Two-dimensional photonic crystal surfactant detection.
Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A
2012-08-07
We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
Two-dimensional function photonic crystals
Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu
2016-01-01
In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.
Two-dimensional function photonic crystals
Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng
2017-01-01
In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.
Two-Dimensional Gel Electrophoresis and 2D-DIGE.
Meleady, Paula
2018-01-01
Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) continues to be one of the most versatile and widely used techniques to study the proteome of a biological system. In particular, a modified version of 2D-PAGE, two-dimensional difference gel electrophoresis (2D-DIGE), which uses differential labeling of protein samples with up to three fluorescent tags, offers greater sensitivity and reproducibility over conventional 2D-PAGE gels for differential quantitative analysis of protein expression between experimental groups. Both these methods have distinct advantages in the separation and identification of thousands of individual proteins species including protein isoforms and post-translational modifications. This review will discuss the principles of 2D-PAGE and 2D-DIGE including limitations to the methods. 2D-PAGE and 2D-DIGE continue to be popular methods in bioprocessing-related research (particularly on recombinant Chinese hamster ovary cells), which will also be discussed in the review chapter.
Two-Dimensional (2D) Polygonal Electromagnetic Cloaks
Institute of Scientific and Technical Information of China (English)
LI Chao; YAO Kan; LI Fang
2009-01-01
Transformation optics offers remarkable control over electromagnetic fields and opens an exciting gateway to design 'invisible cloak devices' recently.We present an important class of two-dimensional (2D) cloaks with polygon geometries.Explicit expressions of transformed medium parameters are derived with their unique properties investigated.It is found that the elements of diagonalized permittivity tensors are always positive within an irregular polygon cloak besides one element diverges to plus infinity and the other two become zero at the inner boundary.At most positions,the principle axes of permittivity tensors do not align with position vectors.An irregular polygon cloak is designed and its invisibility to external electromagnetic waves is numerically verified.Since polygon cloaks can be tailored to resemble any objects,the transformation is finally generalized to the realization of 2D cloaks with arbitrary geometries.
Absolute band gaps in two-dimensional graphite photonic crystal
Institute of Scientific and Technical Information of China (English)
Gaoxin Qiu(仇高新); Fanglei Lin(林芳蕾); Hua Wang(王华); Yongping Li(李永平)
2003-01-01
The off-plane propagation of electromagnetic (EM) waves in a two-dimensional (2D) graphite photoniccrystal structure was studied using transfer matrix method. Transmission spectra calculations indicatethat such a 2D structure has a common band gap from 0.202 to 0.2035 c/a for both H and E polarizationsand for all off-plane angles form 0° up to 90°. The presence of such an absolute band gap implies that 2Dgraphite photonic crystal, which is much easier and more feasible to fabricate, can exhibit some propertiesof a three-dimensional (3D) photonic crystal.
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Photonics and optoelectronics of two-dimensional materials beyond graphene
Ponraj, Joice Sophia; Xu, Zai-Quan; Chander Dhanabalan, Sathish; Mu, Haoran; Wang, Yusheng; Yuan, Jian; Li, Pengfei; Thakur, Siddharatha; Ashrafi, Mursal; Mccoubrey, Kenneth; Zhang, Yupeng; Li, Shaojuan; Zhang, Han; Bao, Qiaoliang
2016-11-01
Apart from conventional materials, the study of two-dimensional (2D) materials has emerged as a significant field of study for a variety of applications. Graphene-like 2D materials are important elements of potential optoelectronics applications due to their exceptional electronic and optical properties. The processing of these materials towards the realization of devices has been one of the main motivations for the recent development of photonics and optoelectronics. The recent progress in photonic devices based on graphene-like 2D materials, especially topological insulators (TIs) and transition metal dichalcogenides (TMDs) with the methodology level discussions from the viewpoint of state-of-the-art designs in device geometry and materials are detailed in this review. We have started the article with an overview of the electronic properties and continued by highlighting their linear and nonlinear optical properties. The production of TIs and TMDs by different methods is detailed. The following main applications focused towards device fabrication are elaborated: (1) photodetectors, (2) photovoltaic devices, (3) light-emitting devices, (4) flexible devices and (5) laser applications. The possibility of employing these 2D materials in different fields is also suggested based on their properties in the prospective part. This review will not only greatly complement the detailed knowledge of the device physics of these materials, but also provide contemporary perception for the researchers who wish to consider these materials for various applications by following the path of graphene.
Spatiotemporal surface solitons in two-dimensional photonic lattices.
Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S
2007-11-01
We analyze spatiotemporal light localization in truncated two-dimensional photonic lattices and demonstrate the existence of two-dimensional surface light bullets localized in the lattice corners or the edges. We study the families of the spatiotemporal surface solitons and their properties such as bistability and compare them with the modes located deep inside the photonic lattice.
Compact triplexer in two-dimensional hexagonal lattice photonic crystals
Institute of Scientific and Technical Information of China (English)
Hongliang Ren; Jianping Ma; Hao Wen; Yali Qin; Zhefu Wu; Weisheng Hu; Chun Jiang; Yaohui Jin
2011-01-01
We design a contpact triplexer based on two-dimensional (2D) hexagonal lattice photonic crystals (PCs). A folded directional coupler (FDC) is introduced in the triplexer beside the point-defect micro-cavities and line-defect waveguides. Because of the reflection feedback of the FDC, high channel drop efficiency can be realized and a compact size with the order of micrometers can be maintained. The proposed device is analyzed using the plane wave expansion method, and its transmission characteristics are calculated using the finites-difference time-domain method. The footprint of the triplexer is about 12× 9 μm, and its extinction ratios are less than -20 dB for 1310 nm, approximately -20 dB for 1490 nm, and under -4O dB for 1550 nm, making it a potentially essential device ii future fiber-to-the-home networks.%@@ We design a compact triplexer based on two-dimensional (2D) hexagonal lattice photonic crystals (PCs).A folded directional coupler (FDC) is introduced in the triplexer beside the point-defect micro-cavities and line-defect waveguides.Because of the reflection feedback of the FDC, high channel drop efficiency can be realized and a compact size with the order of micrometers can be maintained.The proposed device is analyzed using the plane wave expansion method, and its transmission characteristics are calculated using the finite-difference time-domain method.The footprint of the triplexer is about 12×9 μm, and its extinction ratios are less than -20 dB for 1310 nm, approximately -20 dB for 1490 nm, and under -40 dB for 1550 nm, making it a potentially essential device in future fiber-to-the-home networks.
Spontaneous emission in two-dimensional photonic crystal microcavities
DEFF Research Database (Denmark)
Søndergaard, Thomas
2000-01-01
The properties of the radiation field in a two-dimensional photonic crystal with and without a microcavity introduced are investigated through the concept of the position-dependent photon density of states. The position-dependent rate of spontaneous radiative decay for a two-level atom with random...
Spatiotemporal dissipative solitons in two-dimensional photonic lattices.
Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S
2008-11-01
We analyze spatiotemporal dissipative solitons in two-dimensional photonic lattices in the presence of gain and loss. In the framework of the continuous-discrete cubic-quintic Ginzburg-Landau model, we demonstrate the existence of novel classes of two-dimensional spatiotemporal dissipative lattice solitons, which also include surface solitons located in the corners or at the edges of the truncated two-dimensional photonic lattice. We find the domains of existence and stability of such spatiotemporal dissipative solitons in the relevant parameter space, for both on-site and intersite lattice solitons. We show that the on-site solitons are stable in the whole domain of their existence, whereas most of the intersite solitons are unstable. We describe the scenarios of the instability-induced dynamics of dissipative solitons in two-dimensional lattices.
Two-dimensional photonic crystal sensors for visual detection of lectin concanavalin A.
Zhang, Jian-Tao; Cai, Zhongyu; Kwak, Daniel H; Liu, Xinyu; Asher, Sanford A
2014-09-16
We fabricated a two-dimensional (2-D) photonic crystal lectin sensing material that utilizes light diffraction from a 2-D colloidal array attached to the surface of a hydrogel that contains mannose carbohydrate groups. Lectin-carbohydrate interactions create hydrogel cross-links that shrink the hydrogel volume and decrease the 2-D particle spacing. This mannose containing 2-D photonic crystal sensor detects Concanavalin A (Con A) through shifts in the 2-D diffraction wavelength. Con A concentrations can be determined by measuring the diffracted wavelength or visually determined from the change in the sensor diffraction color. The concentrations are easily monitored by measuring the 2-D array Debye ring diameter. Our observed detection limit for Con A is 0.02 mg/mL (0.7 μM). The 2-D photonic crystal sensors are completely reversible and can monitor Con A solution concentration changes.
Photonic band gap engineering in 2D photonic crystals
Indian Academy of Sciences (India)
Yogita Kalra; R K Sinha
2006-12-01
The polarization-dependent photonic band gaps (TM and TE polarizations) in two-dimensional photonic crystals with square lattices composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band gap size is affected by the changing ellipticity of the constituent air holes/dielectric rods. It is observed that the size of the photonic band gap changes with changing ellipticity of the constituent air holes/dielectric rods. Further, it is reported, how the photonic band gap size is affected by the change in the orientation of the constituent elliptical air holes/dielectric rods in 2D photonic crystals.
Influence of index contrast in two dimensional photonic crystal lasers
DEFF Research Database (Denmark)
Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner;
2010-01-01
The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavit...
Two-dimensionally confined topological edge states in photonic crystals
Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad
2016-11-01
We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.
Two-Dimensionally Confined Topological Edge States in Photonic Crystals
Barik, Sabyasachi; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad
2016-01-01
We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.
Characteristics of local photonic state density in an infinite two-dimensional photonic crystal
Institute of Scientific and Technical Information of China (English)
Zhou Yun-Song; Wang Xue-Hua; Gu Ben-Yuan; Wang Fu-He
2005-01-01
The local density of photonic states (LDPS) of an infinite two-dimensional (2D) photonic crystal (PC) composed of rotated square-pillars in a 2D square lattice is calculated in terms of the plane-wave expansion method in a combination with the point group theory. The calculation results show that the LDPS strongly depends on the spatial positions.The variations of the LDPS as functions of the radial coordinate and frequency exhibit "mountain chain" structures with sharp peaks. The LDPS with large value spans a finite area and falls abruptly down to small value at the position corresponding to the interfaces between two different refractive index materials. The larger/lower LDPS occurs inward the lower/larger dielectric-constant medium. This feature can be well interpreted by the continuity of electricdisplacement vector at the interface. In the frequency range of the pseudo-PBG (photonic band gap), the LDPS keeps very low value over the whole Wiger-Seitz cell. It indicates that the spontaneous emission in 2D PCs cannot be prohibited completely, but it can be inhibited intensively when the resonate frequency falls into the pseudo-PBG.
Modeling of pressure sensors based on two-dimensional photonic crystals
Institute of Scientific and Technical Information of China (English)
Xuehui XIONG; Ping LU; Deming LIU
2009-01-01
A pressure sensor based on the two-dimensional photonic crystal (2D PC) has been proposed. Under the condition of different pressure, the photonic band gap of the sensor has been studied by means of the plane wave expansion method (PWM). The results show that there is a good linear relation between the cutoff wavelength and the pressure. Apart from being easily implemented, the presented 2D PC pressure sensor holds many characteristics such as high-pressure sensitivity and convenience in achieving demanded pressure range.
Optical limiter based on two-dimensional nonlinear photonic crystals
Belabbas, Amirouche; Lazoul, Mohamed
2016-04-01
The aim behind this work is to investigate the capabilities of nonlinear photonic crystals to achieve ultra-fast optical limiters based on third order nonlinear effects. The purpose is to combine the actions of nonlinear effects with the properties of photonic crystals in order to activate the photonic band according to the magnitude of the nonlinear effects, themselves a function of incident laser power. We are interested in designing an optical limiter based nonlinear photonic crystal operating around 1064 nm and its second harmonic at 532 nm. Indeed, a very powerful solid-state laser that can blind or destroy optical sensors and is widely available and easy to handle. In this work, we perform design and optimization by numerical simulations to determine the better structure for the nonlinear photonic crystal to achieve compact and efficient integrated optical limiter. The approach consists to analyze the band structures in Kerr-nonlinear two-dimensional photonic crystals as a function of the optical intensity. We confirm that these bands are dynamically red-shifted with regard to the bands observed in linear photonic crystals or in the case of weak nonlinear effects. The implemented approach will help to understand such phenomena as intensitydriven optical limiting with Kerr-nonlinear photonic crystals.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Hai-Feng, E-mail: hanlor@163.com [Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu, Shao-Bin; Li, Bing-Xiang [Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)
2016-01-15
The properties of omnidirectional photonic band gaps (OBGs) in two-dimensional plasma photonic crystals (2D PPCs) are theoretically investigated by the modified plane wave expansion method. In the simulation, we consider the off-plane incident wave vector. The configuration of 2D PPCs is the triangular lattices filled with the nonmagnetized plasma cylinders in the homogeneous and isotropic dielectric background. The calculated results show that the proposed 2D PPCs possess a flatbands region and the OBGs. Compared with the OBGs in the conventional 2D dielectric-air PCs, it can be obtained more easily and enlarged in the 2D PPCs with a similar structure. The effects of configurational parameters of the PPCs on the OBGs also are studied. The simulated results demonstrate that the locations of OBGs can be tuned easily by manipulating those parameters except for changing plasma collision frequency. The achieved OBGs can be enlarged by optimizations. The OBGs of two novel configurations of PPCs with different cross sections are computed for a comparison. Both configurations have the advantages of obtaining the larger OBGs compared with the conventional configuration, since the symmetry of 2D PPCs is broken by different sizes of periodically inserted plasma cylinders or connected by the embedded plasma cylinders with thin veins. The analysis of the results shows that the bandwidths of OBGs can be tuned by changing geometric and physical parameters of such two PPCs structures. The theoretical results may open a new scope for designing the omnidirectional reflectors or mirrors based on the 2D PPCs.
Energy Technology Data Exchange (ETDEWEB)
Povinelli, M. L.; Johnson, Steven G.; Fan, Shanhui; Joannopoulos, J. D.
2001-08-15
Using numerical simulations, we demonstrate the construction of two-dimensional- (2D-) like defect modes in a recently proposed 3D photonic crystal structure. These modes, which are confined in all three dimensions by a complete photonic band gap, bear a striking similarity to those in 2D photonic crystals in terms of polarization, field profile, and projected band structures. It is expected that these results will greatly facilitate the observation of widely studied 2D photonic-crystal phenomena in a realistic, 3D physical system.
Study on electro-optic properties of two-dimensional PLZT photonic crystal band structure
Institute of Scientific and Technical Information of China (English)
TONG Kai; WU Xiao-gang; WANG Mei-ting
2011-01-01
The band characteristics of two-dimensional (2D) lead lanthanum zirconate titanate (PLZT) photonic cystals are analyzed by finite element method. The electro-optic effect of PLZT can cause the refractive index change when it is imposed by the applied electric field, and the band structure of 2D photonic crystals based on PLZT varies accordingly. The effect of the applied electric field on the structural characteristics of the first and second band gaps in 2D PLZT photonic crystals is analyzed in detail. And the results show that for each band gap, the variations of start wavelength, cut-off wavelength and bandwidth are proportional to quadratic of the electric field.
Deformable two-dimensional photonic crystal slab for cavity optomechanics
Antoni, T; Briant, T; Cohadon, P -F; Heidmann, A; Braive, R; Beveratos, A; Abram, I; Gatiet, L Le; Sagnes, I; Robert-Philip, I
2011-01-01
We have designed photonic crystal suspended membranes with optimized optical and mechanical properties for cavity optomechanics. Such resonators sustain vibration modes in the megahertz range with quality factors of a few thousand. Thanks to a two-dimensional square lattice of holes, their reflectivity at normal incidence at 1064 nm reaches values as high as 95%. These two features, combined with the very low mass of the membrane, open the way to the use of such periodic structures as deformable end-mirrors in Fabry-Perot cavities for the investigation of cavity optomechanical effects
Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals
Energy Technology Data Exchange (ETDEWEB)
Stavroula Foteinopoulou
2003-12-12
In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates
Status for the two-dimensional Navier-Stokes solver EllipSys2D
DEFF Research Database (Denmark)
Bertagnolio, F.; Sørensen, Niels N.; Johansen, J.
2001-01-01
This report sets up an evaluation of the two-dimensional Navier-Stokes solver EllipSys2D in its present state. This code is used for blade aerodynamics simulations in the Aeroelastic Design group at Risø. Two airfoils are investigated by computing theflow at several angles of attack ranging from...... the linear to the stalled region. The computational data are compared to experimental data and numerical results from other computational codes. Several numerical aspects are studied, as mesh dependency,convective scheme, steady state versus unsteady computations, transition modelling. Some general...... conclusions intended to help in using this code for numerical simulations are given....
Hardhienata, Hendradi
2012-01-01
Two dimensional (2D) photonic crystals are well known for its ability to manipulate the propagation of electromagnetic wave inside the crystal. 1D and 2D photonic crystals are relatively easier to fabricate than 3D because the former work in the microwave and far infrared regions whereas the later work in the visible region and requires smaller lattice constants. In this paper, simulation for a modified 2D PC with two symmetric waveguide channels where a defect is located inside one of the channel is performed. The simulation results show that optical switching is possible by modifying the refractive index of the defect. If more than one structure is applied this feature can potentially be applied to produce a cascade optical switch.
Bill2d -- a software package for classical two-dimensional Hamiltonian systems
Solanpää, Janne; Räsänen, Esa
2016-01-01
We present Bill2d, a modern and efficient C++ package for classical simulations of two-dimensional Hamiltonian systems. Bill2d can be used for various billiard and diffusion problems with one or more charged particles with interactions, different external potentials, an external magnetic field, periodic and open boundaries, etc. The software package can also calculate many key quantities in complex systems such as Poincar\\'e sections, survival probabilities, and diffusion coefficients. While aiming at a large class of applicable systems, the code also strives for ease-of-use, efficiency, and modularity for the implementation of additional features. The package comes along with a user guide, a developer's manual, and a documentation of the application program interface (API).
BILL2D - A software package for classical two-dimensional Hamiltonian systems
Solanpää, J.; Luukko, P. J. J.; Räsänen, E.
2016-02-01
We present BILL2D, a modern and efficient C++ package for classical simulations of two-dimensional Hamiltonian systems. BILL2D can be used for various billiard and diffusion problems with one or more charged particles with interactions, different external potentials, an external magnetic field, periodic and open boundaries, etc. The software package can also calculate many key quantities in complex systems such as Poincaré sections, survival probabilities, and diffusion coefficients. While aiming at a large class of applicable systems, the code also strives for ease-of-use, efficiency, and modularity for the implementation of additional features. The package comes along with a user guide, a developer's manual, and a documentation of the application program interface (API).
Hysteretic Spin Crossover in Two-Dimensional (2D) Hofmann-Type Coordination Polymers.
Liu, Wei; Wang, Lu; Su, Yu-Jun; Chen, Yan-Cong; Tucek, Jiri; Zboril, Radek; Ni, Zhao-Ping; Tong, Ming-Liang
2015-09-08
Three new two-dimensional (2D) Hofmann-type coordination polymers with general formula [Fe(3-NH2py)2M(CN)4] (3-NH2py = 3-aminopyridine, M = Ni (1), Pd (2), Pt (3)) have been synthesized. Magnetic susceptibility measurements show that they exhibited cooperative spin crossover (SCO) with remarkable hysteretic behaviors. Their hysteresis widths are 25, 37, and 30 K for 1-3, respectively. The single-crystal structure of 1 suggest that the pseudo-octahedral Fe sites are equatorially bridged by [M(CN)4](2-) to form 2D grids and axially coordinated by 3-NH2py ligands. The intermolecular interactions between layers (the offset face-to-face π···π interactions, hydrogen bonds, and weak N(amino)···Ni(II) contacts) together with the covalent bonds bridged by [M(CN)4](2-) units are responsible to the significant cooperativity.
Band structure of absorptive two-dimensional photonic crystals
van der Lem, Han; Tip, Adriaan; Moroz, Alexander
2003-06-01
The band structure for an absorptive two-dimensional photonic crystal made from cylinders consisting of a Drude material is calculated. Absorption causes the spectrum to become complex and form islands in the negative complex half-plane. The boundaries of these islands are not always formed by the eigenvalues calculated for Bloch vectors on the characteristic path, and we find a hole in the spectrum. For realistic parameter values, the real part of the spectrum is hardly influenced by absorption, typically less than 0.25%. The employed method uses a Korringa-Kohn-Rostoker procedure together with analytical continuation. This results in an efficient approach that allows these band-structure calculations to be done on a Pentium III personal computer.
Removal of interfering substances in samples prepared for two-dimensional (2-D) electrophoresis.
Berkelman, Tom
2008-01-01
Biological samples may contain contaminants that interfere with analysis by two-dimensional (2-D) electrophoresis. Lysates or biological fluids are complex mixtures that contain a wide variety of nonprotein substances in addition to the proteins to be analyzed. These substances often interfere with the resolution of the electrophoretic separation or the visualization of the result. Macromolecules (e.g., polysaccharides and DNA) can interfere with electrophoretic separation by clogging gel pores. Small ionic molecules can impair isoelectric focusing (IEF) separation by rendering the sample too conductive. Other substances (e.g., phenolics and lipids) can bind to proteins, influencing their electrophoretic properties or solubility. In many cases, measures to remove interfering substances can result in significantly clearer 2-D patterns with more visible spots and better resolution. It should be borne in mind, however, that analysis of samples by 2-D electrophoresis is usually most successful and informative when performed with minimally processed samples, so it is important that any steps taken to remove interfering substance be appropriate to the sample and only performed when necessary. Procedures for the removal of interfering substances therefore represent a compromise between removing nonprotein contaminants, and minimizing interference with the integrity and relative abundances of the sample proteins. This chapter presents a number of illustrative examples of optimized sample preparation methods in which specific interfering substances are removed by a variety of different strategies.
Non-classical photon correlation in a two-dimensional photonic lattice
Gao, Jun; Lin, Xiao-Feng; Jiao, Zhi-Qiang; Feng, Zhen; Zhou, Zheng; Gao, Zhen-Wei; Xu, Xiao-Yun; Chen, Yuan; Tang, Hao; Jin, Xian-Min
2016-01-01
Quantum interference and quantum correlation, as two main features of quantum optics, play an essential role in quantum information applications, such as multi-particle quantum walk and boson sampling. While many experimental demonstrations have been done in one-dimensional waveguide arrays, it remains unexplored in higher dimensions due to tight requirement of manipulating and detecting photons in large-scale. Here, we experimentally observe non-classical correlation of two identical photons in a fully coupled two-dimensional structure, i.e. photonic lattice manufactured by three-dimensional femtosecond laser writing. Photon interference consists of 36 Hong-Ou-Mandel interference and 9 bunching. The overlap between measured and simulated distribution is up to $0.890\\pm0.001$. Clear photon correlation is observed in the two-dimensional photonic lattice. Combining with controllably engineered disorder, our results open new perspectives towards large-scale implementation of quantum simulation on integrated phot...
Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides
Dulkeith, E; Vlasov, Y A; Dulkeith, Eric; Nab, Sharee J. Mc; Vlasov, Yurii A.
2005-01-01
We report on systematic experimental mapping of the transmission properties of two-dimensional silicon-on-insulator photonic crystal waveguides for a broad range of hole radii, slab thicknesses and waveguide lengths for both TE and TM polarizations. Detailed analysis of numerous spectral features allows a direct comparison of experimental data with 3D plane wave and finite-difference time-domain calculations. We find, counter-intuitively, that the bandwidth for low-loss propagation completely vanishes for structural parameters where the photonic band gap is maximized. Our results demonstrate that, in order to maximize the bandwidth of low-loss waveguiding, the hole radius must be significantly reduced. While the photonic band gap considerably narrows, the bandwidth of low-loss propagation in PhC waveguides is increased up to 125nm with losses as low as 8$\\pm$2dB/cm.
Miller, Benjamin L.; Baker, James E.; Sriram, Rashmi
2017-05-01
Because of their compatibility with standard CMOS fabrication, small footprint, and exceptional sensitivity, Two-Dimensional Photonic Crystals (2D PhCs) have been posited as attractive components for the development of real-time integrated photonic virus sensors. While detection of single virus-sized particles by 2D PhCs has been demonstrated, specific recognition of a virus simulant under conditions relevant to sensor use (including aqueous solution and microfluidic flow) has remained an unsolved challenge. This talk will describe the design and testing of a W1 waveguide-coupled 2D PhC in the context of addressing that challenge.
Modelling and design of complete photonic band gaps in two-dimensional photonic crystals
Indian Academy of Sciences (India)
Yogita Kalra; R K Sinha
2008-01-01
In this paper, we investigate the existence and variation of complete photonic band gap size with the introduction of asymmetry in the constituent dielectric rods with honeycomb lattices in two-dimensional photonic crystals (PhC) using the plane-wave expansion (PWE) method. Two examples, one consisting of elliptical rods and the other comprising of rectangular rods in honeycomb lattices are considered with a view to estimate the design parameters for maximizing the complete photonic band gap. Further, it has been shown that complete photonic band gap size changes with the variation in the orientation angle of the constituent dielectric rods.
Photonic Band Gap Structures with Periodically Arranged Atoms in a Two-Dimensional Photonic Crystal
Institute of Scientific and Technical Information of China (English)
LI Zhi-Yu; CHEN Fang; ZHOU Jian-Ying
2005-01-01
@@ Linear transmission, reflection and absorption spectra for a new two-dimensional photonic crystal with periodically arranged resonant atoms are examined. Numerical results show that a twin-gap structure with forbidden bands displaced from a non-doped bandgap structure can be produced as a result of atomic polarization. The absorption spectrum is also significantly altered compared to the single atom entity.
Design of Two-Dimensional Photonic Crystal Edge Emitting Laser for Photonic Integrated Circuits
Institute of Scientific and Technical Information of China (English)
MA Xiao-Tao; ZHENG Wan-Hua; REN Gang; CHEN Liang-Hui
2006-01-01
@@ An edge emitting laser based on two-dimensional photonic crystal slabs is proposed. The device consists of a square lattice microcavity, which is composed of two structures with the same period but different radius of air-holes, and a waveguide.
PRONTO 2D: A two-dimensional transient solid dynamics program
Energy Technology Data Exchange (ETDEWEB)
Taylor, L.M.; Flanagan, D.P.
1987-03-01
PRONTO 2D is a two-dimensional transient solid dynamics code for analyzing large deformations of highly nonlinear materials subjected to extremely high strain rates. This Lagrangian finite element program uses an explicit time integration operator to integrate the equations of motion. Four node uniform strain quadrilateral elements are used in the finite element formulation. A number of new numerical algorithms which have been developed for the code are described in this report. An adaptive time step control algorithm is described which greatly improves stability as well as performance in plasticity problems. A robust hourglass control scheme which eliminates hourglass distortions without disturbing the finite element solution is included. All constitutive models in PRONTO are cast in an unrotated configuration defined using the rotation determined from the polar decomposition of the deformation gradient. An accurate incremental algorithm was developed to determine this rotation and is described in detail. A robust contact algorithm was developed which allows for the impact and interaction of deforming contact surfaces of quite general geometry. A number of numerical examples are presented to demonstrate the utility of these algorithms. 41 refs., 51 figs., 5 tabs.
Su, Guoxiong; De, Debtanu; Hadjiev, Viktor G.; Peng, Haibing
2014-06-01
Layered two-dimensional (2D) semiconductors beyond graphene have been emerging as potential building blocks for the next-generation electronic/photonic applications. Representative metal chalcogenides, including the widely studied MoS2, possess similar layered crystal structures with weak interaction between adjacent layers, thus allowing the formation of stable thin-layer crystals with thickness down to a few or even single atomic layer. Other important chalcogenides, involving earth-abundant and environment-friendly materials desirable for sustainable applications, include SnS2 (band gap: 2.1 eV) and SnS (band gap: 1.1 eV). So far, commonly adopted for research purpose are mechanical and liquid exfoliation methods for creating thin layers of such 2D semiconductors. Most recently, chemical vapor deposition (CVD) was attracting significant attention as a practical method for producing thin films or crystal grains of MoS2. However, critical yet still absent is an effective experimental approach for controlling the positions of thin crystal grains of layered 2D semiconductors during the CVD process. Here we report the controlled CVD synthesis of thin crystal arrays of representative layered semiconductors (including SnS2 and SnS) at designed locations on chip, promising large-scale optoelectronic applications. Our work opens a window for future practical applications of layered 2D semiconductors in integrated nano-electronic/photonic systems.
Energy Technology Data Exchange (ETDEWEB)
Husanu, M.A.; Ganea, C.P. [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele, Ilfov (Romania); Anghel, I. [National Institute for Laser, Plasma & Radiation Physics, Atomistilor 409, 077125 Magurele (Romania); University of Bucharest, Faculty of Physics, Atomistilor 405, 077125 Magurele (Romania); Florica, C.; Rasoga, O. [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele, Ilfov (Romania); Popescu, D.G., E-mail: dana.popescu@infim.ro [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele, Ilfov (Romania)
2015-11-15
Highlights: • Laser ablation is used for drilling a periodic 2D photonic structure. • Confinement of radiation is revealed by infra-red spectromicroscopy correlated with numerical calculations. • Telecommunication range is accessible upon tuning conveniently the processing parameters. - Abstract: Light confinement in a two dimensional photonic crystal (2D PhC) with hexagonal symmetry is studied using infra-red reflectance spectromicroscopy and numerical calculations. The structure has been realized by laser ablation, using a pulsed laser (λ = 775 nm), perforating an In-doped Ge wafer and creating a lattice of holes with well-defined symmetry. Correlating the spectral signature of the photonic gaps recorded experimentally with the results obtained in the finite difference time domain and finite difference frequency domain calculations, we established the relationship between the geometric parameters of the structure (lattice constants, shape of the hole) and its efficiency in trapping and guiding the radiation in a well-defined frequency range. Besides the gap in the low energy range of transversal electric modes, a second one is identified in the telecommunication range, originating in the localization of the leaky modes within the radiation continuum. The emerging picture is of a device with promising characteristics as an alternative to Si-based technology in photonic device fabrication with special emphasize in energy storage and conversion.
Two-dimensional photon counting imaging detector based on a Vernier position sensitive anode readout
Institute of Scientific and Technical Information of China (English)
鄢秋荣; 赵宝升; 刘永安; 杨颢; 盛立志; 韦永林
2011-01-01
A two-dimensional photon counting imaging detector based on a Vernier position sensitive anode is reported. The decode principle and design of a two-dimensional Vernier anode are introduced in detail. A photon counting imaging system was built based on a
Two-dimensional Fourier transform ESR in the slow-motional and rigid limits: 2D-ELDOR
Patyal, Baldev R.; Crepeau, Richard H.; Gamliel, Dan; Freed, Jack H.
1990-12-01
The two-dimensional Fourier transform ESP techniques of stimulated SECSY and 2D-ELDOR are shown to be powerful methods for the study of slow motions for nitroxides. Stimulated SECSY provides magnetization transfer rates, whereas 2D-ELDOR displays how the rotational motions spread the spins out from their initial spectral positions to new spectral positions, as a function of mixing time. The role of nuclear modulation in studies of structure and dynamics is also considered.
Phase Transition and Superfluid of Photons and Photon Pairs in a Two-Dimensional Optical Microcavity
Institute of Scientific and Technical Information of China (English)
ZHANG Jian-Jun; YUAN Jian-Hui; ZHANG Jun-Pei; CHENG Ze
2012-01-01
We analyze the ground-state properties and the excitation spectrum of Bose Einstein condensates of photons and PPs in a two-dimensional optical microcavity. First, using the variational method, we discuss the ground- state phase transition of the two-component system. We also investigate the energy gap between the ground state and the first excited state. Moreover, by investigating the excitation spectrum, we also illustrate how the superfluid behavior of photons and PPs can be associated with the phase transition of the system.
The research and progress of micro-fabrication technologies of two-dimensional photonic crystal
Institute of Scientific and Technical Information of China (English)
XU XingSheng; ZHANG DaoZhong
2007-01-01
The novel material of photonic crystal makes it possible to control a photon, and the photonic integration will have breakthrough progress due to the application of photonic crystal. It is based on the photonic crystal device that the photonic crystal integration could be realized. Therefore, we should first investigate photonic crystal devices based on the active and the passive semiconductor materials,which may have great potential application in photonic integration. The most practical and important method to fabricate two-dimensional photonic crystal is the micro-manufacture method. In this paper,we summarize and evaluate the fabrication methods of two-dimensional photonic crystal in near-infrared region, including electron beam lithography, selection of mask, dry etching, and some works of ours. This will be beneficial to the study of the photonic crystal in China.
MULTI2D - a computer code for two-dimensional radiation hydrodynamics
Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.
2009-06-01
Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are
Thermalization of a two-dimensional photonic gas in a `white wall' photon box
Klaers, Jan; Vewinger, Frank; Weitz, Martin
2010-07-01
Bose-Einstein condensation, the macroscopic accumulation of bosonic particles in the energetic ground state below a critical temperature, has been demonstrated in several physical systems. The perhaps best known example of a bosonic gas, blackbody radiation, however exhibits no Bose-Einstein condensation at low temperatures. Instead of collectively occupying the lowest energy mode, the photons disappear in the cavity walls when the temperature is lowered-corresponding to a vanishing chemical potential. Here we report on evidence for a thermalized two-dimensional photon gas with a freely adjustable chemical potential. Our experiment is based on a dye-filled optical microresonator, acting as a `white wall' box for photons. Thermalization is achieved in a photon-number-conserving way by photon scattering off the dye molecules, and the cavity mirrors provide both an effective photon mass and a confining potential-key prerequisites for the Bose-Einstein condensation of photons. As a striking example of the unusual system properties, we demonstrate a yet unobserved light concentration effect into the centre of the confining potential, an effect with prospects for increasing the efficiency of diffuse solar light collection.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Weigang, E-mail: abczwg15@163.com [College of Materials and Chemical Engineering, Chuzhou University, Chuzhou 239000 (China); Zhang, Gangsheng [College of Material Science and Technology, Guangxi University, Nanning 530004 (China)
2015-07-01
A humidity sensitive two-dimensional tunable amorphous photonic structure (2D TAPS) in the outer layer of bivalve ligament from Sunset Siliqua (OLLS) was reported in this paper. The structural color and microstructure of OLLS were investigated by reflection spectra and scanning electron microscopy, respectively. The results indicate that the reflection peak wavelength of the wet OLLS blue-shifts from 454 nm to 392 nm with the increasing of air drying time from 0 to 40 min, while the reflectivity decreases gradually and vanishes at last, relevant color changes from blue to black background color. The structural color in the OLLS is produced by a two-dimensional amorphous photonic structure consisting of aligned protein fibers, in which the diameter of protein fiber and the inter-fiber spacing are 101 ± 12 nm. Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure, and the regulation achieved through dynamically tuning the interaction between inter-fiber spacing and average refractive index. - Highlights: • A humidity sensitive two-dimensional tunable amorphous photonic structure • Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure. • This photonic structure may yield very useful template for artificial structures.
A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds
Energy Technology Data Exchange (ETDEWEB)
Li, Tingwen; Zhang, Yongmin
2013-10-11
Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.
Slow Light by Two-Dimensional Photonic Crystal Waveguides
Institute of Scientific and Technical Information of China (English)
ZHANG Chao; HUANG Yan; MAO Xiao-Yu; CUI Kai-Yu; HUANG Yi-Dong; ZHANG Wei; PENG Jiang-De
2009-01-01
A simple and effective way to measure the group velocity of photonic crystal waveguides (PCWGs) is developed by using a fiber Mach-Zehnder interferometer. A PCWG with perfect air-bridge structure is fabricated and slow light with group velocity slower than c/80 is demonstrated.
Optical properties of two-dimensional (2D) CdSe nanostructures
Cherevkov, S. A.; Baranov, A. V.; Fedorov, A. V.; Litvin, A. P.; Artemyev, M. V.; Prudnikau, A. V.
2013-09-01
The resonant and off-resonant Raman spectra of optical phonons in two-dimensional CdSe nanocrystals of 5, 6, and 7 monolayers are analysed. The spectra are dominated by SO and LO phonon bands of CdSe, whose frequencies are thickness-independent in the off-resonant Raman scattering but demonstrate an evident thickness dependence in the case of the resonant Raman scattering.
Energy Technology Data Exchange (ETDEWEB)
Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com [Deptt. of Electronics and Communication Engineering, Government Engineering College Ajmer Rajasthan INDIA (India); Dusad, Lalit Kumar [Rajasthan Technical University Kota, Rajasthan (India)
2016-05-06
In this paper channel drop filter (CDF) is designed using dual curved photonic crystal ring resonator (PCRR). The photonic band gap (PBG) is calculated by plane wave expansion (PWE) method and the photonic crystal (PhC) based on two dimensional (2D) square lattice periodic arrays of silicon (Si) rods in air structure have been investigated using finite difference time domain (FDTD) method. The number of rods in Z and X directions is 21 and 20 respectively with lattice constant 0.540 nm and rod radius r = 0.1 µm. The channel drop filter has been optimized for telecommunication wavelengths λ = 1.591 µm with refractive indices 3.533. In the designed structure further analysis is also done by changing whole rods refractive index and it has been observed that this filter may be used for filtering several other channels also. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.
MARG2D code. 1. Eigenvalue problem for two dimensional Newcomb equation
Energy Technology Data Exchange (ETDEWEB)
Tokuda, Shinji [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Watanabe, Tomoko
1997-10-01
A new method and a code MARG2D have been developed to solve the 2-dimensional Newcomb equation which plays an important role in the magnetohydrodynamic (MHD) stability analysis in an axisymmetric toroidal plasma such as a tokamak. In the present formulation, an eigenvalue problem is posed for the 2-D Newcomb equation, where the weight function (the kinetic energy integral) and the boundary conditions at rational surfaces are chosen so that an eigenfunction correctly behaves as the linear combination of the small solution and the analytical solutions around each of the rational surfaces. Thus, the difficulty on solving the 2-D Newcomb equation has been resolved. By using the MARG2D code, the ideal MHD marginally stable state can be identified for a 2-D toroidal plasma. The code is indispensable on computing the outer-region matching data necessary for the resistive MHD stability analysis. Benchmark with ERATOJ, an ideal MHD stability code, has been carried out and the MARG2D code demonstrates that it indeed identifies both stable and marginally stable states against ideal MHD motion. (author)
Manipulating full photonic band gaps in two dimensional birefringent photonic crystals.
Proietti Zaccaria, Remo; Verma, Prabhat; Kawaguchi, Satoshi; Shoji, Satoru; Kawata, Satoshi
2008-09-15
The probability to realize a full photonic band gap in two-dimensional birefringent photonic crystals can be readily manipulated by introducing symmetry reduction or air holes in the crystal elements. The results lie in either creation of new band gaps or enlargement of existing band gaps. In particular, a combination of the two processes produces an effect much stronger than a simple summation of their individual contributions. Materials with both relatively low refractive index (rutile) and high refractive index (tellurium) were considered. The combined effect of introduction of symmetry reduction and air holes resulted in a maximum enlargement of the band gaps by 8.4% and 20.2%, respectively, for the two materials.
Xie, Changqing; Zhu, Xiaoli; Li, Hailiang; Shi, Lina; Hua, Yilei; Liu, Ming
2012-02-15
In this Letter, we report a significant step forward in the design of single-optical-element optics for two-dimensional (2D) hard X-ray differential-interference-contrast (DIC) imaging based on modified photon sieves (MPSs). MPSs were obtained by a modified optic, i.e., combining two overlaid binary gratings and a photon sieve through two logical XOR operations. The superior performance of MPSs was demonstrated. Compared to Fresnel zone plates-based DIC diffractive optical elements (DOEs), which help to improve contrast only in one direction, MPSs can provide better resolution and 2D DIC imaging. Compared to normal photon sieves, MPSs are capable of imaging at a significantly higher image contrast. We anticipate that MPSs can provide a complementary and versatile high-resolution nondestructive imaging tool for ultra-large-scale integrated circuits at 45 nm node and below.
Solitons and vortices in nonlinear two-dimensional photonic crystals of the Kronig-Penney type.
Mayteevarunyoo, Thawatchai; Malomed, Boris A; Roeksabutr, Athikom
2011-08-29
Solitons in the model of nonlinear photonic crystals with the transverse structure based on two-dimensional (2D) quadratic- or rhombic-shaped Kronig-Penney (KP) lattices are studied by means of numerical methods. The model can also applies to a Bose-Einstein condensate (BEC) trapped in a superposition of linear and nonlinear 2D periodic potentials. The analysis is chiefly presented for the self-repulsive nonlinearity, which gives rise to several species of stable fundamental gap solitons, dipoles, four-peak complexes, and vortices in two finite bandgaps of the underlying spectrum. Stable solitons with complex shapes are found, in particular, in the second bandgap of the KP lattice with the rhombic structure. The stability of the localized modes is analyzed in terms of eigenvalues of small perturbations, and tested in direct simulations. Depending on the value of the KP's duty cycle (DC, i.e., the ratio of the void's width to the lattice period), an internal stability boundary for the solitons and vortices may exist inside of the first bandgap. Otherwise, the families of the localized modes are entirely stable or unstable in the bandgaps. With the self-attractive nonlinearity, only unstable solitons and vortices are found in the semi-infinite gap.
Wavelength dependence of focusing properties of two-dimensional photonic quasicrystal flat lens.
Liu, Jianjun; Fan, Zhigang; Hu, Haili; Yang, Maohua; Guan, Chunying; Yuan, Libo; Guo, Hao; Zhang, Xiong
2012-05-15
We investigated the wavelength dependence of the focusing properties of a germanium-cylinder-based two-dimensional (2D) decagonal Penrose-type photonic quasicrystal (PQC) flat lens for the first time, to the best of our knowledge. We found that near the second bandgap and in the high-frequency side (between the bandgap boundary and the first light intensity peak) of the pass band, the flat lens can exhibit a focusing effect for a point light source and that the focusing wavelengths can directly be drawn from the photonic band structure. For all the focusing wavelengths, the summation of the object distance and the image distance is less than the thickness of the flat lens when the object distance is half the thickness of the flat lens. As the wavelength increases, the image distance, the image quality, and the effective refractive index of the flat lens increase, whereas the image power of the point light source decreases. The effective refractive index of the flat lens is less than -1.
Fudge, Anthea L; Wilkinson, Kerry L; Ristic, Renata; Cozzolino, Daniel
2013-08-15
In this study, two-dimensional correlation spectroscopy (2D-COS) combined with mid-infrared (MIR) spectroscopy was evaluated as a novel technique for the identification of spectral regions associated with smoke-affected wine, for the purpose of screening taint arising from grapevine exposure to smoke. Smoke-affected wines obtained from experimental and industry sources were analysed using MIR spectroscopy and chemometrics, and calibration models developed. 2D-COS analysis was used to generate synchronous data maps for red and white cask wines spiked with guaiacol, a marker of smoke taint. Correlations were observed at wavelengths that could be attributable to aromatic C-C stretching, i.e., between 1400 and 1500 cm(-1), indicative of volatile phenols. These results demonstrate the potential of 2D-COS as a rapid, high-throughput technique for the preliminary screening of smoke tainted wine.
Mitri, F G
2015-09-01
The optical theorem for plane waves is recognized as one of the fundamental theorems in optical, acoustical and quantum wave scattering theory as it relates the extinction cross-section to the forward scattering complex amplitude function. Here, the optical theorem is extended and generalized in a cylindrical coordinates system for the case of 2D beams of arbitrary character as opposed to plane waves of infinite extent. The case of scalar monochromatic acoustical wavefronts is considered, and generalized analytical expressions for the extinction, absorption and scattering cross-sections are derived and extended in the framework of the scalar resonance scattering theory. The analysis reveals the presence of an interference scattering cross-section term describing the interaction between the diffracted Franz waves with the resonance elastic waves. The extended optical theorem in cylindrical coordinates is applicable to any object of arbitrary geometry in 2D located arbitrarily in the beam's path. Related investigations in optics, acoustics and quantum mechanics will benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by a cloud of particles, as well as the resulting radiation force and torque.
Samokhvalova, Ksenia R; Liang Qian, Bao
2005-01-01
Dielectric photonic band gap (PBG) structures have many promising applications in laser acceleration. For these applications, accurate determination of fundamental and high order band gaps is critical. We present the results of our recent work on analytical calculations of two-dimensional (2D) PBG structures in rectangular geometry. We compare the analytical results with computer simulation results from the MIT Photonic Band Gap Structure Simulator (PBGSS) code, and discuss the convergence of the computer simulation results to the analytical results. Using the accurate analytical results, we design a mode-selective 2D dielectric cylindrical PBG cavity with the first global band gap in the frequency range of 8.8812 THz to 9.2654 THz. In this frequency range, the TM01-like mode is shown to be well confined.
Institute of Scientific and Technical Information of China (English)
HUANG Yin; LU Yan-Wu
2009-01-01
@@ Light propagation through a coupled-defect waveguide with a 63.5°bend in a two-dimensional (2D) photonic crystal is investigated. The waveguide modes are non-degenerate monopole state and dipole defect state of a square lattice for two different branches. To increase the transmission in the bending waveguide, we propose a method to rotate the localized state by introducing a new type defect with a sheared square rod into coupled cavity. The higher coupling efficiency and transmission in the bending waveguide are obtained with proper shear shift.
Institute of Scientific and Technical Information of China (English)
Guangyong Zhou; Michael James Ventura; Min Gu
2003-01-01
Two-dimensional (2D) triangular void channel photonic crystals with different lattice constants stacked in two different directions were fabricated by using femtosecond laser micro-explosion in solid polymer material. Fundamental and higher-order stop gaps were observed both in the infrared transmission and reflection spectra. There is an approximately linear relationship between the gap position and the lattice constant. The suppression of the fundamental gap is as high as 70% for 24-layer structures stacked in the Г-M direction.
DEFF Research Database (Denmark)
Xiao, Sanshui; Qiu, M.
2007-01-01
Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...
Two-dimensional photonic crystals from semiconductor material with polymer filled holes
Van der Heijden, R.; Kjellander, C.; Carlström, C.-F.; Snijders, J.; Van der Heijden, R.W.; Bastiaansen, K.; Broer, D.; Karouta, F.; Nötzel, R.; Van der Drift, E.
2006-01-01
Polymer filling of the air holes of indiumphosphide based two-dimensional photonic crystals is reported. The filling is performed by infiltration with a liquid monomer and solidification of the infill in situ by thermal polymerization. Complete hole filling is obtained with infiltration under ambien
DEFF Research Database (Denmark)
de Lasson, Jakob Rosenkrantz; Kristensen, Philip Trøst; Mørk, Jesper;
2014-01-01
uses no external excitation and determines the quasi-normal modes as unity eigenvalues of the cavity roundtrip matrix. We demonstrate the method and the quasi-normal modes for two types of two-dimensional photonic crystal structures, and discuss the quasi-normal mode eld distributions and Q...
InP-based two-dimensional photonic crystals filled with polymers
Van der Heijden, R.; Carlström, C.F.; Snijders, J.A.P.; Van der Heijden, R.W.; Karouta, F.; Nötzel, R.; Salemink, H.W.M.; Kjellander, B.K.C.; Bastiaansen, C.W.M.; Broer, D.J.; Van der Drift, E.
2006-01-01
Polymer filling of the air holes of indium-phosphide-based two-dimensional photonic crystals is reported. After infiltration of the holes with a liquid monomer and solidification of the infill in situ by thermal polymerization, complete filling is proven using scanning electron microscopy. Optical t
Band Gap Computation of Two Dimensional Photonic Crystal for High Index Contrast Grating Application
Directory of Open Access Journals (Sweden)
Gagandeep Kaur
2014-05-01
Full Text Available Two Dimensional Photonic Crystal (PHc is convenient type of PHc, It refers to the fact that the dielectric is periodic in Two directions. The study of photonic structure by a simulation method is extremely momentous. At optical frequencies the optical density contained by two dimensional PHc changes periodically. They have the property to strong effect the propagation of light waves at these optical frequencies. A typical linearization method which solves the common nonlinear Eigen values difficulties has been used to achieve structures of the photonic band. There are two method plane wave expansion method (PWE and Finite Difference Time Domain method (FDTD. These Methods are most widely used for band gap calculation of PHc’s. FDTD Method has more smoothness and directness and can be explored effortlessly for simulation of the field circulation inside the photonic structure than PWE method so we have used FDTD Method for Two dimensional PHc’s calculation. In simulation of Two Dimensional band structures, silicon material has 0.543nm lattice constant and 1.46refractive index.
DEFF Research Database (Denmark)
Xiao, Sanshui; Qiu, M.
2007-01-01
Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor...... is gradually enhanced and the resonant frequency converges to that of the corresponding surface mode in the photonic crystals. These structures have potential applications such as sensing....
Negative refraction and focusing of electromagnetic wave through two-dimensional photonic crystals
Institute of Scientific and Technical Information of China (English)
ZHANG Xiang-dong
2006-01-01
The negative refraction of electromagnetic waves in photonic crystals was recently demonstrated experimentally,and the physical properties were analyzed.Microsuperlenses based on two-dimensional photonic crystals were designed and the subwavelength images were observed.In this review,after providing a brief history of the research related to the above phenomena,we will summarize our research works in this field including the method of creating a negative refraction region,generating an absolute negative refraction,the focusing of unpolarized electromagnetic waves,and the effect of interface and disorder on the image by the two-dimensional photonic crystal flat lens.The discussion on the negative refraction and the focusing by high symmetric quasicrystals is also presented.
Bessel-Modal Method for Finite-Height Two-Dimensional Photonic Crystal
Institute of Scientific and Technical Information of China (English)
SHI Jun-Feng; HUANG Sheng-Ye; WANG Dong-Sheng
2005-01-01
@@ By applying the dyadic Green function, the dispersion relation of two-dimensional photonic crystal can be ex pressed as the cylindrical wave expansions of eigenmodes. With the aid of Green's theorem, the plane-wavecoefficients of eigenmodes are reconstructed and employed to formulate the scattering matrix of finite-height twodimensional photonic crystal. These operations make the convergence rate very rapid, and reduce the dimension of the scattering matrix. As a demonstration, we present the transmission and electromagnetic field distributions for an InGaAsIn photonic crystal, and investigate their convergence.
Optical gaps, mode patterns and dipole radiation in two-dimensional aperiodic photonic structures
Boriskina, Svetlana V.; Gopinath, Ashwin; Negro, Luca Dal
2009-05-01
Based on the rigorous generalized Mie theory solution of Maxwell's equations for dielectric cylinders we theoretically investigate the optical properties of two-dimensional deterministic structures based on the Fibonacci, Thue-Morse and Rudin-Shapiro aperiodic sequences. In particular, we investigate bandgap formation and mode localization properties in aperiodic photonic structures based on the accurate calculation of their local density of states (LDOS). In addition, we explore the potential of photonic structures based on aperiodic order for the engineering of radiative rates and emission patterns in erbium-doped silicon-rich nitride photonic structures.
Two-dimensional crystal melting and D4-D2-D0 on toric Calabi-Yau singularities
Nishinaka, Takahiro; Yoshida, Yutaka
2013-01-01
We construct a two-dimensional crystal melting model which reproduces the BPS index of D2-D0 states bound to a non-compact D4-brane on an arbitrary toric Calabi-Yau singularity. The crystalline structure depends on the toric divisor wrapped by the D4-brane. The molten crystals are in one-to-one correspondence with the torus fixed points of the moduli space of the quiver gauge theory on D-branes. The F- and D-term constraints of the gauge theory are regarded as a generalization of the ADHM constraints on instantons. We also show in several examples that our model is consistent with the wall-crossing formula for the BPS index.
Zero- n bar band gap in two-dimensional metamaterial photonic crystals
Mejía-Salazar, J. R.; Porras-Montenegro, N.
2015-04-01
We have theoretically studied metamaterial photonic crystals (PCs) composed by air and double negative (DNG) material. Numerical data were obtained by means of the finite difference time-domain (FDTD) method, with results indicating the possibility for the existence of the zero- n bar non-Bragg gap in two-dimensional metamaterial PCs, which has been previously observed only in one-dimensional photonic superlattices. Validity of the present FDTD algorithm for the study of one-dimensional metamaterial PCs is shown by comparing with results for the transmittance spectra obtained by means of the well known transfer matrix method (TMM). In the case of two-dimensional metamaterial PCs, we have calculated the photonic band structure (PBS) in the limiting case of a one-dimensional photonic superlattice and for a nearly one-dimensional PC, showing a very similar dispersion relation. Finally, we show that due to the strong electromagnetic field localization on the constitutive rods, the zero- n bar non-Bragg gap may only exist in two-dimensional systems under strict geometrical conditions.
Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase
Lu, Jian; Hwang, Harold Y; Ofori-Okai, Benjamin K; Fleischer, Sharly; Nelson, Keith A
2016-01-01
Ultrafast two-dimensional spectroscopy utilizes correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum. Its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. Here we report ultrafast two-dimensional terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by three terahertz field-dipole interactions. The nonlinear time-domain orientation signals are mapped into the frequency domain in two-dimensional rotational spectra which reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.
Zhang, Weigang; Zhang, Gangsheng
2015-01-01
A humidity sensitive two-dimensional tunable amorphous photonic structure (2D TAPS) in the outer layer of bivalve ligament from Sunset Siliqua (OLLS) was reported in this paper. The structural color and microstructure of OLLS were investigated by reflection spectra and scanning electron microscopy, respectively. The results indicate that the reflection peak wavelength of the wet OLLS blue-shifts from 454 nm to 392 nm with the increasing of air drying time from 0 to 40 min, while the reflectivity decreases gradually and vanishes at last, relevant color changes from blue to black background color. The structural color in the OLLS is produced by a two-dimensional amorphous photonic structure consisting of aligned protein fibers, in which the diameter of protein fiber and the inter-fiber spacing are 101 ± 12 nm. Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure, and the regulation achieved through dynamically tuning the interaction between inter-fiber spacing and average refractive index.
Zhang, Weigang; Zhang, Gangsheng
2015-12-01
A humidity sensitive two-dimensional tunable amorphous photonic structure (2D TAPS) in the bivalve ligament of Meretrix linnaeus (LML) was reported in this paper. The structural color and microstructure of LML were investigated by reflection spectra and scanning electron microscopy, respectively. The results indicate that the LML has complex structural colors from blue to orange in the wet state from ventral to dorsal, which are derived from the aragonite fiber diameter increases continuously from ventral to dorsal of the ligament. The reflection peak wavelength of the wet LML can blue-shift from 522 nm to 480 nm with the air drying time increased from 0 to 60 min, while the reflectivity decreases gradually and only a weak reflection peak at last, relevant color changes from green to light blue. The structural color in the LML is produced by a two-dimensional amorphous photonic structure consists of aligned aragonite fibers and proteins, in which the diameters of the aragonite fiber and the inter-fiber spacing are 104±11 nm and 126±16 nm, respectively. Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure, and the regulation achieved through dynamically tune the degree of order and lattice constant of the ligament in the different wet states.
Institute of Scientific and Technical Information of China (English)
ZHU Wen-Xing; ZHANG Yan; SHI Jun-Jie
2008-01-01
A two-dimensional photonic crystal with a one-dimensional periodic dielectric background is proposed. The photonic band modulation effects due to the periodic background are investigated based on the plane wave expansion method. We find that periodic modulation of the dielectric background greatly alters photonic band structures, especially for the E-polarization modes. The number, width and position of the photonic band gaps (PBGs) sensitively depend on the structure parameters (the layer thicknesses and dielectric constants) of the one-dimensional periodic background.
Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals
Energy Technology Data Exchange (ETDEWEB)
Agio, Mario [Iowa State Univ., Ames, IA (United States)
2002-12-31
This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.
FireStem2D--a two-dimensional heat transfer model for simulating tree stem injury in fires.
Directory of Open Access Journals (Sweden)
Efthalia K Chatziefstratiou
Full Text Available FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes.
Maximizing the Optical Band Gap in 2D Photonic Crystals
DEFF Research Database (Denmark)
Hougaard, Kristian G.; Sigmund, Ole
Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid.......Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid....
Photonic bands, gap maps, and intrinsic losses in three-component 2D photonic crystal slabs
Institute of Scientific and Technical Information of China (English)
Hongjun Shen; Huiping Tian; Yuefeng Ji
2009-01-01
We obtain the photonic bands and intrinsic losses for the triangular lattice three-component two-dimensional (2D) photonic crystal (PhC) slabs by expanding the electromagnetic field on the basis of waveguide modes of an effective homogeneous waveguide. The introduction of the third component into the 2D PhC slabs influences the photonic band structure and the intrinsic losses of the system. We ex-amine the dependences of the band gap width and gap edge position on the interlayer dielectric constant and interlayer thickness. It is found that the gap edges shift to lower frequencies and the intrinsic losses of each band decrease with the increasing interlayer thickness or dielectric constant. During the design of the real PhC system, the effect of unintentional native oxide surface layer on the optical properties of 2D PhC slabs has to be taken into consideration. At the same time, intentional oxidization of macroporous PhC structure can be utilized to optimize the design.
Two-dimensional photonic crystals from semiconductor material with polymer filled holes
van der Heijden, Rob; Kjellander, Charlotte; Carlström, Carl-Fredrik; Snijders, Juri; van der Heijden, Rob W.; Bastiaansen, Kees; Broer, Dick; Karouta, Fouad; Nötzel, Richard; van der Drift, Emile; Salemink, Huub W. M.
2006-04-01
Polymer filling of the air holes of indiumphosphide based two-dimensional photonic crystals is reported. The filling is performed by infiltration with a liquid monomer and solidification of the infill in situ by thermal polymerization. Complete hole filling is obtained with infiltration under ambient pressure. This conclusion is based both on cross-sectional scanning electron microscope inspection of the filled samples as well as on optical transmission measurements.
Maximizing bandgaps in two-dimensional photonic crystals a variational algorithm
Paul, P; Paul, Prabasaj; Ndi, Francis C.
2002-01-01
We present an algorithm for the maximization of photonic bandgaps in two-dimensional crystals. Once the translational symmetries of the underlying structure have been imposed, our algorithm finds a global maximal (and complete, if one exists) bandgap. Additionally, we prove two remarkable results related to maximal bandgaps: the so-called `maximum contrast' rule, and about the location in the Brillouin zone of band edges.
Bloch oscillations and Zener tunneling in two-dimensional photonic lattices.
Trompeter, Henrike; Krolikowski, Wieslaw; Neshev, Dragomir N; Desyatnikov, Anton S; Sukhorukov, Andrey A; Kivshar, Yuri S; Pertsch, Thomas; Peschel, Ulf; Lederer, Falk
2006-02-10
We report on the first experimental observation of photonic Bloch oscillations and Zener tunneling in two-dimensional periodic systems. We study the propagation of an optical beam in a square lattice superimposed on a refractive index ramp. We observe oscillations of the beam inside the first Brilloin zone and tunneling of light from the first to the higher-order bands of the lattice band gap spectrum.
Institute of Scientific and Technical Information of China (English)
PU Yi-Ying; LIANG Guan-Quan; MAO Wei-Dong; DONG Jian-Wen; WANG He-Zhou
2007-01-01
We demonstrate a single-exposure holographic fabrication of two-dimensional photonic crystal witn roundband gaps exist in this structure.Our experimental results show that holographic lithography can be used to fabricate photonic crystals not only with various lattice structures but also with various kinds of structures of the atoms,to obtain absolute band gaps or a particular band gap structure.Furthermore,the single-exposure holographic method not only makes the fabrication process simple and convenient but also makes the structures of the atoms more perfect.
Vyas, Vivek M.; Panigrahi, Prasanta. K.; Banerji, J.
2013-01-01
A system of two dimensional photon gas has recently been realized experimentally. It is pointed out that this setup can be used to observe a universal breathing mode of photon gas. It is shown that a modification in the experimental setup would open up a possibility of observing the Berezinskii-Kosterlitz-Thouless (BKT) phase transition in such a system. It is shown that the universal jump in the superfluid density of light in the output channel can be used as an unambiguous signature for the...
Vyas, Vivek M; Banerji, J
2013-01-01
A system of two dimensional photon gas has recently been realized experimentally. It is pointed out that this setup can be used to observe a universal breathing mode of photon gas. It is shown that a modification in the experimental setup would open up a possibility of observing the Berezinskii-Kosterlitz-Thouless (BKT) phase transition in such a system. It is shown that the universal jump in the superfluid density of light in the output channel can be used as an unambiguous signature for the experimental verification of the BKT transition.
Tunable Goos-Haenchen shift for self-collimated beams in two-dimensional photonic crystals
Energy Technology Data Exchange (ETDEWEB)
Matthews, Aaron [Nonlinear Physics Centre and Centre for Ultra-high Bandwidth Devices for Optical Systems (CUDOS), Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia)], E-mail: afm124@rsphysse.anu.edu.au; Kivshar, Yuri [Nonlinear Physics Centre and Centre for Ultra-high Bandwidth Devices for Optical Systems (CUDOS), Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia)
2008-04-21
We present finite-difference time-domain studies of the Goos-Haenchen effect observed at the reflection of a self-collimated beam from the surface of a two-dimensional photonic crystal. We describe a method of tuning the shift of the reflected beam in photonic crystals through the modification of the surface, first structurally, as a change in the radius of the surface rods, and then all-optically, with the addition of nonlinear material to the surface layer. We demonstrate all-optical tunability and intensity-dependent control of the beam shift.
Selection rule for Dirac-like points in two-dimensional dielectric photonic crystals
Li, Yan
2013-01-01
We developed a selection rule for Dirac-like points in two-dimensional dielectric photonic crystals. The rule is derived from a perturbation theory and states that a non-zero, mode-coupling integral between the degenerate Bloch states guarantees a Dirac-like point, regardless of the type of the degeneracy. In fact, the selection rule can also be determined from the symmetry of the Bloch states even without computing the integral. Thus, the existence of Dirac-like points can be quickly and conclusively predicted for various photonic crystals independent of wave polarization, lattice structure, and composition. © 2013 Optical Society of America.
Institute of Scientific and Technical Information of China (English)
ZHANG Yan; SHI Jun-Jie
2008-01-01
A two-dimensional photonic crystal model with a periodic square dielectric background is proposed.The photonic band modulation effects due to the two-dimensional periodic background are investigated jn detail.It is found that periodic modulation of the dielectric background greatly alters photonic band structures,especially for the Epolarization modes.The number,width and position of the photonic band gaps sensitively depend on the dielectric constants of the two-dimensional periodic background.Complete band gaps are found,and the dependence of the widths of these gaps on the structural and material parameters of the two alternating rods/holes is studied.
Dovzhenko, Dmitriy; Terekhin, Vladimir; Vokhmincev, Kirill; Sukhanova, Alyona; Nabiev, Igor
2017-01-01
Multiplex detection of different antigens in human serum in order to reveal diseases at the early stage is of interest nowadays. There are a lot of biosensors, which use the fluorescent labels for specific detection of analytes. For instance, common method for detection of antigens in human serum samples is enzyme-linked immunosorbent assay (ELISA). One of the most effective ways to improve the sensitivity of this detection method is the use of a substrate that could enhance the fluorescent signal and make it easier to collect. Two-dimensional (2D) photonic crystals are very suitable structures for these purposes because of the ability to enhance the luminescent signal, control the light propagation and perform the analysis directly on its surface. In our study we have calculated optimal parameters for 2D-dimensional photonic crystal consisting of the array of silicon nano-rods, fabricated such photonic crystal on a silicon substrate using reactive ion etching and showed the possibility of its efficient application as a substrate for ELISA detection of human cancer antigens.
Amatyakul, Puwis; Vachiratienchai, Chatchai; Siripunvaraporn, Weerachai
2017-05-01
An efficient joint two-dimensional direct current resistivity (DCR) and magnetotelluric (MT) inversion, referred to as WSJointInv2D-MT-DCR, was developed with FORTRAN 95 based on the data space Occam's inversion algorithm. Our joint inversion software can be used to invert just the MT data or the DCR data, or invert both data sets simultaneously to get the electrical resistivity structures. Since both MT and DCR surveys yield the same resistivity structures, the two data types enhance each other leading to a better interpretation. Two synthetic and a real field survey are used here to demonstrate that the joint DCR and MT surveys can help constrain each other to reduce the ambiguities occurring when inverting the DCR or MT alone. The DCR data increases the lateral resolution of the near surface structures while the MT data reveals the deeper structures. When the MT apparent resistivity suffers from the static shift, the DCR apparent resistivity can serve as a replacement for the estimation of the static shift factor using the joint inversion. In addition, we also used these examples to show the efficiency of our joint inversion code. With the availability of our new joint inversion software, we expect the number of joint DCR and MT surveys to increase in the future.
Diaz-Valencia, B. F.; Calero, J. M.
2017-02-01
In this work, we use the plane wave expansion method to calculate photonic band structures in two-dimensional photonic crystals which consist of high-temperature superconducting hollow rods arranged in a triangular lattice. The variation of the photonic band structure with respect to both, the inner radius and the system temperature, is studied, taking into account temperatures below the critical temperature of the superconductor in the low frequencies regime and assuming E polarization of the incident light. Permittivity contrast and nontrivial geometry of the hollow rods lead to the appearance of new band gaps as compared with the case of solid cylinders. Such band gaps can be modulated by means of the inner radius and system temperature.
Brûlé, Yoann; Gralak, Boris
2015-01-01
Numerical calculation of modes in dispersive and absorptive systems is performed using the finite element method. The dispersion is tackled in the frame of an extension of Maxwell's equations where auxiliary fields are added to the electromagnetic field. This method is applied to multi-domain cavities and photonic crystals including Drude and Drude-Lorentz metals. Numerical results are compared to analytical solutions for simple cavities and to previous results of the literature for photonic crystals, showing excellent agreement. The advantages of the developed method lie on the versatility of the finite element method regarding geometries, and in sparing the use of tedious complex poles research algorithm. Hence the complex spectrum of resonances of non-hermitian operators and dissipative systems, like two-dimensional photonic crystal made of absorbing Drude metal, can be investigated in detail. The method is used to reveal unexpected features of their complex band structures.
Two-Dimensional Photonic Band-Gap Defect Modes with Deformed Lattice
Institute of Scientific and Technical Information of China (English)
CAI Xiang-Hua; ZHENG Wan-Hua; MA Xiao-Tao; REN Gang; XIA Jian-Bai
2005-01-01
@@ A numerical study of the defect modes in two-dimensional photonic crystals with deformed triangular lattice is presented by using the supercell method and the finite-difference time-domain method We find the stretch or shrink of the lattice can bring the change not only on the frequencies of the defect modes but also on their magnetic field distributions. We obtain the separation of the doubly degenerate dipole modes with the change of the lattice and find that both the stretch and the shrink of the lattice can make the dipole modes separate large enough to realize the single-mode emission. These results may be advantageous to the manufacture of photonic crystal lasers and provide a new way to realize the single-mode operation in photonic crystal lasers.
Two-dimensional photon counting imaging detector based on a Vernier position sensitive anode readout
Institute of Scientific and Technical Information of China (English)
YAN Qiu-Rong; ZHAO Bao-Sheng; LIU Yong-An; YANG Hao; SHENG Li-Zhi; WEI Yong-Lin
2011-01-01
A two-dimensional photon counting imaging detector based on a Vernier position sensitive anode is reported. The decode principle and design of a two-dimensionai Vernier anode axe introduced in detail. A photon counting imaging system was built based on a Vernier anode. The image of very weak optical radiation can be reconstructed by image processing in a period of integration time. The resolution is superior to 100 μm according to the resolution test. The detector may realize the imaging of very weak particle flow of high- energy photons, electrons and ions, so it can be used for high-energy physics, deep space exploration, spectral measurement and bio-luminescence detection.
Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs.
Mohammadi, Saeed; Eftekhar, Ali A; Khelif, Abdelkrim; Adibi, Ali
2010-04-26
We demonstrate planar structures that can provide simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical (or phoxonic) crystal slabs. Different phoxonic crystal (PxC) structures, composed of square, hexagonal (honeycomb), or triangular arrays of void cylindrical holes embedded in silicon (Si) slabs with a finite thickness, are investigated. Photonic band gap (PtBG) maps and the complete phononic band gap (PnBG) maps of PxC slabs with different radii of the holes and thicknesses of the slabs are calculated using a three-dimensional plane wave expansion code. Simultaneous phononic and photonic band gaps with band gap to midgap ratios of more than 10% are shown to be readily obtainable with practical geometries in both square and hexagonal lattices, but not for the triangular lattice.
Two dimensional tunable photonic crystal defect based drop filter at communication wavelength
D'souza, Nirmala Maria; Mathew, Vincent
2017-07-01
We propose a two dimensional photonic crystal (PhC) based drop filter, at communication wavelength with more than 90% transmission. The filtering is achieved by introducing two line defects and three point defects in a two dimensional triangular array of ferroelectric rods in air. Using the electro-optic property of the ferroelectric, about 32 nm tuning in the resonance wavelength is obtained. For the calculation of transmission, finite difference time domain (FDTD) simulations were performed. The operating frequency range is explored via the band structure which is obtained by the implementation of plane wave expansion (PWE) method. The influence of the radius of various rods on the filter wavelength as well as efficiency is also analyzed. The different possible configurations of this filter are also considered.
Wen, Feng; David, Sylvain; Checoury, Xavier; El Kurdi, Moustafa; Boucaud, Philippe
2008-08-04
Photonic crystals exhibiting a photonic band gap in both TE and TM polarizations are particularly interesting for a better control of light confinement. The simultaneous achievement of large band gaps in both polarizations requires to reduce the symmetry properties of the photonic crystal lattice. In this letter, we propose two different designs of two-dimensional photonic crystals patterned in high refractive index thin silicon slabs. These slabs are known to limit the opening of photonic band gaps for both polarizations. The proposed designs exhibit large complete photonic band gaps: the first photonic crystal structure is based on the honey-comb lattice with two different hole radii and the second structure is based on a "tri-ellipse" pattern in a triangular lattice. Photonic band gap calculations show that these structures offer large complete photonic band gaps deltaomega/omega larger than 10% between first and second photonic bands. This figure of merit is obtained with single-mode slab waveguides and is not restricted to modes below light cone.
A compact T-branch beam splitter based on anomalous reflection in two-dimensional photonic crystals
Institute of Scientific and Technical Information of China (English)
Yifeng Shen; Jian Sun; Xiaopeng Shen; Juan Wang; Lulu Sun; Kui Han; Guozhong Wang
2008-01-01
@@ We project a compact T-branch beam splitter with a micron scale using a two-dimensional (2D) photonic crystal (PC). For TE polarization, one light beam can be split into two sub-beams along opposite directions. The propagating directions of the two splitting beams remain unchanged when the incident angle varies in a certain range. Coupled-mode theory is used to analyze the truncating interface structure in order to investigate the energy loss of the splitter. Simulation results and theoretical analysis show that choosing an appropriate location of the truncating interface (PC-air interface) is very important for obtaining high efficiency due to the effect of defect modes. The most advantage of this kind of beam splitter is being fabricated and integrated easily.
The micro-cavity of the two dimensional plasmonic photonic crystal
Tong, Kai; Zhang, Zhenguo; Yang, Qing
2015-02-01
In this manuscript, we proposed a novel and effective two dimensional hybrid plasmonic photonic crystal micro-cavity structure to confine the surface plasmon to a sub-wavelength scale mode volume and obtain a relatively high quality factor. By introducing a single-cell defect at the two dimensional triangular lattice photonic crystal layer, the defect cavity has been established to provide sub-wavelength scale plasmonic mode localization within the hybrid plasmonic photonic crystal structure TM band gap. Comprehensive analysis methods of three-dimensional finite difference time domain method (3D-FDTD) have been used to analyze the characteristics of the micro-cavity of this hybrid structure, including the effects of the radius of the nearest neighbor air holes around the defect, the cavity length of the defect and the thickness of the gain medium on the features of the micro-cavity. By using a quantum dots (QDs)-polymer as a gain medium for the low index thin layer, a gain threshold as low as gth = 534 cm-1 can be achieved with such structures, and deep sub-wavelength mode volume of 0.00201 (λ/n)3 is also obtained.
Roslyak, O.; Gumbs, Godfrey; Mukamel, S.
2012-05-01
We study the localization of dressed Dirac electrons in a cylindrical quantum dot (QD) formed on monolayer and bilayer graphene by spatially different potential profiles. Short lived excitonic states which are too broad to be resolved in linear spectroscopy are revealed by cross peaks in the photon-echo nonlinear technique. Signatures of the dynamic gap in the two-dimensional spectra are discussed. The effect of the Coulomb induced exciton-exciton scattering and the formation of biexciton molecules are demonstrated.
Band gap of two-dimensional fiber-air photonic crystals
Energy Technology Data Exchange (ETDEWEB)
Yang, Shu, E-mail: yangshu5678@163.com; Li, Masha
2016-04-15
A two-dimensional photonic crystal (PC) composed of textile fiber and air is initially discussed in this paper. Textile materials are so called soft materials, which are different from the previous PCs composed of rigid materials. The plain wave expansion method is used to calculate band structure of different PCs by altering component properties or structural parameters. Results show that the dielectric constant of textile fibers, fiber filling ratio and lattice arrangement are effective factors which influence PCs' band gap. Yet lattice constant and fiber diameter make inconspicuous influence on the band gap feature.
Transmission Properties of W3 Y-Branch Filters in Two-Dimensional Photonic Crystal Slabs
Institute of Scientific and Technical Information of China (English)
REN Cheng; CHENG Bing-Ying; ZHANG Dao-Zhong; REN Kun; LIU Rong-Juan; TAO Hai-Hua; FENG Shuai; XIONG Zhi-Gang; LIU Ya-Zhao; TIAN Jie; LI Zhi-Yuan
2007-01-01
A highly efficient W3 Y-branch filter in a two-dimensional photonic crystal slab with triangular lattice of air holes is designed and fabricated, and its transmission properties are measured. By accurately adjusting the size of the resonant cavities, the minimum wavelength spacing of 7nm between two channels is realized. The corresponding resonant wavelengths of the two cavities agree well with the calculated ones. This implies that this kind of filter may be promising in integrated wavelength division multiplexing system.
T-shaped polarization beam splitter based on two-dimensional photonic crystal waveguide structures
Li, Xinlan; Shen, Hongjun; Li, Ting; Liu, Jie; Huang, Xianjian
2016-12-01
A T-shaped polarization beam splitter based on two-dimensional photonic crystal is proposed, which is composed of three waveguides: one input and two output. Unpolarized beams incident from the input port will be separated into two different polarization modes and outputted individually by two different coupling structures. Simulation results can be obtained by the finite-difference time-domain (FDTD) method. In the normalized frequency range of 0.3456 extinction ratio is all 30dB for both modes. The polarization beam splitter attains the requirement we expected by analyzing simulation results.
Reddy, T. S. R.
1995-01-01
This guide describes the input data required for using ECAP2D (Euler Cascade Aeroelastic Program-Two Dimensional). ECAP2D can be used for steady or unsteady aerodynamic and aeroelastic analysis of two dimensional cascades. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The solution methods include harmonic oscillation method, influence coefficient method, pulse response method, and time integration method. For harmonic oscillation method, example inputs and outputs are provided for pitching motion and plunging motion. For the rest of the methods, input and output for pitching motion only are given.
Thermalization of a two-dimensional photon gas in a polymeric host matrix
Schmitt, Julian; Damm, Tobias; Vewinger, Frank; Weitz, Martin; Klaers, Jan
2012-07-01
We investigate thermodynamic properties of a two-dimensional photon gas confined by a dye-filled optical microcavity. A thermally equilibrated state of the photon gas is achieved by radiative coupling to a heat bath that is realized with dye molecules embedded in a polymer at room temperature. The chemical potential of the gas is freely adjustable. The optical microcavity consisting of two curved mirrors induces both a non-vanishing effective photon mass and a harmonic trapping potential for the photons. While previous experiments of our group have used liquid dye solutions, the measurements described here are based on dye molecules incorporated into a polymer host matrix. The solid state material allows a simplified operation of the experimental scheme. We furthermore describe studies of fluorescence properties of dye-doped polymers, and verify the applicability of Kennard-Stepanov theory in this system. In the future, dye-based solid state systems hold promise for the realization of single-mode light sources in thermal equilibrium based on Bose-Einstein condensation of photons, as well as for solar energy concentrators.
Sala, Matthieu; Egorova, Dassia
2016-12-01
The multi-dimensional electronic spectroscopy of ultrafast nuclear dynamics at conical intersections (CI) is an emerging field of investigation, which profits also from the recent extension of the techniques to the UV domain. We present a detailed computational study of oscillatory signatures in two-dimensional (2D) photon-echo spectroscopy (also known as 2D electronic spectroscopy, 2DES) for the two-mode pyrazine model with dissipation. Conventional 2D signals as well as the resulting beating maps are considered. Although of a reduced character, the model captures quite well all the main signatures of the excited-state dynamics of the molecule. Due to the ultrafast relaxation via the CI and no excited-state absorption from the low-lying dark state, the oscillatory components of the signal are found to be predominantly determined by the ground state bleach contribution. They reflect, therefore, the ground-state vibrational coherence induced in the Raman active mode. Beating maps provide a way to experimentally differentiate between ground state bleach and stimulated emission oscillatory components. The ultrafast decay of the latter constitutes a clear indirect signature of the CI. In the considered model, because of the sign properties of the involved transition dipole moments, the dominance of the ground-state coherence leads to anti-correlated oscillations of cross peaks located at symmetric positions with respect to the main diagonal.
Two-dimensional photon counting imaging detector based on PCB delay line anode
Zhu, Bingli; Bai, Yonglin; Lei, Fanpu; Bai, Xiaohong; Wang, Bo; Qin, Junjun; Cao, Weiwei; Gou, Yongsheng
2016-11-01
Delay line anode detector has high spatial resolution and high count rate. It has been an important technical means for single photon imaging from near earth space to deep space. A two dimensional delay line anode is designed using multilayer circuit board technology. A complete set of PCB delay line anode single photon detection system is established. The spatial resolution of the detector is theoretically analyzed. Moreover, the signal transmission characteristic of PCB delay line and the dark count rate of the detector are tested. Theoretical analysis and experimental results show that the detector spatial resolution is about 100um and the overall dark count rate is 4counts/cm2 at 2.3KV.
Fabricating centimeter-scale high quality factor two-dimensional periodic photonic crystal slabs.
Lee, Jeongwon; Zhen, Bo; Chua, Song-Liang; Shapira, Ofer; Soljačić, Marin
2014-02-10
We present a fabrication route for centimeter-scale two-dimensional defect-free photonic crystal slabs with quality factors bigger than 10,000 in the visible, together with a unique way to quantify their quality factors. We fabricate Si(3)N(4) photonic crystal slabs, and perform an angle-resolved reflection measurement. This measurement data is used to retrieve the quality factors of the slabs by fitting it to a model based on temporal coupled-mode theory. The macroscopic nature of the structure and the high quality factors of their resonances could open up new opportunities for realizing efficient macroscale optoelectronic devices such as sensors, lasers, and energy harvesting systems.
Directory of Open Access Journals (Sweden)
Y. Trabelsi
2011-08-01
Full Text Available Two-dimensional quasi-periodic band gap structures were investigated theoretically in microwave frequency range. Quasiperiodic photonic crystal based on the square range, arranged in a quasi-periodical fashion which follows Thue Morse or Fibonaci period substitutional sequences were obtained by the inflation rules emerging from the quasi-periodic sequence. The introduction of 2D quasi-periodicity distribution like Thue Morse or Fibonacci order and deterministic aperiodicity give some interesting microwave properties and offers amultitude of adjacent pseudo-band gap in different frequency range. The potential of photonic structures are explored by varying the structural parameters. The photonic band gap formation was explored as function of geometries of the structures such as pillar radius and parameters of quasi-periodical sequences. The electromagnetic field distribution can be described as a quasi-localized state varied by some defect carried by Thue Morse order. These structures provide interesting properties, which could be used to design novelmicrowave devices.
Two dimensional thermo-optic beam steering using a silicon photonic optical phased array
Mahon, Rita; Preussner, Marcel W.; Rabinovich, William S.; Goetz, Peter G.; Kozak, Dmitry A.; Ferraro, Mike S.; Murphy, James L.
2016-03-01
Components for free space optical communication terminals such as lasers, amplifiers, and receivers have all seen substantial reduction in both size and power consumption over the past several decades. However, pointing systems, such as fast steering mirrors and gimbals, have remained large, slow and power-hungry. Optical phased arrays provide a possible solution for non-mechanical beam steering devices that can be compact and lower in power. Silicon photonics is a promising technology for phased arrays because it has the potential to scale to many elements and may be compatible with CMOS technology thereby enabling batch fabrication. For most free space optical communication applications, two-dimensional beam steering is needed. To date, silicon photonic phased arrays have achieved two-dimensional steering by combining thermo-optic steering, in-plane, with wavelength tuning by means of an output grating to give angular tuning, out-of-plane. While this architecture might work for certain static communication links, it would be difficult to implement for moving platforms. Other approaches have required N2 controls for an NxN element phased array, which leads to complexity. Hence, in this work we demonstrate steering using the thermo-optic effect for both dimensions with a simplified steering mechanism requiring only two control signals, one for each steering dimension.
Photon-Phonon-Enhanced Infrared Rectification in a Two-Dimensional Nanoantenna-Coupled Tunnel Diode
Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Peters, David W.; Davids, Paul S.
2016-12-01
The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excite infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.
New design of 2-D photonic crystal waveguide couplers
Institute of Scientific and Technical Information of China (English)
ZHONG Zhi-rong; ZHANG Li-hua; YANG Hong-qin; JIANG Yun-kun
2006-01-01
@@ Based on couple wave equation and finite-difference time-domain (FDTD) algorithm,the strong couple characteristic of 2-D photonic crystal couplers is calculated.Theoretical analysis and numerical simulated results indicate that the energy in a 2-D photonic crystal coupler can not be totally transferred between two wave-guides.Compared with the result of weak coupling theory,our result is more accurate.
Singh, Gurpreet; Tan, Eng Leong; Chen, Zhi Ning
2012-02-01
This Letter presents a split-step (SS) finite-difference time-domain (FDTD) method for the efficient analysis of two-dimensional (2-D) photonic crystals (PhCs) with anisotropic media. The proposed SS FDTD method is formulated with perfectly matched layer boundary conditions and caters for inhomogeneous anisotropic media. Furthermore, the proposed method is derived using the efficient SS1 splitting formulas with simpler right-hand sides that are more efficient and easier to implement. A 2-D PhC cavity with anisotropic media is used as an example to validate the efficiency of the proposed method.
Photonic band gap of 2D complex lattice photonic crystal
Institute of Scientific and Technical Information of China (English)
GUAN Chun-ying; YUAN Li-bo
2009-01-01
It is of great significance to present a photonic crystal lattice structure with a wide photonic bandgap. A two-dimension complex lattice photonic crystal is proposed. The photonic crystal is composed of complex lattices with triangular structure, and each single cell is surrounded by six scatterers in an hexagon. The photonic band gaps are calculated based on the plane wave expansion (PWE) method. The results indicate that the photonic crystal has tunable large TM polarization band gap, and a gap-midgap ratio of up to 45.6%.
Meng, Zi-Ming; Hu, Yi-Hua; Ju, Gui-Fang; Zhong, Xiao-Lan; Ding, Wei; Li, Zhi-Yuan
2014-07-01
Optical Tamm states (OTSs) in analogy with its electronic counterpart confined at the surface of crystals are optical surface modes at the interfaces between uniform metallic films and distributed Bragg reflectors. In this paper, OTSs are numerically investigated in two-dimensional hybrid plasmonic-photonic crystal nanobeams (HPPCN), which are constructed by inserting a metallic nanoparticle into a photonic crystal nanobeam formed by periodically etching square air holes into dielectric waveguides. The evidences of OTSs can be verified by transmission spectra and the field distribution at resonant frequency. Similar to OTSs in one-dimensional multilayer structures OTSs in HPPCN can be excited by both TE and TM polarization. The physical origin of OTSs in HPPCN is due to the combined contribution of strong reflection imposed by the photonic band gap (PBG) of the photonic crystal (PC) nanobeam and strong backward scattering exerted by the nanoparticle. For TE, incidence OTSs can be obtained at the frequency near the center of the photonic band gap. The transmissivity and the resonant frequency can be finely tuned by the dimension of nanoparticles. While for TM incidence OTSs are observed for relatively larger metallic nanoparticles compared with TE polarization. The differences between TE and TM polarization can be explained by two reasons. For one reason stronger backward scattering of nanoparticles for TE polarization can be achieved by the excitation of localized surface plasmon polariton of nanoparticles. This assumption has been proved by examining the scattering, absorption, and extinction cross section of the metallic nanoparticle. The other can be attributed to the deep and wide PBG available for TE polarization with less number of air holes compared with TM polarization. Our results show great promise in extending the application scope of OTSs from one-dimensional structures to practical integrated photonic devices and circuits.
Energy Technology Data Exchange (ETDEWEB)
Meng, Zi-Ming, E-mail: mengzm@gdut.edu.cn, E-mail: lizy@aphy.iphy.ac.cn; Hu, Yi-Hua; Ju, Gui-Fang [School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Zhong, Xiao-Lan; Ding, Wei; Li, Zhi-Yuan, E-mail: mengzm@gdut.edu.cn, E-mail: lizy@aphy.iphy.ac.cn [Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190 (China)
2014-07-28
Optical Tamm states (OTSs) in analogy with its electronic counterpart confined at the surface of crystals are optical surface modes at the interfaces between uniform metallic films and distributed Bragg reflectors. In this paper, OTSs are numerically investigated in two-dimensional hybrid plasmonic-photonic crystal nanobeams (HPPCN), which are constructed by inserting a metallic nanoparticle into a photonic crystal nanobeam formed by periodically etching square air holes into dielectric waveguides. The evidences of OTSs can be verified by transmission spectra and the field distribution at resonant frequency. Similar to OTSs in one-dimensional multilayer structures OTSs in HPPCN can be excited by both TE and TM polarization. The physical origin of OTSs in HPPCN is due to the combined contribution of strong reflection imposed by the photonic band gap (PBG) of the photonic crystal (PC) nanobeam and strong backward scattering exerted by the nanoparticle. For TE, incidence OTSs can be obtained at the frequency near the center of the photonic band gap. The transmissivity and the resonant frequency can be finely tuned by the dimension of nanoparticles. While for TM incidence OTSs are observed for relatively larger metallic nanoparticles compared with TE polarization. The differences between TE and TM polarization can be explained by two reasons. For one reason stronger backward scattering of nanoparticles for TE polarization can be achieved by the excitation of localized surface plasmon polariton of nanoparticles. This assumption has been proved by examining the scattering, absorption, and extinction cross section of the metallic nanoparticle. The other can be attributed to the deep and wide PBG available for TE polarization with less number of air holes compared with TM polarization. Our results show great promise in extending the application scope of OTSs from one-dimensional structures to practical integrated photonic devices and circuits.
Foist, Rod B; Schulze, H Georg; Ivanov, Andre; Turner, Robin F B
2011-05-01
Two-dimensional correlation spectroscopy (2D-COS) is a powerful spectral analysis technique widely used in many fields of spectroscopy because it can reveal spectral information in complex systems that is not readily evident in the original spectral data alone. However, noise may severely distort the information and thus limit the technique's usefulness. Consequently, noise reduction is often performed before implementing 2D-COS. In general, this is implemented using one-dimensional (1D) methods applied to the individual input spectra, but, because 2D-COS is based on sets of successive spectra and produces 2D outputs, there is also scope for the utilization of 2D noise-reduction methods. Furthermore, 2D noise reduction can be applied either to the original set of spectra before performing 2D-COS ("pretreatment") or on the 2D-COS output ("post-treatment"). Very little work has been done on post-treatment; hence, the relative advantages of these two approaches are unclear. In this work we compare the noise-reduction performance on 2D-COS of pretreatment and post-treatment using 1D (wavelets) and 2D algorithms (wavelets, matrix maximum entropy). The 2D methods generally outperformed the 1D method in pretreatment noise reduction. 2D post-treatment in some cases was superior to pretreatment and, unexpectedly, also provided correlation coefficient maps that were similar to 2D correlation spectroscopy maps but with apparent better contrast.
2D InP photonic crystal fabrication process development
Rong, B.; Van der Drift, E.; Van der Heijden, R.W.; Salemink, H.W.M.
2006-01-01
We have developed a reliable process to fabricate high quality 2D air-hole and dielectric column InP photonic crystals with a high aspect ratio on a STS production tool using ICP N2+Cl2 plasma. The photonic crystals have a triangular lattice with lattice constant of 400 nm and air-hole and dielectri
Photonic band structures of two-dimensional photonic crystals with deformed lattices
Institute of Scientific and Technical Information of China (English)
Cai Xiang-Hua; Zheng Wan-Hua; Ma Xiao-Tao; Ren Gang; Xia Jian-Bai
2005-01-01
Using the plane-wave expansion method, we have calculated and analysed the changes of photonic band structures arising from two kinds of deformed lattices, including the stretching and shrinking of lattices. The square lattice with square air holes and the triangular lattice with circular air holes are both studied. Calculated results show that the change of lattice size in some special ranges can enlarge the band gap, which depends strongly on the filling factor of air holes in photonic crystals; and besides, the asymmetric band edges will appear with the broken symmetry of lattices.
Study of deformed quasi-periodic Fibonacci two dimensional photonic crystals
Ben Abdelaziz, K.; Bouazzi, Y.; Kanzari, M.
2015-09-01
Quasi-periodic photonic crystals are not periodic structures. These structures are generally obtained by the arrangement of layers according to a recursive rule. Properties of these structures make more attention the researchers especially in the case when applying defects. So, photonic crystals with defects present localized modes in the band gap leading to many potential applications such light localization. The objective of this work is to study by simulation the effect of the global deformation introduced in 2D quasiperiodic photonic crystals. Deformation was introduced by applying a power law, so that the coordinates y of the deformed object were determined through the coordinates x of the non-deformed structure in accordance with the following rule: y = x1+k. Here k is the coefficient defining the deformation. Therefore, the objective is to study the effect of this deformation on the optical properties of 2D quasiperiodic photonic crystals, constructed by Fibonacci generation. An omnidirectional mirror was obtained for optimization Fibonacci iteration in a part of visible spectra.
Photonic-Crystal Band-pass Resonant Filters Design Using the Two-dimensional FDTD Method
Directory of Open Access Journals (Sweden)
Hadjira Badaoui
2011-05-01
Full Text Available Recently, band-pass photonic crystal filters have attracted great attention due to their important applications in the fields of optical interconnection network and ultrahigh speed information processing. In this paper we propose the design of a new type of photonic crystal band-pass resonant filters realized in one-missing-row waveguide by decreasing proper defects along the waveguide with broadband acceptable bandwidth. Two types of photonic crystal band-pass filters are utilized and optimized using the Two-dimensional finite-difference time-domain (FDTD technique. The first one is based on the Fabry-Perot cavities and in the second one a cavity is introduced in the middle by omitting two neighboring air holes in waveguide. Numerical results show that a band [1.47 and#956;m-1.57 and#956;m] around 1.55um is transmitted with a maximum transmission of about 68% and as a result wide band-pass filters are designed.
Surface polaritons in two-dimensional left-handed photonic crystals
Zeng Yong; Fu Ying; Chen Xiao Shuang; Lu Wei; Agren, Hans
2006-01-01
Using an extended plane-wave-based transfer-matrix method, the photonic band structures and the corresponding transmission spectrum of a two-dimensional left-handed photonic crystal are calculated. Comparisons between the periodic structure with a single left-handed cylindric rod are made, and many interesting similarities are found. It is shown that, due to the localized surface polaritons presented by an isolated left-handed rod, there exist many exciting physical phenomena in high-dimensional left-handed photonic crystals. As direct results of coupling of the localized surface polaritons of neighboring left-handed rod, a lot of almost dispersionless bands, anti-crossing behavior, and a zero $\\bar{n}$ gap are exhibited in the left-handed periodic structure. Moreover, in a certain frequency region, except distorted by a lot of anti-crossing behavior, there exists a continual dispersion relation, which can be explained by the long-wavelength approximation. It is also pointed out that high-dimensional left-han...
Two-Dimensional Phononic-Photonic Band Gap Optomechanical Crystal Cavity
Safavi-Naeini, Amir H.; Hill, Jeff T.; Meenehan, Seán; Chan, Jasper; Gröblacher, Simon; Painter, Oskar
2014-04-01
We present the fabrication and characterization of an artificial crystal structure formed from a thin film of silicon that has a full phononic band gap for microwave X-band phonons and a two-dimensional pseudo-band gap for near-infrared photons. An engineered defect in the crystal structure is used to localize optical and mechanical resonances in the band gap of the planar crystal. Two-tone optical spectroscopy is used to characterize the cavity system, showing a large coupling (g0/2π≈220 kHz) between the fundamental optical cavity resonance at ωo/2π =195 THz and colocalized mechanical resonances at frequency ωm/2π ≈9.3 GHz.
Huang, Xueqin; Zhang, Zhao-Qing; Chan, C T
2014-01-01
There is no assurance that interface states can be found at the boundary separating two materials. As a strong perturbation typically favors wave localization, it is natural to expect that an interface state should form more easily in the boundary that represents a strong perturbation. Here, we show on the contrary that in some two dimensional photonic crystals (PCs) with a square lattice possessing Dirac-like cone at k=0, a small perturbation guarantees the existence of interface states. More specifically, we find that single-mode localized states exist in a deterministic manner at an interface formed by two PCs each with system parameters slightly perturbed from the conical dispersion condition. The conical dispersion guarantees the existence of gaps in the projected band structure which allows interface states to form and the assured existence of interface states stems from the geometric phases of the bulk bands.
Sufficient condition for the existence of interface states in some two-dimensional photonic crystals
Huang, Xueqin; Xiao, Meng; Zhang, Zhao-Qing; Chan, C. T.
2014-08-01
There is no assurance that interface states can be found at the boundary separating two materials. While a strong perturbation typically favors wave localization, we show on the contrary that in some two-dimensional photonic crystals (PCs) possessing a Dirac-like cone at k = 0 derived from monopole and dipoles excitation, a small perturbation is sufficient to create interface states. The conical dispersion together with the flat band at the zone center generates the existence of gaps in the projected band structure and the existence of single mode interface states inside the projected band gaps stems from the geometric phases of the bulk bands. The underlying physics for the existence of an interface state is related to the sign change of the surface impedance in the gaps above and below the flat band. The established results are applicable for long wavelength regimes where there is only one propagating diffraction order for an interlayer scattering.
Institute of Scientific and Technical Information of China (English)
Feng Shuai; Wang Yi-Quan
2011-01-01
Light propagation through a channel filter based on two-dimensional photonic crystals with elliptical-rod defects is studied by the finite-difference time-domain method.Shape alteration of the defects from the usual circle to an ellipse offers a powerful approach to engineer the resonant frequency of channel filters.It is found that the resonant frequency can be flexibly adjusted by just changing the orientation angle of the elliptical defects.The sensitivity of the resonant wavelength to the alteration of the oval rods' shape is also studied.This kind of multi-channel filter is very suitable for systems requiring a large number of output channel filters.
Reflectance measurement of two-dimensional photonic crystal nanocavities with embedded quantum dots
Stumpf, Wolfgang C; Kojima, Takanori; Fujita, Masayuki; Tanaka, Yoshinori; Noda, Susumu
2010-01-01
The spectra of two-dimensional photonic crystal slab nanocavities with embedded InAs quantum dots are measured by photoluminescence and reflectance. In comparing the spectra taken by these two different methods, consistency with the nanocavities' resonant wavelengths is found. Furthermore, it is shown that the reflectance method can measure both active and passive cavities. Q-factors of nanocavities, whose resonant wavelengths range from 1280 to 1620 nm, are measured by the reflectance method in cross polarization. Experimentally, Q-factors decrease for longer wavelengths and the intensity, reflected by the nanocavities on resonance, becomes minimal around 1360 nm. The trend of the Q-factors is explained by the change of the slab thickness relative to the resonant wavelength, showing a good agreement between theory and experiment. The trend of reflected intensity by the nanocavities on resonance can be understood as effects that originate from the PC slab and the underlying air cladding thickness. In addition...
An Optical Power Divider Based on Two-dimensional Photonic Crystal Structure
Mesri, Nazanin; Alipour-Banaei, Hamed
2017-05-01
In this paper, an optical power divider with one input and four outputs has been proposed in a two-dimensional photonic crystal with triangular lattice and simulated using dielectric holes in an air substrate. The dividing properties of the power divider have been numerically simulated and analyzed using the plane wave expansion and finite difference time domain methods. The results show that the transmittance of this divider can be as high as 94.22 % for λ=1.55 µm; thus, the proposed structure is suitable for wavelength division multiplexing communication systems. Also, due to the small footprint of the proposed structure, this optical power divider is applicable for optical-integrated circuit design.
Men, Han; Freund, Robert M; Parrilo, Pablo A; Peraire, Jaume
2009-01-01
In this paper, we consider the optimal design of photonic crystal band structures for two-dimensional square lattices. The mathematical formulation of the band gap optimization problem leads to an infinite-dimensional Hermitian eigenvalue optimization problem parametrized by the dielectric material and the wave vector. To make the problem tractable, the original eigenvalue problem is discretized using the finite element method into a series of finite-dimensional eigenvalue problems for multiple values of the wave vector parameter. The resulting optimization problem is large-scale and non-convex, with low regularity and non-differentiable objective. By restricting to appropriate eigenspaces, we reduce the large-scale non-convex optimization problem via reparametrization to a sequence of small-scale convex semidefinite programs (SDPs) for which modern SDP solvers can be efficiently applied. Numerical results are presented for both transverse magnetic (TM) and transverse electric (TE) polarizations at several fr...
Effect of pulse propagation on the two-dimensional photon echo spectrum of multilevel systems
Keusters, Dorine; Warren, Warren S.
2003-08-01
The effect of pulse propagation on the two-dimensional photon echo (2DPE) spectrum of multilevel systems is investigated using a perturbative method. At high optical densities (OD) peak profiles are broadened asymmetrically, in most cases more strongly along the ω2 direction than along the ω1 direction. The amount of broadening is determined both by the OD and by the dynamics of the system. In addition, especially if the different transitions in the system are of unequal strength, the relative intensity of the peaks changes with OD. But even if the transition strengths are the same, the behavior of the cross peaks is different from the diagonal peaks. Since peak shape and relative intensity are important parameters in the interpretation of 2DPE spectra, such OD effects should be taken into account.
Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension
Lin, Qian; Xiao, Meng; Yuan, Luqi; Fan, Shanhui
2016-12-01
Weyl points, as a signature of 3D topological states, have been extensively studied in condensed matter systems. Recently, the physics of Weyl points has also been explored in electromagnetic structures such as photonic crystals and metamaterials. These structures typically have complex three-dimensional geometries, which limits the potential for exploring Weyl point physics in on-chip integrated systems. Here we show that Weyl point physics emerges in a system of two-dimensional arrays of resonators undergoing dynamic modulation of refractive index. In addition, the phase of modulation can be controlled to explore Weyl points under different symmetries. Furthermore, unlike static structures, in this system the non-trivial topology of the Weyl point manifests in terms of surface state arcs in the synthetic space that exhibit one-way frequency conversion. Our system therefore provides a versatile platform to explore and exploit Weyl point physics on chip.
Olkhovsky, V. S.
2014-05-01
The formal mathematical analogy between time-dependent quantum equation for the nonrelativistic particles and time-dependent equation for the propagation of electromagnetic waves had been studied in [A. I. Akhiezer and V. B. Berestezki, Quantum Electrodynamics (FM, Moscow, 1959) [in Russian] and S. Schweber, An Introduction to Relativistic Quantum Field Theory, Chap. 5.3 (Row, Peterson & Co, Ill, 1961)]. Here, we deal with the time-dependent Schrödinger equation for nonrelativistic particles and with time-dependent Helmholtz equation for electromagnetic waves. Then, using this similarity, the tunneling and multiple internal reflections in one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) particle and photon tunneling are studied. Finally, some conclusions and future perspectives for further investigations are presented.
Institute of Scientific and Technical Information of China (English)
XIAO San-Shui; HE Sai-Ling; ZHUANG Fei
2001-01-01
Guided modes in a two-dimensional photonic crystal consisting of nearly-free-electron metals are considered. To avoid time-consuming convolution, modified time-stepping formulae are used in a finite-difference time-domain approach. The guided modes in the metallic photonic crystal waveguide are related to those in a conventional metallic waveguide. A cut-off frequency exists, and consequently a mode gap at low frequencies exists in the photonic crystal metallic waveguide.
Line nodes, Dirac points, and Lifshitz transition in two-dimensional nonsymmorphic photonic crystals
Lin, Jun Yu; Hu, Nai Chao; Chen, You Jian; Lee, Ching Hua; Zhang, Xiao
2017-08-01
Topological phase transitions, which have fascinated generations of physicists, are always demarcated by gap closures. In this work, we propose very simple two-dimensional photonic crystal lattices with gap closures, i.e., band degeneracies protected by nonsymmorphic symmetry. Our photonic structures are relatively easy to fabricate, consisting of two inequivalent dielectric cylinders per unit cell. Along high-symmetry directions, they exhibit line degeneracies protected by glide-reflection symmetry and time-reversal symmetry, which we explicitly demonstrate for p g ,p m g ,p g g , and p 4 g nonsymmorphic groups. They also exhibit point degeneracies (Dirac points) protected by a Z2 topological number associated only with crystalline symmetry. Strikingly, the robust protection of p g symmetry allows a Lifshitz transition to a type-II Dirac cone across a wide range of experimentally accessible parameters, thus providing a convenient route for realizing anomalous refraction. Further potential applications include a stoplight device based on electrically induced strain that dynamically switches the lattice symmetry from p g g to the higher p 4 g symmetry. This controls the coalescence of Dirac points and hence the group velocity within the crystal.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Hai-Feng, E-mail: hanlor@163.com [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing University of Aeronautics and Astronautics), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Ding, Guo-Wen; Li, Hai-Ming; Liu, Shao-Bin [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing University of Aeronautics and Astronautics), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)
2015-02-15
In this paper, the properties of complete photonic band gaps (CPBGs) and tunable self-collimation in two-dimensional plasma photonic crystals (2D PPCs) with a new structure in square lattices, whose dielectric fillers (GaAs) are inserted into homogeneous and nomagnetized plasma background are theoretically investigated by a modified plane wave expansion (PWE) method with a novel technique. The novel PWE method can be utilized to compute the dispersion curves of 2D PPCs with arbitrary-shaped cross section in any lattices. As a comparison, CPBGs of PPCs for four different configurations are numerically calculated. The computed results show that the proposed design has the advantages of achieving the larger CPBGs compared to the other three configurations. The influences of geometric parameters of filled unit cell and plasma frequency on the properties of CPBGs are studied in detail. The calculated results demonstrate that CPBGs of the proposed 2D PPCs can be easily engineered by changing those parameters, and the larger CPBGs also can be obtained by optimization. The self-collimation in such 2D PPCs also is discussed in theory under TM wave. The theoretical simulations reveal that the self-collimation phenomena can be found in the TM bands, and both the frequency range of self-collimation and the equifrequency surface contours can be tuned by the parameters as mentioned above. It means that the frequency range and direction of electromagnetic wave can be manipulated by designing, as it propagates in the proposed PPCs without diffraction. Those results can hold promise for designing the tunable applications based on the proposed PPCs.
Directory of Open Access Journals (Sweden)
Hai-Feng Zhang
2016-08-01
Full Text Available In this paper, the properties of photonic band gaps (PBGs in two types of two-dimensional plasma-dielectric photonic crystals (2D PPCs under a transverse-magnetic (TM wave are theoretically investigated by a modified plane wave expansion (PWE method where Monte Carlo method is introduced. The proposed PWE method can be used to calculate the band structures of 2D PPCs which possess arbitrary-shaped filler and any lattice. The efficiency and convergence of the present method are discussed by a numerical example. The configuration of 2D PPCs is the square lattices with fractal Sierpinski gasket structure whose constituents are homogeneous and isotropic. The type-1 PPCs is filled with the dielectric cylinders in the plasma background, while its complementary structure is called type-2 PPCs, in which plasma cylinders behave as the fillers in the dielectric background. The calculated results reveal that the enough accuracy and good convergence can be obtained, if the number of random sampling points of Monte Carlo method is large enough. The band structures of two types of PPCs with different fractal orders of Sierpinski gasket structure also are theoretically computed for a comparison. It is demonstrate that the PBGs in higher frequency region are more easily produced in the type-1 PPCs rather than in the type-2 PPCs. Sierpinski gasket structure introduced in the 2D PPCs leads to a larger cutoff frequency, enhances and induces more PBGs in high frequency region. The effects of configurational parameters of two types of PPCs on the PBGs are also investigated in detail. The results show that the PBGs of the PPCs can be easily manipulated by tuning those parameters. The present type-1 PPCs are more suitable to design the tunable compacted devices.
Zhang, Hai-Feng; Liu, Shao-Bin
2016-08-01
In this paper, the properties of photonic band gaps (PBGs) in two types of two-dimensional plasma-dielectric photonic crystals (2D PPCs) under a transverse-magnetic (TM) wave are theoretically investigated by a modified plane wave expansion (PWE) method where Monte Carlo method is introduced. The proposed PWE method can be used to calculate the band structures of 2D PPCs which possess arbitrary-shaped filler and any lattice. The efficiency and convergence of the present method are discussed by a numerical example. The configuration of 2D PPCs is the square lattices with fractal Sierpinski gasket structure whose constituents are homogeneous and isotropic. The type-1 PPCs is filled with the dielectric cylinders in the plasma background, while its complementary structure is called type-2 PPCs, in which plasma cylinders behave as the fillers in the dielectric background. The calculated results reveal that the enough accuracy and good convergence can be obtained, if the number of random sampling points of Monte Carlo method is large enough. The band structures of two types of PPCs with different fractal orders of Sierpinski gasket structure also are theoretically computed for a comparison. It is demonstrate that the PBGs in higher frequency region are more easily produced in the type-1 PPCs rather than in the type-2 PPCs. Sierpinski gasket structure introduced in the 2D PPCs leads to a larger cutoff frequency, enhances and induces more PBGs in high frequency region. The effects of configurational parameters of two types of PPCs on the PBGs are also investigated in detail. The results show that the PBGs of the PPCs can be easily manipulated by tuning those parameters. The present type-1 PPCs are more suitable to design the tunable compacted devices.
Fal'ko, Vladimir I.
2014-06-01
On behalf of the Editorial Board and IOP Publishing, I am pleased to announce the opening of 2D Materials. Research on two-dimensional materials, such as graphene, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology, and extending from fundamental science to novel applications. It is this situation which defines the scope and mission of 2D Materials, a new journal that will serve all sides of this multidisciplinary field by publishing urgent research of the highest quality and impact.
Fiber Drawn 2D Polymeric Photonic Crystal THz Filters
DEFF Research Database (Denmark)
Stecher, Matthias; Jansen, Christian; Ahmadi-Boroujeni, Mehdi
2012-01-01
In this paper, we report on different polymeric 2D photonic crystal filters for THz frequencies which are fabricated by a standard fiber drawing technique. The bandstop filters were simulated and designed by the generalized multipole technique (GMT). The frequency and angle dependent transmission...
Markos, Peter
2016-01-01
Frequency and transmission spectrum of two-dimensional array of metallic rods is investigated numerically. Based on the recent analysis of the band structure of two-dimensional photonic crystal with dielectric rods [P. Marko\\v{s}, Phys. Rev. A 92 043814 (2015)] we identify two types of bands in the frequency spectrum: Bragg (P) bands resulting from a periodicity and Fano (F) bands which arise from Fano resonances associated with each of the cylinders within the periodic structure. It is shown that the existence of Fano band in a certain frequency range is manifested by a Fano resonance in the transmittance. In particular, we re-examine the symmetry properties of the H- polarized band structure in the frequency range where the spectrum consists of the localized modes associated with the single scatterer resonances and we explore process of formation of Fano bands by identifying individual terms in the expansion of the LCAO states. We demonstrate how the interplay between the two scattering mechanisms affects p...
Institute of Scientific and Technical Information of China (English)
Feng shuai; Wang Yi-Quan
2011-01-01
This paper studies the propagating characteristics of the electromagnetic waves through the coupled-resonator optical waveguides based on the two-dimensional square-lattice photonic crystals by the finite-difference time-domain method. When the traditional circular rods adjacent to the centre of the cavities are replaced by the oval rods, the simulated results show that the waveguide mode region can be adjusted only by the alteration of the oval rods' obliquity.When the obliquity of the oval rods around one cavity is different from the obliquity of that around the adjacent cavities,the group velocities of the waveguide modes can be greatly reduced and the information of different frequencies can be shared and chosen at the same time by the waveguide branches with different structures. If the obliquities of the oval rods around two adjacent cavities are equal and they alternate between two values, the group velocities can be further reduced and a maximum value of 0.0008c (c is the light velocity in vacuum) can be acquired.
Inyushov, A.; Safronova, P.; Trushnikov, I.; Sarkyt, A.; Shandarov, V.
2017-06-01
Both, one-dimensional (1D) and two-dimensional (2D) Bessel-like beams with different topology of 2D beam cross-sections are formed from Gaussian laser beams using the amplitude masks and Fresnel biprisms. These almost diffraction-free light fields with wavelengths of 532 and 633 nm can change the refractive indices of photorefractive lithium niobate samples and form within them the nonlinear photonic diffraction structures. The characteristics of photonic structures induced in this way are studied by diffraction of monochromatic light with wavelengths of 633 and 532 nm.
A Two-Dimensional Photonic Crystal Slab Mirror with Silicon on Insulator for Wavelength 1.3μm
Institute of Scientific and Technical Information of China (English)
TANG Hai-Xia; ZUO Yu-Hua; YU Jin-Zhong; WANG Qi-Ming
2006-01-01
@@ A concrete two-dimensional photonic crystal slab with triangular lattice used as a mirror for the light at wavelength 1.3μm with a silicon-on-insulator (SOI) substrate is designed by the three-dimensional plane wave expansion method.
Energy Technology Data Exchange (ETDEWEB)
Sedghi, Aliasghar [Islamic Azad University, Shabestar (Iran, Islamic Republic of); Valiaghaie, Soma [Islamic Azad University, Sanandaj (Iran, Islamic Republic of); Soufiani, Ahad Rounaghi [Islamic Azad University, Sufian (Iran, Islamic Republic of)
2014-10-15
By virtue of the efficiency of the Dirichlet-to-Neumann map method, we have calculated, for H-polarization (TE mode), the band structure of 2D photonic crystals with a square lattice composed of metallic rods embedded in an air background. The rod in the unit cell is chosen to be circular in shape. Here, from a practical point of view, in order to obtain maximum band gaps, we have studied the band structure as a function of the size of the rods. We have also studied the flat bands appearing in the band structures and have shown that for frequencies around the surface plasmon frequency, the modes are highly localized at the interface between the metallic rods and the air background.
Sedghi, Aliasghar; Valiaghaie, Soma; Soufiani, Ahad Rounaghi
2014-10-01
By virtue of the efficiency of the Dirichlet-to-Neumann map method, we have calculated, for H-polarization (TE mode), the band structure of 2D photonic crystals with a square lattice composed of metallic rods embedded in an air background. The rod in the unit cell is chosen to be circular in shape. Here, from a practical point of view, in order to obtain maximum band gaps, we have studied the band structure as a function of the size of the rods. We have also studied the flat bands appearing in the band structures and have shown that for frequencies around the surface plasmon frequency, the modes are highly localized at the interface between the metallic rods and the air background.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Hai-Feng, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu, Shao-Bin, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn; Jiang, Yu-Chi [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)
2014-09-15
In this paper, the tunable all-angle negative refraction and photonic band gaps (PBGs) in two types of two-dimensional (2D) plasma photonic crystals (PPCs) composed of homogeneous plasma and dielectric (GaAs) with square-like Archimedean lattices (ladybug and bathroom lattices) for TM wave are theoretically investigated based on a modified plane wave expansion method. The type-1 structure is dielectric rods immersed in the plasma background, and the complementary structure is named as type-2 PPCs. Theoretical simulations demonstrate that the both types of PPCs with square-like Archimedean lattices have some advantages in obtaining the higher cut-off frequency, the larger PBGs, more number of PBGs, and the relative bandwidths compared to the conventional square lattices as the filling factor or radius of inserted rods is same. The influences of plasma frequency and radius of inserted rod on the properties of PBGs for both types of PPCs also are discussed in detail. The calculated results show that PBGs can be manipulated by the parameters as mentioned above. The possibilities of all-angle negative refraction in such two types of PPCs at low bands also are discussed. Our calculations reveal that the all-angle negative phenomena can be observed in the first two TM bands, and the frequency range of all-angle negative refraction can be tuned by changing plasma frequency. Those properties can be used to design the optical switching and sensor.
Zhang, Hai-Feng; Liu, Shao-Bin; Jiang, Yu-Chi
2014-09-01
In this paper, the tunable all-angle negative refraction and photonic band gaps (PBGs) in two types of two-dimensional (2D) plasma photonic crystals (PPCs) composed of homogeneous plasma and dielectric (GaAs) with square-like Archimedean lattices (ladybug and bathroom lattices) for TM wave are theoretically investigated based on a modified plane wave expansion method. The type-1 structure is dielectric rods immersed in the plasma background, and the complementary structure is named as type-2 PPCs. Theoretical simulations demonstrate that the both types of PPCs with square-like Archimedean lattices have some advantages in obtaining the higher cut-off frequency, the larger PBGs, more number of PBGs, and the relative bandwidths compared to the conventional square lattices as the filling factor or radius of inserted rods is same. The influences of plasma frequency and radius of inserted rod on the properties of PBGs for both types of PPCs also are discussed in detail. The calculated results show that PBGs can be manipulated by the parameters as mentioned above. The possibilities of all-angle negative refraction in such two types of PPCs at low bands also are discussed. Our calculations reveal that the all-angle negative phenomena can be observed in the first two TM bands, and the frequency range of all-angle negative refraction can be tuned by changing plasma frequency. Those properties can be used to design the optical switching and sensor.
Brûlé, Yoann; Demésy, Guillaume; Gralak, Boris; Popov, Evgeny
2015-04-01
An extensive numerical study of diffraction of a plane monochromatic wave by a single gold cone on a plane gold substrate and by a periodical array of such cones shows formation of curls in the map of the Poynting vector. They result from the interference between the incident wave, the wave reflected by the substrate, and the field scattered by the cone(s). In case of a single cone, when going away from its base along the surface, the main contribution in the scattered field is given by the plasmon surface wave (PSW) excited on the surface. As expected, it has a predominant direction of propagation, determined by the incident wave polarization. Two particular cones with height approximately 1/6 and 1/3 of the wavelength are studied in detail, as they present the strongest absorption and field enhancement when arranged in a periodic array. While the PSW excited by the smaller single cone shows an energy flux globally directed along the substrate surface, we show that curls of the Poynting vector generated with the larger cone touch the diopter surface. At this point, their direction is opposite to the energy flow of the PSW, which is then forced to jump over the vortex regions. Arranging the cones in a two-dimensional subwavelength periodic array (diffraction grating), supporting a specular reflected order only, resonantly strengthens the field intensity at the tip of cones and leads to a field intensity enhancement of the order of 10 000 with respect to the incident wave intensity. The enhanced field is strongly localized on the rounded top of the cones. It is accompanied by a total absorption of the incident light exhibiting large angular tolerances. This strongly localized giant field enhancement can be of much interest in many applications, including fluorescence spectroscopy, label-free biosensing, surface-enhanced Raman scattering (SERS), nonlinear optical effects and photovoltaics.
Tang, Shanzhi; Yu, Shengrui; Han, Qingfu; Li, Ming; Wang, Zhao
2016-09-01
Circular test is an important tactic to assess motion accuracy in many fields especially machine tool and coordinate measuring machine. There are setup errors due to using directly centring of the measuring instrument for both of contact double ball bar and existed non-contact methods. To solve this problem, an algorithm for circular test using function construction based on matrix operation is proposed, which is not only used for the solution of radial deviation (F) but also should be applied to obtain two other evaluation parameters especially circular hysteresis (H). Furthermore, an improved optical configuration with a single laser is presented based on a 2D laser heterodyne interferometer. Compared with the existed non-contact method, it has a more pure homogeneity of the laser sources of 2D displacement sensing for advanced metrology. The algorithm and modeling are both illustrated. And error budget is also achieved. At last, to validate them, test experiments for motion paths are implemented based on a gantry machining center. Contrast test results support the proposal.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Absolute band gaps of a two-dimensional triangular-lattice photonic crystal are calculated with the finite-difference time-domain method in this paper.Through calculating the photonic band structures of the triangular-lattice photonic crystal consisting of Ge rods immersed in air with different shapes,it is found that a large absolute band gap of 0.098 (2c/a) can be obtained for the structures with hollow triangular Ge rods immersed in air,corresponding to 19.8% of the middle frequency.The influence of the different factors on the width of the absolute band gaps is also discussed.
Two-dimensional photonic crystals based on anodic porous TiO2 with ideally ordered hole arrangement
Kondo, Toshiaki; Hirano, Shota; Yanagishita, Takashi; Truong Nguyen, Nhat; Schmuki, Patrick; Masuda, Hideki
2016-10-01
Ideally ordered TiO2 hole arrays with high aspect ratios were prepared by the anodization of pretextured Ti. The obtained TiO2 acted as two-dimensional photonic crystals in which a photonic band gap is formed in all directions of light propagation in the lattice. The process allows the easy and low-cost fabrication of TiO2 photonic crystals and can be used for the preparation of functional optical devices, which require the precise control of light propagation.
Directory of Open Access Journals (Sweden)
F Bakhshi Garmi
2016-02-01
Full Text Available In this paper we studied the focusing effect of electromagnetic wave in the two-dimensional graded photonic crystal consisting of Silicon rods in the air background with gradually varying lattice constant. The results showed that graded photonic crystal can focus wide beams on a narrow area at frequencies near the lower edge of the band gap, where equal frequency contours are not concave. For calculation of photonic band structure and equal frequency contours, we have used plane wave expansion method and revised plane wave expansion method, respectively. The calculation of the electric and magnetic fields was performed by finite difference time domain method.
Shinzawa, Hideyuki; Mizukado, Junji
2016-11-01
Evolutionary change in supermolecular structure of Nylon 6 during its melt-quenched process was studied by Near-infrared (NIR) spectroscopy. Time-resolved NIR spectra was measured by taking the advantage of high-speed NIR monitoring based on an acousto-optic tunable filter (AOTF). Fine spectral features associated with the variation of crystalline and amorphous structure occurring in relatively short time scale were readily captured. For example, synchronous and asynchronous 2D correlation spectra reveal the initial decrease in the contribution of the NIR band at 1485 nm due to the amorphous structure, predominantly existing in the melt Nylon 6. This is then followed by the emerging contribution of the band intensity at 1535 nm associated with the crystalline structure. Consequently, the results clearly demonstrate a definite advantage of the high-speed NIR monitoring for analyzing fleeting phenomena.
Photonic crystals to enhance light extraction from 2D materials
Noori, Yasir J; Roberts, Jonathan; Woodhead, Christopher; Bernardo-Gavito, Ramon; Tovee, Peter; Young, Robert J
2016-01-01
We propose a scheme for coupling 2D materials to an engineered cavity based on a defective rod type photonic crystal lattice. We show results from numerical modelling of the suggested cavity design, and propose using the height profile of a 2D material transferred on top of the cavity to maximise coupling between exciton recombination and the cavity mode. The photonic structure plays a key role in enhancing the launch efficiency, by improving the directionality of the emitted light to better couple it into an external optical system. When using the photonic structure, we measured an increase in the extraction ratio by a factor of 3.4. We investigated the variations in the flux spectrum when the radius of the rods is modified, and when the 2D material droops to a range of different heights within the cavity. We found an optimum enhancement when the rods have a radius equal to 0.165 times the lattice constant, this enhancement reduces when the radius is reduced or increased. Finally, we discuss the possible use...
Das, Saptarshi
2016-01-01
This article proposes a disruptive device concept which meets both low power and high performance criterion for post-CMOS computing and at the same time enables aggressive channel length scaling. This device, hereafter refer to as two-dimensional electrostrictive field effect transistor or 2D-EFET, allows sub-60 mV/decade subthreshold swing and considerably higher ON current compared to any state of the art FETs. Additionally, by the virtue of its ultra-thin body nature and electrostatic integrity, the 2D-EFET enjoys scaling beyond 10 nm technology node. The 2D-EFET works on the principle of voltage induced strain transduction. It uses an electrostrictive material as gate oxide which expands in response to an applied gate bias and thereby transduces an out-of-plane stress on the 2D channel material. This stress reduces the inter-layer distance between the consecutive layers of the semiconducting 2D material and dynamically reduces its bandgap to zero i.e. converts it into a semi-metal. Thus the device operates with a large bandgap in the OFF state and a small or zero bandgap in the ON state. As a consequence of this transduction mechanism, internal voltage amplification takes place which results in sub-60 mV/decade subthreshold swing (SS). PMID:27721489
Das, Saptarshi
2016-10-01
This article proposes a disruptive device concept which meets both low power and high performance criterion for post-CMOS computing and at the same time enables aggressive channel length scaling. This device, hereafter refer to as two-dimensional electrostrictive field effect transistor or 2D-EFET, allows sub-60 mV/decade subthreshold swing and considerably higher ON current compared to any state of the art FETs. Additionally, by the virtue of its ultra-thin body nature and electrostatic integrity, the 2D-EFET enjoys scaling beyond 10 nm technology node. The 2D-EFET works on the principle of voltage induced strain transduction. It uses an electrostrictive material as gate oxide which expands in response to an applied gate bias and thereby transduces an out-of-plane stress on the 2D channel material. This stress reduces the inter-layer distance between the consecutive layers of the semiconducting 2D material and dynamically reduces its bandgap to zero i.e. converts it into a semi-metal. Thus the device operates with a large bandgap in the OFF state and a small or zero bandgap in the ON state. As a consequence of this transduction mechanism, internal voltage amplification takes place which results in sub-60 mV/decade subthreshold swing (SS).
Nano-scale optical actuation based on two-dimensional heterostructure photonic crystal cavities
Lin, Tong; Zhou, Guangya; Chau, Fook Siong; Tian, Feng; Deng, Jie
2015-03-01
Nowadays, nano-electro-mechanical systems (NEMS) actuators using electrostatic forces are facing the bottleneck of the electromagnetic interference which greatly degrades their performances. On the contrary, the hybrid circuits driven by optical gradient forces which are immune to the electromagnetic interference show prominent advantages in communication, quantum computation, and other application systems. In this paper we propose an optical actuator utilizing the optical gradient force generated by a hetero-structure photonic crystal cavity. This type of cavity has a longitudinal air-slot and characteristics of ultrahigh quality factor (Q) and ultra-small mode volume (V) which is capable of producing a much larger force compared with the waveguide-based structures. Due to the symmetry property, attractive optical gradient force is generated. Additionally, the optomechanical coefficient (gom) of this cavity is two orders of magnitude larger than that of the coupled nanobeam photonic crystal cavities. The 2D hetero-structure cavity, comb drives, folded beam suspensions and the displacement sensor compose the whole device. The cavity serves as the optical actuator whilst the butt-coupled waveguide acts as the displacement sensor which is theoretically proved to be insensitive to the temperature variations. As known, the thermo-optic effect prevails especially in the cavity-based structures. The butt-coupled waveguide can be used to decouple the thermal effect and the optoemchanical effect (OM) with the aid of comb drives. The results demonstrate that the proposed optical gradient force actuator show great potential in the future of all-optical reconfigurable circuits.
Chae, Boknam; Son, Seok Ho; Kwak, Young Jun; Jung, Young Mee; Lee, Seung Woo
2016-11-01
The pH-induced structural changes to surface immobilized poly (L-glutamic acid) (PLGA) films were examined by Fourier transform infrared (FTIR) spectroscopy and two-dimensional (2D) correlation analysis. Significant spectral changes were observed in the FTIR spectra of the surface immobilized PLGA film between pH 6 and 7. The 2D correlation spectra constructed from the pH-dependent FTIR spectra of the surface immobilized PLGA films revealed the spectral changes induced by the alternations of the protonation state of the carboxylic acid group in the PLGA side chain. When the pH was increased from 6 to 8, weak spectral changes in the secondary structure of the PLGA main chain were induced by deprotonation of the carboxylic acid side group.
Fathollahi Khalkhali, T.; Bananej, A.
2016-12-01
In this study, we analyze complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals with triangular and square lattices, composed of plasma rods with different geometrical shapes in the anisotropic tellurium background. Using the finite-difference time-domain method we discuss the maximization of the complete photonic band gap width as a function of plasma frequency and plasma rods parameters with different shapes and orientations. The numerical results demonstrate that our proposed structures represent significantly wide complete photonic band gaps in comparison to previously studied dielectric-plasma photonic crystals.
Topologically robust transport of entangled photons in a 2D photonic system
Mittal, Sunil; Hafezi, Mohammad
2016-01-01
We theoretically study transport of time-bin entangled photon pairs in a two-dimensional topological photonic system of coupled ring resonators. This system implements the integer quantum Hall model using a synthetic gauge field and exhibits topologically robust edge states. We show that the topological edge states provide a robust channel for on-chip quantum communication when the information is encoded in temporal correlations of photons. In contrast to edge states, transport through bulk states does not preserve these correlations and can lead to significant unwanted temporal bunching or anti-bunching of photons. We also compare the transport of entangled two-photon states to separable two-photon states and show that the entangled states are more fragile. Furthermore, we study the effect of disorder on the quantum transport properties; while the edge transport remains robust, bulk transport is very susceptible, and in the limit of strong disorder, bulk states become localized. We show that this localizatio...
Two-dimensional photonic-crystal-based double switch-divider.
Dmitriev, Victor; Martins, Leno
2016-05-01
We propose and investigate a new multifunctional component, consisting of a T-junction of three waveguides in 2D photonic crystal with a square lattice. One waveguide is the input port, while the other two serve as output ports. This component can fulfil three functions: First, it can switch OFF the two output ports; second, our component can be used as a 3 dB divider of the input power; and third, it can switch ON any one of the two output ports. Changing the regime is achieved by a DC magnetic field that magnetizes a cylindrical ferrite resonator placed in the T-junction. We present an analysis of the scattering matrices of the component and calculated frequency characteristics in the low terahertz region. In the frequency band of about 1 GHz with a central frequency of f=98.46 GHz, the device has the following parameters: isolation of the output ports from the input port in the first regime is better than -30 dB, division of the input signal is about (-3.8±1.0) dB in the second regime, and isolation in the regime switch ON, where any one of the two output ports is higher than -15 dB and the insertion loss is lower than -2.0 dB.
Kuhls-Gilcrist, Andrew T.; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen
2010-01-01
The MTF, NNPS, and DQE are standard linear system metrics used to characterize intrinsic detector performance. To evaluate total system performance for actual clinical conditions, generalized linear system metrics (GMTF, GNNPS and GDQE) that include the effect of the focal spot distribution, scattered radiation, and geometric unsharpness are more meaningful and appropriate. In this study, a two-dimensional (2D) generalized linear system analysis was carried out for a standard flat panel detector (FPD) (194-micron pixel pitch and 600-micron thick CsI) and a newly-developed, high-resolution, micro-angiographic fluoroscope (MAF) (35-micron pixel pitch and 300-micron thick CsI). Realistic clinical parameters and x-ray spectra were used. The 2D detector MTFs were calculated using the new Noise Response method and slanted edge method and 2D focal spot distribution measurements were done using a pin-hole assembly. The scatter fraction, generated for a uniform head equivalent phantom, was measured and the scatter MTF was simulated with a theoretical model. Different magnifications and scatter fractions were used to estimate the 2D GMTF, GNNPS and GDQE for both detectors. Results show spatial non-isotropy for the 2D generalized metrics which provide a quantitative description of the performance of the complete imaging system for both detectors. This generalized analysis demonstrated that the MAF and FPD have similar capabilities at lower spatial frequencies, but that the MAF has superior performance over the FPD at higher frequencies even when considering focal spot blurring and scatter. This 2D generalized performance analysis is a valuable tool to evaluate total system capabilities and to enable optimized design for specific imaging tasks. PMID:21243038
Time-Domain Measurement of Optical True-Time Delay in Two-Dimensional Photonic Crystal Waveguides
Institute of Scientific and Technical Information of China (English)
ZHANG Geng-Yan; ZHOU Qiang; CUI Kai-Yu; ZHANG Wei; HUANG Yi-Dong
2010-01-01
@@ We report on the realization of optical true-time delay(TTD)by a two-dimensional photonic crystal waveguide(PCWG).Design and fabrication of the PCWG are investigated.The spectral dependence of the group delay is measured by detecting the phase shifts of a 10 GHz modulating signal,and a maximum delay of 25 ± 2.5 ps is obtained.
Effect of the defect on the focusing in a two-dimensional photonic-crystal-based flat lens
Institute of Scientific and Technical Information of China (English)
Feng Zhi-Fang; Wang Xiu-Guo; Li Zhi-Yuan; Zhang Dao-Zhong
2008-01-01
We have investigated in detail the influence of defect on the focusing of electromagnetic waves in a two-dimensional photonic-crystal flat lens by using the finite-difference time-domain mcthod. The result shows that many focusings can be observed at the symmetrical positions when a defect is introduced into the lens. Furthermore, the wave-guides in the lens can confine the transmission wave effectively and improve the quality of the focusing.
Institute of Scientific and Technical Information of China (English)
何江平; 沈林放; 张全; 何赛灵
2002-01-01
A pseudospectral time-domain (PSTD) method is developed for calculating the band structure of a two-dimensional photonic crystal. Maxwell's equations are rewritten in terms of period fields by using the Bloch theorem. Instead of spatial finite differences, the fast Fourier transform is used to calculate the spatial derivatives. To reach a similar accuracy, fewer sample points are required in the present PSTD method as compared to the conventional finite-difference time-domain methods. Our numerical simulation shows that the present PSTD method is an efficient and accurate method for calculating the band structure of a photonic crystal.
Lü, Chengxu; Chen, Longjian; Yang, Zengling; Liu, Xian; Han, Lujia
2014-01-01
This article presents a novel method for combining auto-peak and cross-peak information for sensitive variable selection in synchronous two-dimensional correlation spectroscopy (2D-COS). This variable selection method is then applied to the case of near-infrared (NIR) microscopy discrimination of meat and bone meal (MBM). This is of important practical value because MBM is currently banned in ruminate animal compound feed. For the 2D-COS analysis, a set of NIR spectroscopy data of compound feed samples (adulterated with varying concentrations of MBM) was pretreated using standard normal variate and detrending (SNVD) and then mapped to the 2D-COS synchronous matrix. For the auto-peak analysis, 12 main sensitive variables were identified at 6852, 6388, 6320, 5788, 5600, 5244, 4900, 4768, 4572, 4336, 4256, and 4192 cm(-1). All these variables were assigned their specific spectral structure and chemical component. For the cross-peak analysis, these variables were divided into two groups, each group containing the six sensitive variables. This grouping resulted in a correlation between the spectral variables that was in accordance with the chemical-component content of the MBM and compound feed. These sensitive variables were then used to build a NIR microscopy discrimination model, which yielded a 97% correct classification. Moreover, this method detected the presence of MBM when its concentration was less than 1% in an adulterated compound feed sample. The concentration-dependent 2D-COS-based variable selection method developed in this study has the unique advantages of (1) introducing an interpretive aspect into variable selection, (2) substantially reducing the complexity of the computations, (3) enabling the transferability of the results to discriminant analysis, and (4) enabling the efficient compression of spectral data.
Rybin, Mikhail V; Samusev, Kirill B; Lukashenko, Stanislav Yu; Kivshar, Yuri S; Limonov, Mikhail F
2016-08-05
We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters.
Rybin, Mikhail V.; Samusev, Kirill B.; Lukashenko, Stanislav Yu.; Kivshar, Yuri S.; Limonov, Mikhail F.
2016-08-01
We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters.
Light extraction of GaN LEDs with 2-D photonic crystal structure
Institute of Scientific and Technical Information of China (English)
Hongwei Liu; Qiang Kan; Chunxia Wang; Feng Yu; Xingsheng Xu; Hongda Chen
2009-01-01
Ultraviolet photo-lithography is employed to introduce two-dimensional (2D) photonic crystal (PC) structure on the top surface of GaN-based light emitting diode (LED).PC patterns are transferred to 460-nmthick transparent indium tin oxide (ITO) electrode by inductively coupled plasma (ICP) etching.Light intensity of PC-LED can be enhanced by 38% comparing with the one without PC structure.Rigorous coupled wave analysis method is performed to calculate the light transmission spectrum of PC slab.Simulation results indicate that total internal reflect angle which modulated by PC structure has been increased by 7°,which means that the light extraction efficiency is enhanced outstandingly.
Light Extraction Enhancement of GaN LED with a Two-Dimensional Photonic Crystal Slab
Institute of Scientific and Technical Information of China (English)
LIU Hong-Wei; KAN Qiang; WANG Chun-Xia; HU Hai-Yang; XU Xing-Sheng; CHEN Hong-Da
2011-01-01
Light extraction effects of a photonic crystal slab with a micrometer scale lattice constant are studied. A GaN light emitting diode (LED) with a photonic crystal slab is fabricated. The light extraction effects and the enhancement mechanism are investigated. From theoretical analysis, it is found that the characteristics of LED light emission are modulated by the photonic crystal slab. Experimental results show that the LED light emission intensity is enhanced by 38％ due to guide mode extracting by the photonic crystal.%@@ Light extraction effects ora photonic crystal slab with a micrometer scale lattice constant are studied.A GaN light emitting diode(LED) with a photonic crystal slab is fabricated.The light extraction effects and the enhancement mechanism are investigated.From theoretical analysis,it is found that the characteristics of LED light emission are modulated by the photonic crystal slab.Experimental results show that the LED light emission intensity is enhanced by 38% due to guide mode extracting by the photonic crystal.
Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing
2017-03-05
As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.
Shinzawa, Hideyuki; Murakami, Takurou N.; Nishida, Masakazu; Kanematsu, Wataru; Noda, Isao
2014-07-01
Multiple-perturbation two-dimensional (2D) correlation spectroscopy was applied to sets of near-infrared (NIR) imaging data of polylactic acid (PLA) nanocomposite samples undergoing UV degradation. Incorporation of clay nanoparticles substantially lowers the surface free energy barrier for the nucleation of PLA and eventually increases the frequency of the spontaneous nucleation of PLA crystals. Thus, when exposed to external stimuli such as UV light, PLA nanocomposite may show different structure alternation depending on the clay dispersion. Multiple-perturbation 2D correlation analysis of the PLA nanocomposite samples revealed different spatial variation between crystalline and amorphous structure of PLA, and the phenomenon especially becomes acute in the region where the clay particles are coagulated. The incorporation of the clay leads to the cleavage-induced crystallization of PLA when the sample is subjected to the UV light. The additional development of the ordered crystalline structure then works favorably to restrict the initial degradation of the polymer, providing the delay in the weight loss of the PLA.
Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing
2017-03-01
As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.
Directory of Open Access Journals (Sweden)
Francisco Medellín-Rodríguez
2013-08-01
Full Text Available Electrospun one dimensional (1D and two dimensional (2D carbon based polymer nanocomposites are studied in order to determine the effect provided by the two differently structured nanofillers on crystallinity and thermo-mechanical properties of the nanofibres. The nanomaterials studied are pristine carbon nanotubes, oxidised carbon nanotubes, reduced graphene oxide and graphene oxide. Functional groups associated with the order structure of the polymers are analysed by infrared and Raman spectroscopies; the morphology is studied by scanning electron microscopy and the crystallinity properties are investigated by differential scanning calorimetry and X-ray diffraction. Differences in crystallisation behaviour between 1D and 2D carbon based nanofibres are shown by their crystallinity degree and their crystal sizes. The nanocomposite crystal sizes perpendicular to the plane (100 decrease with nanofiller content in all cases. The crystallinity trend and crystal sizes are in accordance with storage modulus response. The results also suggest that functionalisation favours interfacial bonding and dispersion of the nanomaterials within the polymer matrix. As a consequence the number of nucleating sites increases which in turn decreases the crystal size in the nanocomposites. These features explain the improved thermo-mechanical properties in the nanocomposites.
Photonic Band Gaps in Two-Dimensional Crystals with Fractal Structure
Institute of Scientific and Technical Information of China (English)
刘征; 徐建军; 林志方
2003-01-01
We simulate the changes of the photonic band structure of the crystal in two dimensions with a quasi-fractal structure when it is fined to a fractal. The result shows that when the dielectric distribution is fined, the photonic band structure will be compressed on the whole and the ground photonic band gap (PBG) closed while the next PBGs shrunk, in conjunction with their position declining in the frequency spectrum. Furthermore, the PBGs in the high zone are much more sensitive than those in low zones.
Analysis of two-dimensional photonic band gap structure with a rhombus lattice
Institute of Scientific and Technical Information of China (English)
Limei Qi; Ziqiang Yang; Xi Gao; Zheng Liang
2008-01-01
@@ The relative band gap for a rhombus lattice photonic crystal is studied by plane wave expansion method and high frequency structure simulator (HFSS) simulation. General wave vectors in the first Briliouin zone are derived. The relative band gap as a function of air-filling factor and background material is investigated, respectively, and the nature of photonic band gap for different lattice angles is analyzed by the distribution of electric energy. These results would provide theoretical instruction for designing optical integrated devices using photonic crystal with a rhombus lattice.
Photon-assisted spin transport in a two-dimensional electron gas
Fistul, M. V.; Efetov, K. B.
2007-01-01
We study spin-dependent transport in a two-dimensional electron gas subject to an external step-like potential $V(x)$ and irradiated by an electromagnetic field (EF). In the absence of EF the electronic spectrum splits into spin sub-bands originating from the "Rashba" spin-orbit coupling. We show that the resonant interaction of propagating electrons with the component EF parallel to the barrier induces a \\textit{% non-equilibrium dynamic gap} $(2\\Delta_{R})$ between the spin sub-bands. Exist...
Left-Handed Properties in Two-Dimensional Photonic Crystals Formed by Holographic Lithography
Institute of Scientific and Technical Information of China (English)
SHEN Xiao-Xia; YANG Xiu-Lun; CAI Lv-Zhong; WANG Yu-Rong; DONG Guo-Yan; MENG Xiang-Feng; XU Xian-Feng
2008-01-01
We give an analysis of the frequency distribution trends in the four lowest bands of two-dimensional square lattices formed by holographic lithography (HL) and in the lattices of the same kind but with regular dielectric columns with increasing filling ratios, and then present a comparative study on the left-handed properties in these two kinds of structures using plane wave expansion method and finite-difference time-domain (FDTD) simulations.The results show that the left-handed properties are more likely to exist in structures with large high-epsilon filling ratios or in a connected lattice.
Institute of Scientific and Technical Information of China (English)
ZHANG Xuan; CHEN Shu-Wen; LIAO Qing-Hua; YU Tian-Bao; LIU Nian-Hua; HUANG Yong-Zhen
2011-01-01
@@ We propose and analyze a novel ultra-compact polarization beam splitter based on a resonator cavity in a two-dimensional photonic crystal.The two polarizations can be separated efficientlyby the strong coupling between the microcavities and the waveguides occurring around the resonant frequency of the cavities.The transmittance of two polarized light around 1.55 iim can be more than 98.6%, and the size of the device is less than 15 μm x 13μm,so these features will play an important role in future integrated optical circuits.
Institute of Scientific and Technical Information of China (English)
Feng Shuai; Ren Cheng; Wang Wen-Zhong; Wang Yi-Quan
2012-01-01
Self-collimation characteristics of the two-dimensional square-lattice photonic crystal (PC) consisting of metal rods immersed in silicon are studied by the finite-difference time-domain method.The Drude dispersion model is adopted to describe the metal rod,and the self-collimation behaviours of the near-infrared light through the PC are studied.The frequency region and the tolerance of incident angle for the self-collimation behaviour can be controlled by changing the shape of the metal rods.
Asymmetric 2D spatial beam filtering by photonic crystals
Gailevicius, D.; Purlys, V.; Maigyte, L.; Gaizauskas, E.; Peckus, M.; Gadonas, R.; Staliunas, K.
2016-04-01
Spatial filtering techniques are important for improving the spatial quality of light beams. Photonic crystals (PhCs) with a selective spatial (angular) transmittance can also provide spatial filtering with the added benefit transversal symmetries, submillimeter dimensions and monolithic integration in other devices, such as micro-lasers or semiconductor lasers. Workable bandgap PhC configurations require a modulated refractive index with period lengths that are approximately less than the wavelength of radiation. This imposes technical limitations, whereby the available direct laser write (DLW) fabrication techniques are limited in resolution and refractive index depth. If, however, a deflection mechanism is chosen instead, a functional filter PhC can be produced that is operational in the visible wavelength regime. For deflection based PhCs glass is an attractive choice as it is highly stable medium. 2D and 3D PhC filter variations have already been produced on soda-lime glass. However, little is known about how to control the scattering of PhCs when approaching the smallest period values. Here we look into the internal structure of the initially symmetric geometry 2D PhCs and associating it with the resulting transmittance spectra. By varying the DLW fabrication beam parameters and scanning algorithms, we show that such PhCs contain layers that are comprised of semi-tilted structure voxels. We show the appearance of asymmetry can be compensated in order to circumvent some negative effects at the cost of potentially maximum scattering efficiency.
Institute of Scientific and Technical Information of China (English)
Kyu; Hwan; Hwang; G.; Hugh; Song; Chanmook; Lim; Soan; Kim; Kyung-Won; Chun; Mahn; Yong; Park
2003-01-01
A channel-drop filter has been designed based on the two-dimensional triangular-lattice hole photonic-crystal structure, which consists of two line defects and two point defects, by a two-dimensional finite-difference time-domain simulation.
Gómez-Urrea, H. A.; Duque, C. A.; Pérez-Quintana, I. V.; Mora-Ramos, M. E.
2017-03-01
The dispersion relations of two-dimensional photonic crystals made of uniaxial polaritonic cylinders arranged in triangular lattice are calculated. The particular case of the transverse magnetic polarization is taken into account. Three different uniaxial materials showing transverse phonon-polariton excitations are considered: aluminum nitride, gallium nitride, and indium nitride. The study is carried out by means of the finite-difference time-domain technique for the solution of Maxwell equations, together with the method of the auxiliary differential equation. It is shown that changing the filling fraction can result in the modification of both the photonic and polaritonic bandgaps in the optical dispersion relations. Wider gaps appear for smaller filling fraction values, whereas a larger number of photonic bandgaps will occur within the frequency range considered when a larger filling fraction is used. The effect of including the distinct wurtzite III-V nitride semiconductors as core materials in the cylinders embedded in the air on the photonic properties is discussed as well, highlighting the effect of the dielectric anisotropy on the properties of the polaritonic part of the photonic spectrum.
Two-dimensional photonic-crystal-based Fabry-Perot etalon.
Ho, Chong Pei; Pitchappa, Prakash; Kropelnicki, Piotr; Wang, Jian; Cai, Hong; Gu, Yuandong; Lee, Chengkuo
2015-06-15
We demonstrate the design, fabrication, and characterization of a polycrystalline-silicon-based photonic crystal Fabry-Perot etalon, which is aimed to work in the mid-infrared wavelengths. The highly reflective mirrors required in a Fabry-Perot etalon are realized by freestanding polycrystalline-silicon-based photonic crystal membranes with etched circular air holes. A peak reflection of 96.4% is observed at 3.60 μm. We propose a monolithic CMOS-compatible fabrication process to configure two such photonic crystal mirrors to be in parallel to form a Fabry-Perot etalon; a filtered transmission centered at 3.51 μm is observed. The quality factor measured is around 300, which is significantly higher than in existing works. This creates the possibility of using such devices for high-resolution applications such as gas sensing and hyperspectral imaging.
Two-dimensional ring-type photonic crystals in the near-infrared region
Institute of Scientific and Technical Information of China (English)
Xu Xing-Sheng; Wang Yi-Quan; Han Shou-Zhen; Cheng Bing-Ying; Zhang Dao-Zhong
2004-01-01
We propose a ring photonic crystal working in the near infrared region, where the air holes in the background material GaAs are arranged to form a series of rings. We find that the band gaps do not depend on the incident direction,and only a small number of rows are needed to create a frequency gap in the transmission spectrum. The transmission spectra of both P and S polarizations show that there is a complete bandgap in the hexagonal ring photonic crystals and the ratio of gap width to mid-gap frequency is as high as 11%.
Polarization Beam Splitter Based on Self-Collimation Effect in Two-Dimensional Photonics Crystal
Institute of Scientific and Technical Information of China (English)
ZHANG Jie; ZHAO De-Yin; ZHOU Chnan-Hong; JIANG Xun-Ya
2007-01-01
A photonic crystal polarization beam splitter based on the self-collimation effect is proposed. By means of the plane wave expansion method and the finite-difference time-domain method, we analyse the splitting mechanism in two alternative ways: performing a band gap structure analysis and simulating the field distribution. The results indicate that two beams of different polarizations can be split with an extinction ratio of nearly 20 dB in a wavelength range of 90nm. The splitter may have practical applications in integrated photonic circuits.
Zhou Yun Song; Wang Fu He
2003-01-01
We investigate the properties of guide modes localized at the interfaces of photonic crystal (PC) heterostructures which are composed of two semi-infinite two-dimensional PCs consisting of non-circular air cylinders with different rotating angles embedded in a homogeneous host dielectric. Photonic band gap structures are calculated with the use of the plane-wave expansion method in combination with a supercell technique. We consider various configurations, for instance, rectangular (square) lattice-rectangular (square) air cylinders, and different rotating angles of the cylinders in the lattices on either side of the interface of a heterostructure. We find that the absolute gap width and the number of guide modes strongly depend on geometric and physical parameters of the heterostructures. It is anticipated that the guide modes in such heterostructures can be engineered by adjusting parameters.
Institute of Scientific and Technical Information of China (English)
Sun Wen-Qian; Liu Yu-Min; Wang Dong-Lin; Han Li-Hong; Guo Xuan; Yu Zhong-Yuan
2013-01-01
We investigate the effect of disorder and mechanical deformation on a two-dimensional photonic crystal waveguide.The dispersion characteristics and transmittance of the waveguide are studied using the finite element method.Results show that the geometric change of the dielectric material perpendicular to the light propagation direction has a larger influence on the waveguide characteristics than that parallel to the light propagation direction.Mechanical deformation has an obvious influence on the performance of the waveguide.In particular,longitudinal deformed structure exhibits distinct optical characteristics from the ideal one.Studies on this work will provide useful guideline to the fabrication and practical applications based on photonic crystal waveguides.
Suppression of spontaneous emission for two-dimensional GaAs photonic crystal microcavities
DEFF Research Database (Denmark)
Søndergaard, Thomas; Broeng, Jes; Bjarklev, Anders Overgaard
1999-01-01
Summary form only given. Spontaneous emission represents a loss mechanism that fundamentally limits the performance of semiconductor lasers. The rate of spontaneous emission may, however, be controlled by a new class of periodic dielectric structures known as photonic crystals. Although a three...
Mazella, Anaïs; Albaret, Jean-Michel; Picard, Delphine
2016-01-01
To fill an important gap in the psychometric assessment of children and adolescents with impaired vision, we designed a new battery of haptic tests, called Haptic-2D, for visually impaired and sighted individuals aged five to 18 years. Unlike existing batteries, ours uses only two-dimensional raised materials that participants explore using active touch. It is composed of 11 haptic tests, measuring scanning skills, tactile discrimination skills, spatial comprehension skills, short-term tactile memory, and comprehension of tactile pictures. We administered this battery to 138 participants, half of whom were sighted (n=69), and half visually impaired (blind, n=16; low vision, n=53). Results indicated a significant main effect of age on haptic scores, but no main effect of vision or Age × Vision interaction effect. Reliability of test items was satisfactory (Cronbach's alpha, α=0.51-0.84). Convergent validity was good, as shown by a significant correlation (age partialled out) between total haptic scores and scores on the B101 test (rp=0.51, n=47). Discriminant validity was also satisfactory, as attested by a lower but still significant partial correlation between total haptic scores and the raw score on the verbal WISC (rp=0.43, n=62). Finally, test-retest reliability was good (rs=0.93, n=12; interval of one to two months). This new psychometric tool should prove useful to practitioners working with young people with impaired vision.
Double Doppler effect in two-dimensional photonic crystal with negative effective index
Jiang, Qiang; Chen, Jiabi; Liang, Binming; Zhuang, Songlin
2016-11-01
The inverse Doppler effect in photonic crystal with negative refractive index had been proofed experimentally in our previous research. In this paper, we studied the spatial harmonics of Bloch wave propagating in such PhCs by FFT method. The lagging and front phase evolutions reveal that both backward wave and forward wave exist in these harmonics. Subsequently, we studied the double Doppler effect phenomenon that both the normal and inverse Doppler exist in one photonic crystal simultaneously by using the improved dynamic FDTD method which we made it suitable for dealing with moving objects. The simulative Doppler frequency shifts were consistent with the theoretical values. Our study provides a potential technology in measurement area.
Dirac points and line degeneracies in two-dimensional nonsymmorphic photonic crystals
Lin, Jun Yu; Chen, You Jian; Lee, Ching Hua; Zhang, Xiao
2016-01-01
Topological phase transitions, which have fascinated generations of physicists, are always demarcated by gap closures. In this work, we study the topological properties of gap closure points, i.e. band degeneracies, in photonic crystal lattices exhibiting nonsymmorphic group symmetries. Despite their relatively esoteric symmetries, such lattice structures are relatively easy to fabricate, and thus experimentally study, in photonic systems. We show that the combination of glide symmetry and time reversal symmetry can protect point degeneracies. Line degeneracies along two high symmetry momenta are, however, only protected by one glide symmetry. By defining a topological winding number for point degeneracies, Dirac points with windings of $\\pm 1,\\ -1,\\ -2$ are found in lattices with $pmg$, $pgg$ and $p4g$ nonsymmorphic group symmetries respectively. More interestingly, the breaking of time reversal symmetry in systems with symmetry groups $pgg$ and $p4g$ yield Chern insulators with nontrivial edge states as sol...
Parametric Optomechanical Oscillations in Two-dimensional Slot-type High-Q Photonic Crystal Cavities
Energy Technology Data Exchange (ETDEWEB)
Zheng J.; Stein A.; Li, Y.; Aras, M.S.; Shepard, K.L.; Wong, C.W.
2012-05-22
We experimentally demonstrate an optomechanical cavity based on an air-slot photonic crystal cavity with optical quality factor Q{sub o} = 4.2 x 10{sup 4} and a small modal volume of 0.05 cubic wavelengths. The optical mode is coupled with the in-plane mechanical modes with frequencies up to hundreds of MHz. The fundamental mechanical mode shows a frequency of 65 MHz and a mechanical quality factor of 376. The optical spring effect, optical damping, and amplification are observed with a large experimental optomechanical coupling rate g{sub om}/2{pi} of 154 GHz/nm, corresponding to a vacuum optomechanical coupling rate g*/2{pi} of 707 kHz. With sub-mW or less input power levels, the cavity exhibits strong parametric oscillations. The phase noise of the photonic crystal optomechanical oscillator is also measured.
Polaron dynamics in two-dimensional photon-echo spectroscopy of molecular rings.
Huynh, Thanh Duc; Sun, Ke-Wei; Gelin, Maxim; Zhao, Yang
2013-09-14
We have developed a new approach to the computation of third-order spectroscopic signals of molecular rings, by incorporating the Davydov soliton theory into the nonlinear response function formalism. The Davydov D1 and D Ansätze have been employed to treat the interactions between the excitons and the primary phonons, allowing for a full description of arbitrary exciton-phonon coupling strengths. As an illustration, we have simulated a series of optical 2D spectra for two models of molecular rings.
Complete Band-Gap in Two-Dimensional Quasiperiod Photonic Crystals with Hollow Cylinders
Institute of Scientific and Technical Information of China (English)
FENG Zhi-Fang; FENG Shuai; REN Kun; LI Zhi-Yuan; CHENG Bing-Ying; ZHANG Dao-Zhong
2005-01-01
@@ The transmission properties of quasiperiodic photonic crystals (QPCs) based on the random square-triangle tilingsystem are investigated by the multiple scattering method. The hollow cylinders are introduced in our calculation. It is found that QPCs with hollow cylinders also possess a complete band gap common to s- and p-polarized waves when the inner radius of hollow cylinders is larger than a certain value. The QPCs possessing the complete band gap can be applied to the fields of light emitting, wave-guides, optical filters, high-Q resonators and antennas.
Birowosuto, M D; Taniyama, H; Kuramochi, E; Takiguchi, M; Notomi, M
2012-01-01
Using Finite-Difference Time-Domain (FDTD) simulation, we show that ultrahigh- Q nanocavities can be obtained through the manipulation of a single semiconductor nanowire (NW) inside a slot in a line defect of a two-dimensional (2D) photonic crystal. By controlling the design and its lattice parameters of the photonic crystal, we have achieved a quality factor Q larger than 106 and a mode volume Vc smaller than 0.11 {\\mu}m3 (1.25 of a cubic wavelength in the NW) for a cavity peak in the telecommunication band. This design is useful for realizing a position-controlled cavity in a photonic crystal. Here we also discuss the small dependence of the Qfactor, the Vc, and the cavity peak in relation to the position of the NWinside the slot and the potential application to the cavity quantum electrodynamics (QED) using the embedded-emitter NW.
Integration of 2D materials on a silicon photonics platform for optoelectronics applications
Youngblood, Nathan; Li, Mo
2016-12-01
Owing to enormous growth in both data storage and the demand for high-performance computing, there has been a major effort to integrate telecom networks on-chip. Silicon photonics is an ideal candidate, thanks to the maturity and economics of current CMOS processes in addition to the desirable optical properties of silicon in the near IR. The basics of optical communication require the ability to generate, modulate, and detect light, which is not currently possible with silicon alone. Growing germanium or III/V materials on silicon is technically challenging due to the mismatch between lattice constants and thermal properties. One proposed solution is to use two-dimensional materials, which have covalent bonds in-plane, but are held together by van der Waals forces out of plane. These materials have many unique electrical and optical properties and can be transferred to an arbitrary substrate without lattice matching requirements. This article reviews recent progress toward the integration of 2D materials on a silicon photonics platform for optoelectronic applications.
Institute of Scientific and Technical Information of China (English)
MAO Xiao-Yu; YAO Di-Bi; ZHAO Ling-Yun; HUANG Yi-Dong; ZHANG Wei; PENG Jiang-De
2008-01-01
We propose an integrative biochemical sensor utilizing the dip in the transmission spectrum of a normal singleline defect photonic crystal(PC)waveguide,which has a contra-directional coupling with another PC waveguide.When the air holes in the PC slab are filled with a liquid analyte with different refractive indices,the dip has a wavelength shift.By detecting the output power variation at a certain fixed wavelength,a sensitivity of 1.2×10-4is feasible.This structure is easy for integration due to its plane waveguide structure and omissible pump source.In addition,high signal to noise ratio can be expected because signal transmits via a normal single-line defect PC waveguide instead of the PC hole area or analyte.
Enhancement of light extraction efficiency in OLED with two-dimensional photonic crystal slabs
Institute of Scientific and Technical Information of China (English)
Rongjin Yan; Qingkang Wang
2006-01-01
Light extraction efficiency of organic light emitting diode (OLED) based on various photonic crystal slab (PCS) structures was studied. By using the finite-difference time-domain (FDTD) method, we investigated the effect of several parameters, including filling factor and lattice constant, on the enhancement of light extraction efficiency of three basic PCSs, and got the most effective one. Two novel designs of "interlaced"and "double-interlaced" PCS structures based on the most effective basic PCS structure were introduced,and the "interlaced" one was proved to be even more efficient than its prototype. Large enhancement of light extraction efficiency resulted from the coupling to leaky modes in the expended light cone of a band structure, the diffraction in the space between columns, as well as the strong scattering at indium-tinoxide/glass interfaces.
High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate
Vico Triviño, N.; Rossbach, G.; Dharanipathy, U.; Levrat, J.; Castiglia, A.; Carlin, J.-F.; Atlasov, K. A.; Butté, R.; Houdré, R.; Grandjean, N.
2012-02-01
We report on the achievement of freestanding GaN photonic crystal L7 nanocavities with embedded InGaN/GaN quantum wells grown by metal organic vapor phase epitaxy on Si (111). GaN was patterned by e-beam lithography, using a SiO2 layer as a hard mask, and usual dry etching techniques. The membrane was released by underetching the Si (111) substrate. Micro-photoluminescence measurements performed at low temperature exhibit a quality factor as high as 5200 at ˜420 nm, a value suitable to expand cavity quantum electrodynamics to the near UV and the visible range and to develop nanophotonic platforms for biofluorescence spectroscopy.
Reflection mode two-dimensional photonic-crystal-slab-waveguide-based micropressure sensor
Wang, Yi; Bakhtazad, Aref; Sabarinathan, Jayshri
2011-08-01
Photonic crystals (PhCs) have recently been the focus for the developing micro- and nano-optical sensors, due to its capability to control and manipulate light on planar devices. This paper presents a novel design of micro-optical pressure sensor based on 2-dimensional PhC slab suspended on Si substrate. A line defect was introduced to the PhC slab to guide and reflect light with frequency in the photonic bandgap in the plane of the slab. The structure, with certain surface treatment, can be used in miro-scale pressure catheters in heart ablation surgeries and other biomedical applications. The working principle of the device is to modify light reflection in the PhC line defect waveguide by moving a substrate vertically in the evanescent field of the PhC waveguide. Evanescent field coupling is the critical step that affects light transmission and reflection. High resolution electron-beam lithography and isotropic wet etching have been used to realize the device on the top layer of a Si-On-Insulator (SOI) wafer. The PhC slab is released by isotropic wet etch of the berried oxide layer. The output reflection spectrum of the device under different pressure conditions is simulated using 3-dimensional finite difference time domain (FDTD) method. The result showed that when the PhC slab is close enough to the substrate (less than 400 nm), the reflected light intensity decreases sharply when the substrate moves towards the PhC slab. Mechanical response of the sensor is also studied.
Energy Technology Data Exchange (ETDEWEB)
Reyes-Ayona, E. [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apartado Postal J-48, Puebla 72570 (Mexico); Instituto Nacional de Astrofisica Optica y Electronica, Apartado Postal 51, Puebla 72000 (Mexico); Halevi, P. [Instituto Nacional de Astrofisica Optica y Electronica, Apartado Postal 51, Puebla 72000 (Mexico)
2012-06-15
We calculate the band structure of a magneto-metallo-dielectric photonic crystal (PC) with hybrid one- and two-dimensional periodicity. Namely, the permittivity (permeability) is periodic in a plane (single direction). The metallic and magnetic properties are described, respectively, by means of the Drude model and a specific permeability model for Barium-M ferrite. Because of the dispersion of both the permeability and the permittivity, we obtain a non-standard eigenvalue problem which is possible to solve by means of a linearization technique. We found that the first band of this PC is very sensitive to the filling fraction of the magnetic component: by changing this fraction from 0.20 to 0.16 the slope - and effective index of refraction - changes from positive to negative. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Sun, Xiankai; Poot, Menno; Wong, Chee Wei; Tang, Hong X
2012-01-01
We demonstrate a new optomechanical device system which allows highly efficient transduction of femtogram nanobeam resonators. Doubly clamped nanomechanical resonators with mass as small as 25 fg are embedded in a high-finesse two-dimensional photonic crystal nanocavity. Optical transduction of the fundamental flexural mode around 1 GHz was performed at room temperature and ambient conditions, with an observed displacement sensitivity of 0.94 fm/Hz^(1/2). Comparison of measurements from symmetric and asymmetric double-beam devices reveals hybridization of the mechanical modes where the structural symmetry is shown to be the key to obtain a high mechanical quality factor. Our novel configuration opens the way for a new category of "NEMS-in-cavity" devices based on optomechanical interaction at the nanoscale.
Institute of Scientific and Technical Information of China (English)
Ren Cheng; Cheng Li-Feng; Kang Feng; Gan Lin; Zhang Dao-Zhong; Li Zhi-Yuan
2012-01-01
We have designed and fabricated two types of two-port resonant tunneling filters with a triangular air-hole lattice in two-dimensional photonic crystal slabs.In order to improve the filtering efficiency,a feedback method is introduced by closing the waveguide.It is found that the relative position between the closed waveguide boundary and the resonator has an important impact on the dropping efficiency.Based on our analyses,two different types of filters are designed.The transmission spectra and scattering-light far-field patterns are measured,which agree well with theoretical prediction.In addition,the resonant filters are highly sensitive to the size of the resonant cavities,which are useful for practical applications.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jun [School of Physics, Beijing Institute of Technology and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081 (China); College of Physics and Electronic Engineering, Henan Normal University, 453007 Xinxiang, Henan (China); Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn [School of Physics, Beijing Institute of Technology and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081 (China)
2015-09-28
Simultaneous negative refraction for both the fundamental frequency (FF) and second-harmonic (SH) fields in two-dimensional nonlinear photonic crystals have been found through both the physical analysis and exact numerical simulation. By combining such a property with the phase-matching condition and strong second-order susceptibility, we have designed a SH lens to realize focusing for both the FF and SH fields at the same time. Good-quality non-near field images for both FF and SH fields have been observed. The physical mechanism for such SH focusing phenomena has been disclosed, which is different from the backward SH generation as has been pointed out in the previous investigations. In addition, the effect of absorption losses on the phenomena has also been discussed. Thus, potential applications of these phenomena to biphotonic microscopy technique are anticipated.
Directory of Open Access Journals (Sweden)
Isnaeni Isnaeni
2016-09-01
Full Text Available Two-dimensional photonic crystal structures not only confine light and guide waves laterally but also reflect light in the normal direction due to a slow Bloch mode effect. However, evidence of the utilization of this structure as a mirror is required. Therefore, in this work, a simulation was made and experimental results were obtained to prove that there was an increase in the intensity of reflected CdSe colloidal quantum dots emission in the normal direction when a 2D photonic crystal structure was used. A thin TiO2 film was shaped into a two-dimensional photonic crystal structure using a simple sol-gel and polystyrene-mask-etching procedure. This structure was then placed on top of the thin CdSe quantum dots film layer. The emission of quantum dots onto the two-dimensional photonic crystal structure was compared to quantum dots emission onto a flat, thin TiO2 film. An increase in the quantum dots emission of up to 105% was in the presence of the two-dimensional photonic crystal structure. This finding is very useful for photonic device applications, such as light-emitting diodes, laser systems and bio-tagging detection systems.
Energy Technology Data Exchange (ETDEWEB)
Fathollahi Khalkhali, T., E-mail: tfathollahi@aeoi.org.ir; Bananej, A.
2016-12-16
In this study, we analyze complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals with triangular and square lattices, composed of plasma rods with different geometrical shapes in the anisotropic tellurium background. Using the finite-difference time-domain method we discuss the maximization of the complete photonic band gap width as a function of plasma frequency and plasma rods parameters with different shapes and orientations. The numerical results demonstrate that our proposed structures represent significantly wide complete photonic band gaps in comparison to previously studied dielectric-plasma photonic crystals. - Highlights: • In this paper, we have investigated plasma photonic crystals. • Plasma is a kind of dispersive medium with its equivalent refractive index related to the frequency of an incident EM wave. • In this work, our simulations are performed using the Meep implementation of the finite-difference time-domain (FDTD) method. • For this study, the lattice structures investigated are triangular and square. • Extensive calculations reveal that almost all of these structures represent wide complete band gaps.
Fabrication of an Omnidirectional 2D Photonic Crystal Emitter for Thermophotovoltaics
Stelmakh, V.; Chan, W. R.; Ghebrebrhan, M.; Soljacic, M.; Joannopoulos, J. D.; Celanovic, I.
2016-11-01
In a thermophotovoltaic (TPV) system, a heat source brings an emitter to incandescence and the spectrally confined thermal radiation is converted to electricity by a low-bandgap photovoltaic (PV) cell. Efficiency is dominated by the emitter's ratio of in-band emissivity (convertible by the PV cell) to out-of-band emissivity (inconvertible). Two-dimensional photonic crystals (PhCs) offer high in-band emissivity and low out-of-band emissivity at normal incidence, but have reduced in-band emissivity off-normal. According to Lambert's law, most thermal radiation occurs off-normal. An omnidirectional PhC capable of high in-band emissivity at all angles would increase total in-band power by 55% at 1200°C. In this work, we present the first experimental demonstration an omnidirectional hafnia-filled 2D tantalum PhC emitter suitable for TPV applications such as combustion, radioisotope, and solar TPV. Dielectric filling improved the hemispherical performance without sacrificing stability or ease of fabrication. The numerical simulations, fabrication processes, and optical and thermal characterizations of the PhC are presented in this paper.
Kim, Sejong
Photonic crystals (PC) are structures in which the refractive index is a periodic function in space. The ability of photonic crystals to localize and manipulate electromagnetic waves has attracted considerable attention from the scientific community. The self-assembly of monodisperse micrometer scale colloidal spheres into hexagonal closed-packed colloidal crystals provides a simple, fast, and cheap materials chemistry approach to PCs. Employing DNA supramolecular recognition, 2-dimensional (2D) photonic crystal monolayer was fabricated with monodisperse polystyrene colloidal microspheres. Amine-terminated DNA oligomers were covalently attached onto carboxy-decorated microspheres and enabled their DNA-functionalization while preserving their colloidal stability and organization properties. Following a capillary-force-assisted organization of DNA-decorated microspheres into close-packed 2D opaline arrays, the first monolayer was immobilized by DNA hybridization. Insertion of vacancies at predetermined sites within the lattice of colloidal crystals is a prerequisite in order to realize high-quality, opaline-based photonic devices. The previously obtained DNA-hybridization type binding of 2D-opaline arrays provides a heat-sensitive "adhesive" between substrate and microspheres within a surrounding aqueous medium that enables tuning the hybridization strength of DNA linker as well as a mechanism to facilitate the removal of unbound microspheres. Focusing a laser beam onto a single microsphere of the opaline array induces localized heating that enables the microsphere to detach, leaving behind vacancies. By repeating this process, line vacancies were successfully obtained. The effects of salt concentration, laser power, light-absorbing dyes, DNA length and refractive index mismatch were investigated and found to correlate with heat-induced DNA dehybridization. In addition, AC (alternating current) electrokinetic force was also utilized to obtain assembly of colloidal
Zhao, Li-Ming; Zhou, Yun-Song; Wang, Ai-Hua
2017-02-01
Second harmonic generation (SHG) in a two-dimensional (2D) nonlinear photonic crystal (NPC) with finite width along z-direction that is embedded in air is investigated, without adopting the traditional approximations such as a plane-wave approximation (PWA) and slowly varying amplitude approximation (SVAA). The so-called quasi-phase-matching (QPM) and the corresponding SHG conversion efficiency can be modulated significantly by the field of fundamental wave (FW). It is assumed that the incident light, along z-direction, is normally launched upon the surface of the sample, and QPM for different directions is investigated. It is found that the QPM shows significant differences, compared with the traditional QPM along the two different directions: in the direction of finite width of the sample, the peak value of SHG conversion efficiency is deviated from the traditional case and it gets to its peak values when the transmittance resonance occurs. However, in the other direction, the deviation from the traditional QPM arises from the field modulation of the second harmonic wave (SHW) and in this direction, it is investigated that the full width at half maximum of QPM is much wider than that in the direction of finite width of the sample. These results can be used to provide a theoretical guidance for achieving QPM SHG.
Fine structure of fields in 2D photonic crystal waveguides
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Volkov, V. S.; Bozhevolnyi, S. I.
2006-01-01
We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis.......We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis....
Fine structure of fields in 2D photonic crystal waveguides
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Volkov, V. S.; Bozhevolnyi, S. I.
2006-01-01
We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis....
Energy Technology Data Exchange (ETDEWEB)
Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com; Dusad, Lalit Kumar [Government Engineering College Ajmer, Rajasthan (India); Rajasthan Technical University, Kota, Rajasthan (India)
2016-05-06
In this paper, the design & performance of two dimensional (2-D) photonic crystal structure based channel drop filter is investigated using quad shaped photonic crystal ring resonator. In this paper, Photonic Crystal (PhC) based on square lattice periodic arrays of Gallium Indium Phosphide (GaInP) rods in air structure have been investigated using Finite Difference Time Domain (FDTD) method and photonic band gap is being calculated using Plane Wave Expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength λ= 1571 nm by varying the rods lattice constant. The number of rods in Z and X directions is 21 and 20, with lattice constant 0.540 nm it illustrates that the arrangement of Gallium Indium Phosphide (GaInP) rods in the structure which gives the overall size of the device around 11.4 µm × 10.8 µm. The designed filter gives good dropping efficiency using 3.298, refractive index. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.
Energy Technology Data Exchange (ETDEWEB)
Tosch, U.; Witt, H. (Freie Univ. Berlin (Germany, F.R.). Roentgendiagnostisches Zentralinstitut); Hertel, P.; Lais, E. (Freie Univ. Berlin (Germany, F.R.). Unfallchirurgische Klinik)
1989-11-01
Fifty-eight patients underwent intraarticular reconstruction of the anterior cruciate ligament. This was performed by using an autogenous transplant from the mid portion of the patellar ligament with a proximal and distal bone block, as described by Hertel. For comparison with the conventional X-ray examination, HRCT was performed to study the early postoperative results. In four patients (7%) dislocation of the bone block in the femoral condyle was seen. Two-dimensional reconstruction proved to be a satisfactory method for demonstration of the exact position of the autogenous transplant in both coronary and sagittal planes. (orig.).
Microwave plasma formation within a 2D photonic crystal
Parsons, Stephen; Gregório, José; Hopwood, Jeffrey
2017-05-01
Experiments demonstrate that an electromagnetic wave incident on a photonic crystal (PhC) containing a single point-defect causes gas breakdown. After breakdown we report the formation of a stable microwave plasma within this free-space vacancy. We show that gas breakdown is possible in low-pressure argon (10 Torr) using as little as 1.4 W of microwave power if the frequency of the incident wave is equal to the resonance of the vacancy (8.614 GHz). During formation, the plasma-filled defect decreases the transmission of energy through the photonic crystal by approximately two orders of magnitude. Plasma formation time is measured to be as fast as 100 ns at relatively high power (9 W). Using the transmission of energy through the PhC as a diagnostic tool, we report that the electron density of the microwave plasma is 1016-1017 m-3 for argon pressures between 10 and 50 Torr. Finally, we consider the application of the self-initiated plasma within the PhC as a simple power limiter.
Robinson, Nicholas P
2013-01-01
Branched DNA molecules are generated by the essential processes of replication and recombination. Owing to their distinctive extended shapes, these intermediates migrate differently from linear double-stranded DNA under certain electrophoretic conditions. However, these branched species exist in the cell at much low abundance than the bulk linear DNA. Consequently, branched molecules cannot be visualized by conventional electrophoresis and ethidium bromide staining. Two-dimensional native-native agarose electrophoresis has therefore been developed as a method to facilitate the separation and visualization of branched replication and recombination intermediates. A wide variety of studies have employed this technique to examine branched molecules in eukaryotic, archaeal, and bacterial cells, providing valuable insights into how DNA is duplicated and repaired in all three domains of life.
Design and analysis of dual ring resonator based 2D-photonic crystal WDDM
Venkatachalam, K.; Robinson, S.; Kumar, D. Sriram
2017-06-01
In this paper, four channel 2D Photonic Crystal (PC) based Wavelength Division Demultiplexer (WDDM) using 2D-Photonic Crystal is proposed and designed. The important functional parameters of the proposed demultiplexer such as transmission efficiency, Q factor and resonant wavelength are analyzed. The Plane Wave Expansion (PWE) method and Finite Difference Time Domain (FDTD) method are employed to calculate the photonic band gap and normalized output spectrum of the proposed demultiplexer. The average transmission efficiency and Q factor of this proposed device is about 93% and 781, respectively. The overall size of the demultiplexer is around 681 µm2 which will be suitable for integrated optics for future all optical networks.
Kondo, Tadashi; Hirohashi, Setsuo
2006-01-01
Proteome data combined with histopathological information provides important, novel clues for understanding cancer biology and reveals candidates for tumor markers and therapeutic targets. We have established an application of a highly sensitive fluorescent dye (CyDye DIGE Fluor saturation dye), developed for two-dimensional difference gel electrophoresis (2D-DIGE), to the labeling of proteins extracted from laser microdissected tissues. The use of the dye dramatically decreases the protein amount and, in turn, the number of cells required for 2D-DIGE; the cells obtained from a 1 mm2 area of an 8-12 microm thick tissue section generate up to 5,000 protein spots in a large-format 2D gel. This protocol allows the execution of large-scale proteomics in a more efficient, accurate and reproducible way. The protocol can be used to examine a single sample in 5 d or to examine hundreds of samples in large-scale proteomics.
Parchine, Mikhail; McGrath, Joe; Bardosova, Maria; Pemble, Martyn E
2016-06-14
We present our results on the fabrication of large area colloidal photonic crystals on flexible poly(ethylene terephthalate) (PET) film using a roll-to-roll Langmuir-Blodgett technique. Two-dimensional (2D) and three-dimensional (3D) colloidal photonic crystals from silica nanospheres (250 and 550 nm diameter) with a total area of up to 340 cm(2) have been fabricated in a continuous manner compatible with high volume manufacturing. In addition, the antireflective properties and structural integrity of the films have been enhanced via the use of a second roll-to-roll process, employing a slot-die coating of an optical adhesive over the photonic crystal films. Scanning electron microscopy images, atomic force microscopy images, and UV-vis optical transmission and reflection spectra of the fabricated photonic crystals are analyzed. This analysis confirms the high quality of the 2D and 3D photonic crystals fabricated by the roll-to-roll LB technique. Potential device applications of the large area 2D and 3D colloidal photonic crystals on flexible PET film are briefly reviewed.
Energy Technology Data Exchange (ETDEWEB)
Biffle, J.H.; Blanford, M.L.
1994-05-01
JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
Institute of Scientific and Technical Information of China (English)
DAI Tao; ZHU Xing; ZHANG Bei; ZHANG Zhen-Sheng; LIU Dan; WANG Xiao; BAO Kui; KANG Xiang-Ning; XU Jun; Yu Da-Peng
2007-01-01
A two-dimensional array of dodecagonal photonic quasicrystal(12PQC)is fabricated on the surface of current injected GaN-based LEDs to out-couple guided modes.The spatially-resolved surface light extraction mapping of 12PQC is observed and compared with that of triangular lattice photonic crystal (3PC)by microscopic electrical luminescence and scanning near-field microscopy.The higher enhancement factor of 12PQC is obtained to be larger than that of 3PC.It is shown that 12PQC is more favourable and efficient for light extraction of guided lights.
DEFF Research Database (Denmark)
Julsgaard, Brian; Johansen, Jeppe; Stobbe, Søren
2008-01-01
We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quantum dots’ spontaneous emission rates as the two-...... the bandgap in good agreement with local density of states calculations.......We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quantum dots’ spontaneous emission rates as the two...
Jiang, Qiang; Chen, Jiabi; Wang, Yan; Liang, Binming; Hu, Jinbing; Zhuang, Songlin
2016-04-01
Although the inverse Doppler effect has been observed experimentally at optical frequencies in photonic crystal with negative effective refractive index, its explanation is based on phenomenological theory rather than a strict theory. Elucidating the physical mechanism underlying the inverse Doppler shift is necessary. In this article, the primary electrical field component in the photonic crystal that leads to negative refraction was extracted, and the phase evolution of the entire process when light travels through a moving photonic crystal was investigated using static and dynamic finite different time domain methods. The analysis demonstrates the validity of the use of np (the effective refractive index of the photonic crystal in the light path) in these calculations, and reveals the origin of the inverse Doppler effect in photonic crystals.
Polymeric THz 2D Photonic Crystal Filters Fabricated by Fiber Drawing
DEFF Research Database (Denmark)
Stecher, Matthias; Jansen, Christian; Ahmadi-Boroujeni, Mehdi
2012-01-01
In this paper, we report on a new form of polymeric 2D photonic crystal filters for THz frequencies fabricated using a standard fiber drawing technique. The band stop filters were modeled and designed using the generalized multipole technique. The frequency and angle-dependent transmission...
High intensity polarization entangled source with a 2D nonlinear photonic crystal
DEFF Research Database (Denmark)
Wang, Qin
2009-01-01
We gave a proposal on how to use a piece of two-dimension (2D) nonlinear photonic crystal to generate a polarization entangled source. It provides not only has a high stability, but also a high entangled quality and a high intensity. Moreover, our scheme involves only practical experimental...
Tunable defect modes in 2D photonic crystals by means of external magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Soltani Vala, A., E-mail: asoltani@tabrizu.ac.i [Physics Department, University of Tabriz, Tabriz (Iran, Islamic Republic of); Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of); Rezaei, B. [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of); Kalafi, M. [Physics Department, University of Tabriz, Tabriz (Iran, Islamic Republic of); Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of)
2010-07-15
We investigate the tunable defect modes in 2D photonic crystal of silicon rods in air background in which one of the rods is replaced by ferrite material and an external static magnetic field is applied in the ferrite rod direction. Using the supercell method, the dependence of E-polarized defect modes on the magnetic field has been reported.
Lacava, C.; Carrol, L.; Bozzola, A.; Marchetti, R.; Minzioni, P.; Cristiani, I.; Fournier, M.; Bernabe, S.; Gerace, D.; Andreani, L. C.
2016-03-01
We present the characterization of Silicon-on-insulator (SOI) photonic-crystal based 2D grating-couplers (2D-GCs) fabricated by CEA-Leti in the frame of the FP7 Fabulous project, which is dedicated to the realization of devices and systems for low-cost and high-performance passives-optical-networks. On the analyzed samples different test structures are present, including 2D-GC connected to another 2D-GC by different waveguides (in a Mach-Zehnder like configuration), and 2D-GC connected to two separate 2D-GCs, so as to allow a complete assessment of different parameters. Measurements were carried out using a tunable laser source operating in the extended telecom bandwidth and a fiber-based polarization controlling system at the input of device-under-test. The measured data yielded an overall fiber-to-fiber loss of 7.5 dB for the structure composed by an input 2D-GC connected to two identical 2D-GCs. This value was obtained at the peak wavelength of the grating, and the 3-dB bandwidth of the 2D-GC was assessed to be 43 nm. Assuming that the waveguide losses are negligible, so as to make a worst-case analysis, the coupling efficiency of the single 2D-GC results to be equal to -3.75 dB, constituting, to the best of our knowledge, the lowest value ever reported for a fully CMOS compatible 2D-GC. It is worth noting that both the obtained values are in good agreement with those expected by the numerical simulations performed using full 3D analysis by Lumerical FDTD-solutions.
Terahertz all-optical NOR and AND logic gates based on 2D photonic crystals
Parandin, Fariborz; Karkhanehchi, Mohammad Mehdi
2017-01-01
Usually, photonic crystals are used in designing optical logic gates. This study focuses on the design and simulation of an all optical NOR and AND logic gates based on two dimensional photonic crystals. The simplicity of the proposed structure is a characteristic feature of this designation. Finite Difference Time Domain (FDTD) as well as Plane Wave Expansion (PWE) methods have been used for this structural analysis. The simulation results revealed an increase in the interval between "zero" and "one" logic levels. Also, the simple structure and its small size demonstrate the usefulness of this structure in optical integrated circuits. The proposed optical gates can operate with a bit rate of about 1.54 Tbit/s.
Guo, Shuai; Niu, Chunhui; Liang, Liang; Chai, Ke; Jia, Yaqing; Zhao, Fangyin; Li, Ya; Zou, Bingsuo; Liu, Ruibin
2016-01-01
Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way. PMID:27698465
Jiang, Liyong; Jia, Wei; Zheng, Gaige; Li, Xiangyin
2012-05-01
We proposed a novel two-dimensional photonic crystal slab comprised of a number of silicon rods with different radii and locations in the square-lattice unit cell pattern. Such rod-type photonic crystal slabs were automatically optimized by the genetic algorithm and fabricated on the silicon-on-insulator wafer. In particular, the measured transmission spectra of the five-rods sample have shown a large accepted high-order bandgap between 1498 and 1648 nm (gap size is 9.54%). Based on the theories of multiple Bragg and Mie scattering effects, we have given a reasonable explanation to the large high-order bandgaps found in the present study.
Burris, Paul C; Laage, Damien; Thompson, Ward H
2016-05-21
Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. The simulated spectra indicates that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.
Fontana, Y.; Grzela, G.; Bakkers, E.P.A.M.; Gomez Rivas, J.
2012-01-01
Controlling the dispersion and directionality of the emission of nanosources is one of the major goals of nanophotonics research. This control will allow the development of highly efficient nanosources even at the single-photon level. One of the ways to achieve this goal is to couple the emission to
Fabrication of 2D and 3D photonic structures using laser lithography
Gaso, P.; Jandura, D.; Pudis, D.
2016-12-01
In this paper we demonstrate possibilities of three-dimensional (3D) printing technology based on two photon polymerization. We used three-dimensional dip-in direct-laser-writing (DLW) optical lithography to fabricate 2D and 3D optical structures for optoelectronics and for optical sensing applications. DLW lithography allows us use a non conventional way how to couple light into the waveguide structure. We prepared ring resonator and we investigated its transmission spectral characteristic. We present 3D inverse opal structure from its design to printing and scanning electron microscope (SEM) imaging. Finally, SEM images of some prepared photonic crystal structures were performed.
Maj, Michał; Kwak, Kyungwon; Cho, Minhaeng
2015-11-16
Structural dynamics within the distal cavity of myoglobin protein is investigated using 2D-IR and IR pump-probe spectroscopy of the N≡C stretch modes of heme-bound thiocyanate and selenocyanate ions. Although myoglobin-bound thiocyanate group shows a doublet in its IR absorption spectrum, no cross peaks originating from chemical exchange between the two components are observed in the time-resolved 2D IR spectra within the experimental time window. Frequency-frequency correlation functions of the two studied anionic ligands are obtained by means of a few different analysis approaches; these functions were then used to elucidate the differences in structural fluctuation around ligand, ligand-protein interactions, and the degree of structural heterogeneity within the hydrophobic pocket of these myoglobin complexes.
Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali
2014-01-01
Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all detector optimization.
Institute of Scientific and Technical Information of China (English)
Wang Hua-Yong; Xu Xing-Sheng
2013-01-01
An electrically driven,single-longitudinal-mode GaAs based photonic crystal (PC) ridge waveguide (RWG) laser emitting at around 850 nm is demonstrated.The single-longitudinal-mode lasing characteristic is achieved by introducing the PC to the RWG laser.The triangle PC is etched on both sides of the ridge by photolithography and inductive coupled plasma (ICP) etching.The lasing spectra of the RWG lasers with and without the PC are studied,and the result shows that the PC purifies the longitudinal mode.The power per facet versus current and current-voltage characteristics have also been studied and compared.
Design & Analysis of Optical Lenses by using 2D Photonic Crystals for Sub-wavelength Focusing
Directory of Open Access Journals (Sweden)
Rajib Ahmed
2013-01-01
Full Text Available 2D Photonic lenses (Convex-Convex, Convex-Plane, Plane-Convex, Concave-Concave, Concave-plane, and PlaneConcave have been designed, simulated and optimized for optical communication using FDTD method. The effect of Crystal structures (Rectangular, Hexagonal, Face centered Cubic (FCC, Body centered Cubic (BCC, variation lattice constant (Λ, hole radius(r, reflective index (n, is demonstrated to get optimized parameters. Finally, with optimized parameters the effect of variation of lens radius on focal lengths and Electrical Field Intensity (Ey is analyzed. Like optical lens, the focal length of photonic lens is also increased with lens radii, has dependency on optical axis. Moreover, with optimized parameters, ConcaveConcave lens have been found as an optimal photonic lens that show sub-wavelength focusing with spatial resolutions-9.22439μm (Rectangular crystal, 7.379512μm (Hexagonal Crystal, 7.840732μm (FCC, BCC.
Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals
Energy Technology Data Exchange (ETDEWEB)
Maskaly, Karlene Rosera [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2005-06-01
Dielectric reflectors that are periodic in one or two dimensions, also known as 1D and 2D photonic crystals, have been widely studied for many potential applications due to the presence of wavelength-tunable photonic bandgaps. However, the unique optical behavior of photonic crystals is based on theoretical models of perfect analogues. Little is known about the practical effects of dielectric imperfections on their technologically useful optical properties. In order to address this issue, a finite-difference time-domain (FDTD) code is employed to study the effect of three specific dielectric imperfections in 1D and 2D photonic crystals. The first imperfection investigated is dielectric interfacial roughness in quarter-wave tuned 1D photonic crystals at normal incidence. This study reveals that the reflectivity of some roughened photonic crystal configurations can change up to 50% at the center of the bandgap for RMS roughness values around 20% of the characteristic periodicity of the crystal. However, this reflectivity change can be mitigated by increasing the index contrast and/or the number of bilayers in the crystal. In order to explain these results, the homogenization approximation, which is usually applied to single rough surfaces, is applied to the quarter-wave stacks. The results of the homogenization approximation match the FDTD results extremely well, suggesting that the main role of the roughness features is to grade the refractive index profile of the interfaces in the photonic crystal rather than diffusely scatter the incoming light. This result also implies that the amount of incoherent reflection from the roughened quarterwave stacks is extremely small. This is confirmed through direct extraction of the amount of incoherent power from the FDTD calculations. Further FDTD studies are done on the entire normal incidence bandgap of roughened 1D photonic crystals. These results reveal a narrowing and red-shifting of the normal incidence bandgap with
Liu, Zhengqi; Liu, Long; Lu, Haiyang; Zhan, Peng; Du, Wei; Wan, Mingjie; Wang, Zhenlin
2017-03-01
Recently, techniques involving random patterns have made it possible to control the light trapping of microstructures over broad spectral and angular ranges, which provides a powerful approach for photon management in energy efficiency technologies. Here, we demonstrate a simple method to create a wideband near-unity light absorber by introducing a dense and random pattern of metal-capped monodispersed dielectric microspheres onto an opaque metal film; the absorber works due to the excitation of multiple optical and plasmonic resonant modes. To further expand the absorption bandwidth, two different-sized metal-capped dielectric microspheres were integrated into a densely packed monolayer on a metal back-reflector. This proposed ultra-broadband plasmonic-photonic super absorber demonstrates desirable optical trapping in dielectric region and slight dispersion over a large incident angle range. Without any effort to strictly control the spatial arrangement of the resonant elements, our absorber, which is based on a simple self-assembly process, has the critical merits of high reproducibility and scalability and represents a viable strategy for efficient energy technologies.
Topological defects in two-dimensional crystals
Chen, Yong; Qi, Wei-Kai
2008-01-01
By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.
Studies on Inverse Opal and Two-Dimensional Nonlinear Photonic Crystals%反Opal及二维非线性光子晶体的研究
Institute of Scientific and Technical Information of China (English)
倪培根; 程丙英; 张道中
2006-01-01
通过向SiO2 Opal模板中填充钛酸乙酯制备TiO2光子晶体,观测到光子晶体带隙位置的移动达62nm,并发现光子晶体的有序度随填充率的升高而下降.向聚苯乙烯Opal模板中填充钛酸乙酯,制备成当时填充率最高、带隙最短的紫外波段TiO2反Opal光子晶体(中心波长～380nm),并根据测量的其透射谱估算出其填充率约为12%,即Opal模板孔隙的50%被填充.本文还对二维PPLN光子晶体进行了研究.建立了一套高压极化装置和电压数据采集装置,通过外加电场极化法成功制备出了具有正方形和矩形两种晶格形状二维PPLN光子晶体.利用二维PPLN的二阶准相位匹配,测量了其对1.064μm激光的二次谐波转换效率,并研究了晶体的温度、激光的入射角度及占空比对二次谐波转换效率的影响.利用矩形晶格实现了多方向、多波长倍频高效输出.%In this paper, we report some results on inverse opal photonic crystal and two-dimensional periodically poled lithium niobate photonic crystal. First, the process of infiltrating TiO2 into SiO2 Opal was systematically studied. Because of the infiltration of TiO2, the gap of SiO2 Opal was shifted to longer wavelength and a maximum shift of 62nm was observed. Furthermore, an inverse TiO2 Opal with larger filling fraction, ～ 12%, was fabricated, whose band gap in the Γ-L direction is located in the ultraviolet region ( ～ 380nm). Then two-dimensional nonlinear photonic crystals of lithium nlobate with uniform square lattices were fabricated by applying external electric fields. The variations of second-harmonic output with crystal temperatures, incident angles and reversed duty cycles were measured. Red, yellow,green, blue, and violet coherent radiations were generated in the nonlinear photonic crystal with rectangular lattice in the collinearly and non-collinearly quasi-phase matching geometries. The results showed that two-dimensional nonlinear photonic crystal
Collins, Gillian; Armstrong, Eileen; McNulty, David; O'Hanlon, Sally; Geaney, Hugh; O'Dwyer, Colm
2016-01-01
This perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic-photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided.
Optical properties of GaAs 2D hexagonal and cubic photonic crystal
Energy Technology Data Exchange (ETDEWEB)
Arab, F., E-mail: farab@CDTA.DZ; Assali, A.; Grain, R.; Kanouni, F. [Centre for Development of Advanced Technologies (CDTA) Research Unit in Optics and Photonics (UROP), University of Setif 1, El Bez, 19000 Setif (Algeria)
2015-03-30
In this paper we present our theoretical study of 2D hexagonal and cubic rods GaAs in air, with plan wave expansion (PWE) and finite difference time domain (FDTD) by using BandSOLVE and FullWAVE of Rsoft photonic CAD package. In order to investigate the effect of symmetry and radius, we performed calculations of the band structures for both TM and TE polarization, contour and electromagnetic propagation and transmission spectra. Our calculations show that the hexagonal structure gives a largest band gaps compare to cubic one for a same filling factor.
Nicolaou, Costa; Lau, Wah Tung; Gad, Raanan; Akhavan, Hooman; Schilling, Ryan; Levi, Ofer
2013-12-16
We demonstrate for the first time a 300nm thick, 300μm × 300μm 2D dielectric photonic crystal slab membrane with a quality factor of 10,600 by coupling light to slightly perturbed dark modes through alternating nano-hole sizes. The newly created fundamental guided resonances greatly reduce nano-fabrication accuracy requirements. Moreover, we created a new layer architecture resulting in electric field enhancement at the interface between the slab and sensing regions, and spectral sensitivity of >800 nm/RIU, that is, >0.8 of the single-mode theoretical upper limit of spectral sensitivity.
Inverse scattering of 2d photonic structures by layer-stripping
Andresen, Marte P Hatlo; Skaar, Johannes
2011-01-01
Design and reconstruction of 2d and 3d photonic structures are usually carried out by forward simulations combined with optimization or intuition. Reconstruction by means of layer-stripping has been applied in seismic processing as well as in design and characterization of 1d photonic structures such as fiber Bragg gratings. Layer-stripping is based on causality, where the earliest scattered light is used to recover the structure layer-by-layer. Our set-up is a 2d layered nonmagnetic structure probed by plane polarized harmonic waves entering normal to the layers. It is assumed that the dielectric permittivity in each layer only varies orthogonal to the polarization. Based on obtained reflectance data covering a suitable frequency interval, time-localized pulse data are synthesized and applied to reconstruct the refractive index profile in the leftmost layer by identifying the local, time-domain Fresnel reflection at each point. Once the first layer is known, its impact on the reflectance data is stripped off...
Endo, Tatsuro; Kajita, Hiroshi; Kawaguchi, Yukio; Kosaka, Terumasa; Himi, Toshiyuki
2016-06-01
The development of high-sensitive, and cost-effective novel biosensors have been strongly desired for future medical diagnostics. To develop novel biosensor, the authors focused on the specific optical characteristics of photonic crystal. In this study, a label-free optical biosensor, polymer-based two-dimensional photonic crystal (2D-PhC) film fabricated using nanoimprint lithography (NIL), was developed for detection of C-reactive protein (CRP) in human serum. The nano-hole array constructed NIL-based 2D-PhC (hole diameter: 230 nm, distance: 230, depth: 200 nm) was fabricated on a cyclo-olefin polymer (COP) film (100 µm) using thermal NIL and required surface modifications to reduce nonspecific adsorption of target proteins. Antigen-antibody reactions on the NIL-based 2D-PhC caused changes to the surrounding refractive index, which was monitored as reflection spectrum changes in the visible region. By using surface modified 2D-PhC, the calculated detection limit for CRP was 12.24 pg/mL at an extremely short reaction time (5 min) without the need for additional labeling procedures and secondary antibody. Furthermore, using the dual-functional random copolymer, CRP could be detected in a pooled blood serum diluted 100× with dramatic reduction of nonspecific adsorption. From these results, the NIL-based 2D-PhC film has great potential for development of an on-site, high-sensitivity, cost-effective, label-free biosensor for medical diagnostics applications.
A non-enzymatic urine glucose sensor with 2-D photonic crystal hydrogel.
Yan, Zequn; Xue, Min; He, Qian; Lu, Wei; Meng, Zihui; Yan, Dan; Qiu, Lili; Zhou, Lijun; Yu, Yingjie
2016-11-01
A novel polymerized crystalline colloidal array (PCCA) sensing material for the detection of urine glucose was developed by embedding a two-dimensional (2-D) polystyrene crystalline colloidal array (CCA) in 3-acrylamidophenylboronic acid (3-APBA)-functionalized hydrogel. After adjusting the cross-linker concentration, this material showed significant sensitivity for glucose under lab conditions, the particle spacing of the PCCA changed from 917 to 824 nm (93 nm) within 3 min as the glucose concentration increased from 0 to 10 mM, and the structural color of the PCCA changed from red through orange, to green, and finally, to cyan. In further experiments, this material was used to semi-quantitatively detect glucose in 20 human urine (HU) samples. Compared with the traditional dry-chemistry method, which was applied widely in clinical diagnosis, the PCCA method was more accurate and cost-effective. Moreover, this method can efficiently avoid the errors induced by most of the urine-interfering elements like vitamin C and ketone body. With a homemade portable optical detector, this low-cost intelligent sensing material can provide a more convenient and efficient strategy for the urine glucose detection in clinical diagnosis and point-of-care monitoring.
Collective, Coherent, and Ultrastrong Coupling of 2D Electrons with Terahertz Cavity Photons
Zhang, Qi; Li, Xinwei; Reno, John L; Pan, Wei; Watson, John D; Manfra, Michael J; Kono, Junichiro
2016-01-01
Nonperturbative coupling of light with condensed matter in an optical cavity is expected to reveal a host of coherent many-body phenomena and states. In addition, strong coherent light-matter interaction in a solid-state environment is of great interest to emerging quantum-based technologies. However, creating a system that combines a long electronic coherence time, a large dipole moment, and a high cavity quality ($Q$) factor has been a challenging goal. Here, we report collective ultrastrong light-matter coupling in an ultrahigh-mobility two-dimensional electron gas in a high-$Q$ terahertz photonic-crystal cavity in a quantizing magnetic field, demonstrating a cooperativity of $\\sim$360. The splitting of cyclotron resonance (CR) into the lower and upper polariton branches exhibited a $\\sqrt{n_\\mathrm{e}}$-dependence on the electron density ($n_\\mathrm{e}$), a hallmark of collective vacuum Rabi splitting. Furthermore, a small but definite blue shift was observed for the polariton frequencies due to the norma...
Design of a quasi-2D photonic crystal optomechanical cavity with tunable, large $x^2$-coupling
Kalaee, Mahmoud; Pfeifer, Hannes; Painter, Oskar
2016-01-01
We present the optical and mechanical design of a mechanically compliant quasi-two-dimensional photonic crystal cavity formed from thin-film silicon in which a pair of linear nanoscale slots are used to create two coupled high-$Q$ optical resonances. The optical cavity supermodes, whose frequencies are designed to lie in the $1500$~nm wavelength band, are shown to interact strongly with mechanical resonances of the structure whose frequencies range from a few MHz to a few GHz. Depending upon the symmetry of the mechanical modes and the symmetry of the slot sizes, we show that the optomechanical coupling between the optical supermodes can be either linear or quadratic in the mechanical displacement amplitude. Tuning of the nanoscale slot size is also shown to adjust the magnitude and sign of the cavity supermode splitting $2J$, enabling near-resonant motional scattering between the two optical supermodes and greatly enhancing the $x^2$-coupling strength. Specifically, for the fundamental flexural mode of the c...
Cirio, R.; Garelli, E.; Schulte, R.; Amerio, S.; Boriano, A.; Bourhaleb, F.; Coutrakon, G.; Donetti, M.; Giordanengo, S.; Koss, P.; Madon, E.; Marchetto, F.; Nastasi, U.; Peroni, C.; Santuari, D.; Sardo, A.; Scielzo, G.; Stasi, M.; Trevisiol, E.
2004-08-01
Two detectors for fast two-dimensional (2D) and quasi-three-dimensional (quasi-3D) verification of the dose delivered by radiotherapy beams have been developed at University and Istituto Nazionale di Fisica Nucleare (INFN) of Torino. The Magic Cube is a stack of strip-segmented ionization chambers interleaved with water-equivalent slabs. The parallel plate ionization chambers have a sensitive area of 24 × 24 cm2, and consist of 0.375 cm wide and 24 cm long strips. There are a total of 64 strips per chamber. The Magic Cube has been tested with the clinical proton beam at Loma Linda University Medical Centre (LLUMC), and was shown to be capable of fast and precise quasi-3D dose verification. The Pixel Ionization Chamber (PXC) is a detector with pixel anode segmentation. It is a 32 × 32 matrix of 1024 cylindrical ionization cells arranged in a square 24 × 24 cm2 area. Each cell has 0.4 cm diameter and 0.55 cm height, at a pitch of 0.75 cm separates the centre of adjacent cells. The sensitive volume of each single ionization cell is 0.07 cm3. The detectors are read out using custom designed front-end microelectronics and a personal computer-based data acquisition system. The PXC has been used to verify dynamic intensity-modulated radiotherapy for head-and-neck and breast cancers.
Burgess, Ian B; Loncar, Marko
2012-01-01
Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.
Burgess, Ian B; Aizenberg, Joanna; Lončar, Marko
2013-12-01
Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.
Energy Technology Data Exchange (ETDEWEB)
Choi, Won-Sik; Park, Si-Hyun [Yeungnam University, Gyeongsan (Korea, Republic of)
2014-05-15
We numerically simulated the light-extraction efficiency of light-emitting diodes (LEDs) with an integrated two-dimensional photonic crystal (PC) structure on the top surface in order to enhance light extraction. We considered InGaN-based LED chips with a typical emission wavelength of λ{sub o} = 460 nm and an emission wavelength inside the LED chip of λ = λ{sub 0}/n{sub GaN} , where n{sub GaN} is the refractive index of GaN. We used positive (relief) and negative (intaglio) patterns for the PC structures with square arrangements. The pattern period (Λ), width (d), and height (h) of the PC structure were varied systematically in the PC-LEDs; then the light-extraction efficiency of each PC-LED was simulated numerically using a three-dimensional finite-difference time-domain method to optimize the PC structure in terms of light extraction. The PC LED with a square pillar pattern with Λ ∼ 1.4λ, d ∼ 0.75Λ, and h ∼ 0.75Λ had the maximum light-extraction efficiency for positive patterns while the cylindrical hole pattern with Λ ∼ 1.2λ, d ∼ 0.5Λ, and h ∼ 0.5Λ had the maximum light-extraction efficiency for negative patterns.
2D photonic crystals on the Archimedean lattices (tribute to Johannes Kepler (1571 1630))
Gajić, R.; class="cross-out">D. Jovanović,
2008-03-01
Results of our research on 2D Archemedean lattice photonic crystals are presented. This involves the calculations of the band structures, band-gap maps, equifrequency contours and FDTD simulations of electromagnetic propagation through the structures as well as an experimental verification of negative refraction at microwaves. The band-gap dependence on dielectric contrast is established both for dielectric rods in air and air-holes in dielectric materials. A special emphasis is placed on possibilities of negative refraction and left-handedness in these structures. Together with the familiar Archimedean lattices like square, triangular, honeycomb and Kagome' ones, we consider also, the less known, (3 2, 4, 3, 4) (ladybug) and (3, 4, 6, 4) (honeycomb-ring) structures.
Li, Zhenyu; Abramavicius, Darius; Zhuang, Wei; Mukamel, Shaul
2007-11-15
The two dimensional (2D) photon echo spectrum of the amide ultraviolet (UV) bands of proteins are simulated. Two effective exciton Hamiltonian parameter sets developed by Woody and Hirst, which predict similar CD spectra, may be distinguished by their very different 2DUV spectra. These differences are enhanced in specific configurations of pulse polarizations which provide chirality-induced signals.
Two-Dimensional Planetary Surface Lander
Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.
2014-06-01
A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.
2D Saturable Absorbers for Fibre Lasers
Directory of Open Access Journals (Sweden)
Robert I. Woodward
2015-11-01
Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.
Coupled Mode Equation Modeling for Out-of-Plane Gap Solitons in 2D Photonic Crystals
Dohnal, Tomas
2012-01-01
Out-of-plane gap solitons in 2D photonic crystals are optical beams localized in the plane of periodicity of the medium and delocalized in the orthogonal direction, in which they propagate with a nonzero velocity. We study such gap solitons as described by the Kerr nonlinear Maxwell system. Using a model of the nonlinear polarization, which does not generate higher harmonics, we obtain a closed curl-curl problem for the fundamental harmonic of the gap soliton. For gap solitons with frequencies inside spectral gaps and in an asymptotic vicinity of a gap edge we use a slowly varying envelope approximation based on the linear Bloch waves at the edge and slowly varying envelopes. We carry out a systematic derivation of the coupled mode equations (CMEs) which govern the envelopes. This derivation needs to be carried out in Bloch variables. The CMEs are a system of coupled nonlinear stationary Schr\\"odinger equations with an additional cross derivative term. Examples of gap soliton approximations are numerically co...
Optical properties of GaAs 2D Archimedean photonic lattice tiling with the p4g symmetry
Directory of Open Access Journals (Sweden)
Jovanović Đ.
2008-01-01
Full Text Available In this paper we present our investigation of 2D Archimedean lattice photonic crystals with p4g space group symmetry. The structures are made of GaAs both as air holes and dielectric rods in air. In order to analyze the photonic crystal optical properties we performed calculations of the band structures, equi-frequency contours and electromagnetic propagation through the basic structures and waveguides. In addition, we investigated negative refraction and left-handedness in the p4g photonic crystal.
Institute of Scientific and Technical Information of China (English)
左新章; 张立同; 刘永胜; 成来飞; 龚慧灵
2013-01-01
Two dimensional C/SiC composite coated with Si-B-C ceramic was prepared via chemical vapor deposition (CVD).Properties and structure evolution and self-healing mechanisms of the C/SiC composite were studied after oxidation for 10 h during 700-1200 ℃.At the same time,the evolution of morphologies,composition and phase for Si-B-C ceramic were also investigated.The experimental results show that the oxidation of Si-B-C ceramic accelerates with the temperature increasing,however,the oxidation scale is shallow and no more than 7 μm.With the temperature increasing,viscosity of borosilicate glass oxidized from Si-B-C ceramic reduces but volatilization accelerates.When the temperature increases to 1200 ℃,SiO2 crystallizes from borosilicate glass.C/SiC composite coated with Si-B-C ceramic shows an excellent oxidation resistance.Mass loss increases with temperature increasing,which is only 0.47％ after oxidation for 10 h at 1200 ℃.Furthermore,the strength retention ratio is 91.6％ at 1000 ℃,higher than that at other temperatures.The main mechanisms for excellent oxidation resistance of C/SiC composite is that borosilicatc glass oxidized from Si-B-C ceramic can seal cracks in composite effectively.%利用化学气相沉积(CVD)法制备了Si-B-C陶瓷涂敷改性的2D C/SiC复合材料,研究了其在700～1200℃氧化10 h性能和结构的演变规律以及自愈合机制,同时获得了Si-B-C涂层在不同温度氧化后的形貌、组分和物相转变规律.结果表明:涂敷在复合材料表面的Si-B-C陶瓷随温度的升高氧化加快,但氧化程度较低,不深于7μm;随温度的升高,氧化形成的硅硼玻璃黏度降低,挥发增强；当温度达到1200℃时,硅硼玻璃析出SiO2晶体；Si-B-C陶瓷涂敷改性的C/SiC具有优良的抗氧化性能,随氧化温度的升高,复合材料失重率增加,但在1200℃氧化10h后失重率仅为0.47％;此外材料在1000℃氧化后的强度保持率最高,达到91.6％,Si-B-C陶瓷氧化形
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
Investigation of 2D laterally dispersive photonic crystal structures : LDRD 33602 final report.
Energy Technology Data Exchange (ETDEWEB)
Subramania,Ganapathi Subramanian; Vawter, Gregory Allen; Wendt, Joel Robert; Peake, Gregory Merwin; Guo, Junpeng; Peters, David William; Hadley, G. Ronald
2003-12-01
Artificially structured photonic lattice materials are commonly investigated for their unique ability to block and guide light. However, an exciting aspect of photonic lattices which has received relatively little attention is the extremely high refractive index dispersion within the range of frequencies capable of propagating within the photonic lattice material. In fact, it has been proposed that a negative refractive index may be realized with the correct photonic lattice configuration. This report summarizes our investigation, both numerically and experimentally, into the design and performance of such photonic lattice materials intended to optimize the dispersion of refractive index in order to realize new classes of photonic devices.
Two-dimensional subwavelength plasmonic lattice solitons
Ye, F; Hu, B; Panoiu, N C
2010-01-01
We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai
Institute of Scientific and Technical Information of China (English)
张中杰; 沈义峰; 赵浩
2015-01-01
利用偶然简并方法在二维正方格子介质环形柱结构光子晶体中成功实现了Dirac点，并利用平面波展开法对实现Dirac点的过程进行了研究.研究结果表明，对于二维正方格子介质环形柱结构光子晶体，在一定的外径RO范围内(0.37a1.4)，介质环内径RI与外径RO满足一个不随介质环折射率n变化的恒定关系式.同时， Dirac点对应的光子约化频率f随折射率n及外径RO的增大而减小.利用所得的关系式对特定介质环折射率n条件下能实现Dirac点的环形光子晶体进行了预判设计.%The Dirac cones in photonic crystals have aroused much interest in the last few years. Annular photonic crystals have also been well studied for designing and controlling the band gap because they have more parameters than usual photonic crystal. In this paper, we study a two-dimensional square lattice dielectric annular photonic crystal to explore the formation of the photonic Dirac cone by the accidental degeneracy method. The theoretical tool is the plane wave expansion method. The results show that this system can provide a Dirac point in the center of the Brillouin-zone in the photonic band if both the outer radius and the inner radius of each scatterer are chosen to be appreciate values when the dielectric refractive index of the annular rod is fixed. For example, there is a Dirac point at the photonic normalized frequency f = 0.438(c/a) when n = 3.4, RO = 0.42a, RI = 0.305a, where f is the frequency, c is the light speed in vacuum, a is the lattice constant, n is the refractive index, RO is the outer radius, and RI is the inner radius. It is also found that within a confined region of outer radius RO(0.37a 1.4), the inner radius RI and the outer radius RO obey a relation of RI =−1.104+8.167RO+(−11.439)R2O, which is unrelated to the refractive index n of the dielectric annular rod. If n is less than 1.4, this rule is not valid. At the same time, the normalized
Local doping of two-dimensional materials
Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.
2016-09-20
This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.
Energy Technology Data Exchange (ETDEWEB)
Kabat, D.; Nahajowski, D.; Gora, E.; Rozwadowska-Bogusz, B.; Lesiak, J.; Polak, B. [Centre of Oncology, Maria Sklodowska-Curie Memorial Institute, Krakow Branch, Garncarska 11, 31-115 Krakow (Poland); Czopyk, L.; Olko, P. [Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN), Krakow (Poland); Waligorski, M.P.R. [Centre of Oncology, Maria Sklodowska-Curie Memorial Institute, Krakow Branch, Garncarska 11, 31-115 Krakow (Poland); Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN), Krakow (Poland)], E-mail: z5waligo@cyf-kr.edu.pl
2008-02-15
A two-dimensional (2-D) thermoluminescence (TL) dosimetry system consisting of LiF:Mg,Cu,P (MCP-N)-ETFE (Teflon)-based TL foils and a large-area TLD reader equipped with a CCD camera, has been developed at the Institute of Nuclear Physics (IFJ PAN). At our radiotherapy department we tested the applicability of this system to verify 2-D dose distributions in a multileaf collimator-shaped 6 MV radiotherapy beam of size about 3x3cm{sup 2}. Water-immersible TL foils, of size 50x50mm{sup 2}, c. 0.2 mm thickness and density 1.95g/cm{sup 3} were placed in a water phantom and exposed at different depths, across or along the beam axis, read out using a 2-D TL reader equipped with a CCD camera and processed by reader software, yielding respective beam dose profiles in digital matrix form. We were also able to further process these matrices with the software of the therapy planning system (TPS) which we use routinely for clinical purposes. Satisfactory agreement found between dose distributions measured as percent depth dose or transverse beam profiles at different depths and respective distributions calculated by the TPS, confirms that the 2-D TL dosimetry is a promising technique for quality assurance of radiotherapy beams where steep dose gradients may occur over small field areas.
Institute of Scientific and Technical Information of China (English)
李未; 陈小玲
2011-01-01
利用二维三角晶格介质柱光子晶体TE偏振的禁带与介质柱半径的变化关系,分析了二维光子晶体的带隙分布及斜边耦合特性.结果表明,光子禁带的大小受到构成光子晶体的介电材料的空间排列分布以及介质柱半径大小的影响;束缚在光子晶体中的光波可以在波导和谐振腔中进行传输,达到选择输出光波的目的.%The paper study the relation between two dimensional triangular lattice photonic crystal band gap for TE polarizationand dielectric cylinder radius, and study distribution of two dimensional photonic crystal defect state. Results show, the photonic crystal band gaps were distributed by dielectric material space distribution and medium size of the radius; Tied in the photon crystals of light waves can transmission in waveguides and resonator cavity to select the output of light waves.
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
AFM-Patterned 2-D Thin-Film Photonic Crystal Analyzed by Complete Angle Scatter
2010-03-01
Scatter Distribution Function of Photonic Crystals,” Air Force Institute of Technology, Dayton, OH, Thesis 2009. [5] I. Prieto , B. Galiana, P. A... Francisco : Addison Wesley, 2002. 76 [38] Bahaa E. A. Saleh and Malvin Carl Teich, Fundamentals of Photonics, 2nd ed. Hoboken: Wiley, 2007. [39
Luo, X. W.; Xu, P.; Sun, C. W.; Jin, H.; Hou, R. J.; Leng, H. Y.; Zhu, S. N.
2017-06-01
Concurrent spontaneous parametric down-conversion (SPDC) processes have proved to be an appealing approach for engineering the path-entangled photonic state with designable and tunable spatial modes. In this work, we propose a general scheme to construct high-dimensional path entanglement and demonstrate the basic properties of concurrent SPDC processes from domain-engineered quadratic nonlinear photonic crystals, including the spatial modes and the photon flux, as well as the anisotropy of spatial correlation under noncollinear quasi-phase-matching geometry. The overall understanding about the performance of concurrent SPDC processes will give valuable references to the construction of compact path entanglement and the development of new types of photonic quantum technologies.
Imaging hemodynamic changes in preterm infant brains with two-dimensional diffuse optical tomography
Gao, Feng; Ma, Yiwen; Yang, Fang; Zhao, Huijuan; Jiang, Jingying; Kusaka, Takashi; Ueno, Masanori; Yamada, Yukio
2008-02-01
We present our preliminary results on two-dimensional (2-D) optical tomographic imaging of hemodynamic changes of two preterm infant brains in different ventilation settings conditions. The investigations use the established two-wavelength, 16-channel time-correlated single photon counting system for the detection, and the generalized pulse spectrum technique based algorithm for the image reconstruction. The experiments demonstrate that two-dimensional diffuse optical tomography may be a potent and relatively simple way of investigating the functions and neural development of infant brains in the perinatal period.
Lempert, W.; Kumar, V.; Glesk, I.; Miles, R.; Diskin, G.
1991-01-01
The use of a tunable ArF laser at 193.26 nm to record simultaneous single-laser-shot, planar images of molecular hydrogen and hot oxygen in a turbulent H2-air diffusion flame. Excitation spectra of fuel and oxidant-rich flame zones confirm a partial overlap of the two-photon H2 and single-photon O2 Schumann-Runge absorption bands. UV Rayleigh scattering images of flame structure and estimated detection limits for the H2 two-photon imaging are also presented.
Two-dimensional multiferroics in monolayer group IV monochalcogenides
Wang, Hua; Qian, Xiaofeng
2017-03-01
Low-dimensional multiferroic materials hold great promises in miniaturized device applications such as nanoscale transducers, actuators, sensors, photovoltaics, and nonvolatile memories. Here, using first-principles theory we predict that two-dimensional (2D) monolayer group IV monochalcogenides including GeS, GeSe, SnS, and SnSe are a class of 2D semiconducting multiferroics with giant strongly-coupled in-plane spontaneous ferroelectric polarization and spontaneous ferroelastic lattice strain that are thermodynamically stable at room temperature and beyond, and can be effectively modulated by elastic strain engineering. Their optical absorption spectra exhibit strong in-plane anisotropy with visible-spectrum excitonic gaps and sizable exciton binding energies, rendering the unique characteristics of low-dimensional semiconductors. More importantly, the predicted low domain wall energy and small migration barrier together with the coupled multiferroic order and anisotropic electronic structures suggest their great potentials for tunable multiferroic functional devices by manipulating external electrical, mechanical, and optical field to control the internal responses, and enable the development of four device concepts including 2D ferroelectric memory, 2D ferroelastic memory, and 2D ferroelastoelectric nonvolatile photonic memory as well as 2D ferroelectric excitonic photovoltaics.
2D materials for nanophotonic devices
Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui
2015-12-01
Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.
Two-dimensional optical tomography of hemodynamic changes in a preterm infant brain
Gao, Feng; Xue, Yuan; Zhao, Huijuan; Kusaka, Takashi; Ueno, Masanori; Yamada, Yukio
2007-08-01
Our preliminary results on two-dimensional (2D) optical tomographic imaging of hemodynamic changes in a preterm infant brain are reported. We use the established 16-channel time-correlated single photon counting system for the detection and generalized pulse spectrum technique based algorithm for the image reconstruction. The experiments demonstrate that diffuse optical tomography may be a potent means for investigating brain functions and neural development of infant brains in the perinatal period.
Two-dimensional optical tomography of hemodynamic changes in a preterm infant brain
Institute of Scientific and Technical Information of China (English)
Feng Gao; Yuan Xue; Huijuan Zhao; Takashi Kusaka; Masanori Ueno; Yukio Yamada
2007-01-01
Our preliminary results on two-dimensional (2D) optical tomographic imaging of hemodynamic changes in a preterm infant brain are reported. We use the established 16-channel time-correlated single photon counting system for the detection and generalized pulse spectrum technique based algorithm for the image reconstruction. The experiments demonstrate that diffuse optical tomography may be a potent means for investigating brain functions and neural development of infant brains in the perinatal period.
Optimization of band gaps of 2D photonic crystals by the rapid generic algorithm
Institute of Scientific and Technical Information of China (English)
SUN Yun-tao
2011-01-01
@@ Based on the rapid genetic algorithm (RGA), the band gap structures of square lattices with square scatters are optimized.In the optimizing process, gene codes are used to express square scatters and the fitting function adopts the relative values of the largest absolute photonic band gaps (PBGs).By changing the value of filling factor, three cell forms with large photonic band gaps are obtained.In addition, the comparison between the rapid genetic algorithm and the general genetic algorithm (GGA) is analyzed.
High-Q Defect-Free 2D Photonic Crystal Cavity from Random Localised Disorder
Directory of Open Access Journals (Sweden)
Kelvin Chung
2014-07-01
Full Text Available We propose a high-Q photonic crystal cavity formed by introducing random disorder to the central region of an otherwise defect-free photonic crystal slab (PhC. Three-dimensional finite-difference time-domain simulations determine the frequency, quality factor, Q, and modal volume, V, of the localized modes formed by the disorder. Relatively large Purcell factors of 500–800 are calculated for these cavities, which can be achieved for a large range of degrees of disorders.
Extreme group index measured and calculated in 2D SOI-based photonic crystal waveguides
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Jacobsen, Rune Shim; Fage-Pedersen, Jacob;
2005-01-01
lattice of air-holes in the 216-nm thick silicon layer in an SOI material. Experimental transmission spectra show a mode cut-off around 1562.5 nm for the fundamental photonic bandgap mode. In order to measure and model the group index of modes in the PCW, a time-of-flight (ToF) method is applied....
Mapping the broadband polarization properties of linear 2D SOI photonic crystal waveguides
DEFF Research Database (Denmark)
Canning, John; Skivesen, Nina; Kristensen, Martin;
2007-01-01
cut-off. We also observe relatively broadband mixing between the two eigenstates to generate a complete photonic bandgap. By careful analysis of the output polarisation state we report on an inherent non-reciprocity between quasi TE and TM fundamental mode cross coupling. The nature of polarisation...
A statistical approach for measuring dislocations in 2D photonic crystals
DEFF Research Database (Denmark)
Malureanu, Radu; Frandsen, Lars Hagedorn
2008-01-01
In this paper, a comparison between the placement accuracy of lattice atoms in photonic crystal structures fabricated with different lithographic techniques is made. Using atomic force microscopy measurements and self-developed algorithms for calculating the holes position within less than 0.01nm...
Lan, Yue; Wang, Shiqiang; Yin, Xianpeng; Liang, Yun; Dong, Hao; Gao, Ning; Li, Jian; Wang, Hui; Li, Guangtao
2016-07-01
Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub-micron bowls on a flat gold surface was proposed, prepared, and theoretically and experimentally characterized. This hybrid structure supports two types of modes: surface plasmon polaritons bound at the metallic surface and waveguided mode of light confined in the cavity of bowls. Optical responses of this hybrid structure as well as the spatial electric field distribution of each mode are found to be strongly dependent on the structural parameters of this system, and thus could be widely modified on demand. Importantly, compared to the widely studied hybrid systems, namely the flat metallic surface coated with a monolayer array of latex spheres, the waveguided mode with strong field enhancement appearing in the cavities of bowls is more facilely accessible and thus suitable for practical use. For demonstration, a 2D-ordered silica sub-micron bowl array deposited on a flat gold surface was fabricated and used as a regenerable platform for fluorescence enhancement by simply accommodating emitters in bowls. All the simulation and experiment results indicate that the 2D-ordered dielectric sub-micron bowls on a metal surface should be a useful hybrid plasmonic-photonic system with great potential for applications such as sensors or tunable emitting devices if appropriate periods and materials are employed.Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub
Lan, Yue; Wang, Shiqiang; Yin, Xianpeng; Liang, Yun; Dong, Hao; Gao, Ning; Li, Jian; Wang, Hui; Li, Guangtao
2016-07-21
Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub-micron bowls on a flat gold surface was proposed, prepared, and theoretically and experimentally characterized. This hybrid structure supports two types of modes: surface plasmon polaritons bound at the metallic surface and waveguided mode of light confined in the cavity of bowls. Optical responses of this hybrid structure as well as the spatial electric field distribution of each mode are found to be strongly dependent on the structural parameters of this system, and thus could be widely modified on demand. Importantly, compared to the widely studied hybrid systems, namely the flat metallic surface coated with a monolayer array of latex spheres, the waveguided mode with strong field enhancement appearing in the cavities of bowls is more facilely accessible and thus suitable for practical use. For demonstration, a 2D-ordered silica sub-micron bowl array deposited on a flat gold surface was fabricated and used as a regenerable platform for fluorescence enhancement by simply accommodating emitters in bowls. All the simulation and experiment results indicate that the 2D-ordered dielectric sub-micron bowls on a metal surface should be a useful hybrid plasmonic-photonic system with great potential for applications such as sensors or tunable emitting devices if appropriate periods and materials are employed.
Directory of Open Access Journals (Sweden)
N. Dadashzadeh
2013-09-01
Full Text Available Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We provide an overview of recent theoretical developments in a numerical modeling of Maxwell's equations to analyze the propagation of short laser pulses in photonic structures. The process of short light pulse propagation through 2D periodic and quasi-periodic photonic structures is simulated based on Finite-Difference Time-Domain calculations of Maxwell’s equations.
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
A two-dimensional Dirac fermion microscope
DEFF Research Database (Denmark)
Bøggild, Peter; Caridad, Jose; Stampfer, Christoph
2017-01-01
in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...
Gate-induced superconductivity in two-dimensional atomic crystals
Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro
2016-09-01
Two-dimensional (2D) crystals are attracting growing interest in condensed matter physics, since these systems exhibit not only rich electronic and photonic properties but also exotic electronic phase transitions including superconductivity and charge density wave. Moreover, owing to the recent development of transfer methods after exfoliation and electric-double-layer transistors, superconducting 2D atomic crystals, the thicknesses of which are below 1-2 nm, have been successfully obtained. Here, we present a topical review on the recent discoveries of 2D crystalline superconductors by ionic-liquid gating and a series of their novel properties. In particular, we highlight two topics; quantum metallic states (or possible metallic ground states) and superconductivity robust against in-plane magnetic fields. These phenomena can be discussed with the effects of weakened disorder and/or broken spacial inversion symmetry leading to valley-dependent spin-momentum locking (spin-valley locking). These examples suggest the superconducting 2D crystals are new platforms for investigating the intrinsic quantum phases as well as exotic nature in 2D superconductors.
Tuning the Structural Color of a 2D Photonic Crystal Using a Bowl-like Nanostructure.
Umh, Ha Nee; Yu, Sungju; Kim, Yong Hwa; Lee, Su Young; Yi, Jongheop
2016-06-22
Structural colors of the ordered photonic nanostructures are widely used as an effective platform for manipulating the propagation of light. Although several approaches have been explored in attempts to mimic the structural colors, improving the reproducibility, mechanical stability, and the economic feasibility of sophisticated photonic crystals prepared by complicated processes continues to pose a challenge. In this study, we report on an alternative, simple method for fabricating a tunable photonic crystal at room temperature. A bowl-like nanostructure of TiO2 was periodically arranged on a thin Ti sheet through a two-step anodization process where its diameters were systemically controlled by changing the applied voltage. Consequently, they displayed a broad color distribution, ranging from red to indigo, and the principal reason for color generation followed the Bragg diffraction theory. This noncolorant method was capable of reproducing a Mondrian painting on a centimeter scale without the need to employ complex architectures, where the generated structural colors were highly stable under mechanical or chemical influence. Such a color printing technique represents a potentially promising platform for practical applications for anticounterfeit trademarks, wearable sensors, and displays.
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
Photonic Bandgap in Two-dimensional Photonic Crystals of Germanium Columns%锗圆柱构造的二维光子晶体带隙结构分析
Institute of Scientific and Technical Information of China (English)
郭普庆; 梁建; 杨毅彪; 许并社
2011-01-01
Plane wave expansion method was adopted to calculate the bandgap of 2-D photonic crystals with triangular lattice, kagome lattice and graphite lattice. The structural parameters of photonic crystals with the largest complete bandgap were obtained by optimization calculation.Complete bandgap for graphite lattice appeaed when filling ratio changed in a wide range, and the maximum width of complete bandgap was △=0.053 in the low-energy region.%采用平面波展开法研究了由锗圆柱构成的Triangular格子、Kagome格子和Graphite 格子二维光子晶体的带隙结构,发现Kagome格子和Graphite格子结构的光子晶体具有完全光子带隙,并得到了使完全带隙最大化的结构参数.数值计算结果表明,Graphite结构二维光子晶体在填充比从f=0.058到f=0.605连续变化的很大范围内都有完全带隙出现,在低能区出现了△=0.053(ωa/2πc)的较大带隙.为二维光子晶体材料的制备和应用提供理论依据.为二维光子晶体材料的制备和应用提供理论依据.
Two-dimensional heterostructures for energy storage
Pomerantseva, Ekaterina; Gogotsi, Yury
2017-07-01
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Efficient Design Tool for 2D and 3D NIMS Photonic Crystals
2008-01-28
configurations will be considered in the designs: Gold nanoshell 3D photonic crystal: core (silica) diameter = 418nm, gold shell thickness...into the frontier. Some metamaterials of new and novel features will be designed and synthesized. PAY‐OFF: To further develop the existing...designs can be expected. With the to‐be‐developed algorithms, some new and novel features of the metamaterials will be achieved and found. 6
Mapping the broadband polarization properties of linear 2D SOI photonic crystal waveguides.
Canning, John; Skivesen, Nina; Kristensen, Martin; Frandsen, Lars H; Lavrinenko, Andrei; Martelli, Cicero; Tetu, A
2007-11-12
Both quasi-TE and TM polarisation spectra for a silicon-on-insulator (SOI) waveguide are recorded over (1100-1700)nm using a broadband supercontinuum source. By studying both the input and output polarisation eigenstates we observe narrowband resonant cross coupling near the lowest quasi-TE mode cut-off. We also observe relatively broadband mixing between the two eigenstates to generate a complete photonic bandgap. By careful analysis of the output polarisation state we report on an inherent non-reciprocity between quasi TE and TM fundamental mode cross coupling. The nature of polarisation distinction in such bandgap structures is discussed in the context of polarisation scattering at an interface.
Liquid refractive index sensor based on a 2D 10-fold photonic quasicrystal
Wang, Shuai; Sun, XiaoHong; Wang, Cong; Peng, Gangding; Qi, Yongle; Wang, XiShi
2017-09-01
A liquid refractive index sensor is designed and optimized by using silicon-rods based on a 10-fold photonic quasicrystal without defects. The resonant mode with high Q value is chosen as the sensing wavelength in the transmission spectrum. By changing the radius of the silicon pillars, the sensor size and the refractive index of the background media, different types of sensors are designed and investigated. On the other hand, the performance of the sensor is investigated including the measurement range, sensitivity, etc. In the detection limit of spectral instruments, 0.02 nm, the sensing accuracy is 10-4 refractive index unit with a figure of merit of 1478. The measurement range is from 1.2731 to 1.4185. This will provide a new method for the design and fabrication of lab-on-chip, microfluidic optical elements and integrated optical circuits.
Study of 2-D photon crystal Fano slab filters for biological sensing
Institute of Scientific and Technical Information of China (English)
QIANG Ze-xuan; QIU Yi-shen; LI Hui; BAI Ji-bo; CHEN Xi-yao
2009-01-01
A new compact optical Fano filter suitable for biological sensing is proposed, which patterns photon crystal in single crystalline silicon nanomembranes (SiNMs) and transferring onto transparent glass substrates. The effects of air hole size and silicon thickness on the transmission characteristics of new filter are numerically investigated by using three-dimen-sional finite-difference time-domain (FDTD) technique, the spectral response is also studied by baek-filling bio-liquid. The results show that the dip wavelength will shift toward longer wavelength by either reducing air hole radius or filling bio-liquid. The number of dips will increase with the increase of silicon thickness. The size of proposed filter can be less than 1 mm2.
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
2014-09-26
Isihara and Y. Nalane, Elementary Excitations and Energy Dispersion in TTF-TCNQ;Proc. Internat. Conf. on Phys. and Chem. of Low-Dimen. Syn. Conductors ...Abano Terme, Molec. Crys. Liq. Crys. 120, 85 (1984). One-dimensiona4 conductors such as TTF-TCNQ are attracting considerable attention for their...A. Isihara and Y. Nakane; Magnetoconductivity of 2D Conductors ; Proc. Internat. Conf. on Phys. and Chem. of Low-Dimen. Syn. Conductors , Abano Terme
Fu, PeiDong; Chen, Heming
2017-06-01
A three mode division multiplexer and demultiplexer (MMUX/DEMMUX) base on 2-D photonic crystal at 1550 nm was designed. Two asymmetrical directional couplers are included in this MMUX/DEMMUX, which can achieve modes conversion function of TE0, TE1 and TE2 modes. In order to avoid phase mismatching in bus waveguide, taper directional is applied at waveguide junction which can reduce the insertion loss effectively. Plane waves method (PWM) and finite difference time domain (FDTD) methods were used to simulating the performance of MMUX/DEMMUX. Numerical simulations show that the designed device has the potential for high-capacity MDM optical communication systems with a low insertion loss (<0.27dB) and a low mode crosstalk (< -25.4 dB).
Energy Technology Data Exchange (ETDEWEB)
Mora Melendez, R.; Seguro Fernandez, A.; Iborra Oquendo, M.; Urena Llinares, A.
2013-07-01
The main objective of our study is to find correction factors dependent on the 2D array incidence angles, and to give account of the phenomenon, allowing the Planner to faithfully reproduce data and curves measured experimentally. (Author)
Energy Technology Data Exchange (ETDEWEB)
Doria, Andre S. [Hospital das Clinicas, Sao Paulo, SP (Brazil). Inst. de Radiologia; Rebelo, Marina de Sa [Hospital das Clinicas, Sao Paulo, SP (Brazil). Instituto do Coracao. Servico de Informatica; Castro, Claudio Campi de [Hospital das Clinicas, Sao Paulo, SP (Brazil). Instituto do Coracao. Servico de Ressonancia Magnetica] [and others
2000-06-01
In this cross-sectional study in patients with juvenile rheumatoid arthritis the authors compare two-dimensional evaluation of the maximum synovial diameter on post-contrast axial T1-weighted SE (spin-echo) sequences with volumetric (three-dimensional assessment) on post-contrast axial T1-weighted SPIR (spectral presaturation with inversion recovery) SE sequences. With the aim of determining their cost-effectiveness these two methods of assessment were compared to clinical and laboratorial parameters, as well as the presence of synovial enhancement seen on magnetic resonance imaging. (author)
Acoustic resonances in two-dimensional radial sonic crystal shells
Torrent, Daniel; Sánchez-Dehesa, José
2010-07-01
Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction that verify the Bloch theorem and are possible only if certain specially designed acoustic metamaterials with mass density anisotropy can be engineered (see Torrent and Sánchez-Dehesa 2009 Phys. Rev. Lett. 103 064301). A comprehensive analysis of two-dimensional (2D) RSC shells is reported here. A given shell is in fact a circular slab with a central cavity. These finite crystal structures contain Fabry-Perot-like resonances and modes strongly localized at the central cavity. Semi-analytical expressions are developed to obtain the quality factors of the different resonances, their symmetry features and their excitation properties. The results reported here are completely general and can be extended to equivalent 3D spherical shells and to their photonic counterparts.
Two-dimensional effects in nonlinear Kronig-Penney models
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim
1997-01-01
An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...
Ahmed, M. F.; Shrestha, N.; Schnell, E.; Ahmad, S.; Akselrod, M. S.; Yukihara, E. G.
2016-11-01
This work evaluates the dosimetric properties of newly developed optically stimulated luminescence (OSL) films, fabricated with either Al2O3:C or Al2O3:C,Mg, using a prototype laser scanning reader, a developed image reconstruction algorithm, and a 6 MV therapeutic photon beam. Packages containing OSL films (Al2O3:C and Al2O3:C,Mg) and a radiochromic film (Gafchromic EBT3) were irradiated using a 6 MV photon beam using different doses, field sizes, with and without wedge filter. Dependence on film orientation of the OSL system was also tested. Diode-array (MapCHECK) and ionization chamber measurements were performed for comparison. The OSLD film doses agreed with the MapCHECK and ionization chamber data within the experimental uncertainties (response was approximately linear from the MDD up to a few grays (the linearity correction was response, resolution and dosimetric properties. The negligible background and potential simple calibration make these OSLD films suitable for remote audits. The characterization presented here may motivate further commercial development of a 2D dosimetry system based on the OSL from Al2O3:C or Al2O3:C,Mg.
A two-dimensional Dirac fermion microscope
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
A two-dimensional Dirac fermion microscope.
Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-09
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
Park, Hoo Keun; Oh, Ji Hye; Kang, Heejoon; Zhang, Jian; Do, Young Rag
2015-03-04
This paper reports the combined optical effects of a two-dimensional (2D) SiNx photonic crystal layer (PCL)-assisted Lu3Al5O12:Ce (LuAG:Ce) green ceramic-plate phosphor (CPP) and a free-standing (Sr,Ca)AlSiN3:Eu red film phosphor to enhance luminous efficacy, color rendering index (CRI), and special CRI (R9) of LuAG:Ce CPP-capped white light-emitting diodes (LEDs) for high-power white LEDs at 350 mA. By introducing the 2D SiNx PCL, the luminous efficacy was improved by a factor of 1.25 and 1.15 compared to that of the conventional flat CPP-capped LED and the thickness-increased CPP-capped LED (with a thickness of 0.15 mm), respectively, while maintaining low color-rendering properties. The combining of the free-standing red film phosphor in the flat CPP-capped, the 2D PCL-assisted CPP-capped, and the thickness-increased CPP-capped LEDs led to enhancement of the CRI and the special CRI (R9); it also led to a decrease of the correlated color temperature (CCT) due to broad wavelength coverage via the addition of red emission. High CRI (94), natural white CCT (4450 K), and acceptable luminous efficacy (71.1 lm/W) were attained from the 2D PCL-assisted LuAG:Ce CPP/free-standing red film phosphor-based LED using a red phosphor concentration of 7.5 wt %. It is expected that the combination of the 2D PCL and the free-standing red film phosphor will be a good candidate for achieving a high-power white CPP-capped LED with excellent CRI.
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Liu, Zhirong
2016-01-01
The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.
Interactions between lasers and two-dimensional transition metal dichalcogenides.
Lu, Junpeng; Liu, Hongwei; Tok, Eng Soon; Sow, Chorng-Haur
2016-05-03
The recent increasing research interest in two-dimensional (2D) layered materials has led to an explosion of in the discovery of novel physical and chemical phenomena in these materials. Among the 2D family, group-VI transition metal dichalcogenides (TMDs), such as represented by MoS2 and WSe2, are remarkable semiconductors with sizable energy band gaps, which make the TMDs promising building blocks for new generation optoelectronics. On the other hand, the specificity and tunability of the band gaps can generate particularly strong light-matter interactions between TMD crystals and specific photons, which can trigger complex and interesting phenomena such as photo-scattering, photo-excitation, photo-destruction, photo-physical modification, photochemical reaction and photo-oxidation. Herein, we provide an overview of the phenomena explained by various interactions between lasers and the 2D TMDs. Characterizations of the optical fundamentals of the TMDs via laser spectroscopies are reviewed. Subsequently, photoelectric conversion devices enabled by laser excitation and the functionality extension and performance improvement of the TMDs materials via laser modification are comprehensively summarized. Finally, we conclude the review by discussing the prospects for further development in this research area.
Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films.
Halim, Joseph; Lukatskaya, Maria R; Cook, Kevin M; Lu, Jun; Smith, Cole R; Näslund, Lars-Åke; May, Steven J; Hultman, Lars; Gogotsi, Yury; Eklund, Per; Barsoum, Michel W
2014-04-08
Since the discovery of graphene, the quest for two-dimensional (2D) materials has intensified greatly. Recently, a new family of 2D transition metal carbides and carbonitrides (MXenes) was discovered that is both conducting and hydrophilic, an uncommon combination. To date MXenes have been produced as powders, flakes, and colloidal solutions. Herein, we report on the fabrication of ∼1 × 1 cm(2) Ti3C2 films by selective etching of Al, from sputter-deposited epitaxial Ti3AlC2 films, in aqueous HF or NH4HF2. Films that were about 19 nm thick, etched with NH4HF2, transmit ∼90% of the light in the visible-to-infrared range and exhibit metallic conductivity down to ∼100 K. Below 100 K, the films' resistivity increases with decreasing temperature and they exhibit negative magnetoresistance-both observations consistent with a weak localization phenomenon characteristic of many 2D defective solids. This advance opens the door for the use of MXenes in electronic, photonic, and sensing applications.
Nonlocal bottleneck effect in two-dimensional turbulence
Biskamp, D; Schwarz, E
1998-01-01
The bottleneck pileup in the energy spectrum is investigated for several two-dimensional (2D) turbulence systems by numerical simulation using high-order diffusion terms to amplify the effect, which is weak for normal diffusion. For 2D magnetohydrodynamic (MHD) turbulence, 2D electron MHD (EMHD) turbulence and 2D thermal convection, which all exhibit direct energy cascades, a nonlocal behavior is found resulting in a logarithmic enhancement of the spectrum.
Photon-dressed quasiparticle states in 1D and 2D materials: a many-body Floquet approach
Manghi, Franca; Puviani, Matteo
We studiy the interplay between electron-electron interactions and non-equilibrium conditions associated to time-dependent external fields. Exploring phases of quantum matter away from equilibrium may give access to regimes inaccessible under equilibrium conditions. What makes this field particularly interesting is the possibility to engineer new phases of matter by an external tunable control. We have developed a scheme that allows to treat photo-induced phenomena in the presence of electron-electron many body interactions, where both the nonlinear effects of the external field and the electron-electron correlation are treated simultaneously and in a non-perturbative way. The Floquet approach is used to include the effects of the external time periodic field, and the Cluster Perturbation Theory to describe interacting electrons in a lattice. They are merged in a Floquet-Green function method that allows to calculate photon dressed quasiparticle excitation. For 1D systems we show that an unconventional Mott insulator-to-metal transition occurs for given characteristics of the applied field (intensity and frequency). The method has also been applied to the 2D honeycomb lattice (graphene), where in the presence of realistic values of electron-electron interaction, we show that linearly polarized light may give rise to non-dissipative edge states associated to a non-trivial topological behavior.
Institute of Scientific and Technical Information of China (English)
梁馨元; 陈笑; 王义全; 冯帅; 杨国建; 陈胥冲
2013-01-01
Light propagation in photonic band gaps in two-dimensional organic octagonal quasiperiodic photonic crystal slabs is investigated by finite-difference time-domain method. The transmission property and light localization in the polystyrene air-rod slab and air polystyrene-rod slab are compared in detail. The results show that even in extremely low-index dielectric contrast of rods, the photonic band gaps and eigenmodes are observed in the visible spectrum. Besides, the central position of bandgap is red-shifted with the increase of slab thickness. When defects are introduced into two quasiperiodic structures, the occurrence position of defect modes and property of red-shifting in wavelength of modes are different with the increase of size of defect nanocavities. The difference in property originates from the competition consequence of two physical mechanisms which are the energy levels of defects in photonic crystals and the resonance of modes in the defect cavity. The results may give theoretical support for fabricating luminescent devices based on organic quasicrystals.%采用时域有限差分法研究了二维八重准晶有机光子晶体的光传输特性,重点分析了光束在聚苯乙烯空气柱平板结构和聚苯乙烯介质柱结构中的透射特性与光局域特性.研究结果表明,即使在低折射率对比度的情况下,两种完整八重准晶平板结构中均出现了可见光波段的光子带隙和本征模,且光子带隙中心位置随着平板厚度的增大而红移.当在两种准晶结构中引入缺陷微腔时,带隙内的缺陷模产生位置和波长红移特性随着微腔结构的变化规律明显不同,这种差异性是由两种物理机制(即光子晶体缺陷能级变化与微腔所支持的驻波条件)共同作用的结果.这一研究结果将为实验制备有机准晶发光器件提供一定的理论基础.
DEFF Research Database (Denmark)
Videbaek, C; Toska, K; Friberg, L
2001-01-01
This study examines the feasibility of a steady-state bolus-integration method with the dopamine D2/D3 receptor single photon emission computer tomography (SPECT) tracer, [123I]IBZM, for determination of in vivo affinity of haloperidol. The nonspecific binding of [123I]IBZM was examined in the rat...
Rationally synthesized two-dimensional polymers.
Colson, John W; Dichtel, William R
2013-06-01
Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.
带有KTP缺陷的2维光子晶体设计与能带特性%Design and characteristics of two-dimensional photonic crystal with KTP defect
Institute of Scientific and Technical Information of China (English)
李志全; 刘正君
2011-01-01
设计了一种通过改变缺陷介质折射率实现能带特性改变的可调谐2维光子晶体激光器微腔,在光子晶体中引入点缺陷磷酸氧钛钾(KTP),在KTP两端施加交流电场控制KTP晶体折射率变化.实验过程中观察到了正方排列的光子晶体随着KTP晶体折射率逐渐增大,晶体禁带数量减少,且向归一化频率小的方向移动,禁带宽度基本不变;而三角排列的晶格能带随着KTP折射率增大,禁带逐渐变窄,且有向低频方向移动的趋势.用平面波展开法分析了晶体的能带结构,得到理上的描述.%The plane wave expansion method is applied to simulate the band gap of a tunable two-dimensional photonic crystal micro cavity based on controlling the refractive index of defect medium. KTiOPO4 (KTP) crystal is introduced to the planar photonic crystal as point defect, with its refractive index controlled by alternating current according to electro-optic effect. Numerical calculations and experimental results show that, with the refractive index of KTP increasing, the normalized frequencies of defect modes shift downward. The number of band gaps of the square lattice reduces, and the band gap of the triangle lattice narrows.
Two-Dimensional Transition Metal Dichalcogenide Alloys: Stability and Electronic Properties.
Komsa, Hannu-Pekka; Krasheninnikov, Arkady V
2012-12-06
Using density-functional theory calculations, we study the stability and electronic properties of single layers of mixed transition metal dichalcogenides (TMDs), such as MoS2xSe2(1-x), which can be referred to as two-dimensional (2D) random alloys. We demonstrate that mixed MoS2/MoSe2/MoTe2 compounds are thermodynamically stable at room temperature, so that such materials can be manufactured using chemical-vapor deposition technique or exfoliated from the bulk mixed materials. By applying the effective band structure approach, we further study the electronic structure of the mixed 2D compounds and show that general features of the band structures are similar to those of their binary constituents. The direct gap in these materials can continuously be tuned, pointing toward possible applications of 2D TMD alloys in photonics.
Dynamical Mechanism of Two-Dimensional Plasmon Launching by Swift Electrons
Lin, Xiao; Gao, Fei; Kaminer, Ido; Yang, Zhaoju; Gao, Zhen; Buljan, Hrvoje; Joannopoulos, John D; Soljačić, Marin; Chen, Hongsheng; Zhang, Baile
2015-01-01
Launching of surface plasmons by swift electrons has long been utilized to investigate plasmonic properties of ultrathin, or two-dimensional (2D), electron systems, including graphene plasmons recently. However, spatio-temporal dynamics of this process has never been clearly revealed. This is because the impact of an electron will generate not only plasmons, but also photons, demanding both space and time. Here we address this issue within the framework of classical electromagnetics by showing the dynamical process of 2D plasmon launching by swift electrons on graphene. The launching of 2D plasmons on graphene is not immediate, but is delayed after a hydrodynamic splashing-like process, which occurs during the formation time of transition radiation caused by the electron's impact. This newly revealed process also implies that all previous estimates on the yields of graphene plasmons in electron-energy-loss-spectroscopy have been overestimated.
Cooperative resonances in light scattering from two-dimensional atomic arrays
Shahmoon, Ephraim; Lukin, Mikhail D; Yelin, Susanne F
2016-01-01
We consider light scattering off a two-dimensional (2D) dipolar array and show how it can be tailored by properly choosing the lattice constant of the order of the incident wavelength. In particular, we demonstrate that such arrays can operate as nearly perfect mirrors for a wide range of incident angles and frequencies close to the individual atomic resonance. These results can be understood in terms of the cooperative resonances of the surface modes supported by the 2D array. Experimental realizations are discussed, using ultracold arrays of trapped atoms and excitons in 2D semiconductor materials, as well as potential applications ranging from atomically thin metasurfaces to single photon nonlinear optics and nanomechanics.
Two-Dimensional Mesoscale-Ordered Conducting Polymers
Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang
2016-01-01
Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of assem
Two-Dimensional Mesoscale-Ordered Conducting Polymers
Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang
2016-01-01
Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of
Forensic potential of comprehensive two-dimensional gas chromatography
Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.
2016-01-01
In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o
Forensic potential of comprehensive two-dimensional gas chromatography
Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.
2016-01-01
In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o
Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities
El-Jallal, Said; Oudich, Mourad; Pennec, Yan; Djafari-Rouhani, Bahram; Laude, Vincent; Beugnot, Jean-Charles; Martínez, Alejandro; Escalante, José María; Makhoute, Abdelkader
2013-11-01
We theoretically investigate phonon-photon interaction in cavities created in a phoxonic crystal slab constituted by a two-dimensional (2D) square array of holes in a silicon membrane. The structure without defects provides 2D band gaps for both electromagnetic and elastic waves. We consider two types of cavities, namely, an L3 cavity (a row of three holes is removed) and a cross-shape cavity, which both possess highly confined phononic and photonic localized modes suitable for enhancing their interaction. In our theoretical study, we take into account two mechanisms that contribute to optomechanical interaction, namely, the photoelastic and the interface motion effects. We show that, depending on the considered pair of photonic and phononic modes, the two mechanisms can have similar or very different magnitudes, and their contributions can be either in or out of phase. We find out that only acoustic modes with a specific symmetry are allowed to couple with photonic cavity modes. The coupling strength is quantified by two different methods. In the first method, we compute a direct estimation of coupling rates by overlap integrals, while in the second one, we analyze the temporal modulation of the resonant photonic frequency by the phonon-induced acoustic vibrational motion during one acoustic period. Interestingly, we obtain high optomechanical interaction, with the coupling rate reaching more than 2.4 MHz for some specific phonon-photon pairs.
TreePM Method for Two-Dimensional Cosmological Simulations
Indian Academy of Sciences (India)
Suryadeep Ray
2004-09-01
We describe the two-dimensional TreePM method in this paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle–Mesh method. We describe the splitting of force between the PM and the Tree parts. We also estimate error in force for a realistic configuration. Finally, we discuss some tests of the code.
Theory of two-dimensional transformations
Kanayama, Yutaka J.; Krahn, Gary W.
1998-01-01
The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...
Predicting Two-Dimensional Silicon Carbide Monolayers.
Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I
2015-10-27
Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.
Directory of Open Access Journals (Sweden)
Hsiang Yu Huang
2010-10-01
Full Text Available It has been speculated that novelty seeking (NS behavior is related to the dopaminergic system. Fifty-two subjects completed the Tridimensional Personality Questionnaire and underwent single photon emission computed tomography with 123I-iodobenzamide. A marginally positive correlation was noted between NS and striatal dopamine D2/D3 receptor availability (r = 0.25, p =0.07. A positive association was noted between the NS scores and left striatal D2/D3 receptor availability (r= 0.29, p =0.04. The results suggest that a relationship might exist between NS score and dopaminergic activity.
FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP
Institute of Scientific and Technical Information of China (English)
Chen Jiangfeng; Yuan Baozong; Pei Bingnan
2008-01-01
Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.
The Rare Two-Dimensional Materials with Dirac Cones
Wang, Jinying; Deng, Shibin; Liu, Zhongfan; Liu, Zhirong
2014-01-01
Inspired by the great development of graphene, more and more works have been conducted to seek new two-dimensional (2D) materials with Dirac cones. Although 2D Dirac materials possess many novel properties and physics, they are rare compared with the numerous 2D materials. To provide explanation for the rarity of 2D Dirac materials as well as clues in searching for new Dirac systems, here we review the recent theoretical aspects of various 2D Dirac materials, including graphene, silicene, ger...
Karachevtseva, L.; Goltviansky, Yu.; Sapelnikova, O.; Lytvynenko, O.; Stronska, O.; Bo, Wang; Kartel, M.
2016-12-01
Opportunities to enhance the properties of structured surfaces were demonstrated on 2D macroporous silicon structures with SiO2 coatings. We investigated the IR light absorption oscillations in macroporous silicon structures with SiO2 coatings 0-800 nm thick. The Wannier-Stark electro-optical effect due to strong electric field on Si-SiO2boundary and an additional electric field of quasi-guided optical modes were taken into account. The photonic modes and band gaps were also considered as peculiarities in absorbance spectra of macroporous silicon structures with a thick SiO2 coating. The photonic modes do not coincide with the quasi-guided modes in the silicon matrix and do not appear in absorption spectra of 2D macroporous silicon structures with surface nanocrystals.
Two-dimensional signal analysis
Garello, René
2010-01-01
This title sets out to show that 2-D signal analysis has its own role to play alongside signal processing and image processing.Concentrating its coverage on those 2-D signals coming from physical sensors (such as radars and sonars), the discussion explores a 2-D spectral approach but develops the modeling of 2-D signals and proposes several data-oriented analysis techniques for dealing with them. Coverage is also given to potential future developments in this area.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...
Numerical investigation of the flat band Bloch modes in a 2D photonic crystal with Dirac cones.
Zhang, Peng; Fietz, Chris; Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas M
2015-04-20
A numerical method combining complex-k band calculations and absorbing boundary conditions for Bloch waves is presented. We use this method to study photonic crystals with Dirac cones. We demonstrate that the photonic crystal behaves as a zero-index medium when excited at normal incidence, but that the zero-index behavior is lost at oblique incidence due to excitation of modes on the flat band. We also investigate the formation of monomodal and multimodal cavity resonances inside the photonic crystals, and the physical origins of their different line-shape features.
Institute of Scientific and Technical Information of China (English)
赵年顺; 孙剑
2014-01-01
采用时域有限差分技术分析了非线性光子晶体点缺陷的双稳态特性，选择一定频率失谐的连续波入射并观察透射现象。分析发现，当连续波功率增加到阈值点时透射率达到最大值。采用大功率脉冲辅助连续波的方式发现点缺陷的透射率一直处于高透射状态，直至连续波功率下降到很低时，透射率才迅速下降。双稳态特性由频率失谐δ、缺陷谐振频率ω0及非线性系数 n2等3个参数决定。采用空间电磁场的摄动理论验证所得结果与数值模拟结果一致。%This paper conducts a research on the bistable characteristics of point defect in two dimensional nonlinear photonic crystals with finite-difference time-domain technique. It analyzes the transmission be-havior of input continuous wave with frequency detuning,and the results show that the maximum transmis-sion is detected when the continuous wave reaches the threshold power. What’s more,the defect can be boosted into high transmission state by superposing continuous wave with a high peak-power pulse,and it won’t decrease rapidly until the continuous wave power is brought down to a very low degree. The fre-quency detuning,the resonant frequency,the nonlinear coefficient n2 are needed to characterize a bistable switch. In addition,the dynamic shift of the cavity modes is derived by using the perturbation theory. The conclusion provides some reference for the design of all optical devices based on PC defect.
Institute of Scientific and Technical Information of China (English)
杨毅彪; 王伟军; 费宏明; 梁伟; 王云才
2012-01-01
利用平面波展开法对空气背景中介质圆柱和方柱构造的二维Archimedes A7晶格光子晶体的禁带结构随介质折射率、填充比的变化关系进行了研究,并进一步计算了介质方柱的旋转角度对完全光子禁带宽度的影响.研究发现,介质圆柱构造的Archimedes A7晶格结构在介质柱折射率最低为n=2.40时出现完全光子禁带,当n=2.60时禁带宽度达到最大值.介质方柱构造的Archimedes A7晶格结构在介质柱折射率n=3.80时完全禁带宽度达到最大值,且随着折射率的增加禁带宽度变化很小；在介质方柱折射率恒定情况下,其最大禁带宽度与旋转角度无关,但旋转后出现完全禁带的填充比范围明显扩大.%Plane wave expansion method is introduced to simulate the band structures of two-dimensional photonic crystals made of Archimedes A7 lattice of circular and square dielectric rod in air. The bandgaps of Archimedes A7 lattice with dielectric rods is also discussed as functions of the refractive index, filling fraction and rotation angle. The results show that the complete bandgap can be obtained when the refractive index is greater than 2.40. The width of complete bandgap reaches the maximum when the dielectric refractive index of the circular rod is equal to 2.60. For the Archimedes A7 lattice of square dielectric rod, the complete bandgap reaches the maximum when the dielectric refractive index equals 3. 80. The maximum complete bandgap changes in a narrow range as the refractive index increases. When the rotation angle of the square dielectric rods changes, the maximum bandgap keeps constant for a fixed refractive index. However after the change of rotation angle, the complete bandgap appears in a large scale of the filling fraction.
Response Functions for the Two-Dimensional Ultracold Fermi Gas: Dynamical BCS Theory and Beyond
Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei
2017-08-01
Response functions are central objects in physics. They provide crucial information about the behavior of physical systems, and they can be directly compared with scattering experiments involving particles such as neutrons or photons. Calculations of such functions starting from the many-body Hamiltonian of a physical system are challenging and extremely valuable. In this paper, we focus on the two-dimensional (2D) ultracold Fermi atomic gas which has been realized experimentally. We present an application of the dynamical BCS theory to obtain response functions for different regimes of interaction strengths in the 2D gas with zero-range attractive interaction. We also discuss auxiliary-field quantum Monte Carlo (AFQMC) methods for the calculation of imaginary time correlations in these dilute Fermi gas systems. Illustrative results are given and comparisons are made between AFQMC and dynamical BCS theory results to assess the accuracy of the latter.
Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission.
Wan, Ren-Gang; Zhang, Tong-Yi
2011-12-05
We propose a scheme for two-dimensional (2D) atom localization based on the controlled spontaneous emission, in which the atom interacts with two orthogonal standing-wave fields. Due to the spatially dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the resulting spontaneously emission spectrum. The phase sensitive property of the atomic system leads to quenching of the spontaneous emission in some regions of the standing-waves, which significantly reduces the uncertainty in the position measurement of the atom. We find that the frequency measurement of the emitted light localizes the atom in half-wavelength domain. Especially the probability of finding the atom at a particular position can reach 100% when a photon with certain frequency is detected. By increasing the Rabi frequencies of the driving fields, such 2D sub-half-wavelength atom localization can acquire high spatial resolution.
Energy Technology Data Exchange (ETDEWEB)
Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko; Engel, Volker [Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Str. 42, Campus Nord, Am Hubland, 97074 Würzburg (Germany); Gomez, Sandra; Sola, Ignacio R. [Departamento de Quimica Fisica, Universidad Complutense, 28040 Madrid (Spain)
2015-07-28
We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.
Energy Technology Data Exchange (ETDEWEB)
Cheng, Y.-C.; Engel, Gregory S. [Department of Chemistry and QB3 Institute, University of California, Berkeley (United States) and Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Fleming, Graham R. [Department of Chemistry and QB3 Institute, University of California, Berkeley (United States) and Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: GRFleming@lbl.gov
2007-11-15
In this work, we perform a theoretical study on the dynamics and two-dimensional electronic spectroscopy of a model trimer system and compare the results to experimental data on the Fenna-Matthews-Olson protein. We combine a time-nonlocal quantum master equation formalism and the recently developed method for the efficient calculation of third-order photon echo polarization [M.F. Gelin, D. Egorova, W.J. Domcke, J. Chem. Phys. 123 (2005) 164112] to simulate the 2D electronic spectra of the model system, and compare the time-evolution of the amplitude of cross-peaks to the coherent relaxation dynamics of the system following the excitation by a laser pulse. We show that beats of the upper diagonal peaks in the absolute value 2D spectra provide a direct probe for the coherence dynamics in the system, and the time-evolution of the amplitude of the lower diagonal cross-peaks in the real value 2D spectra can be used to reveal the population transfer among exciton states. Our results verify the intuitive description provided by response functions and demonstrate that the full coherent dynamics in a multichromophoric system can be elucidated using two-dimensional electronic spectroscopy.
Graphene and Two-Dimensional Materials for Optoelectronic Applications
Directory of Open Access Journals (Sweden)
Andreas Bablich
2016-03-01
Full Text Available This article reviews optoelectronic devices based on graphene and related two-dimensional (2D materials. The review includes basic considerations of process technology, including demonstrations of 2D heterostructure growth, and comments on the scalability and manufacturability of the growth methods. We then assess the potential of graphene-based transparent conducting electrodes. A major part of the review describes photodetectors based on lateral graphene p-n junctions and Schottky diodes. Finally, the progress in vertical devices made from 2D/3D heterojunctions, as well as all-2D heterostructures is discussed.
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Juday, Richard D.
1992-01-01
Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.
Electrical and optoelectronic properties of two-dimensional materials
Wang, Qiaoming
Electrical and optoelectronic properties of bulk semiconductor materials have been extensively explored in last century. However, when reduced to one-dimensional and two-dimensional, many semiconductors start to show unique electrical and optoelectronic behaviors. In this dissertation, electrical and optoelectronic properties of one-dimensional (nanowires) and two-dimensional semiconductor materials are investigated by various techniques, including scanning photocurrent microscopy, scanning Kelvin probe microscopy, Raman spectroscopy, photoluminescence, and finite-element simulations. In our work, gate-tunable photocurrent in ZnO nanowires has been observed under optical excitation in the visible regime, which originates from the nanowire/substrate interface states. This gate tunability in the visible regime can be used to enhance the photon absorption efficiency, and suppress the undesirable visible-light photodetection in ZnO-based solar cells. The power conversion efficiency of CuInSe2/CdS core-shell nanowire solar cells has been investigated. The highest power conversion efficiency per unit area/volume is achieved with core diameter of 50 nm and the thinnest shell thickness. The existence of the optimal geometrical parameters is due to a combined effect of optical resonances and carrier transport/dynamics. Significant current crowding in two-dimensional black phosphorus field-effect transistors has been found, which has been significantly underestimated by the commonly used transmission-line model. This current crowding can lead to Joule heating close to the contacts. New van der Waals metal-semiconductor junctions have been mechanically constructed and systematically studied. The photocurrent on junction area has been demonstrated to originate from the photothermal effect rather than the photovoltaic effect. Our findings suggest that a reasonable control of interface/surface state properties can enable new and beneficial functionalities in nanostructures. We
Lopez, Javier; Gonzalez, Luz Esther; Quinonez, Mario; Porras, Nelson; Zambrano, Gustavo; Gomez, Maria Elena
2014-03-01
Using a ferrfluid of cobalt-zinc ferrite nanoparticles Co(1 - x)ZnxFe2O4 coated with oleic acid and suspended in ethanol, we have fabricated a 2D photonic crystal (PC) by the application of an external magnetic field perpendicular to the plane of the ferrofluid. The 2D PC is made by rods of nanoparticles organized in a hexagonal structure. By means of the plane-wave expansion method, we study its photonic band structure (PBS) which depends on the effective permittivity and on the area ratio of the liquid phase. Additionaly, taking into account the Maxwell-Garnett theory we calculated the effective permittivity of the rods. We have found that the effective refractive index of the ferrofluid increases with its magnetization. Using these results we calculate the band structure of the photonic crystal at different applied magnetic fields, finding that the increase of the applied magnetic field shifts the band structure to lower frequencies with the appearance of more band gaps. Departamento de Física, Universidad del Valle, A.A. 25360, Cali, Colombia
Photodetectors based on two dimensional materials
Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen
2016-09-01
Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Molecular assembly on two-dimensional materials
Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter
2017-02-01
Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging
Two-dimensional fourier transform spectrometer
Energy Technology Data Exchange (ETDEWEB)
DeFlores, Lauren; Tokmakoff, Andrei
2016-10-25
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Divorticity and dihelicity in two-dimensional hydrodynamics
DEFF Research Database (Denmark)
Shivamoggi, B.K.; van Heijst, G.J.F.; Juul Rasmussen, Jens
2010-01-01
A framework is developed based on the concepts of divorticity B (≡×ω, ω being the vorticity) and dihelicity g (≡vB) for discussing the theoretical structure underlying two-dimensional (2D) hydrodynamics. This formulation leads to the global and Lagrange invariants that could impose significant...
Zero sound in a two-dimensional dipolar Fermi gas
Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.
2013-01-01
We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean-f
On the continua in two-dimensional nonadiabatic magnetohydrodynamic spectra
De Ploey, A.; Van der Linden, R. A. M.; Belien, A. J. C.
2000-01-01
The equations for the continuous subspectra of the linear magnetohydrodynamic (MHD) normal modes spectrum of two-dimensional (2D) plasmas are derived in general curvilinear coordinates, taking nonadiabatic effects in the energy equation into account. Previously published derivations of continuous sp
Bounds on the capacity of constrained two-dimensional codes
DEFF Research Database (Denmark)
Forchhammer, Søren; Justesen, Jørn
2000-01-01
Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run...
Linkage analysis by two-dimensional DNA typing
te Meerman, G J; Mullaart, E; van der Meulen, M A; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J
1993-01-01
In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core pro
Lucassen, Gerald W.; Bakker, Bernard L.; Neerken, Sieglinde; Hendriks, Rob F. M.
2003-07-01
We present results from 2D Fourier analysis on 3D stacks of images obtained by confocal laser scanning reflectance microscopy (CLSM) and two-photon fluorescence microscopy (2PM) on human skin in vivo. CLSM images were obtained with a modified commercial system (Vivascope1000, Lucid Inc, excitation wavelength 830 nm) equipped with a piezo-focusing element (350 μm range) for depth positioning of the objective lens. 2PM was performed with a specially designed set-up with excitation wavelength 730 nm. Mean cell size in the epidermal layer and structural orientation in the dermal layer have been determined as a function of depth by 2D Fourier analysis. Fourier analysis on microscopic images enables automatic non-invasive quantitative structural analysis (mean cell size and orientation) of living human skin.
Luo, Xi-Wang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei
2015-01-01
Orbital angular momentum (OAM) of light is a fundamental optical degree of freedom that has recently motivated much exciting research in diverse fields ranging from optical communication to quantum information. We show for the first time that it is also a unique and valuable resource for quantum simulation, by demonstrating theoretically how \\emph{2d} topological physics can be simulated in a \\emph{1d} array of optical cavities using OAM-carrying photons. Remarkably, this newly discovered application of OAM states not only reduces required physical resources but also increases feasible scale of simulation. By showing how important topics such as edge-state transport and topological phase transition can be studied in a small simulator with just a few cavities ready for immediate experimental exploration, we demonstrate the prospect of photonic OAM for quantum simulation which can have a significant impact on the research of topological physics.
Yang, Lei; Zhao, Xiao-Fang
2017-07-01
Chinese Spallation Neutron Source (CSNS) project will use numerous two-dimensional (2D) neutron detectors whose ZnS (Ag) scintillator is doped with 6Li. To ensure the consistency of all neutron detectors, a calibration system for the performance of 2D neutron detectors is designed. For radiation protection, the state control of the radiation source gets more and more strict. It is impossible to directly carry out experiments with massive radioactive particles. Thus, the following scheme has been designed. The controlled pulsed laser light source on a 2D mobile platform is used to replace the neutron bombardment to generate the photon. The pulse signal drives the laser diode to generate pulse light. The pulse light source located on the 2D platform is controlled by the core controller, and goes to the wavelength shift fiber through the optical fiber. The host computer (PC) receives the signal from the electronics system, processes data, and automatically calibrates the performance parameters. As shown by the experimental results, the pulse light source can perfectly meet all requirements of 2D neutron detector calibration system.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Alrowaili, Z. A.; Lerch, M. L. F.; Carolan, M.; Fuduli, I.; Porumb, C.; Petasecca, M.; Metcalfe, P.; Rosenfeld, A. B.
2015-09-01
Summary: the photon irradiation response of a 2D solid state transmission detector array mounted in a linac block tray is used to reconstruct the projected 2D dose map in a homogenous phantom along rays that diverge from the X-ray source and pass through each of the 121 detector elements. A unique diode response-to-dose scaling factor, applied to all detectors, is utilised in the reconstruction to demonstrate that real time QA during radiotherapy treatment is feasible. Purpose: to quantitatively demonstrate reconstruction of the real time radiation dose from the irradiation response of the 11×11 silicon Magic Plate (MP) detector array operated in Transmission Mode (MPTM). Methods and Materials: in transmission mode the MP is positioned in the block tray of a linac so that the central detector of the array lies on the central axis of the radiation beam. This central detector is used to determine the conversion factor from measured irradiation response to reconstructed dose at any point on the central axis within a homogenous solid water phantom. The same unique conversion factor is used for all MP detector elements lying within the irradiation field. Using the two sets of data, the 2D or 3D dose map is able to be reconstructed in the homogenous phantom. The technique we have developed is illustrated here for different depths and irradiation field sizes, (5 × 5 cm2 to 40 × 40 cm2) as well as a highly non uniform irradiation field. Results: we find that the MPTM response is proportional to the projected 2D dose map measured at a specific phantom depth, the "sweet depth". A single factor, for several irradiation field sizes and depths, is derived to reconstruct the dose in the phantom along rays projected from the photon source through each MPTM detector element. We demonstrate that for all field sizes using the above method, the 2D reconstructed and measured doses agree to within ± 2.48% (2 standard deviation) for all in-field MP detector elements. Conclusions: a
Wang, Yunhua; Liu, Yulan; Wang, Biao
2017-01-01
Periodically driven nontrivial quantum states open another door to engineer topological phases in solid systems by light. Here we show, based on the Floquet-Bloch theory, that the on-resonant linearly and circularly polarized infrared light brings in the exotic Floquet quantum spin Hall state and half-metal in two-dimensional Metal-organic frameworks (2D MOFs) because of the unbroken and broken time-reversal symmetry, respectively. We also observe that the off-resonant light triggers topological quantum phase transitions and induces semimetals with pseudospin-1 Dirac-Weyl fermions via the photon-dressed topological band structures of 2D MOFs. This work paves a way to design light-controlled spintronics and optoelectronics based on 2D MOFs. PMID:28134315
Wang, Yunhua; Liu, Yulan; Wang, Biao
2017-01-01
Periodically driven nontrivial quantum states open another door to engineer topological phases in solid systems by light. Here we show, based on the Floquet-Bloch theory, that the on-resonant linearly and circularly polarized infrared light brings in the exotic Floquet quantum spin Hall state and half-metal in two-dimensional Metal-organic frameworks (2D MOFs) because of the unbroken and broken time-reversal symmetry, respectively. We also observe that the off-resonant light triggers topological quantum phase transitions and induces semimetals with pseudospin-1 Dirac-Weyl fermions via the photon-dressed topological band structures of 2D MOFs. This work paves a way to design light-controlled spintronics and optoelectronics based on 2D MOFs.
Ultrafast two dimensional infrared chemical exchange spectroscopy
Fayer, Michael
2011-03-01
The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific
Perspective: Two-dimensional resonance Raman spectroscopy
Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.
2016-11-01
Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.
Elastic models of defects in two-dimensional crystals
Kolesnikova, A. L.; Orlova, T. S.; Hussainova, I.; Romanov, A. E.
2014-12-01
Elastic models of defects in two-dimensional (2D) crystals are presented in terms of continuum mechanics. The models are based on the classification of defects, which is founded on the dimensionality of the specification region of their self-distortions, i.e., lattice distortions associated with the formation of defects. The elastic field of an infinitesimal dislocation loop in a film is calculated for the first time. The fields of the center of dilatation, dislocation, disclination, and circular inclusion in planar 2D elastic media, namely, nanofilms and graphenes, are considered. Elastic fields of defects in 2D and 3D crystals are compared.
Calibration of a 2D-CDB spectrometer using a reference {sup 133}Ba source
Energy Technology Data Exchange (ETDEWEB)
Macchi, C. [Dipartimento di Fisica, Universita di Trento, Via Sommarive 14, I-38050 Povo, Trento (Italy) and IFIMAT, Facultad de Ciencias Exactas, UNICEN, Pinto 399, B7000GHG Tandil, Argentina. (Argentina)]. E-mail: cmacchi@exa.unicen.edu.ar; Karwasz, G.P. [Dipartimento di Fisica, Universita di Trento, Via Sommarive 14, I-38050 Povo, Trento (Italy); Facolta di Ingegneria, Universita di Trento, I-38050 Mesiano, Trento (Italy); Somoza, A. [IFIMAT, Facultad de Ciencias Exactas, UNICEN, Pinto 399, B7000GHG Tandil (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (Argentina); Brusa, R.S. [Dipartimento di Fisica, Universita di Trento, Via Sommarive 14, I-38050 Povo, Trento (Italy)
2007-02-15
A procedure for calibrating a FAST-ComTec 2D-CDB spectrometer using a {sup 133}Ba source is presented. The energy calibration consisted of acquiring two-dimensional (2D) spectra by measuring simultaneously with two HPGe detectors the 356 and 511 keV peaks. As the {sup 133}Ba source only emits one photon per decay, the Ba contribution to the 2D spectra was built up by taking two successive and uncorrelated events, i.e. one from each detector (pseudo-coincidence technique). The FWHM of the spectrometer was estimated from the E {sub 1}=E {sub 2} diagonal of the spectra.
Influence of elliptical shaped holes on the sensitivity and Q factor in 2D photonic crystals sensor
Benmerkhi, A.; Bouchemat, M.; Bouchemat, T.
2016-07-01
We theoretically investigate the refractive index sensor based on L2 photonic crystal cavity where neighboring holes are locally infiltrated with polymers. The photonic crystal is composed of periodic triangular hole array patterned perpendicularly to an InP-based confining heterostructure. The number of the holes surrounding a L2 cavity and their shape were modified in order to optimize the sensitivity and quality factor. From this study we have selected two structures that have good results. The first one is called locally which has a very high Q factor and a good sensitivity. Their values are 6.03 × 106 and 163 nm/RIU, respectively. The second optimized structure is called design B, which has a high sensitivity toward 227.78 nm/RIU with a Q factor of 5 × 105. The calculated detect limit for the two designs are lower than 1.59 × 10-6 and 1.4 × 10-5 RIU, respectively.
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Two-dimensional capillary origami
Brubaker, N. D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.
Strong light-matter coupling in two-dimensional atomic crystals
Liu, Xiaoze; Sun, Zheng; Xia, Fengnian; Lin, Erh-chen; Lee, Yi-Hsien; Kéna-Cohen, Stéphane; Menon, Vinod M
2014-01-01
Two dimensional (2D) atomic crystals of graphene, and transition metal dichalcogenides have emerged as a class of materials that show strong light-matter interaction. This interaction can be further controlled by embedding such materials into optical microcavities. When the interaction is engineered to be stronger than the dissipation of light and matter entities, one approaches the strong coupling regime resulting in the formation of half-light half-matter bosonic quasiparticles called microcavity polaritons. Here we report the evidence of strong light-matter coupling and formation of microcavity polaritons in a two dimensional atomic crystal of molybdenum disulphide (MoS2) embedded inside a dielectric microcavity at room temperature. A Rabi splitting of 46 meV and highly directional emission is observed from the MoS2 microcavity owing to the coupling between the 2D excitons and the cavity photons. Realizing strong coupling effects at room temperature in a disorder free potential landscape is central to the ...
Energy Technology Data Exchange (ETDEWEB)
Guillot, Mathieu; Beaulieu, Luc; Archambault, Louis; Beddar, Sam; Gingras, Luc [Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec, Quebec G1K 7P4 (Canada) and Departement de Radio-Oncologie, Hotel-Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec, Quebec G1R 2J6 (Canada); Department of Radiation Physics, Unit 94, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec, Quebec G1K 7P4 (Canada) and Departement de Radio-Oncologie, Hotel-Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec, Quebec G1R 2J6 (Canada)
2011-12-15
Purpose: The objective of this work is to present a new 2D plastic scintillation detectors array (2D-PSDA) designed for the dosimetry of megavoltage (MV) energy photon beams in radiation therapy and to characterize its basic performance. Methods: We developed a 2D detector array consisting of 781 plastic scintillation detectors (PSDs) inserted into a plane of a water-equivalent phantom. The PSDs were distributed on a 26 x 26 cm{sup 2} grid, with an interdetector spacing of 10 mm, except for two perpendicular lines centered on the detection plane, where the spacing was 5 mm. Each PSD was made of a 1 mm diameter by 3 mm long cylindrical polystyrene scintillating fiber coupled to a clear nonscintillating plastic optical fiber. All of the light signals emitted by the PSDs were read simultaneously with an optical system at a rate of one measurement per second. We characterized the performance of the optical system, the angular dependency of the device, and the perturbation of dose distributions caused by the hundreds of PSDs inserted into the phantom. We also evaluated the capacity of the system to monitor complex multileaf collimator (MLC) sequences such as those encountered in step-and-shoot intensity modulated radiation therapy (IMRT) plans. We compared our results with calculations performed by a treatment planning system and with measurements taken with a 2D ionization chamber array and with a radiochromic film. Results: The detector array that we developed allowed us to measure doses with an average precision of better than 1% for cumulated doses equal to or greater than 6.3 cGy. Our results showed that the dose distributions produced by the 6-MV photon beam are not perturbed (within {+-}1.1%) by the presence of the hundreds of PSDs located into the phantom. The results also showed that the variations in the beam incidences have little effect on the dose response of the device. For all incidences tested, the passing rates of the gamma tests between the 2D-PSDA and
Abbasian, Karim; Sadeghi, Parvin
2016-01-01
We have proposed optical tunable CNOT (XOR) and XNOR logic gates using two-dimensional photonic crystal (2DPhC) cavities. Where, air rods with square lattice array have been embedded in Ag-Polymer substrate with refractive index of 1.59. In this work, we have enhanced speed of logic gates by applying two input signals with a phase dif?ference at the same wavelength for 2DPhC cavities. Where, we have adjusted the phases of input and control signals equal with {\\pi}/3 and zero, respectively. The response time of the structure and quality factor of the cavities are in the range of femtosecond and 2000, respectively. Then, we have used electro-optic property of the substrate material to change the cavities resonance wavelengths. By this means, we could design the logic gates and demonstrate a tunable range of 23nm for their operation wavelength. The quality factor and the response times of cavities remain constant in the tunable range of wavelength, approximately. The evaluated least ON to OFF logic-level contras...
Optics and Optoelectronics of Two-dimensional Semiconducting Monolayers and Heterostructures
Ross, Jason Solomon
Until recently, the physics of truly two-dimensional (2D) excitons could only be explored theoretically. Following the discovery of graphene, many 2D materials were quickly identified and isolated, one system being the semiconducting Group VI-B transition metal dichalcogenides (TMDs). These semiconductors are the first air-stable materials that are atomically thin (three atomics thick), and yet can be produced in arbitrarily large lateral sheets. They have a direct band gap in which confinement leads to large spatial overlap of electrons and holes resulting in strongly coupled excitonic transitions that dominate light-matter interactions. The direct band-gap of monolayer TMDs occurs at the corners of the hexagonal Brillouin zone, referred to as the K valleys. Entirely unique to these materials, excitons in adjacent K valleys selectively couple to light of opposite circular polarization, i.e. the K (K') valley is selective to right (left) circularly polarized photons. This property offers the possible realization of novel devices that will manipulate the valley index, known as valleytronics. Further, creating a stacked heterostructure (HS) of two TMD monolayers of different molecular species can exhibit type-II band alignment leading to the first atomically sharp built-in p-n junction and a bright interlayer exciton with long lifetimes. Being flat 2D sheets, it is easy to couple these materials to nearby systems such as microfabricated electrodes and photonic crystal cavities allowing for unique modulation and device schemes. Here, I employ both optical and electronic techniques to study the unique physics of 2D excitons in TMDs as well as demonstrate some of their first optoelectronic and valleytronic devices. The most notable achievement is perhaps the first demonstrations of both atomically thin and 2D heterostructure light emitting diodes and photovoltaic devices. Other breakthroughs include the first demonstration of exciton charging tunability in a 2D system
Vibrational Properties of a Two-Dimensional Silica Kagome Lattice.
Björkman, Torbjörn; Skakalova, Viera; Kurasch, Simon; Kaiser, Ute; Meyer, Jannik C; Smet, Jurgen H; Krasheninnikov, Arkady V
2016-12-27
Kagome lattices are structures possessing fascinating magnetic and vibrational properties, but in spite of a large body of theoretical work, experimental realizations and investigations of their dynamics are scarce. Using a combination of Raman spectroscopy and density functional theory calculations, we study the vibrational properties of two-dimensional silica (2D-SiO2), which has a kagome lattice structure. We identify the signatures of crystalline and amorphous 2D-SiO2 structures in Raman spectra and show that, at finite temperatures, the stability of 2D-SiO2 lattice is strongly influenced by phonon-phonon interaction. Our results not only provide insights into the vibrational properties of 2D-SiO2 and kagome lattices in general but also suggest a quick nondestructive method to detect 2D-SiO2.
Emergent elemental two-dimensional materials beyond graphene
Zhang, Yuanbo; Rubio, Angel; Le Lay, Guy
2017-02-01
Two-dimensional (2D) materials may offer the ultimate scaling beyond the 5 nm gate length. The difficulty of reliably opening a band gap in graphene has led to the search for alternative, semiconducting 2D materials. Emerging classes of elemental 2D materials stand out for their compatibility with existing technologies and/or for their diverse, tunable electronic structures. Among this group, black phosphorene has recently shown superior semiconductor performances. Silicene and germanene feature Dirac-type band dispersions, much like graphene. Calculations show that most group IV and group V elements have one or more stable 2D allotropes, with properties potentially suitable for electronic and optoelectronic applications. Here, we review the advances in these fascinating elemental 2D materials and discuss progress and challenges in their applications in future opto- and nano-electronic devices.
Computationally Driven Two-Dimensional Materials Design: What Is Next?
Energy Technology Data Exchange (ETDEWEB)
Pan, Jie [Materials Science; Lany, Stephan [Materials Science; Qi, Yue [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
2017-07-17
Two-dimensional (2D) materials offer many key advantages to innovative applications, such as spintronics and quantum information processing. Theoretical computations have accelerated 2D materials design. In this issue of ACS Nano, Kumar et al. report that ferromagnetism can be achieved in functionalized nitride MXene based on first-principles calculations. Their computational results shed light on a potentially vast group of materials for the realization of 2D magnets. In this Perspective, we briefly summarize the promising properties of 2D materials and the role theory has played in predicting these properties. In addition, we discuss challenges and opportunities to boost the power of computation for the prediction of the 'structure-property-process (synthesizability)' relationship of 2D materials.
Classifying Two-dimensional Hyporeductive Triple Algebras
Issa, A Nourou
2010-01-01
Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.
Energy Technology Data Exchange (ETDEWEB)
Engelhardt, Sascha [Lehrstuhl fuer Lasertechnik, RWTH Aachen, Steinbachstrasse 15, Aachen (Germany); Hoch, Eva; Tovar, Guenter E M [Institut fuer Grenzflaechenverfahrenstechnik, Universitaet Stuttgart, Nobelstrasse 12, Stuttgart (Germany); Borchers, Kirsten [Fraunhofer-Institut fuer Grenzflaechen- und Bioverfahrenstechnik, Nobelstrasse 12, Stuttgart (Germany); Meyer, Wolfdietrich; Krueger, Hartmut [Fraunhofer-Institut fuer Angewandte Polymerforschung, Geiselbergstrasse 69, Potsdam (Germany); Gillner, Arnold, E-mail: sascha.engelhardt@ilt.fraunhofer.de [Fraunhofer-Institut fuer Lasertechnik, Steinbachstrasse 15, Aachen (Germany)
2011-06-15
Two-photon polymerization (TPP) offers the possibility of creating artificial cell scaffolds composed of micro- and nanostructures with spatial resolutions of less than 1 {mu}m. For use in tissue engineering, the identification of a TPP-processable polymer that provides biocompatibility, biofunctionality and appropriate mechanical properties is a difficult task. ECM proteins such as collagen or fibronectin, which could mimic native tissues best, often lack the mechanical stability. Hence, by generating polymer-protein hybrid structures, the beneficial properties of proteins can be combined with the advantageous characteristics of polymers, such as sufficient mechanical stability. This study describes three steps toward facilitated application of TPP for biomaterial generation. (1) The efficiency of a low-cost ps-laser source is compared to a fs-laser source by testing several materials. A novel photoinitiator for polymerization with a ps-laser source is synthesized and proved to enable increased fabrication throughput. (2) The fabrication of 3D-microstructures with both systems and the fabrication of polymer-protein hybrid structures are demonstrated. (3) The tissue engineering capabilities of TPP are demonstrated by creating cross-linked gelatin microstructures, which clearly forced porcine chondrocytes to adapt their cell morphology.
Energy Technology Data Exchange (ETDEWEB)
Eickhoff, Christian
2010-10-27
By combining ultrafast laser excitation with energy-, angle- and time-resolved twophoton photoemission (2PPE), the electronic properties of bulk silicon and the Si(001) surface are investigated in this thesis. A custom-built laser- and UHV-systemequipped with a display type 2D-CCD-detector gives new insight into the relaxation dynamics of excited carriers on a femtosecond timescale. The bandgap between occupied valence bands and unoccupied conduction bands characteristically influences the dynamics of excited electrons in the bulk, as well as in surface states and resonances. For the electron-phonon interaction this leads to the formation of a bottleneck during the relaxation of hot electrons in the conduction band, which maintains the elevated electronic temperature for several picoseconds. During relaxation, excited electrons also scatter from the conduction band into the unoccupied dangling-bond surface state D{sub down}. Depending on the excitation density this surface recombination is dominated by electron-electron- or electron-phonon scattering. The relaxation of the carriers in the D{sub down}-band is again slowed down by the formation of a bottleneck in electron-phonon coupling. Furthermore, the new laser system has allowed detection of the Rydberg-like series of image-potential resonances on the Si(001)-surface. It is shown that the lifetime of these image-potential resonances in front of the semiconducting surface exhibits the same behavior as those in front of metallic surfaces. Moreover the electron-phonon coupling in the first image-potential resonance was investigated and compared to the D{sub down}-surface state. For the first time, Fano-type lineprofiles are demonstrated and analyzed in a 2PPEprocess on a surface. Tuning the photon energy of the pump-laser across the resonance between the occupied dangling-bond state D{sub up}, and the unoccupied image-potential resonance n=1, reveals a clear intensity variation that can be successfully described
Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis
Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J
2012-01-01
Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...
Feng, Xiao; Ding, Xuesong; Chen, Long; Wu, Yang; Liu, Lili; Addicoat, Matthew; Irle, Stephan; Dong, Yuping; Jiang, Donglin
2016-09-01
Highly ordered discrete assemblies of chlorophylls that are found in natural light-harvesting antennae are key to photosynthesis, which converts light energy to chemical energy and is the principal producer of organic matter on Earth. Porphyrins and phthalocyanines, which are analogues of chlorophylls, exhibit a strong absorbance of visible and near-infrared light, respectively. A highly ordered porphyrin-co-phthalocyanine antennae would harvest photons over the entire solar spectrum for chemical transformation. However, such a robust antennae has not yet been synthesised. Herein, we report a strategy that merges covalent bonds and noncovalent forces to produce highly ordered two-dimensional porphyrin-co-phthalocyanine antennae. This methodology enables control over the stoichiometry and order of the porphyrin and phthalocyanine units; more importantly, this approach is compatible with various metalloporphyrin and metallophthalocyanine derivatives and thus may lead to the generation of a broad structural diversity of two-dimensional artificial antennae. These ordered porphyrin-co-phthalocyanine two-dimensional antennae exhibit unique optical properties and catalytic functions that are not available with single-component or non-structured materials. These 2D artificial antennae exhibit exceptional light-harvesting capacity over the entire solar spectrum as a result of a synergistic light-absorption effect. In addition, they exhibit outstanding photosensitising activities in using both visible and near-infrared photons for producing singlet oxygen.
Moment-based method for computing the two-dimensional discrete Hartley transform
Dong, Zhifang; Wu, Jiasong; Shu, Huazhong
2009-10-01
In this paper, we present a fast algorithm for computing the two-dimensional (2-D) discrete Hartley transform (DHT). By using kernel transform and Taylor expansion, the 2-D DHT is approximated by a linear sum of 2-D geometric moments. This enables us to use the fast algorithms developed for computing the 2-D moments to efficiently calculate the 2-D DHT. The proposed method achieves a simple computational structure and is suitable to deal with any sequence lengths.
Optical modulators with two-dimensional layered materials
Sun, Zhipei; Wang, Feng
2016-01-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.
Phase-sensitive two-dimensional neutron shearing interferometer and Hartmann sensor
Energy Technology Data Exchange (ETDEWEB)
Baker, Kevin
2015-12-08
A neutron imaging system detects both the phase shift and absorption of neutrons passing through an object. The neutron imaging system is based on either of two different neutron wavefront sensor techniques: 2-D shearing interferometry and Hartmann wavefront sensing. Both approaches measure an entire two-dimensional neutron complex field, including its amplitude and phase. Each measures the full-field, two-dimensional phase gradients and, concomitantly, the two-dimensional amplitude mapping, requiring only a single measurement.
Non-linear excitation of quantum emitters in two-dimensional hexagonal boron nitride
Schell, Andreas W; Takashima, Hideaki; Takeuchi, Shigeki; Aharonovich, Igor
2016-01-01
Two-photon absorption is an important non-linear process employed for high resolution bio-imaging and non-linear optics. In this work we realize two-photon excitation of a quantum emitter embedded in a two-dimensional material. We examine defects in hexagonal boron nitride and show that the emitters exhibit similar spectral and quantum properties under one-photon and two-photon excitation. Furthermore, our findings are important to deploy two-dimensional hexagonal boron nitride for quantum non-linear photonic applications.
Comparative Two-Dimensional Fluorescence Gel Electrophoresis.
Ackermann, Doreen; König, Simone
2018-01-01
Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.
Development of Novel Two-dimensional Layers, Alloys and Heterostructures
Liu, Zheng
2015-03-01
The one-atom-think graphene has fantastic properties and attracted tremendous interests in these years, which opens a window towards various two-dimensional (2D) atomic layers. However, making large-size and high-quality 2D layers is still a great challenge. Using chemical vapor deposition (CVD) method, we have successfully synthesized a wide varieties of highly crystalline and large scale 2D atomic layers, including h-BN, metal dichalcogenides e.g. MoS2, WS2, CdS, GaSe and MoSe2 which belong to the family of binary 2D materials. Ternary 2D alloys including BCN and MoS2xSe2 (1 - x) are also prepared and characterized. In addition, synthesis of 2D heterostructures such as vertical and lateral graphene/h-BN, vertical and lateral TMDs are also demonstrated. Complementary to CVD grown 2D layers, 2D single-crystal (bulk) such as Phosphorene (P), WTe2, SnSe2, PtS2, PtSe2, PdSe2, WSe2xTe2 (1 - x), Ta2NiS5andTa2NiSe5 are also prepared by solid reactions. There work provide a better understanding of the atomic layered materials in terms of the synthesis, atomic structure, alloying and their physical properties. Potential applications of these 2D layers e.g. optoelectronic devices, energy device and smart coating have been explored.
А heuristic algorithm for two-dimensional strip packing problem
Dayong, Cao; Kotov, V.M.
2011-01-01
In this paper, we construct an improved best-fit heuristic algorithm for two-dimensional rectangular strip packing problem (2D-RSPP), and compare it with some heuristic and metaheuristic algorithms from literatures. The experimental results show that BFBCC could produce satisfied packing layouts than these methods, especially for the large problem of 50 items or more, BFBCC could get better results in shorter time.
Colloidal interactions in two-dimensional nematic emulsions
Indian Academy of Sciences (India)
N M Silvestre; P Patrício; M M Telo Da Gama
2005-06-01
We review theoretical and experimental work on colloidal interactions in two-dimensional (2D) nematic emulsions. We pay particular attention to the effects of (i) the nematic elastic constants, (ii) the size of the colloids, and (iii) the boundary conditions at the particles and the container. We consider the interactions between colloids and fluid (deformable) interfaces and the shape of fluid colloids in smectic-C films.
Two-dimensional hexagonal semiconductors beyond graphene
Nguyen, Bich Ha; Hieu Nguyen, Van
2016-12-01
The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Xi, Caiping; Zhang, Shunning; Xiong, Gang; Zhao, Huichang
2016-07-01
Multifractal detrended fluctuation analysis (MFDFA) and multifractal detrended moving average (MFDMA) algorithm have been established as two important methods to estimate the multifractal spectrum of the one-dimensional random fractal signal. They have been generalized to deal with two-dimensional and higher-dimensional fractal signals. This paper gives a brief introduction of the two-dimensional multifractal detrended fluctuation analysis (2D-MFDFA) and two-dimensional multifractal detrended moving average (2D-MFDMA) algorithm, and a detailed description of the application of the two-dimensional fractal signal processing by using the two methods. By applying the 2D-MFDFA and 2D-MFDMA to the series generated from the two-dimensional multiplicative cascading process, we systematically do the comparative analysis to get the advantages, disadvantages and the applicabilities of the two algorithms for the first time from six aspects such as the similarities and differences of the algorithm models, the statistical accuracy, the sensitivities of the sample size, the selection of scaling range, the choice of the q-orders and the calculation amount. The results provide a valuable reference on how to choose the algorithm from 2D-MFDFA and 2D-MFDMA, and how to make the schemes of the parameter settings of the two algorithms when dealing with specific signals in practical applications.
Two-dimensional numerical assessment of the hydrodynamics of the Nile swamps in southern Sudan
National Research Council Canada - National Science Library
Petersen, G; Fohrer, N
2010-01-01
A two-dimensional (2D) hydrodynamic assessment of the Nile swamps in southern Sudan has been carried out using DHI MIKE 21 software based on a ground referenced and corrected Shuttle Radar Topography Mission (SRTM...
Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices.
Wang, Lei; Hu, Bambi; Li, Baowen
2012-10-01
Heat conduction in three two-dimensional (2D) momentum-conserving nonlinear lattices are numerically calculated via both nonequilibrium heat-bath and equilibrium Green-Kubo algorithms. It is expected by mainstream theories that heat conduction in such 2D lattices is divergent and the thermal conductivity κ increases with lattice length N logarithmically. Our simulations for the purely quartic lattice firmly confirm it. However, very robust finite-size effects are observed in the calculations for the other two lattices, which well explain some existing studies and imply the extreme difficulties in observing their true asymptotic behaviors with affordable computation resources.
Two-dimensional carbon fundamental properties, synthesis, characterization, and applications
Yihong, Wu; Ting, Yu
2013-01-01
After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC, chemical synthesis of graphene on metal, and chemical vapor deposition of vertically aligned carbon nanosheets or nanowalls. One chapter is dedicated to characterization of 2D nanocarbon using Raman spectroscopy. It provides extensive coverage for a
Band alignment of two-dimensional lateral heterostructures
Zhang, Junfeng; Xie, Weiyu; Zhang, S B
2016-01-01
Band alignment in two-dimensional (2D) lateral heterostructures is fundamentally different from three-dimensional (3D), as Schottky barrier height is at the Schottky-Mott limit and band offset is at the Anderson limit, regardless interfacial conditions. This robustness arises because, in the asymptotic limit, effect of interfacial dipole vanishes. First-principles calculations of graphene/h-BN and MoS2/WS2 show that 2D junction width W is typically an order of magnitude longer than 3D. Therefore, heterostructures with dimension less than W can also be made, leading to tunable band alignment.
A Direct Two-Dimensional Pressure Formulation in Molecular Dynamics
YD, Sumith
2016-01-01
Two-dimensional (2D) pressure field estimation in molecular dynamics (MD) simulations has been done using three-dimensional (3D) pressure field calculations followed by averaging, which is computationally expensive due to 3D convolutions. In this work, we develop a direct 2D pressure field estimation method which is much faster than 3D methods without losing accuracy. The method is validated with MD simulations on two systems: a liquid film and a cylindrical drop of argon suspended in surrounding vapor.
A Two-dimensional Magnetohydrodynamics Scheme for General Unstructured Grids
Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.
2007-05-01
We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALEs). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of divB by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for which multidimensional radiation magnetohydrodynamics (RMHD) is relevant.
Separation of colloidal two dimensional materials by density gradient ultracentrifugation
Energy Technology Data Exchange (ETDEWEB)
Kuang, Yun; Song, Sha [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Huang, Jinyang, E-mail: huangjy@mail.buct.edu.cn [Department of Mathematics, College of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Sun, Xiaoming, E-mail: sunxm@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)
2015-04-15
Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials. Isopycnic separation was applied on thickness-dependent separation of graphene nanosheets. And rate-zonal separation, as a more versatile separation method, demonstrated its capability in sorting nanosheets of chemically modified single layered graphene, layered double hydroxide, and even metallic Ag. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Graphical abstract: Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials according to their size of thickness difference. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Highlights: • Density gradient ultracentrifugation was applied on size separation of 2D material. • Isopycnic separation was applied on separation of low density materials. • Rate-zonal separation was applied on separation of large density materials. • Size
Topological Quantum Optics in Two-Dimensional Atomic Arrays
Perczel, J.; Borregaard, J.; Chang, D. E.; Pichler, H.; Yelin, S. F.; Zoller, P.; Lukin, M. D.
2017-07-01
We demonstrate that two-dimensional atomic emitter arrays with subwavelength spacing constitute topologically protected quantum optical systems where the photon propagation is robust against large imperfections while losses associated with free space emission are strongly suppressed. Breaking time-reversal symmetry with a magnetic field results in gapped photonic bands with nontrivial Chern numbers and topologically protected, long-lived edge states. Due to the inherent nonlinearity of constituent emitters, such systems provide a platform for exploring quantum optical analogs of interacting topological systems.
Hadamard States and Two-dimensional Gravity
Salehi, H
2001-01-01
We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.
Tunable states of interlayer cations in two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Sato, K.; Numata, K. [Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Dai, W. [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Hunger, M. [Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart (Germany)
2014-03-31
The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of {sup 23}Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and {sup 23}Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed.
Two-dimensional gallium nitride realized via graphene encapsulation
Al Balushi, Zakaria Y.; Wang, Ke; Ghosh, Ram Krishna; Vilá, Rafael A.; Eichfeld, Sarah M.; Caldwell, Joshua D.; Qin, Xiaoye; Lin, Yu-Chuan; Desario, Paul A.; Stone, Greg; Subramanian, Shruti; Paul, Dennis F.; Wallace, Robert M.; Datta, Suman; Redwing, Joan M.; Robinson, Joshua A.
2016-11-01
The spectrum of two-dimensional (2D) and layered materials `beyond graphene’ offers a remarkable platform to study new phenomena in condensed matter physics. Among these materials, layered hexagonal boron nitride (hBN), with its wide bandgap energy (~5.0-6.0 eV), has clearly established that 2D nitrides are key to advancing 2D devices. A gap, however, remains between the theoretical prediction of 2D nitrides `beyond hBN’ and experimental realization of such structures. Here we demonstrate the synthesis of 2D gallium nitride (GaN) via a migration-enhanced encapsulated growth (MEEG) technique utilizing epitaxial graphene. We theoretically predict and experimentally validate that the atomic structure of 2D GaN grown via MEEG is notably different from reported theory. Moreover, we establish that graphene plays a critical role in stabilizing the direct-bandgap (nearly 5.0 eV), 2D buckled structure. Our results provide a foundation for discovery and stabilization of 2D nitrides that are difficult to prepare via traditional synthesis.
Institute of Scientific and Technical Information of China (English)
汪杰; 朱娜; 成超; 颜晓
2011-01-01
研究了正方形和圆形介质柱混合排列的二维光子晶体的能带特性.运用平面波展开法在正方形和正三角形晶格下将混合柱形与统一柱形光子晶体的禁带特性进行计算比较.仿真结果表明:对于正方形晶格,混合柱形使光子晶体的TM模高阶能带向低频方向移动,禁带的宽度和位置介于正方形柱体和圆形柱体之间.在正三角形晶格中,混合柱形光子晶体出现了明显的TE模禁带,而在全正方形和全圆形柱体中几乎不存在TE模禁带.同时能带频率向低频方向移动的现象也存在于正三角形品格混合柱形光子晶体中.%The band gap properties of photonic crystals with square and circular dielectric rods mixed arrangement are analyzed. The band gap properties of mixed shapes rods photonic crystal are compared with square rods and round rods ones compared by using plane wave expansion method. Simulation results show that for the square lattice, mixed shapes of rods make the higher-order bands of TM modes moving towards the low frequency range, whose width and location are between the square and round rods photonic crystal. In triangle lattice, a significant band gap is presented in photonic crystal with mixed shapes of rods in TE mode, while it is almost not presented in square and round rods crystals. The phenomenon of bands moving towards the low frequency range is also found in the triangle lattice mixed shapes rods photonic crystal.
van der Waals epitaxy and photoresponse of two-dimensional CdSe plates
Zhu, Dan-Dan; Xia, Jing; Wang, Lei; Li, Xuan-Ze; Tian, Li-Feng; Meng, Xiang-Min
2016-06-01
Here we demonstrate the first growth of two-dimensional (2D) single-crystalline CdSe plates on mica substrates via van der Waals epitaxy. The as-synthesized 2D plates exhibit hexagonal, truncated triangular and triangular shapes with the lateral size around several microns. Photodetectors based on 2D CdSe plates present a fast response time of 24 ms, revealing that 2D CdSe is a promising building block for ultrathin optoelectronic devices.
Investigation of biosensor built with photonic crystal microcavity
Institute of Scientific and Technical Information of China (English)
Xiaoling Wang; Naiguang Lü; Qiaofeng Tan; Guofan Jin
2008-01-01
The ultra-compact biosensor based on the two-dimensional (2D) photonic crystal (PhC) microcavity is investigated. The performances of the sensor are analyzed theoretically using the Fabry-Perot (F-P) cavity model and simulated using the finite-difference time-domain (FDTD) method. The simulation results go along with the theoretical analysis.
Two-dimensional spectroscopy of molecular excitons in a model dimer system
Halpin, Alexei
The physics of molecular excitons has been the subject of many recent studies using electronic two-dimensional photon-echo spectroscopy (2DPE), particularly in the context of light harvesting in photosynthesis. Since the spectra for multichromophoric aggregates are congested, particularly so at room temperature, we present a study of a model dimer comprised of identical chromophores with a well defined electronic coupling strength, to provide clear signatures for coherences between vibronic excitons in 2D spectra. We begin by describing the design of a broadband passively phase-stabilized interferometer for collection of 2D spectra, which also allows for the investigation of state preparation in 2D spectroscopy by using shaped excitation pulses. In experiments on the model dimer we observe strong oscillating off-diagonal features in the 2D spectra which are present only before the onset of dephasing, which occurs in less than 100 fs due to strong system-bath coupling. This is in contrast with the parent dye, where low amplitude oscillations associated with Raman active vibrations persist for several ps following excitation. The results of this comparative study indicate that the signals observed earlier in photosynthetic proteins likely reflect vibrational motion in isolated pigments, and not delocalized quantum coherence. While long-lived vibrational coherences are of questionable biological relevance at face value, we conclude with a discussion on initial findings using coherently controlled 2D spectroscopy, where we observe long-lived signatures associated to vibronic coherences at room temperature. These results point to new directions of study using multidimensional spectroscopy to unravel the role of coherence in excitation energy transfer in molecular aggregates in an experimentally direct fashion.
Directory of Open Access Journals (Sweden)
Ming Zhou
2015-01-01
Full Text Available A novel algorithm is proposed for two-dimensional direction of arrival (2D-DOA estimation with uniform rectangular array using reduced-dimension propagator method (RD-PM. The proposed algorithm requires no eigenvalue decomposition of the covariance matrix of the receive data and simplifies two-dimensional global searching in two-dimensional PM (2D-PM to one-dimensional local searching. The complexity of the proposed algorithm is much lower than that of 2D-PM. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT algorithm and conventional PM algorithms, also very close to 2D-PM. The angle estimation error and Cramér-Rao bound (CRB are derived in this paper. Furthermore, the proposed algorithm can achieve automatically paired 2D-DOA estimation. The simulation results verify the effectiveness of the algorithm.
Strongly interacting two-dimensional Dirac fermions
Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.
2009-01-01
We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Interaction of two-dimensional magnetoexcitons
Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.
2017-04-01
We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .
2-D Animation's Not Just for Mickey Mouse.
Weinman, Lynda
1995-01-01
Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)
A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy
Energy Technology Data Exchange (ETDEWEB)
El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens, E-mail: bredenbeck@biophysik.uni-frankfurt.org, E-mail: bredenbeck@biophysik.uni-frankfurt.de [Institut für Biophysik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt (Germany)
2015-08-15
A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.
Superfluid phase transition in two-dimensional excitonic systems
Energy Technology Data Exchange (ETDEWEB)
Apinyan, V.; Kopeć, T.K., E-mail: kopec@int.pan.wroc.pl
2014-03-01
We study the superfluid phase transition in the two-dimensional (2D) excitonic system. Employing the extended Falicov–Kimball model (EFKM) and considering the local quantum correlations in the system composed of conduction band electrons and valence band holes we demonstrate the existence of the excitonic insulator (EI) state in the system. We show that at very low temperatures, the particle phase stiffness in the pure-2D excitonic system, governed by the non-local cross correlations, is responsible for the vortex–antivortex binding phase-field state, known as the Berezinskii–Kosterlitz–Thouless (BKT) superfluid state. We demonstrate that the existence of excitonic insulator phase is a necessary prerequisite, leading to quasi-long-range order in the 2D excitonic system.
Two-dimensional electronic spectroscopy with birefringent wedges
Energy Technology Data Exchange (ETDEWEB)
Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2014-12-15
We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.
Nonlinear optical response of a two-dimensional atomic crystal.
Merano, Michele
2016-01-01
The theory of Bloembergen and Pershan for the light waves at the boundary of nonlinear media is extended to a nonlinear two-dimensional (2D) atomic crystal, i.e., a single planar atomic lattice, placed between linear bulk media. The crystal is treated as a zero-thickness interface, a real 2D system. Harmonic waves emanate from it. Generalization of the laws of reflection and refraction give the direction and the intensity of the harmonic waves. As a particular case that contains all the essential physical features, second-order harmonic generation is considered. The theory, due to its simplicity that stems from the special character of a single planar atomic lattice, is able to elucidate and explain the rich experimental details of harmonic generation from a 2D atomic crystal.
A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy
El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens
2015-08-01
A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs
Mannix, Andrew J.; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D.; Alducin, Diego; Myers, Benjamin D.; Liu, Xiaolong; Fisher, Brandon L.; Santiago, Ulises; Guest, Jeffrey R.; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R.; Hersam, Mark C.; Guisinger, Nathan P.
2016-01-01
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes.Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. PMID:26680195
Proximity Induced Superconducting Properties in One and Two Dimensional Semiconductors
DEFF Research Database (Denmark)
Kjærgaard, Morten
a voltage is passed through the Josephson junction, we observe multiple Andreev reflections and preliminary results point to a highly transmissive interface between the 2D electron gas and the superconductor. In the theoretical section we demonstrate analytically and numerically, that in a 1D nanowire......This report is concerned with the properties of one and two dimensional semiconducting materials when brought into contact with a superconductor. Experimentally we study the 2D electron gas in an InGaAs/InAs heterostructure with aluminum grown in situ on the surface, and theoretically we show...... that a superconducting 1D nanowire can harbor Majorana bound states in the absence of spin–orbit coupling. We fabricate and measure micrometer–sized mesoscopic devices demonstrating the inheritance of superconducting properties in the 2D electron gas. By placing a quantum point contact proximal to the interface between...
A renormalization group analysis of two-dimensional magnetohydrodynamic turbulence
Liang, Wenli Z.; Diamond, P. H.
1993-01-01
The renormalization group (RNG) method is used to study the physics of two-dimensional (2D) magnetohydrodynamic (MHD) turbulence. It is shown that, for a turbulent magnetofluid in two dimensions, no RNG transformation fixed point exists on account of the coexistence of energy transfer to small scales and mean-square magnetic flux transfer to large scales. The absence of a fixed point renders the RNG method incapable of describing the 2D MHD system. A similar conclusion is reached for 2D hydrodynamics, where enstrophy flows to small scales and energy to large scales. These analyses suggest that the applicability of the RNG method to turbulent systems is intrinsically limited, especially in the case of systems with dual-direction transfer.
Quasi-Two-Dimensional Magnetism in Co-Based Shandites
Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki
2016-06-01
We report quasi-two-dimensional (Q2D) itinerant electron magnetism in the layered Co-based shandites. Comprehensive magnetization measurements were performed using single crystals of Co3Sn2-xInxS2 (0 ≤ x ≤ 2) and Co3-yFeySn2S2 (0 ≤ y ≤ 0.5). The magnetic parameters of both systems; the Curie temperature TC, effective moment peff and spontaneous moment ps; exhibit almost identical variations against the In- and Fe-concentrations, indicating significance of the electron count on the magnetism in the Co-based shandite. The ferromagnetic-nonmagnetic quantum phase transition is found around xc ˜ 0.8. Analysis based on the extended Q2D spin fluctuation theory clearly reveals the highly Q2D itinerant electron character of the ferromagnetism in the Co-based shandites.
Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis
Energy Technology Data Exchange (ETDEWEB)
Erskine, D J; Smith, R F; Bolme, C; Celliers, P; Collins, G
2011-03-23
We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISAR optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.
Analysis of the IEA 2D test. 2D, 3D, steady or unsteady airflow?
DEFF Research Database (Denmark)
Cortes, Ines Olmedo; Nielsen, Peter V.
The “IEA Annex 20 two-dimensional test case” was defined by proffesor Peter V. Nielsen (1990) and was originally considered two-dimensional and steady flow. However, some recent works considering the case as three dimensional have shown different solutions from the 2D case as well as different so...
Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs
Williamson, Ian A D; Wang, Zheng
2015-01-01
Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100x wavelength reduction and excellent out-of-plane confinement. The graphene-cladded photonic crystal slabs exhibit band structures closely resembling those of ideal two-dimensional photonic crystals, with broad two-dimensional photonic band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crys...
Extension of modified power method to two-dimensional problems
Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung
2016-09-01
In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. The stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem.
Two dimensional density and its fluctuation measurements by using phase imaging method in GAMMA 10
Energy Technology Data Exchange (ETDEWEB)
Yoshikawa, M.; Negishi, S.; Shima, Y.; Hojo, H.; Imai, T. [Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Mase, A. [Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Kogi, Y. [Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashiku, Fukuoka 811-0295 (Japan)
2010-10-15
Two dimensional (2D) plasma image analysis is useful to study the improvement of plasma confinement in magnetically confined fusion plasmas. We have constructed a 2D interferometer system with phase imaging method for studying 2D plasma density distribution and its fluctuation measurement in the tandem mirror GAMMA 10. 2D profiles of electron density and its fluctuation have been successfully obtained by using this 2D phase imaging system. We show that 2D plasma density and fluctuation profiles clearly depends on the axial confining potential formation with application of plug electron cyclotron heating in GAMMA 10.
Acoustic resonances in two dimensional radial sonic crystals shells
Torrent, Daniel
2010-01-01
Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction. They have been recently introduced and are only possible thanks to the anisotropy of specially designed acoustic metamaterials [see Phys. Rev. Lett. {\\bf 103} 064301 (2009)]. We present here a comprehensive analysis of two-dimensional RSC shells, which consist of a cavity defect centered at the origin of the crystal and a finite thickness crystal shell surrounded by a fluidlike background. We develop analytic expressions demonstrating that, like for other type of crystals (photonic or phononic) with defects, these shells contain Fabry-Perot like resonances and strongly localized modes. The results are completely general and can be extended to three dimensional acoustic structures and to their photonic counterparts, the radial photonic crystals.
Peijun, Yao; Xiyao, Chen; Bo, Chen; Yonghua, Lu; Pei, Wang; Xiaojin, Jiao; Hai, Ming; Jianping, Xie
2004-06-01
In this paper, we investigated the reflectivity of the reflector based on two-dimensional photonic crystal waveguide on defect's position, defect's radius and defect's index by finite difference time domain method. It is found that the reflectivity of the reflector strongly depends on the position of the defect, the reflectivity increases when the defect moves away from the grid point along the direction perpendicular to the waveguide, and we can obtain reflectivity of almost 100% in some suitable position. Meanwhile, we discuss that the reflectivity change with the defect's radius and its refractive index. Moreover, we have designed and simulated a high quality factor ( Q) filter constructed by one-defect reflectors in a simple structure. In our design, the Q will be increased by three times without any more constructional complexity.
Institute of Scientific and Technical Information of China (English)
张振生; 章蓓; 徐军; 经光银
2006-01-01
针对半导体发光管(LED)器件普遍存在的出光效率低下的问题,首次采用聚焦离子束技术成功地在GaN基发光器件上制备了GaN二维八重准晶光子晶体(2D-8PQCs)结构.并将二维八重准晶光子晶体应用于电注入器件,当刻蚀孔径为600 nm,空气填充因子为30%时,得到了表面出光效率高达2.5倍的增强.通过微区电致发光与发光图样的研究,证实二维八重准晶光子晶体结构抑制了导波模式的传播,将LED中导波模式耦合到辐射模式,从而起到改进表面出光的作用.上述结果为二维准晶光子晶体在GaN基发光器件中的应用提供了一种可能的途径.
Two-dimensional coupled electron-hole layers in high magnetic fields
Parlangeli, Andrea
2000-01-01
In solids, it is nowadays possible to create structures in which electrons are confined into a two-dimensional (2D) plane. The physics of a 2D electron gas (2DEG) has proved to be very rich, in particular in the presence of a transverse magnetic field. The Quantum Hall Effect, i.e. the quantization
Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory
Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.
2015-01-01
A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…
Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory
Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.
2015-01-01
A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…
Fang, Changming; Van Blaaderen, Alfons; Van Huis, Marijn A.
2015-01-01
Two-dimensional (2D) hydrous silica sheets (HSSs) and hydrous silica nanotubes (HSNTs) have many unique properties and potential applications. Although preparation of 2D HSSs was patented already about half a century ago, very little is known about their structure and physical properties. He we pred
On the critical behaviour of two-dimensional liquid crystals
Directory of Open Access Journals (Sweden)
A.l. Fariñas-Sánchez
2010-01-01
Full Text Available The Lebwohl-Lasher (LL model is the traditional model used to describe the nematic-isotropic transition of real liquid crystals. In this paper, we develop a numerical study of the temperature behaviour and of finite-size scaling of the two-dimensional (2D LL-model. We discuss two possible scenarios. In the first one, the 2D LL-model presents a phase transition similar to the topological transition appearing in the 2D XY-model. In the second one, the 2D LL-model does not exhibit any critical transition, but its low temperature behaviour is rather characterized by a crossover from a disordered phase to an ordered phase at zero temperature. We realize and discuss various comparisons with the 2D XY-model and the 2D Heisenberg model. Having added finite-size scaling behaviour of the order parameter and conformal mapping of order parameter profile to previous studies, we analyze the critical scaling of the probability distribution function, hyperscaling relations and stiffness order parameter and conclude that the second scenario (no critical transition is the most plausible.
Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials.
Blonsky, Michael N; Zhuang, Houlong L; Singh, Arunima K; Hennig, Richard G
2015-10-27
Two-dimensional (2D) materials present many unique materials concepts, including material properties that sometimes differ dramatically from those of their bulk counterparts. One of these properties, piezoelectricity, is important for micro- and nanoelectromechanical systems applications. Using symmetry analysis, we determine the independent piezoelectric coefficients for four groups of predicted and synthesized 2D materials. We calculate with density-functional perturbation theory the stiffness and piezoelectric tensors of these materials. We determine the in-plane piezoelectric coefficient d11 for 37 materials within the families of 2D metal dichalcogenides, metal oxides, and III-V semiconductor materials. A majority of the structures, including CrSe2, CrTe2, CaO, CdO, ZnO, and InN, have d11 coefficients greater than 5 pm/V, a typical value for bulk piezoelectric materials. Our symmetry analysis shows that buckled 2D materials exhibit an out-of-plane coefficient d31. We find that d31 for 8 III-V semiconductors ranges from 0.02 to 0.6 pm/V. From statistical analysis, we identify correlations between the piezoelectric coefficients and the electronic and structural properties of the 2D materials that elucidate the origin of the piezoelectricity. Among the 37 2D materials, CdO, ZnO, and CrTe2 stand out for their combination of large piezoelectric coefficient and low formation energy and are recommended for experimental exploration.
Soluble, Exfoliated Two-Dimensional Nanosheets as Excellent Aqueous Lubricants.
Zhang, Wenling; Cao, Yanlin; Tian, Pengyi; Guo, Fei; Tian, Yu; Zheng, Wen; Ji, Xuqiang; Liu, Jingquan
2016-11-30
Dispersion in water of two-dimensional (2D) nanosheets is conducive to their practical applications in fundamental science communities due to their abundance, low cost, and ecofriendliness. However, it is difficult to achieve stable aqueous 2D material suspensions because of the intrinsic hydrophobic properties of the layered materials. Here, we report an effective and economic way of producing various 2D nanosheets (h-BN, MoS2, MoSe2, WS2, and graphene) as aqueous dispersions using carbon quantum dots (CQDs) as exfoliation agents and stabilizers. The dispersion was prepared through a liquid phase exfoliation. The as-synthesized stable 2D nanosheets based dispersions were characterized by UV-vis, HRTEM, AFM, Raman, XPS, and XRD. The solutions based on CQD decorated 2D nanosheets were utilized as aqueous lubricants, which realized a friction coefficient as low as 0.02 and even achieved a superlubricity under certain working conditions. The excellent lubricating properties were attributed to the synergetic effects of the 2D nanosheets and CQDs, such as good dispersion stability and easy-sliding interlayer structure. This work thus proposes a novel strategy for the design and preparation of high-performance water based green lubricants.
Two Dimensional Plasmonic Cavities on Moire Surfaces
Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla
2010-03-01
We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.
Martin, Danielle E; Robertson, Evan G; MacLellan, Jonathan G; Godfrey, Peter D; Thompson, Christopher D; Morrison, Richard J S
2009-02-25
Conformational preferences of the nicotine analogue 2-phenylpyrrolidine (PPD) have been studied in both gaseous and solution phases. Theoretical calculations at the MP2 and B3LYP levels point to 5-6 stable conformers which differ in three degrees of conformational freedom; torsion between the two rings, inversion at the pyrrolidine (PY) amine, and PY ring puckering, characterized using the Cremer-Pople definition for pseudorotation. Only one conformer has a trans arrangement between the amino hydrogen and the phenyl substituent. It is 6-8 kJ mol(-1) more stable than the cis conformers, has a perpendicular ring arrangement, and puckers at the nitrogen atom--similar to structures reported for nicotine. Resonant two-photon ionization (R2PI) data, including hole burn spectra, indicate only one conformer is present in the free jet expansion, and band contour analysis suggests assignment to the trans conformer. Confirmation was provided by microwave spectroscopy. Fifty-seven lines measured in the 48-72 GHz region were assigned to 206 b-type transitions and fitted to yield rotational constants within 2 MHz of MP2 values predicted for the trans conformer. The solution-phase conformers of PPD were studied using 1D and 2D (1)H NMR spectroscopy and solvent-based theoretical calculations. In marked contrast to the gas phase, NMR data reveals only cis conformers present in solution. Calculations confirm increased stability for these conformers when placed in simulated chloroform or water environments. Solvent molecules are believed to disrupt a crucial N...H(ortho) stabilizing interaction present within the trans conformer.
Edge waves and resonances in two-dimensional phononic crystal plates
Hsu, Jin-Chen; Hsu, Chih-Hsun
2015-05-01
We present a numerical study on phononic band gaps and resonances occurring at the edge of a semi-infinite two-dimensional (2D) phononic crystal plate. The edge supports localized edge waves coupling to evanescent phononic plate modes that decay exponentially into the semi-infinite phononic crystal plate. The band-gap range and the number of edge-wave eigenmodes can be tailored by tuning the distance between the edge and the semi-infinite 2D phononic lattice. As a result, a phononic band gap for simultaneous edge waves and plate waves is created, and phononic cavities beside the edge can be built to support high-frequency edge resonances. We design an L3 edge cavity and analyze its resonance characteristics. Based on the band gap, high quality factor and strong confinement of resonant edge modes are achieved. The results enable enhanced control over acoustic energy flow in phononic crystal plates, which can be used in designing micro and nanoscale resonant devices and coupling of edge resonances to other types of phononic or photonic crystal cavities.
Three-dimensional versus two-dimensional vision in laparoscopy
DEFF Research Database (Denmark)
Sørensen, Stine Maya Dreier; Savran, Mona M; Konge, Lars;
2016-01-01
BACKGROUND: Laparoscopic surgery is widely used, and results in accelerated patient recovery time and hospital stay were compared with laparotomy. However, laparoscopic surgery is more challenging compared with open surgery, in part because surgeons must operate in a three-dimensional (3D) space...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...
Complex Saddles in Two-dimensional Gauge Theory
Buividovich, P V; Valgushev, S N
2015-01-01
We study numerically the saddle point structure of two-dimensional (2D) lattice gauge theory, represented by the Gross-Witten-Wadia unitary matrix model. The saddle points are in general complex-valued, even though the original integration variables and action are real. We confirm the trans-series/instanton gas structure in the weak-coupling phase, and identify a new complex-saddle interpretation of non-perturbative effects in the strong-coupling phase. In both phases, eigenvalue tunneling refers to eigenvalues moving off the real interval, into the complex plane, and the weak-to-strong coupling phase transition is driven by saddle condensation.
Two Dimensional Spatial Independent Component Analysis and Its Application in fMRI Data Process
Institute of Scientific and Technical Information of China (English)
CHEN Hua-fu; YAO De-zhong
2005-01-01
One important application of independent component analysis (ICA) is in image processing. A two dimensional (2-D) composite ICA algorithm framework for 2-D image independent component analysis (2-D ICA) is proposed. The 2-D nature of the algorithm provides it an advantage of circumventing the roundabout transforming procedures between two dimensional (2-D) image data and one-dimensional (1-D) signal. Moreover the combination of the Newton (fixed-point algorithm) and natural gradient algorithms in this composite algorithm increases its efficiency and robustness. The convincing results of a successful example in functional magnetic resonance imaging (fMRI) show the potential application of composite 2-D ICA in the brain activity detection.
Main Factors for Affecting Photonic Bandgap of Photonic Crystals
Institute of Scientific and Technical Information of China (English)
LI Xia; XUE Wei; JIANG Yu-rong; YU Zhi-nong; WANG Hua-qing
2007-01-01
The factors affecting one dimensional (1D) and two dimensional (2D) photonic crystals (PhCs) are systemically analyzed in this paper by numerical simulation.Transfer matrix method (TMM) is employed for 1D PCs, both finite difference time domain method (FDTD) and plane wave expansion method (PWE) are employed for 2D PCs.The result shows that the photonic bandgaps (PBG) are directly affected by crystal type, crystal lattice constant, modulation of refractive index and periodicity, and it is should be useful for design of different type photonic crystals with the required PBG and functional devices.Finally, as an example, a near-IR 1D PCs narrow filter was designed.
Schmidt-Krey, Ingeborg; Rubinstein, John L.
2010-01-01
Membrane protein structure and function can be studied by two powerful and highly complementary electron cryomicroscopy (cryo-EM) methods: electron crystallography of two-dimensional (2D) crystals and single particle analysis of detergent-solubilized protein complexes. To obtain the highest-possible resolution data from membrane proteins, whether prepared as 2D crystals or single particles, cryo-EM samples must be vitrified with great care. Grid preparation for cryo-EM of 2D crystals is possi...
25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials.
Huang, Xiao; Tan, Chaoliang; Yin, Zongyou; Zhang, Hua
2014-04-09
Two-dimensional (2D) nanomaterials, such as graphene and transition metal dichalcogenides (TMDs), receive a lot of attention, because of their intriguing properties and wide applications in catalysis, energy-storage devices, electronics, optoelectronics, and so on. To further enhance the performance of their application, these 2D nanomaterials are hybridized with other functional nanostructures. In this review, the latest studies of 2D nanomaterial-based hybrid nanostructures are discussed, focusing on their preparation methods, properties, and applications.
Two-dimensional dispersive shock waves in dissipative optical media
Kartashov, Yaroslav V
2013-01-01
We study generation of two-dimensional dispersive shock waves and oblique dark solitons upon interaction of tilted plane waves with negative refractive index defects embedded into defocusing material with linear gain and two-photon absorption. Different evolution regimes are encountered including the formation of well-localized disturbances for input tilts below critical one, and generation of extended shock waves containing multiple intensity oscillations in the "upstream" region and gradually vanishing oblique dark solitons in "downstream" region for input tilts exceeding critical one. The generation of stable dispersive shock waves is possible only below certain critical defect strength.
Cheng, Guang-Ling; Cong, Lu; Chen, Ai-Xi
2016-04-01
A scheme for two-dimensional (2D) electromagnetically induced grating via spatial gain and phase modulation is presented in a two-level atomic system. Based on the interactions of two orthogonal standing-wave fields, the atom could diffract the weak probe beam into high-order directions and a 2D diffraction grating is generated. It is shown that the diffraction efficiency of the grating can be efficiently manipulated by controlling the Rabi frequencies of control fields, the detunings of the control and probe fields, and interaction length. Different from 2D cross-grating via electromagnetically induced transparency in a four-level atomic system, the present scheme results from the spatial modulation of gain and phase in a simple two-level system, which could lead to 2D gain-phase grating with larger diffraction intensities in the diffraction directions. The studies we present may have potential applications in developing photon devices for optical-switching, optical imaging and quantum information processing.
Perspectives for spintronics in 2D materials
Directory of Open Access Journals (Sweden)
Wei Han
2016-03-01
Full Text Available The past decade has been especially creative for spintronics since the (rediscovery of various two dimensional (2D materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.
Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.
Aharon, Sigalit; Etgar, Lioz
2016-05-11
Organo-metal halide perovskite is an efficient light harvester in photovoltaic solar cells. Organometal halide perovskite is used mainly in its "bulk" form in the solar cell. Confined perovskite nanostructures could be a promising candidate for efficient optoelectronic devices, taking advantage of the superior bulk properties of organo-metal halide perovskite, as well as the nanoscale properties. In this paper, we present facile low-temperature synthesis of two-dimensional (2D) lead halide perovskite nanorods (NRs). These NRs show a shift to higher energies in the absorbance and in the photoluminescence compared to the bulk material, which supports their 2D structure. X-ray diffraction (XRD) analysis of the NRs demonstrates their 2D nature combined with the tetragonal 3D perovskite structure. In addition, by alternating the halide composition, we were able to tune the optical properties of the NRs. Fast Fourier transform, and electron diffraction show the tetragonal structure of these NRs. By varying the ligands ratio (e.g., octylammonium to oleic acid) in the synthesis, we were able to provide the formation mechanism of these novel 2D perovskite NRs. The 2D perovskite NRs are promising candidates for a variety of optoelectronic applications, such as light-emitting diodes, lasing, solar cells, and sensors.
Generalized non-separable two-dimensional Dammann encoding method
Yu, Junjie; Zhou, Changhe; Zhu, Linwei; Lu, Yancong; Wu, Jun; Jia, Wei
2017-01-01
We generalize for the first time, to the best of our knowledge, the Dammann encoding method into non-separable two-dimensional (2D) structures for designing various pure-phase Dammann encoding gratings (DEGs). For examples, three types of non-separable 2D DEGs, including non-separable binary Dammann vortex gratings, non-separable binary distorted Dammann gratings, and non-separable continuous-phase cubic gratings, are designed theoretically and demonstrated experimentally. Correspondingly, it is shown that 2D square arrays of optical vortices with topological charges proportional to the diffraction orders, focus spots shifting along both transversal and axial directions with equal spacings, and Airy-like beams with controllable orientation for each beam, are generated in symmetry or asymmetry by these three DEGs, respectively. Also, it is shown that a more complex-shaped array of modulated beams could be achieved by this non-separable 2D Dammann encoding method, which will be a big challenge for those conventional separable 2D Dammann encoding gratings. Furthermore, the diffractive efficiency of the gratings can be improved around ∼10% when the non-separable structure is applied, compared with their conventional separable counterparts. Such improvement in the efficiency should be of high significance for some specific applications.
Band alignment of two-dimensional lateral heterostructures
Zhang, Junfeng; Xie, Weiyu; Zhao, Jijun; Zhang, Shengbai
2017-03-01
Recent experimental synthesis of two-dimensional (2D) heterostructures opens a door to new opportunities in tailoring the electronic properties for novel 2D devices. Here, we show that a wide range of lateral 2D heterostructures could have a prominent advantage over the traditional three-dimensional (3D) heterostructures, because their band alignments are insensitive to the interfacial conditions. They should be at the Schottky-Mott limits for semiconductor-metal junctions and at the Anderson limits for semiconductor junctions, respectively. This fundamental difference from the 3D heterostructures is rooted in the fact that, in the asymptotic limit of large distance, the effect of the interfacial dipole vanishes for 2D systems. Due to the slow decay of the dipole field and the dependence on the vacuum thickness, however, studies based on first-principles calculations often failed to reach such a conclusion. Taking graphene/hexagonal-BN and MoS2/WS2 lateral heterostructures as the respective prototypes, we show that the converged junction width can be order of magnitude longer than that for 3D junctions. The present results provide vital guidance to high-quality transport devices wherever a lateral 2D heterostructure is involved.
Two-Dimensional Tail-Biting Convolutional Codes
Alfandary, Liam
2011-01-01
The multidimensional convolutional codes are an extension of the notion of convolutional codes (CCs) to several dimensions of time. This paper explores the class of two-dimensional convolutional codes (2D CCs) and 2D tail-biting convolutional codes (2D TBCCs), in particular, from several aspects. First, we derive several basic algebraic properties of these codes, applying algebraic methods in order to find bijective encoders, create parity check matrices and to inverse encoders. Next, we discuss the minimum distance and weight distribution properties of these codes. Extending an existing tree-search algorithm to two dimensions, we apply it to find codes with high minimum distance. Word-error probability asymptotes for sample codes are given and compared with other codes. The results of this approach suggest that 2D TBCCs can perform better than comparable 1D TBCCs or other codes. We then present several novel iterative suboptimal algorithms for soft decoding 2D CCs, which are based on belief propagation. Two ...
Institute of Scientific and Technical Information of China (English)
黄俊; 胡元平; 宋樟伟; 杨炜宇; 徐瑞; 倪显达
2012-01-01
Objective To assess the left ventricular systolic function in patients with dilated cardiomyopathy ( DCM ) . Methods 35 healthy subjects and 39 dilated cardiomyopathy patients underwent conventional echocardiography examination. Left atrial ( LA) diameter were measured by M - mode echocardiography, left ventricular( LV) end - systolic volume, end - diastolic volume and left ventricular ejection fraction (LVEF) were calculated by bi -plane Simpson's method. The peak velocity during early diastole(Ve) and late diastole (Va) of anterior mitral valve were measured by pulse -waved doppler, and the ratio Ve/Va was calculated. We acquired the apical four - chamber, two - chamber and the long - axis views of the left ventricular images in these patients with GE - Vivid7 - dimension. Then the peak longitudinal velocity, strain and strain rate in systolic period were measured and recorded. Results The values of LAD, LVESV and LVEDV in DCM patients were significantly higher than those of healthy subjects (P 0. 05 ) . The peak velocity in systolic period of the base and middle LV segments in DCM patients were lower than those of the healthy subjects (P < 0. 05). The peak longitudinal strain and strain rate were significantly lower than healthy subjects (P < 0. 01). The peak velocity of the healthy subjects and the DCM patients were descent from the base to the apex. Conclusion The peak velocity, stain and strain rate of regional myocardial function in long - axis of left ventricular can be analyzed by 2D - STI, and it is a feasible technique for the assessment of cardiac longitudinal systolic function in DCM patients, and it can be widely used in the cardiac examination.%目的 评价二维斑点追踪成像技术(2D - STI)在扩张型心肌病(dilated cardiomyopathy,DCM)患者的左心室心肌纵向收缩功能应用价值.方法 对39例DCM患者和35例正常对照组行常规超声心动图检查得到左心房内径(LAD)、左心室射血分数(LVEF)、过二尖瓣口
Interpolation by two-dimensional cubic convolution
Shi, Jiazheng; Reichenbach, Stephen E.
2003-08-01
This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.
Epi-two-dimensional flow and generalized enstrophy
Yoshida, Zensho
2016-01-01
The conservation of the enstrophy ($L^2$ norm of the vorticity $\\omega$) plays an essential role in the physics and mathematics of two-dimensional (2D) Euler fluids. Generalizing to compressible ideal (inviscid and barotropic) fluids, the generalized enstrophy $\\int_{\\Sigma(t)} f(\\omega/\\rho)\\rho\\, d^2 x$, ($f$ an arbitrary smooth function, $\\rho$ the density, and $\\Sigma(t)$ an arbitrary 2D domain co-moving with the fluid) is a constant of motion, and plays the same role. On the other hand, for the three-dimensional (3D) ideal fluid, the helicity $\\int_{M} {V}\\cdot\\omega\\,d^3x$, ($V$ the flow velocity, $\\omega=\
Two-dimensional atom localization induced by a squeezed vacuum
Wang, Fei; Xu, Jun
2016-10-01
A scheme of two-dimensional (2D) atom localization induced by a squeezed vacuum is proposed, in which the three-level V-type atoms interact with two classical standing-wave fields. It is found that when the environment is changed from an ordinary vacuum to a squeezed vacuum, the 2D atom localization is realized by detecting the position-dependent resonance fluorescence spectrum. For comparison, we demonstrate that the atom localization originating from the quantum interference effect is distinct from that induced by a squeezed vacuum. Furthermore, the combined effects of the squeezed vacuum and quantum interference are also discussed under appropriate conditions. The internal physical mechanism is analyzed in terms of dressed-state representation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574179 and 11204099) and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFC1148).
Oriented Two-Dimensional Porous Organic Cage Crystals.
Jiang, Shan; Song, Qilei; Massey, Alan; Chong, Samantha Y; Chen, Linjiang; Sun, Shijing; Hasell, Tom; Raval, Rasmita; Sivaniah, Easan; Cheetham, Anthony K; Cooper, Andrew I
2017-08-01
The formation of two-dimensional (2D) oriented porous organic cage crystals (consisting of imine-based tetrahedral molecules) on various substrates (such as silicon wafers and glass) by solution-processing is reported. Insight into the crystallinity, preferred orientation, and cage crystal growth was obtained by experimental and computational techniques. For the first time, structural defects in porous molecular materials were observed directly and the defect concentration could be correlated with crystal growth rate. These oriented crystals suggest potential for future applications, such as solution-processable molecular crystalline 2D membranes for molecular separations. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Thermal conductivity of disordered two-dimensional binary alloys.
Zhou, Yang; Guo, Zhi-Xin; Cao, Hai-Yuan; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao
2016-10-20
Using non-equilibrium molecular dynamics simulations, we have studied the effect of disorder on the thermal conductivity of two-dimensional (2D) C1-xNx alloys. We find that the thermal conductivity not only depends on the substitution concentration of nitrogen, but also strongly depends on the disorder distribution. A general linear relationship is revealed between the thermal conductivity and the participation ratio of phonons in 2D alloys. Localization mode analysis further indicates that the thermal conductivity variation in the ordered alloys can be attributed to the number of inequivalent atoms. As for the disordered alloys, we find that the thermal conductivity variation can be described by a simple linear formula with the disorder degree and the substitution concentration. The present study suggests some general guidance for phonon manipulation and thermal engineering in low dimensional alloys.
Two-dimensional random arrays for real time volumetric imaging
DEFF Research Database (Denmark)
Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.
1994-01-01
Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...
Soliton nanoantennas in two-dimensional arrays of quantum dots
Gligorić, G; Hadžievski, Lj; Slepyan, G Ya; Malomed, B A
2015-01-01
We consider two-dimensional (2D) arrays of self-organized semiconductor quantum dots (QDs) strongly interacting with electromagnetic field in the regime of Rabi oscillations. The QD array built of two-level states is modelled by two coupled systems of discrete nonlinear Schr\\"{o}dinger equations. Localized modes in the form of single-peaked fundamental and vortical stationary Rabi solitons and self-trapped breathers have been found. The results for the stability, mobility and radiative properties of the Rabi modes suggest a concept of a self-assembled 2D \\textit{% soliton-based nano-antenna}, which should be stable against imperfections In particular, we discuss the implementation of such a nano-antenna in the form of surface plasmon solitons in graphene, and illustrate possibilities to control their operation by means of optical tools.
Design of two-dimensional digital filters using neural networks
Institute of Scientific and Technical Information of China (English)
Wang Xiaohua; He Yigang
2005-01-01
A new approach for the design of two-dimensional (2-D) linear phase FIR digital filters based on a new neural networks algorithm (NNA) is provided. A compact expression for the transfer function of a 2-D linear phase FIR filter is derived based on its frequency response characteristic, and the NNA, based on minimizing the square-error in the frequency-domain, is established according to the compact expression. To illustrate the stability of the NNA, the convergence theorem is presented and proved. Design examples are also given, and the results show that the ripple is considerably small in passband and stopband, and the NNA-based method is of powerful stability and requires quite little amount of computations.
Two-dimensional spatial patterning in developmental systems.
Torii, Keiko U
2012-08-01
Multicellular organisms produce complex tissues with specialized cell types. During animal development, numerous cell-cell interactions shape tissue patterning through mechanisms involving contact-dependent cell migration and ligand-receptor-mediated lateral inhibition. Owing to the presence of cell walls, plant cells neither migrate nor undergo apoptosis as a means to correct for mis-specified cells. How can plants generate functional tissue patterns? This review aims to deduce fundamental principles of pattern formation through examining two-dimensional (2-D) spatial tissue patterning in plants and animals. Turing's mathematical framework will be introduced and applied to classic examples of de novo 2-D patterning in both animal and plant systems. By comparing their regulatory circuits, new insights into the similarities and differences of the basic principles governing tissue patterning will be discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ultrabroadband two-quantum two-dimensional electronic spectroscopy
Gellen, Tobias A.; Bizimana, Laurie A.; Carbery, William P.; Breen, Ilana; Turner, Daniel B.
2016-08-01
A recent theoretical study proposed that two-quantum (2Q) two-dimensional (2D) electronic spectroscopy should be a background-free probe of post-Hartree-Fock electronic correlations. Testing this theoretical prediction requires an instrument capable of not only detecting multiple transitions among molecular excited states but also distinguishing molecular 2Q signals from nonresonant response. Herein we describe a 2Q 2D spectrometer with a spectral range of 300 nm that is passively phase stable and uses only beamsplitters and mirrors. We developed and implemented a dual-chopping balanced-detection method to resolve the weak molecular 2Q signals. Experiments performed on cresyl violet perchlorate and rhodamine 6G revealed distinct 2Q signals convolved with nonresonant response. Density functional theory computations helped reveal the molecular origin of these signals. The experimental and computational results demonstrate that 2Q electronic spectra can provide a singular probe of highly excited electronic states.
Two-Dimensional Hexagonal Transition-Metal Oxide for Spintronics.
Kan, Erjun; Li, Ming; Hu, Shuanglin; Xiao, Chuanyun; Xiang, Hongjun; Deng, Kaiming
2013-04-04
Two-dimensional materials have been the hot subject of studies due to their great potential in applications. However, their applications in spintronics have been blocked by the difficulty in producing ordered spin structures in 2D structures. Here we demonstrated that the ultrathin films of recently experimentally realized wurtzite MnO can automatically transform into a stable graphitic structure with ordered spin arrangement via density functional calculation, and the stability of graphitic structure can be enhanced by external strain. Moreover, the antiferromagnetic ordering of graphitic MnO single layer can be switched into half-metallic ferromagnetism by small hole-doping, and the estimated Curie temperature is higher than 300 K. Thus, our results highlight a promising way toward 2D magnetic materials.
Review—Two-Dimensional Layered Materials for Energy Storage Applications
Kumar, Pushpendra
2016-07-02
Rechargeable batteries are most important energy storage devices in modern society with the rapid development and increasing demand for handy electronic devices and electric vehicles. The higher surface-to-volume ratio two-dimensional (2D) materials, especially transition metal dichalcogenides (TMDCs) and transition metal carbide/nitrite generally referred as MXene, have attracted intensive research activities due to their fascinating physical/chemical properties with extensive applications. One of the growing applications is to use these 2D materials as potential electrodes for rechargeable batteries and electrochemical capacitors. This review is an attempt to summarize the research and development of TMDCs, MXenes and their hybrid structures in energy storage systems. (C) The Author(s) 2016. Published by ECS. All rights reserved.
Photodetectors based on graphene, other two-dimensional materials and hybrid systems.
Koppens, F H L; Mueller, T; Avouris, Ph; Ferrari, A C; Vitiello, M S; Polini, M
2014-10-01
Graphene and other two-dimensional materials, such as transition metal dichalcogenides, have rapidly established themselves as intriguing building blocks for optoelectronic applications, with a strong focus on various photodetection platforms. The versatility of these material systems enables their application in areas including ultrafast and ultrasensitive detection of light in the ultraviolet, visible, infrared and terahertz frequency ranges. These detectors can be integrated with other photonic components based on the same material, as well as with silicon photonic and electronic technologies. Here, we provide an overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of different two-dimensional crystals or of two-dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides.
TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION
Energy Technology Data Exchange (ETDEWEB)
Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)
2015-11-20
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.
Two dimensional topology of cosmological reionization
Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan
2015-01-01
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.
On final states of two-dimensional decaying turbulence
Yin, Z.
2004-12-01
Numerical and analytical studies of final states of two-dimensional (2D) decaying turbulence are carried out. The first part of this work is trying to give a definition for final states of 2D decaying turbulence. The functional relation of ω-ψ, which is frequently adopted as the characterization of those final states, is merely a sufficient but not necessary condition; moreover, it is not proper to use it as the definition. It is found that the method through the value of the effective area S covered by the scatter ω-ψ plot, initially suggested by Read, Rhines, and White ["Geostrophic scatter diagrams and potential vorticity dynamics," J. Atmos. Sci. 43, 3226 (1986)] is more general and suitable for the definition. Based on this concept, a definition is presented, which covers all existing results in late states of decaying 2D flows (including some previous unexplainable weird double-valued ω-ψ scatter plots). The remaining part of the paper is trying to further study 2D decaying turbulence with the assistance of this definition. Some numerical results, leading to "bar" final states and further verifying the predictive ability of statistical mechanics [Yin, Montgomery, and Clercx, "Alternative statistical-mechanical descriptions of decaying two-dimensional turbulence in terms of patches and points," Phys. Fluids 15, 1937 (2003)], are reported. It is realized that some simulations with narrow-band energy spectral initial conditions result in some final states that cannot be very well interpreted by the statistical theory (meanwhile, those final states are still in the scope of the definition).
Materials synthesis: Two-dimensional gallium nitride
Koratkar, Nikhil A.
2016-11-01
Graphene is used as a capping sheet to synthesize 2D gallium nitride by means of migration-enhanced encapsulation growth. This technique may allow the stabilization of 2D materials that are not amenable to synthesis by traditional methods.
Atom-Based Geometrical Fingerprinting of Conformal Two-Dimensional Materials
Mehboudi, Mehrshad
The shape of two-dimensional materials plays a significant role on their chemical and physical properties. Two-dimensional materials are basic meshes that are formed by mesh points (vertices) given by atomic positions, and connecting lines (edges) between points given by chemical bonds. Therefore the study of local shape and geometry of two-dimensional materials is a fundamental prerequisite to investigate physical and chemical properties. Hereby the use of discrete geometry to discuss the shape of two-dimensional materials is initiated. The local geometry of a surface embodied in 3D space is determined using four invariant numbers from the metric and curvature tensors which indicates how much the surface is stretched and curved under a deformation as compared to a reference pre-deformed conformation. Many different disciplines advance theories on conformal two-dimensional materials by relying on continuum mechanics and fitting continuum surfaces to the shape of conformal two-dimensional materials. However two-dimensional materials are inherently discrete. The continuum models are only applicable when the size of two-dimensional materials is significantly large and the deformation is less than a few percent. In this research, the knowledge of discrete differential geometry was used to tell the local shape of conformal two-dimensional materials. Three kind of two-dimensional materials are discussed: 1) one atom thickness structures such as graphene and hexagonal boron nitride; 2) high and low buckled 2D meshes like stanene, leadene, aluminum phosphate; and, 3) multi layer 2D materials such as Bi2Se3 and WSe2. The lattice structures of these materials were created by designing a mechanical model - the mechanical model was devised in the form of a Gaussian bump and density-functional theory was used to inform the local height; and, the local geometries are also discussed.
Image interpolation by two-dimensional parametric cubic convolution.
Shi, Jiazheng; Reichenbach, Stephen E
2006-07-01
Cubic convolution is a popular method for image interpolation. Traditionally, the piecewise-cubic kernel has been derived in one dimension with one parameter and applied to two-dimensional (2-D) images in a separable fashion. However, images typically are statistically nonseparable, which motivates this investigation of nonseparable cubic convolution. This paper derives two new nonseparable, 2-D cubic-convolution kernels. The first kernel, with three parameters (designated 2D-3PCC), is the most general 2-D, piecewise-cubic interpolator defined on [-2, 2] x [-2, 2] with constraints for biaxial symmetry, diagonal (or 90 degrees rotational) symmetry, continuity, and smoothness. The second kernel, with five parameters (designated 2D-5PCC), relaxes the constraint of diagonal symmetry, based on the observation that many images have rotationally asymmetric statistical properties. This paper also develops a closed-form solution for determining the optimal parameter values for parametric cubic-convolution kernels with respect to ensembles of scenes characterized by autocorrelation (or power spectrum). This solution establishes a practical foundation for adaptive interpolation based on local autocorrelation estimates. Quantitative fidelity analyses and visual experiments indicate that these new methods can outperform several popular interpolation methods. An analysis of the error budgets for reconstruction error associated with blurring and aliasing illustrates that the methods improve interpolation fidelity for images with aliased components. For images with little or no aliasing, the methods yield results similar to other popular methods. Both 2D-3PCC and 2D-5PCC are low-order polynomials with small spatial support and so are easy to implement and efficient to apply.
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong
2016-12-01
The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.
Towards two-dimensional search engines
Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...
Light transport and localization in two-dimensional correlated disorder
Conley, Gaurasundar M; Pratesi, Filippo; Vynck, Kevin; Wiersma, Diederik S
2013-01-01
Structural correlations in disordered media are known to affect significantly the propagation of waves. In this article, we theoretically investigate the transport and localization of light in two-dimensional photonic structures with short-range correlated disorder. The problem is tackled semi-analytically using the Baus-Colot model for the structure factor of correlated media and a modified independent scattering approximation. We find that short-range correlations make it possible to easily tune the transport mean free path by more than a factor of 2 and the related localization length over several orders of magnitude. This trend is confirmed by numerical finite-difference time-domain calculations. This study therefore shows that disorder engineering can offer fine control over light transport and localization in planar geometries, which may open new opportunities in both fundamental and applied photonics research.
Energy Technology Data Exchange (ETDEWEB)
Amoudache, Samira [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria); Pennec, Yan, E-mail: yan.pennec@univ-lille1.fr; Djafari Rouhani, Bahram [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Khater, Antoine [Institut des Molécules et Matériaux du Mans UMR 6283 CNRS, Université du Maine, 72085 Le Mans (France); Lucklum, Ralf [Institute of Micro and Sensor Systems (IMOS), Otto-von-Guericke-University, Magdeburg (Germany); Tigrine, Rachid [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria)
2014-04-07
We theoretically investigate the potentiality of dual phononic-photonic (the so-called phoxonic) crystals for liquid sensing applications. We study the transmission through a two-dimensional (2D) crystal made of infinite cylindrical holes in a silicon substrate, where one row of holes oriented perpendicular to the propagation direction is filled with a liquid. The infiltrated holes may have a different radius than the regular holes. We show, in the defect structure, the existence of well-defined features (peaks or dips) in the transmission spectra of acoustic and optical waves and estimate their sensitivity to the sound and light velocity of the analyte. Some of the geometrical requirements behave in opposite directions when searching for an efficient sensing of either sound or light velocities. Hence, a compromise in the choice of the parameters may become necessary in making the phoxonic sensor.
The two dimensional fold test in paleomagnetism using ipython notebook
Setiabudidaya, Dedi; Piper, John D. A.
2016-01-01
One aspect of paleomagnetic analysis prone to controversy is the result of the fold test used to evaluate the age of a magnetisation component relative to the age of a structural event. Initially, the fold test was conducted by comparing the Fisherian precision parameter (k) to results from different limbs of a fold structure before and after tilt adjustment. To accommodate synfolding magnetisation, the tilt correction can be performed in stepwise fashion to both limbs simultaneously, here called one dimensional (1D) fold test. The two dimensional (2D) fold test described in this paper is carried out by applying stepwise tilt adjustment to each limb of the fold separately. The rationale for this is that tilts observed on contrasting limbs of deformed structure may not be synchronous or even belong to the same episode of deformation. A program for the procedure is presented here which generates two dimensional values of the k-parameter visually presented in contoured form. The use of ipython notebook enables this 2D fold test to be performed interactively and yield a more precise evaluation than the primitive 1D fold test.
Comprehensive two-dimensional liquid chromatographic analysis of poloxamers.
Malik, Muhammad Imran; Lee, Sanghoon; Chang, Taihyun
2016-04-15
Poloxamers are low molar mass triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), having number of applications as non-ionic surfactants. Comprehensive one and two-dimensional liquid chromatographic (LC) analysis of these materials is proposed in this study. The separation of oligomers of both types (PEO and PPO) is demonstrated for several commercial poloxamers. This is accomplished at the critical conditions for one of the block while interaction for the other block. Reversed phase LC at CAP of PEO allowed for oligomeric separation of triblock copolymers with regard to PPO block whereas normal phase LC at CAP of PPO renders oligomeric separation with respect to PEO block. The oligomeric separation with regard to PEO and PPO are coupled online (comprehensive 2D-LC) to reveal two-dimensional contour plots by unconventional 2D IC×IC (interaction chromatography) coupling. The study provides chemical composition mapping of both PEO and PPO, equivalent to combined molar mass and chemical composition mapping for several commercial poloxamers.
Kronecker Product of Two-dimensional Arrays
Institute of Scientific and Technical Information of China (English)
Lei Hu
2006-01-01
Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.
Two-Dimensional Toda-Heisenberg Lattice
Directory of Open Access Journals (Sweden)
Vadim E. Vekslerchik
2013-06-01
Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.
A novel two dimensional particle velocity sensor
Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.
2013-01-01
In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Two-dimensional magma-repository interactions
Bokhove, O.
2001-01-01
Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of
DEFF Research Database (Denmark)
Søndergaard, Thomas; Arentoft, Jesper
2002-01-01
A planar photonic crystal waveguide based on the semiconductor-on-insulator (SOI) materials system is analyzed theoretically. Two-dimensional (2-D) calculations and comparison with dispersion relations for the media above and below the finite-height waveguide are used to obtain design guidelines...
Performance Estimation for Two-Dimensional Brownian Rotary Ratchet Systems
Tutu, Hiroki; Horita, Takehiko; Ouchi, Katsuya
2015-04-01
Within the context of the Brownian ratchet model, a molecular rotary system that can perform unidirectional rotations induced by linearly polarized ac fields and produce positive work under loads was studied. The model is based on the Langevin equation for a particle in a two-dimensional (2D) three-tooth ratchet potential of threefold symmetry. The performance of the system is characterized by the coercive torque, i.e., the strength of the load competing with the torque induced by the ac driving field, and the energy efficiency in force conversion from the driving field to the torque. We propose a master equation for coarse-grained states, which takes into account the boundary motion between states, and develop a kinetic description to estimate the mean angular momentum (MAM) and powers relevant to the energy balance equation. The framework of analysis incorporates several 2D characteristics and is applicable to a wide class of models of smooth 2D ratchet potential. We confirm that the obtained expressions for MAM, power, and efficiency of the model can enable us to predict qualitative behaviors. We also discuss the usefulness of the torque/power relationship for experimental analyses, and propose a characteristic for 2D ratchet systems.
Filtering and control for classes of two-dimensional systems
Wu, Ligang
2015-01-01
This book focuses on filtering, control and model-reduction problems for two-dimensional (2-D) systems with imperfect information. The time-delayed 2-D systems covered have system parameters subject to uncertain, stochastic and parameter-varying changes. After an initial introduction of 2-D systems and the ideas of linear repetitive processes, the text is divided into two parts detailing: · general theory and methods of analysis and optimal synthesis for 2-D systems; and · application of the general theory to the particular case of differential/discrete linear repetitive processes. The methods developed provide a framework for stability and performance analysis, optimal and robust controller and filter design and model approximation for the systems considered. Solutions to the design problems are couched in terms of linear matrix inequalities. For readers interested in the state of the art in linear filtering, control and model reduction, Filtering and Control for Classes of ...
Two-dimensional state in driven magnetohydrodynamic turbulence.
Bigot, Barbara; Galtier, Sébastien
2011-02-01
The dynamics of the two-dimensional (2D) state in driven three-dimensional (3D) incompressible magnetohydrodynamic turbulence is investigated through high-resolution direct numerical simulations and in the presence of an external magnetic field at various intensities. For such a flow the 2D state (or slow mode) and the 3D modes correspond, respectively, to spectral fluctuations in the plane k(∥)=0 and in the area k(∥)>0. It is shown that if initially the 2D state is set to zero it becomes nonnegligible in few turnover times, particularly when the external magnetic field is strong. The maintenance of a large-scale driving leads to a break for the energy spectra of 3D modes; when the driving is stopped, the previous break is removed and a decay phase emerges with Alfvénic fluctuations. For a strong external magnetic field the energy at large perpendicular scales lies mainly in the 2D state, and in all situations a pinning effect is observed at small scales.
Two dimensional electron spin resonance: Structure and dynamics of biomolecules
Saxena, Sunil; Freed, Jack H.
1998-03-01
The potential of two dimensional (2D) electron spin resonance (ESR) for measuring the structural properties and slow dynamics of labeled biomolecules will be presented. Specifically, it will be shown how the recently developed method of double quantum (DQ) 2D ESR (S. Saxena and J. H. Freed, J. Chem. Phys. 107), 1317, (1997) can be used to measure large interelectron distances in bilabeled peptides. The need for DQ ESR spectroscopy, as well as the challenges and advantages of this method will be discussed. The elucidation of the slow reorientational dynamics of this peptide (S. Saxena and J. H. Freed, J. Phys. Chem. A, 101) 7998 (1997) in a glassy medium using COSY and 2D ELDOR ESR spectroscopy will be demonstrated. The contributions to the homogeneous relaxation time, T_2, from the overall and/or internal rotations of the nitroxide can be distinguished from the COSY spectrum. The growth of spectral diffusion cross-peaks^2 with mixing time in the 2D ELDOR spectra can be used to directly determine a correlation time from the experiment which can be related to the rotational correlation time.
Low-cost two-dimensional gel densitometry.
Levenson, R M; Maytin, E V; Young, D A
1986-11-01
A major obstacle to full utilization of the powerful technique of two-dimensional (2-D) gel electrophoresis is the expense and complexity of quantifying the results. Using an analog-to-digital converter already present in the widely available Commodore 64 or Commodore 128 microcomputer, we have developed a 2-D gel densitometer (GELSCAN) which adds only $20.00 to the cost of the Commodore system (currently around $700.00). The system is designed to work with autoradiograms of 2-D gels. Spots of interest are identified visually and then positioned manually over a light source. A pinhole photoelectric sensor mounted in a hand-held, Plexiglas holder, or "mouse," is briefly rubbed over each spot. Maximum density of the spot is determined and its value is converted to counts per minute via an internal calibration curve which corrects for the nonlinear response of film to radiation. Local spot backgrounds can be subtracted and values can be normalized between gels to adjust for variation in amount of radioactivity applied or in exposure time. Reproducibility is excellent and the technique has some practical as well as theoretical advantages over other more complicated approaches to 2-D gel densitometry. In addition, the GELSCAN system can also be used for scanning individual bands in 1-D gels, quantitation of "dot-blot" autoradiograms and other tasks involving transmission densitometry.
Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects.
Liu, Yuanyue; Xiao, Hai; Goddard, William A
2016-05-11
Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gap states. We show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them.
Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence
Shebalin, John V.
2010-01-01
Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures
Anisotropic dielectric properties of two-dimensional matrix in pseudo-spin ferroelectric system
Kim, Se-Hun
2016-10-01
The anisotropic dielectric properties of a two-dimensional (2D) ferroelectric system were studied using the statistical calculation of the pseudo-spin Ising Hamiltonian model. It is necessary to delay the time for measurements of the observable and the independence of the new spin configuration under Monte Carlo sampling, in which the thermal equilibrium state depends on the temperature and size of the system. The autocorrelation time constants of the normalized relaxation function were determined by taking temperature and 2D lattice size into account. We discuss the dielectric constants of a two-dimensional ferroelectric system by using the Metropolis method in view of the Slater-Takagi defect energies.
Non-Linear Non Stationary Analysis of Two-Dimensional Time-Series Applied to GRACE Data Project
National Aeronautics and Space Administration — The proposed innovative two-dimensional (2D) adaptive analysis will be tested NASA's Gravity Recovery and Climate Experiment (GRACE) mission database in phase I in...
Non-Linear Non Stationary Analysis of Two-Dimensional Time-Series Applied to GRACE Data Project
National Aeronautics and Space Administration — The proposed innovative two-dimensional (2D) empirical mode decomposition (EMD) analysis was applied to NASA's Gravity Recovery and Climate Experiment (GRACE)...
Two-dimensional graphene analogues for biomedical applications.
Chen, Yu; Tan, Chaoliang; Zhang, Hua; Wang, Lianzhou
2015-05-07
The increasing demand of clinical biomedicine and fast development of nanobiotechnology has substantially promoted the generation of a variety of organic/inorganic nanosystems for biomedical applications. Biocompatible two-dimensional (2D) graphene analogues (e.g., nanosheets of transition metal dichalcogenides, transition metal oxides, g-C3N4, Bi2Se3, BN, etc.), which are referred to as 2D-GAs, have emerged as a new unique family of nanomaterials that show unprecedented advantages and superior performances in biomedicine due to their unique compositional, structural and physicochemical features. In this review, we summarize the state-of-the-art progress of this dynamically developed material family with a particular focus on biomedical applications. After the introduction, the second section of the article summarizes a range of synthetic methods for new types of 2D-GAs as well as their surface functionalization. The subsequent section provides a snapshot on the use of these biocompatible 2D-GAs for a broad spectrum of biomedical applications, including therapeutic (photothermal/photodynamic therapy, chemotherapy and synergistic therapy), diagnostic (fluorescent/magnetic resonance/computed tomography/photoacoustic imaging) and theranostic (concurrent diagnostic imaging and therapy) applications, especially on oncology. In addition, we briefly present the biosensing applications of these 2D-GAs for the detection of biomacromolecules and their in vitro/in vivo biosafety evaluations. The last section summarizes some critical unresolved issues, possible challenges/obstacles and also proposes future perspectives related to the rational design and construction of 2D-GAs for biomedical engineering, which are believed to promote their clinical translations for benefiting the personalized medicine and human health.