient in overcoming the difficulty due to the “vortex stretching”, we seek unique global small solutions and the efforts have been mainly devoted to minimizing the smallness assumption. By positioning the solutions in a suitable functional setting (more precisely, the homogeneous Besov space B˚∞,11), we are able to obtain a unique global solution under a minimal smallness assumption.
EXACT SOLUTION FOR A TWO-DIMENSIONAL LAMB'S PROBLEM DUE TO A STRIP IMPULSE LOADING
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
By applying the integral transform method and the inverse transformation technique based upon the two types of integration, the present paper has successfully obtained an exact algebraic solution for a two-dimensional Lamb's problem due to a strip impulse loading for the first time. With the algebraic result, the excitation and propagation processes of stress waves,including the longitudinal wave, the transverse wave, and Rayleigh-wave, are discussed in detail.A few new conclusions have been drawn from currently available integral results or computational results.
Energy Technology Data Exchange (ETDEWEB)
Riley, M.E.
1998-03-01
This report describes the numerical procedure used to implement the Green`s function method for solving the Poisson equation in two-dimensional Cartesian coordinates. The procedure can determine the solution to a problem with any or all of applied voltage boundary conditions, dielectric media, floating (insulated) conducting media, dielectric surface charging, periodic (reflective) boundary conditions, and volumetric space charge. The numerical solution is reasonably fast, and the dimension of the linear problem to be solved is that of the number of elements needed to represent the surfaces, not the whole computational volume. The method of solution is useful in the simulation of plasma particle motion in the vicinity of complex surface structures as found in microelectronics plasma processing applications. A FORTRAN implementation of this procedure is available from the author.
Extrapolation of Nystrom solution for two dimensional nonlinear Fredholm integral equations
Guoqiang, Han; Jiong, Wang
2001-09-01
In this paper, we analyze the existence of asymptotic error expansion of the Nystrom solution for two-dimensional nonlinear Fredholm integral equations of the second kind. We show that the Nystrom solution admits an error expansion in powers of the step-size h and the step-size k. For a special choice of the numerical quadrature, the leading terms in the error expansion for the Nystrom solution contain only even powers of h and k, beginning with terms h2p and k2q. These expansions are useful for the application of Richardson extrapolation and for obtaining sharper error bounds. Numerical examples show that how Richardson extrapolation gives a remarkable increase of precision, in addition to faster convergence.
Cross Validation Through Two-dimensional Solution Surface for Cost-Sensitive SVM.
Gu, Bin; Sheng, Victor; Tay, Keng; Romano, Walter; Li, Shuo
2016-06-08
Model selection plays an important role in cost-sensitive SVM (CS-SVM). It has been proven that the global minimum cross validation (CV) error can be efficiently computed based on the solution path for one parameter learning problems. However, it is a challenge to obtain the global minimum CV error for CS-SVM based on one-dimensional solution path and traditional grid search, because CS-SVM is with two regularization parameters. In this paper, we propose a solution and error surfaces based CV approach (CV-SES). More specifically, we first compute a two-dimensional solution surface for CS-SVM based on a bi-parameter space partition algorithm, which can fit solutions of CS-SVM for all values of both regularization parameters. Then, we compute a two-dimensional validation error surface for each CV fold, which can fit validation errors of CS-SVM for all values of both regularization parameters. Finally, we obtain the CV error surface by superposing K validation error surfaces, which can find the global minimum CV error of CS-SVM. Experiments are conducted on seven datasets for cost sensitive learning and on four datasets for imbalanced learning. Experimental results not only show that our proposed CV-SES has a better generalization ability than CS-SVM with various hybrids between grid search and solution path methods, and than recent proposed cost-sensitive hinge loss SVM with three-dimensional grid search, but also show that CV-SES uses less running time.
Cao, Xiehong; Tan, Chaoliang; Zhang, Xiao; Zhao, Wei; Zhang, Hua
2016-08-01
The development of renewable energy storage and conversion devices is one of the most promising ways to address the current energy crisis, along with the global environmental concern. The exploration of suitable active materials is the key factor for the construction of highly efficient, highly stable, low-cost and environmentally friendly energy storage and conversion devices. The ability to prepare two-dimensional (2D) metal dichalcogenide (MDC) nanosheets and their functional composites in high yield and large scale via various solution-based methods in recent years has inspired great research interests in their utilization for renewable energy storage and conversion applications. Here, we will summarize the recent advances of solution-processed 2D MDCs and their hybrid nanomaterials for energy storage and conversion applications, including rechargeable batteries, supercapacitors, electrocatalytic hydrogen generation and solar cells. Moreover, based on the current progress, we will also give some personal insights on the existing challenges and future research directions in this promising field.
Stochastic domain decomposition for the solution of the two-dimensional magnetotelluric problem
Bihlo, Alexander; Haynes, Ronald D; Loredo-Osti, J Concepcion
2016-01-01
Stochastic domain decomposition is proposed as a novel method for solving the two-dimensional Maxwell's equations as used in the magnetotelluric method. The stochastic form of the exact solution of Maxwell's equations is evaluated using Monte-Carlo methods taking into consideration that the domain may be divided into neighboring sub-domains. These sub-domains can be naturally chosen by splitting the sub-surface domain into regions of constant (or at least continuous) conductivity. The solution over each sub-domain is obtained by solving Maxwell's equations in the strong form. The sub-domain solver used for this purpose is a meshless method resting on radial basis function based finite differences. The method is demonstrated by solving a number of classical magnetotelluric problems, including the quarter-space problem, the block-in-half-space problem and the triangle-in-half-space problem.
Energy Technology Data Exchange (ETDEWEB)
Hoang-Do, Ngoc-Tram [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Pham, Dang-Lan [Institute for Computational Science and Technology, Quang Trung Software Town, District 12, Ho Chi Minh City (Viet Nam); Le, Van-Hoang, E-mail: hoanglv@hcmup.edu.vn [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam)
2013-08-15
Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength are obtained for not only the ground state but also high excited states. Toward this goal, the operator method is developed by combining with the Levi-Civita transformation which transforms the problem under investigation into that of a two-dimensional anharmonic oscillator. This development of the non-perturbation method is significant because it can be applied to other problems of two-dimensional atomic systems. The obtained energies and wave functions set a new record for their precision of up to 20 decimal places. Analyzing the obtained data we also find an interesting result that exact analytical solutions exist at some values of magnetic field intensity.
National Research Council Canada - National Science Library
S Pamuk; N Pamuk
2014-01-01
In this paper, we obtain the particular exact solutions of the two-dimensional heat and mass transfer equation with power-law temperature-dependent thermal con- ductivity using the Adomian's decomposition method...
Energy Technology Data Exchange (ETDEWEB)
Catoni, Francesco; Zampetti, Paolo [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Energia; Cannata, Roberto [ENEA, Centro Ricerche Casaccia, Rome (Italy). Funzione Centrale INFO; Nichelatti, Enrico [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione
1997-10-01
Systems of two-dimensional hypercomplex numbers are usually studied in their canonical form, i.e. according to the multiplicative rule for the ``imaginary``versor i{sup 2} = {+-} 1, 0. In this report those systems for which i{sup 2} = {alpha} + {beta}i are studied and expressions are derived for functions given by series expansion as well as for some elementary functions. The results obtained for systems which can be decomposed are then extended to all systems.
Analytical Studies of Two-Dimensional Channel Turbulent Flow Subjected to Coriolis Force
鬼頭, 修己; 中林, 功一; キトウ, オサミ; Kito, Osami
1992-01-01
Coriolis effects on fully developed turbulent flow in a two-dimensional channel rotating about an axis perpendicular to its axis are considered. The Coriolis force has stabilizing/destabilizing effects on turbulence, and the mean velocity distribution changes accordingly. Experimental and numerical studies on the velocity characteristics have already been conducted by other researchers for various conditions. However, we cannot assemble the overall picture of the Coriolis effect on the veloci...
Hydration of an apolar solute in a two-dimensional waterlike lattice fluid.
Buzano, C; De Stefanis, E; Pretti, M
2005-05-01
In a previous work, we investigated a two-dimensional lattice-fluid model, displaying some waterlike thermodynamic anomalies. The model, defined on a triangular lattice, is now extended to aqueous solutions with apolar species. Water molecules are of the "Mercedes Benz" type, i.e., they possess a D3 (equilateral triangle) symmetry, with three equivalent bonding arms. Bond formation depends both on orientation and local density. The insertion of inert molecules displays typical signatures of hydrophobic hydration: large positive transfer free energy, large negative transfer entropy (at low temperature), strong temperature dependence of the transfer enthalpy and entropy, i.e., large (positive) transfer heat capacity. Model properties are derived by a generalized first order approximation on a triangle cluster.
The solution of the two-dimensional sine-Gordon equation using the method of lines
Bratsos, A. G.
2007-09-01
The method of lines is used to transform the initial/boundary-value problem associated with the two-dimensional sine-Gordon equation in two space variables into a second-order initial-value problem. The finite-difference methods are developed by replacing the matrix-exponential term in a recurrence relation with rational approximants. The resulting finite-difference methods are analyzed for local truncation error, stability and convergence. To avoid solving the nonlinear system a predictor-corrector scheme using the explicit method as predictor and the implicit as corrector is applied. Numerical solutions for cases involving the most known from the bibliography line and ring solitons are given.
Xu, Chunhui; He, Ping; Liu, Jie; Cui, Ajuan; Dong, Huanli; Zhen, Yonggang; Chen, Wei; Hu, Wenping
2016-08-08
Two-dimensional (2D) crystals of organic semiconductors (2DCOS) have attracted attention for large-area and low-cost flexible optoelectronics. However, growing large 2DCOS in controllable ways and transferring them onto technologically important substrates, remain key challenges. Herein we report a facile, general, and effective method to grow 2DCOS up to centimeter size which can be transferred to any substrate efficiently. The method named "solution epitaxy" involves two steps. The first is to self-assemble micrometer-sized 2DCOS on water surface. The second is epitaxial growth of them into millimeter or centimeter sized 2DCOS with thickness of several molecular layers. The general applicability of this method for the growth of 2DCOS is demonstrated by nine organic semiconductors with different molecular structures. Organic field-effect transistors (OFETs) based on the 2DCOS demonstrated high performance, confirming the high quality of the 2DCOS.
Full two-dimensional transient solutions of electrothermal aircraft blade deicing
Masiulaniec, K. C.; Keith, T. G., Jr.; Dewitt, K. J.; Leffel, K. L.
1985-01-01
Two finite difference methods are presented for the analysis of transient, two-dimensional responses of an electrothermal de-icer pad of an aircraft wing or blade with attached variable ice layer thickness. Both models employ a Crank-Nicholson iterative scheme, and use an enthalpy formulation to handle the phase change in the ice layer. The first technique makes use of a 'staircase' approach, fitting the irregular ice boundary with square computational cells. The second technique uses a body fitted coordinate transform, and maps the exact shape of the irregular boundary into a rectangular body, with uniformally square computational cells. The numerical solution takes place in the transformed plane. Initial results accounting for variable ice layer thickness are presented. Details of planned de-icing tests at NASA-Lewis, which will provide empirical verification for the above two methods, are also presented.
Nanoclays: Two-dimensional shuttles for rare earth complexes in aqueous solution
Lezhnina, M. M.; Bentlage, M.; Kynast, U. H.
2011-08-01
Nanoclays are shown to be attractive substrates in at least two major respects. Firstly, Hectorite analogous commercial clays ("Laponite") can facilitate the usage of luminescent rare earth ions in aqueous solution, as their adherence to the clay surface strongly reduces water coordination and thus enables dramatically improved emission intensities. This also holds true for complexes of Tb 3+, which coordinate water in their native crystalline state, as demonstrated for tris(bipyiridine) complexes. For these, the laponite interaction affords a 16-fold gain in emission intensity in aqueous solution over the dissolved complex. Secondly, the two-dimensional, disk-like morphology of the clays enables a sufficient proximity of Ce 3+ and Tb 3+ to allow an energy transfer even at comparably low solution concentrations. In partially laminated, solid powders the efficiencies of the corresponding interlayer species decrease due to intimate interactions with the surrounding silicate and interlayer water, which can, however be counteracted by keeping the disks apart with long-chain, alkylammonium cations as spacers between the disks.
Samokhvalova, Ksenia R; Liang Qian, Bao
2005-01-01
Dielectric photonic band gap (PBG) structures have many promising applications in laser acceleration. For these applications, accurate determination of fundamental and high order band gaps is critical. We present the results of our recent work on analytical calculations of two-dimensional (2D) PBG structures in rectangular geometry. We compare the analytical results with computer simulation results from the MIT Photonic Band Gap Structure Simulator (PBGSS) code, and discuss the convergence of the computer simulation results to the analytical results. Using the accurate analytical results, we design a mode-selective 2D dielectric cylindrical PBG cavity with the first global band gap in the frequency range of 8.8812 THz to 9.2654 THz. In this frequency range, the TM01-like mode is shown to be well confined.
Analytical solutions of the lattice Boltzmann BGK model
Zou, Q; Doolen, G D; Zou, Qisu; Hou, Shuling; Doolen, Gary D.
1995-01-01
Abstract: Analytical solutions of the two dimensional triangular and square lattice Boltzmann BGK models have been obtained for the plain Poiseuille flow and the plain Couette flow. The analytical solutions are written in terms of the characteristic velocity of the flow, the single relaxation time representation of these two flows without any approximation.
Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation
Institute of Scientific and Technical Information of China (English)
WANG Hong; TIAN Ying-Hui; CHEN Han-Lin
2011-01-01
@@ By using the modified Clarkson-Kruskal (CK) direct method, we obtain the non-Lie symmetry group of the two-dimensional KdV-Burgers equation.Under some constraint conditions, Lie point symmetry is also obtained.Through the symmetry group, some new exact solutions of the two-dimensional KdV-Burgers equation are found.%By using the modified Clarkson-Kruskal (CK) direct method, we obtain the non-Lie symmetry group of the two-dimensional KdV-Burgers equation. Under some constraint conditions, Lie point symmetry is also obtained.Through the symmetry group, some new exact solutions of the two-dimensional KdV-Burgers equation are found.
A two-dimensional threshold voltage analytical model for metal-gate/high-k/SiO2/Si stacked MOSFETs
Institute of Scientific and Technical Information of China (English)
Ma Fei; Liu Hong-Xia; Fan Ji-Bin; Wang Shu-Long
2012-01-01
In this paper the influences of the metal-gate and high-k/SiO2/Si stacked structure on the metal-oxidesemiconductor field-effect transistor (MOSFET) axe investigated.The flat-band voltage is revised by considering the influences of stacked structure and metal-semiconductor work function fluctuation. The two-dimensional Poisson's equation of potential distribution is presented.A threshold voltage analytical model for metal-gate/high-k/SiO2/Si stacked MOSFETs is developed by solving these Poisson's equations using the boundary conditions.The model is verified by a two-dimensional device simulator,which provides the basic design guidance for metal-gate/high-k/SiO2/Si stacked MOSFETs.
Institute of Scientific and Technical Information of China (English)
宋丽娜; 王维国
2012-01-01
By constructing the iterative formula with a so-called convergence-control parameter, the generalized two-dimensional differential transform method is improved. With the enhanced technique, the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations are dealt analytically and approximate solutions are derived. The results show that the employed approach is a promising tool for solving many nonlinear fractional partial differential equations. The algorithm described in this work is expected to be employed to solve more problems in fractional calculus.
Song, Li-Na; Wang, Wei-Guo
2012-08-01
By constructing the iterative formula with a so-called convergence-control parameter, the generalized two-dimensional differential transform method is improved. With the enhanced technique, the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations are dealt analytically and approximate solutions are derived. The results show that the employed approach is a promising tool for solving many nonlinear fractional partial differential equations. The algorithm described in this work is expected to be employed to solve more problems in fractional calculus.
How the World Changes By Going from One- to Two-Dimensional Polymers in Solution.
Schlüter, A Dieter; Payamyar, Payam; Öttinger, Hans Christian
2016-10-01
Scaling behavior of one-dimensional (1D) and two-dimensional (2D) polymers in dilute solution is discussed with the goal of stimulating experimental work by chemists, physicists, and material scientists in the emerging field of 2D polymers. The arguments are based on renormalization-group theory, which is explained for a general audience. Many ideas and methods successfully applied to 1D polymers are found not to work if one goes to 2D polymers. The role of the various states exhibiting universal behavior is turned upside down. It is expected that solubility will be a serious challenge for 2D polymers. Therefore, given the crucial importance of solutions in characterization and processing, synthetic concepts are proposed that allow the local bending rigidity and the molar mass to be tuned and the long-range interactions to be engineered, all with the goal of preventing the polymer from falling into flat or compact states. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Soliton solutions in two-dimensional Lorentz-violating higher derivative scalar theory
Passos, E; Brito, F A; Menezes, R; Mota-Silva, J C; Santos, J R L
2016-01-01
This paper shows a new approach to obtain analytical topological defects for a 2D Myers-Pospelov Lagrangian for two scalar fields. Such a Lagrangian presents higher-order kinetic terms, which lead us to equations of motion which are non-trivial to be integrated. Here we describe three possible scenarios for the equations of motion, named by time-like, space-like and light-like respectively. We started our investigation with a kink-like travelling wave Ansatz for the free theory, which led us to constraints for the dispersion relations of each scenario. We also introduced a method to obtain analytical solution for the general theory in the three mentioned scenarios. We exemplified the method and discussed the behavior of the defects solutions.
Directory of Open Access Journals (Sweden)
Neng Wan
2014-01-01
Full Text Available In terms of the poor geometric adaptability of spline element method, a geometric precision spline method, which uses the rational Bezier patches to indicate the solution domain, is proposed for two-dimensional viscous uncompressed Navier-Stokes equation. Besides fewer pending unknowns, higher accuracy, and computation efficiency, it possesses such advantages as accurate representation of isogeometric analysis for object boundary and the unity of geometry and analysis modeling. Meanwhile, the selection of B-spline basis functions and the grid definition is studied and a stable discretization format satisfying inf-sup conditions is proposed. The degree of spline functions approaching the velocity field is one order higher than that approaching pressure field, and these functions are defined on one-time refined grid. The Dirichlet boundary conditions are imposed through the Nitsche variational principle in weak form due to the lack of interpolation properties of the B-splines functions. Finally, the validity of the proposed method is verified with some examples.
Solution of two-dimensional Fredholm integral equation via RBF-triangular method
Directory of Open Access Journals (Sweden)
Amir Fallahzadeh
2012-04-01
Full Text Available In this paper, a new method is introduced to solve a two-dimensional Fredholm integral equation. The method is based on the approximation by Gaussian radial basis functions and triangular nodes and weights. Also, a new quadrature is introduced to approximate the two dimensional integrals which is called the triangular method. The results of the example illustrate the accuracy of the proposed method increases.
Institute of Scientific and Technical Information of China (English)
GONG Lun-Xun; CAO Jian-Li; PAN Jun-Ting; ZHANG Hua; JIAO Wan-Tang
2008-01-01
Based on the second integrable case of known two-dimensional Hamiltonian system with a quartic potential, we propose a 4×4 matrix spectral problem and derive a hierarchy of coupled KdV equations and their Hamiltonian structures. It is shown that solutions of the coupled KdV equations in the hierarchy are reduced to solving two compatible systems of ordinary differential equations. As an application, quite a few explicit solutions of the coupled KdV equations are obtained via using separability for the second integrable case of the two-dimensional Hamiltonian system.
Abreu, P; Adye, T; Adzic, P; Ajinenko, I; Albrecht, Z; Alderweireld, T; Alekseev, G D; Alemany, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amapane, N; Amato, S; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbiellini, Guido; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Beillière, P; Belokopytov, Yu A; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Blom, H M; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Branchini, P; Brenke, T; Brenner, R A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschbeck, Brigitte; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camporesi, T; Canale, V; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chierici, R; Shlyapnikov, P; Chochula, P; Chorowicz, V; Chudoba, J; Cieslik, K; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crépé, S; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Dris, M; Duperrin, A; Durand, J D; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Ferrari, P; Ferrer, A; Ferrer-Ribas, E; Ferro, F; Fichet, S; Firestone, A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gamblin, S; Gandelman, M; García, C; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerdyukov, L N; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grimm, H J; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Hansen, J; Harris, F J; Hedberg, V; Heising, S; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hughes, G J; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Kersevan, Borut P; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B J; Kinvig, A; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kriznic, E; Krstic, P S; Krumshtein, Z; Kubinec, P; Kurowska, J; Kurvinen, K L; Lamsa, J; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Maltezos, S; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Meroni, C; Meyer, W T; Myagkov, A; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Moch, M; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Müller, U; Münich, K; Mulders, M; Mulet-Marquis, C; Muresan, R; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Nassiakou, M; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nikolenko, M; Nomokonov, V P; Normand, Ainsley; Nygren, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Royon, C; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwemling, P; Schwering, B; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Siebel, M; Simard, L C; Simonetto, F; Sissakian, A N; Smadja, G; Smirnova, O G; Smith, G R; Sokolov, A; Sopczak, André; Sosnowski, R; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stanic, S; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Chikilev, O G; Tegenfeldt, F; Terranova, F; Thomas, J; Timmermans, J; Tinti, N; Tkatchev, L G; Todorova-Nová, S; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tzamarias, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Vollmer, C F; Voulgaris, G; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wolf, G; Yi, J; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G
1999-01-01
Multiplicity fluctuations in rings around the jet axis and in off-axis cones have been measured by the DELPHI collaboration in $e^+e^-$ annihilations into hadrons at LEP energies. The measurements are compared with analytical perturbative QCD calculations for the corresponding multiparton system, using the concept of Local Parton Hadron Duality. Some qualitative features are confirmed by the data but substantial quantitative deviations are observed.
Energy Technology Data Exchange (ETDEWEB)
Schunert, Sebastian; Azmy, Yousry Y., E-mail: snschune@ncsu.edu, E-mail: yyazmy@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC (United States)
2011-07-01
The quantification of the discretization error associated with the spatial discretization of the Discrete Ordinate(DO) equations in multidimensional Cartesian geometries is the central problem in error estimation of spatial discretization schemes for transport theory as well as computer code verification. Traditionally ne mesh solutions are employed as reference, because analytical solutions only exist in the absence of scattering. This approach, however, is inadequate when the discretization error associated with the reference solution is not small compared to the discretization error associated with the mesh under scrutiny. Typically this situation occurs if the mesh of interest is only a couple of refinement levels away from the reference solution or if the order of accuracy of the numerical method (and hence the reference as well) is lower than expected. In this work we present a Method of Manufactured Solutions (MMS) benchmark suite with variable order of smoothness of the underlying exact solution for two-dimensional Cartesian geometries which provides analytical solutions aver- aged over arbitrary orthogonal meshes for scattering and non-scattering media. It should be emphasized that the developed MMS benchmark suite rst eliminates the aforementioned limitation of ne mesh reference solutions since it secures knowledge of the underlying true solution and second that it allows for an arbitrary order of smoothness of the underlying ex- act solution. The latter is of importance because even for smooth parameters and boundary conditions the DO equations can feature exact solution with limited smoothness. Moreover, the degree of smoothness is crucial for both the order of accuracy and the magnitude of the discretization error for any spatial discretization scheme. (author)
Energy Technology Data Exchange (ETDEWEB)
Sebastian Schunert; Yousry Y. Azmy
2011-05-01
The quantification of the discretization error associated with the spatial discretization of the Discrete Ordinate(DO) equations in multidimensional Cartesian geometries is the central problem in error estimation of spatial discretization schemes for transport theory as well as computer code verification. Traditionally fine mesh solutions are employed as reference, because analytical solutions only exist in the absence of scattering. This approach, however, is inadequate when the discretization error associated with the reference solution is not small compared to the discretization error associated with the mesh under scrutiny. Typically this situation occurs if the mesh of interest is only a couple of refinement levels away from the reference solution or if the order of accuracy of the numerical method (and hence the reference as well) is lower than expected. In this work we present a Method of Manufactured Solutions (MMS) benchmark suite with variable order of smoothness of the underlying exact solution for two-dimensional Cartesian geometries which provides analytical solutions aver- aged over arbitrary orthogonal meshes for scattering and non-scattering media. It should be emphasized that the developed MMS benchmark suite first eliminates the aforementioned limitation of fine mesh reference solutions since it secures knowledge of the underlying true solution and second that it allows for an arbitrary order of smoothness of the underlying ex- act solution. The latter is of importance because even for smooth parameters and boundary conditions the DO equations can feature exact solution with limited smoothness. Moreover, the degree of smoothness is crucial for both the order of accuracy and the magnitude of the discretization error for any spatial discretization scheme.
Two-dimensional physically based semi-analytical model of source/drain series resistance in MOSFETs
He, Pei; Ke, Daoming; Hu, Pengfei
2016-01-01
In this study, a two-dimensional physically based semi-analytical model of source/drain series resistance in MOSFETs is developed, in which only one parameter needs to be extracted by measurement and the extracted parameter can be repeatedly used when the structure size of the source or drain is changed. The model at the first time separates the resistance into two independent parameters that multiply each other. One is the extracted parameter that is only related to the resistivity. The other one is calculated by the expressions obtained by using the semi-analytical method and Eigen function expansion method, and is only related to the structure size of the source or drain area. The model provides a new approach to solve the resistance problem and matches well with simulation results. It can be used easily to estimate the resistance when the device structure changes in device design.
Wang, Tiansi; Zhang, Chong; Aleksov, Aleksandar; Salama, Islam; Kar, Aravinda
2017-04-01
Phased array ultrasonic transducers enable modulating the focal position of the acoustic waves, and this capability is utilized in many applications, such as medical imaging and non-destructive testing. This type of transducers also provides a mechanism to generate tilted wavefronts in acousto-optic deflectors to deflect laser beams for high precision advanced laser material processing. In this paper, a theoretical model is presented for the diffraction of ultrasonic waves emitted by several phased array transducers into an acousto-optic medium such as TeO2 crystal. A simple analytic expression is obtained for the distribution of the ultrasonic displacement field in the crystal. The model prediction is found to be in good agreement with the results of a numerical model that is based on a non-paraxial multi-Gaussian beam (NMGB) model.
van Agthoven, Maria A; Delsuc, Marc-André; Bodenhausen, Geoffrey; Rolando, Christian
2013-01-01
Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) achieves high resolution and mass accuracy, allowing the identification of the raw chemical formulae of ions in complex samples. Using ion isolation and fragmentation (MS/MS), we can obtain more structural information, but MS/MS is time- and sample-consuming because each ion must be isolated before fragmentation. In 1987, Pfändler et al. proposed an experiment for 2D FT-ICR MS in order to fragment ions without isolating them and to visualize the fragmentations of complex samples in a single 2D mass spectrum, like 2D NMR spectroscopy. Because of limitations of electronics and computers, few studies have been conducted with this technique. The improvement of modern computers and the use of digital electronics for FT-ICR hardware now make it possible to acquire 2D mass spectra over a broad mass range. The original experiments used in-cell collision-induced dissociation, which caused a loss of resolution. Gas-free fragmentation modes such as infrared multiphoton dissociation and electron capture dissociation allow one to measure high-resolution 2D mass spectra. Consequently, there is renewed interest to develop 2D FT-ICR MS into an efficient analytical method. Improvements introduced in 2D NMR spectroscopy can also be transposed to 2D FT-ICR MS. We describe the history of 2D FT-ICR MS, introduce recent improvements, and present analytical applications to map the fragmentation of peptides. Finally, we provide a glossary which defines a few keywords for the 2D FT-ICR MS field.
Directory of Open Access Journals (Sweden)
S. M. Sadatrasoul
2014-01-01
Full Text Available We introduce some generalized quadrature rules to approximate two-dimensional, Henstock integral of fuzzy-number-valued functions. We also give error bounds for mappings of bounded variation in terms of uniform modulus of continuity. Moreover, we propose an iterative procedure based on quadrature formula to solve two-dimensional linear fuzzy Fredholm integral equations of the second kind (2DFFLIE2, and we present the error estimation of the proposed method. Finally, some numerical experiments confirm the theoretical results and illustrate the accuracy of the method.
Institute of Scientific and Technical Information of China (English)
Sanjoy Deb; Saptarsi Ghosh; N Basanta Singh; A K De; Subir Kumar Sarkar
2011-01-01
A generalized threshold voltage model based on two-dimensional Poisson analysis has been developed for SOI/SON MOSFETs.Different short channel field effects,such as fringing fields,junction-induced lateral fields and substrate fields,are carefully investigated,and the related drain-induced barrier-lowering effects are incorporated in the analytical threshold voltage model.Through analytical model-based simulation,the threshold voltage roll-off and subthreshold slope for both structures are compared for different operational and structural parameter variations.Results of analytical simulation are compared with the results of the ATLAS 2D physicsbased simulator for verification of the analytical model.The performance of an SON MOSFET is found to be significantly different from a conventional SOI MOSFET.The short channel effects are found to be reduced in an SON,thereby resulting in a lower threshold voltage roll-offand a smaller subthreshold slope.This type of analysis is quite useful to figure out the performance improvement of SON over SOI structures for next generation short channel MOS devices.
Energy Technology Data Exchange (ETDEWEB)
Chen, Yong [Ningbo Univ., Ningbo (China). Department of Mathematics; Shanghai Jiao-Tong Univ., Shangai (China). Department of Physics; Chinese Academy of sciences, Beijing (China). Key Laboratory of Mathematics Mechanization
2005-03-01
A general method to uniformly construct exact solutions in terms of special function of nonlinear partial differential equations is presented by means of a more general ansatz and symbolic computation. Making use of the general method, we can successfully obtain the solutions found by the method proposed by Fan (J. Phys. A., 36 (2003) 7009) and find other new and more general solutions, which include polynomial solutions, exponential solutions, rational solutions, triangular periodic wave solution, soliton solutions, soliton-like solutions and Jacobi, Weierstrass doubly periodic wave solutions. A general variable-coefficient two-dimensional KdV equation is chosen to illustrate the method. As a result, some new exact soliton-like solutions are obtained. planets. The numerical results are given in tables. The results are discussed in the conclusion.
Baiz, Carlos R; Peng, Chunte Sam; Reppert, Mike E; Jones, Kevin C; Tokmakoff, Andrei
2012-04-21
We present a method to quantitatively determine the secondary structure composition of globular proteins using coherent two-dimensional infrared (2DIR) spectroscopy of backbone amide I vibrations (1550-1720 cm(-1)). Sixteen proteins with known crystal structures were used to construct a library of 2DIR spectra, and the fraction of residues in α-helix, β-sheet, and unassigned conformations was determined by singular value decomposition (SVD) of the measured two-dimensional spectra. The method was benchmarked by removing each individual protein from the set and comparing the composition extracted from 2DIR against the composition determined from the crystal structures. To highlight the increased structural content extracted from 2DIR spectra a similar analysis was also carried out using conventional infrared absorption of the proteins in the library.
Analytic Solution for Magnetohydrodynamic Stagnation Point Flow towards a Stretching Sheet
Institute of Scientific and Technical Information of China (English)
DING Qi; ZHANG Hong-Qing
2009-01-01
A steady two-dimensional magnetohydrodynamic stagnation point flow towards a stretching sheet with variable surface temperature is investigated. The analytic solution is obtained by homotopy analysis method. Theconvergence region is computed and the feature of the solution is discussed.
Directory of Open Access Journals (Sweden)
H. S. Shukla
2014-11-01
Full Text Available In this paper, a numerical solution of two dimensional nonlinear coupled viscous Burger equation is discussed with appropriate initial and boundary conditions using the modified cubic B-spline differential quadrature method. In this method, the weighting coefficients are computed using the modified cubic B-spline as a basis function in the differential quadrature method. Thus, the coupled Burger equation is reduced into a system of ordinary differential equations. An optimal five stage and fourth-order strong stability preserving Runge–Kutta scheme is applied for solving the resulting system of ordinary differential equations. The accuracy of the scheme is illustrated by taking two numerical examples. Computed results are compared with the exact solutions and other results available in literature. Obtained numerical result shows that the described method is efficient and reliable scheme for solving two dimensional coupled viscous Burger equation.
Finite Differences and Collocation Methods for the Solution of the Two Dimensional Heat Equation
Kouatchou, Jules
1999-01-01
In this paper we combine finite difference approximations (for spatial derivatives) and collocation techniques (for the time component) to numerically solve the two dimensional heat equation. We employ respectively a second-order and a fourth-order schemes for the spatial derivatives and the discretization method gives rise to a linear system of equations. We show that the matrix of the system is non-singular. Numerical experiments carried out on serial computers, show the unconditional stability of the proposed method and the high accuracy achieved by the fourth-order scheme.
Approximate analytic solutions of stagnation point flow in a porous medium
Kumaran, V.; Tamizharasi, R.; Vajravelu, K.
2009-06-01
An efficient and new implicit perturbation technique is used to obtain approximate analytical series solution of Brinkmann equation governing the two-dimensional stagnation point flow in a porous medium. Analytical approximate solution of the classical two-dimensional stagnation point flow is obtained as a limiting case. Also, it is shown that the obtained higher order series solutions agree well with the computed numerical solutions.
Fang, Li; Guo, Zhenhua
2016-04-01
The aim of this paper is to establish the global well-posedness and large-time asymptotic behavior of the strong solution to the Cauchy problem of the two-dimensional compressible Navier-Stokes equations with vacuum. It is proved that if the shear viscosity {μ} is a positive constant and the bulk viscosity {λ} is the power function of the density, that is, {λ=ρ^{β}} with {β in [0,1],} then the Cauchy problem of the two-dimensional compressible Navier-Stokes equations admits a unique global strong solution provided that the initial data are of small total energy. This result can be regarded as the extension of the well-posedness theory of classical compressible Navier-Stokes equations [such as Huang et al. (Commun Pure Appl Math 65:549-585, 2012) and Li and Xin (http://arxiv.org/abs/1310.1673) respectively]. Furthermore, the large-time behavior of the strong solution to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations had been also obtained.
Abel, Julianna; Luntz, Jonathan; Brei, Diann
2012-08-01
Active knits are a unique architectural approach to meeting emerging smart structure needs for distributed high strain actuation with simultaneous force generation. This paper presents an analytical state-based model for predicting the actuation response of a shape memory alloy (SMA) garter knit textile. Garter knits generate significant contraction against moderate to large loads when heated, due to the continuous interlocked network of loops of SMA wire. For this knit architecture, the states of operation are defined on the basis of the thermal and mechanical loading of the textile, the resulting phase change of the SMA, and the load path followed to that state. Transitions between these operational states induce either stick or slip frictional forces depending upon the state and path, which affect the actuation response. A load-extension model of the textile is derived for each operational state using elastica theory and Euler-Bernoulli beam bending for the large deformations within a loop of wire based on the stress-strain behavior of the SMA material. This provides kinematic and kinetic relations which scale to form analytical transcendental expressions for the net actuation motion against an external load. This model was validated experimentally for an SMA garter knit textile over a range of applied forces with good correlation for both the load-extension behavior in each state as well as the net motion produced during the actuation cycle (250% recoverable strain and over 50% actuation). The two-dimensional analytical model of the garter stitch active knit provides the ability to predict the kinetic actuation performance, providing the basis for the design and synthesis of large stroke, large force distributed actuators that employ this novel architecture.
Strong nonlinear oscillators analytical solutions
Cveticanin, Livija
2017-01-01
This book outlines an analytical solution procedure of the pure nonlinear oscillator system, offering a solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter. Includes exercises.
Ahmad, Shahab; Kanaujia, Pawan K; Beeson, Harry J; Abate, Antonio; Deschler, Felix; Credgington, Dan; Steiner, Ullrich; Prakash, G Vijaya; Baumberg, Jeremy J
2015-11-18
Room-temperature photocurrent measurements in two-dimensional (2D) inorganic-organic perovskite devices reveal that excitons strongly contribute to the photocurrents despite possessing binding energies over 10 times larger than the thermal energies. The p-type (C6H9C2H4NH3)2PbI4 liberates photocarriers at metallic Schottky aluminum contacts, but incorporating electron- and hole-transport layers enhances the extracted photocurrents by 100-fold. A further 10-fold gain is found when TiO2 nanoparticles are directly integrated into the perovskite layers, although the 2D exciton semiconducting layers are not significantly disrupted. These results show that strong excitonic materials may be useful as photovoltaic materials despite high exciton binding energies and suggest mechanisms to better understand the photovoltaic properties of the related three-dimensional perovskites.
A solution of two-dimensional magnetohydrodynamic flow using the finite volume method
Directory of Open Access Journals (Sweden)
Naceur Sonia
2014-01-01
Full Text Available This paper presents the two dimensional numerical modeling of the coupling electromagnetic-hydrodynamic phenomena in a conduction MHD pump using the Finite volume Method. Magnetohydrodynamic problems are, thus, interdisciplinary and coupled, since the effect of the velocity field appears in the magnetic transport equations, and the interaction between the electric current and the magnetic field appears in the momentum transport equations. The resolution of the Maxwell's and Navier Stokes equations is obtained by introducing the magnetic vector potential A, the vorticity z and the stream function y. The flux density, the electromagnetic force, and the velocity are graphically presented. Also, the simulation results agree with those obtained by Ansys Workbench Fluent software.
A meron cluster solution for the sign problem of the two-dimensional O(3) model
Brechtefeld, F
2002-01-01
The two-dimensional O(3) model at a vacuum angle theta=pi is investigated. This model has a severe sign problem. By a Wolff cluster algorithm an integer or half-integer topological charge is assigned to each cluster. The meron clusters (clusters with half-integer topological charge) are used to construct an improved estimator for the correlation function of two spins at theta=pi. Only configurations with 0 and 2 merons contribute to this correlation function. An algorithm, that generates configurations with only 0 and 2 merons, is constructed and numerical simulations at theta=pi are performed. The numerical results indicate the presence of long range correlations at theta=pi.
Directory of Open Access Journals (Sweden)
Fukang Yin
2013-01-01
Full Text Available A numerical method is presented to obtain the approximate solutions of the fractional partial differential equations (FPDEs. The basic idea of this method is to achieve the approximate solutions in a generalized expansion form of two-dimensional fractional-order Legendre functions (2D-FLFs. The operational matrices of integration and derivative for 2D-FLFs are first derived. Then, by these matrices, a system of algebraic equations is obtained from FPDEs. Hence, by solving this system, the unknown 2D-FLFs coefficients can be computed. Three examples are discussed to demonstrate the validity and applicability of the proposed method.
Wu, Wan-ye; Wu, Kun; Li, Guo-ying
2015-02-01
The synchronous fluorescence spectroscopy and two dimensional correlation analysis method were applied to study the aggregation behavior of acid-soluble collagen solutions (0.2, 0.4 and 1.6 mg x mL(-1)) during the heating process of 10-70 degrees C. It was found that the fluorescence excited at 292 and 282 nm (delta lamda=9 nm) belongs to the tyrosine (Tyr) residues which participate in forming hydrogen bonds or not, respectively. The two dimensional correlation analysis with the temperature varying showed that with the temperature increased (10-30 degrees C) hydrogen bonds among collagen molecular with Tyr residues formed in the 0.2 mg x mL(-1) collagen solution, while the higher aggregations of collagen molecular and hydrophobic micro-domains appeared in the 0.4 and 1.6 mg x mL(-1) collagen solutions. With approaching the denatured temperature of collagen (36-38 degrees C), the hydrophobic micro-domain and aggregates seemed to be broken in the 0.4 and 1.6 mg x mL(-1) collagen solutions, however the hydrogen bonds in the 0.2 mg x mL(-1) were stable. Above the denaturation temperature of collagen, the triple-helix structure of collagen molecular in solution of each concentration tended to be loose. In the heating process of 45-70 degrees C, this trend was more obvious.
Numerical solutions for a two-dimensional airfoil undergoing unsteady motion
Institute of Scientific and Technical Information of China (English)
WU Fu-bing; ZENG Nian-dong; ZHANG Liang; WU De-ming
2004-01-01
Continuous vorticity panels are used to model general unsteady inviscid, incompressible, and two-dimensional flows. The geometry of the airfoil is approximated by series of short straight segments having endpoints that lie on the actual surface. A piecewise linear, continuous distribution of vorticity over the airfoil surface is used to generate disturbance flow. The no-penetration condition is imposed at the midpoint of each segment and at discrete times. The wake is simulated by a system of point vortices, which move at local fluid velocity. At each time step, a new wake panel with uniform vorticity distribution is attached to the trailing edge, and the condition of eonstant circulation around the airfoil and wake is imposed. A new expression for Kutta condition is developed to study (i) the effect of thickness on the lift build-up of an impulsively started airfoil, (ii) the effects of reduced frequency and heave amplitude on the thrust production of flapping airfoils, and (iii) the vortex-airfoil interaction. This work presents some hydrodynamic results for tidalstreaim turbine.
Energy Technology Data Exchange (ETDEWEB)
Kohlberg, I.
1989-03-01
A solution for the two-dimensional, two-region electromagnetic ground response was developed that relates the surface components of the electric field to the surface components of the magnetic field. This has been accomplished by deriving a universal functional form for a dimensionless Green's function. The Green's function provides increasingly more accurate approximations to the response for each successive reflection from the second layer. This result would appear to provide simplification and reduced computer running time in the numerical modelling of the HABEMP when the ground response is coupled to finite-difference methods for solving the atmospheric part of the problem.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The authors consider the existence of singular limit solutions for a family of nonlinear elliptic problems with exponentially dominated nonlinearity and Dirichlet boundary condition and generalize the results of [3].
A Global Solution to a Two-dimensional Riemann Problem Involving Shocks as Free Boundaries
Institute of Scientific and Technical Information of China (English)
Yuxi Zheng
2003-01-01
We present a global solution to a Riemann problem for the pressure gradient system of equations.The Riemann problem has initially two shock waves and two contact discontinuities. The angle between the two shock waves is set initially to be close to 180 degrees. The solution has a shock wave that is usually regarded as a free boundary in the self-similar variable plane. Our main contribution in methodology is handling the tangential oblique derivative boundary values.
Institute of Scientific and Technical Information of China (English)
ZHANG XingHua; HOU XiMiao; JI Chao; LI Ming; DOU ShuoXing; WANG PengYe
2009-01-01
With atomic force microscopy (AFM) we systematically studied the DNA condensations on mica surfaces induced by multivalent cation spermidine. The pattern of the DNA condensates is a flat single layer, with a core in the centre and DNA wrapping around it at high density. We assume this to be a two-dimensional condensation of free coiled DNA onto negatively charged mica surfaces by the multivalent cation. The DNA molecules condense on mica surfaces via a pathway different from the formation of toroids, rods or globules in bulk solutions. We give an explanation to why toroid structures are difficult to be observed by AFM, and further discuss the relationship between DNA condensations in solutions and on mica surfaces. The present work will be helpful for understanding the behaviors of DNA on charged surfaces, which might be significantly different from that in solutions.
Numerical Solutions for Supersonic Flow of an Ideal Gas Around Blunt Two-Dimensional Bodies
Fuller, Franklyn B.
1961-01-01
The method described is an inverse one; the shock shape is chosen and the solution proceeds downstream to a body. Bodies blunter than circular cylinders are readily accessible, and any adiabatic index can be chosen. The lower limit to the free-stream Mach number available in any case is determined by the extent of the subsonic field, which in turn depends upon the body shape. Some discussion of the stability of the numerical processes is given. A set of solutions for flows about circular cylinders at several Mach numbers and several values of the adiabatic index is included.
Szmelter, J.; Marchant, M. J.; Evans, A.; Weatherill, N. P.
A cell vertex finite volume Jameson scheme is used to solve the 2D compressible, laminar, viscous fluid flow equations on locally embedded multiblock meshes. The proposed algorithm is applicable to both the Euler and Navier-Stokes equations. It is concluded that the adaptivity method is very successful in efficiently improving the accuracy of the solution. Both the mesh generator and the flow equation solver which are based on a quadtree data structure offer good flexibility in the treatment of interfaces. It is concluded that methods under consideration lead to accurate flow solutions.
Strongly nonlinear oscillators analytical solutions
Cveticanin, Livija
2014-01-01
This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...
Directory of Open Access Journals (Sweden)
Kalyani Kathirgamanathan
2015-01-01
Full Text Available In this study two-dimensional FTIR analysis was applied to understand the temperature effects on processing cellulose solutions in imidazolium-based ionic liquids. Analysis of the imidazolium ion νC2–H peak revealed hydrogen bonding within cellulose solutions to be dynamic on heating and cooling. The extent of hydrogen bonding was stronger on heating, consistent with greater ion mobility at higher temperature when the ionic liquid network structure is broken. At ambient temperatures a blue shifted νC2–H peak was indicative of greater cation-anion interactions, consistent with the ionic liquid network structure. Both cellulose and water further impact the extent of hydrogen bonding in these solutions. The FTIR spectral changes appeared gradual with temperature and contrast shear induced rheology changes which were observed on heating above 70°C and cooling below 40°C. The influence of cellulose on solution viscosity was not distinguished on initial heating as the ionic liquid network structure dominates rheology behaviour. On cooling, the quantity of cellulose has a greater influence on solution rheology. Outcomes suggest processing cellulose in ionic liquids above 40°C and to reduce the impacts of cation-anion effects and enhance solubilisation, processing should be done at 70°C.
Directory of Open Access Journals (Sweden)
N. N. Nefedov
2016-01-01
Full Text Available Parabolic singularly perturbed problems have been actively studied in recent years in connection with a large number of practical applications: chemical kinetics, synergetics, astrophysics, biology, and so on. In this work a singularly perturbed periodic problem for a parabolic reaction-diﬀusion equation is studied in the two-dimensional case. The case when there is an internal transition layer under unbalanced nonlinearity is considered. The internal layer is localised near the so called transitional curve. An asymptotic expansion of the solution is constructed and an asymptotics for the transitional curve is determined. The asymptotical expansion consists of a regular part, an interior layer part and a boundary part. In this work we focus on the interior layer part. In order to describe it in the neighborhood of the transition curve the local coordinate system is introduced and the stretched variables are used. To substantiate the asymptotics thus constructed, the asymptotic method of diﬀerential inequalities is used. The upper and lower solutions are constructed by suﬃciently complicated modiﬁcation of the asymptotic expansion of the solution. The Lyapunov asymptotical stability of the solution was proved by using the method of contracting barriers. This method is based on the asymptotic comparison principle and uses the upper and lower solutions which are exponentially tending to the solution to the problem. As a result, the solution is locally unique.The article is published in the authors’ wording.
Robert, Thomas; Martel, Richard; Conrad, Stephen H; Lefebvre, René; Gabriel, Uta
2006-06-30
This research focused on the optimization of TCE dissolution in a physical two-dimensional model providing a realistic representation of a heterogeneous granular aquifer. TCE was infiltrated in the sand pack where it resided both in pools and in zones of residual saturation. Surfactant was initially injected at low concentration to minimize TCE remobilization at first contact but was incrementally increased later during the experiment. Xanthan gum was added to the injected surfactant solution to optimize the sweep efficiency through the heterogeneous medium. Photographs and digital image analysis illustrated the interactions between TCE and the injected fluids. During the polymer flood, the effects of heterogeneities inside the sand pack were greatly reduced by the increased fluid viscosity and the shear-thinning effects of the polymer. The polymer also improved the contact between the TCE ganglia and the surfactant-polymer solution, thereby promoting dissolution. Surfactants interacted with the polymer reducing the overall viscosity of the solution. At first contact with a 0.5%(mass) surfactant solution, the TCE pools drained and some remobilization occurred. However, no TCE bank was formed and TCE did not penetrate into any previously uncontaminated areas. As a result, TCE surface area was increased. Subsequent surfactant floods at higher surfactant concentrations did not trigger more remobilization. TCE was mainly dissolved by the solution with the highest surfactant concentration. Plugging from bacterial growth or microgel formation associated to the polymer at the inflow screen prevented the full completion of the experiment. However, more than 90% of TCE was recovered with the circulation of less than 6 pore volumes of surfactant-polymer solution.
Institute of Scientific and Technical Information of China (English)
李志斌; 陈天华
2002-01-01
An algorithm for constructing exact solitary wave solutions and singular solutions for a class of nonlinear dissipative-dispersive system is presented. With the aid of symbolic manipulation system Maple, some explicit solutions are obtained for the system in physically interesting but non-integrable cases.
Analytic solutions for unconfined groundwater flow over a stepped base
Fitts, Charles R.; Strack, Otto D. L.
1996-03-01
Two new exact solutions are presented for uniform unconfined groundwater flow over a stepped base; one for a step down in the direction of flow, the other for a step up in the direction of flow. These are two-dimensional solutions of Laplace's equation in the vertical plane, and are derived using the hodograph method and conformal mappings on Riemann surfaces. The exact solutions are compared with approximate one-dimensional solutions which neglect the resistance to vertical flow. For small horizontal hydraulic gradients typical of regional groundwater flow, little error is introduced by neglecting the vertical resistance to flow. This conclusion may be extended to two-dimensional analytical models in the horizontal plane, which neglect the vertical resistance to flow and treat the aquifer base as a series of flat steps.
Energy Technology Data Exchange (ETDEWEB)
Lavrent' ev, I.V.; Sidorenkov, S.I.
1988-01-01
To establish the limits of applicability of two-dimensional mathematical models describing induced electromagnetic field distribution in an annular MHD channel, it is necessary to solve a three-dimensional problem. By reducing the number of dimensions of the problem (using, for example, the axial symmetry of MHD flow), the solution can be derived in some approximation. This paper proposes and demonstrates this method by studying the motion of a conducting medium in an annular channel with a two-pole ferromagnetic system under various assumptions for the field, channel and liquid, among them the superconductivity of the working medium. The work performed by the Lorentz force in the channel, equal to the Joule losses in the current-carrying boundary layer, was determined. It was concluded that the current-carrying boundary layer begins to develop at the wall of the channel when the flow enters the magnetic field and that its thickness grows with the length of the region of MHD interaction. The problem was solved numerically and asymptotically.
Two-dimensional inflow-wind solution of black hole accretion with an evenly symmetric magnetic field
Mosallanezhad, Amin; Yuan, Feng
2015-01-01
We solve the two-dimensional magnetohydrodynamic (MHD) equations of black hole accretion with the presence of magnetic field. The field includes a turbulent component, whose role is represented by the viscosity, and a large-scale ordered component. The latter is further assumed to be evenly symmetric with the equatorial plane. The equations are solved in the $r-\\theta$ plane of a spherical coordinate by assuming time-steady and radially self-similar. An inflow-wind solution is found. Around the equatorial plane, the gas is inflowing; while above and below the equatorial plane at a certain critical $\\theta$ angle, $\\theta\\sim 47^{\\circ}$, the inflow changes its direction of radial motion and becomes wind. The driving forces are analyzed and found to be the centrifugal force and the gradient of gas and magnetic pressure. The properties of wind are also calculated. The specific angular momentum of wind is found to be significantly larger than that of inflow, thus wind can transfer angular momentum outward. These...
Energy Technology Data Exchange (ETDEWEB)
Setare, M R; Kamali, V, E-mail: rezakord@ipm.ir, E-mail: vkamali1362@gmail.com [Department of Science, Payame Noor University, Bijar (Iran, Islamic Republic of)
2011-11-07
We show that a BTZ black hole solution of cosmological topological massive gravity has a hidden conformal symmetry. In this regard, we consider the wave equation of a massless scalar field propagating in BTZ spacetime and find that the wave equation could be written in terms of the SL(2, R) quadratic Casimir. From the conformal coordinates, the temperatures of the dual conformal field theories (CFTs) could be read directly. Moreover, we compute the microscopic entropy of the dual CFT by the Cardy formula and find a perfect match to the Bekenstein-Hawking entropy of a BTZ black hole. Then, we consider Galilean conformal algebras (GCA), which arises as a contraction of relativistic conformal algebras (x {yields} {epsilon}x, t {yields} t, {epsilon} {yields} 0). We show that there is a correspondence between GCA{sub 2} on the boundary and contracted BTZ in the bulk. For this purpose we obtain the central charges and temperatures of GCA{sub 2}. Then, we compute the microscopic entropy of the GCA{sub 2} by the Cardy formula and find a perfect match to the Bekenstein-Hawking entropy of a BTZ black hole in a non-relativistic limit. The absorption cross section of a near-region scalar field also matches the microscopic absorption cross section of the dual GCA{sub 2}. So we find further evidence that shows correspondence between a contracted BTZ black hole and two-dimensional GCA.
Gorcester, Jeff; Rananavare, Shankar B.; Freed, Jack H.
1989-05-01
Electron spin-echo (ESE) and two-dimensional electron-electron double resonance (2D ELDOR) experiments have been performed as a function of director orientation and temperature in the smectic A phase of the liquid crystal S2 for the spin-probe PD-tempone(2×10-3 M). Over the entire temperature range studied (288-323 K) we observe significant 2D ELDOR cross peaks only for ΔMI =±1 indicative of 14N spin-relaxation and negligible Heisenberg exchange. From the angular dependent 14N spin-relaxation rates we obtain the dipolar spectral densities at the hyperfine (hf) frequency, whereas from a combination of ESE and 2D ELDOR we obtain the dipolar and Zeeman-dipolar spectral densities at zero frequency. The angular dependent spectral densities were successfully decomposed into their basic components in accordance with theory. The angular dependent spectral densities at the hf frequency are not predicted by a model of anisotropic rotational diffusion in a nematic orienting potential, but are consistent with predictions of a model due to Moro and Nordio of solute rototranslational diffusion in a McMillan-type potential. The angular dependence also indicates that order director fluctuations in the smectic phase are suppressed at frequencies on the order of 10 MHz. An additional contribution to solute reorientation due to cooperative hydrocarbon chain fluctuations is suggested to account for the behavior of the observed spectral densities at zero frequency. An evaluation of the relevance of several other dynamical models to this experimental work is also presented.
Directory of Open Access Journals (Sweden)
Sarvesh Dubey
2011-01-01
Full Text Available In this paper, a short-channel threshold voltage model is presented for triple-material double-gate(TM-DG MOSFET with uniform doping profile in the channel region. To obtain the channel potential expression, the two-dimensional (2D Poisson’s equation has been solved using the parabolic potential approximation with suitable boundary conditions. Subsequently, the surface potential expression has been employed to derive an analytical expression of thresholod. The threshold voltage variation with various device parameters has been shown. To validate the model, ATLASTM based numerical simulation results have been used.
Directory of Open Access Journals (Sweden)
V.M. Emelyanov
2015-12-01
Full Text Available Parameters of two-dimensional analytical model of an assessment of crossing of ellipses of distribution at recognition of nanoparticles of colloidal silver are given in polyair fibers on multidimensional correlation components of the Raman ranges with control according to polarizing characteristics. Reliability of recognition of nanoparticles increased more than by 1000 times and was estimated on joint probability of normal distributions of intensivnost of the Raman spectrograms of nanoparticles of silver on polyair fibers depending on longitudinal and cross polarization of laser radiation on all range of a range with the analysis of 9 main peaks.
ANALYTICAL SOLUTION OF GROUNDWATER FLUCTUATIONS IN ESTUARINE AQUIFER
Institute of Scientific and Technical Information of China (English)
CHEN Jing; ZHOU Zhi-fang; JIA Suo-bao
2005-01-01
As a basic factor in the environment of estuary, tidal effects in the coastal aquifer have recently attracted much attention because tidal dynamic also greatly influences the solute transport in the coastal aquifer. Previous studies on tidal dynamic of coastal aquifers have focused on the inland propagation of oceanic tides in the cross-shore direction, a configuration that is essentially one-dimensional. Two-dimensional analytical solutions for groundwater level fluctuation in recent papers are localized in presenting the effect of both oceanic tides and estuarine tides in quadrantal aquifer. A two-dimensional model of groundwater fluctuations in estuarine zone in proposed in this paper. Using complex transform, the two-dimensional flow equation subject to periodic boundary condition is changed into time-independent elliptic problem. Based on Green function method, an analytical solution for groundwater fluctuations in fan-shaped aquifer is derived. The response to of groundwater tidal loading in an estuary and ocean is discussed. The result show that its more extensive application than recent studies.
Lin, Zhaoyang; Yin, Anxiang; Mao, Jun; Xia, Yi; Kempf, Nicholas; He, Qiyuan; Wang, Yiliu; Chen, Chih-Yen; Zhang, Yanliang; Ozolins, Vidvuds; Ren, Zhifeng; Huang, Yu; Duan, Xiangfeng
2016-01-01
Epitaxial heterostructures with precisely controlled composition and electronic modulation are of central importance for electronics, optoelectronics, thermoelectrics, and catalysis. In general, epitaxial material growth requires identical or nearly identical crystal structures with small misfit in lattice symmetry and parameters and is typically achieved by vapor-phase depositions in vacuum. We report a scalable solution-phase growth of symmetry-mismatched PbSe/Bi2Se3 epitaxial heterostructures by using two-dimensional (2D) Bi2Se3 nanoplates as soft templates. The dangling bond–free surface of 2D Bi2Se3 nanoplates guides the growth of PbSe crystal without requiring a one-to-one match in the atomic structure, which exerts minimal restriction on the epitaxial layer. With a layered structure and weak van der Waals interlayer interaction, the interface layer in the 2D Bi2Se3 nanoplates can deform to accommodate incoming layer, thus functioning as a soft template for symmetry-mismatched epitaxial growth of cubic PbSe crystal on rhombohedral Bi2Se3 nanoplates. We show that a solution chemistry approach can be readily used for the synthesis of gram-scale PbSe/Bi2Se3 epitaxial heterostructures, in which the square PbSe (001) layer forms on the trigonal/hexagonal (0001) plane of Bi2Se3 nanoplates. We further show that the resulted PbSe/Bi2Se3 heterostructures can be readily processed into bulk pellet with considerably suppressed thermal conductivity (0.30 W/m·K at room temperature) while retaining respectable electrical conductivity, together delivering a thermoelectric figure of merit ZT three times higher than that of the pristine Bi2Se3 nanoplates at 575 K. Our study demonstrates a unique epitaxy mode enabled by the 2D nanocrystal soft template via an affordable and scalable solution chemistry approach. It opens up new opportunities for the creation of diverse epitaxial heterostructures with highly disparate structures and functions. PMID:27730211
Xu, Hui-Fang; Dai, Yue-Hua; Xu, Jian-Bin; Li, Ning; Yang, Jin; Zheng, Chang-Yong
2015-05-01
A semi-analytical subthreshold surface potential model for double-doping polysilicon gate (DDPG) MOSFETs is presented. By introducing two rectangular sources located in the gate insulator and the channel-depleted region, the two-dimensional (2D) Poisson equations are solved using a semi-analytical method combined with an eigenfunction expansion method. Expressions for the potentials are obtained as special functions of infinite series expressions. A subthreshold drain current is proposed on the basis of the potential profile, and it accounts for the carriers’ drift diffusion and thermionic emission theory. The advantage of this work is that the two-dimensional treatment of the gate insulator region has resulted in physical consistency across a dielectric boundary. The proposed model not only offers physical insight into device physics but also provides the basic designing guideline for DDPG MOSFETs, enabling the designer to optimize the device in accordance with the application. Very good agreement for both the subthreshold surface potential and drain current is observed between the model calculations and the simulated results.
Analytical Solutions for the Two-Dimensional Magnetic Fields in Disc-Type Permanent Magnet Machines
Institute of Scientific and Technical Information of China (English)
1998-01-01
Ｍａｇｎｅｔｉｃ Ｆｉｅｌｄｓ ｉｎ Ｄｉｓｃ－Ｔｙｐｅ Ｐｅｒｍａｎｅｎｔ Ｍａｇｎｅｔ ＭａｃｈｉｎｅｓTX１ＩｎｔｒｏｄｕｃｔｉｏｎＡｔｗｏ－ｄｉｍｅｎｓｉｏｎａｌ（２Ｄ）ａｎａｌｙｔｉｃａｌｍｅｔｈｏｄｆｏｒｃｏｍ－ｐｕｔｉｎｇｔｈｅａｘｉａｌ...
Directory of Open Access Journals (Sweden)
Frishter Ljudmila Jur'evna
2012-10-01
Full Text Available The article represents the results of the evaluation of the strain-stress distribution in the area of concentrated tensions in the two-dimensional angle-shaped area of the border. Solutions to the nonsingular homogeneous two-dimensional elastic problem may be evaluated through their extrapolation onto sections located in the vicinity of an irregular point of the border by taking the account of the experimental data and the practical accuracy of measurements taken through the application of the photoelasticity method.
Lansing, F. L.
1980-01-01
A numerical procedure was established using the finite-difference technique in the determination of the time-varying temperature distribution of a tubular solar collector under changing solar radiancy and ambient temperature. Three types of spatial discretization processes were considered and compared for their accuracy of computations and for selection of the shortest computer time and cost. The stability criteria of this technique were analyzed in detail to give the critical time increment to ensure stable computations. The results of the numerical analysis were in good agreement with the analytical solution previously reported. The numerical method proved to be a powerful tool in the investigation of the collector sensitivity to two different flow patterns and several flow control mechanisms.
Analytical Solutions for Beams Passing Apertures with Sharp Boundaries
Luz, Eitam; Malomed, Boris A
2016-01-01
An approximation is elaborated for the paraxial propagation of diffracted beams, with both one- and two-dimensional cross sections, which are released from apertures with sharp boundaries. The approximation applies to any beam under the condition that the thickness of its edges is much smaller than any other length scale in the beam's initial profile. The approximation can be easily generalized for any beam whose initial profile has several sharp features. Therefore, this method can be used as a tool to investigate the diffraction of beams on complex obstacles. The analytical results are compared to numerical solutions and experimental findings, which demonstrates high accuracy of the approximation. For an initially uniform field confined by sharp boundaries, this solution becomes exact for any propagation distance and any sharpness of the edges. Thus, it can be used as an efficient tool to represent the beams, produced by series of slits with a complex structure, by a simple but exact analytical solution.
Lee, Yueh-Ning
2016-01-01
Most stars are born in the gaseous proto-cluster environment. The knowledge of this intermediate stage gives more accurate constraints on star formation characteristics. We demonstrate that a virialized globally supported structure, in which star formation happens, is formed out of a collapsing molecular cloud, and derive a mapping from the parent cloud parameters to the proto-cluster to predict its properties, with a view to confront analytical calculations with observations and simulations. The virial theorem is decomposed into two dimensions to account for the rotation and the flattened geometry. Equilibrium is found by balancing rotation, turbulence and self-gravity, while turbulence is maintained by accretion driving and dissipates in one crossing time. The angular momentum and the accretion rate of the proto-cluster are estimated from the parent cloud properties. The two-dimensional virial model predicts the size and velocity dispersion given the mass of the proto-cluster and that of the parent cloud. T...
ANALYTIC SOLUTIONS OF MATRIX RICCATI EQUATIONS WITH ANALYTIC COEFFICIENTS
Curtain, Ruth; Rodman, Leiba
2010-01-01
For matrix Riccati equations of platoon-type systems and of systems arising from PDEs, assuming the coefficients are analytic or rational functions in a suitable domain, analyticity of the stabilizing solution is proved under various hypotheses. General results on analytic behavior of stabilizing so
Yan, Xia; Wang, Li-Juan; Wu, Zhen; Wu, Yun-Long; Liu, Xiu-Xiu; Chang, Fang-Rong; Fang, Mei-Juan; Qiu, Ying-Kun
2016-10-15
Microbial metabolites represent an important source of bioactive natural products, but always exhibit diverse of chemical structures or complicated chemical composition with low active ingredients content. Traditional separation methods rely mainly on off-line combination of open-column chromatography and preparative high performance liquid chromatography (HPLC). However, the multi-step and prolonged separation procedure might lead to exposure to oxygen and structural transformation of metabolites. In the present work, a new two-dimensional separation workflow for fast isolation and analysis of microbial metabolites from Chaetomium globosum SNSHI-5, a cytotoxic fungus derived from extreme environment. The advantage of this analytical comprehensive two-dimensional liquid chromatography (2D-LC) lies on its ability to analyze the composition of the metabolites, and to optimize the separation conditions for the preparative 2D-LC. Furthermore, gram scale preparative 2D-LC separation of the crude fungus extract could be performed on a medium-pressure liquid chromatograph×preparative high-performance liquid chromatography system, under the optimized condition. Interestingly, 12 cytochalasan derivatives, including two new compounds named cytoglobosin Ab (3) and isochaetoglobosin Db (8), were successfully obtained with high purity in a short period of time. The structures of the isolated metabolites were comprehensively characterized by HR ESI-MS and NMR. To be highlighted, this is the first report on the combination of analytical and preparative 2D-LC for the separation of microbial metabolites. The new workflow exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods.
Energy Technology Data Exchange (ETDEWEB)
Sawyer, Karma Rae [Univ. of California, Berkeley, CA (United States)
2008-12-01
Understanding chemical reactions requires the knowledge of the elementary steps of breaking and making bonds, and often a variety of experimental techniques are needed to achieve this goal. The initial steps occur on the femto- through picosecond time-scales, requiring the use of ultrafast spectroscopic methods, while the rate-limiting steps often occur more slowly, requiring alternative techniques. Ultrafast one and two-dimensional infrared and step-scan FTIR spectroscopies are used to investigate the photochemical reactions of four organometallic complexes. The analysis leads to a detailed understanding of mechanisms that are general in nature and may be applicable to a variety of reactions.
A Finite-Element Solution of the Navier-Stokes Equations for Two-Dimensional and Axis-Symmetric Flow
Directory of Open Access Journals (Sweden)
Sven Ø. Wille
1980-04-01
Full Text Available The finite element formulation of the Navier-Stokes equations is derived for two-dimensional and axis-symmetric flow. The simple triangular, T6, isoparametric element is used. The velocities are interpolated by quadratic polynomials and the pressure is interpolated by linear polynomials. The non-linear simultaneous equations are solved iteratively by the Newton-Raphson method and the element matrix is given in the Newton-Raphson form. The finite element domain is organized in substructures and an equation solver which works on each substructure is specially designed. This equation solver needs less storage in the computer and is faster than the traditional banded equation solver. To reduce the amount of input data an automatic mesh generator is designed. The input consists of the coordinates of eight points defining each substructure with the corresponding boundary conditions. In order to interpret the results they are plotted on a calcomp plotter. Examples of plots of the velocities, the streamlines and the pressure inside a two-dimensional flow divider and an axis-symmetric expansion of a tube are shown for various Reynolds numbers.
LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; Bulik, Ireneusz W.; Chan, Garnet Kin-Lic; Chung, Chia-Min; Deng, Youjin; Ferrero, Michel; Henderson, Thomas M.; Jiménez-Hoyos, Carlos A.; Kozik, E.; Liu, Xuan-Wen; Millis, Andrew J.; Prokof'ev, N. V.; Qin, Mingpu; Scuseria, Gustavo E.; Shi, Hao; Svistunov, B. V.; Tocchio, Luca F.; Tupitsyn, I. S.; White, Steven R.; Zhang, Shiwei; Zheng, Bo-Xiao; Zhu, Zhenyue; Gull, Emanuel; Simons Collaboration on the Many-Electron Problem
2015-10-01
Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.
Leblanc, James
In this talk we present numerical results for ground state and excited state properties (energies, double occupancies, and Matsubara-axis self energies) of the single-orbital Hubbard model on a two-dimensional square lattice. In order to provide an assessment of our ability to compute accurate results in the thermodynamic limit we employ numerous methods including auxiliary field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock. We illustrate cases where agreement between different methods is obtained in order to establish benchmark results that should be useful in the validation of future results.
A novel schedule for solving the two-dimensional diffusion problem in fractal heat transfer
Directory of Open Access Journals (Sweden)
Xu Shu
2015-01-01
Full Text Available In this work, the local fractional variational iteration method is employed to obtain approximate analytical solution of the two-dimensional diffusion equation in fractal heat transfer with help of local fractional derivative and integral operators.
Directory of Open Access Journals (Sweden)
2015-12-01
Full Text Available Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.
Zhang, Cheng; Ingram, Isaiah C; Hantao, Leandro W; Anderson, Jared L
2015-03-20
A series of dicationic ionic liquid (IL)-based stationary phases were evaluated as secondary columns in comprehensive two-dimensional gas chromatography (GC×GC) for the separation of aliphatic hydrocarbons from kerosene. In order to understand the role that structural features of ILs play on the selectivity of nonpolar analytes, the solvation parameter model was used to probe the solvation properties of the IL-based stationary phases. It was observed that room temperature ILs containing long free alkyl side chain substituents and long linker chains between the two cations possess less cohesive forces and exhibited the highest resolution of aliphatic hydrocarbons. The anion component of the IL did not contribute significantly to the overall separation, as similar selectivities toward aliphatic hydrocarbons were observed when examining ILs with identical cations and different anions. In an attempt to further examine the separation capabilities of the IL-based GC stationary phases, columns of the best performing stationary phases were prepared with higher film thickness and resulted in enhanced selectivity of aliphatic hydrocarbons.
Xu, Huifang; Dai, Yuehua
2017-02-01
A two-dimensional analytical model of double-gate (DG) tunneling field-effect transistors (TFETs) with interface trapped charges is proposed in this paper. The influence of the channel mobile charges on the potential profile is also taken into account in order to improve the accuracy of the models. On the basis of potential profile, the electric field is derived and the expression for the drain current is obtained by integrating the BTBT generation rate. The model can be used to study the impact of interface trapped charges on the surface potential, the shortest tunneling length, the drain current and the threshold voltage for varying interface trapped charge densities, length of damaged region as well as the structural parameters of the DG TFET and can also be utilized to design the charge trapped memory devices based on TFET. The biggest advantage of this model is that it is more accurate, and in its expression there are no fitting parameters with small calculating amount. Very good agreements for both the potential, drain current and threshold voltage are observed between the model calculations and the simulated results. Project supported by the National Natural Science Foundation of China (No. 61376106), the University Natural Science Research Key Project of Anhui Province (No. KJ2016A169), and the Introduced Talents Project of Anhui Science and Technology University.
Energy Technology Data Exchange (ETDEWEB)
Maita, S.; Ando, J.; Nakatake, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering
1996-10-01
A simple panel method, the source and quasi continuous vortex lattice method (SQCM) was expanded to two-dimensional non-steady hydrofoil problems. Discussions were given on the results of calculations on two-dimensional hydrofoils making a simple non-steady motion. In calculating hydrofoils which move suddenly from a still state with angle of elevation {alpha} at a velocity U, the following results were obtained: the time differential item in a pressure equation gives a considerably strong effect on lifting power; and the lifting power converges to a steady state with lapse of time, and the lifting power coefficient in that state shows that the lifting power increases as hydrofoil thickness increases. This result agrees with the hydrofoil thickness effect in the two-dimensional steady problem, proving the reasonability of this calculation method. In the calculations of time history of the lifting power acting on hydrofoils passing a sinusoidal gust and hydrofoils in a pitching motion, the calculated values from the SQCM were found to approach analysis solution to thin hydrofoils as the hydrofoil thickness becomes thinner for both cases. This result also proves the result of calculations on non-steady state by using the SQCM reasonable. 11 refs., 10 figs.
Ross, Matthew R.
The primary focus of this work is the development of a mid-infrared pulse shaping system. The primary motivation for this system is for two-dimensional infrared (2DIR) spectroscopy, however, the mid-infrared pulse shaper also allows for more sophisticated spectroscopic experiments not previously attempted in the mid-infrared. Moreover, many can be implemented without changes or realignment of the optical setup. Example spectra are presented along with a discussion of capabilities and diagnostics. A second major project presented is 2DIR spectroscopy of iron pentacarbonyl, Fe(CO)5, a small metal carbonyl. This molecule undergoes Berry pseudorotation, a form of fluxtionality. This fast exchange of ligands mixes axial and equatorial modes and occurs on a timescale of picoseconds, too fast for NMR and other methods of measuring chemical structure and isomerization. Ultrafast chemical exchange spectroscopy, a measurement within 2DIR spectroscopy, is capable of resolving the time scales of this motion. We found that this process is affected by the solvent environment, specifically the solvent viscosity in alkanes and hydrogen bonding environments in alcohols. Lastly, a study is presented in which a series of synthetic metalloenzymes with a metal active site are studied by 2DIR spectroscopy. In this case a carbonyl is ligated to a copper-I atom in the active site, which then serves as our spectroscopic probe. We find, unexpectedly, that the shape of the carbonyl vibrational potential, as measured by the anharmonicity, is time-dependent. We attribute this to a geometrical rearrangement and are able to suggest that this effect is dependent on local site structure and dynamics and not significantly affected by electric potential near the peptide.
Hirose, S; Tanuma, S; Shibata, K; Takahashi, M; Tanigawa, T; Sasaqui, T; Noro, A; Uehara, K; Takahashi, K; Taniguchi, T
2003-01-01
The Kelvin-Helmholtz (KH) and tearing instabilities are likely to be important for the process of fast magnetic reconnection that is believed to explain the observed explosive energy release in solar flares. Theoretical studies of the instabilities, however, typically invoke simplified initial magnetic and velocity fields that are not solutions of the governing magnetohydrodynamic (MHD) equations. In the present study, the stability of a reconnecting current sheet is examined using a class of exact global MHD solutions for steady state incompressible magnetic reconnection (Craig & Henton 1995). Numerical simulation indicates that the outflow solutions where the current sheet is formed by strong shearing flows are subject to the KH instability. The inflow solutions where a fast and weakly sheared inflow leads to a strong magnetic field pile-up at the entrance to the sheet are shown to be tearing unstable. Although the observed instability of the solutions can be interpreted qualitatively by applying standa...
Analytical Special Solutions of the Bohr Hamiltonian
Bonatsos, D; Petrellis, D; Terziev, P A; Yigitoglu, I
2005-01-01
The following special solutions of the Bohr Hamiltonian are briefly described: 1) Z(5) (approximately separable solution in five dimensions with gamma close to 30 degrees), 2) Z(4) (exactly separable gamma-rigid solution in four dimensions with gamma = 30 degrees), 3) X(3) (exactly separable gamma-rigid solution in three dimensions with gamma =0). The analytical solutions obtained using Davidson potentials in the E(5), X(5), Z(5), and Z(4) frameworks are also mentioned.
Finite analytic numerical solution of heat transfer and flow past a square channel cavity
Chen, C.-J.; Obasih, K.
1982-01-01
A numerical solution of flow and heat transfer characteristics is obtained by the finite analytic method for a two dimensional laminar channel flow over a two-dimensional square cavity. The finite analytic method utilizes the local analytic solution in a small element of the problem region to form the algebraic equation relating an interior nodal value with its surrounding nodal values. Stable and rapidly converged solutions were obtained for Reynolds numbers ranging to 1000 and Prandtl number to 10. Streamfunction, vorticity and temperature profiles are solved. Local and mean Nusselt number are given. It is found that the separation streamlines between the cavity and channel flow are concave into the cavity at low Reynolds number and convex at high Reynolds number (Re greater than 100) and for square cavity the mean Nusselt number may be approximately correlated with Peclet number as Nu(m) = 0.365 Pe exp 0.2.
Institute of Scientific and Technical Information of China (English)
WEI Gao-Feng; LONG Chao-Yun; LONG Zheng-Wen; QIN Shui-Jie
2008-01-01
In this paper,the isotropic charged harmonic oscillator in uniform magnetic field is researched in the non-commutative phase space;the corresponding exact energy is obtained,and the analytic eigenfunction is presented in terms of the confluent hypergeometric function.It is shown that in the non-commutative space,the isotropic charged harmonic oscillator in uniform magnetic field has the similar behaviors to the Landau problem.
Analytic anisotropic solution for holography
Ren, Jie
2016-01-01
An exact solution to Einstein's equations for holographic models is presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution's appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined in detail. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimension reduction.
Directory of Open Access Journals (Sweden)
Puskar Raj SHARMA
2012-01-01
Full Text Available Aim of the paper is to investigate solution of twodimensional linear parabolic partial differential equation with non-local boundary conditions using Homotopy Perturbation Method (HPM. This method is not only reliable in obtaining solution of such problems in series form with high accuracy but it also guarantees considerable saving of the calculation volume and time as compared to other methods. The application of the method has been illustrated through an example
Fujie, Kentarou; Senba, Takasi
2016-08-01
This paper deals with positive radially symmetric solutions of the Neumann boundary value problem for the fully parabolic chemotaxis system, {ut=Δu-∇ṡ(u∇χ(v))in Ω×(0,∞),τvt=Δv-v+uin Ω×(0,∞), in a ball Ω \\subset {{{R}}2} with general sensitivity function χ (v) satisfying {χ\\prime}>0 and decaying property {χ\\prime}(s)\\to 0 (s\\to ∞ ), parameter τ \\in ≤ft(0,1\\right] and nonnegative radially symmetric initial data. It is shown that if τ \\in ≤ft(0,1\\right] is sufficiently small, then the problem has a unique classical radially symmetric solution, which exists globally and remains uniformly bounded in time. Especially, this result establishes global existence of solutions in the case χ (v)={χ0}log v for all {χ0}>0 , which has been left as an open problem.
Lee, Yueh-Ning; Hennebelle, Patrick
2016-06-01
Context. Most stars are born in the gaseous protocluster environment where the gas is reprocessed after the global collapse from the diffuse molecular cloud. The knowledge of this intermediate step gives more accurate constraints on star formation characteristics. Aims: We demonstrate that a virialized globally supported structure, in which star formation happens, is formed out of a collapsing molecular cloud, and we derive a mapping from the parent cloud parameters to the protocluster to predict its properties with a view to confront analytical calculations with observations and simulations. Methods: We decomposed the virial theorem into two dimensions to account for the rotation and the flattened geometry. Equilibrium was found by balancing rotation, turbulence, and self-gravity, while turbulence was maintained through accretion driving and it dissipates in one crossing time. We estimated the angular momentum and the accretion rate of the protocluster from the parent cloud properties. Results: The two-dimensional virial model predicts the size and velocity dispersion given the mass of the protocluster and that of the parent cloud. The gaseous protoclusters lie on a sequence of equilibrium with the trend R ~ M0.5 with limited variations, depending on the evolutionary stage, parent cloud, and parameters that are not well known, such as turbulence driving efficiency by accretion and turbulence anisotropy. The model reproduces observations and simulation results successfully. Conclusions: The properties of protoclusters follow universal relations and they can be derived from that of the parent cloud. The gaseous protocluster is an important primary stage of stellar cluster formation, and should be taken into account when studying star formation. Using simple estimates to infer the peak position of the core mass function (CMF) we find a weak dependence on the cluster mass, suggesting that the physical conditions inside protoclusters may contribute to set a CMF, and by
Bloem, Robbert; Dijkstra, Arend G.; Jansen, Thomas La Cour; Knoester, Jasper
2008-01-01
Population transfer between vibrational eigenstates is important for many phenomena in chemistry. In solution, this transfer is induced by fluctuations in molecular conformation as well as in the surrounding solvent. We develop a joint electrostatic density functional theory map that allows us to co
ANALYTICAL SOLUTION OF NONLINEAR BAROTROPIC VORTICITY EQUATION
Institute of Scientific and Technical Information of China (English)
WANG Yue-peng; SHI Wei-hui
2008-01-01
The stability of nonlinear barotropic vorticity equation was proved. The necessary and sufficient conditions for the initial value problem to be well-posed were presented. Under the conditions of well-posedness, the corresponding analytical solution was also gained.
Directory of Open Access Journals (Sweden)
Lulu Deng
2011-07-01
Full Text Available The phase and texture of a newly developed solution-processed copper phthalocyanine (CuPc thin film have been investigated by two-dimensional grazing incidence X-ray diffraction. The results show that it has β phase crystalline structure, with crystallinity greater than 80%. The average size of the crystallites is found to be about 24 nm. There are two different arrangements of crystallites, with one dominating the diffraction pattern. Both of them have preferred orientation along the thin film normal. Based on the similarities to the vacuum deposited CuPc thin films, the new solution processing method is verified to offer a good alternative to vacuum process, for the fabrication of low cost small molecule based organic photovoltaics.
Institute of Scientific and Technical Information of China (English)
Ying-hui ZHANG; Zhong TAN
2011-01-01
In this paper,we are concerned with the asymptotic behaviour of a weak solution to the NavierStokes equations for compressible barotropic flow in two space dimensions with the pressure function satisfying p(ρ) =a(ρ)logd(ρ) for large (ρ).Here d ＞ 2,a ＞ 0.We introduce useful tools from the theory of Orlicz spaces and construct a suitable function which approximates the density for time going to infinity.Using properties of this function,we can prove the strong convergence of the density to its limit state.The behaviour of the velocity field and kinetic energy is also briefly discussed.
Classical Solution of a Two-Dimensional Dynamics System for Pure Forest%一个二维纯林发展系统的古典解
Institute of Scientific and Technical Information of China (English)
徐龙封; 吴慧
2011-01-01
The research of two-dimensional forest dynamics system model is still open. First, for the peculiarity of two-dimensional forest dynamics systems with initial state depending only on total quantity of forest, and boundary condition depending only on initial state again, boundary of system not satisfying one of 3 kinds common conditions, by introducing a class of special family curves in presence region of " stand age-diameter", the problem of boundary conditions is avoided. Secondly, using the technique of selecting measure dimension of lumber diameter properly, a well-posed two-dimensional forest dynamics system model is propounded. At last, colligating the technique of pulling characteristic curve, a prior estimate, structuring integral equation of initial state, iteration, the existence and uniqueness of the global classical solution are proved for this system.%二维森林发展系统模型的研究还未见到任何结果.针对这类系统初始状态依赖于林木总量,而边界状态又依赖于初始状态,系统的边界不满足通常的三类条件之一的特点,采用在“树龄-直径”存在区域内引进一类特殊的曲线族,避开了提边界条件问题.再利用适当地选择林木直径尺度量纲的技巧,提出了一个适定的二维纯林发展系统模型,最后综合拉特征线、先验估计、构造初始状态积分方程、迭代等技巧证明了这个系统整体古典解的存在唯一性.
Energy Technology Data Exchange (ETDEWEB)
Kravchenko, Vladislav V [Seccion de Posgrado e Investigacion, Escuela Superior de IngenierIa Mecanica y Electrica, Instituto Politecnico Nacional, C.P.07738 Mexico DF (Mexico)
2005-05-06
We consider the real stationary two-dimensional Schroedinger equation. With the aid of any of its particular solutions, we construct a Vekua equation possessing the following special property. The real parts of its solutions are solutions of the original Schroedinger equation and the imaginary parts are solutions of an associated Schroedinger equation with a potential having the form of a potential obtained after the Darboux transformation. Using Bers' theory of Taylor series for pseudoanalytic functions, we obtain a locally complete system of solutions of the original Schroedinger equation which can be constructed explicitly for an ample class of Schroedinger equations. For example it is possible when the potential is a function of one Cartesian, spherical, parabolic or elliptic variable. We give some examples of application of the proposed procedure for obtaining a locally complete system of solutions of the Schroedinger equation. The procedure is algorithmically simple and can be implemented with the aid of a computer system of symbolic or numerical calculation.
Analytic solutions of nonlinear Cournot duopoly game
Directory of Open Access Journals (Sweden)
Akio Matsumoto
2005-01-01
Full Text Available We construct a Cournot duopoly model with production externality in which reaction functions are unimodal. We consider the case of a Cournot model which has a stable equilibrium point. Then we show the existence of analytic solutions of the model. Moreover, we seek general solutions of the model in the form of nonlinear second-order difference equation.
JOVIAN STRATOSPHERE AS A CHEMICAL TRANSPORT SYSTEM: BENCHMARK ANALYTICAL SOLUTIONS
Energy Technology Data Exchange (ETDEWEB)
Zhang Xi; Shia Runlie; Yung, Yuk L., E-mail: xiz@gps.caltech.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)
2013-04-20
We systematically investigated the solvable analytical benchmark cases in both one- and two-dimensional (1D and 2D) chemical-advective-diffusive systems. We use the stratosphere of Jupiter as an example but the results can be applied to other planetary atmospheres and exoplanetary atmospheres. In the 1D system, we show that CH{sub 4} and C{sub 2}H{sub 6} are mainly in diffusive equilibrium, and the C{sub 2}H{sub 2} profile can be approximated by modified Bessel functions. In the 2D system in the meridional plane, analytical solutions for two typical circulation patterns are derived. Simple tracer transport modeling demonstrates that the distribution of a short-lived species (such as C{sub 2}H{sub 2}) is dominated by the local chemical sources and sinks, while that of a long-lived species (such as C{sub 2}H{sub 6}) is significantly influenced by the circulation pattern. We find that an equator-to-pole circulation could qualitatively explain the Cassini observations, but a pure diffusive transport process could not. For slowly rotating planets like the close-in extrasolar planets, the interaction between the advection by the zonal wind and chemistry might cause a phase lag between the final tracer distribution and the original source distribution. The numerical simulation results from the 2D Caltech/JPL chemistry-transport model agree well with the analytical solutions for various cases.
Radiative Transfer in spheres I. Analytical Solutions
Aboughantous, C
2001-01-01
A nonsingular analytical solution for the transfer equation in a pure absorber is obtained in central symmetry and in a monochromatic radiation field. The native regular singularity of the equation is removed by applying a linear transformation to the frame of reference. Two different ap-proaches are used to carry out the solution. In the first approach the angular derivative is interpreted in an original way that made it possible to discard this derivative from the equation for all black body media without upsetting the conservation of energy. In this approach the analytic solution is expressible in terms of exponential integrals without approximations but for practical considerations the solution is presented in the form of Gauss-Legendre quadrature for quantitative evaluation of the solutions. In the second approach the angular derivative is approximated by a new set of discrete ordinates that guarantees the closer of the set of equations and the conservation of energy. The solutions from the two approache...
A Simple Analytic Solution for Tachyon Condensation
Erler, Theodore
2009-01-01
In this paper we present a new and simple analytic solution for tachyon condensation in open bosonic string field theory. Unlike the B_0 gauge solution, which requires a carefully regulated discrete sum of wedge states subtracted against a mysterious "phantom" counter term, this new solution involves a continuous integral of wedge states, and no regularization or phantom term is necessary. Moreover, we can evaluate the action and prove Sen's conjecture in a mere few lines of calculation.
Energy Technology Data Exchange (ETDEWEB)
Prinja, A.K.
1998-09-01
In this work, it has been shown that, for the given sets of parameters (transport coefficients), the Tangent-Predictor (TP) continuation method, which was used in the coarsest grid, works remarkably well. The problems in finding an initial guess that resides well within Newton`s method radius of convergence are alleviated by correcting the initial guess by the predictor step of the TP method. The TP method works well also in neutral gas puffing and impurity simulations. The neutral gas puffing simulation is performed by systematically increasing the fraction of puffing rate according to the TP method until it reaches a desired condition. Similarly, the impurity simulation characterized by using the fraction of impurity density as the continuation parameter, is carried out in line with the TP method. Both methods show, as expected, a better performance than the classical embedding (CE) method. The convergence criteria {epsilon} is set to be 10{sup {minus}9} based on the fact that lower value of {epsilon} does not alter the solution significantly. Correspondingly, the number of Newton`s iterations in the corrector step of the TP method decrease substantially, an extra point in terms of code speed. The success of the TP method enlarges the possibility of including other sets of parameters (operations and physics). With the availability of the converged coarsest grid solution, the next forward step to the multigrid cycle becomes possible. The multigrid method shows that the memory storage problems that plagued the application of Newton`s method on fine grids, are of no concern. An important result that needs to be noted here is the performance of the FFCD model. The FFCD model is relatively simple and is based on the overall results the model has shown to predict different divertor plasma parameters. The FFCD model treats exactly the implementation of the deep penetration of energetic neutrals emerging from the divertor plate. The resulting ionization profiles are
Analytical solution methods for geodesic motion
Hackmann, Eva
2015-01-01
The observation of the motion of particles and light near a gravitating object is until now the only way to explore and to measure the gravitational field. In the case of exact black hole solutions of the Einstein equations the gravitational field is characterized by a small number of parameters which can be read off from the observables related to the orbits of test particles and light rays. Here we review the state of the art of analytical solutions of geodesic equations in various space--times. In particular we consider the four dimensional black hole space--times of Pleba\\'nski--Demia\\'nski type as far as the geodesic equation separates, as well as solutions in higher dimensions, and also solutions with cosmic strings. The mathematical tools used are elliptic and hyperelliptic functions. We present a list of analytic solutions which can be found in the literature.
Analytic solution for a quartic electron mirror
Energy Technology Data Exchange (ETDEWEB)
Straton, Jack C., E-mail: straton@pdx.edu
2015-01-15
A converging electron mirror can be used to compensate for spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a diode (two-electrode) electrostatic mirror including the next term beyond the known hyperbolic shape. The latter is a solution of the Laplace equation to second order in the variables perpendicular to and along the mirror's radius (z{sup 2}−r{sup 2}/2) to which we add a quartic term (kλz{sup 4}). The analytical solution is found in terms of Jacobi cosine-amplitude functions. We find that a mirror less concave than the hyperbolic profile is more sensitive to changes in mirror voltages and the contrary holds for the mirror more concave than the hyperbolic profile. - Highlights: • We find the analytical solution for electron mirrors whose curvature has z4 dependence added to the usual z{sup 2} – r{sup 2}/2 terms. • The resulting Jacobi cosine-amplitude function reduces to the well-known cosh solution in the limit where the new term is 0. • This quartic term gives a mirror designer additional flexibility for eliminating spherical and chromatic aberrations. • The possibility of using these analytical results to approximately model spherical tetrode mirrors close to axis is noted.
Analytical solution for the Feynman ratchet.
Pesz, Karol; Gabryś, Barbara J; Bartkiewicz, Stanisław J
2002-12-01
A search for an analytical, closed form solution of the Fokker-Planck equation with periodic, asymmetric potentials (ratchets) is presented. It is found that logarithmic-type potential functions (related to "entropic" ratchets) allow for an approximate solution within a certain range of parameters. An expression for the net current is calculated and it is shown that the efficiency of the rocked entropic ratchet is always low.
Maximum likelihood molecular clock comb: analytic solutions.
Chor, Benny; Khetan, Amit; Snir, Sagi
2006-04-01
Maximum likelihood (ML) is increasingly used as an optimality criterion for selecting evolutionary trees, but finding the global optimum is a hard computational task. Because no general analytic solution is known, numeric techniques such as hill climbing or expectation maximization (EM), are used in order to find optimal parameters for a given tree. So far, analytic solutions were derived only for the simplest model--three taxa, two state characters, under a molecular clock. Four taxa rooted trees have two topologies--the fork (two subtrees with two leaves each) and the comb (one subtree with three leaves, the other with a single leaf). In a previous work, we devised a closed form analytic solution for the ML molecular clock fork. In this work, we extend the state of the art in the area of analytic solutions ML trees to the family of all four taxa trees under the molecular clock assumption. The change from the fork topology to the comb incurs a major increase in the complexity of the underlying algebraic system and requires novel techniques and approaches. We combine the ultrametric properties of molecular clock trees with the Hadamard conjugation to derive a number of topology dependent identities. Employing these identities, we substantially simplify the system of polynomial equations. We finally use tools from algebraic geometry (e.g., Gröbner bases, ideal saturation, resultants) and employ symbolic algebra software to obtain analytic solutions for the comb. We show that in contrast to the fork, the comb has no closed form solutions (expressed by radicals in the input data). In general, four taxa trees can have multiple ML points. In contrast, we can now prove that under the molecular clock assumption, the comb has a unique (local and global) ML point. (Such uniqueness was previously shown for the fork.).
Solitary waves and their stability in colloidal media: semi-analytical solutions
Marchant, T R
2012-01-01
Spatial solitary waves in colloidal suspensions of spherical dielectric nanoparticles are considered. The interaction of the nanoparticles is modelled as a hard-sphere gas, with the Carnahan-Starling formula used for the gas compressibility. Semi-analytical solutions, for both one and two spatial dimensions, are derived using an averaged Lagrangian and suitable trial functions for the solitary waves. Power versus propagation constant curves and neutral stability curves are obtained for both cases, which illustrate that multiple solution branches occur for both the one and two dimensional geometries. For the one-dimensional case it is found that three solution branches (with a bistable regime) occur, while for the two-dimensional case two solution branches (with a single stable branch) occur in the limit of low background packing fractions. For high background packing fractions the power versus propagation constant curves are monotonic and the solitary waves stable for all parameter values. Comparisons are mad...
Analytical solution of one dimensional temporally dependent ...
African Journals Online (AJOL)
user
The models involve the one-site, two-site, and two-region ... (2005) presented an analytical solution to advection-dispersion equation ... transfer of heat in fluids, flow through porous media, and the spread of contaminants in fluids and in ...
Analytic vortex solutions on compact hyperbolic surfaces
Maldonado, R
2015-01-01
We construct, for the first time, Abelian-Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations.
Analytic vortex solutions on compact hyperbolic surfaces
Maldonado, Rafael; Manton, Nicholas S.
2015-06-01
We construct, for the first time, abelian Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations.
Analytic solutions of an unclassified artifact /
Energy Technology Data Exchange (ETDEWEB)
Trent, Bruce C.
2012-03-01
This report provides the technical detail for analytic solutions for the inner and outer profiles of the unclassified CMM Test Artifact (LANL Part Number 157Y-700373, 5/03/2001) in terms of radius and polar angle. Furthermore, analytic solutions are derived for the legacy Sheffield measurement hardware, also in terms of radius and polar angle, using part coordinates, i.e., relative to the analytic profile solutions obtained. The purpose of this work is to determine the exact solution for the “cosine correction” term inherent to measurement with the Sheffield hardware. The cosine correction is required in order to interpret the actual measurements taken by the hardware in terms of an actual part definition, or “knot-point spline definition,” that typically accompanies a component drawing. Specifically, there are two portions of the problem: first an analytic solution must be obtained for any point on the part, e.g., given the radii and the straight lines that define the part, it is required to find an exact solution for the inner and outer profile for any arbitrary polar angle. Next, the problem of the inspection of this part must be solved, i.e., given an arbitrary sphere (representing the inspection hardware) that comes in contact with the part (inner and outer profiles) at any arbitrary polar angle, it is required to determine the exact location of that intersection. This is trivial for the case of concentric circles. In the present case, however, the spherical portion of the profiles is offset from the defined center of the part, making the analysis nontrivial. Here, a simultaneous solution of the part profiles and the sphere was obtained.
Analytic Solutions of Special Functional Equations
Directory of Open Access Journals (Sweden)
Octav Olteanu
2013-07-01
Full Text Available We recall some of our earlier results on the construction of a mapping defined implicitly, without using the implicit function theorem. All these considerations work in the real case, for functions and operators. Then we consider the complex case, proving the analyticity of the function defined implicitly, under certain hypothesis. Some consequences are given. An approximating formula for the analytic form of the solution is also given. Finally, one illustrates the preceding results by an application to a concrete functional and operatorial equation. Some related examples are given.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...
Conductivity of a two-dimensional guiding center plasma.
Montgomery, D.; Tappert, F.
1972-01-01
The Kubo method is used to calculate the electrical conductivity of a two-dimensional, strongly magnetized plasma. The particles interact through (logarithmic) electrostatic potentials and move with their guiding center drift velocities (Taylor-McNamara model). The thermal equilibrium dc conductivity can be evaluated analytically, but the ac conductivity involves numerical solution of a differential equation. Both conductivities fall off as the inverse first power of the magnetic field strength.
Carling; Williams; Bowtell
1998-12-01
Anguilliform swimming has been investigated by using a computational model combining the dynamics of both the creature's movement and the two-dimensional fluid flow of the surrounding water. The model creature is self-propelled; it follows a path determined by the forces acting upon it, as generated by its prescribed changing shape. The numerical solution has been obtained by applying coordinate transformations and then using finite difference methods. Results are presented showing the flow around the creature as it accelerates from rest in an enclosed tank. The kinematics and dynamics associated with the creature's centre of mass are also shown. For a particular set of body shape parameters, the final mean swimming speed is found to be 0.77 times the speed of the backward-travelling wave. The corresponding movement amplitude envelope is shown. The magnitude of oscillation in the net forward force has been shown to be approximately twice that in the lateral force. The importance of allowing for acceleration and deceleration of the creature's body (rather than imposing a constant swimming speed) has been demonstrated. The calculations of rotational movement of the body and the associated moment of forces about the centre of mass have also been included in the model. The important role of viscous forces along and around the creature's body and in the growth and dissolution of the vortex structures has been illustrated.
Analytic self-similar solutions of the Oberbeck-Boussinesq equations
Barna, I. F.; Mátyás, L.
2015-09-01
In this article we will present pure two-dimensional analytic solutions for the coupled non-compressible Newtoniain Navier-Stokes --- with Boussinesq approximation --- and the heat conduction equation. The system was investigated from E.N. Lorenz half a century ago with Fourier series and pioneered the way to the paradigm of chaos. We present a novel analysis of the same system where the key idea is the two-dimensional generalization of the well-known self-similar Ansatz of Barenblatt which will be interpreted in a geometrical way. The results, the pressure, temperature and velocity fields are all analytic and can be expressed with the help of the error functions. The temperature field has a strongly damped oscillating behavior which is an interesting feature.
Analytic self-similar solutions of the Oberbeck-Boussinesq equations
Barna, I F
2015-01-01
In this article we will present pure two-dimensional analytic solutions for the coupled non-compressible Newtoniain Navier-Stokes --- with Boussinesq approximation --- and the heat conduction equation. The system was investigated from E.N. Lorenz half a century ago with Fourier series and pioneered the way to the paradigm of chaos. We present a novel analysis of the same system where the key idea is the two-dimensional generalization of the well-known self-similar Ansatz of Barenblatt which will be interpreted in a geometrical way. The results, the pressure, temperature and velocity fields are all analytic and can be expressed with the help of the error functions. The temperature field has a strongly damped oscillating behavior which is an interesting feature.
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
Dislocations in the second kind two-dimensional quasicrystals of soft matter
Li, X. F.; Fan, T. Y.
2016-12-01
This letter reports dislocations and solutions of the second kind two-dimensional quasicrystals of soft matter, and all solutions are analytic and in closed form, which provide a basis for the defect study of this kind of quasicrystals in soft matter.
A Solvable Model in Two-Dimensional Gravity Coupled to a Nonlinear Matter Field
Institute of Scientific and Technical Information of China (English)
YAN Jun; WANG Shun-Jin; TAO Bi-You
2001-01-01
The two-dimensional gravity model with a coupling constant k = 4 and a vanishing cosmological constant coupled to a nonlinear matter field is investigated. We found that the classical equations of motion are exactly solvable and the static solutions of the induced metric and scalar curvature can be obtained analytically. These solutions may be used to describe the naked singularity at the origin.``
Hasei, Tomohiro; Nakanishi, Haruka; Toda, Yumiko; Watanabe, Tetsushi
2012-08-31
3-Nitrobenzanthrone (3-NBA) is an extremely strong mutagen and carcinogen in rats inducing squamous cell carcinoma and adenocarcinoma. We developed a new sensitive analytical method, a two-dimensional HPLC system coupled with on-line reduction, to quantify non-fluorescent 3-NBA as fluorescent 3-aminobenzanthrone (3-ABA). The two-dimensional HPLC system consisted of reversed-phase HPLC and normal-phase HPLC, which were connected with a switch valve. 3-NBA was purified by reversed-phase HPLC and reduced to 3-ABA with a catalyst column, packed with alumina coated with platinum, in ethanol. An alcoholic solvent is necessary for reduction of 3-NBA, but 3-ABA is not fluorescent in the alcoholic solvent. Therefore, 3-ABA was separated from alcohol and impurities by normal-phase HPLC and detected with a fluorescence detector. Extracts from surface soil, airborne particles, classified airborne particles, and incinerator dust were applied to the two-dimensional HPLC system after clean-up with a silica gel column. 3-NBA, detected as 3-ABA, in the extracts was found as a single peak on the chromatograms without any interfering peaks. 3-NBA was detected in 4 incinerator dust samples (n=5). When classified airborne particles, that is, those 7.0 μm in size, were applied to the two-dimensional HPLC system after purified using a silica gel column, 3-NBA was detected in those particles with particle sizes NBA in airborne particles and the detection of 3-NBA in incinerator dust. Copyright © 2012 Elsevier B.V. All rights reserved.
On Analytical Solutions to Beam-Hardening
Rigaud, G.
2017-01-01
When polychromatic X-rays propagate through a material, for instance in computerized tomography (CT), low energy photons are more attenuated resulting in a "harder" beam. The beam-hardening phenomenon breaks the monochromatic radiation model based on the Radon transform giving rise to artifacts in CT reconstructions to the detriment of visual inspection and automated segmentation algorithms. We propose first a simplified analytic representation for the beam-hardening. Besides providing a general understanding of the phenomenon, this model proposes to invert the beam-hardening effect for homogeneous objects leading to classical monochromatic data. For heterogeneous objects, no analytical reconstruction of the density can be derived without more prior information. However, the beam-hardening is shown to be a smooth operation on the data and thus to preserve the encoding of the singularities of the attenuation map within the data. A microlocal analysis encourages the use of contour extraction methods to solve partially the beam-hardening effect even for heterogeneous objects. The application of both methods, exact analytical solution for homogeneous objects and feature extraction for heterogeneous ones, on real data demonstrates their relevancy and efficiency.
Vermeiren, Koen
2005-08-26
Since years, ion exclusion chromatography (ICE) has been the standard method to separate strong acid analyte anions from concentrated weak acid matrices such as hydrofluoric acid (HF). In this work, the commercially available IonPac ICE-AS 1 column was used to separate trace levels of chloride, nitrate, sulfate and phosphate from HF solutions at 20% (w/w). The efficiency of the separation was studied in more detail using techniques such as ion chromatography (IC), inductively coupled plasma optical emission spectrometry (ICP-OES) and ICP-mass spectrometry (ICP-MS). For 20% (w/w) HF solutions and at a water carrier flow-rate of 0.50 ml/min, the cut window was set from 8.5 to 14.5 min. Under these conditions, analyte recoveries of better than 90% were obtained for chloride, nitrate and sulfate, but only about 75% for phosphate. The HF rejection efficiency was better than 99.9%. It was found that the ICP techniques, measuring total element levels and not species, yielded significantly higher recoveries for phosphorus and sulfur compared to IC. Evidence will be given that part of the added phosphorus (approximately 15% for an addition of 10 mg PO4/kg) is present as mono-fluorophosphoric acid (H2FPO3). In the case of sulfate, the difference between IC and ICP-MS could be attributed to an important matrix effect from the residual HF concentration.
Manufactured analytical solutions for isothermal full-Stokes ice sheet models
Directory of Open Access Journals (Sweden)
A. Sargent
2010-08-01
Full Text Available We present the detailed construction of a manufactured analytical solution to time-dependent and steady-state isothermal full-Stokes ice sheet problems. The solutions are constructed for two-dimensional flowline and three-dimensional full-Stokes ice sheet models with variable viscosity. The construction is done by choosing for the specified ice surface and bed a velocity distribution that satisfies both mass conservation and the kinematic boundary conditions. Then a compensatory stress term in the conservation of momentum equations and their boundary conditions is calculated to make the chosen velocity distributions as well as the chosen pressure field into exact solutions. By substituting different ice surface and bed geometry formulas into the derived solution formulas, analytical solutions for different geometries can be constructed.
The boundary conditions can be specified as essential Dirichlet conditions or as periodic boundary conditions. By changing a parameter value, the analytical solutions allow investigation of algorithms for a different range of aspect ratios as well as for different, frozen or sliding, basal conditions. The analytical solutions can also be used to estimate the numerical error of the method in the case when the effects of the boundary conditions are eliminated, that is, when the exact solution values are specified as inflow and outflow boundary conditions.
Boumali, Abdelmalek
2016-01-01
In this paper, the problem of a two-dimensional Duffin-Petiau-Kemmer (DKP) oscillator in the presence of a coulomb potential in the cosmic string background is solved. The eigensolutions of the problem in question have been found, and the influence of the cosmic string space-time on the eigenvalues has been analyzed.
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
An Analytical Solution by HAM for Nonlinear Simulation of Deepwater SCR Installation
Directory of Open Access Journals (Sweden)
Yi Wang
2014-01-01
Full Text Available Steel catenary riser (SCR is a cost-effective riser system that is widely used in deepwater offshore oilfields development. During SCR J-lay installation, the movement of pull-head must be carefully controlled to ensure riser safety. Since the SCR installation path calculation through numerical simulation software is usually time-consuming, this paper has established a mechanical model for SCR installation by making use of homotopy analysis method (HAM to simplify its analytical solution, and dimensional analysis was considered in making initial guess solution. Based on this analytical solution, a program within the framework of MATLAB was developed to predict the two-dimensional riser behavior during installation, and a sensitivity analysis for different values of the control variables was carried out. Engineers may efficiently optimize the installation path by the application of this technique.
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Analytical Solution of Multicompartment Solute Kinetics for Hemodialysis
Directory of Open Access Journals (Sweden)
Przemysław Korohoda
2013-01-01
Full Text Available Objective. To provide an exact solution for variable-volume multicompartment kinetic models with linear volume change, and to apply this solution to a 4-compartment diffusion-adjusted regional blood flow model for both urea and creatinine kinetics in hemodialysis. Methods. A matrix-based approach applicable to linear models encompassing any number of compartments is presented. The procedure requires the inversion of a square matrix and the computation of its eigenvalues λ, assuming they are all distinct. This novel approach bypasses the evaluation of the definite integral to solve the inhomogeneous ordinary differential equation. Results. For urea two out of four eigenvalues describing the changes of concentrations in time are about 105 times larger than the other eigenvalues indicating that the 4-compartment model essentially reduces to the 2-compartment regional blood flow model. In case of creatinine, however, the distribution of eigenvalues is more balanced (a factor of 102 between the largest and the smallest eigenvalue indicating that all four compartments contribute to creatinine kinetics in hemodialysis. Interpretation. Apart from providing an exact analytic solution for practical applications such as the identification of relevant model and treatment parameters, the matrix-based approach reveals characteristic details on model symmetry and complexity for different solutes.
Auluck, S K H
2013-01-01
Recent resurgence of interest in applications of dense plasma focus and doubts about the conventional view of dense plasma focus as a purely irrotational compressive flow have re-opened questions concerning device optimization. In this context, this paper re-appraises and extends the analytical snowplow model of plasma focus sheath evolution developed by F. Gratton and J.M. Vargas (GV) (Energy Storage, Compression and Switching, Ed. V. Nardi, H. Sahlin, and W. H. Bostick, Eds., vol. 2. New York: Plenum, 1983, p. 353) and shows its relevance to contemporary research. The GV model enables construction of a special orthogonal coordinate system in which the plasma flow problem can be simplified and a model of sheath structure can be formulated. The LPP plasma focus facility, which reports neutron yield better than global scaling law, is shown to be operating closer to an optimum operating point of the GV model as compared with PF-1000.
Institute of Scientific and Technical Information of China (English)
HUANG DeJin; DING Haodiang; CHEN WeiQiu
2009-01-01
Analytical and semi-analytical solutions are presented for anisotropic functionally graded beams sub-ject to an arbitrary load, which can be expanded in terms of sinusoidal series. For plane stress prob-lems, the stress function is assumed to consist of two parts, one being a product of a trigonometric function of the longitudinal coordinate (x) and an undetermined function of the thickness coordinate (y), and the other a linear polynomial of x with unknown coefficients depending on y. The governing equa-tions satisfied by these y-dependent functions are derived. The expressions for stresses, resultant forces and displacements are then deduced, with integral constants determinable from the boundary conditions. While the analytical solution is derived for the beam with material coefficients varying exponentially or in a power law along the thickness, the semi-analytical solution is sought by making use of the sub-layer approximation for the beam with an arbitrary variation of material parameters along the thickness. The present analysis is applicable to beams with various boundary conditions at the two ends. Three numerical examples are presented for validation of the theory and illustration of the effects of certain parameters.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Analytical and semi-analytical solutions are presented for anisotropic functionally graded beams subject to an arbitrary load,which can be expanded in terms of sinusoidal series.For plane stress problems,the stress function is assumed to consist of two parts,one being a product of a trigonometric function of the longitudinal coordinate(x) and an undetermined function of the thickness coordinate(y),and the other a linear polynomial of x with unknown coefficients depending on y.The governing equations satisfied by these y-dependent functions are derived.The expressions for stresses,resultant forces and displacements are then deduced,with integral constants determinable from the boundary conditions.While the analytical solution is derived for the beam with material coefficients varying exponentially or in a power law along the thickness,the semi-analytical solution is sought by making use of the sub-layer approximation for the beam with an arbitrary variation of material parameters along the thickness.The present analysis is applicable to beams with various boundary conditions at the two ends.Three numerical examples are presented for validation of the theory and illustration of the effects of certain parameters.
ANALYTIC SOLUTIONS OF SYSTEMS OF FUNCTIONAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
LiuXinhe
2003-01-01
Let r be a given positive number.Denote by D=D the closed disc in the complex plane C whose center is the origin and radius is r.For any subset K of C and any integer m ≥1,write A(Dm,K)={f|f:Dm→Kis a continuous map,and f|(Dm)*is analytic).For H∈A(Dm,C)(m≥2),f∈A(D,D)and z∈D,write ψH(f)(z)=H(z,f(z)……fm=1(x)).Suppose F,G∈A(D2n+1,C),and Hk,Kk∈A(Dk,C),k=2,……,n.In this paper,the system of functional equations {F(z,f(z),f2(ψHz(f)(z))…,fn(ψk2(g)(x))… gn(ψKn(g)(z)))=0 G(z,f(z),f2(ψH2(f)(z))…fn(ψHn(f)(z)),g(z),g2(ψk2(g)(x))…,gn(ψkn(g)(z)))=0(z∈D)is studied and some conditions for the system of equations to have a solution or a unique solution in A(D,D)×A（D，D）are given.
Analytic structure of solutions to multiconfiguration equations
Energy Technology Data Exchange (ETDEWEB)
Fournais, Soeren [Department of Mathematical Sciences, University of Aarhus, Ny Munkegade, Building 1530, DK-8000 Arhus C (Denmark); Hoffmann-Ostenhof, Maria [Fakultaet fuer Mathematik, Universitaet Wien, Nordbergstrasse 15, A-1090 Vienna (Austria); Hoffmann-Ostenhof, Thomas [Institut fuer Theoretische Chemie, Waehringerstrasse 17, Universitaet Wien, A-1090 Vienna (Austria); Soerensen, Thomas Oestergaard [Department of Mathematics, Imperial College London, Huxley Building, 180 Queen' s Gate, London SW7 2AZ (United Kingdom)], E-mail: fournais@imf.au.dk, E-mail: Maria.Hoffmann-Ostenhof@univie.ac.at, E-mail: thoffman@esi.ac.at, E-mail: t.sorensen@imperial.ac.uk
2009-08-07
We study the regularity at the positions of the (fixed) nuclei of solutions to (non-relativistic) multiconfiguration equations (including Hartree-Fock) of Coulomb systems. We prove the following: let {l_brace}{psi}{sub 1}, ..., {psi}{sub M}{r_brace} be any solution to the rank-M multiconfiguration equations for a molecule with L fixed nuclei at R{sub 1},...,R{sub L} element of R{sup 3}. Then, for any j in {l_brace}1, ..., M{r_brace}, k in {l_brace}1, ..., L{r_brace}, there exists a neighborhood U{sub j,k} subset or equal R{sup 3} of R{sub k}, and functions {psi}{sup (1)}{sub j,k}, {psi}{sup (2)}{sub j,k}, real analytic in U{sub j,k}, such that {phi}{sub j}(x)={phi}{sub j,k}{sup (1)}(x)+|x-R{sub k}|{phi}{sub j,k}{sup (2)}(x), x element of U{sub j,k}. A similar result holds for the corresponding electron density. The proof uses the Kustaanheimo-Stiefel transformation, as applied in [9] to the study of the eigenfunctions of the Schroedinger operator of atoms and molecules near two-particle coalescence points.
Analytical solutions of moisture flow equations and their numerical evaluation
Energy Technology Data Exchange (ETDEWEB)
Gibbs, A.G.
1981-04-01
The role of analytical solutions of idealized moisture flow problems is discussed. Some different formulations of the moisture flow problem are reviewed. A number of different analytical solutions are summarized, including the case of idealized coupled moisture and heat flow. The evaluation of special functions which commonly arise in analytical solutions is discussed, including some pitfalls in the evaluation of expressions involving combinations of special functions. Finally, perturbation theory methods are summarized which can be used to obtain good approximate analytical solutions to problems which are too complicated to solve exactly, but which are close to an analytically solvable problem.
Approximated analytical solution to an Ebola optimal control problem
Hincapié-Palacio, Doracelly; Ospina, Juan; Torres, Delfim F. M.
2016-11-01
An analytical expression for the optimal control of an Ebola problem is obtained. The analytical solution is found as a first-order approximation to the Pontryagin Maximum Principle via the Euler-Lagrange equation. An implementation of the method is given using the computer algebra system Maple. Our analytical solutions confirm the results recently reported in the literature using numerical methods.
Manufactured analytical solutions for isothermal full-Stokes ice sheet models
Directory of Open Access Journals (Sweden)
A. Sargent
2010-04-01
Full Text Available We present the detailed construction of an exact solution to time-dependent and steady-state isothermal full-Stokes ice sheet problems. The solutions are constructed for two-dimensional flowline and three-dimensional full-Stokes ice sheet models with variable viscosity. The construction is done by choosing for the specified ice surface and bed a velocity distribution that satisfies both mass conservation and the kinematic boundary conditions. Then a compensatory stress term in the conservation of momentum equations and their boundary conditions is calculated to make the chosen velocity distributions as well as the chosen pressure field into exact solutions. By substituting different ice surface and bed geometry formulas into the derived solution formulas, analytical solutions for different geometries can be constructed.
The boundary conditions can be specified as essential Dirichlet conditions or as periodic boundary conditions. By changing a parameter value, the analytical solutions allow investigation of algorithms for a different range of aspect ratios as well as for different, frozen or sliding, basal conditions. The analytical solutions can also be used to estimate the numerical error of the method in the case when the effects of the boundary conditions are eliminated, that is, when the exact solution values are specified as inflow and outflow boundary conditions.
An Explicit,Totally Analytic Solution of Laminar Viscous FLow over a Semi—Infinite Flat Plate
Institute of Scientific and Technical Information of China (English)
Shi－JunLIAO
1998-01-01
In this paper,a new kind of analytic technique for nonlinear problems,namely the Homotopy Analysis Method,is applied to give an explicit,totally analytic solution of the Blasius' flow.i.e.,the two dimensional (2D) laminar viscous flow over a semi-infinite flat plate.This analytic solution is valid in the whole region having physical meanings.To our knowledge,it is the first time in history that such a kind of explicit,totally analytic solution is given.This fact well verifies the great potential and validity of the Honmotopy Analysis Method as a kind of powerful analytic tool for nonlinear problems in science and engineering.
Energy Technology Data Exchange (ETDEWEB)
Auluck, S. K. H., E-mail: skhauluck@gmail.com [HiQ TechKnowWorks Private Limited, Nerul, Navi Mumbai 400706 (India)
2015-11-15
The Gratton-Vargas snowplow model, recently revisited and expanded [S. K. H. Auluck, Phys. Plasmas 20, 112501 (2013)], has given rise to significant new insights into some aspects of the Dense Plasma Focus (DPF), in spite of being a purely kinematic description having no reference to plasma phenomena. It is able to provide a good fit to the experimental current waveforms in at least 4 large facilities. It has been used for construction of a local curvilinear frame of reference, in which conservation laws for mass, momentum, and energy can be reduced to effectively-one-dimensional hyperbolic conservation law equations. Its utility in global parameter optimization of device parameters has been demonstrated. These features suggest that the Gratton-Vargas model deserves a closer look at its supposed limitations near the singular phase of the DPF. This paper presents a discussion of its development near the device axis, based on the original work of Gratton and Vargas, with some differences. It is shown that the Gratton-Vargas partial differential equation has solutions for times after the current singularity, which exhibit an expanding bounded volume (which can serve as model of an expanding plasma column) and decreasing dynamic inductance of the discharge, in spite of having no built-in hydrodynamics. This enables the model to qualitatively reproduce the characteristic shape of the current derivative in DPF experiments without reference to any plasma phenomena, such as instabilities, anomalous resistance, or reflection of hydrodynamic shock wave from the axis. The axial propagation of the solution exhibits a power-law dependence on the dimensionless time starting from the time of singularity, which is similar to the power-law relations predicted by theory of point explosions in ideal gases and which has also been observed experimentally.
Auluck, S. K. H.
2015-11-01
The Gratton-Vargas snowplow model, recently revisited and expanded [S. K. H. Auluck, Phys. Plasmas 20, 112501 (2013)], has given rise to significant new insights into some aspects of the Dense Plasma Focus (DPF), in spite of being a purely kinematic description having no reference to plasma phenomena. It is able to provide a good fit to the experimental current waveforms in at least 4 large facilities. It has been used for construction of a local curvilinear frame of reference, in which conservation laws for mass, momentum, and energy can be reduced to effectively-one-dimensional hyperbolic conservation law equations. Its utility in global parameter optimization of device parameters has been demonstrated. These features suggest that the Gratton-Vargas model deserves a closer look at its supposed limitations near the singular phase of the DPF. This paper presents a discussion of its development near the device axis, based on the original work of Gratton and Vargas, with some differences. It is shown that the Gratton-Vargas partial differential equation has solutions for times after the current singularity, which exhibit an expanding bounded volume (which can serve as model of an expanding plasma column) and decreasing dynamic inductance of the discharge, in spite of having no built-in hydrodynamics. This enables the model to qualitatively reproduce the characteristic shape of the current derivative in DPF experiments without reference to any plasma phenomena, such as instabilities, anomalous resistance, or reflection of hydrodynamic shock wave from the axis. The axial propagation of the solution exhibits a power-law dependence on the dimensionless time starting from the time of singularity, which is similar to the power-law relations predicted by theory of point explosions in ideal gases and which has also been observed experimentally.
Analytic solutions of a class of nonlinearly dynamic systems
Energy Technology Data Exchange (ETDEWEB)
Wang, M-C [System Engineering Institute of Tianjin University, Tianjin, 300072 (China); Zhao, X-S; Liu, X [Tianjin University of Technology and Education, Tianjin, 300222 (China)], E-mail: mchwang123@163.com.cn, E-mail: xszhao@mail.nwpu.edu.cn, E-mail: liuxinhubei@163.com.cn
2008-02-15
In this paper, the homotopy perturbation method (HPM) is applied to solve a coupled system of two nonlinear differential with first-order similar model of Lotka-Volterra and a Bratus equation with a source term. The analytic approximate solutions are derived. Furthermore, the analytic approximate solutions obtained by the HPM with the exact solutions reveals that the present method works efficiently.
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong
2016-12-01
The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.
An analytical solution for the model of drug distribution and absorption in small intestine
Mingyu, Xu
1990-11-01
According to the physiological and anatomical characteristics of small intestine, neglecting the effect of its motility on the distribution and absorption of drug and nutrient, Y. Miyamoto et al.[1] proposed a model of two-dimensional laminar flow in a circular porous tube with permeable wall and calculated the concentration profile of drug by numerical analysis. In this paper, we give a steady state analytical solution of the above model including deactivation term. The obtained results are in agreement with the results of their numerical analysis. Moreover the analytical solution presented in this paper reveals the relation among the physiological parameters of the model and describes the basic absorption rule of drug and nutrient through the intestinal wall and hence provides a theoretical basis for determining the permeability and reflection coefficient through in situ experiments.
Migration of radionuclides through sorbing media analytical solutions--II
Energy Technology Data Exchange (ETDEWEB)
Pigford, T.H.; Chambre, P.L.; Albert, M.
1980-10-01
This report presents analytical solutions, and the results of such solutions, for the migration of radionuclides in geologic media. Volume 1 contains analytical solutions for one-dimensional equilibrium transport in infinite media and multilayered media. One-dimensional non-equilibrium transport solutions are also included. Volume 2 contains analytical solutions for transport in a one-dimensional field flow with transverse dispersion as well as transport in multi-dimensional flow. A finite element solution of the transport of radionuclides through porous media is discussed. (DMC)
Analytical solution of basic equations set of atmospheric motion
Institute of Scientific and Technical Information of China (English)
SHI Wei-hui; SHEN Chun; WANG Yue-peng
2007-01-01
On condition that the basic equations set of atmospheric motion possesses the best stability in the smooth function classes, the structure of solution space for local analytical solution is discussed, by which the third-class initial value problem with typicaiity and application is analyzed. The calculational method and concrete expressions of analytical solution about the well-posed initial value problem of the third kind are given in the analytic function classes. Near an appointed point, the relevant theoretical and computational problems about analytical solution of initial value problem are solved completely in the meaning of local solution. Moreover, for other type of problems for determining solution, the computational method and process of their stable analytical solution can be obtained in a similar way given in this paper.
Analytical Solution for Stellar Density in Globular Clusters
Indian Academy of Sciences (India)
M. A. Sharaf; A. M. Sendi
2011-09-01
In this paper, four parameters analytical solution will be established for the stellar density function in globular clusters. The solution could be used for any arbitrary order of outward decrease of the cluster’s density.
Golbabai, Ahmad; Nikpour, Ahmad
2016-10-01
In this paper, two-dimensional Schrödinger equations are solved by differential quadrature method. Key point in this method is the determination of the weight coefficients for approximation of spatial derivatives. Multiquadric (MQ) radial basis function is applied as test functions to compute these weight coefficients. Unlike traditional DQ methods, which were originally defined on meshes of node points, the RBFDQ method requires no mesh-connectivity information and allows straightforward implementation in an unstructured nodes. Moreover, the calculation of coefficients using MQ function includes a shape parameter c. A new variable shape parameter is introduced and its effect on the accuracy and stability of the method is studied. We perform an analysis for the dispersion error and different internal parameters of the algorithm are studied in order to examine the behavior of this error. Numerical examples show that MQDQ method can efficiently approximate problems in complexly shaped domains.
Energy Technology Data Exchange (ETDEWEB)
Soylu, A. [Department of Physics, Faculty of Arts and Sciences, Erciyes University, Kayseri (Turkey) and Department of Physics, Faculty of Arts and Sciences, Nigde University, Nigde (Turkey)]. E-mail: asimsoylu@gmail.com; Boztosun, I. [Department of Physics, Faculty of Arts and Sciences, Erciyes University, Kayseri (Turkey)
2007-06-15
In this paper, we present the energy eigenvalues of a two-dimensional hydrogenic donor in a magnetic field by using the asymptotic iteration method. The binding energy eigenvalues in the presence of weak and strong magnetic fields ({gamma}<>0) are obtained within the framework of this iterative approach for 1S, 2P{sup -} and 3D{sup -} levels. The energy eigenvalues for the non-magnetic field case ({gamma}=0) are also determined and the results are compared with the values in weak and strong magnetic fields. The effect of the magnetic field strength on the energy eigenvalues are determined explicitly and excellent agreement with the findings of other methods is obtained.
Two-Dimensional Toda-Heisenberg Lattice
Directory of Open Access Journals (Sweden)
Vadim E. Vekslerchik
2013-06-01
Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.
The Analytical Approximate Solution of the 2D Thermal Displacement
Institute of Scientific and Technical Information of China (English)
Chu－QuanGuan; Zeng－YuanGuo; 等
1996-01-01
The 2D plane gas flow under heating (with nonentity boundary condition)has been discussed by the analytical approach in this paper.The approximate analytical solutions have been obtained for the flow passing various kinds of heat sources.Solutions demonstrate the thermal displacement phenomena are strongly depend on the heating intensity.
A compact analytic solution describing optoacoustic phenomenon in absorbing fluid
Cundin, Luisiana; Barsalou, Norman; Voss, Shannon
2012-01-01
Derivation of an analytic, closed-form solution for Q-switched laser induced optoacoustic phenomenon in absorbing fluid media is presented. The solution assumes spherical symmetry as well for the forcing function, which represents heat deposition from Q-switched lasers. The Greens solution provided is a suitable kernel to generate more complex solutions arising in optoacoustics, optoacoustic spectroscopy, photoacoustic and photothermal problems.
AN ANALYTICAL SOLUTION FOR AN EXPONENTIAL TYPE DISPERSION PROCESS
Institute of Scientific and Technical Information of China (English)
王子亭
2001-01-01
The dispersion process in heterogeneous porous media is distance-dependent,which results from multi-scaling property of heterogeneous structure. An analytical model describing the dispersion with an exponential dispersion function is built, which is transformed into ODE problem with variable coefficients, and obtained analytical solution for two type boundary conditions using hypergeometric function and inversion technique.According to the analytical solution and computing results the difference between the exponential dispersion and constant dispersion process is analyzed.
Energy Technology Data Exchange (ETDEWEB)
Monsefi, Farid [Division of Applied Mathematics, The School of Education, Culture and Communication, Mälardalen University, MDH, Västerås, Sweden and School of Innovation, Design and Engineering, IDT, Mälardalen University, MDH Väs (Sweden); Carlsson, Linus; Silvestrov, Sergei [Division of Applied Mathematics, The School of Education, Culture and Communication, Mälardalen University, MDH, Västerås (Sweden); Rančić, Milica [Division of Applied Mathematics, The School of Education, Culture and Communication, Mälardalen University, MDH, Västerås, Sweden and Department of Theoretical Electrical Engineering, Faculty of Electronic Engineering, University (Serbia); Otterskog, Magnus [School of Innovation, Design and Engineering, IDT, Mälardalen University, MDH Västerås (Sweden)
2014-12-10
To solve the electromagnetic scattering problem in two dimensions, the Finite Difference Time Domain (FDTD) method is used. The order of convergence of the FDTD algorithm, solving the two-dimensional Maxwell’s curl equations, is estimated in two different computer implementations: with and without an obstacle in the numerical domain of the FDTD scheme. This constitutes an electromagnetic scattering problem where a lumped sinusoidal current source, as a source of electromagnetic radiation, is included inside the boundary. Confined within the boundary, a specific kind of Absorbing Boundary Condition (ABC) is chosen and the outside of the boundary is in form of a Perfect Electric Conducting (PEC) surface. Inserted in the computer implementation, a semi-norm has been applied to compare different step sizes in the FDTD scheme. First, the domain of the problem is chosen to be the free-space without any obstacles. In the second part of the computer implementations, a PEC surface is included as the obstacle. The numerical instability of the algorithms can be rather easily avoided with respect to the Courant stability condition, which is frequently used in applying the general FDTD algorithm.
Sanskrityayn, Abhishek; Suk, Heejun; Kumar, Naveen
2017-04-01
't exist for both spatially and temporally variations of dispersion coefficient and velocity. In this study, the existing analytical solutions from previous widely known studies are used for comparison as validation tools to verify the proposed analytical solution as well as the numerical code of the Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) code and the developed 1D finite difference code (FDM). All such solutions show perfect match with the respective proposed solutions.
Directory of Open Access Journals (Sweden)
Jorge Rodolfo Silva Zabadal
2006-06-01
Full Text Available Neste trabalho são apresentados métodos híbridos para solução de problemas difusivos relativos à dispersão de poluentes em meio aquático. Estes métodos aplicam variáveis complexas a fim de executar mapeamentos sobre a equação diferencial a ser resolvida bem como sobre o domínio considerado. O mapeamento sobre a equação diferencial converte o operador laplaciano bidimensional em uma derivada cruzada de segunda ordem na variável espacial. O mapeamento do domínio transforma regiões de formato complexo em regiões retangulares. Ambos mapeamentos são usados a fim de reduzir o tempo total requerido de processamento para solução de problemas difusivos não-homogêneos. Resultados numéricos são apresentados.In this work hybrid methods for solving diffusion problems related to pollutants dispersion in water bodies are presented. These methods employ complex variables in order to perform mappings over the differential equation to be solved as well as over the considered domain. The mapping over the differential equation converts the two dimensional laplacian operator into a second order mixed derivative in the complex variables. The mapping of the domain transforms complex-shaped regions into rectangular ones. Both mappings are used in order to reduce the total time proccessing required for solving non-homogeneous diffusion problems. Numerical results are reported.
Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating
Abbas, Ibrahim A.; Marin, Marin
2017-03-01
In this article, we consider the problem of a two-dimensional thermoelastic half-space in the context of generalized thermoelastic theory with one relaxation time. The surface of the half-space is taken to be traction free and thermally insulated. The solution of the considered physical quantity can be broken down in terms of normal modes. The nonhomogeneous basic equations have been written in the form of a vector-matrix differential equation, which is then solved by an eigenvalue approach. The exact analytical solution is adopted for the temperature, the components of displacement and stresses. The results obtained are presented graphically for the effect of laser pulse to display the phenomena physical meaning. The graphical results indicate that the thermal relaxation time has a great effect on the temperature, the components of displacement and the components of stress.
A Comprehensive Analytical Solution of the Nonlinear Pendulum
Ochs, Karlheinz
2011-01-01
In this paper, an analytical solution for the differential equation of the simple but nonlinear pendulum is derived. This solution is valid for any time and is not limited to any special initial instance or initial values. Moreover, this solution holds if the pendulum swings over or not. The method of approach is based on Jacobi elliptic functions…
A Comprehensive Analytical Solution of the Nonlinear Pendulum
Ochs, Karlheinz
2011-01-01
In this paper, an analytical solution for the differential equation of the simple but nonlinear pendulum is derived. This solution is valid for any time and is not limited to any special initial instance or initial values. Moreover, this solution holds if the pendulum swings over or not. The method of approach is based on Jacobi elliptic functions…
Analytical solutions of coupled-mode equations for microring resonators
Indian Academy of Sciences (India)
ZHAO C Y
2016-06-01
We present a study on analytical solutions of coupled-mode equations for microring resonators with an emphasis on occurrence of all-optical EIT phenomenon, obtained by using a cofactor. As concrete examples, analytical solutions for a $3 \\times 3$ linearly distributed coupler and a circularly distributed coupler are obtained. The former corresponds to a non-degenerate eigenvalue problem and the latter corresponds to a degenerate eigenvalue problem. For comparison and without loss of generality, analytical solution for a $4 \\times 4$ linearly distributed coupler is also obtained. This paper may be of interest to optical physics and integrated photonics communities.
On the equivalence between stochastic baker's maps and two-dimensional spin systems
Lindgren, K.
2010-05-01
We show that there is a class of stochastic bakers transformations that is equivalent to the class of equilibrium solutions of two-dimensional spin systems with finite interaction. The construction is such that the equilibrium distribution of the spin lattice is identical to the invariant measure in the corresponding bakers transformation. We illustrate the equivalence by deriving two stochastic bakers maps representing the Ising model at a temperature above and below the critical temperature, respectively. A calculation of the invariant measure and the free energy in the baker system is then shown to be in agreement with analytic results of the two-dimensional Ising model.
Zhang, Zhizeng; Zhao, Zhao; Li, Yongtao
2016-06-01
This paper attempts to verify the correctness of the analytical displacement solution in transversely isotropic rock mass, and to determine the scope of its application. The analytical displacement solution of a circular tunnel in transversely isotropic rock mass was derived firstly. The analytical solution was compared with the numerical solution, which was carried out by FLAC3D software. The results show that the expression of the analytical displacement solution is correct, and the allowable engineering range is that the dip angle is less than 15 degrees.
General Analytical Solutions of Scalar Field Cosmology with Arbitrary Potential
Dimakis, N; Zampeli, Adamantia; Paliathanasis, Andronikos; Christodoulakis, T; Terzis, Petros A
2016-01-01
We present the solution space for the case of a minimally coupled scalar field with arbitrary potential in a FLRW metric. This is made possible due to the existence of a nonlocal integral of motion corresponding to the conformal Killing field of the two-dimensional minisuperspace metric. The case for both spatially flat and non flat are studied first in the presence of only the scalar field and subsequently with the addition of non interacting perfect fluids. It is verified that this addition does not change the general form of the solution, but only the particular expressions of the scalar field and the potential. The results are applied in the case of parametric dark energy models where we derive the scalar field equivalence solution for some proposed models in the literature.
Analytical solution of strongly nonlinear Duffing oscillators
Directory of Open Access Journals (Sweden)
A.M. El-Naggar
2016-06-01
Full Text Available In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter α=α(ε is defined such that the value of α is always small regardless of the magnitude of the original parameter ε. Therefore, the strongly nonlinear Duffing oscillators with large parameter ε are transformed into a small parameter system with respect to α. Approximate solution obtained by the present method is compared with the solution of energy balance method, homotopy perturbation method, global error minimization method and lastly numerical solution. We observe from the results that this method is very simple, easy to apply, and gives a very good accuracy not only for small parameter εbut also for large values of ε.
Analytical Solution for Isentropic Flows in Solids
Heuzé, Olivier
2009-12-01
In the XIXth century, Riemann gave the equations system and the exact solution for the isentropic flows in the case of the ideal gas. But to our knowledge, nothing has been done to apply it to condensed media. Many materials of practical interest, for instance metals, obey to the linear law D = c+s u, where D is the shock velocity, u the particle velocity, and c and s properties of the material. We notice that s is strongly linked to the fundamental derivative. This means that the assumption of constant fundamental derivative is useful in this case, as it was with the isentropic gamma in the Riemann solution. Then we can apply the exact Riemann solution for these materials. Although the use of the hypergeometric function is complicated in this case, we obtain a very good approximation with the development in power series.
Generalized Analytical Solutions for Nonlinear Positive-Negative Index Couplers
Directory of Open Access Journals (Sweden)
Zh. Kudyshev
2012-01-01
Full Text Available We find and analyze a generalized analytical solution for nonlinear wave propagation in waveguide couplers with opposite signs of the linear refractive index, nonzero phase mismatch between the channels, and arbitrary nonlinear coefficients.
Singularly perturbed Burger-Huxley equation: Analytical solution ...
African Journals Online (AJOL)
user
Keywords: Burger-Huxley equation, iteration method, analytical solution, ... dynamics, chemical kinetics and mathematical biology (Albowitz and Clarkson, ... numbers, Navier-Stokes flows with large Reynolds numbers, chemical reactor theory, ...
Analytical solutions for the recovery tests after constant-discharge ...
African Journals Online (AJOL)
Received 11 April 2014; accepted in revised form 3 September 2014. Analytical solutions for the recovery ... ABSTRACT ... the analysis of residual drawdown data after a pumping test with step-wise or intermittently changing discharge rates is.
ANALYTICAL SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
胡建兰; 张汉林
2003-01-01
The following partial differential equations are studied: generaliz ed fifth-orderKdV equation, water wave equation, Kupershmidt equation, couples KdV equation. Theanalytical solutions to these problems via using various ansaiz es by introducing a second-order ordinary differential equation are found out.
Analytic solutions for marginal deformations in open superstring field theory
Energy Technology Data Exchange (ETDEWEB)
Okawa, Y.
2007-04-15
We extend the calculable analytic approach to marginal deformations recently developed in open bosonic string field theory to open superstring field theory formulated by Berkovits. We construct analytic solutions to all orders in the deformation parameter when operator products made of the marginal operator and the associated superconformal primary field are regular. (orig.)
Zero Viscosity Limit for Analytic Solutions of the Primitive Equations
Kukavica, Igor; Lombardo, Maria Carmela; Sammartino, Marco
2016-10-01
The aim of this paper is to prove that the solutions of the primitive equations converge, in the zero viscosity limit, to the solutions of the hydrostatic Euler equations. We construct the solution of the primitive equations through a matched asymptotic expansion involving the solution of the hydrostatic Euler equation and boundary layer correctors as the first order term, and an error that we show to be {O(√{ν})}. The main assumption is spatial analyticity of the initial datum.
New software solutions for analytical spectroscopists
Davies, Antony N.
1999-05-01
Analytical spectroscopists must be computer literate to effectively carry out the tasks assigned to them. This has often been resisted within organizations with insufficient funds to equip their staff properly, a lack of desire to deliver the essential training and a basic resistance amongst staff to learn the new techniques required for computer assisted analysis. In the past these problems were compounded by seriously flawed software which was being sold for spectroscopic applications. Owing to the limited market for such complex products the analytical spectroscopist often was faced with buying incomplete and unstable tools if the price was to remain reasonable. Long product lead times meant spectrometer manufacturers often ended up offering systems running under outdated and sometimes obscure operating systems. Not only did this mean special staff training for each instrument where the knowledge gained on one system could not be transferred to the neighbouring system but these spectrometers were often only capable of running in a stand-alone mode, cut-off from the rest of the laboratory environment. Fortunately a number of developments in recent years have substantially changed this depressing picture. A true multi-tasking operating system with a simple graphical user interface, Microsoft Windows NT4, has now been widely introduced into the spectroscopic computing environment which has provided a desktop operating system which has proved to be more stable and robust as well as requiring better programming techniques of software vendors. The opening up of the Internet has provided an easy way to access new tools for data handling and has forced a substantial re-think about results delivery (for example Chemical MIME types, IUPAC spectroscopic data exchange standards). Improved computing power and cheaper hardware now allows large spectroscopic data sets to be handled without too many problems. This includes the ability to carry out chemometric operations in
Analytical solutions for the Rabi model
Yu, Lixian; Liang, Qifeng; Chen, Gang; Jia, Suotang
2012-01-01
The Rabi model that describes the fundamental interaction between a two-level system with a quantized harmonic oscillator is one of the simplest and most ubiquitous models in modern physics. However, this model has not been solved exactly because it is hard to find a second conserved quantity besides the energy. Here we present a unitary transformation to map this unsolvable Rabi model into a solvable Jaynes-Cummings-like model by choosing a proper variation parameter. As a result, the analytical energy spectrums and wavefunctions including both the ground and the excited states can be obtained easily. Moreover, these explicit results agree well with the direct numerical simulations in a wide range of the experimental parameters. In addition, based on our obtained energy spectrums, the recent experimental observation of Bloch-Siegert in the circuit quantum electrodynamics with the ultrastrong coupling can be explained perfectly. Our results have the potential application in the solid-state quantum information...
Analytical solutions for the fractional Fisher's equation
Directory of Open Access Journals (Sweden)
H. Kheiri
2015-06-01
Full Text Available In this paper, we consider the inhomogeneous time-fractional nonlinear Fisher equation with three known boundary conditions. We first apply a modified Homotopy perturbation method for translating the proposed problem to a set of linear problems. Then we use the separation variables method to solve obtained problems. In examples, we illustrate that by right choice of source term in the modified Homotopy perturbation method, it is possible to get an exact solution.
Kinks in two-dimensional Anti-de Sitter Space
Barnes, J L; ter Veldhuis, T; Webster, M J
2009-01-01
Soliton solutions in scalar field theory defined on a two-dimensional Anti-de Sitter background space-time are investigated. It is shown that the lowest soliton excitation generically has frequency equal to the inverse radius of the space-time. Analytic and numerical soliton solutions are determined in "phi to the fourth" scalar field theory with a negative mass-squared. The classical soliton mass is calculated as a function of the ratio of the square of the mass scale of the field theory over the curvature of the space-time. For the case that this ratio equals unity, the soliton excitation spectrum is determined algebraically and the one-loop radiative correction to the soliton mass is computed in the semi-classical approximation.
The modified cumulant expansion for two-dimensional isotropic turbulence
Tatsumi, T.; Yanase, S.
1981-09-01
The two-dimensional isotropic turbulence in an incompressible fluid is investigated using the modified zero fourth-order cumulant approximation. The dynamical equation for the energy spectrum obtained under this approximation is solved numerically and the similarity laws governing the solution in the energy-containing and enstrophy-dissipation ranges are derived analytically. At large Reynolds numbers the numerical solutions yield the k to the -3rd power inertial subrange spectrum which was predicted by Kraichnan (1967), Leith (1968) and Batchelor (1969), assuming a finite enstrophy dissipation in the inviscid limit. The energy-containing range is found to satisfy an inviscid similarity while the enstrophy-dissipation range is governed by the quasi-equilibrium similarity with respect to the enstrophy dissipation as proposed by Batchelor (1969). There exists a critical time which separates the initial period and the similarity period in which the enstrophy dissipation vanishes and remains non-zero respectively in the inviscid limit.
Barrett, John W.; Süli, Endre
2016-07-01
We prove the existence of global-in-time weak solutions to a general class of models that arise from the kinetic theory of dilute solutions of nonhomogeneous polymeric liquids, where the polymer molecules are idealized as bead-spring chains with finitely extensible nonlinear elastic (FENE) type spring potentials. The class of models under consideration involves the unsteady, compressible, isentropic, isothermal Navier-Stokes system in a bounded domain Ω in Rd, d = 2, for the density ρ, the velocity u ˜ and the pressure p of the fluid, with an equation of state of the form p (ρ) =cpργ, where cp is a positive constant and γ > 1. The right-hand side of the Navier-Stokes momentum equation includes an elastic extra-stress tensor, which is the classical Kramers expression. The elastic extra-stress tensor stems from the random movement of the polymer chains and is defined through the associated probability density function that satisfies a Fokker-Planck-type parabolic equation, a crucial feature of which is the presence of a centre-of-mass diffusion term. This extends the result in our paper J.W. Barrett and E. Süli (2016) [9], which established the existence of global-in-time weak solutions to the system for d ∈ { 2 , 3 } and γ >3/2, but the elastic extra-stress tensor required there the addition of a quadratic interaction term to the classical Kramers expression to complete the compactness argument on which the proof was based. We show here that in the case of d = 2 and γ > 1 the existence of global-in-time weak solutions can be proved in the absence of the quadratic interaction term. Our results require no structural assumptions on the drag term in the Fokker-Planck equation; in particular, the drag term need not be corotational. With a nonnegative initial density ρ0 ∈L∞ (Ω) for the continuity equation; a square-integrable initial velocity datum u˜0 for the Navier-Stokes momentum equation; and a nonnegative initial probability density function ψ0
Analytical Solution for the Current Distribution in Multistrand Superconducting Cables
Bottura, L; Fabbri, M G
2002-01-01
Current distribution in multistrand superconducting cables can be a major concern for stability in superconducting magnets and for field quality in particle accelerator magnets. In this paper we describe multistrand superconducting cables by means of a distributed parameters circuit model. We derive a system of partial differential equations governing current distribution in the cable and we give the analytical solution of the general system. We then specialize the general solution to the particular case of uniform cable properties. In the particular case of a two-strand cable, we show that the analytical solution presented here is identical to the one already available in the literature. For a cable made of N equal strands we give a closed form solution that to our knowledge was never presented before. We finally validate the analytical solution by comparison to numerical results in the case of a step-like spatial distribution of the magnetic field over a short Rutherford cable, both in transient and steady ...
Ballesteros-Gómez, Ana; de Boer, Jacob; Leonards, Pim E G
2013-10-15
In this study, we assess the applicability of different analytical techniques, namely, direct probe (DP), gas chromatography (GC), and comprehensive two-dimensional gas chromatography (GC × GC) coupled to atmospheric pressure chemical ionization (APCI) with a high resolution (HR)-time-of-flight (TOF)-mass spectrometry (MS) for the analysis of flame retardants and plasticizers in electronic waste and car interiors. APCI-HRTOFMS is a combination scarcely exploited yet with GC or with a direct probe for screening purposes and to the best of our knowledge, never with GC × GC to provide comprehensive information. Because of the increasing number of flame retardants and questions about their environmental fate, there is a need for the development of wider target and untargeted screening techniques to assess human exposure to these compounds. With the use of the APCI source, we took the advantage of using a soft ionization technique that provides mainly molecular ions, in addition to the accuracy of HRMS for identification. The direct probe provided a very easy and inexpensive method for the identification of flame retardants without any sample preparation. This technique seems extremely useful for the screening of solid materials such as electrical devices, electronics and other waste. GC-APCI-HRTOF-MS appeared to be more sensitive compared to liquid chromatography (LC)-APCI/atmospheric pressure photoionization (APPI)-HRTOF-MS for a wider range of flame retardants with absolute detection limits in the range of 0.5-25 pg. A variety of tri- to decabromodiphenyl ethers, phosphorus flame retardants and new flame retardants were found in the samples at levels from microgram per gram to milligram per gram levels.
Messaris, G. T.; Papastavrou, C. A.; Loukopoulos, V. C.; Karahalios, G. T.
2009-08-01
A new finite-difference method is presented for the numerical solution of the Navier-Stokes equations of motion of a viscous incompressible fluid in two (or three) dimensions and in the primitive-variable formulation. Introducing two auxiliary functions of the coordinate system and considering the form of the initial equation on lines passing through the nodal point (x0, y0) and parallel to the coordinate axes, we can separate it into two parts that are finally reduced to ordinary differential equations, one for each dimension. The final system of linear equations in n-unknowns is solved by an iterative technique and the method converges rapidly giving satisfactory results. For the pressure variable we consider a pressure Poisson equation with suitable Neumann boundary conditions. Numerical results, confirming the accuracy of the proposed method, are presented for configurations of interest, like Poiseuille flow and the flow between two parallel plates with step under the presence of a pressure gradient.
Directory of Open Access Journals (Sweden)
Claudio Fontanesi
2010-03-01
Full Text Available The adsorption of anthracene (C14H10, at the mercury electrode/ethylene glycol (EG solution interface, is characterized by a low and almost constant capacity (about 8 μF cm−2 region (capacitive “pit” or “plateau” in capacity vs. potential curves, upon selection of suitable values of temperature, bulk concentration and applied potential values. This result is rationalized assuming the occurrence of a 2D phase transition between two distinct adsorbed phases: (i a “disordered” phase, characterized by a flat “parallel” disposition of the aromatic moiety on the electrode surface (ii an “ordered” phase, characterized by a “perpendicular” disposition of the aromatic moiety on the electrode surface. The experimental evidence is rationalized by considering the chemical potential as an explicit function of the “electric field/adsorbed molecule” interaction. Such a modelistic approach enables the determination of the relevant standard entropy variation.
Analytic solution of simplified Cardan's shaft model
Directory of Open Access Journals (Sweden)
Zajíček M.
2014-12-01
Full Text Available Torsional oscillations and stability assessment of the homokinetic Cardan shaft with a small misalignment angle is described in this paper. The simplified mathematical model of this system leads to the linearized equation of the Mathieu's type. This equation with and without a stationary damping parameter is considered. The solution of the original differential equation is identical with those one of the Fredholm’s integral equation with degenerated kernel assembled by means of a periodic Green's function. The conditions of solvability of such problem enable the identification of the borders between stability and instability regions. These results are presented in the form of stability charts and they are verified using the Floquet theory. The correctness of oscillation results for the system with periodic stiffness is then validated by means of the Runge-Kutta integration method.
Big Data Security Analytic Solution using Splunk
Directory of Open Access Journals (Sweden)
P.Charishma,
2015-04-01
Full Text Available Over the past decade, usage of online applications is experiencing remarkable growth. One of the main reasons for the success of web application is its “Ease of Access” and availability on internet. The simplicity of the HTTP protocol makes it easy to steal and spoof identity. The business liability associated with protecting online information has increased significantly and this is an issue that must be addressed. According to SANSTop20, 2013 list the number one targeted server side vulnerability are Web Applications. So, this has made detecting and preventing attacks on web applications a top priority for IT companies. In this paper, a rational solution is brought to detect events on web application and provides Security intelligence, log management and extensible reporting by analyzing web server logs.
Analytical Solution of the Time Fractional Fokker-Planck Equation
Directory of Open Access Journals (Sweden)
Sutradhar T.
2014-05-01
Full Text Available A nonperturbative approximate analytic solution is derived for the time fractional Fokker-Planck (F-P equation by using Adomian’s Decomposition Method (ADM. The solution is expressed in terms of Mittag- Leffler function. The present method performs extremely well in terms of accuracy, efficiency and simplicity.
AN ANALYTICAL SOLUTION FOR CALCULATING THE INITIATION OF SEDIMENT MOTION
Institute of Scientific and Technical Information of China (English)
Thomas LUCKNER; Ulrich ZANKE
2007-01-01
This paper presents an analytical solution for calculating the initiation of sediment motion and the risk of river bed movement. It thus deals with a fundamental problem in sediment transport, for which no complete analytical solution has yet been found. The analytical solution presented here is based on forces acting on a single grain in state of initiation of sediment motion. The previous procedures for calculating the initiation of sediment motion are complemented by an innovative combination of optical surface measurement technology for determining geometrical parameters and their statistical derivation as well as a novel approach for determining the turbulence effects of velocity fluctuations. This two aspects and the comparison of the solution functions presented here with the well known data and functions of different authors mainly differ the presented solution model for calculating the initiation of sediment motion from previous approaches. The defined values of required geometrical parameters are based on hydraulically laboratory tests with spheres. With this limitations the derivated solution functions permit the calculation of the effective critical transport parameters of a single grain, the calculation of averaged critical parameters for describing the state of initiation of sediment motion on the river bed, the calculation of the probability density of the effective critical velocity as well as the calculation of the risk of river bed movement. The main advantage of the presented model is the closed analytical solution from the equilibrium of forces on a single grain to the solution functions describing the initiation of sediment motion.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...
Directory of Open Access Journals (Sweden)
Jincun Liu
2013-01-01
Full Text Available By introducing the fractional derivative in the sense of Caputo and combining the pretreatment technique to deal with long nonlinear items, the generalized two-dimensional differential transform method is proposed for solving the time-fractional Hirota-Satsuma coupled KdV equation and coupled MKdV equation. The presented method is a numerical method based on the generalized Taylor series expansion which constructs an analytical solution in the form of a polynomial. The numerical results show that the generalized two-dimensional differential transform method is very effective for the fractional coupled equations.
Schulreich, Michael Mathias
2011-01-01
Aims: Bow shock waves are a common feature of groups and clusters of galaxies since they are generated as a result of supersonic motion of galaxies through the intergalactic medium. The goal of this work is to present an analytical solution technique for such astrophysical hypersonic blunt body problems. Methods: A method, developed by Schneider (1968, JFM, 31, 397) in the context of aeronautics, allows calculation of the galaxy's shape as long as the shape of the bow shock wave is known (so-called inverse method). In contrast to other analytical models, the solution is valid in the whole flow region (from the stagnation point up to the bow shock wings) and in particular takes into account velocity gradients along the streamlines. We compare our analytical results with two-dimensional hydrodynamical simulations carried out with an extended version of the VH-1 hydrocode which is based on the piecewise parabolic method with a Lagrangian remap. Results: It is shown that the applied method accurately predicts the...
Catalytic mechanism in cyclic voltammetry at disc electrodes: an analytical solution.
Molina, Angela; González, Joaquín; Laborda, Eduardo; Wang, Yijun; Compton, Richard G
2011-08-28
The theory of cyclic voltammetry at disc electrodes and microelectrodes is developed for a system where the electroactive reactant is regenerated in solution using a catalyst. This catalytic process is of wide importance, not least in chemical sensing, and it can be characterized by the resulting peak current which is always larger than that of a simple electrochemical reaction; in contrast the reverse peak is always relatively diminished in size. From the theoretical point of view, the problem involves a complex physical situation with two-dimensional mass transport and non-uniform surface gradients. Because of this complexity, hitherto the treatment of this problem has been tackled mainly by means of numerical methods and so no analytical expression was available for the transient response of the catalytic mechanism in cyclic voltammetry when disc electrodes, the most popular practical geometry, are used. In this work, this gap is filled by presenting an analytical solution for the application of any sequence of potential pulses and, in particular, for cyclic voltammetry. The induction principle is applied to demonstrate mathematically that the superposition principle applies whatever the geometry of the electrode, which enabled us to obtain an analytical equation valid whatever the electrode size and the kinetics of the catalytic reaction. The theoretical results obtained are applied to the experimental study of the electrocatalytic Fenton reaction, determining the rate constant of the reduction of hydrogen peroxide by iron(II).
Analytic solution of an oscillatory migratory alpha^2 stellar dynamo
Brandenburg, Axel
2016-01-01
Analytic solutions of the mean-field induction equation predict a nonoscillatory dynamo for uniform helical turbulence or constant alpha effect in unbounded or periodic domains. Oscillatory dynamos are generally thought impossible for constant alpha. We present an analytic solution for a one-dimensional bounded domain resulting in oscillatory solutions for constant alpha, but different (Dirichlet and von Neumann or perfect conductor and vacuum) boundary conditions on the two ends. We solve a second order complex equation and superimpose two independent solutions to obey both boundary conditions. The solution has time-independent energy density. On one end where the function value vanishes, the second derivative is finite, which would not be correctly reproduced with sine-like expansion functions where a node coincides with an inflection point. The obtained solution may serve as a benchmark for numerical dynamo experiments and as a pedagogical illustration that oscillatory dynamos are possible for dynamos with...
Transmission Line Adapted Analytical Power Charts Solution
Sakala, Japhet D.; Daka, James S. J.; Setlhaolo, Ditiro; Malichi, Alec Pulu
2016-08-01
The performance of a transmission line has been assessed over the years using power charts. These are graphical representations, drawn to scale, of the equations that describe the performance of transmission lines. Various quantities that describe the performance, such as sending end voltage, sending end power and compensation to give zero voltage regulation, may be deduced from the power charts. Usually required values are read off and then converted using the appropriate scales and known relationships. In this paper, the authors revisit this area of circle diagrams for transmission line performance. The work presented here formulates the mathematical model that analyses the transmission line performance from the power charts relationships and then uses them to calculate the transmission line performance. In this proposed approach, it is not necessary to draw the power charts for the solution. However the power charts may be drawn for the visual presentation. The method is based on applying derived equations and is simple to use since it does not require rigorous derivations.
Analytical Solution for Predicting In-plane Elastic Shear Properties of 2D Orthogonal PWF Composites
Institute of Scientific and Technical Information of China (English)
CHENG Xu; XIONG Junjiang; BAI Jiangbo
2012-01-01
This paper proposes a new analytical solution to predict the shear modulus of a two-dimensional (2D) plain weave fabric (PWF) composite accounting for the interaction of orthogonal interlacing strands with coupled shear deformation modes including not only relative bending but also torsion,etc.The two orthogonal yams in a micromechanical unit cell are idealized as curved beams with a path depicted by using sinusoidal shape functions.The intemal forces and macroscopic deformations carried by the yarn families,together with macroscopic shear modulus of PWFs are derived by means of a strain energy approach founded on micromechanics.Three sets of experimental data pertinent to three kinds of 2D orthogonal PWF composites have been implemented to validate the new model.The calculations from the new model are also compared with those by using two models in the earlier literature.It is shown that the experimental results correlate well with predictions from the new model.
Frehner, Marcel; Schmalholz, Stefan M.; Saenger, Erik H.; Steeb, Holger
2008-01-01
Two-dimensional scattering of elastic waves in a medium containing a circular heterogeneity is investigated with an analytical solution and numerical wave propagation simulations. Different combinations of finite difference methods (FDM) and finite element methods (FEM) are used to numerically solve
Frehner, Marcel; Schmalholz, Stefan M.; Saenger, Erik H.; Steeb, Holger Karl
2008-01-01
Two-dimensional scattering of elastic waves in a medium containing a circular heterogeneity is investigated with an analytical solution and numerical wave propagation simulations. Different combinations of finite difference methods (FDM) and finite element methods (FEM) are used to numerically solve
The Analysis of the Two-dimensional Diffusion Equation With a Source
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This study presents a new variant analysis and simulations of the two-dimensional energized wave equation remarkably different from the diffusion equations studied earlier studied. The objective functional and the dynamical energized wave are penalized to form a function called the Hamiltonian function. From this function, we obtained the necessary conditions for the optimal solutions using the maximum principle. By applying the Fourier solution to the first order differential equation, the analytical solutions for the state and control are obtained. The solutions are simulated to give visual physical interpretation of the waves and the numerical values.
Analytical modeling of bargaining solutions for multicast cellular services
Directory of Open Access Journals (Sweden)
Giuseppe Araniti
2013-07-01
Full Text Available Nowadays, the growing demand for group-oriented services over mobile devices has lead to the definition of new communication standards and multimedia applications in cellular systems. In this article we study the use of game theoretic solutions for these services to model and perform a trade-off analysis between fairness and efficiency in the resources allocation. More precisely, we model bargaining solutions for the multicast data services provisioning and introduce the analytical resolution for the proposed solutions.
Chang, Sin-Chung; Wang, Xiao-Yen; Chow, Chuen-Yen
1994-01-01
A new numerical discretization method for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is motivated by several important physical/numerical considerations and designed to avoid several key limitations of the above traditional methods. As a result of the above considerations, a set of key principles for the design of numerical schemes was put forth in a previous report. These principles were used to construct several numerical schemes that model a 1-D time-dependent convection-diffusion equation. These schemes were then extended to solve the time-dependent Euler and Navier-Stokes equations of a perfect gas. It was shown that the above schemes compared favorably with the traditional schemes in simplicity, generality, and accuracy. In this report, the 2-D versions of the above schemes, except the Navier-Stokes solver, are constructed using the same set of design principles. Their constructions are simplified greatly by the use of a nontraditional space-time mesh. Its use results in the simplest stencil possible, i.e., a tetrahedron in a 3-D space-time with a vertex at the upper time level and other three at the lower time level. Because of the similarity in their design, each of the present 2-D solvers virtually shares with its 1-D counterpart the same fundamental characteristics. Moreover, it is shown that the present Euler solver is capable of generating highly accurate solutions for a famous 2-D shock reflection problem. Specifically, both the incident and the reflected shocks can be resolved by a single data point without the presence of numerical oscillations near the discontinuity.
The characters of nonlinear vibration in the two-dimensional discrete monoatomic lattice
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2005-01-01
The two-dimensional discrete monoatomic lattice is analyzed. Taking nearest-neighbor interaction into account, the characters of the nonlinear vibration in two-dimensional discrete monoatomic lattice are described by the two-dimensional cubic nonlinear Schrodinger equation. Considering the quartic nonlinear potential, the two-dimensional discrete-soliton trains and the solutions perturbed by the neck mode are presented.
Two-dimensional photonic crystal surfactant detection.
Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A
2012-08-07
We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Liu, Zhirong
2016-01-01
The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
A hybrid ICT-solution for smart meter data analytics
DEFF Research Database (Denmark)
Liu, Xiufeng; Nielsen, Per Sieverts
2016-01-01
Smart meters are increasingly used worldwide. Smart meters are the advanced meters capable of measuring energy consumption at a fine-grained time interval, e.g., every 15 min. Smart meter data are typically bundled with social economic data in analytics, such as meter geographic locations, weather...... conditions and user information, which makes the data sets very sizable and the analytics complex. Data mining and emerging cloud computing technologies make collecting, processing, and analyzing the so-called big data possible. This paper proposes an innovative ICT-solution to streamline smart meter data...... analytics. The proposed solution offers an information integration pipeline for ingesting data from smart meters, a scalable platform for processing and mining big data sets, and a web portal for visualizing analytics results. The implemented system has a hybrid architecture of using Spark or Hive for big...
Analytical solutions of the simplified Mathieu’s equation
Directory of Open Access Journals (Sweden)
Nicolae MARCOV
2016-03-01
Full Text Available Consider a second order differential linear periodic equation. The periodic coefficient is an approximation of the Mathieu’s coefficient. This equation is recast as a first-order homogeneous system. For this system we obtain analytical solutions in an explicit form. The first solution is a periodic function. The second solution is a sum of two functions, the first is a continuous periodic function, but the second is an oscillating function with monotone linear increasing amplitude. We give a formula to directly compute the slope of this increase, without knowing the second numeric solution. The periodic term of the second solution may be computed directly. The coefficients of fundamental matrix of the system are analytical functions.
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Juday, Richard D.
1992-01-01
Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.
Analytic Solution to Shell Boundary – Value Problems
Directory of Open Access Journals (Sweden)
Yu. I. Vinogradov
2015-01-01
Full Text Available Object of research is to find analytical solution to the shell boundary – value problems, i.e. to consider the solution for a class of problems concerning the mechanics of hoop closed shells strain.The objective of work is to create an analytical method to define a stress – strain state of shells under non-axisymmetric loading. Thus, a main goal is to derive the formulas – solutions of the linear ordinary differential equations with variable continuous coefficients.The partial derivative differential equations of mechanics of shells strain by Fourier's method of variables division are reduced to the system of the differential equations with ordinary derivatives. The paper presents the obtained formulas to define solutions of the uniform differential equations and received on their basis formulas to define a particular solution depending on a type of the right parts of the differential equations.The analytical algorithm of the solution of a boundary task uses an approach to transfer the boundary conditions to the randomly chosen point of an interval of changing independent variable through the solution of the canonical matrix ordinary differential equation with the subsequent solution of system of algebraic equations for compatibility of boundary conditions at this point. Efficiency of algorithm is based on the fact that the solution of the ordinary differential equations is defined as the values of Cauchy – Krylova functions, which meet initial arbitrary conditions.The results of researches presented in work are useful to experts in the field of calculus mathematics, dealing with solution of systems of linear ordinary differential equations and creation of effective analytical computing methods to solve shell boundary – value problems.
On the General Analytical Solution of the Kinematic Cosserat Equations
Michels, Dominik L.
2016-09-01
Based on a Lie symmetry analysis, we construct a closed form solution to the kinematic part of the (partial differential) Cosserat equations describing the mechanical behavior of elastic rods. The solution depends on two arbitrary analytical vector functions and is analytical everywhere except a certain domain of the independent variables in which one of the arbitrary vector functions satisfies a simple explicitly given algebraic relation. As our main theoretical result, in addition to the construction of the solution, we proof its generality. Based on this observation, a hybrid semi-analytical solver for highly viscous two-way coupled fluid-rod problems is developed which allows for the interactive high-fidelity simulations of flagellated microswimmers as a result of a substantial reduction of the numerical stiffness.
Analytical solution for Van der Pol-Duffing oscillators
Energy Technology Data Exchange (ETDEWEB)
Kimiaeifar, A. [Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Saidi, A.R. [Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)], E-mail: saidi@mail.uk.ac.ir; Bagheri, G.H.; Rahimpour, M. [Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Domairry, D.G. [Department of Mechanical Engineering, Noshirvani Institute of Technology, Babol (Iran, Islamic Republic of)
2009-12-15
In this paper, the problem of single-well, double-well and double-hump Van der Pol-Duffing oscillator is studied. Governing equation is solved analytically using a new kind of analytic technique for nonlinear problems namely the 'Homotopy Analysis Method' (HAM), for the first time. Present solution gives an expression which can be used in wide range of time for all domain of response. Comparisons of the obtained solutions with numerical results show that this method is effective and convenient for solving this problem. This method is a capable tool for solving this kind of nonlinear problems.
Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals
Indian Academy of Sciences (India)
X Wang; E Pan
2008-05-01
We study some typical defect problems in one-dimensional (1D) hexagonal and two-dimensional (2D) octagonal quasicrystals. The first part of this investigation addresses in detail a uniformly moving screw dislocation in a 1D hexagonal piezoelectric quasicrystal with point group 6. A general solution is derived in terms of two functions 1, 2, which satisfy wave equations, and another harmonic function 3. Elementary expressions for the phonon and phason displacements, strains, stresses, electric potential, electric fields and electric displacements induced by the moving screw dislocation are then arrived at by employing the obtained general solution. The derived solution is verified by comparison with existing solutions. Also obtained in this part of the investigation is the total energy of the moving screw dislocation. The second part of this investigation is devoted to the study of the interaction of a straight dislocation with a semi-infinite crack in an octagonal quasicrystal. Here the crack penetrates through the solid along the period direction and the dislocation line is parallel to the period direction. We first derive a general solution in terms of four analytic functions for plane strain problem in octagonal quasicrystals by means of differential operator theory and the complex variable method. All the phonon and phason displacements and stresses can be expressed in terms of the four analytic functions. Then we derive the exact solution for a straight dislocation near a semi-infinite crack in an octagonal quasicrystal, and also present the phonon and phason stress intensity factors induced by the straight dislocation and remote loads.
Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals
Wang, X.; Pan, E.
2008-05-01
We study some typical defect problems in one-dimensional (1D) hexagonal and two-dimensional (2D) octagonal quasicrystals. The first part of this investigation addresses in detail a uniformly moving screw dislocation in a 1D hexagonal piezoelectric quasicrystal with point group 6mm. A general solution is derived in terms of two functions \\varphi_1, \\varphi_2, which satisfy wave equations, and another harmonic function \\varphi_3. Elementary expressions for the phonon and phason displacements, strains, stresses, electric potential, electric fields and electric displacements induced by the moving screw dislocation are then arrived at by employing the obtained general solution. The derived solution is verified by comparison with existing solutions. Also obtained in this part of the investigation is the total energy of the moving screw dislocation. The second part of this investigation is devoted to the study of the interaction of a straight dislocation with a semi-infinite crack in an octagonal quasicrystal. Here the crack penetrates through the solid along the period direction and the dislocation line is parallel to the period direction. We first derive a general solution in terms of four analytic functions for plane strain problem in octagonal quasicrystals by means of differential operator theory and the complex variable method. All the phonon and phason displacements and stresses can be expressed in terms of the four analytic functions. Then we derive the exact solution for a straight dislocation near a semi-infinite crack in an octagonal quasicrystal, and also present the phonon and phason stress intensity factors induced by the straight dislocation and remote loads.
Helical tractor beam: analytical solution of Rayleigh particle dynamics.
Carretero, Luis; Acebal, Pablo; Garcia, Celia; Blaya, Salvador
2015-08-10
We analyze particle dynamics in an optical force field generated by helical tractor beams obtained by the interference of a cylindrical beam with a topological charge and a co-propagating temporally de-phased plane wave. We show that, for standard experimental conditions, it is possible to obtain analytical solutions for the trajectories of particles in such force field by using of some approximations. These solutions show that, in contrast to other tractor beams described before, the intensity becomes a key parameter for the control of particle trajectories. Therefore, by tuning the intensity value the particle can describe helical trajectories upstream and downstream, a circular trajectory in a fixed plane, or a linear displacement in the propagation direction. The approximated analytical solutions show good agreement to the corresponding numerical solutions of the exact dynamical differential equations.
The analytical solution to the problem of statistical induction
Directory of Open Access Journals (Sweden)
Rodolfo de Cristofaro
2007-10-01
Full Text Available This article is a somewhat personal review of the history and substance of the problem of statistical induction. The main approaches proposed for solving this problem have been examined according to their merits, whit special reference to the analytical solution supported by Carnap. This solution has been re-examined in view of certain results, and is proposed again to the attention of the statisticians.
Energy Technology Data Exchange (ETDEWEB)
Srivastava, Vineet K., E-mail: vineetsriiitm@gmail.com [ISRO Telemetry, Tracking and Command Network (ISTRAC), Bangalore-560058 (India); Awasthi, Mukesh K. [Department of Mathematics, University of Petroleum and Energy Studies, Dehradun-248007 (India); Singh, Sarita [Department of Mathematics, WIT- Uttarakhand Technical University, Dehradun-248007 (India)
2013-12-15
This article describes a new implicit finite-difference method: an implicit logarithmic finite-difference method (I-LFDM), for the numerical solution of two dimensional time-dependent coupled viscous Burgers’ equation on the uniform grid points. As the Burgers’ equation is nonlinear, the proposed technique leads to a system of nonlinear systems, which is solved by Newton's iterative method at each time step. Computed solutions are compared with the analytical solutions and those already available in the literature and it is clearly shown that the results obtained using the method is precise and reliable for solving Burgers’ equation.
Directory of Open Access Journals (Sweden)
Vineet K. Srivastava
2013-12-01
Full Text Available This article describes a new implicit finite-difference method: an implicit logarithmic finite-difference method (I-LFDM, for the numerical solution of two dimensional time-dependent coupled viscous Burgers’ equation on the uniform grid points. As the Burgers’ equation is nonlinear, the proposed technique leads to a system of nonlinear systems, which is solved by Newton's iterative method at each time step. Computed solutions are compared with the analytical solutions and those already available in the literature and it is clearly shown that the results obtained using the method is precise and reliable for solving Burgers’ equation.
ANALYTIC SOLUTION AND NUMERICAL SOLUTION TO ENDOLYMPH EQUATION USING FRACTIONAL DERIVATIVE
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In this paper,we study the solution to the endolymph equation using the fractional derivative of arbitrary orderλ(0<λ<1).The exact analytic solution is given by using Laplace transform in terms of Mittag-Leffler functions.We then evaluate the approximate numerical solution using MATLAB.
Foam for Enhanced Oil Recovery: Modeling and Analytical Solutions
Ashoori, E.
2012-01-01
Foam increases sweep in miscible- and immiscible-gas enhanced oil recovery by decreasing the mobility of gas enormously. This thesis is concerned with the simulations and analytical solutions for foam flow for the purpose of modeling foam EOR in a reservoir. For the ultimate goal of upscaling our mo
Decision Exploration Lab : A Visual Analytics Solution for Decision Management
Broeksema, Bertjan; Baudel, Thomas; Telea, Alex; Crisafulli, Paolo
2013-01-01
We present a visual analytics solution designed to address prevalent issues in the area of Operational Decision Management (ODM). In ODM, which has its roots in Artificial Intelligence (Expert Systems) and Management Science, it is increasingly important to align business decisions with business goa
Foam for Enhanced Oil Recovery: Modeling and Analytical Solutions
Ashoori, E.
2012-01-01
Foam increases sweep in miscible- and immiscible-gas enhanced oil recovery by decreasing the mobility of gas enormously. This thesis is concerned with the simulations and analytical solutions for foam flow for the purpose of modeling foam EOR in a reservoir. For the ultimate goal of upscaling our mo
Analytical solution for the convectively-mixed atmospheric boundary layer
Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.
2013-01-01
Based on the prognostic equations of mixed-layer theory assuming a zeroth order jump at the entrainment zone, analytical solutions for the boundary-layer height evolution are derived with different degrees of accuracy. First, an exact implicit expression for the boundary-layer height for a situation
Analytical solutions for geodesics in black hole spacetimes
Hackmann, Eva
2015-01-01
We review the analytical solution methods for the geodesic equations in Kerr-Newman-Taub-NUT-de Sitter spacetimes and its subclasses in terms of elliptic and hyperelliptic functions. A short guide to corresponding literature for general timelike and lightlike motion is also presented.
Analytical solutions for Tokamak equilibria with reversed toroidal current
Energy Technology Data Exchange (ETDEWEB)
Martins, Caroline G. L.; Roberto, M.; Braga, F. L. [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, Sao Paulo 12228-900 (Brazil); Caldas, I. L. [Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo, SP (Brazil)
2011-08-15
In tokamaks, an advanced plasma confinement regime has been investigated with a central hollow electric current with negative density which gives rise to non-nested magnetic surfaces. We present analytical solutions for the magnetohydrodynamic equilibria of this regime in terms of non-orthogonal toroidal polar coordinates. These solutions are obtained for large aspect ratio tokamaks and they are valid for any kind of reversed hollow current density profiles. The zero order solution of the poloidal magnetic flux function describes nested toroidal magnetic surfaces with a magnetic axis displaced due to the toroidal geometry. The first order correction introduces a poloidal field asymmetry and, consequently, magnetic islands arise around the zero order surface with null poloidal magnetic flux gradient. An analytic expression for the magnetic island width is deduced in terms of the equilibrium parameters. We give examples of the equilibrium plasma profiles and islands obtained for a class of current density profile.
Nonlinear inertial oscillations of a multilayer eddy: An analytical solution
Dotsenko, S. F.; Rubino, A.
2008-06-01
Nonlinear axisymmetric oscillations of a warm baroclinic eddy are considered within the framework of an reduced-gravity model of the dynamics of a multilayer ocean. A class of exact analytical solutions describing pure inertial oscillations of an eddy formation is found. The thicknesses of layers in the eddy vary according to a quadratic law, and the horizontal projections of the velocity in the layers depend linearly on the radial coordinate. Owing to a complicated structure of the eddy, weak limitations on the vertical distribution of density, and an explicit form of the solution, the latter can be treated as a generalization of the exact analytical solutions of this form that were previously obtained for homogeneous and baroclinic eddies in the ocean.
ANALYTICAL SOLUTION OF FILLING AND EXHAUSTING PROCESS IN PNEUMATIC SYSTEM
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The filling and exhausting processes in a pneumatic system are involved with many factors,and numerical solutions of many partial differential equations are always adapted in the study of those processes, which have been proved to be troublesome and less intuitive. Analytical solutions based on loss-less tube model and average friction tube model are found respectively by using fluid net theory,and they fit the experimental results well. The research work shows that: Fluid net theory can be used to solve the analytical solution of filling and exhausting processes of pneumatic system, and the result of loss-less tube model is close to that of average friction model, so loss-less tube model is recommended since it is simpler, and the difference between filling time and exhausting time is determined by initial and final pressures, the volume of container and the section area of tube, and has nothing to do with the length of the tube.
Institute of Scientific and Technical Information of China (English)
熊岳山; 韦永康
2001-01-01
The sediment reaction and diffusion equation with generalized initial and boundary condition is studied. By using Laplace transform and Jordan lemma , an analytical solution is got, which is an extension of analytical solution provided by Cheng Kwokming James ( only diffusion was considered in analytical solution of Cheng ). Some problems arisen in the computation of analytical solution formula are also analysed.
Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice
Institute of Scientific and Technical Information of China (English)
XU Quan; QIANG Tian
2009-01-01
We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling.Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive)and the center of the two-dimensional gap breather (on a light or a heavy atom).
A composite analytical solution for large break LOCA
Energy Technology Data Exchange (ETDEWEB)
Purdy, P. [Bruce Power, Tiverton, Ontario (Canada); Girard, R. [Hydro-Quebec, Quebec (Canada); Marczak, J. [Ontario Power Generation, Ontario (Canada); Taylor, D. [New Brunswick Power, Fredericton, New Brunswick (Canada); Zemdegs, R. [Candu Energy Inc., Mississauga, Ontario (Canada); Kapaklili, T. [CANDU Owner' s Group, Toronto, Ontario (Canada); Balog, G. [AMEC NSS, Ontario (Canada); Kozluk, M. [Independent Consultant (Canada); Oliva, A. [Candesco, Ontario (Canada)
2011-07-01
The Canadian CANDU Industry is implementing a composite analytical solution to demonstrate, with high confidence, adequate safety margins for Large Break Loss of Coolant Accidents (LBLOCA) in existing CANDU reactors. The approach involves consolidating a number of individual approaches in a manner that alleviates reliance on any single analytical method or activity. Using a multi-layered approach, the objective of this composite solution is to use a variety of reinforcing analytical approaches such that they complement one another to collectively form a robust solution. The composite approach involves: i) systematic reclassification of LBLOCA to beyond design basis events based on the frequency of the limiting initiating events; ii) more realistic modeling of break opening characteristics; iii) application of Best Estimate and Uncertainty (BEAU) analysis methodology to provide a more realistic representation of the margins; iv) continued application of Limit of Operating Envelope (LOE) methodology to demonstrate the adequacy of margins at the extremes of the operating envelope; v) characterizing the coolant void reactivity, with associated uncertainties; and vi) defining suitable acceptance criteria, accounting for the available experimental database and uncertainties. The approach is expected to confirm the adequacy of existing design provisions and, as such, better characterize the overall safety significance of LBLOCA in CANDU reactors. This paper describes the composite analytical approach and its development, implementation and current status. (author)
Quantifying risks with exact analytical solutions of derivative pricing distribution
Zhang, Kun; Liu, Jing; Wang, Erkang; Wang, Jin
2017-04-01
Derivative (i.e. option) pricing is essential for modern financial instrumentations. Despite of the previous efforts, the exact analytical forms of the derivative pricing distributions are still challenging to obtain. In this study, we established a quantitative framework using path integrals to obtain the exact analytical solutions of the statistical distribution for bond and bond option pricing for the Vasicek model. We discuss the importance of statistical fluctuations away from the expected option pricing characterized by the distribution tail and their associations to value at risk (VaR). The framework established here is general and can be applied to other financial derivatives for quantifying the underlying statistical distributions.
Analytical exact solution of the non-linear Schroedinger equation
Energy Technology Data Exchange (ETDEWEB)
Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Fisica. Grupo de Fisica e Matematica
2011-07-01
Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)
Analytic solution of an oscillatory migratory α2 stellar dynamo
Brandenburg, A.
2017-02-01
Context. Analytic solutions of the mean-field induction equation predict a nonoscillatory dynamo for homogeneous helical turbulence or constant α effect in unbounded or periodic domains. Oscillatory dynamos are generally thought impossible for constant α. Aims: We present an analytic solution for a one-dimensional bounded domain resulting in oscillatory solutions for constant α, but different (Dirichlet and von Neumann or perfect conductor and vacuum) boundary conditions on the two boundaries. Methods: We solve a second order complex equation and superimpose two independent solutions to obey both boundary conditions. Results: The solution has time-independent energy density. On one end where the function value vanishes, the second derivative is finite, which would not be correctly reproduced with sine-like expansion functions where a node coincides with an inflection point. The field always migrates away from the perfect conductor boundary toward the vacuum boundary, independently of the sign of α. Conclusions: The obtained solution may serve as a benchmark for numerical dynamo experiments and as a pedagogical illustration that oscillatory migratory dynamos are possible with constant α.
On the Partial Analytical Solution of the Kirchhoff Equation
Michels, Dominik L.
2015-09-01
We derive a combined analytical and numerical scheme to solve the (1+1)-dimensional differential Kirchhoff system. Here the object is to obtain an accurate as well as an efficient solution process. Purely numerical algorithms typically have the disadvantage that the quality of solutions decreases enormously with increasing temporal step sizes, which results from the numerical stiffness of the underlying partial differential equations. To prevent that, we apply a differential Thomas decomposition and a Lie symmetry analysis to derive explicit analytical solutions to specific parts of the Kirchhoff system. These solutions are general and depend on arbitrary functions, which we set up according to the numerical solution of the remaining parts. In contrast to a purely numerical handling, this reduces the numerical solution space and prevents the system from becoming unstable. The differential Kirchhoff equation describes the dynamic equilibrium of one-dimensional continua, i.e. slender structures like fibers. We evaluate the advantage of our method by simulating a cilia carpet.
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Two-dimensional capillary origami
Brubaker, N. D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
ADVAN-style analytical solutions for common pharmacokinetic models.
Abuhelwa, Ahmad Y; Foster, David J R; Upton, Richard N
2015-01-01
The analytical solutions to compartmental pharmacokinetic models are well known, but have not been presented in a form that easily allows for complex dosing regimen and changes in covariate/parameter values that may occur at discrete times within and/or between dosing intervals. Laplace transforms were used to derive ADVAN-style analytical solutions for 1, 2, and 3 compartment pharmacokinetic linear models of intravenous and first-order absorption drug administration. The equations calculate the change in drug amounts in each compartment of the model over a time interval (t; t = t2 - t1) accounting for any dose or covariate events acting in the time interval. The equations were coded in the R language and used to simulate the time-course of drug amounts in each compartment of the systems. The equations were validated against commercial software [NONMEM (Beal, Sheiner, Boeckmann, & Bauer, 2009)] output to assess their capability to handle both complex dosage regimens and the effect of changes in covariate/parameter values that may occur at discrete times within or between dosing intervals. For all tested pharmacokinetic models, the time-course of drug amounts using the ADVAN-style analytical solutions were identical to NONMEM outputs to at least four significant figures, confirming the validity of the presented equations. To our knowledge, this paper presents the ADVAN-style equations for common pharmacokinetic models in the literature for the first time. The presented ADVAN-style equations overcome obstacles to implementing the classical analytical solutions in software, and have speed advantages over solutions using differential equation solvers. The equations presented in this paper fill a gap in the pharmacokinetic literature, and it is expected that these equations will facilitate the investigation of useful open-source software for modelling pharmacokinetic data. Copyright © 2015 Elsevier Inc. All rights reserved.
An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders
DEFF Research Database (Denmark)
Larsen, Niels Vesterdal; Breinbjerg, Olav
2004-01-01
Analytical Method of Auxiliary Sources solutions for plane wave scattering by circular impedance cylinders are derived by transformation of the exact eigenfunction series solutions employing the Hankel function wave transformation. The analytical Method of Auxiliary Sources solution thus obtained...
Two-dimensional fourier transform spectrometer
Energy Technology Data Exchange (ETDEWEB)
DeFlores, Lauren; Tokmakoff, Andrei
2016-10-25
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
An analytic cosmology solution of Poincaré gauge gravity
Lu, Jianbo; Chee, Guoying
2016-06-01
A cosmology of Poincaré gauge theory is developed. An analytic solution is obtained. The calculation results agree with observation data and can be compared with the ΛCDM model. The cosmological constant puzzle is the coincidence and fine tuning problem are solved naturally at the same time. The cosmological constant turns out to be the intrinsic torsion and curvature of the vacuum universe, and is derived from the theory naturally rather than added artificially. The dark energy originates from geometry, includes the cosmological constant but differs from it. The analytic expression of the state equations of the dark energy and the density parameters of the matter and the geometric dark energy are derived. The full equations of linear cosmological perturbations and the solutions are obtained.
Analytic Solution to Nonlinear Dynamical System of Dragon Washbasin
Institute of Scientific and Technical Information of China (English)
贾启芬; 李芳; 于雯; 刘习军; 王大钧
2004-01-01
Based on phase-plane orbit analysis, the mathematical model of piecewise-smooth systems of multi-degree-of-freedom under the mode coordinate is established. Approximate analytical solution under the physical coordinate of multi-degree-of-freedom self-excited vibration induced by dry friction of piecewise-smooth nonlinear systems is derived by means of average method, the results of which agree with those of the numerical solution. An effective and reliable analytical method investigating piecewise-smooth nonlinear systems of multi-degree-of-freedom has been given. Furthermore, this paper qualitatively analyses the curves about stationary amplitude versus rubbing velocity of hands and versus natural frequency of hands, and about angular frequency versus rubbing velocity of hands. The results provide a theoretical basis for identifying parameters of the system and the analysis of steady region.
Analytical solution for inviscid flow inside an evaporating sessile drop
Masoud, Hassan; Felske, James D.
2008-01-01
Inviscid flow within an evaporating sessile drop is analyzed. The field equation, E^2(Psi)=0, is solved for the stream function. The exact analytical solution is obtained for arbitrary contact angle and distribution of evaporative flux along the free boundary. Specific results and computations are presented for evaporation corresponding to both uniform flux and purely diffusive gas phase transport into an infinite ambient. Wetting and non-wetting contact angles are considered with flow patter...
Analytical Analysis and Numerical Solution of Two Flavours Skyrmion
Hadi, Miftachul; Hermawanto, Denny
2010-01-01
Two flavours Skyrmion will be analyzed analytically, in case of static and rotational Skyrme equations. Numerical solution of a nonlinear scalar field equation, i.e. the Skyrme equation, will be worked with finite difference method. This article is a more comprehensive version of \\textit{SU(2) Skyrme Model for Hadron} which have been published at Journal of Theoretical and Computational Studies, Volume \\textbf{3} (2004) 0407.
N Level System with RWA and Analytical Solutions Revisited
Fujii, K; Kato, R; Wada, Y; Fujii, Kazuyuki; Higashida, Kyoko; Kato, Ryosuke; Wada, Yukako
2003-01-01
In this paper we consider a model of an atom with n energy levels interacting with n(n-1)/2 external (laser) fields which is a natural extension of two level system, and assume the rotating wave approximation (RWA) from the beginning. We revisit some construction of analytical solutions (which correspond to Rabi oscillations) of the model in the general case and examine it in detail in the case of three level system.
Molecular clock fork phylogenies: closed form analytic maximum likelihood solutions.
Chor, Benny; Snir, Sagi
2004-12-01
Maximum likelihood (ML) is increasingly used as an optimality criterion for selecting evolutionary trees, but finding the global optimum is a hard computational task. Because no general analytic solution is known, numeric techniques such as hill climbing or expectation maximization (EM) are used in order to find optimal parameters for a given tree. So far, analytic solutions were derived only for the simplest model-three-taxa, two-state characters, under a molecular clock. Quoting Ziheng Yang, who initiated the analytic approach,"this seems to be the simplest case, but has many of the conceptual and statistical complexities involved in phylogenetic estimation."In this work, we give general analytic solutions for a family of trees with four-taxa, two-state characters, under a molecular clock. The change from three to four taxa incurs a major increase in the complexity of the underlying algebraic system, and requires novel techniques and approaches. We start by presenting the general maximum likelihood problem on phylogenetic trees as a constrained optimization problem, and the resulting system of polynomial equations. In full generality, it is infeasible to solve this system, therefore specialized tools for the molecular clock case are developed. Four-taxa rooted trees have two topologies-the fork (two subtrees with two leaves each) and the comb (one subtree with three leaves, the other with a single leaf). We combine the ultrametric properties of molecular clock fork trees with the Hadamard conjugation to derive a number of topology dependent identities. Employing these identities, we substantially simplify the system of polynomial equations for the fork. We finally employ symbolic algebra software to obtain closed formanalytic solutions (expressed parametrically in the input data). In general, four-taxa trees can have multiple ML points. In contrast, we can now prove that each fork topology has a unique(local and global) ML point.
Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Samiran, E-mail: sran_g@yahoo.com [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700 009 (India); Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)
2016-08-15
The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.
Classifying Two-dimensional Hyporeductive Triple Algebras
Issa, A Nourou
2010-01-01
Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.
Two-dimensional function photonic crystals
Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu
2016-01-01
In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.
Approximate analytical solutions to the condensation-coagulation equation of aerosols
DEFF Research Database (Denmark)
Smith, Naftali R.; Shaviv, Nir J.; Svensmark, Henrik
2016-01-01
We present analytical solutions to the steady state nucleation-condensation-coagulation equation of aerosols in the atmosphere. These solutions are appropriate under different limits but more general than previously derived analytical solutions. For example, we provide an analytic solution to the...... of sulfuric acid....
Leble, Sergey
2013-01-01
The model under consideration is based on approximate analytical solution of two dimensional stationary Navier-Stokes and Fourier-Kirchhoff equations. Approximations are based on the typical for natural convection assumptions: the fluid noncompressibility and Bousinesq approximation. We also assume that ortogonal to the plate component (x) of velocity is neglectible small. The solution of the boundary problem is represented as a Taylor Series in $x$ coordinate for velocity and temperature which introduces functions of vertical coordinate (y), as coefficients of the expansion. The correspondent boundary problem formulation depends on parameters specific for the problem: Grashoff number, the plate height (L) and gravity constant. The main result of the paper is the set of equations for the coefficient functions for example choice of expansion terms number. The nonzero velocity at the starting point of a flow appears in such approach as a development of convecntional boundary layer theory formulation.
Phonon hydrodynamics in two-dimensional materials.
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-06
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Comparison between analytical and numerical solution of mathematical drying model
Shahari, N.; Rasmani, K.; Jamil, N.
2016-02-01
Drying is often related to the food industry as a process of shifting heat and mass inside food, which helps in preserving food. Previous research using a mass transfer equation showed that the results were mostly concerned with the comparison between the simulation model and the experimental data. In this paper, the finite difference method was used to solve a mass equation during drying using different kinds of boundary condition, which are equilibrium and convective boundary conditions. The results of these two models provide a comparison between the analytical and the numerical solution. The result shows a close match between the two solution curves. It is concluded that the two proposed models produce an accurate solution to describe the moisture distribution content during the drying process. This analysis indicates that we have confidence in the behaviour of moisture in the numerical simulation. This result demonstrated that a combined analytical and numerical approach prove that the system is behaving physically. Based on this assumption, the model of mass transfer was extended to include the temperature transfer, and the result shows a similar trend to those presented in the simpler case.
Analytical solutions for tsunami runup on a plane beach
DEFF Research Database (Denmark)
Madsen, Per A.; Schäffer, Hemming Andreas
2010-01-01
In the literature it has so far been common practice to consider solitary waves N-waves (composed of solitary waves) as the appropriate model of tsunamis approaching the shoreline. Unfortunately, this approach is based on a tie between the nonlinearity and the horizontal length scale (or duration......) of the wave, which is not realistic for geophysical tsunamis. To resolve this problem, we first derive analytical solutions to the nonlinear shallow-water (NSW) equations for the runup/rundown of single waves, where the duration and the wave height can be specified separately. The formulation is then extended...
Analytic solution to a class of integro-differential equations
Directory of Open Access Journals (Sweden)
Xuming Xie
2003-03-01
Full Text Available In this paper, we consider the integro-differential equation $$ epsilon^2 y''(x+L(xmathcal{H}(y=N(epsilon,x,y,mathcal{H}(y, $$ where $mathcal{H}(y[x]=frac{1}{pi}(Pint_{-infty}^{infty} frac{y(t}{t-x}dt$ is the Hilbert transform. The existence and uniqueness of analytic solution in appropriately chosen space is proved. Our method consists of extending the equation to an appropriately chosen region in the complex plane, then use the Contraction Mapping Theorem.
Analytic solution of differential equation for gyroscope's motions
Tyurekhodjaev, Abibulla N.; Mamatova, Gulnar U.
2016-08-01
Problems of motion of a rigid body with a fixed point are one of the urgent problems in classical mechanics. A feature of this problem is that, despite the important results achieved by outstanding mathematicians in the last two centuries, there is still no complete solution. This paper obtains an analytical solution of the problem of motion of an axisymmetric rigid body with variable inertia moments in resistant environment described by the system of nonlinear differential equations of L. Euler, involving the partial discretization method for nonlinear differential equations, which was built by A. N. Tyurekhodjaev based on the theory of generalized functions. To such problems belong gyroscopic instruments, in particular, and especially gyroscopes.
The Analytic Solution of the s-Process for Heavy Element
Institute of Scientific and Technical Information of China (English)
2002-01-01
In this paper, we investigate the net-work equation of s-process. After divide the s-process into twostandard forms, we get the analytic solution of the net-work equation. With our analytic solution, we
Nonlinear excitations in two-dimensional molecular structures with impurities
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth
1995-01-01
We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....
Analytical Solutions for Corrosion-Induced Cohesive Concrete Cracking
Directory of Open Access Journals (Sweden)
Hua-Peng Chen
2012-01-01
Full Text Available The paper presents a new analytical model to study the evolution of radial cracking around a corroding steel reinforcement bar embedded in concrete. The concrete cover for the corroding rebar is modelled as a thick-walled cylinder subject to axisymmetrical displacement constraint at the internal boundary generated by expansive corrosion products. A bilinear softening curve reflecting realistic concrete property, together with the crack band theory for concrete fracture, is applied to model the residual tensile stress in the cracked concrete. A governing equation for directly solving the crack width in cover concrete is established for the proposed analytical model. Closed-form solutions for crack width are then obtained at various stages during the evolution of cracking in cover concrete. The propagation of crack front with corrosion progress is studied, and the time to cracking on concrete cover surface is predicted. Mechanical parameters of the model including residual tensile strength, reduced tensile stiffness, and radial pressure at the bond interface are investigated during the evolution of cover concrete cracking. Finally, the analytical predictions are examined by comparing with the published experimental data, and mechanical parameters are analysed with the progress of reinforcement corrosion and through the concrete cover.
New chemical evolution analytical solutions including environment effects
Spitoni, E
2015-01-01
In the last years, more and more interest has been devoted to analytical solutions, including inflow and outflow, to study the metallicity enrichment in galaxies. In this framework, we assume a star formation rate which follows a linear Schmidt law, and we present new analytical solutions for the evolution of the metallicity (Z) in galaxies. In particular, we take into account environmental effects including primordial and enriched gas infall, outflow, different star formation efficiencies, and galactic fountains. The enriched infall is included to take into account galaxy-galaxy interactions. Our main results can be summarized as: i) when a linear Schmidt law of star formation is assumed, the resulting time evolution of the metallicity Z is the same either for a closed-box model or for an outflow model. ii) The mass-metallicity relation for galaxies which suffer a chemically enriched infall, originating from another evolved galaxy with no pre-enriched gas, is shifted down in parallel at lower Z values, if co...
Analytic solutions of tunneling time through smooth barriers
Xiao, Zhi; Huang, Hai
2016-03-01
In the discussion of temporary behaviors of quantum tunneling, people usually like to focus their attention on rectangular barrier with steep edges, or to deal with smooth barrier with semi-classical or even numerical calculations. Very few discussions on analytic solutions of tunneling through smooth barrier appear in the literature. In this paper, we provide two such examples, a semi-infinite long barrier V ( x ) = /A 2 [ 1 + tanh ( x / a ) ] and a finite barrier V(x) = A sech2(x/a). To each barrier, we calculate the associated phase time and dwell time after obtaining the analytic solution. The results show that, different from rectangular barrier, phase time or dwell time does increase with the length parameter a controlling the effective extension of the barrier. More interestingly, for the finite barrier, phase time or dwell time exhibits a peak in k-space. A detailed analysis shows that this interesting behavior can be attributed to the strange tunneling probability Ts(k), i.e., Ts(k) displays a unit step function-like profile Θ(k - k0), especially when a is large, say, a ≫ 1/κ, 1/k. And k 0 ≡ √{ m A } / ħ is exactly where the peak appears in phase or dwell time k-spectrum. Thus only those particles with k in a very narrow interval around k0 are capable to dwell in the central region of the barrier sufficiently long.
Analytical Solution of Projectile Motion with Quadratic Resistance and Generalisations
Ray, Shouryya
2013-01-01
The paper considers the motion of a body under the influence of gravity and drag of the surrounding fluid. Depending on the fluid mechanical regime, the drag force can exhibit a linear, quadratic or even more general dependence on the velocity of the body relative to the fluid. The case of quadratic drag is substantially more complex than the linear case, as it nonlinearly couples both components of the momentum equation, and no explicit analytic solution is known for a general trajectory. After a detailed account of the literature, the paper provides such a solution in form of a series expansion. This result is discussed in detail and related to other approaches previously proposed. In particular, it is shown to yield certain approximate solutions proposed in the literature as limiting cases. The solution technique employs a strategy to reduce systems of ordinary differential equations with a triangular dependence of the right-hand side on the vector of unknowns to a single equation in an auxiliary variable....
NUMERICAL SIMULATION OF SOLUTE TRANSPORTSIN TWO DIMENSIONAL VIRTUAL SOIL%二维虚拟土壤中溶质迁移行为的数值模拟研究
Institute of Scientific and Technical Information of China (English)
陶亚奇; 蒋新; 卞永荣; 杨兴伦; 王芳
2009-01-01
Virtual soils, rich in macropore, but different in level, were constructed with the aid of the Voronoi tesselation algorithm on two dimensional lattices and transport behaviors of solute particles therein numerically simulated using random walk models. It was found that the solute diffusion was anomalous and its mean square of displacement was positively correlated with time, being ＜(r→)~2(t)＞∝t~K. Values of K depended on the types of soils and the types of random walk models. With biased random walk models, the values increased with the time, which means the particles diffused faster with the time went on. The first passage time of solute transport satisfied the logarithmic normal distribution. Non-fick effect of the diffusion was obvious with the continuous time random walk theory. And it was found that soils different in por structure would have different corresponding fitting parameters with the random walk models, that is to say, they also affected the transport behaviors of solute particles. The findings of the study are found to be helpful to researchers in understanding and predicting behaviors of water and solutes in macroporous soil, and hence in helping protect the underground water environment.%利用Voronoi图逐级碎裂方法,在二维正方网格上构造出不同等级的虚拟土壤来仿真具有丰富孔隙结构的真实土壤,并借助于随机行走模型,数值模拟了溶质粒子在该虚拟土壤中的迁移行为.结果表明,溶质粒子表现出反常扩散行为.对有偏倚的随机行走模型,其均方位移与时间呈正比关系＜r~2(t)＞∝t~K,即扩散系数D=K-1,长时间的K值更大,溶质粒子扩散更快;首次穿越时间满足正态对数分布,说明溶质粒子迁移是一阶随机过程;由连续时间随机行走理论,发现溶质粒子扩散非费克现象明显.同时发现不同的土壤孔隙结构及随机行走类型所对应的拟合参数不同,即它们也影响溶质粒子的迁移行为.该
Institute of Scientific and Technical Information of China (English)
酒全森
2000-01-01
Some estimates on 2-D Euler equations are given when initial vorticity ω belongs to a Lorentz space L(2,1). Then based on these estimates, it is proved that there exist global weak solutions of two dimensional Euler equations when ω0(2,1)∈L.
Hadamard States and Two-dimensional Gravity
Salehi, H
2001-01-01
We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.
Topological defects in two-dimensional crystals
Chen, Yong; Qi, Wei-Kai
2008-01-01
By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.
Tracking dynamics of two-dimensional continuous attractor neural networks
Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si
2009-12-01
We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
Two-dimensional relativistic electromagnetic dromion-like soliton in a cold transparent plasma
Institute of Scientific and Technical Information of China (English)
Wang Yun-Liang; Zhou Zhong-Xiang; Yuan Cheng-Xun; Jiang Xiang-Qian; Qin Ru-Hu
2006-01-01
By using a standard multiple scale method, a Davey-Stewartson (DS) equation has been derived and also applied to a multi-dimensional analytical investigation on the interaction of an ultra-intense laser pulse with a cold unmagnetized transparent electron-ion plasma. The regions of instability are found by considering the modulation instability of a plane wave solution of the DS equation. The DS equation is just of the Daveylution, i.e. a two-dimensional (2D) dromion soliton decaying exponentially in all spatial directions. A 2D relativistic electromagnetic dromion-like soliton (2D REDLS) is derived for a vector potential.
Dynamic patterns in a two-dimensional neural field with refractoriness.
Qi, Yang; Gong, Pulin
2015-08-01
The formation of dynamic patterns such as localized propagating waves is a fascinating self-organizing phenomenon that happens in a wide range of spatially extended systems including neural systems, in which they might play important functional roles. Here we derive a type of two-dimensional neural-field model with refractoriness to study the formation mechanism of localized waves. After comparing this model with existing neural-field models, we show that it is able to generate a variety of localized patterns, including stationary bumps, localized waves rotating along a circular path, and localized waves with longer-range propagation. We construct explicit bump solutions for the two-dimensional neural field and conduct a linear stability analysis on how a stationary bump transitions to a propagating wave under different spatial eigenmode perturbations. The neural-field model is then partially solved in a comoving frame to obtain localized wave solutions, whose spatial profiles are in good agreement with those obtained from simulations. We demonstrate that when there are multiple such propagating waves, they exhibit rich propagation dynamics, including propagation along periodically oscillating and irregular trajectories; these propagation dynamics are quantitatively characterized. In addition, we show that these waves can have repulsive or merging collisions, depending on their collision angles and the refractoriness parameter. Due to its analytical tractability, the two-dimensional neural-field model provides a modeling framework for studying localized propagating waves and their interactions.
Comparative Two-Dimensional Fluorescence Gel Electrophoresis.
Ackermann, Doreen; König, Simone
2018-01-01
Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.
Strongly interacting two-dimensional Dirac fermions
Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.
2009-01-01
We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Simulations of Viscous Accretion Flow around Black Holes in Two-Dimensional Cylindrical Geometry
Lee, Seong-Jae; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu
2016-01-01
We simulate shock-free and shocked viscous accretion flow onto a black hole in a two dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian Total Variation Diminishing (LTVD) and remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. Inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any QPO-like activity developed. The steady state shocked solution in the inviscid, as well as, in the viscous regime, matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. Such oscillation of the inner part of disk is interpreted as the source of QPO in hard X-rays observed in micro-qua...
Analytical solution for inviscid flow inside an evaporating sessile drop.
Masoud, Hassan; Felske, James D
2009-01-01
Inviscid flow within an evaporating sessile drop is analyzed. The field equation E;{2}psi=0 is solved for the stream function. The exact analytical solution is obtained for arbitrary contact angle and distribution of evaporative flux along the free boundary. Specific results and computations are presented for evaporation corresponding to both uniform flux and purely diffusive gas phase transport into an infinite ambient. Wetting and nonwetting contact angles are considered, with flow patterns in each case being illustrated. The limiting behaviors of small contact angle and droplets of hemispherical shape are treated. All of the above categories are considered for the cases of droplets whose contact lines are either pinned or free to move during evaporation.
An analytic solution to asymmetrical bending problem of diaphragm coupling
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Because rigidity of either hub or rim of diaphragm coupling is much greater than that of the disk, and asymmetrical bending is under the condition of high speed revolution, an assumption is made that each circle in the middle plane before deforma-tion keeps its radius unchanged after deformation, but the plane on which the circle lies has a varying deflecting angle. Based on this assumption, and according to the principle of energy variation, the corresponding Euler's equation can be obtained, which has the primary integral. By neglecting some subsidiary factors, an analytic solution is obtained. Applying these formulas to a hyperbolic model of diaphragm, the results show that the octahedral shear stress varies less along either radial or thickness direction, but fluctu-ates greatly and periodically along circumferential direction. Thus asymmetrical bending significantly affects the material's fatigue.
Pseudo analytical solution to time periodic stiffness systems
Institute of Scientific and Technical Information of China (English)
Wang Yan-Zhong; Zhou Yuan-Zi
2011-01-01
An analytical form of state transition matrix for a system of equations with time periodic stiffness is derived in order to solve the free response and also allow for the determination of system stability and bifurcation. A pseudoclosed form complete solution for parametrically excited systems subjected to inhomogeneous generalized forcing is developed, based on the Fourier expansion of periodic matrices and the substitution of matrix exponential terms via Lagrange-Sylvester theorem. A Mathieu type of equation with large amplitude is presented to demonstrate the method of formulating state transition matrix and Floquet multipliers. A two-degree-of-freedom system with irregular time periodic stiffness characterized by spiral bevel gear mesh vibration is presented to find forced response in stability and instability. The obtained results are presented and discussed.
FORECAST OF WATER TEMPERATURE IN RESERVOIR BASED ON ANALYTICAL SOLUTION
Institute of Scientific and Technical Information of China (English)
JI Shun-wen; ZHU Yue-ming; QIANG Sheng; ZENG Deng-feng
2008-01-01
The water temperature in reservoirs is difficult to be predicted by numerical simulations. In this article, a statistical model of forecasting the water temperature was proposed. In this model, the 3-D thermal conduction-diffusion equations were converted into a system consisting of 2-D equations with the Fourier expansion and some hypotheses. Then the statistical model of forecasting the water temperature was developed based on the analytical solution to the 2-D thermal equations. The simplified statistical model can elucidate the main physical mechanism of the temperature variation much more clearly than the numerical simulation with the Navier-Stokes equations. Finally, with the presented statistical model, the distribution of water temperature in the Shangyoujiang reservoir was determined.
Analytic solution of Hubbell's model of local community dynamics
McKane, A; Sole, R; Kane, Alan Mc; Alonso, David; Sole, Ricard
2003-01-01
Recent theoretical approaches to community structure and dynamics reveal that many large-scale features of community structure (such as species-rank distributions and species-area relations) can be explained by a so-called neutral model. Using this approach, species are taken to be equivalent and trophic relations are not taken into account explicitly. Here we provide a general analytic solution to the local community model of Hubbell's neutral theory of biodiversity by recasting it as an urn model i.e.a Markovian description of states and their transitions. Both stationary and time-dependent distributions are analysed. The stationary distribution -- also called the zero-sum multinomial -- is given in closed form. An approximate form for the time-dependence is obtained by using an expansion of the master equation. The temporal evolution of the approximate distribution is shown to be a good representation for the true temporal evolution for a large range of parameter values.
Institute of Scientific and Technical Information of China (English)
Jing ZHU; Lian-cun ZHENG; Xin-xin ZHANG
2009-01-01
This paper is concerned with two-dimensional stagnation-point steady flow of an incompressible viscous fluid towards a stretching sheet whose velocity is proportional to the distance from the slit. The governing system of partial differential equations is first transformed into a system of dimensionless ordinary differential equations. Analytical solutions of the velocity distribution and dimensionless temperature profiles are obtained for different ratios of free stream velocity and stretching velocity, Prandtl number, Eckert number and dimensionality index in series forms using homotopy analysis method(HAM).It is shown that a boundary layer is formed when the free stream velocity exceeds the stretching velocity, and an inverted boundary layer is formed when the free stream velocity is less than the stretching velocity. Graphs are presented to show the effects of different parameters.
Maximum likelihood Jukes-Cantor triplets: analytic solutions.
Chor, Benny; Hendy, Michael D; Snir, Sagi
2006-03-01
Maximum likelihood (ML) is a popular method for inferring a phylogenetic tree of the evolutionary relationship of a set of taxa, from observed homologous aligned genetic sequences of the taxa. Generally, the computation of the ML tree is based on numerical methods, which in a few cases, are known to converge to a local maximum on a tree, which is suboptimal. The extent of this problem is unknown, one approach is to attempt to derive algebraic equations for the likelihood equation and find the maximum points analytically. This approach has so far only been successful in the very simplest cases, of three or four taxa under the Neyman model of evolution of two-state characters. In this paper we extend this approach, for the first time, to four-state characters, the Jukes-Cantor model under a molecular clock, on a tree T on three taxa, a rooted triple. We employ spectral methods (Hadamard conjugation) to express the likelihood function parameterized by the path-length spectrum. Taking partial derivatives, we derive a set of polynomial equations whose simultaneous solution contains all critical points of the likelihood function. Using tools of algebraic geometry (the resultant of two polynomials) in the computer algebra packages (Maple), we are able to find all turning points analytically. We then employ this method on real sequence data and obtain realistic results on the primate-rodents divergence time.
Two-Dimensional Heat Transfer in a Heterogeneous Fracture Network
Gisladottir, V. R.; Roubinet, D.; Tartakovsky, D. M.
2015-12-01
Geothermal energy harvesting requires extraction and injection of geothermal fluid. Doing so in an optimal way requires a quantitative understanding of site-specific heat transfer between geothermal fluid and the ambient rock. We develop a heat transfer particle-tracking approach to model that interaction. Fracture-network models of heat transfer in fractured rock explicitly account for the presence of individual fractures, ambient rock matrix, and fracture-matrix interfaces. Computational domains of such models span the meter scale, whereas fracture apertures are on the millimeter scale. The computations needed to model these multi-scale phenomenon can be prohibitively expensive, even for methods using nonuniform meshes. Our approach appreciably decreases the computational costs. Current particle-tracking methods usually assume both infinite matrix and one-dimensional (1D) heat transfer in the matrix blocks. They rely on 1D analytical solutions for heat transfer in a single fracture, which can lead to large predictive errors. Our two-dimensional (2D) heat transfer simulation algorithm is mesh-free and takes into account both longitudinal and transversal heat conduction in the matrix. It uses a probabilistic model to transfer particle to the appropriate neighboring fracture unless it returns to the fracture of origin or remains in the matrix. We use this approach to look at the impact of a fracture-network topology (e.g. the importance of smaller scale fractures), as well as the matrix block distribution on the heat transport in heterogeneous fractured rocks.
Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure
Energy Technology Data Exchange (ETDEWEB)
Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weaver, Jamie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-11-01
This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce ^{99m}Tc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of ^{99}Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH)_{3}. The precipitate of Gd(OH)_{3} carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity ^{99}Mo and ^{99m}Tc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.
Non perturbative methods in two dimensional quantum field theory
Abdalla, Elcio; Rothe, Klaus D
1991-01-01
This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.
Two-dimensional static black holes with pointlike sources
Melis, M
2004-01-01
We study the static black hole solutions of generalized two-dimensional dilaton-gravity theories generated by pointlike mass sources, in the hypothesis that the matter is conformally coupled. We also discuss the motion of test particles. Due to conformal coupling, these follow the geodesics of a metric obtained by rescaling the canonical metric with the dilaton.
Hayek, M.; Kosakowski, G.; Jakob, A.; Churakov, S.
2012-04-01
Numerical computer codes dealing with precipitation-dissolution reactions and porosity changes in multidimensional reactive transport problems are important tools in geoscience. Recent typical applications are related to CO2 sequestration, shallow and deep geothermal energy, remediation of contaminated sites or the safe underground storage of chemotoxic and radioactive waste. Although the agreement between codes using the same models and similar numerical algorithms is satisfactory, it is known that the numerical methods used in solving the transport equation, as well as different coupling schemes between transport and chemistry, may lead to systematic discrepancies. Moreover, due to their inability to describe subgrid pore space changes correctly, the numerical approaches predict discretization-dependent values of porosity changes and clogging times. In this context, analytical solutions become an essential tool to verify numerical simulations. We present a benchmark study where we compare a two-dimensional analytical solution for diffusive transport of two solutes coupled with a precipitation-dissolution reaction causing porosity changes with numerical solutions obtained with the COMSOL Multiphysics code and with the reactive transport code OpenGeoSys-GEMS. The analytical solution describes the spatio-temporal evolution of solutes and solid concentrations and porosity. We show that both numerical codes reproduce the analytical solution very well, although distinct differences in accuracy can be traced back to specific numerical implementations.
Dynamics of vortex interactions in two-dimensional flows
DEFF Research Database (Denmark)
Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.
2002-01-01
a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 a(c) ...The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...
Energy Technology Data Exchange (ETDEWEB)
Szybisz, L. (Lab. TANDAR, Dept. de Fisica, Comision Nacional de Energia Atomica, Buenos Aires (Argentina))
1990-08-01
The ground-state wave function for a two-dimensional homogeneous liquid 4He at zero temperature is obtained from a paired-phonon analysis within the HNC/0 approximation. The long-wavelength behavior of the twobody correlation factor, u(q), is studied by following the procedure previously applied to three-dimensional bulk systems. It is shown that a cut-off law for the phonons can be determined by analyzing u(q) at small two-dimensional momenta q. The numerical results strongly support an exponential cut-off similar to that suggested by Chester and Reatto for the bulk liquid. The first-sound velocity c{sub 1} and the cut-off momentum q{sub c} are calculated at several densities in the range 0.028-0.080 A - 2. (orig.).
Energy Technology Data Exchange (ETDEWEB)
Eschke, Andy
2015-07-01
Examination object of the present thesis was the determination of local distributions of crystallographic texture and mechanical (eigen-)stresses in submicro-/nan0crystalline many-phase gradient materials. For this at the one hand experimental methods of the two-dimensional X-ray diffraction were applied as well as at the other hand theoretical calculations performed by means of analytical and numerical modeling approaches. The interest for the material is founded on the fact that ultrafine-granular materials because of their mechanical propertier (for instance hardness, ductility) ar to be stressed for advanced engineering application purposes. Furthermore the application of many-phase gradient materials makes to some extent possible a manufacture for measure concerning physical properties and by this a manifold of application potentials as well as a tuning of the material properties to the differential requirements in the application fields. This measure tailoring is related both to the degree of gradiation and to the special composition of the composite materials by the chosen starting materials. The work performed in the framework of the excellence cluster ''European Centre for Emerging Materials and Processes Dresden (ECEMP)'' of the Saxonian excellence initiative aimed especially to the analysis of an especially processed, ultrafine-granular Ti/Al composite, which was and is research object of the partial ECEMP project ''High strength metallic composites'' (HSMetComp). Thereby were process as well as materials in the focus of the above mentioned (indirect) examination methods. which were adapted and further developed for these purposes. The results of the experimental as well as theoretical studies could contribute to an increased understanding of the technological process as well as the material behaviour and can by this also used for hints concerning process- and/or material-sided optimizations. Altogether they
Analytical solutions for elastic binary nanotubes of arbitrary chirality
Jiang, Lai; Guo, Wanlin
2016-12-01
Analytical solutions for the elastic properties of a variety of binary nanotubes with arbitrary chirality are obtained through the study of systematic molecular mechanics. This molecular mechanics model is first extended to chiral binary nanotubes by introducing an additional out-of-plane inversion term into the so-called stick-spiral model, which results from the polar bonds and the buckling of binary graphitic crystals. The closed-form expressions for the longitudinal and circumferential Young's modulus and Poisson's ratio of chiral binary nanotubes are derived as functions of the tube diameter. The obtained inversion force constants are negative for all types of binary nanotubes, and the predicted tube stiffness is lower than that by the former stick-spiral model without consideration of the inversion term, reflecting the softening effect of the buckling on the elastic properties of binary nanotubes. The obtained properties are shown to be comparable to available density functional theory calculated results and to be chirality and size sensitive. The developed model and explicit solutions provide a systematic understanding of the mechanical performance of binary nanotubes consisting of III-V and II-VI group elements.
General analytical solutions for DC/AC circuit network analysis
Rubido, Nicolás; Baptista, Murilo S
2014-01-01
In this work, we present novel general analytical solutions for the currents that are developed in the edges of network-like circuits when some nodes of the network act as sources/sinks of DC or AC current. We assume that Ohm's law is valid at every edge and that charge at every node is conserved (with the exception of the source/sink nodes). The resistive, capacitive, and/or inductive properties of the lines in the circuit define a complex network structure with given impedances for each edge. Our solution for the currents at each edge is derived in terms of the eigenvalues and eigenvectors of the Laplacian matrix of the network defined from the impedances. This derivation also allows us to compute the equivalent impedance between any two nodes of the circuit and relate it to currents in a closed circuit which has a single voltage generator instead of many input/output source/sink nodes. Contrary to solving Kirchhoff's equations, our derivation allows to easily calculate the redistribution of currents that o...
Analytical solutions for elastic binary nanotubes of arbitrary chirality
Jiang, Lai; Guo, Wanlin
2016-09-01
Analytical solutions for the elastic properties of a variety of binary nanotubes with arbitrary chirality are obtained through the study of systematic molecular mechanics. This molecular mechanics model is first extended to chiral binary nanotubes by introducing an additional out-of-plane inversion term into the so-called stick-spiral model, which results from the polar bonds and the buckling of binary graphitic crystals. The closed-form expressions for the longitudinal and circumferential Young's modulus and Poisson's ratio of chiral binary nanotubes are derived as functions of the tube diameter. The obtained inversion force constants are negative for all types of binary nanotubes, and the predicted tube stiffness is lower than that by the former stick-spiral model without consideration of the inversion term, reflecting the softening effect of the buckling on the elastic properties of binary nanotubes. The obtained properties are shown to be comparable to available density functional theory calculated results and to be chirality and size sensitive. The developed model and explicit solutions provide a systematic understanding of the mechanical performance of binary nanotubes consisting of III-V and II-VI group elements.
POLYNOMIAL SOLUTIONS TO PIEZOELECTRIC BEAMS(Ⅱ)--ANALYTICAL SOLUTIONS TO TYPICAL PROBLEMS
Institute of Scientific and Technical Information of China (English)
DING Hao-jiang; JIANG Ai-min
2005-01-01
For the orthotropic piezoelectric plane problem, a series of piezoelectric beams is solved and the corresponding analytical solutions are obtained with the trialand-error method on the basis of the general solution in the case of three distinct eigenvalues, in which all displacements, electrical potential, stresses and electrical displacements are expressed by three displacement functions in terms of harmonic polynomials. These problems are cantilever beam with cross force and point charge at free end, cantilever beam and simply-supported beam subjected to uniform loads on the upper and lower surfaces, and cantilever beam subjected to linear electrical potential.
Concerning an analytical solution of some families of Kepler’s transcendental equation
Directory of Open Access Journals (Sweden)
Slavica M. Perovich
2016-03-01
Full Text Available The problem of finding an analytical solution of some families of Kepler transcendental equation is studied in some detail, by the Special Trans Functions Theory – STFT. Thus, the STFT mathematical approach in the form of STFT iterative methods with a novel analytical solutions are presented. Structure of the STFT solutions, numerical results and graphical simulations confirm the validity of the basic principle of the STFT. In addition, the obtained analytical results are compared with the calculated values of other analytical methods for alternative proving its significance. Undoubtedly, the proposed novel analytical approach implies qualitative improvement in comparison with conventional numerical and analytical methods.
Optical modulators with two-dimensional layered materials
Sun, Zhipei; Wang, Feng
2016-01-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.
Institute of Scientific and Technical Information of China (English)
XIAZhi
2004-01-01
Based on the homogenous balance method and with the help of mathematica, the Backlund transformation and the transfer heat equation are derived. Analyzing the heat-transfer equation, the multiple soliton solutions and other exact analytical solution for Whitham-Broer-Kaup equations(WBK) are derived. These solutions contain Fan's, Xie's and Yan's results and other new types of analytical solutions, such as rational function solutions and periodic solutions. The method can also be applied to solve more nonlinear differential equations.
Enstrophy inertial range dynamics in generalized two-dimensional turbulence
Iwayama, Takahiro; Watanabe, Takeshi
2016-07-01
We show that the transition to a k-1 spectrum in the enstrophy inertial range of generalized two-dimensional turbulence can be derived analytically using the eddy damped quasinormal Markovianized (EDQNM) closure. The governing equation for the generalized two-dimensional fluid system includes a nonlinear term with a real parameter α . This parameter controls the relationship between the stream function and generalized vorticity and the nonlocality of the dynamics. An asymptotic analysis accounting for the overwhelming dominance of nonlocal triads allows the k-1 spectrum to be derived based upon a scaling analysis. We thereby provide a detailed analytical explanation for the scaling transition that occurs in the enstrophy inertial range at α =2 in terms of the spectral dynamics of the EDQNM closure, which extends and enhances the usual phenomenological explanations.
Two-dimensional correlation spectroscopy in polymer study
Park, Yeonju; Noda, Isao; Jung, Young Mee
2015-01-01
This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286
Food Adulteration: From Vulnerability Assessment to New Analytical Solutions.
Cavin, Christophe; Cottenet, Geoffrey; Blancpain, Carine; Bessaire, Thomas; Frank, Nancy; Zbinden, Pascal
2016-01-01
Crises related to the presence of melamine in milk or horse meat in beef have been a wake-up call to the whole food industry showing that adulteration of food raw materials is a complex issue. By analysing the situation, it became clear that the risk-based approach applied to ensure the safety related to chemical contaminants in food is not adequate for food fraud. Therefore, a specific approach has been developed to evaluate adulteration vulnerabilities within the food chain. Vulnerabilities will require the development of new analytical solutions. Fingerprinting methodologies can be very powerful in determining the status of a raw material without knowing the identity of each constituent. Milk adulterated by addition of adulterants with very different chemical properties could be detected rapidly by Fourier-transformed mid-infrared spectroscopy (FT-mid-IR) fingerprinting technology. In parallel, a fast and simple multi-analytes liquid-chromatography tandem mass-spectrometry (LC/MS-MS) method has been developed to detect either high levels of nitrogen-rich compounds resulting from adulteration or low levels due to accidental contamination either in milk or in other sensitive food matrices. To verify meat species authenticity, DNA-based methods are preferred for both raw ingredients and processed food. DNA macro-array, and more specifically the Meat LCD Array have showed efficient and reliable meat identification, allowing the simultaneous detection of 32 meat species. While the Meat LCD Array is still a targeted approach, DNA sequencing is a significant step towards an untargeted one.
Effects of sharp vorticity gradients in two-dimensional hydrodynamic turbulence
DEFF Research Database (Denmark)
Kuznetsov, E.A.; Naulin, Volker; Nielsen, Anders Henry;
2007-01-01
The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together with the ......The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together...... with the divorticity lines. Compressibility of this mapping can be considered as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. For two-dimensional turbulence in the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as k−3 at large...... k, resembling the Kraichnan spectrum for the enstrophy cascade. For turbulence with weak anisotropy the k dependence of the spectrum due to the sharp gradients coincides with the Saffman spectrum, E(k)~k−4. We have compared the analytical predictions with direct numerical solutions of the two...
Nonlinear localized modes in dipolar Bose–Einstein condensates in two-dimensional optical lattices
Energy Technology Data Exchange (ETDEWEB)
Rojas-Rojas, Santiago, E-mail: srojas@cefop.cl [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Naether, Uta [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Delgado, Aldo [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Vicencio, Rodrigo A. [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile)
2016-09-16
Highlights: • We study discrete two-dimensional breathers in dipolar Bose–Einstein Condensates. • Important differences in the properties of three fundamental modes are found. • Norm threshold for existence of 2D breathers varies with dipolar interaction. • The Effective Potential Method is implemented for stability analysis. • Uncommon mobility of 2D discrete solitons is observed. - Abstract: We analyze the existence and properties of discrete localized excitations in a Bose–Einstein condensate loaded into a periodic two-dimensional optical lattice, when a dipolar interaction between atoms is present. The dependence of the Number of Atoms (Norm) on the energy of solutions is studied, along with their stability. Two important features of the system are shown, namely, the absence of the Norm threshold required for localized solutions to exist in finite 2D systems, and the existence of regions in the parameter space where two fundamental solutions are simultaneously unstable. This feature enables mobility of localized solutions, which is an uncommon feature in 2D discrete nonlinear systems. With attractive dipolar interaction, a non-trivial behavior of the Norm dependence is obtained, which is well described by an analytical model.
Two Dimensional Plasmonic Cavities on Moire Surfaces
Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla
2010-03-01
We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.
Two-dimensional function photonic crystals
Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng
2017-01-01
In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.
Two-Dimensional Planetary Surface Lander
Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.
2014-06-01
A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In this study, a semi-analytical formulation based on the Scaled Boundary Finite Element Method (SBFEM) was proposed and used to obtain the solution for the characteristics of a two-dimensional dam-reservoir system with absorptive reservoir bottom in the frequency domain. For simplicity, the dam with arbitrary upstream faces was assumed to be rigid and was subjected to a horizontal ground acceleration, while the reservoir with absorptive bottom was assumed to be semi-infinite. The reservoir was divided into two sub-domains: a near-field sub-domain and a far-field sub-domain. The near-field sub-domain with arbitrary geometry was modelled by the Finite Element Method (FEM), while the effects of the far-field sub-domain which was assumed to be horizontal were described by a semi-analytical formation. The semi-analytical formulation involved the effect of absorptive reservoir bottom, as well as the radiation damping effect of a semi-infinite reservoir. A FEM/SBFEM coupling formulation was presented to solve dam-reservoir coupled problems. The accuracy and efficiency of the coupling formulation were demonstrated by computing some benchmark examples. Highly accurate results are produced even if the near-field sub-domain is very small.
An analytical solution to patient prioritisation in radiotherapy based on utilitarian optimisation.
Ebert, M A; Li, W; Jennings, L
2014-03-01
The detrimental impact of a radiotherapy waiting list can in part be compensated by patient prioritisation. Such prioritisation is phrased as an optimisation problem where the probability of local control for the overall population is the objective to be maximised and a simple analytical solution derived. This solution is compared with a simulation of a waiting list for the same population of patients. It is found that the analytical solution can provide an optimal ordering of patients though cannot explicitly constrain optimal waiting times. The simulation-based solution was undertaken using both the analytical solution and a numerical optimisation routine for daily patient ordering. Both solutions provided very similar results with the analytical approach reducing the calculation time of the numerical solution by several orders of magnitude. It is suggested that treatment delays due to resource limitations and resulting waiting lists be incorporated into treatment optimisation and that the derived analytical solution provides a mechanism for this to occur.
New analytic solutions for modeling vertical gravity gradient anomalies
Kim, Seung-Sep; Wessel, Paul
2016-05-01
Modern processing of satellite altimetry for use in marine gravimetry involves computing the along-track slopes of observed sea-surface heights, projecting them into east-west and north-south deflection of the vertical grids, and using Laplace's equation to algebraically obtain a grid of the vertical gravity gradient (VGG). The VGG grid is then integrated via overlapping, flat Earth Fourier transforms to yield a free-air anomaly grid. Because of this integration and associated edge effects, the VGG grid retains more short-wavelength information (e.g., fracture zone and seamount signatures) that is of particular importance for plate tectonic investigations. While modeling of gravity anomalies over arbitrary bodies has long been a standard undertaking, similar modeling of VGG anomalies over oceanic features is not commonplace yet. Here we derive analytic solutions for VGG anomalies over simple bodies and arbitrary 2-D and 3-D sources. We demonstrate their usability in determining mass excess and deficiency across the Mendocino fracture zone (a 2-D feature) and find the best bulk density estimate for Jasper seamount (a 3-D feature). The methodologies used herein are implemented in the Generic Mapping Tools, available from gmt.soest.hawaii.edu.
Approximate analytic solutions to the NPDD: Short exposure approximations
Close, Ciara E.; Sheridan, John T.
2014-04-01
There have been many attempts to accurately describe the photochemical processes that take places in photopolymer materials. As the models have become more accurate, solving them has become more numerically intensive and more 'opaque'. Recent models incorporate the major photochemical reactions taking place as well as the diffusion effects resulting from the photo-polymerisation process, and have accurately described these processes in a number of different materials. It is our aim to develop accessible mathematical expressions which provide physical insights and simple quantitative predictions of practical value to material designers and users. In this paper, starting with the Non-Local Photo-Polymerisation Driven Diffusion (NPDD) model coupled integro-differential equations, we first simplify these equations and validate the accuracy of the resulting approximate model. This new set of governing equations are then used to produce accurate analytic solutions (polynomials) describing the evolution of the monomer and polymer concentrations, and the grating refractive index modulation, in the case of short low intensity sinusoidal exposures. The physical significance of the results and their consequences for holographic data storage (HDS) are then discussed.
Electromechanics: An analytic solution for graded biological cell.
Chan, Kin Lok; Yu, K. W.
2007-03-01
Electromechanics of graded material has been established recently to study the effective response of inhomogeneous graded spherical particles under an external ac electric field.[1, 2]Such particles having a complex dielectric profile varies along the radius of the particles. The gradation in the colloidal particles is modeled by assuming both the dielectric and conductivity vary along the radius. More precisely, both the dielectric and conductivity function are assumed to be a isotopic linear function dependence on the radius variable r, namely, ɛ(r)=ɛ(0)+A1r, σ(r)=σ(0)+A2r.In this talk, we will present the exact analytical solutions of the dipole moment of such particle in terms of the hypergeometric functions, and the effective electric response in dilute limit. Moreover, we applied the dielectric dispersion spectral representation (DDSR) to study the Debye Behavior of the cell. Our exact results may be applied to graded biological cell suspensions, as their interior must be inhomogeneous in nature. [1] En-Bo Wei, L. Dong, K. W. Yu, Journal of Applied Physics 99, 054101(2006) [2] L. Dong, Mikko Karttunen, K. W. Yu, Phys. Rev. E, Vol. 72, art. no. 016613 (2005)
Electronic states of graphene nanoribbons and analytical solutions
Directory of Open Access Journals (Sweden)
Katsunori Wakabayashi, Ken-ichi Sasaki, Takeshi Nakanishi and Toshiaki Enoki
2010-01-01
Full Text Available Graphene is a one-atom-thick layer of graphite, where low-energy electronic states are described by the massless Dirac fermion. The orientation of the graphene edge determines the energy spectrum of π-electrons. For example, zigzag edges possess localized edge states with energies close to the Fermi level. In this review, we investigate nanoscale effects on the physical properties of graphene nanoribbons and clarify the role of edge boundaries. We also provide analytical solutions for electronic dispersion and the corresponding wavefunction in graphene nanoribbons with their detailed derivation using wave mechanics based on the tight-binding model. The energy band structures of armchair nanoribbons can be obtained by making the transverse wavenumber discrete, in accordance with the edge boundary condition, as in the case of carbon nanotubes. However, zigzag nanoribbons are not analogous to carbon nanotubes, because in zigzag nanoribbons the transverse wavenumber depends not only on the ribbon width but also on the longitudinal wavenumber. The quantization rule of electronic conductance as well as the magnetic instability of edge states due to the electron–electron interaction are briefly discussed.
Huang, C. S.; Yeh, H. D.
2014-12-01
This study builds a mathematical model for three-dimensional (3D) transient hydraulic head induced by an oscillatory pumping test in a confined, unconfined or leaky aquifer. The aquifers are of a rectangular shape where the four sides are under the Robin conditions. The 3D flow governing equation with a line sink term representing a vertical well is employed. The sink term has a cosine function for the oscillatory pumping. A general equation describing the head on the top of the three kinds of aquifers is considered. The analytical head solution of the model is derived by the direct Fourier method and the double-integral transform and in terms of a double series with fast convergence. With the aid of the solution, we have found that the vertical component of flow vanishes when Kv d2/(KhD2) > 1 where Kh and Kv are aquifer's hydraulic conductivities, respectively, D is aquifer's thickness, and d is a distance measured from the pumping well. Under the condition, temporal head distributions predicted by the present solution agree with those predicted by solutions developed based on two-dimensional flow by most previous researches.
STUDY ON EXACT ANALYTICAL SOLUTIONS FOR TWO SYSTEMS OF NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
闫振亚; 张鸿庆
2001-01-01
The homogeneous balance method was improved and applied to two systems of nonlinear evolution equations. As a result, several families of exact analytic solutions are derived by some new ansatzs. These solutions contain Wang's and Zhang's results and other new types of analytical solutions, such as rational fraction solutions and periodic solutions. The way can also be applied to solve more nonlinear partial differential equations.
Mehdi Delkhosh; Mohammad Delkhosh
2012-01-01
Many applications of various self-adjoint differential equations, whose solutions are complex, are produced (Arfken, 1985; Gandarias, 2011; and Delkhosh, 2011). In this work we propose a method for the solving some self-adjoint equations with variable change in problem, and then we obtain a analytical solutions. Because this solution, an exact analytical solution can be provided to us, we benefited from the solution of numerical Self-adjoint equations (Mohynl-Din, 2009; Allame and Azal, 2011;...
Approximate analytical solutions to the condensation-coagulation equation of aerosols
Smith, Naftali; Svensmark, Henrik
2015-01-01
We present analytical solutions to the steady state injection-condensation-coagulation equation of aerosols in the atmosphere. These solutions are appropriate under different limits but more general than previously derived analytical solutions. For example, we provide an analytic solution to the coagulation limit plus a condensation correction. Our solutions are then compared with numerical results. We show that the solutions can be used to estimate the sensitivity of the cloud condensation nuclei number density to the nucleation rate of small condensation nuclei and to changes in the formation rate of sulfuric acid.
An analytical solution for light field modes in waveguides with nonideal cladding
Arslanov, N M; Moiseev, S A
2015-01-01
We have obtained an analytical solution for the dispersion relation of the light field modes in the nanowaveguide structure. The solution has been analyzed for the planar waveguide with metamaterial claddings and dielectric core. The analytical solution is valid within the broadband spectral range and is confirmed by existing numerical calculations. The developed theoretical approach opens vast possibilities for the analytical investigations of the light fields in the various waveguides.
Resonant state expansion applied to two-dimensional open optical systems
Doost, M B; Muljarov, E A
2013-01-01
The resonant state expansion (RSE), a rigorous perturbative method in electrodynamics, is applied to two-dimensional open optical systems. The analytically solvable homogeneous dielectric cylinder is used as unperturbed system, and its Green's function is shown to contain a cut in the complex frequency plane, which is included in the RSE basis. The complex eigenfrequencies of modes are calculated using the RSE for a selection of perturbations which mix unperturbed modes of different orbital momentum, such as half-cylinder, thin-film and thin-wire perturbation, demonstrating the accuracy and convergency of the method. The resonant states for the thin-wire perturbation are shown to reproduce an approximative analytical solution.
Approximate analytical solution for the isothermal Lane Emden equation in a spherical geometry
Soliman, Moustafa Aly; Al-Zeghayer, Yousef
2015-10-01
This paper obtains an approximate analytical solution for the isothermal Lane-Emden equation that models a self-gravitating isothermal sphere. The approximate solution is obtained by perturbation methods in terms of small and large distance parameters. The approximate solution is compared with the numerical solution. The approximate solution obtained is valid for all values of the distance parameter.
ANALYTICAL SOLUTION FOR FIXED-FIXED ANISOTROPIC BEAM SUBJECTED TO UNIFORM LOAD
Institute of Scientific and Technical Information of China (English)
DING Hao-jiang; HUANG De-jin; WANG Hui-ming
2006-01-01
The analytical solutions of the stresses and displacements were obtained for fixed-fixed anisotropic beams subjected to uniform load. A stress function involving unknown coefficients was constructed, and the general expressions of stress and displacement were obtained by means of Airy stress function method. Two types of the description for the fixed end boundary condition were considered. The introduced unknown coefficients in stress function were determined by using the boundary conditions. The analytical solutions for stresses and displacements were finally obtained. Numerical tests show that the analytical solutions agree with the FEM results. The analytical solution supplies a classical example for the elasticity theory.
NONLINEAR GALERKIN METHODS FOR SOLVING TWO DIMENSIONAL NEWTON-BOUSSINESQ EQUATIONS
Institute of Scientific and Technical Information of China (English)
GUOBOLING
1995-01-01
The nonlinear Galerkin methods for solving two-dimensional Newton-Boussinesq equations are proposed. The existence and uniqueness of global generalized solution of these equations,and the convergence of approximate solutions are also obtained.
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
Energy Technology Data Exchange (ETDEWEB)
Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.
Reverse of mixing process with a two-dimensional electro-fluid-dynamic device.
Liu, Chang; Luo, Yong; Maxwell, E Jane; Fang, Ning; Chen, David D Y
2010-03-15
Mixing of two solutions into one is a spontaneous process with a net increase in entropy. However, the reverse of the mixing process is usually not possible unless certain conditions are met. A continuous solution stream containing a mixture of two compounds can be separated into two channels, each containing a pure compound, thus reversing the mixing process using a two-dimensional microfluidic electro-fluid-dynamic (EFD) device. When the electric field is strategically applied in the interconnecting channels of an EFD device, the pressure required to direct an analyte into a certain channel can be calculated by using the solutions of electric field and fluid dynamics in the mass balance equation. If the pressure and electric potential at various inlets and outlets satisfy these predetermined conditions, the reverse of a mixing process is observed. Conventional microfluidic devices have been used to introduce samples from interconnecting channels or efficiently mix different solutions into a single channel. The EFD devices expand the spatial separation of analytes from one dimension to two using both the differential migration behavior of analytes and the velocity field distribution in different channel geometries. The devices designed according to these basic physicochemical principles can be used for complete processing of minute samples and to obtain pure chemical species from complex mixtures.
Interpolation by two-dimensional cubic convolution
Shi, Jiazheng; Reichenbach, Stephen E.
2003-08-01
This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.
Analytical solution for facilitated transport across a membrane
Marzouqi, Mohamed Hassan Al-; Hogendoorn, Kees J.A.; Versteeg, Geert F.
2002-01-01
An analytical expression for the facilitation factor of component A across a liquid membrane is derived in case of an instantaneous reaction A(g) + B(l) ⇔ AB(l) inside the liquid membrane. The present expression has been derived based on earlier analytical results obtained for the enhancement factor
Analytical Solution for facilitated transport across a membrane
Al-marzouqi, M.; Hogendoorn, Kees; Versteeg, Geert
2002-01-01
An analytical expression for the facilitation factor of component A across a liquid membrane is derived in case of an instantaneous reaction A(g)+B(l)AB(l) inside the liquid membrane. The present expression has been derived based on the analytical results of Olander (A.I.Ch.E. J. 6(2) (1960) 233)
Statistical mechanics of two-dimensional and geophysical flows
Bouchet, Freddy
2011-01-01
The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter's troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. The equilibrium microcanonical measure is built from the Liouville theorem. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equi...
Analysis of one dimensional and two dimensional fuzzy controllers
Institute of Scientific and Technical Information of China (English)
Ban Xiaojun; Gao Xiaozhi; Huang Xianlin; Wu Tianbao
2006-01-01
The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail.The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.
Two-dimensional localized structures in harmonically forced oscillatory systems
Ma, Y.-P.; Knobloch, E.
2016-12-01
Two-dimensional spatially localized structures in the complex Ginzburg-Landau equation with 1:1 resonance are studied near the simultaneous presence of a steady front between two spatially homogeneous equilibria and a supercritical Turing bifurcation on one of them. The bifurcation structures of steady circular fronts and localized target patterns are computed in the Turing-stable and Turing-unstable regimes. In particular, localized target patterns grow along the solution branch via ring insertion at the core in a process reminiscent of defect-mediated snaking in one spatial dimension. Stability of axisymmetric solutions on these branches with respect to axisymmetric and nonaxisymmetric perturbations is determined, and parameter regimes with stable axisymmetric oscillons are identified. Direct numerical simulations reveal novel depinning dynamics of localized target patterns in the radial direction, and of circular and planar localized hexagonal patterns in the fully two-dimensional system.
TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION
Energy Technology Data Exchange (ETDEWEB)
Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)
2015-11-20
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.
Two dimensional topology of cosmological reionization
Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan
2015-01-01
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.
Numerical Investigation on Two-dimensional Boundary Layer Flow with Transition
Institute of Scientific and Technical Information of China (English)
Yong Zhao; Tianlin Wang; Zhi Zong
2014-01-01
As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows’ simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition’s behavior.
Velocity selection at large undercooling in a two-dimensional nonlocal model of solidification
Barbieri, Angelo
1987-01-01
The formation of needle-crystal dendrites from an undercooled melt is investigated analytically, applying the method of Caroli et al. (1986) to Langer's (1980) symmetric two-dimensional nonlocal model of solidification with finite anisotropy in the limit of large undercooling. A solution based on the WKB approximation is obtained, and a saddle-point evaluation is performed. It is shown that needle-crystal solutions exist only if the capillary anisotropy is nonzero, in which case a particular value of the growth velocity can be selected. This finding and the expression for the dependence of the selected velocity on the singular perturbation parameter and the strength of the anisotropy are found to be in complete agreement with the results of a boundary-layer model (Langer and Hong, 1986).
Lyapunov Computational Method for Two-Dimensional Boussinesq Equation
Mabrouk, Anouar Ben
2010-01-01
A numerical method is developed leading to Lyapunov operators to approximate the solution of two-dimensional Boussinesq equation. It consists of an order reduction method and a finite difference discretization. It is proved to be uniquely solvable and analyzed for local truncation error for consistency. The stability is checked by using Lyapunov criterion and the convergence is studied. Some numerical implementations are provided at the end of the paper to validate the theoretical results.
Chronology Protection in Two-Dimensional Dilaton Gravity
Mishima, T; Mishima, Takashi; Nakamichi, Akika
1994-01-01
The global structure of 1 + 1 dimensional compact Universe is studied in two-dimensional model of dilaton gravity. First we give a classical solution corresponding to the spacetime in which a closed time-like curve appears, and show the instability of this spacetime due to the existence of matters. We also observe quantum version of such a spacetime having closed timelike curves never reappear unless the parameters are fine-tuned.
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...
Towards two-dimensional search engines
Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...
Troch, P.A.A.; Loon, van A.H.; Hilberts, A.G.J.
2004-01-01
This technical note presents an analytical solution to the linearized hillslope-storage Boussinesq equation for subsurface flow along complex hillslopes with exponential width functions and discusses the application of analytical solutions to storage-based subsurface flow equations in catchment stud
Analytical mechanics solutions to problems in classical physics
Merches, Ioan
2014-01-01
Fundamentals of Analytical Mechanics Constraints Classification Criteria for Constraints The Fundamental Dynamical Problem for a Constrained Particle System of Particles Subject to Constraints Lagrange Equations of the First KindElementary Displacements Generalities Real, Possible and Virtual Displacements Virtual Work and Connected Principles Principle of Virtual WorkPrinciple of Virtual Velocities Torricelli's Principle Principles of Analytical Mechanics D'alembert's Principle Configuration Space Generalized Forces Hamilton's Principle The Simple Pendulum Problem Classical (Newtonian) Formal
Suk, Heejun
2016-08-01
This paper presents a semi-analytical procedure for solving coupled the multispecies reactive solute transport equations, with a sequential first-order reaction network on spatially or temporally varying flow velocities and dispersion coefficients involving distinct retardation factors. This proposed approach was developed to overcome the limitation reported by Suk (2013) regarding the identical retardation values for all reactive species, while maintaining the extensive capability of the previous Suk method involving spatially variable or temporally variable coefficients of transport, general initial conditions, and arbitrary temporal variable inlet concentration. The proposed approach sequentially calculates the concentration distributions of each species by employing only the generalized integral transform technique (GITT). Because the proposed solutions for each species' concentration distributions have separable forms in space and time, the solution for subsequent species (daughter species) can be obtained using only the GITT without the decomposition by change-of-variables method imposing the limitation of identical retardation values for all the reactive species by directly substituting solutions for the preceding species (parent species) into the transport equation of subsequent species (daughter species). The proposed solutions were compared with previously published analytical solutions or numerical solutions of the numerical code of the Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) in three verification examples. In these examples, the proposed solutions were well matched with previous analytical solutions and the numerical solutions obtained by 2DFATMIC model. A hypothetical single-well push-pull test example and a scale-dependent dispersion example were designed to demonstrate the practical application of the proposed solution to a real field problem.
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Kronecker Product of Two-dimensional Arrays
Institute of Scientific and Technical Information of China (English)
Lei Hu
2006-01-01
Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.
A novel two dimensional particle velocity sensor
Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.
2013-01-01
In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Two-dimensional magma-repository interactions
Bokhove, O.
2001-01-01
Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of
Two-dimensional subwavelength plasmonic lattice solitons
Ye, F; Hu, B; Panoiu, N C
2010-01-01
We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai
A two-dimensional Dirac fermion microscope
DEFF Research Database (Denmark)
Bøggild, Peter; Caridad, Jose; Stampfer, Christoph
2017-01-01
in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...
Directory of Open Access Journals (Sweden)
A. Aghili
2011-12-01
Full Text Available In this work,we present new theorems on two-dimensional Laplace transformation. We also develop some applications based on these results. The two-dimensional Laplace transformation is useful in the solution of non-homogeneous partial differential equations. In the last section a boundary value problem is solved by using the double Laplace-Carson transform.
Two-dimensional electron-hole capture in a disordered hopping system
Greenham, N. C.; Bobbert, P. A.
2003-12-01
We model the two-dimensional recombination of electrons and holes in a system where the mean free path is short compared with the thermal capture radius. This recombination mechanism is relevant to the operation of bilayer organic light-emitting diodes (LED’s), where electrons and holes accumulate on either side of the internal heterojunction. The electron-hole recombination rate can be limited by the time taken for these charge carriers to drift and diffuse to positions where electrons and holes are directly opposite to each other on either side of the interface, at which point rapid formation of an emissive neutral state can occur. In this paper, we use analytical and numerical techniques to find the rate of this two-dimensional electron-hole capture process. Where one species of carrier is significantly less mobile than the other, we find that the recombination rate depends superlinearly on the density of the less mobile carrier. Numerical simulations allow the effects of disorder to be taken into account in a microscopic hopping model. Direct solution of the master equation for hopping provides more efficient solutions than Monte Carlo simulations. The rate constants extracted from our model are consistent with efficient emission from bilayer LED’s without requiring independent hopping of electrons and holes over the internal barrier at the heterojunction.
Ultrafast two dimensional infrared chemical exchange spectroscopy
Fayer, Michael
2011-03-01
The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific
Directory of Open Access Journals (Sweden)
Carlos A Bustamante Chaverra
2013-03-01
are employed to build the interpolation function. Unlike the original Kansa’s Method, the LHI is applied locally and the boundary and governing equation diﬀerential operators are used to obtain the interpolation function, giving a symmetric and non-singular collocation matrix. Analytical and Numerical Jacobian matrices are tested for the Newton-Raphson method and the derivatives of the governing equation with respect to the homotopy parameter are obtained analytically. The numerical scheme is veriﬁed by comparing the obtained results to the one-dimensional Burgers’ and two-dimensional Richards’ analytical solutions. The same results are obtained for all the non-linear solvers tested, but better convergence rates are attained with the Newton Raphson method in a double iteration scheme.
2011-01-01
Background Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Methods Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Results Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. Conclusion The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections. PMID:21943385
Directory of Open Access Journals (Sweden)
Bergues Cabrales Jesús M
2011-09-01
Full Text Available Abstract Background Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola. Methods Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Results Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic. Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. Conclusion The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections.
Indian Academy of Sciences (India)
Zehra Pinar; Abhishek Dutta; Guido Bény; Turgut Öziş
2015-01-01
This paper presents an effective analytical simulation to solve population balance equation (PBE), involving particulate aggregation and breakage, by making use of appropriate solution(s) of associated complementary equation via auxiliary equation method (AEM). Travelling wave solutions of the complementary equation of a nonlinear PBE with appropriately chosen parameters is taken to be analogous to the description of the dynamic behaviour of the particulate processes. For an initial proof-of-concept, a general case when the number of particles varies with respect to time is chosen. Three cases, i.e. (1) balanced aggregation and breakage, (2) when aggregation can dominate and (3) breakage can dominate, are selected and solved for their corresponding analytical solutions. The results are then compared with the available analytical solution, based on Laplace transform obtained from literature. In this communication, it is shown that the solution approach proposed via AEM is flexible and therefore more efficient than the analytical approach used in the literature.
Can We Remove Secular Terms for Analytical Solution of Groundwater Response under Tidal Influence?
Munusamy, Selva Balaji
2016-01-01
This paper presents a secular term removal methodology based on the homotopy perturbation method for analytical solutions of nonlinear problems with periodic boundary condition. The analytical solution for groundwater response to tidal fluctuation in a coastal unconfined aquifer system with the vertical beach is provided as an example. The non-linear one-dimensional Boussinesq's equation is considered as the governing equation for the groundwater flow. An analytical solution is provided for non-dimensional Boussinesq's equation with cosine harmonic boundary condition representing tidal boundary condition. The analytical solution is obtained by using homotopy perturbation method with a virtual embedding parameter. The present approach does not require pre-specified perturbation parameter and also facilitates secular terms elimination in the perturbation solution. The solutions starting from zeroth-order up to third-order are obtained. The non-dimensional expression, $A/D_{\\infty}$ emerges as an implicit parame...
Directory of Open Access Journals (Sweden)
Ji Juan-Juan
2017-01-01
Full Text Available A table lookup method for solving nonlinear fractional partial differential equations (fPDEs is proposed in this paper. Looking up the corresponding tables, we can quickly obtain the exact analytical solutions of fPDEs by using this method. To illustrate the validity of the method, we apply it to construct the exact analytical solutions of four nonlinear fPDEs, namely, the time fractional simplified MCH equation, the space-time fractional combined KdV-mKdV equation, the (2+1-dimensional time fractional Zoomeron equation, and the space-time fractional ZKBBM equation. As a result, many new types of exact analytical solutions are obtained including triangular periodic solution, hyperbolic function solution, singular solution, multiple solitary wave solution, and Jacobi elliptic function solution.
Two-dimensional oxides: multifunctional materials for advanced technologies.
Pacchioni, Gianfranco
2012-08-13
The last decade has seen spectacular progress in the design, preparation, and characterization down to the atomic scale of oxide ultrathin films of few nanometers thickness grown on a different material. This has paved the way towards several sophisticated applications in advanced technologies. By playing around with the low-dimensionality of the oxide layer, which sometimes leads to truly two-dimensional systems, one can exploit new properties and functionalities that are not present in the corresponding bulk materials or thick films. In this review we provide some clues about the most recent advances in the design of these systems based on modern electronic structure theory and on their preparation and characterization with specifically developed growth techniques and analytical methods. We show how two-dimensional oxides can be used in mature technologies by providing added value to existing materials, or in new technologies based on completely new paradigms. The fields in which two-dimensional oxides are used are classified based on the properties that are exploited, chemical or physical. With respect to chemical properties we discuss use of oxide ultrathin films in catalysis, solid oxide fuel cells, gas sensors, corrosion protection, and biocompatible materials; regarding the physical properties we discuss metal-oxide field effect transistors and memristors, spintronic devices, ferroelectrics and thermoelectrics, and solar energy materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-dimensional capillary electrophoresis using tangentially connected capillaries.
Sahlin, Eskil
2007-06-22
A novel type of fused silica capillary system is described where channels with circular cross-sections are tangentially in contact with each other and connected through a small opening at the contact area. Since the channels are not crossing each other in the same plane, the capillaries can easily be filled with different solutions, i.e. different solutions will be in contact with each other at the contact point. The system has been used to perform different types of two-dimensional separations and the complete system is fully automated where a high voltage switch is used to control the location of the high voltage in the system. Using two model compounds it is demonstrated that a type of two-dimensional separation can be performed using capillary zone electrophoresis at two different pH values. It is also shown that a compound with acid/base properties can be concentrated using a dynamic pH junction mechanism when transferred from the first separation to the second separation. In addition, the system has been used to perform a comprehensive two-dimensional capillary electrophoresis separation of tryptic digest of bovine serum albumin using capillary zone electrophoresis followed by micellar electrokinetic chromatography.
On analytical solutions of the generalized Boussinesq equation
Kudryashov, Nikolay A.; Volkov, Alexandr K.
2016-06-01
Extended Boussinesq equation for the description of the Fermi-Pasta-Ulam problem is studied. It is analysed with the Painlevé test. It is shown, that the equation does not pass the Painlevé test, although necessary conditions for existence of the meromorphic solution are carried out. Method of the logistic function is introduced for Solitary wave solutions of the considered equation. Elliptic solutions for studied equation are constructed and discussed.
Homogenization of Two-Dimensional Phononic Crystals at Low Frequencies
Institute of Scientific and Technical Information of China (English)
NI Qing; CHENG Jian-Chun
2005-01-01
@@ Effective velocities of elastic waves propagating in two-dimensional phononic crystal at low frequencies are analysed theoretically, and exact analytical formulas for effective velocities of elastic waves are derived according to the method presented by Krokhin et al. [Phys. Rev. Lett. 91 (2003) 264302]. Numerical calculations for phononic crystals consisted of array of Pb cylinders embedded in epoxy show that the composites have distinct anisotropy at low filling fraction. The anisotropy increases as the filling fraction increases, while as the filling fraction closes to the limitation, the anisotropy decreases.
Analytic continuation of solutions of some nonlinear convolution partial differential equations
Directory of Open Access Journals (Sweden)
Hidetoshi Tahara
2015-01-01
Full Text Available The paper considers a problem of analytic continuation of solutions of some nonlinear convolution partial differential equations which naturally appear in the summability theory of formal solutions of nonlinear partial differential equations. Under a suitable assumption it is proved that any local holomorphic solution has an analytic extension to a certain sector and its extension has exponential growth when the variable goes to infinity in the sector.
Explicit Analytical Solutions of Coupled Fluid Flow Transfer Equation in Heterogeneous Porous Media
Institute of Scientific and Technical Information of China (English)
张娜; 蔡睿贤
2002-01-01
Explicit analytical solutions are presented for the coupled fluid flow transfer equation in heterogeneous porous media. These analytical solutions are useful for their description of actual flow fields and as benchmark solutions to check the rapidly developing numerical calculations and to study various computational methods such as the discrete approximations of the governing equations and grid generation methods. In addition, some novel mathematical methods are used in the analyses.
Analytical solution based on stream-aquifer interactions in partially penetrating streams
Directory of Open Access Journals (Sweden)
Yong Huang
2010-09-01
Full Text Available An analytical solution of drawdown caused by pumping is developed in an aquifer hydraulically connected to a finite-width stream on the condition of two streams. The proposed analytical solution modified Hunt’s analytical solution and not only considers the effect of stream width on drawdown, but also takes the distribution of drawdown on the interaction of two streams into account. Advantages of the solution include its simple structure, consisting of the Theis well function, parameters of aquifer and streambed semipervious material. The calculated results show that the proposed analytical solution agrees well with the previous solution and the errors between the two solutions are equal to zero on the condition of a stream without considering the effect of stream width. Also, deviations between the two analytical solutions increase with the increase of stream width. Furthermore, four cases are studied to discuss the effect of two streams on drawdown. It assumes that some parameters are changeable, and other parameters are constant, such as stream width, the distance between stream and pumping well, stream recharge rate, and the leakance coefficient of streambed semipervious material, etc. The analytical solution may provide estimates for parameters of aquifer and streambed semipervious material using the Type Curve Method through the data of field test.
Analytical Applications of Electrified Interfaces Between Two Immiscible Solutions
1993-04-07
electrode potentiostate needed for the iwork is described. Experimental techniques involving potentiometry , polarography with dropping electrode...convert any potentiostat to the 4-electrode potentiostat needed for the work is described. Experimental techniques involving potentiometry , polarography...potentiostat input. Analytical applications Potentiometry Potentiometric measurements on ITIES are related to the principle of ionl selective electrodes (ISE
Two-dimensional Insect Flight on an Air-Water Interface is a Chaotic Oscillator
Mukundarajan, Haripriya; Prakash, Manu
2014-01-01
Two-dimensional flapping wing insect flight on an air-water interface provides a successful foraging strategy to explore an ecological niche on the surface of a pond. However, the complex interplay of surface tension, aerodynamic forces, biomechanics and neural control that enables two-dimensional flight is unknown. Here we report the discovery of two-dimensional flight in the waterlily beetle Galerucella nymphaeae, which is the fastest reported propulsion mode for an insect on a fluid interface. Using kinematics derived from high-speed videography coupled with analytical models, we demonstrate that two-dimensional flight is a chaotic interfacial oscillator, thus significantly constraining the possible range of flight parameters. Discovery of this complex dynamics in two-dimensional flight on time scales similar to neural responses indicates the challenge of evolving active flight control on a fluid interface.
Explicit analytical wave solutions of unsteady 1D ideal gas flow with friction and heat transfer
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Several families of algebraically explicit analytical wavesolutions are derived for the unsteady 1D ideal gas flow with friction and heat-transfer, which include one family of travelling wave solutions, three families of standing wave solutions and one standing wave solution. \\{Among\\} them, the former four solution families contain arbitrary functions, so actually there are infinite analytical wave solutions having been derived. Besides their very important theoretical meaning, such analytical wave solutions can guide the development of some new equipment, and can be the benchmark solutions to promote the development of computational fluid dynamics. For example, we can use them to check the accuracy, convergence and effectiveness of various numerical computational methods and to improve the numerical computation skills such as differential schemes, grid generation ways and so on.
Electronics based on two-dimensional materials.
Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi
2014-10-01
The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-04-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.
Towards two-dimensional search engines
Ermann, Leonardo; Shepelyansky, Dima L
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.
Toward two-dimensional search engines
Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-07-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.
A two-dimensional Dirac fermion microscope
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
A two-dimensional Dirac fermion microscope.
Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-09
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
Directory of Open Access Journals (Sweden)
Mehdi Delkhosh
2012-01-01
Full Text Available Many applications of various self-adjoint differential equations, whose solutions are complex, are produced (Arfken, 1985; Gandarias, 2011; and Delkhosh, 2011. In this work we propose a method for the solving some self-adjoint equations with variable change in problem, and then we obtain a analytical solutions. Because this solution, an exact analytical solution can be provided to us, we benefited from the solution of numerical Self-adjoint equations (Mohynl-Din, 2009; Allame and Azal, 2011; Borhanifar et al. 2011; Sweilam and Nagy, 2011; Gülsu et al. 2011; Mohyud-Din et al. 2010; and Li et al. 1996.
Two-Dimensional Scheduling: A Review
Directory of Open Access Journals (Sweden)
Zhuolei Xiao
2013-07-01
Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.
Two dimensional fermions in four dimensional YM
Narayanan, R
2009-01-01
Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
String breaking in two-dimensional QCD
Hornbostel, K J
1999-01-01
I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.
Two-dimensional supramolecular electron spin arrays.
Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya
2013-05-07
A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two dimensional echocardiographic detection of intraatrial masses.
DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S
1981-11-01
With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.
Yang, Jianwen
2012-04-01
A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.
Verhoest, N.E.C.; Pauwels, V.R.N.; Troch, P.A.; Troch, De F.P.
2002-01-01
This paper presents two analytical solutions of the linearized Boussinesq equation for an inclined aquifer, drained by ditches, subjected to a constant recharge rate. These solutions are based on different initial conditions. First, the transient solution is obtained for an initially fully saturated
Institute of Scientific and Technical Information of China (English)
TsuiChih－Ya
1992-01-01
A set of new gasdynamic functions with varying specific heat are deriveo for the first time.An original analytical solution of normal shock waves is owrked out therewith.This solution is thereafter further improved by not involving total temperature,Illustrative examples of comparison are given,including also some approximate solutions to show the orders of their errors.
Analytical solutions of simply supported magnetoelectroelastic circular plate under uniform loads
Institute of Scientific and Technical Information of China (English)
陈江英; 丁皓江; 侯鹏飞
2003-01-01
In this paper, the axisymmetric general solutions of transversely isotropic magnetoelectroelastic media are expressed with four harmonic displacement functions at first. Then, based on the solutions, the analytical three-dimensional solutions are provided for a simply supported magnetoelectroelastic circular plate subjected to uniform loads. Finally, the example of circular plate is presented.
Analytic solutions of transcendental equations with application to automatics
Directory of Open Access Journals (Sweden)
Górecki Henryk
2016-12-01
Full Text Available In the paper the extremal dynamic error x(τ and the moment of time τ are considered. The extremal value of dynamic error gives information about accuracy of the system. The time τ gives information about velocity of transient. The analytical formulae enable design of the system with prescribed properties. These formulae are calculated due to the assumption that x(τ is a function of the roots s1, ..., sn of the characteristic equation.
Analytic Solution of Strongly Coupling Schr(o)dinger Equations
Institute of Scientific and Technical Information of China (English)
LIAO Jin-Feng; ZHUANG Peng-Fei
2004-01-01
A recently developed expansion method for analytically solving the ground states of strongly coupling Schrodinger equations by Friedberg,Lee,and Zhao is extended to excited states and applied to power-law central forces for which scaling properties are proposed.As examples for application of the extended method,the Hydrogen atom problem is resolved and the low-lying states of Yukawa potential are approximately obtained.
Analytical Solution of Smoluchowski Equations in Aggregation–Fragmentation Processes
Sekiyama, Makoto; Ohtsuki, Toshiya; Yamamoto, Hiroshi
2017-10-01
The z-transform technique is used to analyze Smoluchowski equations of aggregation-fragmentation processes where the selection of aggregation clusters, a decomposed cluster and a generated cluster is entirely random and independent of cluster size. An analytic form of asymptotic behavior for a cluster size distribution function is derived on the basis of approximation where lower-order terms in the average cluster size are neglected. The obtained results agree well with numerical ones.
Analytical solution for electromagnetic scattering from a sphere of uniaxial left-handed material
Institute of Scientific and Technical Information of China (English)
GENG You-lin; HE Sai-ling
2006-01-01
Based on the analytical solution of electromagnetic scattering by a uniaxial anisotropic sphere in the spectral domain,an analytical solution to the electromagnetic scattering by a uniaxial left-handed materials (LHMs) sphere is obtained in terms of spherical vector wave functions in a uniaxial anisotropic LHM medium. The expression of the analytical solution contains only some one-dimensional integral which can be calculated easily. Numerical results show that Mie series of plane wave scattering by an isotropic LHM sphere is a special case of the present method. Some numerical results of electromagnetic scattering ofa uniaxial anisotropic sphere by a plane wave are given.
Sun, HongGuang; Liu, Xiaoting; Zhang, Yong; Pang, Guofei; Garrard, Rhiannon
2017-09-01
Fractional-order diffusion equations (FDEs) extend classical diffusion equations by quantifying anomalous diffusion frequently observed in heterogeneous media. Real-world diffusion can be multi-dimensional, requiring efficient numerical solvers that can handle long-term memory embedded in mass transport. To address this challenge, a semi-discrete Kansa method is developed to approximate the two-dimensional spatiotemporal FDE, where the Kansa approach first discretizes the FDE, then the Gauss-Jacobi quadrature rule solves the corresponding matrix, and finally the Mittag-Leffler function provides an analytical solution for the resultant time-fractional ordinary differential equation. Numerical experiments are then conducted to check how the accuracy and convergence rate of the numerical solution are affected by the distribution mode and number of spatial discretization nodes. Applications further show that the numerical method can efficiently solve two-dimensional spatiotemporal FDE models with either a continuous or discrete mixing measure. Hence this study provides an efficient and fast computational method for modeling super-diffusive, sub-diffusive, and mixed diffusive processes in large, two-dimensional domains with irregular shapes.
Analytical solutions of the electrostatically actuated curled beam problem
Younis, Mohammad I.
2014-07-24
This works presents analytical expressions of the electrostatically actuated initially deformed cantilever beam problem. The formulation is based on the continuous Euler-Bernoulli beam model combined with a single-mode Galerkin approximation. We derive simple analytical expressions for two commonly observed deformed beams configurations: the curled and tilted configurations. The derived analytical formulas are validated by comparing their results to experimental data and numerical results of a multi-mode reduced order model. The derived expressions do not involve any complicated integrals or complex terms and can be conveniently used by designers for quick, yet accurate, estimations. The formulas are found to yield accurate results for most commonly encountered microbeams of initial tip deflections of few microns. For largely deformed beams, we found that these formulas yield less accurate results due to the limitations of the single-mode approximation. In such cases, multi-mode reduced order models are shown to yield accurate results. © 2014 Springer-Verlag Berlin Heidelberg.
A standard test case suite for two-dimensional linear transport on the sphere
Directory of Open Access Journals (Sweden)
P. H. Lauritzen
2012-06-01
Full Text Available It is the purpose of this paper to propose a standard test case suite for two-dimensional transport schemes on the sphere intended to be used for model development and facilitating scheme intercomparison. The test cases are designed to assess important aspects of accuracy in geophysical fluid dynamics such as numerical order of convergence, "minimal" resolution, the ability of the transport scheme to preserve filaments, transport "rough" distributions, and to preserve pre-existing functional relations between species/tracers under challenging flow conditions.
The experiments are designed to be easy to set up. They are specified in terms of two analytical wind fields (one non-divergent and one divergent and four analytical initial conditions (varying from smooth to discontinuous. Both conventional error norms as well as novel mixing and filament preservation diagnostics are used that are easy to implement. The experiments pose different challenges for the range of transport approaches from Lagrangian to Eulerian. The mixing and filament preservation diagnostics do not require an analytical/reference solution, which is in contrast to standard error norms where a "true" solution is needed. Results using the CSLAM (Conservative Semi-Lagrangian Multi-tracer scheme on the cubed-sphere are presented for reference and illustrative purposes.
Aumelas, A; Chiche, L; Kubo, S; Chino, N; Tamaoki, H; Kobayashi, Y
1995-04-11
Addition of the Lys(-2)-Arg(-1) dipeptide, present in the precursor protein, to the N-terminus of endothelin-1 (ET-1), to form a 23-residue peptide (KR-ET-1) has been shown to greatly improve formation of native disulfide bridges and to dramatically decrease biological activity. Conformational analysis was carried out on this peptide. During protonation of the carboxyl groups, CD spectra showed a decrease in the helical contribution, and NMR spectra displayed strong chemical shift modifications, suggesting the importance of electrostatic interactions in the KR-ET-1 conformation. CD spectra and two-dimensional NMR experiments were performed to investigate the KR-ET-1 three-dimensional structure in water in the carboxylic acid and carboxylate states. Distance and angle constraints were used as input for distance geometry calculations. The KR-ET-1 carboxylic acid conformation was found to be very similar to ET-1, with a helix spanning residues 9-15 and an unconstrained C-terminal part. In contrast, in the carboxylate state, large changes in Arg(-1) and Phe14 chemical shifts and long-range NOEs were consistent with a conformation characterized by a helix extension to Leu17 and a stabilized C-terminal section folded back toward the N-terminus. In addition, thanks to NOEs with Cys11 and Phe14, the Arg(-1) side chain appeared well-defined. Simulated annealing and molecular dynamics calculations, supported an Arg(-1)-Glu10 salt bridge and an electrostatic network involving the charged groups of Trp21, Asp18, and Lys(-2). Moreover, stabilization of the KR-ET-1 C-terminal part is probably reinforced by hydrophobic interactions involving the Val12, Tyr13, Phe14, Leu17, Ile19, Ile20, and Trp21 side chains. In vitro, native disulfide bond formation improvement observed for KR-ET-1 could be ascribed to electrostatic interactions and more specifically to the Arg(-1)-Glu10 salt bridge. In vivo, similar interactions could play an important role in the native folding of the ET-1
PLANE ELASTICITY PROBLEM OF TWO-DIMENSIONAL OCTAGONAL QUASICRYSTALS AND CRACK PROBLEM
Institute of Scientific and Technical Information of China (English)
ZHOU WANG-MIN; FAN TIAN-YOU
2001-01-01
The plane elasticity theory of two-dimensional octagonal quasicrystals is developed in this paper. The plane elasticity problem of quasicrystals is reduced to a single higher-order partial differential equation by introducing a displacement function. As an example, the exact analytic solution of a Mode I Griffith crack in the material is obtained by using the Fourier transform and dual integral equations theory, then the displacement and stress fields, stress intensity factor and strain energy release rate can be calculated. The physical significance of the results relative to the phason and the difference between the mechanical behaviours of the crack problem in crystals and quasicrystals are figured out.These provide important information for studying the deformation and fracture of the new solid phase.
Indian Academy of Sciences (India)
T Uthayakumar; K Porsezian
2010-11-01
We study the optical switching of the two-dimensional nonlinear coupler in a doped photopolymer. The coupled nonlinear Schrödinger equations (CNLSEs) describing our coupler system are analysed using Lagrangian variational method. From the Lagrangian, a set of coupled ordinary differential equations (ODEs) describing the system dynamics is obtained. This set of ODE’s is further reduced to single coupled equation and an analytical solution is obtained using the cnoidal functions and the system dynamics is studied. The key factor for switching mechanism of our coupler system is the metal-induced surface plasmon resonance (SPR). This SPR-induced local nonlinear effects results in self-focussing of the optical beam through the launched core. A description of a particle in a well is also made to study the photon switching through the coupler system.
Alzahrani, Faris S.; Abbas, Ibrahim A.
2016-08-01
The present paper is devoted to the study of a two-dimensional thermal shock problem with weak, normal and strong conductivity using the eigenvalue approach. The governing equations are taken in the context of the new consideration of heat conduction with fractional order generalized thermoelasticity with the Lord-Shulman model (LS model). The bounding surface of the half-space is taken to be traction free and subjected to a time-dependent thermal shock. The Laplace and the exponential Fourier transform techniques are used to obtain the analytical solutions in the transformed domain by the eigenvalue approach. Numerical computations have been done for copper-like material for weak, normal and strong conductivity and the results are presented graphically to estimate the effects of the fractional order parameter.
Brûlé, Yoann; Gralak, Boris
2015-01-01
Numerical calculation of modes in dispersive and absorptive systems is performed using the finite element method. The dispersion is tackled in the frame of an extension of Maxwell's equations where auxiliary fields are added to the electromagnetic field. This method is applied to multi-domain cavities and photonic crystals including Drude and Drude-Lorentz metals. Numerical results are compared to analytical solutions for simple cavities and to previous results of the literature for photonic crystals, showing excellent agreement. The advantages of the developed method lie on the versatility of the finite element method regarding geometries, and in sparing the use of tedious complex poles research algorithm. Hence the complex spectrum of resonances of non-hermitian operators and dissipative systems, like two-dimensional photonic crystal made of absorbing Drude metal, can be investigated in detail. The method is used to reveal unexpected features of their complex band structures.
Institute of Scientific and Technical Information of China (English)
WANG Rouhuai
2006-01-01
The main aim of this paper is to discuss the problem concerning the analyticity of the solutions of analytic non-linear elliptic boundary value problems.It is proved that if the corresponding first variation is regular in Lopatinski(i) sense,then the solution is analytic up to the boundary.The method of proof really covers the case that the corresponding first variation is regularly elliptic in the sense of Douglis-Nirenberg-Volevich,and hence completely generalize the previous result of C.B.Morrey.The author also discusses linear elliptic boundary value problems for systems of ellip tic partial differential equations where the boundary operators are allowed to have singular integral operators as their coefficients.Combining the standard Fourier transform technique with analytic continuation argument,the author constructs the Poisson and Green's kernel matrices related to the problems discussed and hence obtain some representation formulae to the solutions.Some a priori estimates of Schauder type and Lp type are obtained.
Analytical solution for multilayer plates using general layerwise plate theory
Directory of Open Access Journals (Sweden)
Vuksanović Đorđe M.
2005-01-01
Full Text Available This paper deals with closed-form solution for static analysis of simply supported composite plate, based on generalized laminate plate theory (GLPT. The mathematical model assumes piece-wise linear variation of in-plane displacement components and a constant transverse displacement through the thickness. It also include discrete transverse shear effect into the assumed displacement field, thus providing accurate prediction of transverse shear stresses. Namely, transverse stresses satisfy Hook's law, 3D equilibrium equations and traction free boundary conditions. With assumed displacement field, linear strain-displacement relation, and constitutive equations of the lamina, equilibrium equations are derived using principle of virtual displacements. Navier-type closed form solution of GLPT, is derived for simply supported plate, made of orthotropic laminae, loaded by harmonic and uniform distribution of transverse pressure. Results are compared with 3D elasticity solutions and excellent agreement is found.
The analytic continuation of solutions of the generalized axially symmetric Helmholtz equation
Millar, R. F.
1983-12-01
The analytic continuation of a solution of the generalized axially symmetric Helmholtz equation u xx + u yy + (2α/ x) u x + k 2 u = 0is examined. A representation in terms of boundary data and the complex Riemann function is given for the continuation of the solution to an analytic boundary value problem; this also provides the solution of the analytic Cauchy problem on an analytic arc. Integral representations are found for the Riemann function, and the axial behaviour of the Riemann function is determined and used to recover a representation for the solution in terms of analytic axial data, as given originally by Henrici. For an exterior boundary value problem in which the axial values of the solution are defined on two disjoint, semi-infinite segments of the axis, it is shown that the two functions are not analytic continuations of one an-other and that a certain linear combination of them is an entire function. As an example, for α = 1/2 it is shown that the continuation of an exterior solution for a prolate spheroidal boundary is logarithmically infinite on the interfocal segment. A further special case, one that involves wave scattering by slender bodies of revolution for which the solution may be represented as a superposition over axial singularities, is briefly examined; properties of the axial values which are forced by this representation are determined and, where comparison is possible, shown to be consistent with the present work.
Two-dimensional thermal analysis of a fuel rod by finite volume method
Energy Technology Data Exchange (ETDEWEB)
Costa, Rhayanne Y.N.; Silva, Mario A.B. da; Lira, Carlos A.B. de O., E-mail: ryncosta@gmail.com, E-mail: mabs500@gmail.com, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamaento de Energia Nuclear
2015-07-01
In a nuclear reactor, the amount of power generation is limited by thermal and physic limitations rather than by nuclear parameters. The operation of a reactor core, considering the best heat removal system, must take into account the fact that the temperatures of fuel and cladding shall not exceed safety limits anywhere in the core. If such considerations are not considered, damages in the fuel element may release huge quantities of radioactive materials in the coolant or even core meltdown. Thermal analyses for fuel rods are often accomplished by considering one-dimensional heat diffusion equation. The aim of this study is to develop the first paper to verify the temperature distribution for a two-dimensional heat transfer problem in an advanced reactor. The methodology is based on the Finite Volume Method (FVM), which considers a balance for the property of interest. The validation for such methodology is made by comparing numerical and analytical solutions. For the two-dimensional analysis, the results indicate that the temperature profile agree with expected physical considerations, providing quantitative information for the development of advanced reactors. (author)
Directory of Open Access Journals (Sweden)
D. A. Fetisov
2015-01-01
Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved
Approximation analytical solutions for a unified plasma sheath model by double decomposition method
Institute of Scientific and Technical Information of China (English)
FangJin－Qing
1998-01-01
A unified plasma sheath model and its potential equation are proposed.Any higher-order approximation analytical solutions for the unified plasma sheath potential equation are derived by double decomposition method.
Lunin, Andrei; Grudiev, Alexej
2011-01-01
Analytical solutions are derived for transient and steady state gradient distributions in the travelling wave accelerating structures with arbitrary variation of parameters over the structure length. The results of both the unloaded and beam loaded cases are presented.
Institute of Scientific and Technical Information of China (English)
侯进军
2007-01-01
@@ 1 Seed Selection Genetic Programming In Genetic Programming, each tree in population shows an algebraic or surmounting expression, and each algebraic or surmounting expression shows an approximate analytic solution to differential equations.
A Quantum Dot with Spin-Orbit Interaction--Analytical Solution
Basu, B.; Roy, B.
2009-01-01
The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.
The analyticity of solutions to a class of degenerate elliptic equations
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In the present paper,the analyticity of solutions to a class of degenerate elliptic equations is obtained.A kind of weighted norms are introduced and under such norms some degenerate elliptic operators are of weak coerciveness.
A Quantum Dot with Spin-Orbit Interaction--Analytical Solution
Basu, B.; Roy, B.
2009-01-01
The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.
Application of Analytic Solution in Relative Motion to Spacecraft Formation Flying in Elliptic Orbit
Cho, Hancheol; Park, Sang-Young; Choi, Kyu-Hong
2008-09-01
The current paper presents application of a new analytic solution in general relative motion to spacecraft formation flying in an elliptic orbit. The calculus of variations is used to analytically find optimal trajectories and controls for the given problem. The inverse of the fundamental matrix associated with the dynamic equations is not required for the solution in the current study. It is verified that the optimal thrust vector is a function of the fundamental matrix of the given state equations. The cost function and the state vector during the reconfiguration can be analytically obtained as well. The results predict the form of optimal solutions in advance without having to solve the problem. Numerical simulation shows the brevity and the accuracy of the general analytic solutions developed in the current paper.
Analytical solutions for transport processes fluid mechanics, heat and mass transfer
Brenn, Günter
2017-01-01
This book provides analytical solutions to a number of classical problems in transport processes, i.e. in fluid mechanics, heat and mass transfer. Expanding computing power and more efficient numerical methods have increased the importance of computational tools. However, the interpretation of these results is often difficult and the computational results need to be tested against the analytical results, making analytical solutions a valuable commodity. Furthermore, analytical solutions for transport processes provide a much deeper understanding of the physical phenomena involved in a given process than do corresponding numerical solutions. Though this book primarily addresses the needs of researchers and practitioners, it may also be beneficial for graduate students just entering the field. .
Directory of Open Access Journals (Sweden)
Partner L. Ndlovu
2013-01-01
Full Text Available Explicit analytical expressions for the temperature profile, fin efficiency, and heat flux in a longitudinal fin are derived. Here, thermal conductivity and heat transfer coefficient depend on the temperature. The differential transform method (DTM is employed to construct the analytical (series solutions. Thermal conductivity is considered to be given by the power law in one case and by the linear function of temperature in the other, whereas heat transfer coefficient is only given by the power law. The analytical solutions constructed by the DTM agree very well with the exact solutions even when both the thermal conductivity and the heat transfer coefficient are given by the power law. The analytical solutions are obtained for the problems which cannot be solved exactly. The effects of some physical parameters such as the thermogeometric fin parameter and thermal conductivity gradient on temperature distribution are illustrated and explained.
Directory of Open Access Journals (Sweden)
Xiao-Ying Qin
2014-01-01
Full Text Available An Adomian decomposition method (ADM is applied to solve a two-phase Stefan problem that describes the pure metal solidification process. In contrast to traditional analytical methods, ADM avoids complex mathematical derivations and does not require coordinate transformation for elimination of the unknown moving boundary. Based on polynomial approximations for some known and unknown boundary functions, approximate analytic solutions for the model with undetermined coefficients are obtained using ADM. Substitution of these expressions into other equations and boundary conditions of the model generates some function identities with the undetermined coefficients. By determining these coefficients, approximate analytic solutions for the model are obtained. A concrete example of the solution shows that this method can easily be implemented in MATLAB and has a fast convergence rate. This is an efficient method for finding approximate analytic solutions for the Stefan and the inverse Stefan problems.
General scalar-tensor cosmology: analytical solutions via noether symmetry
Energy Technology Data Exchange (ETDEWEB)
Massaeli, Erfan; Motaharfar, Meysam; Sepangi, Hamid Reza [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of)
2017-02-15
We analyze the cosmology of a general scalar-tensor theory which encompasses generalized Brans-Dicke theory, Gauss-Bonnet gravity, non-minimal derivative gravity, generalized Galilean gravity and also the general k-essence type models. Instead of taking into account phenomenological considerations we adopt a Noether symmetry approach, as a physical criterion, to single out the form of undetermined functions in the action. These specified functions symmetrize equations of motion in the simplest possible form which result in exact solutions. Demanding de Sitter, power-law and bouncing universe solutions in the absence and presence of matter density leads to exploring new as well as well-investigated models. We show that there are models for which the dynamics of the system allows a transition from a decelerating phase (matter dominated era) to an accelerating phase (dark energy epoch) and could also lead to general Brans-Dicke with string correction without a self-interaction potential. Furthermore, we classify the models based on a phantom or quintessence dark energy point of view. Finally, we obtain the condition for stability of a de Sitter solution for which the solution is an attractor of the system. (orig.)
Analytic method for solitary solutions of some partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Ugurlu, Yavuz [Firat University, Department of Mathematics, 23119 Elazig (Turkey); Kaya, Dogan [Firat University, Department of Mathematics, 23119 Elazig (Turkey)], E-mail: dkaya@firat.edu.tr
2007-10-22
In this Letter by considering an improved tanh function method, we found some exact solutions of the clannish random walker's parabolic equation, the modified Korteweg-de Vries (KdV) equation, and the Sharma-Tasso-Olver (STO) equation with its fission and fusion, the Jaulent-Miodek equation.
General scalar-tensor cosmology: analytical solutions via noether symmetry
Massaeli, Erfan; Motaharfar, Meysam; Sepangi, Hamid Reza
2017-02-01
We analyze the cosmology of a general scalar-tensor theory which encompasses generalized Brans-Dicke theory, Gauss-Bonnet gravity, non-minimal derivative gravity, generalized Galilean gravity and also the general k-essence type models. Instead of taking into account phenomenological considerations we adopt a Noether symmetry approach, as a physical criterion, to single out the form of undetermined functions in the action. These specified functions symmetrize equations of motion in the simplest possible form which result in exact solutions. Demanding de Sitter, power-law and bouncing universe solutions in the absence and presence of matter density leads to exploring new as well as well-investigated models. We show that there are models for which the dynamics of the system allows a transition from a decelerating phase (matter dominated era) to an accelerating phase (dark energy epoch) and could also lead to general Brans-Dicke with string correction without a self-interaction potential. Furthermore, we classify the models based on a phantom or quintessence dark energy point of view. Finally, we obtain the condition for stability of a de Sitter solution for which the solution is an attractor of the system.
Analytical solutions of weakly coupled map lattices using recurrence relations
Energy Technology Data Exchange (ETDEWEB)
Sotelo Herrera, Dolores, E-mail: dsh@dfmf.uned.e [Applied Maths, EUITI, UPM, Ronda de Valencia, 3-28012 Madrid (Spain); San Martin, Jesus [Applied Maths, EUITI, UPM, Ronda de Valencia, 3-28012 Madrid (Spain); Dep. Fisica Matematica y de Fluidos, UNED, Senda del Rey 9-28040 Madrid (Spain)
2009-07-20
By using asymptotic methods recurrence relations are found that rule weakly CML evolution, with both global and diffusive coupling. The solutions obtained from these relations are very general because they do not hold restrictions about boundary conditions, initial conditions and number of oscilators in the CML. Furthermore, oscillators are ruled by an arbitraty C{sup 2} function.
Energy Technology Data Exchange (ETDEWEB)
Chatterjee, Kausik, E-mail: kausik.chatterjee@aggiemail.usu.edu [Strategic and Military Space Division, Space Dynamics Laboratory, North Logan, UT 84341 (United States); Center for Atmospheric and Space Sciences, Utah State University, Logan, UT 84322 (United States); Roadcap, John R., E-mail: john.roadcap@us.af.mil [Air Force Research Laboratory, Kirtland AFB, NM 87117 (United States); Singh, Surendra, E-mail: surendra-singh@utulsa.edu [Department of Electrical Engineering, The University of Tulsa, Tulsa, OK 74104 (United States)
2014-11-01
The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications.
An analytical approach to the solution of the transport equation for photons
Energy Technology Data Exchange (ETDEWEB)
Reichert, Janice Teresinha, E-mail: janice.reichert@gmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Pato Branco, PR (Brazil); Barichello, Liliane Basso, E-mail: lbaric@mat.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil)
2011-07-01
An analytical solution is developed to the one-dimensional transport equation for photons, for the case which includes spectral dependence. The Klein-Nishina kernel for Compton scattering is considered and an analytical discrete ordinates method, the ADO method, is used to solve the resulting angular dependent problem. Numerical simulations are performed to evaluate the buildup factor. (author)
Analytical solution based on stream-aquifer interactions in partially penetrating streams
Institute of Scientific and Technical Information of China (English)
Yong HUANG; Zhi-fang ZHOU; Zhong-bo YU
2010-01-01
An analytical solution of drawdown caused by pumping was developed for an aquifer partially penetrated by two streams.The proposed analytical solution modifies Hunt's analytical solution and considers the effects of stream width and the interaction of two streams on drawdown.Advantages of the solution include its simple structure,consisting of the Theis well function and parameters of aquifer and streambed semipervious material.The calculated results show that the proposed analytical solution agrees with a previously developed acceptable solution and the errors between the two solutions are equal to zero without consideration of the effect of stream width.Also,deviations between the two analytical solutions incrcase with stream width.Four cases were studied to examine the effect of two streams on drawdown,assuming that some parameters were changeable,and other parameters were constant,such as the stream width,the distance between the stream and the pumping well,the stream recharge rate,and the leakage coefficient of streambed semipervious material.
Approximate Analytical Solutions for a Class of Laminar Boundary-Layer Equations
Institute of Scientific and Technical Information of China (English)
Seripah Awang Kechil; Ishak Hashim; Sim Siaw Jiet
2007-01-01
A simple and efficient approximate analytical technique is presented to obtain solutions to a class of two-point boundary value similarity problems in fluid mechanics. This technique is based on the decomposition method which yields a general analytic solution in the form of a convergent infinite series with easily computable terms. Comparative study is carried out to show the accuracy and effectiveness of the technique.
Analytic study of solutions for the Born-Infeld equation in nonlinear electrodynamics
Gao, Hui; Xu, Tianzhou; Fan, Tianyou; Wang, Gangwei
2017-03-01
The Born-Infeld equation is an important nonlinear partial differential equation in theoretical and mathematical physics. The Lie group method is used for simplifying the nonlinear partial differential equation, which is partly solved, in which there are some difficulties; to overcome the difficulties, we develop a power series method, and find the solutions in analytic form. In the mean time, a wave propagation (traveling wave) method is developed for solving the equation, and analytic solutions are also constructed.
Analytical solutions for the slow neutron capture process of heavy element nucleosynthesis
Institute of Scientific and Technical Information of China (English)
Wu Kai-Su
2009-01-01
In this paper,the network equation for the slow neutron capture process (s-process) of heavy element nucleosynthesis is investigated. Dividing the s-process network reaction chains into two standard forms and using the technique of matrix decomposition,a group of analytical solutions for the network equation are obtained. With the analytical solutions,a calculation for heavy element abundance of the solar system is carried out and the results are in good agreement with the astrophysical measurements.
An analytical solution in the complex plane for the luminosity distance in flat cosmology
Zaninetti, L
2016-01-01
We present an analytical solution for the luminosity distance in spatially flat cosmology with pressureless matter and the cosmological constant. The complex analytical solution is made of a real part and a negligible imaginary part. The real part of the luminosity distance allows finding the two parameters $H_0$ and $\\om$. A simple expression for the distance modulus for SNs of type Ia is reported in the framework of the minimax approximation.
Method of the Logistic Function for Finding Analytical Solutions of Nonlinear Differential Equations
Kudryashov, N. A.
2015-01-01
The method of the logistic function is presented for finding exact solutions of nonlinear differential equations. The application of the method is illustrated by using the nonlinear ordinary differential equation of the fourth order. Analytical solutions obtained by this method are presented. These solutions are expressed via exponential functions.logistic function, nonlinear wave, nonlinear ordinary differential equation, Painlev´e test, exact solution
Analytical Solutions for Systems of Singular Partial Differential-Algebraic Equations
Directory of Open Access Journals (Sweden)
U. Filobello-Nino
2015-01-01
Full Text Available This paper proposes power series method (PSM in order to find solutions for singular partial differential-algebraic equations (SPDAEs. We will solve three examples to show that PSM method can be used to search for analytical solutions of SPDAEs. What is more, we will see that, in some cases, Padé posttreatment, besides enlarging the domain of convergence, may be employed in order to get the exact solution from the truncated series solutions of PSM.
Weakly disordered two-dimensional Frenkel excitons
Boukahil, A.; Zettili, Nouredine
2004-03-01
We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.
Theory of two-dimensional transformations
Kanayama, Yutaka J.; Krahn, Gary W.
1998-01-01
The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...
Two-dimensional ranking of Wikipedia articles
Zhirov, A O; Shepelyansky, D L
2010-01-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....
Dynamics of film. [two dimensional continua theory
Zak, M.
1979-01-01
The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.
Analytical solutions for space charge fields in TPC drift volumes
Rossegger, S; Schnizer, B
2011-01-01
At high particle rates and high multiplicities, Time Projection Chambers can suffer from field distortions due to slow moving ions that accumulate within the drift volume. These variations modify the electron trajectory along the drift path, affecting the tracking performance of the detector. In order to calculate the track distortions due to an arbitrary space charge distribution in a TPC, novel representations of the Green's function for a TPC-like geometry were worked out. This analytical approach permits accurate predictions of track distortions due to an arbitrary space charge distribution (by solving the Langevin equation) as well as the possibility to benchmark common numerical methods to calculate such space charge fields. (C) 2011 Elsevier B.V. All rights reserved.
Methods for estimating uncertainty in factor analytic solutions
Directory of Open Access Journals (Sweden)
P. Paatero
2013-08-01
Full Text Available EPA PMF version 5.0 and the underlying multilinear engine executable ME-2 contain three methods for estimating uncertainty in factor analytic models: classical bootstrap (BS, displacement of factor elements (DISP, and bootstrap enhanced by displacement of factor elements (BS-DISP. The goal of these methods is to capture the uncertainty of PMF analyses due to random errors and rotational ambiguity. It is shown that the three methods complement each other: depending on characteristics of the data set, one method may provide better results than the other two. Results are presented using synthetic data sets, including interpretation of diagnostics, and recommendations are given for parameters to report when documenting uncertainty estimates from EPA PMF or ME-2 applications.
Analytic Solutions of Three-Level Dressed-Atom Model
Institute of Scientific and Technical Information of China (English)
WANG Zheng-Ling; YIN Jian-Ping
2004-01-01
On the basis of the dressed-atom model, the general analytic expressions for the eigenenergies, eigenstates and their optical potentials of the A-configuration three-level atom system are derived and analysed. From the calculation of dipole matrix element of different dressed states, we obtain the spontaneous-emission rates in the dressed-atom picture. We find that our general expressions of optical potentials for the three-level dressed atom can be reduced to the same as ones in previous references under the approximation of a small saturation parameter. We also analyse the dependences of the optical potentials of a three-level 85Rb atom on the laser detuning and the dependences of spontaneous-emission rates on the radial position in the dark hollow beam, and discuss the probability (population) evolutions of dressed-atomic eigenstates in three levels in the hollow beam.
Numerical Simulation of Two-dimensional Nonlinear Sloshing Problems
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Numerical simulation of a two-dimensional nonlinearsloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liquid sloshing in a rectangular container subjected to a horizontal excitation is simulated using these two theories. Numerical results are obtained and comparisons are made. It is found that a good agreement is obtained for the case of small amplitude oscillation. For the situation of large amplitude excitation, although the differences between using the two theories are obvious the second order solution can still exhibit typical nonlinear features of nonlinear wave.
Finite Element Analysis to Two-Dimensional Nonlinear Sloshing Problems
Institute of Scientific and Technical Information of China (English)
严承华; 王赤忠; 程尔升
2001-01-01
A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domainsecond order theory of water waves. Liquid sloshing in a rectangular container subjected to a horizontal excitation is sim-ulated by the finite element method. Comparisons between the two theories are made based on their numerical results. Itis found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur forlarge amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features ofnonlinear wave and can be used instead of the fully nonlinear theory.
The problem of friction in two-dimensional relative motion
Grech, D K; Grech, Dariusz; Mazur, Zygmunt
2000-01-01
We analyse a mechanical system in two-dimensional relative motion with friction. Although the system is simple, the peculiar interplay between two kinetic friction forces and gravity leads to the wide range of admissible solutions exceeding most intuitive expectations. In particular, the strong qualitative dependence between behaviour of the system, boundary conditions and parameters involved in its description is emphasised. The problem is intended to be discussed in theoretical framework and might be of interest for physics and mechanics students as well as for physics teachers.
Vibrational wave packet induced oscillations in two-dimensional electronic spectra. I. Experiments
Nemeth, Alexandra; Mancal, Tomas; Lukes, Vladimir; Hauer, Juergen; Kauffmann, Harald F; Sperling, Jaroslaw
2010-01-01
This is the first in a series of two papers investigating the effect of electron-phonon coupling in two-dimensional Fourier transformed electronic spectroscopy. We present a series of one- and two-dimensional nonlinear spectroscopic techniques for studying a dye molecule in solution. Ultrafast laser pulse excitation of an electronic transition coupled to vibrational modes induces a propagating vibrational wave packet that manifests itself in oscillating signal intensities and line-shapes. For the two-dimensional electronic spectra we can attribute the observed modulations to periodic enhancement and decrement of the relative amplitudes of rephasing and non-rephasing contributions to the total response. Different metrics of the two-dimensional signals are shown to relate to the frequency-frequency correlation function which provides the connection between experimentally accessible observations and the underlying microscopic molecular dynamics. A detailed theory of the time-dependent two-dimensional spectral li...