Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-04-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.
Two-Dimensional Gel Electrophoresis and 2D-DIGE.
Meleady, Paula
2018-01-01
Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) continues to be one of the most versatile and widely used techniques to study the proteome of a biological system. In particular, a modified version of 2D-PAGE, two-dimensional difference gel electrophoresis (2D-DIGE), which uses differential labeling of protein samples with up to three fluorescent tags, offers greater sensitivity and reproducibility over conventional 2D-PAGE gels for differential quantitative analysis of protein expression between experimental groups. Both these methods have distinct advantages in the separation and identification of thousands of individual proteins species including protein isoforms and post-translational modifications. This review will discuss the principles of 2D-PAGE and 2D-DIGE including limitations to the methods. 2D-PAGE and 2D-DIGE continue to be popular methods in bioprocessing-related research (particularly on recombinant Chinese hamster ovary cells), which will also be discussed in the review chapter.
Two-Dimensional (2D) Polygonal Electromagnetic Cloaks
Institute of Scientific and Technical Information of China (English)
LI Chao; YAO Kan; LI Fang
2009-01-01
Transformation optics offers remarkable control over electromagnetic fields and opens an exciting gateway to design 'invisible cloak devices' recently.We present an important class of two-dimensional (2D) cloaks with polygon geometries.Explicit expressions of transformed medium parameters are derived with their unique properties investigated.It is found that the elements of diagonalized permittivity tensors are always positive within an irregular polygon cloak besides one element diverges to plus infinity and the other two become zero at the inner boundary.At most positions,the principle axes of permittivity tensors do not align with position vectors.An irregular polygon cloak is designed and its invisibility to external electromagnetic waves is numerically verified.Since polygon cloaks can be tailored to resemble any objects,the transformation is finally generalized to the realization of 2D cloaks with arbitrary geometries.
Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory
Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.
2015-01-01
A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…
Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory
Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.
2015-01-01
A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…
Two dimensional NMR of liquids and oriented molecules
Energy Technology Data Exchange (ETDEWEB)
Gochin, M.
1987-02-01
Chapter 1 discusses the quantum mechanical formalism used for describing the interaction between magnetic dipoles that dictates the appearance of a spectrum. The NMR characteristics of liquids and liquid crystals are stressed. Chapter 2 reviews the theory of multiple quantum and two dimensional NMR. Properties of typical spectra and phase cycling procedures are discussed. Chapter 3 describes a specific application of heteronuclear double quantum coherence to the removal of inhomogeneous broadening in liquids. Pulse sequences have been devised which cancel out any contribution from this inhomogeneity to the final spectrum. An interpretation of various pulse sequences for the case of /sup 13/C and /sup 1/H is given, together with methods of spectral editing by removal or retention of the homo- or heteronuclear J coupling. The technique is applied to a demonstration of high resolution in both frequency and spatial dimensions with a surface coil. In Chapter 4, multiple quantum filtered 2-D spectroscopy is demonstrated as an effective means of studying randomly deuterated molecules dissolved in a nematic liquid crystal. Magnitudes of dipole coupling constants have been determined for benzene and hexane, and their signs and assignments found from high order multiple quantum spectra. For the first time, a realistic impression of the conformation of hexane can be estimated from these results. Chapter 5 is a technical description of the MDB DCHIB-DR11W parallel interface which has been set up to transfer data between the Data General Nova 820 minicomputer, interfaced to the 360 MHz spectrometer, and the Vax 11/730. It covers operation of the boards, physical specifications and installation, and programs for testing and running the interface.
NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy
Alonso, David E.; Warren, Steven E.
2005-01-01
A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…
NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy
Alonso, David E.; Warren, Steven E.
2005-01-01
A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…
Two-dimensional NMR exchange spectroscopy. Quantitative treatment of multisite exchanging systems
Abel, Edward W.; Coston, Timothy P. J.; Orrell, Keith G.; Šik, Vladimir; Stephenson, David
A general method for evaluating rate constants in complex exchange networks with N-sites from two-dimensional EXSY (NOESY) NMR spectra is proposed. A computer program D2DNMR capable of performing signal intensity to exchange rate calculations (and vice versa), based on a matrix formalism, is outlined. The method is illustrated by 195Pt 2D NMR studies of the A ⇌ B ⇌ C spin system arising from pyramidal sulfur inversion in platinum(IV) complexes of type [Pt XMe 3(MeSCH 2CH 2SMe)] ( X = Cl, I). Comparison with 1H NMR bandshape analyses of the same compounds shows high agreement between the rate constants and activation parameters determined by both techniques. Mechanisms of 195Pt spin-lattice relaxation are briefly discussed.
Characterization of heroin samples by 1H NMR and 2D DOSY 1H NMR.
Balayssac, Stéphane; Retailleau, Emmanuel; Bertrand, Geneviève; Escot, Marie-Pierre; Martino, Robert; Malet-Martino, Myriam; Gilard, Véronique
2014-01-01
Twenty-four samples of heroin from different illicit drug seizures were analyzed using proton Nuclear Magnetic Resonance ((1)H NMR) and two-dimensional diffusion-ordered spectroscopy (2D DOSY) (1)H NMR. A careful assignment and quantification of (1)H signals enabled a comprehensive characterization of the substances present in the samples investigated: heroin, its main related impurities (6-acetylmorphine, acetylcodeine, morphine, noscapine and papaverine) and cutting agents (caffeine and acetaminophen in nearly all samples as well as lactose, lidocaine, mannitol, piracetam in one sample only), and hence to establish their spectral signatures. The good agreement between the amounts of heroin, noscapine, caffeine and acetaminophen determined by (1)H NMR and gas chromatography, the reference method in forensic laboratories, demonstrates the validity of the (1)H NMR technique. In this paper, 2D DOSY (1)H NMR offers a new approach for a whole characterization of the various components of these complex mixtures.
Rapid determination of fluid viscosity using low-field two-dimensional NMR.
Deng, Feng; Xiao, Lizhi; Chen, Weiliang; Liu, Huabing; Liao, Guangzhi; Wang, Mengying; Xie, Qingming
2014-10-01
The rapid prediction of fluid viscosity, especially the fluid in heavy-oil petroleum reservoirs, is of great importance for oil exploration and transportation. We suggest a new method for rapid prediction of fluid viscosity using two-dimensional (2D) NMR relaxation time distributions. DEFIR, Driven-Equilibrium Fast-Inversion Recovery, a new pulse sequence for rapid measurement of 2D relaxation times, is proposed. The 2D relation between the ratio of transverse relaxation time to longitudinal relaxation time (T1/T2) and T1 distribution of fluid are obtained by means of DEFIR with only two one-dimensional measurements. The measurement speed of DEFIR pulse sequence over 2 times as fast as that of the traditional 2D method. Using Bloembergen theory, the relation between the distributions and fluid viscosity is found. Precise method for viscosity prediction is then established. Finally, we apply this method to a down-hole NMR fluid analysis system and realized on-site and on-line prediction of viscosity for formation fluids. The results demonstrated that the new method for viscosity prediction is efficient and accurate. Copyright © 2014 Elsevier Inc. All rights reserved.
Status for the two-dimensional Navier-Stokes solver EllipSys2D
DEFF Research Database (Denmark)
Bertagnolio, F.; Sørensen, Niels N.; Johansen, J.
2001-01-01
This report sets up an evaluation of the two-dimensional Navier-Stokes solver EllipSys2D in its present state. This code is used for blade aerodynamics simulations in the Aeroelastic Design group at Risø. Two airfoils are investigated by computing theflow at several angles of attack ranging from...... the linear to the stalled region. The computational data are compared to experimental data and numerical results from other computational codes. Several numerical aspects are studied, as mesh dependency,convective scheme, steady state versus unsteady computations, transition modelling. Some general...... conclusions intended to help in using this code for numerical simulations are given....
Bill2d -- a software package for classical two-dimensional Hamiltonian systems
Solanpää, Janne; Räsänen, Esa
2016-01-01
We present Bill2d, a modern and efficient C++ package for classical simulations of two-dimensional Hamiltonian systems. Bill2d can be used for various billiard and diffusion problems with one or more charged particles with interactions, different external potentials, an external magnetic field, periodic and open boundaries, etc. The software package can also calculate many key quantities in complex systems such as Poincar\\'e sections, survival probabilities, and diffusion coefficients. While aiming at a large class of applicable systems, the code also strives for ease-of-use, efficiency, and modularity for the implementation of additional features. The package comes along with a user guide, a developer's manual, and a documentation of the application program interface (API).
BILL2D - A software package for classical two-dimensional Hamiltonian systems
Solanpää, J.; Luukko, P. J. J.; Räsänen, E.
2016-02-01
We present BILL2D, a modern and efficient C++ package for classical simulations of two-dimensional Hamiltonian systems. BILL2D can be used for various billiard and diffusion problems with one or more charged particles with interactions, different external potentials, an external magnetic field, periodic and open boundaries, etc. The software package can also calculate many key quantities in complex systems such as Poincaré sections, survival probabilities, and diffusion coefficients. While aiming at a large class of applicable systems, the code also strives for ease-of-use, efficiency, and modularity for the implementation of additional features. The package comes along with a user guide, a developer's manual, and a documentation of the application program interface (API).
Hysteretic Spin Crossover in Two-Dimensional (2D) Hofmann-Type Coordination Polymers.
Liu, Wei; Wang, Lu; Su, Yu-Jun; Chen, Yan-Cong; Tucek, Jiri; Zboril, Radek; Ni, Zhao-Ping; Tong, Ming-Liang
2015-09-08
Three new two-dimensional (2D) Hofmann-type coordination polymers with general formula [Fe(3-NH2py)2M(CN)4] (3-NH2py = 3-aminopyridine, M = Ni (1), Pd (2), Pt (3)) have been synthesized. Magnetic susceptibility measurements show that they exhibited cooperative spin crossover (SCO) with remarkable hysteretic behaviors. Their hysteresis widths are 25, 37, and 30 K for 1-3, respectively. The single-crystal structure of 1 suggest that the pseudo-octahedral Fe sites are equatorially bridged by [M(CN)4](2-) to form 2D grids and axially coordinated by 3-NH2py ligands. The intermolecular interactions between layers (the offset face-to-face π···π interactions, hydrogen bonds, and weak N(amino)···Ni(II) contacts) together with the covalent bonds bridged by [M(CN)4](2-) units are responsible to the significant cooperativity.
Daniel J. Yelle; Prasad Kaparaju; Christopher G. Hunt; Kolby Hirth; Hoon Kim; John Ralph; Claus Felby
2012-01-01
Solution-state two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy of plant cell walls is a powerful tool for characterizing changes in cell wall chemistry during the hydrothermal pretreatment process of wheat straw for second-generation bioethanol production. One-bond 13C-1H NMR correlation spectroscopy, via...
Removal of interfering substances in samples prepared for two-dimensional (2-D) electrophoresis.
Berkelman, Tom
2008-01-01
Biological samples may contain contaminants that interfere with analysis by two-dimensional (2-D) electrophoresis. Lysates or biological fluids are complex mixtures that contain a wide variety of nonprotein substances in addition to the proteins to be analyzed. These substances often interfere with the resolution of the electrophoretic separation or the visualization of the result. Macromolecules (e.g., polysaccharides and DNA) can interfere with electrophoretic separation by clogging gel pores. Small ionic molecules can impair isoelectric focusing (IEF) separation by rendering the sample too conductive. Other substances (e.g., phenolics and lipids) can bind to proteins, influencing their electrophoretic properties or solubility. In many cases, measures to remove interfering substances can result in significantly clearer 2-D patterns with more visible spots and better resolution. It should be borne in mind, however, that analysis of samples by 2-D electrophoresis is usually most successful and informative when performed with minimally processed samples, so it is important that any steps taken to remove interfering substance be appropriate to the sample and only performed when necessary. Procedures for the removal of interfering substances therefore represent a compromise between removing nonprotein contaminants, and minimizing interference with the integrity and relative abundances of the sample proteins. This chapter presents a number of illustrative examples of optimized sample preparation methods in which specific interfering substances are removed by a variety of different strategies.
Edén, Mattias
2010-05-01
Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations.
PRONTO 2D: A two-dimensional transient solid dynamics program
Energy Technology Data Exchange (ETDEWEB)
Taylor, L.M.; Flanagan, D.P.
1987-03-01
PRONTO 2D is a two-dimensional transient solid dynamics code for analyzing large deformations of highly nonlinear materials subjected to extremely high strain rates. This Lagrangian finite element program uses an explicit time integration operator to integrate the equations of motion. Four node uniform strain quadrilateral elements are used in the finite element formulation. A number of new numerical algorithms which have been developed for the code are described in this report. An adaptive time step control algorithm is described which greatly improves stability as well as performance in plasticity problems. A robust hourglass control scheme which eliminates hourglass distortions without disturbing the finite element solution is included. All constitutive models in PRONTO are cast in an unrotated configuration defined using the rotation determined from the polar decomposition of the deformation gradient. An accurate incremental algorithm was developed to determine this rotation and is described in detail. A robust contact algorithm was developed which allows for the impact and interaction of deforming contact surfaces of quite general geometry. A number of numerical examples are presented to demonstrate the utility of these algorithms. 41 refs., 51 figs., 5 tabs.
Optimization and practical implementation of ultrafast 2D NMR experiments
Queiroz Júnior,Luiz H. K.; Antonio G. Ferreira; Patrick Giraudeau
2013-01-01
Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC...
Two-dimensional NMR spectroscopy strongly enhances soil organic matter composition analysis
Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Hedenström, Mattias; Schleucher, Jürgen
2016-04-01
Soil organic matter (SOM) is the largest terrestrial carbon pool and strongly affects soil properties. With climate change, understanding SOM processes and turnover and how they could be affected by increasing temperatures becomes critical. This is particularly key for organic soils as they represent a huge carbon pool in very sensitive ecosystems, like boreal ecosystems and peatlands. Nevertheless, characterization of SOM molecular composition, which is essential to elucidate soil carbon processes, is not easily achieved, and further advancements in that area are greatly needed. Solid-state one-dimensional (1D) 13C nuclear magnetic resonance (NMR) spectroscopy is often used to characterize its molecular composition, but only provides data on a few major functional groups, which regroup many different molecular fragments. For instance, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. Here we show that two-dimensional (2D) liquid-state 1H-13C NMR spectra provided much richer data on the composition of boreal plant litter and organic surface soil. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra and displayed signals from hundreds of identifiable molecular groups. For example, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Sample preparation and data acquisition were both simple and fast. Further, using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to identify specific molecular
Correlating nuclear frequencies by two-dimensional ELDOR-detected NMR spectroscopy.
Kaminker, Ilia; Wilson, Tiffany D; Savelieff, Masha G; Hovav, Yonatan; Zimmermann, Herbert; Lu, Yi; Goldfarb, Daniella
2014-03-01
ELDOR (Electron Double Resonance)-detected NMR (EDNMR) is a pulse EPR experiment that is used to measure the transition frequencies of nuclear spins coupled to electron spins. These frequencies are further used to determine hyperfine and quadrupolar couplings, which are signatures of the electronic and spatial structures of paramagnetic centers. In recent years, EDNMR has been shown to be particularly useful at high fields/high frequencies, such as W-band (∼95 GHz, ∼3.5 T), for low γ quadrupolar nuclei. Although at high fields the nuclear Larmor frequencies are usually well resolved, the limited resolution of EDNMR still remains a major concern. In this work we introduce a two dimensional, triple resonance, correlation experiment based on the EDNMR pulse sequence, which we term 2D-EDNMR. This experiment allows circumventing the resolution limitation by spreading the signals in two dimensions and the observed correlations help in the assignment of the signals. First we demonstrate the utility of the 2D-EDNMR experiment on a nitroxide spin label, where we observe correlations between (14)N nuclear frequencies. Negative cross-peaks appear between lines belonging to different MS electron spin manifolds. We resolved two independent correlation patterns for nuclear frequencies arising from the EPR transitions corresponding to the (14)N mI=0 and mI=-1 nuclear spin states, which severely overlap in the one dimensional EDNMR spectrum. The observed correlations could be accounted for by considering changes in the populations of energy levels that S=1/2, I=1 spin systems undergo during the pulse sequence. In addition to these negative cross-peaks, positive cross-peaks appear as well. We present a theoretical model based on the Liouville equation and use it to calculate the time evolution of populations of the various energy levels during the 2D-EDNMR experiment and generated simulated 2D-EDMR spectra. These calculations show that the positive cross-peaks appear due to
Correlating nuclear frequencies by two-dimensional ELDOR-detected NMR spectroscopy
Kaminker, Ilia; Wilson, Tiffany D.; Savelieff, Masha G.; Hovav, Yonatan; Zimmermann, Herbert; Lu, Yi; Goldfarb, Daniella
2014-03-01
ELDOR (Electron Double Resonance)-detected NMR (EDNMR) is a pulse EPR experiment that is used to measure the transition frequencies of nuclear spins coupled to electron spins. These frequencies are further used to determine hyperfine and quadrupolar couplings, which are signatures of the electronic and spatial structures of paramagnetic centers. In recent years, EDNMR has been shown to be particularly useful at high fields/high frequencies, such as W-band (∼95 GHz, ∼3.5 T), for low γ quadrupolar nuclei. Although at high fields the nuclear Larmor frequencies are usually well resolved, the limited resolution of EDNMR still remains a major concern. In this work we introduce a two dimensional, triple resonance, correlation experiment based on the EDNMR pulse sequence, which we term 2D-EDNMR. This experiment allows circumventing the resolution limitation by spreading the signals in two dimensions and the observed correlations help in the assignment of the signals. First we demonstrate the utility of the 2D-EDNMR experiment on a nitroxide spin label, where we observe correlations between 14N nuclear frequencies. Negative cross-peaks appear between lines belonging to different MS electron spin manifolds. We resolved two independent correlation patterns for nuclear frequencies arising from the EPR transitions corresponding to the 14N mI = 0 and mI = -1 nuclear spin states, which severely overlap in the one dimensional EDNMR spectrum. The observed correlations could be accounted for by considering changes in the populations of energy levels that S = 1/2, I = 1 spin systems undergo during the pulse sequence. In addition to these negative cross-peaks, positive cross-peaks appear as well. We present a theoretical model based on the Liouville equation and use it to calculate the time evolution of populations of the various energy levels during the 2D-EDNMR experiment and generated simulated 2D-EDMR spectra. These calculations show that the positive cross-peaks appear due
Two-dimensional Fourier transform ESR in the slow-motional and rigid limits: 2D-ELDOR
Patyal, Baldev R.; Crepeau, Richard H.; Gamliel, Dan; Freed, Jack H.
1990-12-01
The two-dimensional Fourier transform ESP techniques of stimulated SECSY and 2D-ELDOR are shown to be powerful methods for the study of slow motions for nitroxides. Stimulated SECSY provides magnetization transfer rates, whereas 2D-ELDOR displays how the rotational motions spread the spins out from their initial spectral positions to new spectral positions, as a function of mixing time. The role of nuclear modulation in studies of structure and dynamics is also considered.
MULTI2D - a computer code for two-dimensional radiation hydrodynamics
Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.
2009-06-01
Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are
A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds
Energy Technology Data Exchange (ETDEWEB)
Li, Tingwen; Zhang, Yongmin
2013-10-11
Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.
Optimization and practical implementation of ultrafast 2D NMR experiments
Directory of Open Access Journals (Sweden)
Luiz H. K. Queiroz Júnior
2013-01-01
Full Text Available Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively.
Optimization and practical implementation of ultrafast 2D NMR experiments
Energy Technology Data Exchange (ETDEWEB)
Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation
2013-09-01
Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)
Optical properties of two-dimensional (2D) CdSe nanostructures
Cherevkov, S. A.; Baranov, A. V.; Fedorov, A. V.; Litvin, A. P.; Artemyev, M. V.; Prudnikau, A. V.
2013-09-01
The resonant and off-resonant Raman spectra of optical phonons in two-dimensional CdSe nanocrystals of 5, 6, and 7 monolayers are analysed. The spectra are dominated by SO and LO phonon bands of CdSe, whose frequencies are thickness-independent in the off-resonant Raman scattering but demonstrate an evident thickness dependence in the case of the resonant Raman scattering.
MARG2D code. 1. Eigenvalue problem for two dimensional Newcomb equation
Energy Technology Data Exchange (ETDEWEB)
Tokuda, Shinji [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Watanabe, Tomoko
1997-10-01
A new method and a code MARG2D have been developed to solve the 2-dimensional Newcomb equation which plays an important role in the magnetohydrodynamic (MHD) stability analysis in an axisymmetric toroidal plasma such as a tokamak. In the present formulation, an eigenvalue problem is posed for the 2-D Newcomb equation, where the weight function (the kinetic energy integral) and the boundary conditions at rational surfaces are chosen so that an eigenfunction correctly behaves as the linear combination of the small solution and the analytical solutions around each of the rational surfaces. Thus, the difficulty on solving the 2-D Newcomb equation has been resolved. By using the MARG2D code, the ideal MHD marginally stable state can be identified for a 2-D toroidal plasma. The code is indispensable on computing the outer-region matching data necessary for the resistive MHD stability analysis. Benchmark with ERATOJ, an ideal MHD stability code, has been carried out and the MARG2D code demonstrates that it indeed identifies both stable and marginally stable states against ideal MHD motion. (author)
Energy Technology Data Exchange (ETDEWEB)
Walder, Brennan J.; Davis, Michael C.; Grandinetti, Philip J. [Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210 (United States); Dey, Krishna K. [Department of Physics, Dr. H. S. Gour University, Sagar, Madhya Pradesh 470003 (India); Baltisberger, Jay H. [Division of Natural Science, Mathematics, and Nursing, Berea College, Berea, Kentucky 40403 (United States)
2015-01-07
A new two-dimensional Nuclear Magnetic Resonance (NMR) experiment to separate and correlate the first-order quadrupolar and chemical/paramagnetic shift interactions is described. This experiment, which we call the shifting-d echo experiment, allows a more precise determination of tensor principal components values and their relative orientation. It is designed using the recently introduced symmetry pathway concept. A comparison of the shifting-d experiment with earlier proposed methods is presented and experimentally illustrated in the case of {sup 2}H (I = 1) paramagnetic shift and quadrupolar tensors of CuCl{sub 2}⋅2D{sub 2}O. The benefits of the shifting-d echo experiment over other methods are a factor of two improvement in sensitivity and the suppression of major artifacts. From the 2D lineshape analysis of the shifting-d spectrum, the {sup 2}H quadrupolar coupling parameters are 〈C{sub q}〉 = 118.1 kHz and 〈η{sub q}〉 = 0.88, and the {sup 2}H paramagnetic shift tensor anisotropy parameters are 〈ζ{sub P}〉 = − 152.5 ppm and 〈η{sub P}〉 = 0.91. The orientation of the quadrupolar coupling principal axis system (PAS) relative to the paramagnetic shift anisotropy principal axis system is given by (α,β,γ)=((π)/2 ,(π)/2 ,0). Using a simple ligand hopping model, the tensor parameters in the absence of exchange are estimated. On the basis of this analysis, the instantaneous principal components and orientation of the quadrupolar coupling are found to be in excellent agreement with previous measurements. A new point dipole model for predicting the paramagnetic shift tensor is proposed yielding significantly better agreement than previously used models. In the new model, the dipoles are displaced from nuclei at positions associated with high electron density in the singly occupied molecular orbital predicted from ligand field theory.
DEFF Research Database (Denmark)
Yelle, Daniel J.; Kaparaju, Laxmi-Narasimha Prasad; Hunt, Christopher G.
2013-01-01
Solution-state two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy of plant cell walls is a powerful tool for characterizing changes in cell wall chemistry during the hydrothermal pretreatment process of wheat straw for second-generation bioethanol production. One-bond C-H NMR......-methyl-α-d-glucuronic acid of xylan. In the polysaccharide anomeric region, decreases in the minor β-d-mannopyranosyl, and α-l-arabinofuranosyl units were observed in the NMR spectra from hydrothermally pretreated wheat straw. The aromatic region indicated only minor changes to the aromatic structures during the process (e...
Fudge, Anthea L; Wilkinson, Kerry L; Ristic, Renata; Cozzolino, Daniel
2013-08-15
In this study, two-dimensional correlation spectroscopy (2D-COS) combined with mid-infrared (MIR) spectroscopy was evaluated as a novel technique for the identification of spectral regions associated with smoke-affected wine, for the purpose of screening taint arising from grapevine exposure to smoke. Smoke-affected wines obtained from experimental and industry sources were analysed using MIR spectroscopy and chemometrics, and calibration models developed. 2D-COS analysis was used to generate synchronous data maps for red and white cask wines spiked with guaiacol, a marker of smoke taint. Correlations were observed at wavelengths that could be attributable to aromatic C-C stretching, i.e., between 1400 and 1500 cm(-1), indicative of volatile phenols. These results demonstrate the potential of 2D-COS as a rapid, high-throughput technique for the preliminary screening of smoke tainted wine.
Mitri, F G
2015-09-01
The optical theorem for plane waves is recognized as one of the fundamental theorems in optical, acoustical and quantum wave scattering theory as it relates the extinction cross-section to the forward scattering complex amplitude function. Here, the optical theorem is extended and generalized in a cylindrical coordinates system for the case of 2D beams of arbitrary character as opposed to plane waves of infinite extent. The case of scalar monochromatic acoustical wavefronts is considered, and generalized analytical expressions for the extinction, absorption and scattering cross-sections are derived and extended in the framework of the scalar resonance scattering theory. The analysis reveals the presence of an interference scattering cross-section term describing the interaction between the diffracted Franz waves with the resonance elastic waves. The extended optical theorem in cylindrical coordinates is applicable to any object of arbitrary geometry in 2D located arbitrarily in the beam's path. Related investigations in optics, acoustics and quantum mechanics will benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by a cloud of particles, as well as the resulting radiation force and torque.
Gopinath, T; Kumar, Anil
2006-12-01
Hadamard spectroscopy has earlier been used to speed-up multi-dimensional NMR experiments. In this work, we speed-up the two-dimensional quantum computing scheme, by using Hadamard spectroscopy in the indirect dimension, resulting in a scheme which is faster and requires the Fourier transformation only in the direct dimension. Two and three qubit quantum gates are implemented with an extra observer qubit. We also use one-dimensional Hadamard spectroscopy for binary information storage by spatial encoding and implementation of a parallel search algorithm.
Profiling of carotenoids in tomato juice by one- and two-dimensional NMR.
Tiziani, Stefano; Schwartz, Steven J; Vodovotz, Yael
2006-08-09
Epidemiological data have shown a link between dietary intake of tomatoes and tomato products (rich in carotenoids) and a decreased risk of chronic diseases. The carotenoid profile in tomato products depends on tomato variety as well as the thermal conditions used in processing. The final carotenoid profile may affect the bioaccessibility and bioavailability of these biomolecules. Therefore, nondestructive, reliable methods are needed to characterize the structural and stereochemical variation of carotenoids. CDCl(3) rapid extraction was used to extract carotenoids from tomato juice as an alternative rapid procedure that minimizes solvents and time consumption prior to NMR analysis. The profile of these biomolecules was characterized by application of high-resolution multidimensional NMR techniques using a cryogenic probe. The combination of homonuclear and heteronuclear two-dimensional NMR techniques served to identify (all-E)-, (5Z)-, (9Z)-, and (13Z)-lycopene isomers and other carotenoids such as (all-E)-beta-carotene and (15Z)-phytoene dissolved in the extracted lipid mixture. The use of one-dimensional NMR enabled the rapid identification of lycopene isomers, thereby minimizing further isomerization of (all-E)-lycopene as compared to HPLC data. On the basis of the assignments accomplished, the carotenoid profile of typical tomato juice was successfully determined with minimal purification procedures.
Using 2D NMR to determine the degree of branching of complicated hyperbranched polymers
Institute of Scientific and Technical Information of China (English)
2008-01-01
Degree of branching (DB) is a crucial structure parameter of hyperbranched polymers, which can be determined by 1H NMR, quantitative 13C NMR, degradative method, etc. However, for complicated hy-perbranched polymers, intricate structure and severe overlap of spectral signals hinder the determina-tion of DB using traditional methods. In this work, the architecture of complicated hyperbranched polymers has been elucidated with the help of 2D NMR techniques. Using such a method, overlapped NMR signals can be well separated into a two-dimensional space, and additional structural information is also available. Correspondingly, quantitative analysis for complicated systems can be realized. De-termination of DBs for three types of complicated hyperbranched polymers synthesized from step-polymerization, self-condensation vinyl polymerization and self-condensation ring-opening po-lymerization is shown as examples.
Separation of 2H MAS NMR Spectra by Two-Dimensional Spectroscopy
Kristensen, J. H.; Bildsøe, H.; Jakobsen, H. J.; Nielsen, N. C.
1999-08-01
New methods for optimum separation of 2H MAS NMR spectra are presented. The approach is based on hypercomplex spectroscopy that is useful for sign discrimination and phase separation. A new theoretical formalism is developed for the description of hypercomplex experiments. This exploits the properties of Lie algebras and hypercomplex numbers to obtain a solution to the Liouville-von Neumann equation. The solution is expressed in terms of coherence transfer functions that describe the allowed coherence transfer pathways in the system. The theoretical formalism is essential in order to understand all the features of hypercomplex experiments. The method is applied to the development of two-dimensional quadrupole-resolved 2H MAS NMR spectroscopy. The important features of this technique are discussed and two different versions are presented with widely different characteristics. An improved version of two-dimensional double-quantum 2H MAS NMR spectroscopy is developed. The conditions under which the double-quantum experiment is useful are discussed and its performance is compared with that observed for the quadrupole-resolved experiments. A general method is presented for evaluating the optimum pulse sequence parameters consistent with maximum sensitivity and resolution. This approach improves the performance of the experiments and is essential for any further development of the techniques. The effects of finite pulse width and hypercomplex data processing may lead to both intensity and phase distortions in the spectra. These effects are analyzed and general correction procedures are suggested. The techniques are applied to polycrystalline malonic-acid-2H4 for which the spinning sideband manifolds from the carboxyl and methylene deuterons are separated. The spinning sideband manifolds are simulated to determine the quadrupole parameters. The values are consistent with previous results, indicating that the techniques are both accurate and reliable.
2D NMR技术在石油测井中的应用%Application of 2D NMR Techniques in Petroleum Logging
Institute of Scientific and Technical Information of China (English)
顾兆斌; 刘卫; 孙佃庆; 孙威
2009-01-01
近几年, 2D NMR技术得到迅速发展, 特别是在核磁共振测井领域. 该文将主要介绍2D NMR技术的脉冲序列、弛豫原理以及2D NMR技术在石油测井中应用. 2D NMR技术是在梯度场的作用下, 利用一系列回波时间间隔不同的CPMG脉冲进行测量, 利用二维的数学反演得到2D NMR. 2D NMR技术可以直接测量自扩散系数、弛豫时间、原油粘度、含油饱和度、可动水饱和度、孔隙度、 渗透率等地层流体性质和岩石物性参数. 从2D NMR谱上, 可以直观的区分油、气、水, 判断储层润湿性, 确定内部磁场梯度等. 2D NMR技术为识别流体类型提供了新方法.%This review paper introduces 2D NMR pulse trains frequently used in petroleum logging and their applications, as well as relevant relaxation mechanisms. In NMR logging, often a set of data is acquired at different CPMG echo spacing in the presence of constant gradient magnetic field. Two-dimensional mathematical inversion is then applied to solve the dataset, yielding two-dimensional NMR map (D-T_2). In the meanwhile, 2D NMR technique can be used to measure the property parameters of formation fluid and the petrophysics parameters directly, such as diffusion coefficient, relaxation time, crude oil viscosity, oil saturation, free water saturation, porosity, permeability and so on. The 2D NMR map can also be used to differentiate oil, gas and water, determine internal gradient field in and judge wettability of the sample. 2D NMR techniques offer powerful tools for identifying fluid type in NMR logging.
2D NMR-spectroscopic screening reveals polyketides in ladybugs
Deyrup, Stephen T.; Eckman, Laura E.; McCarthy, Patrick H.; Smedley, Scott R.; Meinwald, Jerrold; Schroeder, Frank C.
2011-01-01
Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature’s cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior...
Two-dimensional NMR investigations of the dynamic conformations of phospholipids and liquid crystals
Energy Technology Data Exchange (ETDEWEB)
Hong, Mei [Univ. of California, Berkeley, CA (United States). Applied Science and Technology
1996-05-01
Two-dimensional 13C, 1H, and 31P nuclear magnetic resonance (NMR) techniques are developed and used to study molecular structure and dynamics in liquid-crystalline systems, primarily phospholipids and nematic liquid crystals. NMR spectroscopy characterizes molecular conformation in terms of orientations and distances of molecular segments. In anisotropically mobile systems, this is achieved by measuring motionally-averaged nuclear dipolar couplings and chemical shift anisotropies. The short-range couplings yield useful bond order parameters, while the long-range interactions constrain the overall conformation. In this work, techniques for probing proton dipolar local fields are further developed to obtain highlyresolved dipolar couplings between protons and rare spins. By exploiting variable-angle sample spinning techniques, orientation-sensitive NMR spectra are resolved according to sitespecific isotropic chemical shifts. Moreover, the signs and magnitudes of various short-range dipolar couplings are obtained. They are used in novel theoretical analyses that provide information about segmental orientations and their distributions. Such information is obtained in a model-independent fashion or with physically reasonable assumptions. The structural investigation of phospholipids is focused on the dynam
Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Schleucher, Jürgen
2015-04-01
Soil organic matter (SOM) represents a huge carbon pool, specifically in boreal ecosystems. Warming-induced release of large amounts of CO2 from the soil carbon pool might become a significant exacerbating feedback to global warming, if decomposition rates of boreal soils were more sensitive to increased temperatures. Despite a large number of studies dedicated to the topic, it has proven difficult to elucidate how the organo-chemical composition of SOM influences its decomposition, or its quality as a substrate for microbial metabolism. A great part of this challenge results from our inability to achieve a detailed characterization of the complex composition of SOM on the level of molecular structural moieties. 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to characterize SOM. However, SOM is a very complex mixture and the chemical shift regions distinguished in the 13C NMR spectra often represent many different molecular fragments. For example, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. We applied two-dimensional (2D) NMR to characterize SOM with highly increased resolution. We directly dissolved finely ground litters and forest floors'fibric and humic horizons'of both coniferous and deciduous boreal forests in dimethyl sulfoxide and analyzed the resulting solution with a 2D 1H-13C NMR experiment. In the 2D planes of these spectra, signals of CH groups can be resolved based on their 13C and 1H chemical shifts, hence the resolving power and information content of these NMR spectra is hugely increased. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra, so that hundreds of distinct CH groups could be observed and many molecular fragments could be identified. For instance, in the aromatics region, signals from individual lignin units could
Two-dimensional crystal melting and D4-D2-D0 on toric Calabi-Yau singularities
Nishinaka, Takahiro; Yoshida, Yutaka
2013-01-01
We construct a two-dimensional crystal melting model which reproduces the BPS index of D2-D0 states bound to a non-compact D4-brane on an arbitrary toric Calabi-Yau singularity. The crystalline structure depends on the toric divisor wrapped by the D4-brane. The molten crystals are in one-to-one correspondence with the torus fixed points of the moduli space of the quiver gauge theory on D-branes. The F- and D-term constraints of the gauge theory are regarded as a generalization of the ADHM constraints on instantons. We also show in several examples that our model is consistent with the wall-crossing formula for the BPS index.
Two-dimensional NMR and structure determination of salmon calcitonin in methanol
Energy Technology Data Exchange (ETDEWEB)
Meadows, R.P.; Nikonowicz, E.P.; Jones, C.R.; Gorenstein, D.G. (Purdue Univ., Lafayette, IN (USA)); Bastian, J.W.
1991-02-05
The structure of the 32-residue peptide salmon calcitonin (sCT) in 90% MeOH-10% H{sub 2}O has been investigated by two-dimensional NMR techniques and molecular modeling. Sequential assignments for nearly all of the 32 spin systems have been obtained, and results indicate that the heptaresidue loop formed by the disulfide bond between Cys-1 and Cys-7 is followed by an {alpha}-helical segment from Val-8 through Tyr-22. A region of conformational heterogeneity is observed for residues 20-25, resulting from the slow isomerism of the cis and trans forms of Pro-23. The C-terminal segment is found to exist in an extended conformation.
Wehrli, S L; Moore, K S; Roder, H; Durell, S; Zasloff, M
1993-08-01
Squalamine is a novel aminosterol recently isolated from the dogfish shark, Squalus acanthias. This water-soluble steroid exhibits potent antibacterial activity against both gram-negative and gram-positive bacteria. In addition, squalamine is fungicidal and induces osmotic lysis of protozoa. We report here the structural determination of squalamine, 3 beta-N-1-[N(3-[4-aminobutyl])-1,3 diaminopropane]-7 alpha,24 zeta-dihydroxy-5 alpha-cholestane 24-sulfate, which was deduced from the analysis of fast atom bombardment spectra and a series of two-dimensional nuclear magnetic resonance (NMR) spectra. Squalamine is a cationic steroid characterized by a condensation of an anionic bile salt intermediate with the polyamine, spermidine. This molecule is a potential host-defense agent in the shark, and provides insight into a new class of vertebrate antimicrobial molecules.
In situ fluid typing and quantification with 1D and 2D NMR logging.
Sun, Boqin
2007-05-01
In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T(2) distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T(2) peaks arising from different fluids with similar apparent T(2) relaxation times. Nevertheless, the shapes of T(2) distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T(2) distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T(2) relaxation time and fluid diffusion coefficient (or T(1) relaxation time). Since diffusion coefficients (or T(1) relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples.
FireStem2D--a two-dimensional heat transfer model for simulating tree stem injury in fires.
Directory of Open Access Journals (Sweden)
Efthalia K Chatziefstratiou
Full Text Available FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes.
Energy Technology Data Exchange (ETDEWEB)
Benn, R.; Brenneke, H.; Frings, A.; Lehmkuhl, H.; Mehler, G.; Rufinska, A.; Wildt, T.
1988-08-17
The indirect heteronuclear two-dimensional (2D) triple-resonance (S,I)-(/sup 1/H) NMR spectroscopy is introduced for measuring the chemical shift and scalar spin-spin coupling constants of an insensitive nucleus I via its scalar coupling J(S,I) by detection of the nucleus S of higher sensitivity. The versatility of this approach is demonstrated by extracting delta(/sup 57/Fe) and J(Fe,X) from (/sup 31/P,/sup 57/Fe)-(/sup 1/H) spectra of various dissolved ((/eta//sup 5/-Cp)(L/sub 2/(R)))Fe, ((/eta//sup 3/-allyl)(/eta//sup 5/-Cp)(L))Fe, and ((/eta//sup 1/,/eta//sup 2/-alkenyl)(/eta//sup 5/-Cp)(L))Fe complexes (R = alkyl, hydride; L = PR/sub 3/). In practice the sensitivity of 2D (/sup 31/P,/sup 57/Fe) spectra was found to be higher than that of the direct observation scheme by at least a factor (..gamma../sub P//..gamma../sub Fe/)/sup 5/2/. Due to the intrinsically higher resolving power of a two-dimensional experiment, small scalar couplings like /sup 2J/(Fe,F) and /sup 1/J(Fe,H) were readily obtained from indirect two-dimensional spectra. Combinations of (/sup 1/H,/sup 57/Fe) and (/sup 31/P,/sup 57/Fe) spectra yielded the relative signs of the J(Fe,X) couplings: /sup 1/J(Fe,P) is positive and increases with increasing ..pi..-acceptor power of the phosphorus ligand L from 55 (L = PMe/sub 3/, R = H) to 149 Hz (L = PF/sub 3/). /sup 1/J(Fe,H) is around +9 Hz (R = H), whereas /sup 2/J(P,H) in these complexes was found to be negative. In all of the allyl complexes investigated, /sup 2J/(Fe,F) (L = PF/sub 3/) is positive and around 3 Hz. In the quasi-tetragonal and -trigonal iron complexes, delta(/sup 57/Fe) varies by about 4000 ppM. This can be rationalized qualitatively by the electronegativity of the atoms directly bonded to iron and the higher oxidation potential in the presence of more basic ligands L via the paramagnetic shielding term. 52 references, 5 figures, 5 tables.
Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Schleucher, Jürgen
2014-05-01
Environmental factors (e.g. temperature and moisture) and the size and composition of soil microbial populations are often considered the main drivers of soil organic matter (SOM) mineralization. Less consideration is given to the role of SOM as a substrate for microbial metabolism and the importance of the organo-chemical composition of SOM on decomposition. In addition, a fraction of the SOM is often considered as recalcitrant to mineralization leading to accumulation of SOM. However, recently the concept of intrinsic recalcitrance of SOM to mineralization has been questioned. The challenge in investigating the role of SOM composition on its mineralization to a large extent stems from the difficulties in obtaining high resolution characterization of a very complex matrix. 13C nuclear magnetic resonance (NMR) spectroscopy is a widely used tool to characterize SOM. However, SOM is a very complex mixture and in the resulting 13C NMR spectra, the identified functional groups may represent different molecular fragments that appear in the same spectral region leading to broad peaks. These overlaps defy attempts to identify molecular moieties, and this makes it impossible to derive information at a resolution needed for evaluating e.g. recalcitrance of SOM. Here we applied a method, developed in wood science for the pulp paper industry, to achieve a better characterization of SOM. We directly dissolved finely ground organic layers of boreal forest floors-litters, fibric and humic horizons of both coniferous and broadleaved stands-in dimethyl sulfoxide and analyzed the resulting solution with a two-dimensional (2D) 1H-13C NMR experiment. We will discuss methodological aspects related to the ability to identify and quantify individual molecular moieties in SOM. We will demonstrate how the spectra resolve signals of CH groups in a 2D plane determined by the 13C and 1H chemical shifts, thereby vastly increasing the resolving power and information content of NMR spectra. The
Weisz, K; Shafer, R H; Egan, W; James, T L
1992-08-25
Phase-sensitive two-dimensional nuclear Overhauser enhancement (2D NOE) and double-quantum-filtered correlated (2QF-COSY) spectra were recorded at 500 MHz for the DNA duplex d(CATTTGCATC).d(GATGCAAATG), which contains the octamer element of immunoglobulin genes. Exchangeable and nonexchangeable proton resonances including those of the H5' and H5" protons were assigned. Overall, the decamer duplex adopts a B-type DNA conformation. Scalar coupling constants for the sugar protons were determined by quantitative simulations of 2QF-COSY cross-peaks. These couplings are consistent with a two-state dynamic equilibrium between a minor N- and a major S-type conformer for all residues. The pseudorotation phase angle P of the major conformer is in the range 117-135 degrees for nonterminal pyrimidine nucleotides and 153-162 degrees for nonterminal purine nucleotides. Except for the terminal residues, the minor conformer comprises less than 25% of the population. Distance constraints obtained by a complete relaxation matrix analysis of the 2D NOE intensities with the MARDIGRAS algorithm confirm the dependence of the sugar pucker on pyrimidine and purine bases. Averaging by fast local motions has at most small effects on the NOE-derived interproton distances.
Amatyakul, Puwis; Vachiratienchai, Chatchai; Siripunvaraporn, Weerachai
2017-05-01
An efficient joint two-dimensional direct current resistivity (DCR) and magnetotelluric (MT) inversion, referred to as WSJointInv2D-MT-DCR, was developed with FORTRAN 95 based on the data space Occam's inversion algorithm. Our joint inversion software can be used to invert just the MT data or the DCR data, or invert both data sets simultaneously to get the electrical resistivity structures. Since both MT and DCR surveys yield the same resistivity structures, the two data types enhance each other leading to a better interpretation. Two synthetic and a real field survey are used here to demonstrate that the joint DCR and MT surveys can help constrain each other to reduce the ambiguities occurring when inverting the DCR or MT alone. The DCR data increases the lateral resolution of the near surface structures while the MT data reveals the deeper structures. When the MT apparent resistivity suffers from the static shift, the DCR apparent resistivity can serve as a replacement for the estimation of the static shift factor using the joint inversion. In addition, we also used these examples to show the efficiency of our joint inversion code. With the availability of our new joint inversion software, we expect the number of joint DCR and MT surveys to increase in the future.
MetaboMiner – semi-automated identification of metabolites from 2D NMR spectra of complex biofluids
Directory of Open Access Journals (Sweden)
Tang Peter
2008-11-01
Full Text Available Abstract Background One-dimensional (1D 1H nuclear magnetic resonance (NMR spectroscopy is widely used in metabolomic studies involving biofluids and tissue extracts. There are several software packages that support compound identification and quantification via 1D 1H NMR by spectral fitting techniques. Because 1D 1H NMR spectra are characterized by extensive peak overlap or spectral congestion, two-dimensional (2D NMR, with its increased spectral resolution, could potentially improve and even automate compound identification or quantification. However, the lack of dedicated software for this purpose significantly restricts the application of 2D NMR methods to most metabolomic studies. Results We describe a standalone graphics software tool, called MetaboMiner, which can be used to automatically or semi-automatically identify metabolites in complex biofluids from 2D NMR spectra. MetaboMiner is able to handle both 1H-1H total correlation spectroscopy (TOCSY and 1H-13C heteronuclear single quantum correlation (HSQC data. It identifies compounds by comparing 2D spectral patterns in the NMR spectrum of the biofluid mixture with specially constructed libraries containing reference spectra of ~500 pure compounds. Tests using a variety of synthetic and real spectra of compound mixtures showed that MetaboMiner is able to identify >80% of detectable metabolites from good quality NMR spectra. Conclusion MetaboMiner is a freely available, easy-to-use, NMR-based metabolomics tool that facilitates automatic peak processing, rapid compound identification, and facile spectrum annotation from either 2D TOCSY or HSQC spectra. Using comprehensive reference libraries coupled with robust algorithms for peak matching and compound identification, the program greatly simplifies the process of metabolite identification in complex 2D NMR spectra.
Reddy, T. S. R.
1995-01-01
This guide describes the input data required for using ECAP2D (Euler Cascade Aeroelastic Program-Two Dimensional). ECAP2D can be used for steady or unsteady aerodynamic and aeroelastic analysis of two dimensional cascades. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The solution methods include harmonic oscillation method, influence coefficient method, pulse response method, and time integration method. For harmonic oscillation method, example inputs and outputs are provided for pitching motion and plunging motion. For the rest of the methods, input and output for pitching motion only are given.
Wei, Feifei; Furihata, Kazuo; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru
2010-11-01
A complex mixture analysis by one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy was carried out for the first time for the identification and quantification of organic compounds in green coffee bean extract (GCBE). A combination of (1)H-(1)H DQF-COSY, (1)H-(13)C HSQC, and (1)H-(13)C CT-HMBC two-dimensional sequences was used, and 16 compounds were identified. In particular, three isomers of caffeoylquinic acid were identified in the complex mixture without any separation. In addition, GCBE components were quantified by the integration of carbon signals by use of a relaxation reagent and an inverse-gated decoupling method without a nuclear Overhauser effect. This NMR methodology provides detailed information about the kinds and amounts of GCBE components, and in our study, the chemical makeup of GCBE was clarified by the NMR results. 2010 John Wiley & Sons, Ltd.
2D NMR-spectroscopic screening reveals polyketides in ladybugs.
Deyrup, Stephen T; Eckman, Laura E; McCarthy, Patrick H; Smedley, Scott R; Meinwald, Jerrold; Schroeder, Frank C
2011-06-14
Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature's cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature's structure space and suggests that insect metabolomes remain vastly underexplored.
Foist, Rod B; Schulze, H Georg; Ivanov, Andre; Turner, Robin F B
2011-05-01
Two-dimensional correlation spectroscopy (2D-COS) is a powerful spectral analysis technique widely used in many fields of spectroscopy because it can reveal spectral information in complex systems that is not readily evident in the original spectral data alone. However, noise may severely distort the information and thus limit the technique's usefulness. Consequently, noise reduction is often performed before implementing 2D-COS. In general, this is implemented using one-dimensional (1D) methods applied to the individual input spectra, but, because 2D-COS is based on sets of successive spectra and produces 2D outputs, there is also scope for the utilization of 2D noise-reduction methods. Furthermore, 2D noise reduction can be applied either to the original set of spectra before performing 2D-COS ("pretreatment") or on the 2D-COS output ("post-treatment"). Very little work has been done on post-treatment; hence, the relative advantages of these two approaches are unclear. In this work we compare the noise-reduction performance on 2D-COS of pretreatment and post-treatment using 1D (wavelets) and 2D algorithms (wavelets, matrix maximum entropy). The 2D methods generally outperformed the 1D method in pretreatment noise reduction. 2D post-treatment in some cases was superior to pretreatment and, unexpectedly, also provided correlation coefficient maps that were similar to 2D correlation spectroscopy maps but with apparent better contrast.
Wei, Feifei; Furihata, Kazuo; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru
2011-09-14
Coffee was characterized by proton and carbon nuclear magnetic resonance (NMR) spectroscopy. To identify the coffee components, a detailed and approximately 90% signal assignment was carried out using various two-dimensional NMR spectra and a spiking method, in which authentic compounds were added to the roasted coffee bean extract (RCBE) sample. A total of 24 coffee components, including 5 polysaccharide units, 3 stereoisomers of chlorogenic acids, and 2 stereoisomers of quinic acids, were identified with the NMR spectra of RCBE. On the basis of the signal assignment, state analyses were further launched for the metal ion-citrate complexes and caffeine-chlorogenate complexes. On the basis of the signal integration, the coffee components were successfully quantified. This NMR methodology yielded detailed information on RCBE using only a single observation and provides a systemic approach for the analysis of other complex mixtures.
1H and 13C resonance designation of antimycin A1 by two-dimensional NMR spectroscopy
Abidi, S.L.; Adams, B.R.
1987-01-01
Complete 1H and 13C resonance assignments of antimycin A1 were accomplished by two-dimensional NMR techniques, viz. 1H homonuclear COSY correlation, heteronuclear 13C-1H chemical shift correlation and long-range heteronuclear 13C-1H COLOC correlation. Antimycin A1 was found to consist of two isomeric components in a 2:1 ratio based on NMR spectroscopic evidence. The structure of the major component was newly assigned as the 8-isopentanoic acid ester. The spectra of the minor component were consistent with the known structure of antimycin A1.
Sensitivity and resolution of two-dimensional NMR diffusion-relaxation measurements
Kausik, Ravinath; Hürlimann, Martin D.
2016-09-01
The performance of 2D NMR diffusion-relaxation measurements for fluid typing applications is analyzed. In particular, we delineate the region in the diffusion - relaxation plane that can be determined with a given gradient strength and homogeneity, and compare the performance of the single and double echo encoding with the stimulated echo diffusion encoding. We show that the diffusion editing based approach is able to determine the diffusion coefficient only if the relaxation time T2 exceeds a cutoff value T2,cutoff , that scales like T2,cutoff ∝g - 2 / 3D - 1 / 3 . For stimulated echo encoding, the optimal diffusion encoding times (Td and δ), that provide the best diffusion sensitivity, rely only on the T1 /T2 ratios and not on the diffusion coefficients of the fluids or the applied gradient strengths. Irrespective of T1 , for high enough gradients (i.e. when γ2g2 DT23 >102), the Hahn echo based encoding is superior to encoding based on the stimulated echo. For weaker gradients, the stimulated echo is superior only if the T1 /T2 ratio is much larger than 1. For single component systems, the diffusion sensitivity is not adversely impacted by the uniformity of the gradients and the diffusion distributions can be well measured. The presence of non-uniform gradients can affect the determination of the diffusion distributions when you have two fluids of comparable T2 . In such situations the effective single component diffusion coefficient is always closer to the geometric mean diffusion coefficient of the two fluids.
Fast 2D NMR Spectroscopy for In vivo Monitoring of Bacterial Metabolism in Complex Mixtures
Directory of Open Access Journals (Sweden)
Rupashree Dass
2017-07-01
Full Text Available The biological toolbox is full of techniques developed originally for analytical chemistry. Among them, spectroscopic experiments are very important source of atomic-level structural information. Nuclear magnetic resonance (NMR spectroscopy, although very advanced in chemical and biophysical applications, has been used in microbiology only in a limited manner. So far, mostly one-dimensional 1H experiments have been reported in studies of bacterial metabolism monitored in situ. However, low spectral resolution and limited information on molecular topology limits the usability of these methods. These problems are particularly evident in the case of complex mixtures, where spectral peaks originating from many compounds overlap and make the interpretation of changes in a spectrum difficult or even impossible. Often a suite of two-dimensional (2D NMR experiments is used to improve resolution and extract structural information from internuclear correlations. However, for dynamically changing sample, like bacterial culture, the time-consuming sampling of so-called indirect time dimensions in 2D experiments is inefficient. Here, we propose the technique known from analytical chemistry and structural biology of proteins, i.e., time-resolved non-uniform sampling. The method allows application of 2D (and multi-D experiments in the case of quickly varying samples. The indirect dimension here is sparsely sampled resulting in significant reduction of experimental time. Compared to conventional approach based on a series of 1D measurements, this method provides extraordinary resolution and is a real-time approach to process monitoring. In this study, we demonstrate the usability of the method on a sample of Escherichia coli culture affected by ampicillin and on a sample of Propionibacterium acnes, an acne causing bacterium, mixed with a dose of face tonic, which is a complicated, multi-component mixture providing complex NMR spectrum. Through our experiments
Fal'ko, Vladimir I.
2014-06-01
On behalf of the Editorial Board and IOP Publishing, I am pleased to announce the opening of 2D Materials. Research on two-dimensional materials, such as graphene, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology, and extending from fundamental science to novel applications. It is this situation which defines the scope and mission of 2D Materials, a new journal that will serve all sides of this multidisciplinary field by publishing urgent research of the highest quality and impact.
Analysis of 2D NMR relaxation data using Chisholm approximations
Huber, S.; Haase, A.; Gleich, B.
2017-08-01
To analyze 2D NMR relaxation data based on a discrete delta-like relaxation map we extended the Padé-Laplace method to two dimensions. We approximate the forward Laplace image of the time domain signal by a Chisholm approximation, i.e. a rational polynomial in two dimensions. The poles and residues of this approximation correspond to the relaxation rates and weighting factors of the underlying relaxation map. In this work we explain the principle ideas of our algorithm and demonstrate its applicability. Therefore we compare the inversion results of the Chisholm approximation and Tikhonov regularization method as a function of SNR when the investigated signal is based on a given discrete relaxation map. Our algorithm proved to be reliable for SNRs larger than 50 and is able to compete with the Tikhonov regularization method. Furthermore we show that our method is also able to detect the simulated relaxation compartments of narrow Gaussian distributions with widths less or equal than 0.05 s-1. Finally we investigate the resolution limit with experimental data. For a SNR of 750 the Chisholm approximation method was able to resolve two relaxation compartments in 8 of 10 cases when both compartments differ by a factor of 1.7.
Brûlé, Yoann; Demésy, Guillaume; Gralak, Boris; Popov, Evgeny
2015-04-01
An extensive numerical study of diffraction of a plane monochromatic wave by a single gold cone on a plane gold substrate and by a periodical array of such cones shows formation of curls in the map of the Poynting vector. They result from the interference between the incident wave, the wave reflected by the substrate, and the field scattered by the cone(s). In case of a single cone, when going away from its base along the surface, the main contribution in the scattered field is given by the plasmon surface wave (PSW) excited on the surface. As expected, it has a predominant direction of propagation, determined by the incident wave polarization. Two particular cones with height approximately 1/6 and 1/3 of the wavelength are studied in detail, as they present the strongest absorption and field enhancement when arranged in a periodic array. While the PSW excited by the smaller single cone shows an energy flux globally directed along the substrate surface, we show that curls of the Poynting vector generated with the larger cone touch the diopter surface. At this point, their direction is opposite to the energy flow of the PSW, which is then forced to jump over the vortex regions. Arranging the cones in a two-dimensional subwavelength periodic array (diffraction grating), supporting a specular reflected order only, resonantly strengthens the field intensity at the tip of cones and leads to a field intensity enhancement of the order of 10 000 with respect to the incident wave intensity. The enhanced field is strongly localized on the rounded top of the cones. It is accompanied by a total absorption of the incident light exhibiting large angular tolerances. This strongly localized giant field enhancement can be of much interest in many applications, including fluorescence spectroscopy, label-free biosensing, surface-enhanced Raman scattering (SERS), nonlinear optical effects and photovoltaics.
Tang, Shanzhi; Yu, Shengrui; Han, Qingfu; Li, Ming; Wang, Zhao
2016-09-01
Circular test is an important tactic to assess motion accuracy in many fields especially machine tool and coordinate measuring machine. There are setup errors due to using directly centring of the measuring instrument for both of contact double ball bar and existed non-contact methods. To solve this problem, an algorithm for circular test using function construction based on matrix operation is proposed, which is not only used for the solution of radial deviation (F) but also should be applied to obtain two other evaluation parameters especially circular hysteresis (H). Furthermore, an improved optical configuration with a single laser is presented based on a 2D laser heterodyne interferometer. Compared with the existed non-contact method, it has a more pure homogeneity of the laser sources of 2D displacement sensing for advanced metrology. The algorithm and modeling are both illustrated. And error budget is also achieved. At last, to validate them, test experiments for motion paths are implemented based on a gantry machining center. Contrast test results support the proposal.
Shinzawa, Hideyuki; Mizukado, Junji
2016-11-01
Evolutionary change in supermolecular structure of Nylon 6 during its melt-quenched process was studied by Near-infrared (NIR) spectroscopy. Time-resolved NIR spectra was measured by taking the advantage of high-speed NIR monitoring based on an acousto-optic tunable filter (AOTF). Fine spectral features associated with the variation of crystalline and amorphous structure occurring in relatively short time scale were readily captured. For example, synchronous and asynchronous 2D correlation spectra reveal the initial decrease in the contribution of the NIR band at 1485 nm due to the amorphous structure, predominantly existing in the melt Nylon 6. This is then followed by the emerging contribution of the band intensity at 1535 nm associated with the crystalline structure. Consequently, the results clearly demonstrate a definite advantage of the high-speed NIR monitoring for analyzing fleeting phenomena.
Schoenfelder, Wiete; Gläser, Hans-Reinhard; Mitreiter, Ivonne; Stallmach, Frank
2008-06-01
Limestones and karstified limestones (dolostones) from a Permian aquifer in Central Germany were studied by 1H 2D NMR relaxometry and PFG NMR diffusometry, aiming at a non-destructive characterization of the pore space. Information concerning pore size distribution and water diffusion were in accord for different samples of each type of rock, but differed fundamentally between limestones and dolostones. The results of the 2D relaxometry measurements revealed a ratio of surface relaxation times Ts1/ Ts2 of about 2 for the limestones and about 4.5 for the dolostones, mirroring the different content of iron and manganese in the solid pore walls. In consideration of thin section interpretation, the corresponding fraction in the T1- T2 relaxation time distributions was attributed to interparticle porosity. Porosity of large vugs is clearly displayed by relaxation times longer than 1 s in the dolostones only. A third fraction of the total water-saturated pore space in the dolostones, which is clearly displayed in the 2D relaxation time distributions at the smallest relaxation times and a Ts1/ Ts2 ratio of about 12, is attributed to intrafossil porosity. The porosity classification, basing on non-destructive NMR experiments, is verified by mercury intrusion porosimetry and thin section interpretation.
Das, Saptarshi
2016-01-01
This article proposes a disruptive device concept which meets both low power and high performance criterion for post-CMOS computing and at the same time enables aggressive channel length scaling. This device, hereafter refer to as two-dimensional electrostrictive field effect transistor or 2D-EFET, allows sub-60 mV/decade subthreshold swing and considerably higher ON current compared to any state of the art FETs. Additionally, by the virtue of its ultra-thin body nature and electrostatic integrity, the 2D-EFET enjoys scaling beyond 10 nm technology node. The 2D-EFET works on the principle of voltage induced strain transduction. It uses an electrostrictive material as gate oxide which expands in response to an applied gate bias and thereby transduces an out-of-plane stress on the 2D channel material. This stress reduces the inter-layer distance between the consecutive layers of the semiconducting 2D material and dynamically reduces its bandgap to zero i.e. converts it into a semi-metal. Thus the device operates with a large bandgap in the OFF state and a small or zero bandgap in the ON state. As a consequence of this transduction mechanism, internal voltage amplification takes place which results in sub-60 mV/decade subthreshold swing (SS). PMID:27721489
Das, Saptarshi
2016-10-01
This article proposes a disruptive device concept which meets both low power and high performance criterion for post-CMOS computing and at the same time enables aggressive channel length scaling. This device, hereafter refer to as two-dimensional electrostrictive field effect transistor or 2D-EFET, allows sub-60 mV/decade subthreshold swing and considerably higher ON current compared to any state of the art FETs. Additionally, by the virtue of its ultra-thin body nature and electrostatic integrity, the 2D-EFET enjoys scaling beyond 10 nm technology node. The 2D-EFET works on the principle of voltage induced strain transduction. It uses an electrostrictive material as gate oxide which expands in response to an applied gate bias and thereby transduces an out-of-plane stress on the 2D channel material. This stress reduces the inter-layer distance between the consecutive layers of the semiconducting 2D material and dynamically reduces its bandgap to zero i.e. converts it into a semi-metal. Thus the device operates with a large bandgap in the OFF state and a small or zero bandgap in the ON state. As a consequence of this transduction mechanism, internal voltage amplification takes place which results in sub-60 mV/decade subthreshold swing (SS).
Chae, Boknam; Son, Seok Ho; Kwak, Young Jun; Jung, Young Mee; Lee, Seung Woo
2016-11-01
The pH-induced structural changes to surface immobilized poly (L-glutamic acid) (PLGA) films were examined by Fourier transform infrared (FTIR) spectroscopy and two-dimensional (2D) correlation analysis. Significant spectral changes were observed in the FTIR spectra of the surface immobilized PLGA film between pH 6 and 7. The 2D correlation spectra constructed from the pH-dependent FTIR spectra of the surface immobilized PLGA films revealed the spectral changes induced by the alternations of the protonation state of the carboxylic acid group in the PLGA side chain. When the pH was increased from 6 to 8, weak spectral changes in the secondary structure of the PLGA main chain were induced by deprotonation of the carboxylic acid side group.
Generalised 2D-correlation NMR analysis of a wine fermentation.
Kirwan, Gemma M; Clark, Shona; Barnett, Neil W; Niere, Julie O; Adams, Michael J
2008-11-23
A wine fermentation has been monitored on a daily basis by (1)H NMR spectroscopy. Following data pre-processing that includes synthesis of the spectra to ensure all peaks are of constant half-width, the series of spectra were examined using generalised two-dimensional correlation techniques. Synchronous and asynchronous data maps have been generated and employed to interpret the changes in the fermentation process as a function of time. The results illustrate the potential of high resolution NMR with multivariate data analysis as a tool for process monitoring and the manner in which two-dimensional correlation mapping can aid in data interpretation.
Optical analogue of 2D heteronuclear double-quantum NMR
Tollerud, Jonathan
2016-01-01
Heteronuclear multi-quantum spectroscopy is a powerful part of the NMR toolbox, commonly used to identify specific sequences of atoms in complex pulse sequences designed to determine the structure of complex molecules, including proteins. Optical coherent multidimensional spectroscopy (CMDS) is analogous to multidimensional NMR and many of the techniques of NMR have been adapted for application in the optical regime. This has been highly successful, with CMDS being used to understand energy transfer in photosynthesis and many body effects in semiconductor nanostructures amongst many other scientific breakthroughs. Experimental challenges have, however, prevented the translation of heteronuclear multi-quantum NMR to the optical regime, where capabilities to isolate signals in otherwise congested spectra, reduce acquisition times and enable more incisive probes of multi-particle correlations and complex electronic systems would have great benefit. Here we utilise a diffraction based pulseshaper to impose the tw...
Kuhls-Gilcrist, Andrew T.; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen
2010-01-01
The MTF, NNPS, and DQE are standard linear system metrics used to characterize intrinsic detector performance. To evaluate total system performance for actual clinical conditions, generalized linear system metrics (GMTF, GNNPS and GDQE) that include the effect of the focal spot distribution, scattered radiation, and geometric unsharpness are more meaningful and appropriate. In this study, a two-dimensional (2D) generalized linear system analysis was carried out for a standard flat panel detector (FPD) (194-micron pixel pitch and 600-micron thick CsI) and a newly-developed, high-resolution, micro-angiographic fluoroscope (MAF) (35-micron pixel pitch and 300-micron thick CsI). Realistic clinical parameters and x-ray spectra were used. The 2D detector MTFs were calculated using the new Noise Response method and slanted edge method and 2D focal spot distribution measurements were done using a pin-hole assembly. The scatter fraction, generated for a uniform head equivalent phantom, was measured and the scatter MTF was simulated with a theoretical model. Different magnifications and scatter fractions were used to estimate the 2D GMTF, GNNPS and GDQE for both detectors. Results show spatial non-isotropy for the 2D generalized metrics which provide a quantitative description of the performance of the complete imaging system for both detectors. This generalized analysis demonstrated that the MAF and FPD have similar capabilities at lower spatial frequencies, but that the MAF has superior performance over the FPD at higher frequencies even when considering focal spot blurring and scatter. This 2D generalized performance analysis is a valuable tool to evaluate total system capabilities and to enable optimized design for specific imaging tasks. PMID:21243038
Hydrothermal changes in wheat starch monitored by two-dimensional NMR.
Kovrlija, R; Rondeau-Mouro, C
2017-01-01
The temperature-dependent changes in wheat starch powder and wheat starch-water mixtures were monitored in real-time throughout the heating/cooling program using a classical one-dimensional T1 method and a novel bi-dimensional approach to correlate spin-lattice and spin-spin relaxation times (T1-T2) including acquisition of the FID signal. The influence of two controlling factors (i.e. water content (11%, 35-50%, wet basis) and temperature (20-90°C and back to 20°C)) on water distribution and starch transformation was investigated. Quantitative analysis of 2D T1-T2 maps greatly facilitated the interpretation of T1 relaxation times, which have been interpreted rather narrowly in the literature when classically measured in one-dimension. Application of the new IR-FID-CPMG sequence allowed distinction between different proton pools with different T1 relaxation times, particularly when the starch gelatinization occurred. The quantification of each T1 component permitted to assign the short T1 to slow cross relaxation phenomena, highlighting proton chemical and/or diffusional exchanges between water and starch.
Lü, Chengxu; Chen, Longjian; Yang, Zengling; Liu, Xian; Han, Lujia
2014-01-01
This article presents a novel method for combining auto-peak and cross-peak information for sensitive variable selection in synchronous two-dimensional correlation spectroscopy (2D-COS). This variable selection method is then applied to the case of near-infrared (NIR) microscopy discrimination of meat and bone meal (MBM). This is of important practical value because MBM is currently banned in ruminate animal compound feed. For the 2D-COS analysis, a set of NIR spectroscopy data of compound feed samples (adulterated with varying concentrations of MBM) was pretreated using standard normal variate and detrending (SNVD) and then mapped to the 2D-COS synchronous matrix. For the auto-peak analysis, 12 main sensitive variables were identified at 6852, 6388, 6320, 5788, 5600, 5244, 4900, 4768, 4572, 4336, 4256, and 4192 cm(-1). All these variables were assigned their specific spectral structure and chemical component. For the cross-peak analysis, these variables were divided into two groups, each group containing the six sensitive variables. This grouping resulted in a correlation between the spectral variables that was in accordance with the chemical-component content of the MBM and compound feed. These sensitive variables were then used to build a NIR microscopy discrimination model, which yielded a 97% correct classification. Moreover, this method detected the presence of MBM when its concentration was less than 1% in an adulterated compound feed sample. The concentration-dependent 2D-COS-based variable selection method developed in this study has the unique advantages of (1) introducing an interpretive aspect into variable selection, (2) substantially reducing the complexity of the computations, (3) enabling the transferability of the results to discriminant analysis, and (4) enabling the efficient compression of spectral data.
Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing
2017-03-05
As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.
Shinzawa, Hideyuki; Murakami, Takurou N.; Nishida, Masakazu; Kanematsu, Wataru; Noda, Isao
2014-07-01
Multiple-perturbation two-dimensional (2D) correlation spectroscopy was applied to sets of near-infrared (NIR) imaging data of polylactic acid (PLA) nanocomposite samples undergoing UV degradation. Incorporation of clay nanoparticles substantially lowers the surface free energy barrier for the nucleation of PLA and eventually increases the frequency of the spontaneous nucleation of PLA crystals. Thus, when exposed to external stimuli such as UV light, PLA nanocomposite may show different structure alternation depending on the clay dispersion. Multiple-perturbation 2D correlation analysis of the PLA nanocomposite samples revealed different spatial variation between crystalline and amorphous structure of PLA, and the phenomenon especially becomes acute in the region where the clay particles are coagulated. The incorporation of the clay leads to the cleavage-induced crystallization of PLA when the sample is subjected to the UV light. The additional development of the ordered crystalline structure then works favorably to restrict the initial degradation of the polymer, providing the delay in the weight loss of the PLA.
Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing
2017-03-01
As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.
Directory of Open Access Journals (Sweden)
Francisco Medellín-Rodríguez
2013-08-01
Full Text Available Electrospun one dimensional (1D and two dimensional (2D carbon based polymer nanocomposites are studied in order to determine the effect provided by the two differently structured nanofillers on crystallinity and thermo-mechanical properties of the nanofibres. The nanomaterials studied are pristine carbon nanotubes, oxidised carbon nanotubes, reduced graphene oxide and graphene oxide. Functional groups associated with the order structure of the polymers are analysed by infrared and Raman spectroscopies; the morphology is studied by scanning electron microscopy and the crystallinity properties are investigated by differential scanning calorimetry and X-ray diffraction. Differences in crystallisation behaviour between 1D and 2D carbon based nanofibres are shown by their crystallinity degree and their crystal sizes. The nanocomposite crystal sizes perpendicular to the plane (100 decrease with nanofiller content in all cases. The crystallinity trend and crystal sizes are in accordance with storage modulus response. The results also suggest that functionalisation favours interfacial bonding and dispersion of the nanomaterials within the polymer matrix. As a consequence the number of nucleating sites increases which in turn decreases the crystal size in the nanocomposites. These features explain the improved thermo-mechanical properties in the nanocomposites.
Li, Xiaoming; Shen, Qirong; Zhang, Dongqing; Mei, Xinlan; Ran, Wei; Xu, Yangchun; Yu, Guanghui
2013-01-01
While the properties of biochar are closely related to its functional groups, it is unclear under what conditions biochar develops its properties. In this study, two-dimensional (2D) (13)C nuclear magnetic resonance (NMR) correlation spectroscopy was for the first time applied to investigate the development of functional groups and establish their relationship with biochar properties. The results showed that the agricultural biomass carbonized to biochars was a dehydroxylation/dehydrogenation and aromatization process, mainly involving the cleavage of O-alkylated carbons and anomeric O-C-O carbons in addition to the production of fused-ring aromatic structures and aromatic C-O groups. With increasing charring temperature, the mass cleavage of O-alkylated groups and anomeric O-C-O carbons occurred prior to the production of fused-ring aromatic structures. The regression analysis between functional groups and biochar properties (pH and electrical conductivity) further demonstrated that the pH and electrical conductivity of rice straw derived biochars were mainly determined by fused-ring aromatic structures and anomeric O-C-O carbons, but the pH of rice bran derived biochars was determined by both fused-ring aromatic structures and aliphatic O-alkylated (HCOH) carbons. In summary, this work suggests a novel tool for characterising the development of functional groups in biochars.
Directory of Open Access Journals (Sweden)
Xiaoming Li
Full Text Available While the properties of biochar are closely related to its functional groups, it is unclear under what conditions biochar develops its properties. In this study, two-dimensional (2D (13C nuclear magnetic resonance (NMR correlation spectroscopy was for the first time applied to investigate the development of functional groups and establish their relationship with biochar properties. The results showed that the agricultural biomass carbonized to biochars was a dehydroxylation/dehydrogenation and aromatization process, mainly involving the cleavage of O-alkylated carbons and anomeric O-C-O carbons in addition to the production of fused-ring aromatic structures and aromatic C-O groups. With increasing charring temperature, the mass cleavage of O-alkylated groups and anomeric O-C-O carbons occurred prior to the production of fused-ring aromatic structures. The regression analysis between functional groups and biochar properties (pH and electrical conductivity further demonstrated that the pH and electrical conductivity of rice straw derived biochars were mainly determined by fused-ring aromatic structures and anomeric O-C-O carbons, but the pH of rice bran derived biochars was determined by both fused-ring aromatic structures and aliphatic O-alkylated (HCOH carbons. In summary, this work suggests a novel tool for characterising the development of functional groups in biochars.
Anatomising proton NMR spectra with pure shift 2D J-spectroscopy: A cautionary tale
Kiraly, Peter; Foroozandeh, Mohammadali; Nilsson, Mathias; Morris, Gareth A.
2017-09-01
Analysis of proton NMR spectra has been a key tool in structure determination for over 60 years. A classic tool is 2D J-spectroscopy, but common problems are the difficulty of obtaining the absorption mode lineshapes needed for accurate results, and the need for a 45° shear of the final 2D spectrum. A novel 2D NMR method is reported here that allows straightforward determination of homonuclear couplings, using a modified version of the PSYCHE method to suppress couplings in the direct dimension. The method illustrates the need for care when combining pure shift data acquisition with multiple pulse methods.
Mazella, Anaïs; Albaret, Jean-Michel; Picard, Delphine
2016-01-01
To fill an important gap in the psychometric assessment of children and adolescents with impaired vision, we designed a new battery of haptic tests, called Haptic-2D, for visually impaired and sighted individuals aged five to 18 years. Unlike existing batteries, ours uses only two-dimensional raised materials that participants explore using active touch. It is composed of 11 haptic tests, measuring scanning skills, tactile discrimination skills, spatial comprehension skills, short-term tactile memory, and comprehension of tactile pictures. We administered this battery to 138 participants, half of whom were sighted (n=69), and half visually impaired (blind, n=16; low vision, n=53). Results indicated a significant main effect of age on haptic scores, but no main effect of vision or Age × Vision interaction effect. Reliability of test items was satisfactory (Cronbach's alpha, α=0.51-0.84). Convergent validity was good, as shown by a significant correlation (age partialled out) between total haptic scores and scores on the B101 test (rp=0.51, n=47). Discriminant validity was also satisfactory, as attested by a lower but still significant partial correlation between total haptic scores and the raw score on the verbal WISC (rp=0.43, n=62). Finally, test-retest reliability was good (rs=0.93, n=12; interval of one to two months). This new psychometric tool should prove useful to practitioners working with young people with impaired vision.
Energy Technology Data Exchange (ETDEWEB)
Ong, R.L.; Yu, R.K.
1986-02-15
The 1H-NMR spectra of the oligosaccharide derived from monosialoganglioside GM1 (GM1 = beta-D-galactosyl-(1-3)-beta-D-N-acetylgalactosaminyl-(1-4)- (alpha-N-acetylneuraminyl-(2-3)-)-beta-D-galactosyl-(1-4)-b eta-D-glucosylceramide) (GM1OS) and its reduced form (GM1OS-R) have been obtained at 500 MHz in D2O. Through the combined use of one-dimensional and homonuclear two-dimensional spin-echo J-correlated (2D SECSY) spectra of GM1OS-R, the assignments for the ring protons of GM1OS are made. Data on chemical shifts and coupling constants of GM1OS including the alpha-linked neuraminic acid protons, in aqueous solution, are tabulated. Due to the very small coupling constants (less than 2 Hz) and the closeness in chemical shifts (less than 0.04 ppm) for the pair of correlated peaks in the two-dimensional spectrum, the information on the connectivities of the H5 ring protons of the neutral sugar residues is missing. Second-order coupling also blurs this information. Data are compared with those obtained for ganglioside GM1 in dimethyl sulfoxide (DMSO; the actual composition therein was 97% DMSO-d6 and 3% D2O) by T. A. W. Koerner, J. H. Prestegard, P. C. Demou, and R. K. Yu. While the heterogeneity of chemical shifts for the H5, H6a, and H6b protons diminishes in D2O, that for A-9a and A-9b remains. The latter suggests an intraneuraminic acid conformation involving the glycerol side chain unaffected by the solvent. Moreover, the chemical shifts of the III-1, III-2, and A-4 protons (and perhaps the II-4, IV-2, and A-8 protons) in D2O exhibit unusual upfield shifts compared with those in DMSO. This indicates that the intramolecular interactions between GalNAc residue III and neuraminic acid present in DMSO are weakened in D2O. The effect of temperature on the conformation is also examined and appears to be minimal (less than 0.02 ppm) in the range 22-50 degrees C.
Energy Technology Data Exchange (ETDEWEB)
Kosasi, S.; Sluis, W.G. van der; Hart, L.A. ' t; Labadie, R.P. (Utrecht University (Netherlands). Faculty of Pharmacy, Department of Pharmacognosy); Boelens, R. (Utrecht University (Netherlands). Department of Chemistry)
1989-10-09
An immunologically active novel cyclic decapeptide, consisting of 1 Ala, 2 Gly, 1 Ile, 2 Thr, 2 Trp and 2 Val, has been isolated from the latex of Jatropha multifida L. (Euphorbiaceae). The structure was elucidated by means of amino acid analysis and FAB-mass spectroscopy. The animo acid sequence was obtained by two-dimensional {sup 1}H NMR spectroscopy (COSY and NOESY). 12 refs.; 3 figs.; 2 tabs.
Structural investigations on betacyanin pigments by LC NMR and 2D NMR spectroscopy.
Stintzing, Florian C; Conrad, Jürgen; Klaiber, Iris; Beifuss, Uwe; Carle, Reinhold
2004-02-01
Four betacyanin pigments were analysed by LC NMR and subjected to extensive NMR characterisation after isolation. Previously, low pH values were applied for NMR investigations of betalains resulting in rapid degradation of the purified substances thus preventing extensive NMR studies. Consequently, up to now only one single (13)C NMR spectrum of a betalain pigment, namely that of neobetanin (=14,15-dehydrobetanin), was available. Because of its sufficient stability under highly acidic conditions otherwise detrimental for betacyanins, this pigment remained an exemption. Since betalains are most stable in the pH range of 5-7, a new solvent system has been developed allowing improved data acquisition through improved pigment stability at near neutral pH. Thus, not only (1)H, but for the first time also partial (13)C data of betanin, isobetanin, phyllocactin and hylocerenin isolated from red-purple pitaya [Hylocereus polyrhizus (Weber) Britton & Rose, Cactaceae] could be indirectly obtained by gHSQC- and gHMQC-NMR experiments.
Mierlo, van C.
1990-01-01
^{1}H NMR techniques have been applied for a thorough study of the uncrystallizable Megasphaera elsdenii flavodoxin in its three redox states. The aim of the research project described in this thesis was to obtain answers regarding questions concerni
Optimizing water hyperpolarization and dissolution for sensitivity-enhanced 2D biomolecular NMR
Olsen, Greg; Markhasin, Evgeny; Szekely, Or; Bretschneider, Christian; Frydman, Lucio
2016-03-01
A recent study explored the use of hyperpolarized water, to enhance the sensitivity of nuclei in biomolecules thanks to rapid proton exchanges with labile amide backbone and sidechain groups. Further optimizations of this approach have now allowed us to achieve proton polarizations approaching 25% in the water transferred into the NMR spectrometer, effective water T1 times approaching 40 s, and a reduction in the dilution demanded for the cryogenic dissolution process. Further hardware developments have allowed us to perform these experiments, repeatedly and reliably, in 5 mm NMR tubes. All these ingredients - particularly the ⩾3000× 1H polarization enhancements over 11.7 T thermal counterparts, long T1 times and a compatibility with high-resolution biomolecular NMR setups - augur well for hyperpolarized 2D NMR studies of peptides, unfolded proteins and intrinsically disordered systems undergoing fast exchanges of their protons with the solvent. This hypothesis is here explored by detailing the provisions that lead to these significant improvements over previous reports, and demonstrating 1D coherence transfer experiments and 2D biomolecular HMQC acquisitions delivering NMR spectral enhancements of 100-500× over their optimized, thermally-polarized, counterparts.
Yamada, K.; Ahmad, M. M.; Ogiso, Y.; Okuda, T.; Chikami, J.; Miehe, G.; Ehrenberg, H.; Fuess, H.
2004-07-01
RbSn2F5 is a two-dimensional fluoride ion conductor. It undergoes a first-order phase transition to a superionic state at 368 K. The structure of the low temperature phase has been determined from the Rietveld analysis of the X-ray powder diffraction. The dynamic properties of the fluoride ions in RbSn2F5 have been studied by impedance spectroscopy and solid state NMR. The dc ionic conductivity of this sample shows an abrupt increase at the phase transition temperature. We have obtained the hopping frequency and the concentration of the charge carriers (F- ions) at different temperatures from the analysis of the conductivity spectra using Almond-West formalism. The estimated values of the charge carriers’ concentration agree well with that determined from the structure and were found to be independent of temperature. The relatively small value of the power-law exponent, n ≈ 0.55, supports the two-dimensional property of the investigated material. Furthermore, 19F NMR with simulation has suggested the diffusive motions of the fluoride ions between different sites. In contrast, 119Sn and 87Rb NMR spectra below 250 K supported the intrinsic disordered nature due to the random distribution of the fluoride ion vacancies.
Li, Shenhui; Zheng, Anmin; Su, Yongchao; Fang, Hanjun; Shen, Wanling; Yu, Zhiwu; Chen, Lei; Deng, Feng
2010-04-21
Extra-framework aluminium (EFAL) species in hydrated dealuminated HY zeolite were thoroughly investigated by various two-dimensional solid-state NMR techniques as well as density functional theoretical calculations. (27)Al MQ MAS NMR experiments demonstrated that five-coordinated and four-coordinated extra-framework aluminium subsequently disappeared with the increase of water loading, and the quadrupole interaction of each aluminium species decreased gradually during the hydration process. (1)H double quantum MAS NMR revealed that the EFAL species in the hydrated zeolite consisted of three components: a hydroxyl AlOH group, and two types of water molecule (rigid and mobile water). (1)H-(27)Al LG-CP HETCOR experiments indicated that both the extra-framework and the framework Al atoms were in close proximity to the rigid water in the fully rehydrated zeolite. The experimental results were further confirmed by DFT theoretical calculations. Moreover, theoretical calculation results further demonstrated that the EFAL species in the hydrated zeolite consisted of the three components and the calculated (1)H NMR chemical shift for each component agreed well with our NMR observations. It is the rigid water that connects the extra-framework aluminium with the four-coordinated framework aluminium through strong hydrogen bonds.
El Eter, Mohamad
2013-01-01
Grafting of Zr(NMe2)4 on mesoporous silica SBA-15 afforded selectively well-defined surface species SiOZr(NMe2) (η2NMeCH2). 2D solid-state NMR (1H- 13C HETCOR, Multiple Quantum) experiments have shown a unique structural rearrangement occurring on the immobilised zirconium bis methylamido ligand. © The Royal Society of Chemistry 2013.
Contribution to Structural Elucidation: Behaviours of Substructures Partially Defined from 2D NMR
Institute of Scientific and Technical Information of China (English)
EPOUHE, Celine; FAN, Bo-Tao; YUAN, Shen-Gang; PANAYE, A.; DOUCET, J. P
2003-01-01
Structural elucidation (automatic determination of the structure of a molecule from its spectra) is frequently hampered by combinatorial explosion when trying to assemble the identified substructures. We devised a new method which can avoid this pitfall by a systematic examination of allowed 13C chemical shifts ranges for all substructures chemically possible and combined with a progressive pruning thanks to neighbouring relationships appearing from 2D NMR. This method is explained by a detailed example.
Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields
Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong
2016-05-01
High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.
2D NMR Investigation of Dynamic Equilibrium of Tautomers of Gossypol
Institute of Scientific and Technical Information of China (English)
SHEN Ying-lin; YANG Sheng-hua; YAN Xiao-hua; MA Xue-yi
2004-01-01
Gossypol was obtained as an yellow platelike crystal with m.p. 210-214 . In CDCl3 there were three tautomers of gossypol: Ⅰ aldehyde, Ⅱ lactol, Ⅲ ketal, in equilibrium .Their total 1H NMR spectra were assigned by means of 1D and 2D NMR techniques including 1H-1H cosy ,DEPT, HMQC (1H Detected Heteronuclear Multiple Quantum Coherence) and HMBC (1H Detected Heteronuclear Multiple Bond Connectivity) experiments.This paper first reported that we took use of the 2D NMR techniques to assign all of 1H NMR chemical shifts of each tautomer , through the assignments of each peaks we investigated the tautomerism of gossypol . We concluded that when gossypol ( Ⅰ ) was put into CDCl3 , it would tautomerized three tautomers, they stable existed and attained tautomeric equilibrium in a molar ratio of 6:2:1 according to peaks intensity ratios in CDCl3. The result listed in table 1.Table 1. The 1H spectroscopy chemical shifts (ppm) for gossypol (Ⅰ), (Ⅱ) and (Ⅲ)All spectra were recorded at room tempreture in CDCl3 using TMS as an internal standard reported in δ units,hydroxyl protons were identified by D2O exchange.
Fratila, R.M.; Gomez, M.V.; Sykora, S.; Velders, A.H.
2014-01-01
Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical technique, but its low sensitivity and highly sophisticated, costly, equipment severely constrain more widespread applications. Here we show that a non-resonant planar transceiver microcoil integrated in a microfluidic chip (dete
Jeener, Jean; Alewaeters, Gerrit
2016-05-01
The review articles published in "Progress in NMR Spectroscopy" are usually invited treatments of topics of current interest, but occasionally the Editorial Board may take an initiative to publish important historical material that is not widely available. The present article represents just such a case. Jean Jeener gave a lecture in 1971 at a summer school in Basko Polje, in what was then called Yugoslavia. As is now widely known, Jean Jeener laid down the foundations in that lecture of two - and higher - dimensional NMR spectroscopy by proposing the homonuclear COSY experiment. Jeener realized that the new proposal would open the door towards protein NMR and molecular structure determinations, but he felt that useful versions of such experiments could not be achieved with the NMR, computer and electronics technology available at that time, so that copies of the lecture notes were circulated (the Basko Polje lecture notes by J. Jeener and G. Alewaeters), but no formal publication followed. Fortunately, Ernst, Freeman, Griffin, and many others were more far-sighted and optimistic. An early useful extension was Ernst's proposal to replace the original projection/reconstruction technique of MRI by the widely adopted Fourier transform method inspired by the Basko Polje lecture. Later, the pulse method spread over many fields of spectroscopy as soon as the required technology became available. Jean Jeener, Emeritus professor, Université Libre de Bruxelles. Geoffrey Bodenhausen, Ecole Normale Supérieure, Paris.
Energy Technology Data Exchange (ETDEWEB)
Tosch, U.; Witt, H. (Freie Univ. Berlin (Germany, F.R.). Roentgendiagnostisches Zentralinstitut); Hertel, P.; Lais, E. (Freie Univ. Berlin (Germany, F.R.). Unfallchirurgische Klinik)
1989-11-01
Fifty-eight patients underwent intraarticular reconstruction of the anterior cruciate ligament. This was performed by using an autogenous transplant from the mid portion of the patellar ligament with a proximal and distal bone block, as described by Hertel. For comparison with the conventional X-ray examination, HRCT was performed to study the early postoperative results. In four patients (7%) dislocation of the bone block in the femoral condyle was seen. Two-dimensional reconstruction proved to be a satisfactory method for demonstration of the exact position of the autogenous transplant in both coronary and sagittal planes. (orig.).
Structure elucidation of organic compounds from natural sources using 1D and 2D NMR techniques
Topcu, Gulacti; Ulubelen, Ayhan
2007-05-01
In our continuing studies on Lamiaceae family plants including Salvia, Teucrium, Ajuga, Sideritis, Nepeta and Lavandula growing in Anatolia, many terpenoids, consisting of over 50 distinct triterpenoids and steroids, and over 200 diterpenoids, several sesterterpenoids and sesquiterpenoids along with many flavonoids and other phenolic compounds have been isolated. For Salvia species abietanes, for Teucrium and Ajuga species neo-clerodanes for Sideritis species ent-kaurane diterpenes are characteristic while nepetalactones are specific for Nepeta species. In this review article, only some interesting and different type of skeleton having constituents, namely rearranged, nor- or rare diterpenes, isolated from these species will be presented. For structure elucidation of these natural diterpenoids intensive one- and two-dimensional NMR techniques ( 1H, 13C, APT, DEPT, NOE/NOESY, 1H- 1H COSY, HETCOR, COLOC, HMQC/HSQC, HMBC, SINEPT) were used besides mass and some other spectroscopic methods.
1D and 2D ~1H NMR studies on bisantrene complexes with short DNA oligomers
Institute of Scientific and Technical Information of China (English)
姚世杰; WILSON.W.David
1995-01-01
The binding of bisantrene to four DNA tetramers,d（CGCG）2,d（GCGC）2,d（CATG）2,and d（GTAC）2,was investigated by 1D and 2D NMR spectroscopy.Bisantrene is.a well knownanticancer drug and has been used clinically for years.DNA is believed to be one of its cellular targets.Re-suits from both ID and 2D 1H NMR are in agreement with an intercalation binding mode of bisantrene withthe four DNA tetramers in this study.The results further indicate that a threading intercalation birdingmode,in which one bisantrene side chain is in the minor groove and the other in the major groove of DNA,is preferred.The NMR results also suggest that bisantrene prefers binding at pyrimidine-（3’,5’）-purineintercalation sequences rather than at purine-（3’,5’）-pyrimidine sequences.The intramolecular andintermolecular NOE contacts of bisantrene-DNA tetramer complexes indicate that a C2’-endo uniform sugarpucker,rather than a mixed sugar conformation,is preferred by the intercalation site of both the 5’-（TA）-3’and the 5’-（CG）-3’ binding steps.
HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections.
Cornilescu, Gabriel; Bahrami, Arash; Tonelli, Marco; Markley, John L; Eghbalnia, Hamid R
2007-08-01
We describe a novel method for the robust, rapid, and reliable determination of J couplings in multi-dimensional NMR coupling data, including small couplings from larger proteins. The method, "High-resolution Iterative Frequency Identification of Couplings" (HIFI-C) is an extension of the adaptive and intelligent data collection approach introduced earlier in HIFI-NMR. HIFI-C collects one or more optimally tilted two-dimensional (2D) planes of a 3D experiment, identifies peaks, and determines couplings with high resolution and precision. The HIFI-C approach, demonstrated here for the 3D quantitative J method, offers vital features that advance the goal of rapid and robust collection of NMR coupling data. (1) Tilted plane residual dipolar couplings (RDC) data are collected adaptively in order to offer an intelligent trade off between data collection time and accuracy. (2) Data from independent planes can provide a statistical measure of reliability for each measured coupling. (3) Fast data collection enables measurements in cases where sample stability is a limiting factor (for example in the presence of an orienting medium required for residual dipolar coupling measurements). (4) For samples that are stable, or in experiments involving relatively stronger couplings, robust data collection enables more reliable determinations of couplings in shorter time, particularly for larger biomolecules. As a proof of principle, we have applied the HIFI-C approach to the 3D quantitative J experiment to determine N-C' RDC values for three proteins ranging from 56 to 159 residues (including a homodimer with 111 residues in each subunit). A number of factors influence the robustness and speed of data collection. These factors include the size of the protein, the experimental set up, and the coupling being measured, among others. To exhibit a lower bound on robustness and the potential for time saving, the measurement of dipolar couplings for the N-C' vector represents a realistic
Robinson, Nicholas P
2013-01-01
Branched DNA molecules are generated by the essential processes of replication and recombination. Owing to their distinctive extended shapes, these intermediates migrate differently from linear double-stranded DNA under certain electrophoretic conditions. However, these branched species exist in the cell at much low abundance than the bulk linear DNA. Consequently, branched molecules cannot be visualized by conventional electrophoresis and ethidium bromide staining. Two-dimensional native-native agarose electrophoresis has therefore been developed as a method to facilitate the separation and visualization of branched replication and recombination intermediates. A wide variety of studies have employed this technique to examine branched molecules in eukaryotic, archaeal, and bacterial cells, providing valuable insights into how DNA is duplicated and repaired in all three domains of life.
The inversion of 2D NMR relaxometry data using L1 regularization
Zhou, Xiaolong; Su, Guanqun; Wang, Lijia; Nie, Shengdong; Ge, Xinmin
2017-02-01
NMR relaxometry has been used as a powerful tool to study molecular dynamics. Many algorithms have been developed for the inversion of 2D NMR relaxometry data. Unlike traditional algorithms implementing L2 regularization, high order Tikhonov regularization or iterative regularization, L1 penalty term is involved to constrain the sparsity of resultant spectra in this paper. Then fast iterative shrinkage-thresholding algorithm (FISTA) is proposed to solve the L1 regularization problem. The effectiveness, noise vulnerability and practical utility of the proposed algorithm are analyzed by simulations and experiments. The results demonstrate that the proposed algorithm has a more excellent capability to reveal narrow peaks than traditional inversion algorithms. The L1 regularization implemented by our algorithm can be a useful complementary to the existing algorithms.
Vergara, Fredd; Shino, Amiu; Kikuchi, Jun
2016-01-01
Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea). Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal), the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR) and principal component analysis (PCA). Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of 1H-13C HSQC (Heteronuclear Single Quantum Coherence) signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae. PMID:27598144
Directory of Open Access Journals (Sweden)
Fredd Vergara
2016-09-01
Full Text Available Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea. Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal, the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR and principal component analysis (PCA. Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of 1H-13C HSQC (Heteronuclear Single Quantum Coherence signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae.
Vergara, Fredd; Shino, Amiu; Kikuchi, Jun
2016-09-02
Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea). Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal), the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR) and principal component analysis (PCA). Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of ¹H-(13)C HSQC (Heteronuclear Single Quantum Coherence) signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae.
A NMR STUDY ON MANUMYCIN%Manumycin的2D NMR研究
Institute of Scientific and Technical Information of China (English)
郭栋; 李勤; 蒋高喜; 崔育新
2003-01-01
应用1D NMR 和梯度2D NMR技术(gCOSY, gNOESY, gHSQC, gHMBC)深入研究了从链霉菌发酵物中分离提取得到的Manumycin的结构, 并对其1H和13C NMR化学位移进行了全归属. 计算机分子模拟与NMR研究取得一致结论.
Indian Academy of Sciences (India)
Maneesh Sharma; Anant A Naik; P Raghunathan; S V Eswaran
2012-03-01
Lithographic evaluation of a `deep UV’ negative photoresist is discussed along with the synthesis of an alternating `high-ortho’ novolak resin. 2-D NMR studies (COSY, NOESY, HSQC, HMBC) on this resin are also discussed.
Kondo, Tadashi; Hirohashi, Setsuo
2006-01-01
Proteome data combined with histopathological information provides important, novel clues for understanding cancer biology and reveals candidates for tumor markers and therapeutic targets. We have established an application of a highly sensitive fluorescent dye (CyDye DIGE Fluor saturation dye), developed for two-dimensional difference gel electrophoresis (2D-DIGE), to the labeling of proteins extracted from laser microdissected tissues. The use of the dye dramatically decreases the protein amount and, in turn, the number of cells required for 2D-DIGE; the cells obtained from a 1 mm2 area of an 8-12 microm thick tissue section generate up to 5,000 protein spots in a large-format 2D gel. This protocol allows the execution of large-scale proteomics in a more efficient, accurate and reproducible way. The protocol can be used to examine a single sample in 5 d or to examine hundreds of samples in large-scale proteomics.
Energy Technology Data Exchange (ETDEWEB)
Biffle, J.H.; Blanford, M.L.
1994-05-01
JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
2015-01-01
The interpretation of NMR spectroscopic information for structure elucidation involves decoding of complex resonance patterns that contain valuable molecular information (δ and J), which is not readily accessible otherwise. We introduce a new concept of 2D-NMR barcoding that uses clusters of fingerprint signals and their spatial relationships in the δ−δ coordinate space to facilitate the chemical identification of complex mixtures. Similar to widely used general barcoding technology, the structural information of individual compounds is encoded as a specifics pattern of their C,H correlation signals. Software-based recognition of these patterns enables the structural identification of the compounds and their discrimination in mixtures. Using the triterpenes from various Actaea (syn. Cimicifuga) species as a test case, heteronuclear multiple-bond correlation (HMBC) barcodes were generated on the basis of their structural subtypes from a statistical investigation of their δH and δC data in the literature. These reference barcodes allowed in silico identification of known triterpenes in enriched fractions obtained from an extract of A. racemosa (black cohosh). After dereplication, a differential analysis of heteronuclear single-quantum correlation (HSQC) spectra even allowed for the discovery of a new triterpene. The 2D barcoding concept has potential application in a natural product discovery project, allowing for the rapid dereplication of known compounds and as a tool in the search for structural novelty within compound classes with established barcodes. PMID:24673652
A discrete Fourier-encoded, diagonal-free experiment to simplify homonuclear 2D NMR correlations
Huang, Zebin; Guan, Quanshuai; Chen, Zhong; Frydman, Lucio; Lin, Yulan
2017-07-01
Nuclear magnetic resonance (NMR) spectroscopy has long served as an irreplaceable, versatile tool in physics, chemistry, biology, and materials sciences, owing to its ability to study molecular structure and dynamics in detail. In particular, the connectivity of chemical sites within molecules, and thereby molecular structure, becomes visible by multi-dimensional NMR. Homonuclear correlation experiments are a powerful tool for identifying coupled spins. Generally, diagonal peaks in these correlation spectra display the strongest intensities and do not offer any new information beyond the standard one-dimensional spectrum, whereas weaker, symmetrically placed cross peaks contain most of the coupling information. The cross peaks near the diagonal are often affected by the tails of strong diagonal peaks or even obscured entirely by the diagonal. In this paper, we demonstrate a homonuclear encoding approach based on imparting a discrete phase modulation of the targeted cross peaks and combine it with a site-selective sculpting scheme, capable of simplifying the patterns arising in these 2D correlation spectra. The theoretical principles of the new methods are laid out, and experimental observations are rationalized on the basis of theoretical analyses. The ensuing techniques provide a new way to retrieve 2D coupling information within homonuclear spin systems, with enhanced sensitivity, speed, and clarity.
Kaseman, Derrick C; Hung, Ivan; Lee, Kathleen; Kovnir, Kirill; Gan, Zhehong; Aitken, Bruce; Sen, Sabyasachi
2015-02-05
The short-range structure, connectivity, and chemical order in As(x)Te(100-x) (25 ≤ x ≤ 65) glasses are studied using high-resolution two-dimensional projection magic-angle-turning (pjMAT) (125)Te nuclear magnetic resonance (NMR) spectroscopy. The (125)Te pjMAT NMR results indicate that the coordination of Te atoms obeys the 8-N coordination rule over the entire composition range. However, in strong contrast with the analogous glass-forming As-S and As-Se chalcogenides, significant violation of chemical order is observed in As-Te glasses over the entire composition range in the form of homopolar As-As (Te-Te) bonds, even in severely As (Te)-deficient glasses. The speciation of the Te coordination environments can be explained with the dissociation reaction model As2Te3 → 2As + 3Te(II), characterized by a dissociation constant that is independent of glass composition. These structural characteristics can be attributed to the high metallicity of Te and the strong energetic similarity between the Te-Te, Te-As, and As-As bonds, and they are consistent with the monotonic and often nearly linear variation of physical properties observed in telluride glasses as a function of the Te content.
Vallverdú-Queralt, Anna; Meudec, Emmanuelle; Ferreira-Lima, Nayla; Sommerer, Nicolas; Dangles, Olivier; Cheynier, Véronique; Le Guernevé, Christine
2016-05-15
In red and rosé wines, the grape anthocyanins are progressively converted to more stable pigments, including phenylpyranoanthocyanins. One-/two-dimensional NMR and UPLC-DAD-ESI-MS(n) measurements were used to monitor the synthesis of guaiacylpyranomalvidin 3-O-glucoside from malvidin 3-O-glucoside and vinylguaiacol in model solutions and identify the products formed during the reaction. The highest conversion rates (30%, determined by (1)H qNMR) were obtained with a small excess of vinylguaiacol in methanol/water (70/30) at pH 3 and 35°C. Two reaction pathways competed with the formation of guaiacylpyranomalvidin 3-O-glucoside. The first one only concerns malvidin 3-O-glucoside and consists in C-ring cleavage with formation of malvone and smaller molecular weight breakdown products. This pathway is favored at higher pH and incubation temperature. At lower pH values or in the presence of large vinylguaiacol excess, faster consumption of malvidin 3-O-glucoside resulted from the formation of more complex pyranoanthocyanins substituted by vinylguaiacol oligomers.
Directory of Open Access Journals (Sweden)
Vagner Fernandes Knupp
2009-02-01
Full Text Available Friedelin (1, 3b-friedelinol (2, 28-hydroxyfriedelin (3, 16a-hydroxyfriedelin (4, 30-hydroxyfriedelin (5 and 16a,28-dihydroxyfriedelin (6 were isolated through fractionation of the hexane extract obtained from branches of Salacia elliptica. After a week in CDCl3 solution, 16a-hydroxyfriedelin (4 reacted turning into 3-oxo-16-methylfriedel-16-ene (7. This is the first report of a dehydration followed by a Nametkin rearrangement of a pentacyclic triterpene in CDCl3 solution occurring in the NMR tube. These seven pentacyclic triterpenes was identified through NMR spectroscopy and the stereochemistry of compound 4 and 7 was established by 2D NMR (NOESY spectroscopy and mass spectrometry (GC-MS. It is also the first time that all the 13C-NMR and 2D NMR spectral data are reported for compounds 4 and 7.
Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; Lampe, Jed N; Nishida, Clinton R; de Montellano, Paul R Ortiz
2015-04-17
Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. We used two-dimensional (1)H,(15)N HSQC chemical shift perturbation mapping of (15)N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop with various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. The results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states.
(1)H-NMR, (1)H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling.
Sethi, Sumit; Pedrini, Mariana; Rizzo, Lucas B; Zeni-Graiff, Maiara; Mas, Caroline Dal; Cassinelli, Ana Cláudia; Noto, Mariane N; Asevedo, Elson; Cordeiro, Quirino; Pontes, João G M; Brasil, Antonio J M; Lacerda, Acioly; Hayashi, Mirian A F; Poppi, Ronei; Tasic, Ljubica; Brietzke, Elisa
2017-12-01
The objective of this study was to identify molecular alterations in the human blood serum related to bipolar disorder, using nuclear magnetic resonance (NMR) spectroscopy and chemometrics. Metabolomic profiling, employing (1)H-NMR, (1)H-NMR T2-edited, and 2D-NMR spectroscopy and chemometrics of human blood serum samples from patients with bipolar disorder (n = 26) compared with healthy volunteers (n = 50) was performed. The investigated groups presented distinct metabolic profiles, in which the main differential metabolites found in the serum sample of bipolar disorder patients compared with those from controls were lipids, lipid metabolism-related molecules (choline, myo-inositol), and some amino acids (N-acetyl-L-phenyl alanine, N-acetyl-L-aspartyl-L-glutamic acid, L-glutamine). In addition, amygdalin, α-ketoglutaric acid, and lipoamide, among other compounds, were also present or were significantly altered in the serum of bipolar disorder patients. The data presented herein suggest that some of these metabolites differentially distributed between the groups studied may be directly related to the bipolar disorder pathophysiology. The strategy employed here showed significant potential for exploring pathophysiological features and molecular pathways involved in bipolar disorder. Thus, our findings may contribute to pave the way for future studies aiming at identifying important potential biomarkers for bipolar disorder diagnosis or progression follow-up.
Measuring JHH values with a selective constant-time 2D NMR protocol
Lin, Liangjie; Wei, Zhiliang; Lin, Yanqin; Chen, Zhong
2016-11-01
Proton-proton scalar couplings play important roles in molecule structure elucidation. However, measurements of JHH values in complex coupled spin systems remain challenging. In this study, we develop a selective constant-time (SECT) 2D NMR protocol with which scalar coupling networks involving chosen protons can be revealed, and corresponding JHH values can be measured through doublets along the F1 dimension. All JHH values within a network of n fully coupled protons can be separately determined with (n - 1) SECT experiments. Additionally, the proposed pulse sequence possesses satisfactory sensitivity and handy implementation. Therefore, it will interest scientists who intend to address structural analyzes of molecules with overcrowded spectra, and may greatly facilitate the applications of scalar-coupling constants in molecule structure studies.
Ionic Liquid-Solute Interactions Studied by 2D NOE NMR Spectroscopy.
Khatun, Sufia; Castner, Edward W
2015-07-23
Intermolecular interactions between a Ru(2+)(bpy)3 solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {(1)H-(19)F} HOESY and {(1)H-(1)H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru(2+)(bpy)3 solute is rather different from the bulk IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru(2+)(bpy)3 solute interacts with both the polar head and the nonpolar tail groups of the 1-butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.
Energy Technology Data Exchange (ETDEWEB)
Chae, Young Kee; Kim, Seol Hyun [Sejong Univ., Seoul (Korea, Republic of); Ellinger, James E.; Markley, John L. [Univ. of Wisconsin-Madison Madison (United States)
2013-12-15
Saccharomyces cerevisiae, which is a common species of yeast, is by far the most extensively studied model of a eukaryote because although it is one of the simplest eukaryotes, its basic cellular processes resemble those of higher organisms. In addition, yeast is a commercially valuable organism for ethanol production. Since the yeast data can be extrapolated to the important aspects of higher organisms, many researchers have studied yeast metabolism under various conditions. In this report, we analyzed and compared metabolites of Saccharomyces cerevisiae under salt and pH stresses of various strengths by using two-dimensional NMR spectroscopy. A total of 31 metabolites were identified for most of the samples. The levels of many identified metabolites showed gradual or drastic increases or decreases depending on the severity of the stresses involved. The statistical analysis produced a holistic outline: pH stresses were clustered together, but salt stresses were spread out depending on the severity. This work could provide a link between the metabolite profiles and mRNA or protein profiles under representative and well studied stress conditions.
Energy Technology Data Exchange (ETDEWEB)
Rajbhandari, P. [UCCS UMR-CNRS 8181, Université de Lille1, Villeneuve d' Ascq (France); Chen, Y. [LASIR UMR-CNRS 8516, Université de Lille1, Villeneuve d' Ascq (France); Doumert, B. [IMMCL CNRS-FR2638, Université de Lille1, Villeneuve d' Ascq (France); Montagne, L. [UCCS UMR-CNRS 8181, Université de Lille1, Villeneuve d' Ascq (France); Tricot, G., E-mail: gregory.tricot@univ-lille1.fr [UCCS UMR-CNRS 8181, Université de Lille1, Villeneuve d' Ascq (France); LASIR UMR-CNRS 8516, Université de Lille1, Villeneuve d' Ascq (France)
2015-04-01
The structure of the (66-x)ZnO-xNa{sub 2}O-33.4P{sub 2}O{sub 5} composition line, selected for the development of low-Tg and stable glasses, has been investigated by 1D/2D NMR spectroscopy. If standard 1D {sup 31}P MAS-NMR experiments give access to the Q{sup n} speciation and show the presence of Q{sup 0}, Q{sup 1} and Q{sup 2} sites within the glass structure, application of the homonuclear through-space correlation technique ({sup 31}P DQ-SQ) allows for a more accurate description of the phosphate units. Clear distinction between the Q{sup 1} sites involved in dimmers or in longer chains has been derived from 2D NMR correlation maps and leads to the re-assignment of Q{sup 1} into Q{sup 1,1} and Q{sup 1,2} species. {sup 23}Na and {sup 23}Na({sup 31}P) REDOR MAS-NMR experiments have been used to analyse the Na{sup +} ions distribution and its interaction with the phosphate network. {sup 67}Zn static NMR experiments, performed at very high field, were carried out and suggest a constant Zn{sup 2+} coordination state all along the composition line. The results have been used to discuss the impact of the Zn{sup 2+}/Na{sup +} ratio on the extent of disorder within the glass network expressed in terms of Q{sup n} dismutation equilibrium constant and phosphate chain length distribution. - Highlights: • Structure of zinc alkali pyrophosphate glasses have been analysed by 1D/2D NMR. • 2D {sup 31}P experiments allow to separate Q{sup 1,1} and Q{sup 1,2} species. • {sup 67}Zn static NMR shows a constant signal all along the composition line.
Zhang, Liming; Gellerstedt, Göran
2007-01-01
A new analytical method based on the 2D HSQC NMR sequence is presented, which can be applied for quantitative structural determination of complicated polymers. The influence of T1 and T2 relaxations, off-resonance effects, coupling constants and homonuclear couplings are discussed. It was found that the T2 values measured on polymeric samples with the conventional HSQC-CPMG sequence could not be used to correct the errors caused by T2 relaxations during the polarization transfer delay. A unique way of selecting the proper internal standard reference signal(s) is therefore proposed to eliminate the major errors caused by T2 relaxations, resonance offsets, coupling constant deviations and homonuclear couplings. Two polymer samples, a cellulose triacetate and an acetylated lignin, have been used to illustrate the principles. The methodology developed in this work is robust to instrument miss-setting and it can find wide-spread applications in areas where a quantitative analysis of structurally complicated polymers is necessary. Copyright (c) 2006 John Wiley & Sons, Ltd.
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy
Etzkorn, M.; Böckmann, A.; Baldus, M.
2011-01-01
It is shown that real-time 2D solid-state NMR can be used to obtain kinetic and structural information about the process of protein aggregation. In addition to the incorporation of kinetic information involving intermediate states, this approach can offer atom-specific resolution for all detectable
Energy Technology Data Exchange (ETDEWEB)
Yamasaki, Ryohei; Nasholds, W.; Griffiss, J.M. (Univ. of California, San Francisco (United States) Veterans Administration Medical Center, San Francisco, CA (United States)); Bacon, B.E. (Veterans Administration Medical Center, San Francisco (United States)); Schneider, H. (Walter Reed Research Inst., Washington, DC (United States))
1991-10-29
F62 LOS of Neisseria gonorrhoeae consists of two major LOS components; the higher and smaller molecular weight (MW) components were recognized by MAbs 1-1-M and 3F11 respectively. Base-line separation of the two major oligosaccharide (OS) components from F62 LOS was achieved by Bio-Gel P-4 chromatography after dephosphorylation of the OS mixture. The structures of the two major OSs were studied by chemical, enzymatic, and 2D NMR methods as well as methylation followed by GC/MS analysis. The OS component derived from the MAb 1-1-M defined LOS component was determined to have a V{sup 3}-({beta}-N-acetylgalactosaminyl)neolactotetraose structure at one of its nonreducing termini. The OS component derived from the MAb 3F11 defined LOS component did not have a GalNAc residue. The rest of its structure was identical to that of the OS-1, and a neolactotetraose is exposed at its nonreducing terminus.
Styrylpyrylium Salts: 1H and 13C NMR High-Resolution Spectroscopy (1D and 2D
Directory of Open Access Journals (Sweden)
Jean Claude W. Ouédraogo
2010-01-01
Full Text Available 1H and 13C NMR high-resolution spectroscopy (1D and 2D (1H, 1H-COSY, HSQC, HMBC for four styrylpyrylium perchlorates were carried out and signal attributions are reported. Chemical shifts observed on 13C NMR spectra for the styrylpyrylium salts were compared with net atomic charge for carbon obtained by AM1 semiempirical calculations. The position of the styryl group present low effect on chemical shifts for carbon atoms, while the presence of methyl group led to the unshielding of the substituted carbon.
Topological defects in two-dimensional crystals
Chen, Yong; Qi, Wei-Kai
2008-01-01
By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.
Institute of Scientific and Technical Information of China (English)
张杰; 高慧媛; 吴斌; 吴立军
2005-01-01
A triterpene saponin was extracted from the seeds of Acanthopanax Senticosus, and determined to be hederagenin 3-O-β-D-glucuronopyranpside on the basis of MS and NMR measurements. The 1 H and 13C NMR chemical shift of this compound was assigned using 2D NMR spectroscopy.%通过质谱、核磁共振谱并结合文献对一个三萜皂苷hederagenin 3-O-β-D-glucuronopyranpside进行结构解析. 通过2D NMR(HMQC、HMBC)对其进行了NMR全归属.
Izrayelit, Yevgeniy; Robinette, Steven L; Bose, Neelanjan; von Reuss, Stephan H.; Schroeder, Frank C.
2012-01-01
Ascarosides are small-molecule signals that play a central role in C. elegans biology, including dauer formation, aging, and social behaviors, but many aspects of their biosynthesis remain unknown. Using automated 2D NMR-based comparative metabolomics, we identified ascaroside ethanolamides as shunt metabolites in C. elegans mutants of daf-22, a gene with homology to mammalian 3-ketoacyl-CoA thiolases predicted to function in conserved peroxisomal lipid β-oxidation. Two groups of ethanolamide...
Energy Technology Data Exchange (ETDEWEB)
Schmidt-Rohr, K.; Fritzsching, K. J.; Liao, S. Y.; Hong Mei, E-mail: mhong@iastate.edu [Iowa State University, Department of Chemistry and Ames Laboratory (United States)
2012-12-15
Several techniques for spectral editing of 2D {sup 13}C-{sup 13}C correlation NMR of proteins are introduced. They greatly reduce the spectral overlap for five common amino acid types, thus simplifying spectral assignment and conformational analysis. The carboxyl (COO) signals of glutamate and aspartate are selected by suppressing the overlapping amide N-CO peaks through {sup 13}C-{sup 15}N dipolar dephasing. The sidechain methine (CH) signals of valine, lecuine, and isoleucine are separated from the overlapping methylene (CH{sub 2}) signals of long-chain amino acids using a multiple-quantum dipolar transfer technique. Both the COO and CH selection methods take advantage of improved dipolar dephasing by asymmetric rotational-echo double resonance (REDOR), where every other {pi}-pulse is shifted from the center of a rotor period t{sub r} by about 0.15 t{sub r}. This asymmetry produces a deeper minimum in the REDOR dephasing curve and enables complete suppression of the undesired signals of immobile segments. Residual signals of mobile sidechains are positively identified by dynamics editing using recoupled {sup 13}C-{sup 1}H dipolar dephasing. In all three experiments, the signals of carbons within a three-bond distance from the selected carbons are detected in the second spectral dimension via {sup 13}C spin exchange. The efficiencies of these spectral editing techniques range from 60 % for the COO and dynamic selection experiments to 25 % for the CH selection experiment, and are demonstrated on well-characterized model proteins GB1 and ubiquitin.
Tunable states of interlayer cations in two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Sato, K.; Numata, K. [Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Dai, W. [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Hunger, M. [Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart (Germany)
2014-03-31
The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of {sup 23}Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and {sup 23}Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed.
The potential for profiling endogenous metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one dimensional (1D) and two dimensional (2D) NMR spectroscopy w...
Abraham, Anuji; Crull, George
2014-10-06
A simple and robust method for obtaining fluorine-carbon proximities was established using a (19)F-(13)C heteronuclear correlation (HETCOR) two-dimensional (2D) solid-state nuclear magnetic resonance (ssNMR) experiment under magic-angle spinning (MAS). The method was applied to study a crystalline active pharmaceutical ingredient (API), avagacestat, containing two types of fluorine atoms and its API-polymer composite drug product. These results provide insight into the molecular structure, aid with assigning the carbon resonances, and probe API-polymer proximities in amorphous spray dried dispersions (SDD). This method has an advantage over the commonly used (1)H-(13)C HETCOR because of the large chemical shift dispersion in the fluorine dimension. In the present study, fluorine-carbon distances up to 8 Å were probed, giving insight into the API structure, crystal packing, and assignments. Most importantly, the study demonstrates a method for probing an intimate molecular level contact between an amorphous API and a polymer in an SDD, giving insights into molecular association and understanding of the role of the polymer in API stability (such as recrystallization, degradation, etc.) in such novel composite drug products.
An inversion method of 2D NMR relaxation spectra in low fields based on LSQR and L-curve
Su, Guanqun; Zhou, Xiaolong; Wang, Lijia; Wang, Yuanjun; Nie, Shengdong
2016-04-01
The low-field nuclear magnetic resonance (NMR) inversion method based on traditional least-squares QR decomposition (LSQR) always produces some oscillating spectra. Moreover, the solution obtained by traditional LSQR algorithm often cannot reflect the true distribution of all the components. Hence, a good solution requires some manual intervention, for especially low signal-to-noise ratio (SNR) data. An approach based on the LSQR algorithm and L-curve is presented to solve this problem. The L-curve method is applied to obtain an improved initial optimal solution by balancing the residual and the complexity of the solutions instead of manually adjusting the smoothing parameters. First, the traditional LSQR algorithm is used on 2D NMR T1-T2 data to obtain its resultant spectra and corresponding residuals, whose norms are utilized to plot the L-curve. Second, the corner of the L-curve as the initial optimal solution for the non-negative constraint is located. Finally, a 2D map is corrected and calculated iteratively based on the initial optimal solution. The proposed approach is tested on both simulated and measured data. The results show that this algorithm is robust, accurate and promising for the NMR analysis.
Institute of Scientific and Technical Information of China (English)
吴宏伟; 翟纯; 王德心; 林克椿
1996-01-01
Since the discovery of hF-GRP, several analogs have been synthesized in order to see their effects on the gonadotropin releasing activity, either as agonists or antagonists to this peptide. TF14 is one of these analogs, whose 14th position in the primary sequence is Phe instead of Asn in hF-GRP, while its activity is doubled. 2D-NMR (TOCSY, ROESY) was used to determine the conformation of TF14 in solution. Compared with hF-GRP, the whole peptide is in a non-typical more extended conformation, which may give some due to the relation between structure and function of these two peptides.
Marković, Violeta; Joksović, Milan D.; Marković, Svetlana; Jakovljević, Ivan
2014-01-01
A distribution of possible isomeric and tautomeric forms of two tautomerizable anthraquinone-thiosemicarbazones with pronounced cytotoxic potential was investigated using 2D NMR and DFT studies. Conformational analysis of the E and Z isomers of both thiosemicarbazones was performed to find out the most stable conformation for each molecule. It was found that superior stability of E-isomers results from ten-membered intramolecular hydrogen bond between thiosemicarbazone N2H and anthraquinone carbonyl group. This hydrogen bond is stronger than that between thiosemicarbazone N2H and ester oxygen, owing to the large partial negative charge on the anthraquinone oxygen.
DEFF Research Database (Denmark)
Castillo, John J.; Torres, Mary H.; Molina, Daniel R.
2012-01-01
A conjugate between single-walled carbon nanotubes, chitosan and folic acid has been prepared. It was characterized by diffusion ordered two-dimensional hydrogen-1 nuclear magnetic resonance and hydrogen-1 nuclear magnetic resonance spectroscopy which revealed the presence of a conjugate that was......A conjugate between single-walled carbon nanotubes, chitosan and folic acid has been prepared. It was characterized by diffusion ordered two-dimensional hydrogen-1 nuclear magnetic resonance and hydrogen-1 nuclear magnetic resonance spectroscopy which revealed the presence of a conjugate...... that was generated by the linkage between the carboxyl moiety of the folic acid and the amino group of the chitosan, which in turn was non-covalently bound to the single-walled carbon nanotubes. The obtained diffusion coefficient values demonstrated that free folic acid diffused more rapidly than the folic acid...... conjugated to single-walled carbon nanotubes-chitosan. The values of the proton signal of hydrogen-1 nuclear magnetic resonance spectroscopy and two-dimensional hydrogen-1 nuclear magnetic resonance spectroscopy further confirmed that the folic acid was conjugated to the chitosan, wrapping the single...
Two-Dimensional Planetary Surface Lander
Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.
2014-06-01
A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.
Institute of Scientific and Technical Information of China (English)
左新章; 张立同; 刘永胜; 成来飞; 龚慧灵
2013-01-01
Two dimensional C/SiC composite coated with Si-B-C ceramic was prepared via chemical vapor deposition (CVD).Properties and structure evolution and self-healing mechanisms of the C/SiC composite were studied after oxidation for 10 h during 700-1200 ℃.At the same time,the evolution of morphologies,composition and phase for Si-B-C ceramic were also investigated.The experimental results show that the oxidation of Si-B-C ceramic accelerates with the temperature increasing,however,the oxidation scale is shallow and no more than 7 μm.With the temperature increasing,viscosity of borosilicate glass oxidized from Si-B-C ceramic reduces but volatilization accelerates.When the temperature increases to 1200 ℃,SiO2 crystallizes from borosilicate glass.C/SiC composite coated with Si-B-C ceramic shows an excellent oxidation resistance.Mass loss increases with temperature increasing,which is only 0.47％ after oxidation for 10 h at 1200 ℃.Furthermore,the strength retention ratio is 91.6％ at 1000 ℃,higher than that at other temperatures.The main mechanisms for excellent oxidation resistance of C/SiC composite is that borosilicatc glass oxidized from Si-B-C ceramic can seal cracks in composite effectively.%利用化学气相沉积(CVD)法制备了Si-B-C陶瓷涂敷改性的2D C/SiC复合材料,研究了其在700～1200℃氧化10 h性能和结构的演变规律以及自愈合机制,同时获得了Si-B-C涂层在不同温度氧化后的形貌、组分和物相转变规律.结果表明:涂敷在复合材料表面的Si-B-C陶瓷随温度的升高氧化加快,但氧化程度较低,不深于7μm;随温度的升高,氧化形成的硅硼玻璃黏度降低,挥发增强；当温度达到1200℃时,硅硼玻璃析出SiO2晶体；Si-B-C陶瓷涂敷改性的C/SiC具有优良的抗氧化性能,随氧化温度的升高,复合材料失重率增加,但在1200℃氧化10h后失重率仅为0.47％;此外材料在1000℃氧化后的强度保持率最高,达到91.6％,Si-B-C陶瓷氧化形
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
Two-dimensional subwavelength plasmonic lattice solitons
Ye, F; Hu, B; Panoiu, N C
2010-01-01
We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai
Energy Technology Data Exchange (ETDEWEB)
Sudasinghe, Nilusha [New Mexico State Univ., Las Cruces, NM (United States); Cort, John R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hallen, Richard [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olarte, Mariefel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schmidt, Andrew [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schaub, Tanner [New Mexico State Univ., Las Cruces, NM (United States)
2014-12-01
Hydrothermal liquefaction (HTL) crude oil and hydrotreated product from pine tree farm waste (forest product residual, FPR) have been analyzed by direct infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) in both positive- and negative-ionization modes and high-resolution twodimensional heteronuclear 1H-13C NMR spectroscopy. FT-ICR MS resolves thousands of compounds in complex oils and provides unparalleled compositional details for individual molecules for identification of compound class (heteroatom content), type (number of rings plus double bonds to carbon or double bond equivalents (DBE) and carbon number (degree of alkylation). Heteronuclear 1H-13C NMR spectroscopy provides one-bond and multiple-bond correlations between pairs of 1H and 13C chemical shifts that are characteristic of different organic functional groups. Taken together this information provides a picture of the chemical composition of these oils. Pyrolysis crude oil product from pine wood was characterized for comparison. Generally, pyrolysis oil is comprised of a more diverse distribution of heteroatom classes with higher oxygen number relative to HTL oil as shown by both positive- and negative-ion ESI FT-ICR MS. A total of 300 N1, 594 O1 and 267 O2 compounds were observed as products of hydrotreatment. The relative abundance of N1O1, N1O2, N1O3, N2, N2O1, N2O2 and O3 compounds are reduced to different degrees after hydrotreatment and other higher heteroatom containing species (O4-O10, N1O4, N1O5 and N2O3) are completely removed by hydrotreatment.
Two-dimensional NQR using ultra-broadband electronics
Mandal, S.; Song, Y.-Q.
2014-03-01
We have recently developed an ultra-broadband instrument that can effectively excite and detect NMR and NQR signals over a wide frequency range. Our current system operates between 100 kHz and 3.2 MHz using an un-tuned sample coil. The major benefits of this instrument compared to conventional NQR/NMR systems include increased robustness, ease of use (in particular for multi-frequency experiments), and elimination of the need for tuning adjustments in the hardware. Here we describe its use for performing two-dimensional (2D) scans, which allow improved interpretation of complex NQR spectra by detecting the connected resonances. Our method relies on population transfers between the three energy levels of spin-1 nuclei (such as 14N) by using multi-frequency excitation and a single RF coil. Experimental results on pure samples and mixtures are also presented.
Local doping of two-dimensional materials
Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.
2016-09-20
This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Krishnamurthy, Krish; Hari, Natarajan
2017-09-15
The recently published CRAFT (Complete Reduction to Amplitude Frequency Table) technique converts the raw FID data (i.e., time domain data) into a table of frequencies, amplitudes, decay rate constants and phases. It offers an alternate approach to decimate time-domain data, with minimal pre-processing step. It has been shown that application of CRAFT technique to process the t1 dimension of the 2D data, significantly improved the detectable resolution by it ability to analyze without the use of ubiquitous apodization of extensively zero-filled data. It was noted earlier that CRAFT did not resolve sinusoids that were not already resolvable in time-domain (i.e., t1 max dependent resolution). We present a combined NUS-IST-CRAFT approach wherein the NUS acquisition technique (sparse sampling technique) increases the intrinsic resolution in time-domain (by increasing t1 max), IST fills the gap in the sparse sampling, and CRAFT processing extracts the information without loss due to any severe apodization. NUS and CRAFT are thus complementary techniques to improve intrinsic and usable resolution. We show that significant improvement can be achieved with this combination over conventional NUS-IST processing. With reasonable sensitivity, the models can be extended to significantly higher t1 max to generate an indirect-DEPT spectrum that rivals the direct observe counterpart. This article is protected by copyright. All rights reserved.
Pham, Tran N; Watson, Simon A; Edwards, Andrew J; Chavda, Manisha; Clawson, Jacalyn S; Strohmeier, Mark; Vogt, Frederick G
2010-10-04
Solid-state NMR (SSNMR) can provide detailed structural information about amorphous solid dispersions of pharmaceutical small molecules. In this study, the ability of SSNMR experiments based on dipolar correlation, spin diffusion, and relaxation measurements to characterize the structure of solid dispersions is explored. Observation of spin diffusion effects using the 2D (1)H-(13)C cross-polarization heteronuclear correlation (CP-HETCOR) experiment is shown to be a useful probe of association between the amorphous drug and polymer that is capable of directly proving glass solution formation. Dispersions of acetaminophen and indomethacin in different polymers are examined using this approach, as well as (1)H double-quantum correlation experiments to probe additional structural features. (1)H-(19)F CP-HETCOR serves a similar role for fluorinated drug molecules such as diflunisal in dispersions, providing a rapid means to prove the formation of a glass solution. Phase separation is detected using (13)C, (19)F, and (23)Na-detected (1)H T(1) experiments in crystalline and amorphous solid dispersions that contain small domains. (1)H T(1) measurements of amorphous nanosuspensions of trehalose and dextran illustrate the ability of SSNMR to detect domain size effects in dispersions that are not glass solutions via spin diffusion effects. Two previously unreported amorphous solid dispersions involving up to three components and containing voriconazole and telithromycin are analyzed using these experiments to demonstrate the general applicability of the approach.
Izrayelit, Yevgeniy; Robinette, Steven L; Bose, Neelanjan; von Reuss, Stephan H; Schroeder, Frank C
2013-02-15
Ascarosides are small-molecule signals that play a central role in C. elegans biology, including dauer formation, aging, and social behaviors, but many aspects of their biosynthesis remain unknown. Using automated 2D NMR-based comparative metabolomics, we identified ascaroside ethanolamides as shunt metabolites in C. elegans mutants of daf-22, a gene with homology to mammalian 3-ketoacyl-CoA thiolases predicted to function in conserved peroxisomal lipid β-oxidation. Two groups of ethanolamides feature β-keto functionalization confirming the predicted role of daf-22 in ascaroside biosynthesis, whereas α-methyl substitution points to unexpected inclusion of methylmalonate at a late stage in the biosynthesis of long-chain fatty acids in C. elegans. We show that ascaroside ethanolamide formation in response to defects in daf-22 and other peroxisomal genes is associated with severe depletion of endocannabinoid pools. These results indicate unexpected interaction between peroxisomal lipid β-oxidation and the biosynthesis of endocannabinoids, which are major regulators of lifespan in C. elegans. Our study demonstrates the utility of unbiased comparative metabolomics for investigating biochemical networks in metazoans.
Two-dimensional photonic crystal surfactant detection.
Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A
2012-08-07
We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
A two-dimensional Dirac fermion microscope
DEFF Research Database (Denmark)
Bøggild, Peter; Caridad, Jose; Stampfer, Christoph
2017-01-01
in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
Institute of Scientific and Technical Information of China (English)
姜苗苗; 冯毅凡; 姚新生
2011-01-01
目的:研究植物见血封喉正丁醇提取物中一个二糖甲型强心苷的化学结构.方法:应用1D和2D-NMR技术,如1H-NMR、13C-NMR、1H-1H COSY、HSQC、HMBC、HSQC-TOCSY、ROESY等解析并鉴定该化合物结构.结果:根据光谱数据结合文献报道,化合物1鉴定为glucostrophalloside.结论:本研究首次报道了化合物1的核磁数据,并对该化合物的1H NMR和13C NMR信号进行了全归属和详细分析.
Energy Technology Data Exchange (ETDEWEB)
Khatib, Alfi [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Wilson, Erica G. [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Kim, Hye Kyong [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Lefeber, Alfons W.M. [Division of NMR, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Erkelens, Cornelis [Division of NMR, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Choi, Young Hae [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands)]. E-mail: y.choi@chem.leidenuniv.nl; Verpoorte, Robert [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands)
2006-02-16
A number of ingredients in beer that directly or indirectly affect its quality require an unbiased wide-spectrum analytical method that allows for the determination of a wide array of compounds for its efficient control. {sup 1}H nuclear magnetic resonance (NMR) spectroscopy is a method that clearly meets this description as the broad range of compounds in beer is detectable. However, the resulting congestion of signals added to the low resolution of {sup 1}H NMR spectra makes the identification of individual components very difficult. Among two-dimensional (2D) NMR techniques that increase the resolution, J-resolved NMR spectra were successfully applied to the analysis of 2-butanol extracts of beer as overlapping signals in {sup 1}H NMR spectra were fully resolved by the additional axis of the coupling constant. Principal component analysis based on the projected J-resolved NMR spectra showed a clear separation between all of the six brands of pilsner beer evaluated in this study. The compounds responsible for the differentiation were identified by 2D NMR spectra including correlated spectroscopy and heteronuclear multiple bond correlation spectra together with J-resolved spectra. They were identified as nucleic acid derivatives (adenine, uridine and xanthine), amino acids (tyrosine and proline), organic acid (succinic and lactic acid), alcohol (tyrosol and isopropanol), cholines and carbohydrates.
Two-dimensional heterostructures for energy storage
Pomerantseva, Ekaterina; Gogotsi, Yury
2017-07-01
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Al-Bogami, Abdullah S.; Saleh, Tamer S.; Mekky, Ahmed E. M.; Shaaban, Mohamed R.
2016-10-01
An efficient regioselective synthesis of novel azoles containing a trifluoromethyl moiety via the 1,3-dipolar cycloaddition reaction under microwave irradiation, using fluorine-containing building blocks methodology was achieved. Furthermore, these novel azoles scaffolds have been employed as the starting material in the synthesis of new azoloazines containing a trifluoromethyl group. An unambiguous structural assignment of the obtained regioisomers was determined using the 2D HMBC NMR techniques as a valuable tool.
Diamagnetic phase transitions in two-dimensional conductors
Bakaleinikov, L. A.; Gordon, A.
2014-11-01
A theory describing the susceptibility amplitude and the magnetic induction bifurcation near the dHvA driven diamagnetic phase transitions in quasi two-dimensional (2D) organic conductors of the (ET)2X with X=Cu(NCS)2, KHg(SCN)4, I3, AuBr2, IBr2, etc. is presented. We show that there is a drastic increase in the temperature and magnetic field dependence of the susceptibility amplitude on approaching the diamagnetic phase transition point. Near the phase transition point the temperature and magnetic field dependences are fitted by the ones typical of the mean-field phase transition theory. These dependences confirm the long-range character of the magnetic interactions among the conduction electrons leading to diamagnetic phase transitions. We demonstrate that the magnetic induction splitting of nuclear magnetic resonance (NMR) and muon spin-rotation spectroscopy (μSR) lines due to two Condon domains decreases tending to zero on approaching the diamagnetic phase transition. This decrease is fitted by the temperature and magnetic field dependence of the susceptibility characteristic of the mean-field theory of phase transitions. Performing new susceptibility, NMR and μSR experiments will enable to detect diamagnetic phase transitions and Condon domains in quasi 2D metals.
Institute of Scientific and Technical Information of China (English)
Mattias Hedenstrom; Susanne Wiklund-Lindstrom; Tommy (O)man; Fachuang Lu; Lorenz Gerber; Paul Schatz; Bj(o)rn Sundberg; John Ralph
2009-01-01
2D ~(13)C-~1H HSQC NMR spectroscopy of acetylated cell walls in solution gives a detailed fingerprint that can be used to assess the chemical composition of the complete wall without extensive degradation. We demonstrate how multivariate analysis of such spectra can be used to visualize cell wall changes between sample types as high-resolution 2D NMR loading spectra. Changes in composition and structure for both lignin and polysaccharides can subsequently be interpreted on a molecular level. The multivariate approach alleviates problems associated with peak picking of overlap-ping peaks, and it allows the deduction of the relative importance of each peak for sample discrimination. As a first proof of concept, we compare Populus tension wood to normal wood. All well established differences in cellulose, hemicellulose, and lignin compositions between these wood types were readily detected, confirming the reliability of the multivariate approach. In a second example, wood from transgenic Populus modified in their degree of pectin methylesterification was compared to that of wild-type trees. We show that differences in both lignin and polysaccharide composition that are difficult to detect with traditional spectral analysis and that could not be a priori predicted were revealed by the multi-variate approach. 2D NMR of dissolved cell wall samples combined with multivariate analysis constitutes a novel approach in cell wall analysis and provides a new tool that will benefit cell wall research.
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
2014-09-26
Isihara and Y. Nalane, Elementary Excitations and Energy Dispersion in TTF-TCNQ;Proc. Internat. Conf. on Phys. and Chem. of Low-Dimen. Syn. Conductors ...Abano Terme, Molec. Crys. Liq. Crys. 120, 85 (1984). One-dimensiona4 conductors such as TTF-TCNQ are attracting considerable attention for their...A. Isihara and Y. Nakane; Magnetoconductivity of 2D Conductors ; Proc. Internat. Conf. on Phys. and Chem. of Low-Dimen. Syn. Conductors , Abano Terme
Aumelas, A; Chiche, L; Kubo, S; Chino, N; Tamaoki, H; Kobayashi, Y
1995-04-11
Addition of the Lys(-2)-Arg(-1) dipeptide, present in the precursor protein, to the N-terminus of endothelin-1 (ET-1), to form a 23-residue peptide (KR-ET-1) has been shown to greatly improve formation of native disulfide bridges and to dramatically decrease biological activity. Conformational analysis was carried out on this peptide. During protonation of the carboxyl groups, CD spectra showed a decrease in the helical contribution, and NMR spectra displayed strong chemical shift modifications, suggesting the importance of electrostatic interactions in the KR-ET-1 conformation. CD spectra and two-dimensional NMR experiments were performed to investigate the KR-ET-1 three-dimensional structure in water in the carboxylic acid and carboxylate states. Distance and angle constraints were used as input for distance geometry calculations. The KR-ET-1 carboxylic acid conformation was found to be very similar to ET-1, with a helix spanning residues 9-15 and an unconstrained C-terminal part. In contrast, in the carboxylate state, large changes in Arg(-1) and Phe14 chemical shifts and long-range NOEs were consistent with a conformation characterized by a helix extension to Leu17 and a stabilized C-terminal section folded back toward the N-terminus. In addition, thanks to NOEs with Cys11 and Phe14, the Arg(-1) side chain appeared well-defined. Simulated annealing and molecular dynamics calculations, supported an Arg(-1)-Glu10 salt bridge and an electrostatic network involving the charged groups of Trp21, Asp18, and Lys(-2). Moreover, stabilization of the KR-ET-1 C-terminal part is probably reinforced by hydrophobic interactions involving the Val12, Tyr13, Phe14, Leu17, Ile19, Ile20, and Trp21 side chains. In vitro, native disulfide bond formation improvement observed for KR-ET-1 could be ascribed to electrostatic interactions and more specifically to the Arg(-1)-Glu10 salt bridge. In vivo, similar interactions could play an important role in the native folding of the ET-1
Energy Technology Data Exchange (ETDEWEB)
Mora Melendez, R.; Seguro Fernandez, A.; Iborra Oquendo, M.; Urena Llinares, A.
2013-07-01
The main objective of our study is to find correction factors dependent on the 2D array incidence angles, and to give account of the phenomenon, allowing the Planner to faithfully reproduce data and curves measured experimentally. (Author)
Energy Technology Data Exchange (ETDEWEB)
Doria, Andre S. [Hospital das Clinicas, Sao Paulo, SP (Brazil). Inst. de Radiologia; Rebelo, Marina de Sa [Hospital das Clinicas, Sao Paulo, SP (Brazil). Instituto do Coracao. Servico de Informatica; Castro, Claudio Campi de [Hospital das Clinicas, Sao Paulo, SP (Brazil). Instituto do Coracao. Servico de Ressonancia Magnetica] [and others
2000-06-01
In this cross-sectional study in patients with juvenile rheumatoid arthritis the authors compare two-dimensional evaluation of the maximum synovial diameter on post-contrast axial T1-weighted SE (spin-echo) sequences with volumetric (three-dimensional assessment) on post-contrast axial T1-weighted SPIR (spectral presaturation with inversion recovery) SE sequences. With the aim of determining their cost-effectiveness these two methods of assessment were compared to clinical and laboratorial parameters, as well as the presence of synovial enhancement seen on magnetic resonance imaging. (author)
Directory of Open Access Journals (Sweden)
Hiroshi Teramura
Full Text Available A renewable raw material, rice straw is pretreated for biorefinery usage. Solution-state two-dimensional (2D 1H-13 C hetero-nuclear single quantum coherence (HSQC nuclear magnetic resonance (NMR spectroscopy, was used to analyze 13 cultivars of rice straw before and after dilute acid pretreatment, to characterize general changes in the lignin and polysaccharide components. Intensities of most (15 of 16 peaks related to lignin aromatic regions, such as p-coumarate, guaiacyl, syringyl, p-hydroxyphenyl, and cinnamyl alcohol, and methoxyl, increased or remained unchanged after pretreatment. In contrast, intensities of most (11 of 13 peaks related to lignin aliphatic linkages or ferulate decreased. Decreased heterogeneity in the intensities of three peaks related to cellulose components in acid-insoluble residues resulted in similar glucose yield (0.45-0.59 g/g-dry biomass. Starch-derived components showed positive correlations (r = 0.71 to 0.96 with glucose, 5-hydroxymethylfurfural (5-HMF, and formate concentrations in the liquid hydrolysates, and negative correlations (r = -0.95 to -0.97 with xylose concentration and acid-insoluble residue yield. These results showed the fate of lignin and polysaccharide components by pretreatment, suggesting that lignin aromatic regions and cellulose components were retained in the acid insoluble residues and starch-derived components were transformed into glucose, 5-HMF, and formate in the liquid hydrolysate.
Energy Technology Data Exchange (ETDEWEB)
Fry, D.C.; Byler, D.M.; Susi, H.; Brown, M.; Kuby, S.A.; Mildvan A.S.
1988-05-17
The structure of a synthetic peptide corresponding to residues 1-45 of rabbit muscle adenylate kinase has been studied in aqueous solution by two-dimensional NMR, FTIR, and CD spectroscopy. This peptide, which binds MgATP and is believed to represent most of the MgATP-binding site of the enzyme, appears to maintain a conformation similar to that of residues 1-45 in the X-ray structure of intact porcine adenylate kinase, with 42% of the residues of the peptide showing NOEs indicative of phi and psi angles corresponding to those found in the protein. The NMR studies suggest that the peptide is composed of two helical regions of residues 4-7 and 23-29, and three stretches of ..beta..-strand at residues 8-15, 30-32, and 35-40, yielding an overall secondary structure consisting of 24% ..cap alpha..-helix, 38% ..beta..-structure, and 38% aperiodic. Although the resolution-enhanced amide I band of the peptide FTIR spectrum is broad and rather featureless, possible due to disorder, it can be fit by using methods developed on well-characterized globular proteins. The CD spectrum is best fit by assuming the presence of at most 13% ..cap alpha..-helix in the peptide, 24 +/- 2% ..beta..-structure, and 66 +/- 4% aperiodic. The inability of the high-frequency FTIR and CD methods to detect helices in the amount found by NMR may result from the short helical lengths as well as from static and dynamic disorder in the peptide. Upon binding of MgATP, numerous conformation changes in the backbone of the peptide are detected by NMR, with smaller alterations in the overall secondary structure as assess by CD.
Two-dimensional effects in nonlinear Kronig-Penney models
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim
1997-01-01
An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...
A two-dimensional Dirac fermion microscope
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
A two-dimensional Dirac fermion microscope.
Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-09
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
Structure and Coordination Determination of Peptide-metal Complexes Using 1D and 2D 1H NMR
Shoshan, Michal S.; Tshuva, Edit Y.; Shalev, Deborah E.
2013-01-01
Copper (I) binding by metallochaperone transport proteins prevents copper oxidation and release of the toxic ions that may participate in harmful redox reactions. The Cu (I) complex of the peptide model of a Cu (I) binding metallochaperone protein, which includes the sequence MTCSGCSRPG (underlined is conserved), was determined in solution under inert conditions by NMR spectroscopy.
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Liu, Zhirong
2016-01-01
The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.
Complete NMR analysis of oxytocin in phosphate buffer.
Ohno, Akiko; Kawasaki, Nana; Fukuhara, Kiyoshi; Okuda, Haruhiro; Yamaguchi, Teruhide
2010-02-01
Complete NMR analysis of oxytocin (OXT) in phosphate buffer was elucidated by one-dimensional (1D)- and two-dimensional (2D)-NMR techniques, which involve the assignment of peptide amide NH protons and carbamoyl NH(2) protons. The (1)H-(15)N correlation of seven amide NH protons and three carbamoyl NH(2) protons were also shown by HSQC NMR of OXT without (15)N enrichment.
Diamagnetic phase transitions in two-dimensional conductors
Energy Technology Data Exchange (ETDEWEB)
Bakaleinikov, L.A., E-mail: bakal.ammp@mail.ioffe.ru [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Department of Mathematics and Physics, Faculty of Natural Sciences, University of Haifa, Campus Oranim, Tivon 36006 (Israel); Gordon, A. [Department of Mathematics and Physics, Faculty of Natural Sciences, University of Haifa, Campus Oranim, Tivon 36006 (Israel)
2014-11-15
A theory describing the susceptibility amplitude and the magnetic induction bifurcation near the dHvA driven diamagnetic phase transitions in quasi two-dimensional (2D) organic conductors of the (ET){sub 2}X with X=Cu(NCS){sub 2},KHg(SCN){sub 4},I{sub 3},AuBr{sub 2},IBr{sub 2}, etc. is presented. We show that there is a drastic increase in the temperature and magnetic field dependence of the susceptibility amplitude on approaching the diamagnetic phase transition point. Near the phase transition point the temperature and magnetic field dependences are fitted by the ones typical of the mean-field phase transition theory. These dependences confirm the long-range character of the magnetic interactions among the conduction electrons leading to diamagnetic phase transitions. We demonstrate that the magnetic induction splitting of nuclear magnetic resonance (NMR) and muon spin-rotation spectroscopy (μSR) lines due to two Condon domains decreases tending to zero on approaching the diamagnetic phase transition. This decrease is fitted by the temperature and magnetic field dependence of the susceptibility characteristic of the mean-field theory of phase transitions. Performing new susceptibility, NMR and μSR experiments will enable to detect diamagnetic phase transitions and Condon domains in quasi 2D metals. - Highlights: • A theory of diamagnetic phase transitions (DPTs) is presented in 2D organic conductors. • The behaviour of the susceptibility amplitude and the induction splitting is shown near the DPT. • The calculated quantities are described by the mean-field theory of phase transitions.
Pawar, Sunayna S; Koorbanally, Neil A
2014-06-01
A series of novel pyranochromene chalcones and corresponding flavanones were synthesized. This is the first report on the confirmation of the absolute configuration of chromene-based flavanones using X-ray crystallography. These compounds were characterized by 2D NMR spectroscopy, and their assignments are reported herein. The 3D structure of the chalcone 3b and flavanone 4g was determined by X-ray crystallography, and the structure of the flavanone was confirmed to be in the S configuration at C-2.
Lafon, Olivier; Hu, Bingwen; Amoureux, Jean-Paul; Lesot, Philippe
2011-06-01
Natural abundance deuterium (NAD) 2D NMR spectroscopy using chiral or achiral liquid crystals is an efficient analytical tool for the stereochemical analysis of enantio- or diastereomers by the virtue of proton-to-deuterium substitution. In particular, it allows the measurement of enantiopurity of organic synthetic molecules or the determination of the natural isotopic (1)H/(2)H fractionation in biological molecules, such as fatty acid methyl esters (FAME). So far, the NAD 2D spectra of solutes were acquired by using uniform sampling (US) and processed by conventional 2D Fourier transform (FT), which could result in long measurement times for medium-sized analytes or low solute concentrations. Herein, we demonstrate that this conventional approach can be advantageously replaced by nonuniform sampling (NUS) processed by covariance (Cov) transform. This original spectral reconstruction provides a significant enhancement of spectral resolution, as well as a reduction of measurement times. The application of Cov to NUS data has required the introduction of a regularization procedure in the time domain for the indirect dimension. The analytical potential of combining Cov and NUS is demonstrated by measuring the enantiomeric excess of a scalemic mixture of 2-ethyloxirane and by determining the diastereomeric excess of methyl vernoleate, a natural FAME. These two organic compounds were aligned in a polypeptide (poly(γ-benzyl-L-glutamate)) mesophase. In the case of NAD 2D NMR spectroscopy, we show that Cov and NUS methods allow a decrease in measurement time by a factor of two compared with Cov applied to US data and a factor of four compared with FT applied to US data.
Nonlocal bottleneck effect in two-dimensional turbulence
Biskamp, D; Schwarz, E
1998-01-01
The bottleneck pileup in the energy spectrum is investigated for several two-dimensional (2D) turbulence systems by numerical simulation using high-order diffusion terms to amplify the effect, which is weak for normal diffusion. For 2D magnetohydrodynamic (MHD) turbulence, 2D electron MHD (EMHD) turbulence and 2D thermal convection, which all exhibit direct energy cascades, a nonlocal behavior is found resulting in a logarithmic enhancement of the spectrum.
Indian Academy of Sciences (India)
Rakesh K Rath; G A Nagana Gowda; Akhil R Chakravarty
2002-10-01
2D NMR spectroscopy has been used to determine the metal configuration in solution of three complexes, viz. [($\\eta^6$--cymene)Ru(L∗)Cl] (1) and [(6--cymene)Ru(L∗)(L')] (ClO4) (L' = H2O, 2; PPh3, 3), where L∗ is the anion of ()-(1-phenylethyl)salicylaldimine. The complexes exist in two diastereomeric forms in solution. Both the (Ru, C)- and (Ru, C)-diastereomers display the presence of attractive CH/ interaction involving the phenyl group attached to the chiral carbon and the cymene ring hydrogens. This interaction restricts the rotation of the C∗-N single bond and, as a result, two structural types with either the hydrogen atom attached to the chiral carbon (C∗) or the methyl group attached to C∗ in close proximity of the cymene ring protons get stabilized. Using 2D NMR spectroscopy as a tool, the spatial interaction involving these protons are studied in order to obtain the metal configuration(s) of the diastereomeric complexes in solution. This technique has enabled us to determine the metal configuration as (Ru, C) for the major isomers of 1-3 in solution.
Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5†
Ralph, John
2014-01-01
NMR fingerprinting of the components of finely divided plant cell walls swelled in DMSO has been recently described. Cell wall gels, produced directly in the NMR tube with perdeutero-dimethylsulfoxide, allowed the acquisition of well resolved/dispersed 2D 13C–1H correlated solution-state NMR spectra of the entire array of wall polymers, without the need for component fractionation. That is, without actual solubilization, and without apparent structural modification beyond that inflicted by the ball milling and ultrasonication steps, satisfactorily interpretable spectra can be acquired that reveal compositional and structural details regarding the polysaccharide and lignin components in the wall. Here, the profiling method has been improved by using a mixture of perdeuterated DMSO and pyridine (4:1, v/v). Adding pyridine provided not only easier sample handling because of the better mobility compared to the DMSO-d6-only system but also considerably elevated intensities and improved resolution of the NMR spectra due to the enhanced swelling of the cell walls. This modification therefore provides a more rapid method for comparative structural evaluation of plant cell walls than is currently available. We examined loblolly pine (Pinus taeda, a gymnosperm), aspen (Populus tremuloides, an angiosperm), kenaf (Hibiscus cannabinus, an herbaceous plant), and corn (Zea mays L., a grass, i.e., from the Poaceae family). In principle, lignin composition (notably, the syringyl : guaiacyl : p-hydroxyphenyl ratio) can be quantified without the need for lignin isolation. Correlations for p-coumarate units in the corn sample are readily seen, and a variety of the ferulate correlations are also well resolved; ferulates are important components responsible for cell wall cross-linking in grasses. Polysaccharide anomeric correlations were tentatively assigned for each plant sample based on standard samples and various literature data. With the new potential for chemometric analysis
Fry, D C; Byler, D M; Susi, H; Brown, E M; Kuby, S A; Mildvan, A S
1988-05-17
The structure of a synthetic peptide corresponding to residues 1-45 of rabbit muscle adenylate kinase has been studied in aqueous solution by two-dimensional NMR, FTIR, and CD spectroscopy. This peptide, which binds MgATP and is believed to represent most of the MgATP-binding site of the enzyme [Fry, D.C., Kuby, S.A., & Mildvan, A.S. (1985) Biochemistry 24, 4680-4694], appears to maintain a conformation similar to that of residues 1-45 in the X-ray structure of intact porcine adenylate kinase [Sachsenheimer, W., & Schulz, G.E. (1977) J. Mol. Biol. 114, 23-26], with 42% of the residues of the peptide showing NOEs indicative of phi and psi angles corresponding to those found in the protein. The NMR studies suggest that the peptide is composed of two helical regions of residues 4-7 and 23-29, and three stretches of beta-strand at residues 8-15, 30-32, and 35-40, yielding an overall secondary structure consisting of 24% alpha-helix, 38% beta-structure, and 38% aperiodic. Although the resolution-enhanced amide I band of the peptide FTIR spectrum is broad and rather featureless, possibly due to disorder, it can be fit by using methods developed on well-characterized globular proteins. On this basis, the peptide consists of 35 +/- 10% beta-structure, 60 +/- 12% turns and aperiodic structure, and not more than 10% alpha-helix. The CD spectrum is best fit by assuming the presence of at most 13% alpha-helix in the peptide, 24 +/- 2% beta-structure, and 66 +/- 4% aperiodic. The inability of the high-frequency FTIR and CD methods to detect helices in the amount found by NMR may result from the short helical lengths as well as from static and dynamic disorder in the peptide. Upon binding of MgATP, numerous conformational changes in the backbone of the peptide are detected by NMR, with smaller alterations in the overall secondary structure as assessed by CD. Detailed assignments of resonances in the peptide spectrum and intermolecular NOEs between protons of bound MgATP and
Institute of Scientific and Technical Information of China (English)
张许; 刘买利
1999-01-01
It has been a continuous interest in measurement of homonuclear scalar coupling constants using two-dimensional NMR spectroscopy because large chemical shift dispersions can efficiently increase spectral resolution. Numerous methods have been developed using homo- and hetero-nuclear correlation and successfully used for a variety of samples. Here we demonstrate an alternative approach based on maximum-quantum correlation NMR spectroscopy (MAXY NMR). The new method combines the advantages of two-dimensional chemical shift dispersion and the spectral editing feature of the MAXY approach and results in separated correlations of CH, CH2, and CH3 groups in a single experiment with enhanced chemical shift resolution. The method had been tested on a middle-sized molecule, dexamethasone, and a tridecapeptide, neurotensin.%偶合常数是一个重要的NMR参数,其数值与分子中化学键的二面角有关,可以为分子结构研究提供很重要的信息.多维NMR谱由于具有较大的化学位移分辨率,因此常常被用来测定同核或异核自旋-自旋偶合常数.本文介绍了利用最高量子相关技术(MAXY)测定同核偶合常数的方法.MAXY是最近发展的一种多维NMR谱编辑技术,可以使不同官能团(CH, CH2, CH3)的相关峰分布于不同的图谱区域,因此比常规的二维谱具有更高的化学位移分辨率.而且被分离开来的NMR相关峰呈吸收性线型,能清楚地展示各自的偶合分裂特征,可以直接用于测定偶合常数.
2D 31P solid state NMR spectroscopy, electronic structure and thermochemistry of PbP7
Benndorf, Christopher; Hohmann, Andrea; Schmidt, Peer; Eckert, Hellmut; Johrendt, Dirk; Schäfer, Konrad; Pöttgen, Rainer
2016-03-01
Phase pure polycrystalline PbP7 was prepared from the elements via a lead flux. Crystalline pieces with edge-lengths up to 1 mm were obtained. The assignment of the previously published 31P solid state NMR spectrum to the seven distinct crystallographic sites was accomplished by radio-frequency driven dipolar recoupling (RFDR) experiments. As commonly found in other solid polyphosphides there is no obvious correlation between the 31P chemical shift and structural parameters. PbP7 decomposes incongruently under release of phosphorus forming liquid lead as remainder. The thermal decomposition starts at T>550 K with a vapor pressure almost similar to that of red phosphorus. Electronic structure calculations reveal PbP7 as a semiconductor according to the Zintl description and clearly shows the stereo-active Pb-6s2 lone pairs in the electron localization function ELF.
Rationally synthesized two-dimensional polymers.
Colson, John W; Dichtel, William R
2013-06-01
Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.
Two-Dimensional Mesoscale-Ordered Conducting Polymers
Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang
2016-01-01
Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of assem
Two-Dimensional Mesoscale-Ordered Conducting Polymers
Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang
2016-01-01
Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of
Forensic potential of comprehensive two-dimensional gas chromatography
Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.
2016-01-01
In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o
Forensic potential of comprehensive two-dimensional gas chromatography
Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.
2016-01-01
In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o
TreePM Method for Two-Dimensional Cosmological Simulations
Indian Academy of Sciences (India)
Suryadeep Ray
2004-09-01
We describe the two-dimensional TreePM method in this paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle–Mesh method. We describe the splitting of force between the PM and the Tree parts. We also estimate error in force for a realistic configuration. Finally, we discuss some tests of the code.
Takahashi, A; Takizawa, T
2003-01-01
We found two doublet signals A and B in sup 2 D-NMR of dipalmitoyl-phosphatidylcholine-D sub 2 O system at a low water content below the temperature of the onset of the main phase transition, i.e. in the beta'-crystalline (L subbeta sub ') phase. The splitting of each doublet becomes minimum at the onset of the transition. The signal A decreases in intensity with a slight increase of its splitting as the temperature increases further, accompanying the marked growth of the signal B in its intensity and splitting. These features of two doublets in the L subbeta sub ' phase and at higher temperatures have never been noticed. The signals A and B were ascribed to the tightly bound water and the loosely bound water, respectively. These assignments were confirmed by the theoretical calculations of the splitting of the doublet A for all possible number of the tightly bound water molecules. (author)
Theory of two-dimensional transformations
Kanayama, Yutaka J.; Krahn, Gary W.
1998-01-01
The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...
Energy Technology Data Exchange (ETDEWEB)
Fry, D.C.; Byler, D.M.; Susi, H.; Brown, E.M.; Kuby, S.A.; Mildyan, A.S.
1986-05-01
In the X-ray structure of adenylate kinase residues 1-45 exist as 47% ..cap alpha..-helix, 29% ..beta..-structure (strands and turns) and 24% coil. The solution structure of a synthetic peptide corresponding to residues 1-45, which constitutes the MgATP binding site was studied by 3 independent spectroscopic methods. Globularity of the peptide was shown by its broad NMR resonances which narrow upon denaturation, and by its ability to bind MgATP with similar affinity and conformation as the intact enzyme does. COSY and NOESY NMR methods at 250 and 500 MHz reveal proximities among NH, C..cap alpha.., and C..beta.. protons indicative of >20% ..cap alpha..-helix, and >20% ..beta..-structure. Correlation of regions of secondary structure with the primary sequence by 2D NMR indicates at least one ..cap alpha..-helix (res. 23 to 29) and two ..beta..-strands (res. 12 to 15 and 34 to 38). The broad amide I band in the deconvoluted FTIR spectrum could be fit as the sum of 4 peaks due to specific secondary structures, yielding less than or equal to=45% ..cap alpha..-helix, less than or equal to=40% ..beta..-structure and greater than or equal to=15% coil. The CD spectrum, from 185-250 nm, interpreted with a 3-parameter basis set, yielded 20 +/- 5% ..cap alpha..=helix, and less than or equal to=20% ..beta..-structure. The solution structure of peptide 1-45 thus approximates that of residues 1-45 in the crystal.
Predicting Two-Dimensional Silicon Carbide Monolayers.
Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I
2015-10-27
Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.
Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS
Energy Technology Data Exchange (ETDEWEB)
Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)
2016-01-21
Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t{sub 1} and t{sub 3} periods, respectively. In addition to through-space and through-bond {sup 13}C/{sup 1}H and {sup 13}C/{sup 13}C chemical shift correlations, the 3D {sup 1}H/{sup 13}C/{sup 1}H experiment also provides a COSY-type {sup 1}H/{sup 1}H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ({sup 1}H/{sup 1}H chemical shift correlation spectrum) at different {sup 13}C chemical shift frequencies from the 3D {sup 1}H/{sup 13}C/{sup 1}H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the
Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS.
Zhang, Rongchun; Ramamoorthy, Ayyalusamy
2016-01-21
Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D (1)H/(13)C/(1)H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond (13)C/(1)H and (13)C/(13)C chemical shift correlations, the 3D (1)H/(13)C/(1)H experiment also provides a COSY-type (1)H/(1)H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ((1)H/(1)H chemical shift correlation spectrum) at different (13)C chemical shift frequencies from the 3D (1)H/(13)C/(1)H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D (1)H/(13)C/(1)H experiment would be useful to study the structure and dynamics of
FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP
Institute of Scientific and Technical Information of China (English)
Chen Jiangfeng; Yuan Baozong; Pei Bingnan
2008-01-01
Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.
The Rare Two-Dimensional Materials with Dirac Cones
Wang, Jinying; Deng, Shibin; Liu, Zhongfan; Liu, Zhirong
2014-01-01
Inspired by the great development of graphene, more and more works have been conducted to seek new two-dimensional (2D) materials with Dirac cones. Although 2D Dirac materials possess many novel properties and physics, they are rare compared with the numerous 2D materials. To provide explanation for the rarity of 2D Dirac materials as well as clues in searching for new Dirac systems, here we review the recent theoretical aspects of various 2D Dirac materials, including graphene, silicene, ger...
Institute of Scientific and Technical Information of China (English)
陈昌国; 张明明; 刘渝萍
2011-01-01
采用二维扩散排序(DOSY)核磁共振法研究了萘普生与β-环糊精的相互作用,考察了不同包合因素对主客体自扩散系数及平衡常数的影响,并对萘普生与β-环糊精包合反应进行了热力学分析,以揭示萘普生与β-环糊精的包合反应机理.实验结果表明,温度、水含量、溶液pH值、离子强度等对客体萘普生的自扩散系数影响较大,但对主体环糊精自扩散系数的影响甚微；以上参数的增加均会使得平衡常数增大,有利于包合反应的进行,且在pH9.0时包合作用最强；热力学参数进一步表明萘普生与环糊精的包合反应为自发吸热的熵驱动过程,主要作用为疏水力.%The interaction between naproxen and cyclodextrin was studied by two-dimensional diffusion ordered ( 2D-DOSY) NMR spectroscopy. Influences of different factors on the self-diffusion coefficient and the equilibrium constant were investigated. The results showed that the increase of temperature , water content, pH and ionic strength had more influence on the self-diffusion coefficient of the guest than that of the host, which could increase the equilibrium constants. The inclusion interaction was the strongest in a solution of pH 9. 0. The results of thermodynamic analysis showed that the inclusion process was spontaneous and endothermic entropy-driven process, and the main active force was the hydrophobic force.
Two-dimensional signal analysis
Garello, René
2010-01-01
This title sets out to show that 2-D signal analysis has its own role to play alongside signal processing and image processing.Concentrating its coverage on those 2-D signals coming from physical sensors (such as radars and sonars), the discussion explores a 2-D spectral approach but develops the modeling of 2-D signals and proposes several data-oriented analysis techniques for dealing with them. Coverage is also given to potential future developments in this area.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...
Institute of Scientific and Technical Information of China (English)
王大成; 葛杉; 高慧媛; 蔡辉; 吴斌; 吴立军; 邓旭明
2005-01-01
通过核磁共振谱并结合文献对一个三萜皂苷葫芦素E 2-O-β-D-葡萄糖苷进行结构解析.通过2D NMR(1H-1H COSY、HMQC和HMBC)进行了NMR全归属.%A triterpene saponin was extracted from traditional Chinese medicine Cucurbita pepo cv Dayangua. Its structure was determined by 2D NMR. Complete assignment of the 1H and 13C chemical shifts for the compound was obtained. The structure was elucidated to be cucurbitacin E 2-O-b-D-glucoside.
Martin, Danielle E; Robertson, Evan G; MacLellan, Jonathan G; Godfrey, Peter D; Thompson, Christopher D; Morrison, Richard J S
2009-02-25
Conformational preferences of the nicotine analogue 2-phenylpyrrolidine (PPD) have been studied in both gaseous and solution phases. Theoretical calculations at the MP2 and B3LYP levels point to 5-6 stable conformers which differ in three degrees of conformational freedom; torsion between the two rings, inversion at the pyrrolidine (PY) amine, and PY ring puckering, characterized using the Cremer-Pople definition for pseudorotation. Only one conformer has a trans arrangement between the amino hydrogen and the phenyl substituent. It is 6-8 kJ mol(-1) more stable than the cis conformers, has a perpendicular ring arrangement, and puckers at the nitrogen atom--similar to structures reported for nicotine. Resonant two-photon ionization (R2PI) data, including hole burn spectra, indicate only one conformer is present in the free jet expansion, and band contour analysis suggests assignment to the trans conformer. Confirmation was provided by microwave spectroscopy. Fifty-seven lines measured in the 48-72 GHz region were assigned to 206 b-type transitions and fitted to yield rotational constants within 2 MHz of MP2 values predicted for the trans conformer. The solution-phase conformers of PPD were studied using 1D and 2D (1)H NMR spectroscopy and solvent-based theoretical calculations. In marked contrast to the gas phase, NMR data reveals only cis conformers present in solution. Calculations confirm increased stability for these conformers when placed in simulated chloroform or water environments. Solvent molecules are believed to disrupt a crucial N...H(ortho) stabilizing interaction present within the trans conformer.
Graphene and Two-Dimensional Materials for Optoelectronic Applications
Directory of Open Access Journals (Sweden)
Andreas Bablich
2016-03-01
Full Text Available This article reviews optoelectronic devices based on graphene and related two-dimensional (2D materials. The review includes basic considerations of process technology, including demonstrations of 2D heterostructure growth, and comments on the scalability and manufacturability of the growth methods. We then assess the potential of graphene-based transparent conducting electrodes. A major part of the review describes photodetectors based on lateral graphene p-n junctions and Schottky diodes. Finally, the progress in vertical devices made from 2D/3D heterojunctions, as well as all-2D heterostructures is discussed.
Directory of Open Access Journals (Sweden)
José I. Santos
2015-01-01
Full Text Available Lignin-rich residues from the cellulose-based industry are traditionally incinerated for internal energy use. The future biorefineries that convert cellulosic biomass into biofuels will generate more lignin than necessary for internal energy use, and therefore value-added products from lignin could be produced. In this context, a good understanding of lignin is necessary prior to its valorization. The present study focused on the characterization of lignin-rich residues from biochemical ethanol production, including steam explosion, saccharification, and fermentation, of wheat straw and olive tree pruning. In addition to the composition and purity, the lignin structures (S/G ratio, interunit linkages were investigated by spectroscopy techniques such as FTIR and 2D-NMR. Together with the high lignin content, both residues contained significant amounts of carbohydrates, mainly glucose and protein. Wheat straw lignin showed a very low S/G ratio associated with p-hydroxycinnamates (p-coumarate and ferulate, whereas a strong predominance of S over G units was observed for olive tree pruning lignin. The main interunit linkages present in both lignins were β-O-4′ ethers followed by resinols and phenylcoumarans. These structural characteristics determine the use of these lignins in respect to their valorization.
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Juday, Richard D.
1992-01-01
Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.
Rossum, van B.E.J.; Steengaard, D.B.; Boender, G.J.; Schaffner, K.; Holzwarth, A.R.; Groot, de H.J.M.
2001-01-01
Heteronuclear 2-D and 3-D magic-angle spinning NMR dipolar correlation spectroscopy was applied to determine solid-state 1H shifts for aggregated bacteriochlorophyll c (BChl c) in uniformly 13C-enriched light harvesting chlorosomes of the green photosynthetic bacterium Chlorobium tepidum. A complete
Rossum, van B.E.J.; Steengaard, D.B.; Boender, G.J.; Schaffner, K.; Holzwarth, A.R.; Groot, de H.J.M.
2001-01-01
Heteronuclear 2-D and 3-D magic-angle spinning NMR dipolar correlation spectroscopy was applied to determine solid-state 1H shifts for aggregated bacteriochlorophyll c (BChl c) in uniformly 13C-enriched light harvesting chlorosomes of the green photosynthetic bacterium Chlorobium tepidum. A complete
Photodetectors based on two dimensional materials
Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen
2016-09-01
Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Molecular assembly on two-dimensional materials
Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter
2017-02-01
Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging
Two-Dimensional Electron-Spin Resonance
Freed, Jack H.
2000-03-01
The extension of the concepts of 2D-NMR to ESR posed significant technological challenges, especially for liquids. ESR relaxation times are very short, as low as 10-15 ns. for T_2's. Spectral bandwidths are 100-250 MHz for nitroxide spin labels. Adequate coverage is obtained with 3-5 ns. π/2 (9-17 GHz) microwave pulses into a small low Q resonator. Dead-times are currently 25-30 ns. Additional requirements are rapid phase shifting for phase cycling, nsec. data acquisition, and fast repetition rates (10-100 kHz). 2D-ELDOR (electron-electron double resonance), which is a 3-pulse 2D-exchange experiment, takes about 30 minutes with just 0.5 nanomole spin-probe in solution (SNR 200). 2D-ELDOR is very useful in studies of molecular dynamics and local structure in complex fluids. For such media, the slow rotational dynamics requires a theory based upon the stochastic Liouville equation which enables quantitative interpretation of 2D-ELDOR experiments. In studies of spin-probes in a liquid crystal new insights could be obtained on the dynamic structure in different phases. One obtains, in addition to ordering and reorientation rates of the probes, details of the local dynamic cage: its orienting potential and (slow) relaxation rate. 2D-ELDOR overcomes the loss of resolution resulting from microscopically ordered but macroscopically disordered complex fluids. This is illustrated by studies of the dynamic structure of lipid membrane vesicles, and the effects of adding a peptide. The short dead times enable the observation of both the bulk lipids and the more immobilized lipids that coat (or are trapped) by the (aggregates of) peptides. Also, new developments of multi-quantum (2D) FT-ESR from nitroxide spin labels interacting by dipolar interactions show considerable promise in measuring distances of ca. 15-70A in macromolecules.
Two-dimensional fourier transform spectrometer
Energy Technology Data Exchange (ETDEWEB)
DeFlores, Lauren; Tokmakoff, Andrei
2016-10-25
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Divorticity and dihelicity in two-dimensional hydrodynamics
DEFF Research Database (Denmark)
Shivamoggi, B.K.; van Heijst, G.J.F.; Juul Rasmussen, Jens
2010-01-01
A framework is developed based on the concepts of divorticity B (≡×ω, ω being the vorticity) and dihelicity g (≡vB) for discussing the theoretical structure underlying two-dimensional (2D) hydrodynamics. This formulation leads to the global and Lagrange invariants that could impose significant...
Zero sound in a two-dimensional dipolar Fermi gas
Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.
2013-01-01
We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean-f
On the continua in two-dimensional nonadiabatic magnetohydrodynamic spectra
De Ploey, A.; Van der Linden, R. A. M.; Belien, A. J. C.
2000-01-01
The equations for the continuous subspectra of the linear magnetohydrodynamic (MHD) normal modes spectrum of two-dimensional (2D) plasmas are derived in general curvilinear coordinates, taking nonadiabatic effects in the energy equation into account. Previously published derivations of continuous sp
Bounds on the capacity of constrained two-dimensional codes
DEFF Research Database (Denmark)
Forchhammer, Søren; Justesen, Jørn
2000-01-01
Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run...
Linkage analysis by two-dimensional DNA typing
te Meerman, G J; Mullaart, E; van der Meulen, M A; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J
1993-01-01
In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core pro
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Bandoli, Giuliano; Nicolini, Marino; Pappalardo, Giuseppe C.; Grassi, Antonio; Perly, Bruno
1987-04-01
The crystal and molecular structure of the nootropic agent N-[2-( N,N-diisopropyl-amino)ethyl]-2-oxo-1-pyrrolidinacetamide sulphate was determined by X-ray analysis. The conformational properties in the solution state were deduced from the 1H-NMR spectrum run in 2H 2O at 500 MHz. Spectral assignments were made with the aid of the COSY 45 shift correlation experiment. Crystals were triclinic with unit cell dimensions a = 13.410(10), b = 11.382(8), c = 6.697(4) », α = 83.80(3), β = 88.61(3)and γ = 72.25(6)° ; space group Poverline1. The structure was determined from 1047 three-dimensional counter data and refined to a value of 7.5% for the conventional discrepancy factor R. One molecule of the solvent acetonitrile is incorporated per two of the (C 14H 28N 3O 2) +-(HSO 4) -. The five-membered heterocyclic ring is in an envelope ( Cs) conformation and the "flap" atom deviates by 0.31 » from the plane of the other four. This plane forms a dihedral angle of 71.4° with the amide group, with the CO fragment directed toward the ring. All bond angles and distances are in good agreement with expected standard values. A strong OH⋯O intermolecular bond (2.61 ») links the cation of the hydrogen-sulphate anion, while the loosely held MeCN molecule is trapped in the polar pockets. The molecular conformation in the solid was compared with results from 1H NMR spectral analysis which showed that in solution wide torsional oscillations can occur about the bonds of the chain bonded to the N(1) atom.
Ultrafast two dimensional infrared chemical exchange spectroscopy
Fayer, Michael
2011-03-01
The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific
Perspective: Two-dimensional resonance Raman spectroscopy
Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.
2016-11-01
Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.
Elastic models of defects in two-dimensional crystals
Kolesnikova, A. L.; Orlova, T. S.; Hussainova, I.; Romanov, A. E.
2014-12-01
Elastic models of defects in two-dimensional (2D) crystals are presented in terms of continuum mechanics. The models are based on the classification of defects, which is founded on the dimensionality of the specification region of their self-distortions, i.e., lattice distortions associated with the formation of defects. The elastic field of an infinitesimal dislocation loop in a film is calculated for the first time. The fields of the center of dilatation, dislocation, disclination, and circular inclusion in planar 2D elastic media, namely, nanofilms and graphenes, are considered. Elastic fields of defects in 2D and 3D crystals are compared.
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Two-dimensional capillary origami
Brubaker, N. D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.
Lu, Yanbin; Sun, Cuirong; Wang, Yu; Pan, Yuanjiang
2007-06-01
A two-dimensional counter-current chromatographic system (2D-CCC) for preparative isolation and purification of three prenylflavonoids from Artocarpus altilis is presented. An upright CCC instrument (CCC1, total capacity: 1600 ml) was used as the first dimension. Effluent of interest from CCC1 was collected on-line into a 30 ml sample loop by a laboratory-prepared column-switching interface and introduced into a high-speed CCC instrument (CCC2, total capacity: 210 ml) for the second dimension separation. With this 2D-CCC system and a pair of two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water (5:5:7:3 and 5:5:6.5:3.5, v/v/v/v), which had been selected by high-speed CCC, about a 500 mg amount of the crude extract was separated, yielding 9 mg of compound 1, 28 mg of compound 2 and 78 mg of compound 3. The purities of the three prenylflavonoids were 98.7 (1), 98.3 (2) and 97.2% (3), respectively, as determined by HPLC analysis. Their chemical structures were identified by electrospray ionization MS, (1)H NMR and (13)C NMR.
Mak, Kendrew K. W.
2004-01-01
NMR spectroscopy is presented. It is seen that the experiment regarding the synthesis and resolution of 1,1'-Bi-2-naphtol presents a good experiment for teaching organic synthesis and NMR spectroscopy and provides a strategy for obtaining enantiopure compounds from achiral starting materials.
Mak, Kendrew K. W.
2004-01-01
NMR spectroscopy is presented. It is seen that the experiment regarding the synthesis and resolution of 1,1'-Bi-2-naphtol presents a good experiment for teaching organic synthesis and NMR spectroscopy and provides a strategy for obtaining enantiopure compounds from achiral starting materials.
Spin Polarization of 2D Electrons in GaAs Quantum Wells at ν=1/2 from Gallium NMR Measurements
Freytag, N.; Horvatić, M.; Berthier, C.; Lévy, L.-P.; Melinte, S.; Bayot, V.; Shayegan, M.
2000-03-01
The spin polarization (\\cal P) of a two-dimensional electron gas (2DEG) in two GaAs/AlGaAs multiple-quantum-well heterostructures was probed by measurements of magnetic hyperfine shifts of gallium nuclei located in the quantum wells. The low temperature (50 mK Shankar(R. Shankar, cond-mat/9911288.).
Institute of Scientific and Technical Information of China (English)
葛培锦; 曲音波; 赵建
2006-01-01
对麦草二氧六环木素分别进行了1H-NMR、13C-NMR和2D-HMQC NMR光谱分析.研究结果表明:二维2D-HMQC NMR光谱技术可较好揭示麦草木素的结构特征,克服1H-NMR和 13C-NMR光谱的吸收峰重叠以及多糖的干扰问题.
Vibrational Properties of a Two-Dimensional Silica Kagome Lattice.
Björkman, Torbjörn; Skakalova, Viera; Kurasch, Simon; Kaiser, Ute; Meyer, Jannik C; Smet, Jurgen H; Krasheninnikov, Arkady V
2016-12-27
Kagome lattices are structures possessing fascinating magnetic and vibrational properties, but in spite of a large body of theoretical work, experimental realizations and investigations of their dynamics are scarce. Using a combination of Raman spectroscopy and density functional theory calculations, we study the vibrational properties of two-dimensional silica (2D-SiO2), which has a kagome lattice structure. We identify the signatures of crystalline and amorphous 2D-SiO2 structures in Raman spectra and show that, at finite temperatures, the stability of 2D-SiO2 lattice is strongly influenced by phonon-phonon interaction. Our results not only provide insights into the vibrational properties of 2D-SiO2 and kagome lattices in general but also suggest a quick nondestructive method to detect 2D-SiO2.
Emergent elemental two-dimensional materials beyond graphene
Zhang, Yuanbo; Rubio, Angel; Le Lay, Guy
2017-02-01
Two-dimensional (2D) materials may offer the ultimate scaling beyond the 5 nm gate length. The difficulty of reliably opening a band gap in graphene has led to the search for alternative, semiconducting 2D materials. Emerging classes of elemental 2D materials stand out for their compatibility with existing technologies and/or for their diverse, tunable electronic structures. Among this group, black phosphorene has recently shown superior semiconductor performances. Silicene and germanene feature Dirac-type band dispersions, much like graphene. Calculations show that most group IV and group V elements have one or more stable 2D allotropes, with properties potentially suitable for electronic and optoelectronic applications. Here, we review the advances in these fascinating elemental 2D materials and discuss progress and challenges in their applications in future opto- and nano-electronic devices.
Computationally Driven Two-Dimensional Materials Design: What Is Next?
Energy Technology Data Exchange (ETDEWEB)
Pan, Jie [Materials Science; Lany, Stephan [Materials Science; Qi, Yue [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
2017-07-17
Two-dimensional (2D) materials offer many key advantages to innovative applications, such as spintronics and quantum information processing. Theoretical computations have accelerated 2D materials design. In this issue of ACS Nano, Kumar et al. report that ferromagnetism can be achieved in functionalized nitride MXene based on first-principles calculations. Their computational results shed light on a potentially vast group of materials for the realization of 2D magnets. In this Perspective, we briefly summarize the promising properties of 2D materials and the role theory has played in predicting these properties. In addition, we discuss challenges and opportunities to boost the power of computation for the prediction of the 'structure-property-process (synthesizability)' relationship of 2D materials.
Classifying Two-dimensional Hyporeductive Triple Algebras
Issa, A Nourou
2010-01-01
Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.
Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis
Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J
2012-01-01
Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...
Moment-based method for computing the two-dimensional discrete Hartley transform
Dong, Zhifang; Wu, Jiasong; Shu, Huazhong
2009-10-01
In this paper, we present a fast algorithm for computing the two-dimensional (2-D) discrete Hartley transform (DHT). By using kernel transform and Taylor expansion, the 2-D DHT is approximated by a linear sum of 2-D geometric moments. This enables us to use the fast algorithms developed for computing the 2-D moments to efficiently calculate the 2-D DHT. The proposed method achieves a simple computational structure and is suitable to deal with any sequence lengths.
Two-dimensional function photonic crystals
Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu
2016-01-01
In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.
Phase-sensitive two-dimensional neutron shearing interferometer and Hartmann sensor
Energy Technology Data Exchange (ETDEWEB)
Baker, Kevin
2015-12-08
A neutron imaging system detects both the phase shift and absorption of neutrons passing through an object. The neutron imaging system is based on either of two different neutron wavefront sensor techniques: 2-D shearing interferometry and Hartmann wavefront sensing. Both approaches measure an entire two-dimensional neutron complex field, including its amplitude and phase. Each measures the full-field, two-dimensional phase gradients and, concomitantly, the two-dimensional amplitude mapping, requiring only a single measurement.
Comparative Two-Dimensional Fluorescence Gel Electrophoresis.
Ackermann, Doreen; König, Simone
2018-01-01
Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.
Development of Novel Two-dimensional Layers, Alloys and Heterostructures
Liu, Zheng
2015-03-01
The one-atom-think graphene has fantastic properties and attracted tremendous interests in these years, which opens a window towards various two-dimensional (2D) atomic layers. However, making large-size and high-quality 2D layers is still a great challenge. Using chemical vapor deposition (CVD) method, we have successfully synthesized a wide varieties of highly crystalline and large scale 2D atomic layers, including h-BN, metal dichalcogenides e.g. MoS2, WS2, CdS, GaSe and MoSe2 which belong to the family of binary 2D materials. Ternary 2D alloys including BCN and MoS2xSe2 (1 - x) are also prepared and characterized. In addition, synthesis of 2D heterostructures such as vertical and lateral graphene/h-BN, vertical and lateral TMDs are also demonstrated. Complementary to CVD grown 2D layers, 2D single-crystal (bulk) such as Phosphorene (P), WTe2, SnSe2, PtS2, PtSe2, PdSe2, WSe2xTe2 (1 - x), Ta2NiS5andTa2NiSe5 are also prepared by solid reactions. There work provide a better understanding of the atomic layered materials in terms of the synthesis, atomic structure, alloying and their physical properties. Potential applications of these 2D layers e.g. optoelectronic devices, energy device and smart coating have been explored.
А heuristic algorithm for two-dimensional strip packing problem
Dayong, Cao; Kotov, V.M.
2011-01-01
In this paper, we construct an improved best-fit heuristic algorithm for two-dimensional rectangular strip packing problem (2D-RSPP), and compare it with some heuristic and metaheuristic algorithms from literatures. The experimental results show that BFBCC could produce satisfied packing layouts than these methods, especially for the large problem of 50 items or more, BFBCC could get better results in shorter time.
Colloidal interactions in two-dimensional nematic emulsions
Indian Academy of Sciences (India)
N M Silvestre; P Patrício; M M Telo Da Gama
2005-06-01
We review theoretical and experimental work on colloidal interactions in two-dimensional (2D) nematic emulsions. We pay particular attention to the effects of (i) the nematic elastic constants, (ii) the size of the colloids, and (iii) the boundary conditions at the particles and the container. We consider the interactions between colloids and fluid (deformable) interfaces and the shape of fluid colloids in smectic-C films.
Xi, Caiping; Zhang, Shunning; Xiong, Gang; Zhao, Huichang
2016-07-01
Multifractal detrended fluctuation analysis (MFDFA) and multifractal detrended moving average (MFDMA) algorithm have been established as two important methods to estimate the multifractal spectrum of the one-dimensional random fractal signal. They have been generalized to deal with two-dimensional and higher-dimensional fractal signals. This paper gives a brief introduction of the two-dimensional multifractal detrended fluctuation analysis (2D-MFDFA) and two-dimensional multifractal detrended moving average (2D-MFDMA) algorithm, and a detailed description of the application of the two-dimensional fractal signal processing by using the two methods. By applying the 2D-MFDFA and 2D-MFDMA to the series generated from the two-dimensional multiplicative cascading process, we systematically do the comparative analysis to get the advantages, disadvantages and the applicabilities of the two algorithms for the first time from six aspects such as the similarities and differences of the algorithm models, the statistical accuracy, the sensitivities of the sample size, the selection of scaling range, the choice of the q-orders and the calculation amount. The results provide a valuable reference on how to choose the algorithm from 2D-MFDFA and 2D-MFDMA, and how to make the schemes of the parameter settings of the two algorithms when dealing with specific signals in practical applications.
Two-dimensional numerical assessment of the hydrodynamics of the Nile swamps in southern Sudan
National Research Council Canada - National Science Library
Petersen, G; Fohrer, N
2010-01-01
A two-dimensional (2D) hydrodynamic assessment of the Nile swamps in southern Sudan has been carried out using DHI MIKE 21 software based on a ground referenced and corrected Shuttle Radar Topography Mission (SRTM...
Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices.
Wang, Lei; Hu, Bambi; Li, Baowen
2012-10-01
Heat conduction in three two-dimensional (2D) momentum-conserving nonlinear lattices are numerically calculated via both nonequilibrium heat-bath and equilibrium Green-Kubo algorithms. It is expected by mainstream theories that heat conduction in such 2D lattices is divergent and the thermal conductivity κ increases with lattice length N logarithmically. Our simulations for the purely quartic lattice firmly confirm it. However, very robust finite-size effects are observed in the calculations for the other two lattices, which well explain some existing studies and imply the extreme difficulties in observing their true asymptotic behaviors with affordable computation resources.
Absolute band gaps in two-dimensional graphite photonic crystal
Institute of Scientific and Technical Information of China (English)
Gaoxin Qiu(仇高新); Fanglei Lin(林芳蕾); Hua Wang(王华); Yongping Li(李永平)
2003-01-01
The off-plane propagation of electromagnetic (EM) waves in a two-dimensional (2D) graphite photoniccrystal structure was studied using transfer matrix method. Transmission spectra calculations indicatethat such a 2D structure has a common band gap from 0.202 to 0.2035 c/a for both H and E polarizationsand for all off-plane angles form 0° up to 90°. The presence of such an absolute band gap implies that 2Dgraphite photonic crystal, which is much easier and more feasible to fabricate, can exhibit some propertiesof a three-dimensional (3D) photonic crystal.
Two-dimensional carbon fundamental properties, synthesis, characterization, and applications
Yihong, Wu; Ting, Yu
2013-01-01
After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC, chemical synthesis of graphene on metal, and chemical vapor deposition of vertically aligned carbon nanosheets or nanowalls. One chapter is dedicated to characterization of 2D nanocarbon using Raman spectroscopy. It provides extensive coverage for a
Band alignment of two-dimensional lateral heterostructures
Zhang, Junfeng; Xie, Weiyu; Zhang, S B
2016-01-01
Band alignment in two-dimensional (2D) lateral heterostructures is fundamentally different from three-dimensional (3D), as Schottky barrier height is at the Schottky-Mott limit and band offset is at the Anderson limit, regardless interfacial conditions. This robustness arises because, in the asymptotic limit, effect of interfacial dipole vanishes. First-principles calculations of graphene/h-BN and MoS2/WS2 show that 2D junction width W is typically an order of magnitude longer than 3D. Therefore, heterostructures with dimension less than W can also be made, leading to tunable band alignment.
A Direct Two-Dimensional Pressure Formulation in Molecular Dynamics
YD, Sumith
2016-01-01
Two-dimensional (2D) pressure field estimation in molecular dynamics (MD) simulations has been done using three-dimensional (3D) pressure field calculations followed by averaging, which is computationally expensive due to 3D convolutions. In this work, we develop a direct 2D pressure field estimation method which is much faster than 3D methods without losing accuracy. The method is validated with MD simulations on two systems: a liquid film and a cylindrical drop of argon suspended in surrounding vapor.
A Two-dimensional Magnetohydrodynamics Scheme for General Unstructured Grids
Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.
2007-05-01
We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALEs). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of divB by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for which multidimensional radiation magnetohydrodynamics (RMHD) is relevant.
Separation of colloidal two dimensional materials by density gradient ultracentrifugation
Energy Technology Data Exchange (ETDEWEB)
Kuang, Yun; Song, Sha [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Huang, Jinyang, E-mail: huangjy@mail.buct.edu.cn [Department of Mathematics, College of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Sun, Xiaoming, E-mail: sunxm@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)
2015-04-15
Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials. Isopycnic separation was applied on thickness-dependent separation of graphene nanosheets. And rate-zonal separation, as a more versatile separation method, demonstrated its capability in sorting nanosheets of chemically modified single layered graphene, layered double hydroxide, and even metallic Ag. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Graphical abstract: Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials according to their size of thickness difference. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Highlights: • Density gradient ultracentrifugation was applied on size separation of 2D material. • Isopycnic separation was applied on separation of low density materials. • Rate-zonal separation was applied on separation of large density materials. • Size
Hadamard States and Two-dimensional Gravity
Salehi, H
2001-01-01
We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.
Two-dimensional gallium nitride realized via graphene encapsulation
Al Balushi, Zakaria Y.; Wang, Ke; Ghosh, Ram Krishna; Vilá, Rafael A.; Eichfeld, Sarah M.; Caldwell, Joshua D.; Qin, Xiaoye; Lin, Yu-Chuan; Desario, Paul A.; Stone, Greg; Subramanian, Shruti; Paul, Dennis F.; Wallace, Robert M.; Datta, Suman; Redwing, Joan M.; Robinson, Joshua A.
2016-11-01
The spectrum of two-dimensional (2D) and layered materials `beyond graphene’ offers a remarkable platform to study new phenomena in condensed matter physics. Among these materials, layered hexagonal boron nitride (hBN), with its wide bandgap energy (~5.0-6.0 eV), has clearly established that 2D nitrides are key to advancing 2D devices. A gap, however, remains between the theoretical prediction of 2D nitrides `beyond hBN’ and experimental realization of such structures. Here we demonstrate the synthesis of 2D gallium nitride (GaN) via a migration-enhanced encapsulated growth (MEEG) technique utilizing epitaxial graphene. We theoretically predict and experimentally validate that the atomic structure of 2D GaN grown via MEEG is notably different from reported theory. Moreover, we establish that graphene plays a critical role in stabilizing the direct-bandgap (nearly 5.0 eV), 2D buckled structure. Our results provide a foundation for discovery and stabilization of 2D nitrides that are difficult to prepare via traditional synthesis.
A complete 1D and 2D NMR studies of variously substituted 3-azabicyclo[3.3.1]nonan-9-ones
Park, Dong Ho; Jeong, Yeon Tae; Parthiban, Paramasivam
2011-11-01
Variously substituted 3-azabicyclo[3.3.1]nonan-9-ones viz, 2,4-diaryl-3-azabicyclo[3.3.1]nonan-9-ones, 2,4-diaryl-1-methyl-3-azabicyclo[3.3.1]nonan-9-ones and 2,4-diaryl-7-methyl-3-azabicyclo[3.3.1]nonan-9-ones were conveniently synthesized by a modified and an optimized one-pot Mannich condensation of cyclohexanones, benzaldehydes and ammonium acetate in 1:2:1.5 M ratio. All the synthesized bicycles were examined by their physical and spectral (IR, HR-MS, 1H NMR and 13C NMR) techniques. In order to establish their unambiguous stereochemical assignments, H,H-COSY, HET-COSY, HMBC, NOESY and dynamic NMR investigations have been carried out for some of the representative compounds. The detailed NMR analysis proved that all the synthesized 3-azabicycles exist in a twin-chair conformation with an equatorial orientation of the substituents, regardless the incorporation of either linear or bulkier groups on the phenyl and/or methyl on the heterocycle or carbocycle. The electronic effects of methylation on the azabicycle as well as the ortho substitution on the phenyl provided some useful insights.
van der Waals epitaxy and photoresponse of two-dimensional CdSe plates
Zhu, Dan-Dan; Xia, Jing; Wang, Lei; Li, Xuan-Ze; Tian, Li-Feng; Meng, Xiang-Min
2016-06-01
Here we demonstrate the first growth of two-dimensional (2D) single-crystalline CdSe plates on mica substrates via van der Waals epitaxy. The as-synthesized 2D plates exhibit hexagonal, truncated triangular and triangular shapes with the lateral size around several microns. Photodetectors based on 2D CdSe plates present a fast response time of 24 ms, revealing that 2D CdSe is a promising building block for ultrathin optoelectronic devices.
Directory of Open Access Journals (Sweden)
Ming Zhou
2015-01-01
Full Text Available A novel algorithm is proposed for two-dimensional direction of arrival (2D-DOA estimation with uniform rectangular array using reduced-dimension propagator method (RD-PM. The proposed algorithm requires no eigenvalue decomposition of the covariance matrix of the receive data and simplifies two-dimensional global searching in two-dimensional PM (2D-PM to one-dimensional local searching. The complexity of the proposed algorithm is much lower than that of 2D-PM. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT algorithm and conventional PM algorithms, also very close to 2D-PM. The angle estimation error and Cramér-Rao bound (CRB are derived in this paper. Furthermore, the proposed algorithm can achieve automatically paired 2D-DOA estimation. The simulation results verify the effectiveness of the algorithm.
Two-dimensional nuclear magnetic resonance of quadrupolar systems
Energy Technology Data Exchange (ETDEWEB)
Wang, Shuanhu
1997-09-17
This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.
Strongly interacting two-dimensional Dirac fermions
Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.
2009-01-01
We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Interaction of two-dimensional magnetoexcitons
Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.
2017-04-01
We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .
Komatsu, Takanori; Ohishi, Risa; Shino, Amiu; Kikuchi, Jun
2016-05-10
Improved signal identification for biological small molecules (BSMs) in a mixture was demonstrated by using multidimensional NMR on samples from (13) C-enriched Rhododendron japonicum (59.5 atom%) cultivated in air containing (13) C-labeled carbon dioxide for 14 weeks. The resonance assignment of 386 carbon atoms and 380 hydrogen atoms in the mixture was achieved. 42 BSMs, including eight that were unlisted in the spectral databases, were identified. Comparisons between the experimental values and the (13) C chemical shift values calculated by density functional theory supported the identifications of unlisted BSMs. Tracing the (13) C/(12) C ratio by multidimensional NMR spectra revealed faster and slower turnover ratios of BSMs involved in central metabolism and those categorized as secondary metabolites, respectively. The identification of BSMs and subsequent flow analysis provided insight into the metabolic systems of the plant.
2-D Animation's Not Just for Mickey Mouse.
Weinman, Lynda
1995-01-01
Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)
Institute of Scientific and Technical Information of China (English)
Rong Zhang; Dan Wang; Wen-juan Wu
2013-01-01
All-atom molecular simulations and two-dimensional nuclear overhauser effect spectrum have been used to study the conformations of carnosine in aqueous solution.Intramolecular distances,root-mean-square deviation,radius of gyration,and solvent-accessible surface are used to characterize the properties of the carnosine.Carnosine can shift between extended and folded states,but exists mostly in extended state in water.Its preference for extension in pure water has been proven by the 2D nuclear magnetic resonance (NMR) experiment.The NMR experimental results are consistent with the molecular dynamics simulations.
A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy
Energy Technology Data Exchange (ETDEWEB)
El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens, E-mail: bredenbeck@biophysik.uni-frankfurt.org, E-mail: bredenbeck@biophysik.uni-frankfurt.de [Institut für Biophysik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt (Germany)
2015-08-15
A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.
Superfluid phase transition in two-dimensional excitonic systems
Energy Technology Data Exchange (ETDEWEB)
Apinyan, V.; Kopeć, T.K., E-mail: kopec@int.pan.wroc.pl
2014-03-01
We study the superfluid phase transition in the two-dimensional (2D) excitonic system. Employing the extended Falicov–Kimball model (EFKM) and considering the local quantum correlations in the system composed of conduction band electrons and valence band holes we demonstrate the existence of the excitonic insulator (EI) state in the system. We show that at very low temperatures, the particle phase stiffness in the pure-2D excitonic system, governed by the non-local cross correlations, is responsible for the vortex–antivortex binding phase-field state, known as the Berezinskii–Kosterlitz–Thouless (BKT) superfluid state. We demonstrate that the existence of excitonic insulator phase is a necessary prerequisite, leading to quasi-long-range order in the 2D excitonic system.
Two-dimensional electronic spectroscopy with birefringent wedges
Energy Technology Data Exchange (ETDEWEB)
Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2014-12-15
We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.
Nonlinear optical response of a two-dimensional atomic crystal.
Merano, Michele
2016-01-01
The theory of Bloembergen and Pershan for the light waves at the boundary of nonlinear media is extended to a nonlinear two-dimensional (2D) atomic crystal, i.e., a single planar atomic lattice, placed between linear bulk media. The crystal is treated as a zero-thickness interface, a real 2D system. Harmonic waves emanate from it. Generalization of the laws of reflection and refraction give the direction and the intensity of the harmonic waves. As a particular case that contains all the essential physical features, second-order harmonic generation is considered. The theory, due to its simplicity that stems from the special character of a single planar atomic lattice, is able to elucidate and explain the rich experimental details of harmonic generation from a 2D atomic crystal.
A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy
El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens
2015-08-01
A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs
Mannix, Andrew J.; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D.; Alducin, Diego; Myers, Benjamin D.; Liu, Xiaolong; Fisher, Brandon L.; Santiago, Ulises; Guest, Jeffrey R.; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R.; Hersam, Mark C.; Guisinger, Nathan P.
2016-01-01
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes.Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. PMID:26680195
Proximity Induced Superconducting Properties in One and Two Dimensional Semiconductors
DEFF Research Database (Denmark)
Kjærgaard, Morten
a voltage is passed through the Josephson junction, we observe multiple Andreev reflections and preliminary results point to a highly transmissive interface between the 2D electron gas and the superconductor. In the theoretical section we demonstrate analytically and numerically, that in a 1D nanowire......This report is concerned with the properties of one and two dimensional semiconducting materials when brought into contact with a superconductor. Experimentally we study the 2D electron gas in an InGaAs/InAs heterostructure with aluminum grown in situ on the surface, and theoretically we show...... that a superconducting 1D nanowire can harbor Majorana bound states in the absence of spin–orbit coupling. We fabricate and measure micrometer–sized mesoscopic devices demonstrating the inheritance of superconducting properties in the 2D electron gas. By placing a quantum point contact proximal to the interface between...
A renormalization group analysis of two-dimensional magnetohydrodynamic turbulence
Liang, Wenli Z.; Diamond, P. H.
1993-01-01
The renormalization group (RNG) method is used to study the physics of two-dimensional (2D) magnetohydrodynamic (MHD) turbulence. It is shown that, for a turbulent magnetofluid in two dimensions, no RNG transformation fixed point exists on account of the coexistence of energy transfer to small scales and mean-square magnetic flux transfer to large scales. The absence of a fixed point renders the RNG method incapable of describing the 2D MHD system. A similar conclusion is reached for 2D hydrodynamics, where enstrophy flows to small scales and energy to large scales. These analyses suggest that the applicability of the RNG method to turbulent systems is intrinsically limited, especially in the case of systems with dual-direction transfer.
Quasi-Two-Dimensional Magnetism in Co-Based Shandites
Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki
2016-06-01
We report quasi-two-dimensional (Q2D) itinerant electron magnetism in the layered Co-based shandites. Comprehensive magnetization measurements were performed using single crystals of Co3Sn2-xInxS2 (0 ≤ x ≤ 2) and Co3-yFeySn2S2 (0 ≤ y ≤ 0.5). The magnetic parameters of both systems; the Curie temperature TC, effective moment peff and spontaneous moment ps; exhibit almost identical variations against the In- and Fe-concentrations, indicating significance of the electron count on the magnetism in the Co-based shandite. The ferromagnetic-nonmagnetic quantum phase transition is found around xc ˜ 0.8. Analysis based on the extended Q2D spin fluctuation theory clearly reveals the highly Q2D itinerant electron character of the ferromagnetism in the Co-based shandites.
Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis
Energy Technology Data Exchange (ETDEWEB)
Erskine, D J; Smith, R F; Bolme, C; Celliers, P; Collins, G
2011-03-23
We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISAR optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.
Boisbouvier, Jérôme; Bryce, David L; O'neil-Cabello, Erin; Nikonowicz, Edward P; Bax, Ad
2004-11-01
New methods are described for accurate measurement of multiple residual dipolar couplings in nucleic acid bases. The methods use TROSY-type pulse sequences for optimizing resolution and sensitivity, and rely on the E.COSY principle to measure the relatively small two-bond (2)D(CH) couplings at high precision. Measurements are demonstrated for a 24-nt stem-loop RNA sequence, uniformly enriched in (13)C, and aligned in Pf1. The recently described pseudo-3D method is used to provide homonuclear (1)H-(1)H decoupling, which minimizes cross-correlation effects and optimizes resolution. Up to seven (1)H-(13)C and (13)C-(13)C couplings are measured for pyrimidines (U and C), including (1)D(C5H5), (1)D(C6H6), (2)D(C5H6), (2)D(C6H5), (1)D(C5C4), (1)D(C5C6), and (2)D(C4H5). For adenine, four base couplings ((1)D(C2H2), (1)D(C8H8), (1)D(C4C5), and (1)D(C5C6)) are readily measured whereas for guanine only three couplings are accessible at high relative accuracy ((1)D(C8H8), (1)D(C4C5), and (1)D(C5C6)). Only three dipolar couplings are linearly independent in planar structures such as nucleic acid bases, permitting cross validation of the data and evaluation of their accuracies. For the vast majority of dipolar couplings, the error is found to be less than +/-3% of their possible range, indicating that the measurement accuracy is not limiting when using these couplings as restraints in structure calculations. Reported isotropic values of the one- and two-bond J couplings cluster very tightly for each type of nucleotide.
Analysis of the IEA 2D test. 2D, 3D, steady or unsteady airflow?
DEFF Research Database (Denmark)
Cortes, Ines Olmedo; Nielsen, Peter V.
The “IEA Annex 20 two-dimensional test case” was defined by proffesor Peter V. Nielsen (1990) and was originally considered two-dimensional and steady flow. However, some recent works considering the case as three dimensional have shown different solutions from the 2D case as well as different so...
Extension of modified power method to two-dimensional problems
Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung
2016-09-01
In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. The stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem.
Dlugosch, Raphael; Günther, Thomas; Müller-Petke, Mike; Yaramanci, Ugur
2014-05-01
We present recent studies on the characterization of shallow aquifers using Nuclear Magnetic Resonance (NMR). NMR can help to gather detailed information about the water content and pore size related NMR relaxation time, of porous and water saturated material. The field application of surface NMR uses large wire loops placed at the surface of the Earth allows imaging the subsurface down to around hundred meters. First, a sophisticated inversion scheme is presented to simultaneously determine the two-dimensional (2D) distribution of the water content and the NMR relaxation time (T2*) in the subsurface from a surface NMR survey. The outstanding features of the new inversion scheme are its robustness to noisy data and the potential to distinguish aquifers of different lithology due to their specific NMR relaxation time. The successful application of the inversion scheme is demonstrated on two field cases both characterized by channel structures in the glacial sediments of Northern Germany. Second, we revise the prediction of hydraulic conductivity from NMR measurements for coarse-grained and unconsolidated sediments, commonly found in shallow aquifers. The presented Kozeny-Godefroy model replaces the empirical factors in known relations with physical, structural, and intrinsic NMR parameters. It additionally accounts for bulk water relaxation and is not limited to fast diffusion conditions. This improves the prediction of the hydraulic conductivity for clay-free sediments with grain sizes larger than medium sand. The model is validated by laboratory measurements on glass beads and sand samples. Combining the new inversion scheme and petrophysical model allows 2D imaging of the hydraulic conductivity in the subsurface from a surface NMR survey.
Two dimensional density and its fluctuation measurements by using phase imaging method in GAMMA 10
Energy Technology Data Exchange (ETDEWEB)
Yoshikawa, M.; Negishi, S.; Shima, Y.; Hojo, H.; Imai, T. [Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Mase, A. [Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Kogi, Y. [Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashiku, Fukuoka 811-0295 (Japan)
2010-10-15
Two dimensional (2D) plasma image analysis is useful to study the improvement of plasma confinement in magnetically confined fusion plasmas. We have constructed a 2D interferometer system with phase imaging method for studying 2D plasma density distribution and its fluctuation measurement in the tandem mirror GAMMA 10. 2D profiles of electron density and its fluctuation have been successfully obtained by using this 2D phase imaging system. We show that 2D plasma density and fluctuation profiles clearly depends on the axial confining potential formation with application of plug electron cyclotron heating in GAMMA 10.
Two-dimensional coupled electron-hole layers in high magnetic fields
Parlangeli, Andrea
2000-01-01
In solids, it is nowadays possible to create structures in which electrons are confined into a two-dimensional (2D) plane. The physics of a 2D electron gas (2DEG) has proved to be very rich, in particular in the presence of a transverse magnetic field. The Quantum Hall Effect, i.e. the quantization
Fang, Changming; Van Blaaderen, Alfons; Van Huis, Marijn A.
2015-01-01
Two-dimensional (2D) hydrous silica sheets (HSSs) and hydrous silica nanotubes (HSNTs) have many unique properties and potential applications. Although preparation of 2D HSSs was patented already about half a century ago, very little is known about their structure and physical properties. He we pred
Two-dimensional multiferroics in monolayer group IV monochalcogenides
Wang, Hua; Qian, Xiaofeng
2017-03-01
Low-dimensional multiferroic materials hold great promises in miniaturized device applications such as nanoscale transducers, actuators, sensors, photovoltaics, and nonvolatile memories. Here, using first-principles theory we predict that two-dimensional (2D) monolayer group IV monochalcogenides including GeS, GeSe, SnS, and SnSe are a class of 2D semiconducting multiferroics with giant strongly-coupled in-plane spontaneous ferroelectric polarization and spontaneous ferroelastic lattice strain that are thermodynamically stable at room temperature and beyond, and can be effectively modulated by elastic strain engineering. Their optical absorption spectra exhibit strong in-plane anisotropy with visible-spectrum excitonic gaps and sizable exciton binding energies, rendering the unique characteristics of low-dimensional semiconductors. More importantly, the predicted low domain wall energy and small migration barrier together with the coupled multiferroic order and anisotropic electronic structures suggest their great potentials for tunable multiferroic functional devices by manipulating external electrical, mechanical, and optical field to control the internal responses, and enable the development of four device concepts including 2D ferroelectric memory, 2D ferroelastic memory, and 2D ferroelastoelectric nonvolatile photonic memory as well as 2D ferroelectric excitonic photovoltaics.
On the critical behaviour of two-dimensional liquid crystals
Directory of Open Access Journals (Sweden)
A.l. Fariñas-Sánchez
2010-01-01
Full Text Available The Lebwohl-Lasher (LL model is the traditional model used to describe the nematic-isotropic transition of real liquid crystals. In this paper, we develop a numerical study of the temperature behaviour and of finite-size scaling of the two-dimensional (2D LL-model. We discuss two possible scenarios. In the first one, the 2D LL-model presents a phase transition similar to the topological transition appearing in the 2D XY-model. In the second one, the 2D LL-model does not exhibit any critical transition, but its low temperature behaviour is rather characterized by a crossover from a disordered phase to an ordered phase at zero temperature. We realize and discuss various comparisons with the 2D XY-model and the 2D Heisenberg model. Having added finite-size scaling behaviour of the order parameter and conformal mapping of order parameter profile to previous studies, we analyze the critical scaling of the probability distribution function, hyperscaling relations and stiffness order parameter and conclude that the second scenario (no critical transition is the most plausible.
Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials.
Blonsky, Michael N; Zhuang, Houlong L; Singh, Arunima K; Hennig, Richard G
2015-10-27
Two-dimensional (2D) materials present many unique materials concepts, including material properties that sometimes differ dramatically from those of their bulk counterparts. One of these properties, piezoelectricity, is important for micro- and nanoelectromechanical systems applications. Using symmetry analysis, we determine the independent piezoelectric coefficients for four groups of predicted and synthesized 2D materials. We calculate with density-functional perturbation theory the stiffness and piezoelectric tensors of these materials. We determine the in-plane piezoelectric coefficient d11 for 37 materials within the families of 2D metal dichalcogenides, metal oxides, and III-V semiconductor materials. A majority of the structures, including CrSe2, CrTe2, CaO, CdO, ZnO, and InN, have d11 coefficients greater than 5 pm/V, a typical value for bulk piezoelectric materials. Our symmetry analysis shows that buckled 2D materials exhibit an out-of-plane coefficient d31. We find that d31 for 8 III-V semiconductors ranges from 0.02 to 0.6 pm/V. From statistical analysis, we identify correlations between the piezoelectric coefficients and the electronic and structural properties of the 2D materials that elucidate the origin of the piezoelectricity. Among the 37 2D materials, CdO, ZnO, and CrTe2 stand out for their combination of large piezoelectric coefficient and low formation energy and are recommended for experimental exploration.
Soluble, Exfoliated Two-Dimensional Nanosheets as Excellent Aqueous Lubricants.
Zhang, Wenling; Cao, Yanlin; Tian, Pengyi; Guo, Fei; Tian, Yu; Zheng, Wen; Ji, Xuqiang; Liu, Jingquan
2016-11-30
Dispersion in water of two-dimensional (2D) nanosheets is conducive to their practical applications in fundamental science communities due to their abundance, low cost, and ecofriendliness. However, it is difficult to achieve stable aqueous 2D material suspensions because of the intrinsic hydrophobic properties of the layered materials. Here, we report an effective and economic way of producing various 2D nanosheets (h-BN, MoS2, MoSe2, WS2, and graphene) as aqueous dispersions using carbon quantum dots (CQDs) as exfoliation agents and stabilizers. The dispersion was prepared through a liquid phase exfoliation. The as-synthesized stable 2D nanosheets based dispersions were characterized by UV-vis, HRTEM, AFM, Raman, XPS, and XRD. The solutions based on CQD decorated 2D nanosheets were utilized as aqueous lubricants, which realized a friction coefficient as low as 0.02 and even achieved a superlubricity under certain working conditions. The excellent lubricating properties were attributed to the synergetic effects of the 2D nanosheets and CQDs, such as good dispersion stability and easy-sliding interlayer structure. This work thus proposes a novel strategy for the design and preparation of high-performance water based green lubricants.
Two Dimensional Plasmonic Cavities on Moire Surfaces
Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla
2010-03-01
We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.
Two-dimensional function photonic crystals
Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng
2017-01-01
In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.
Wang, Xin-Yuan; Li, Jia-Fu; Jian, Ya-Mei; Wu, Zhen; Fang, Mei-Juan; Qiu, Ying-Kun
2015-03-27
A new on-line comprehensive preparative two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography (2D NPLC × RPLC) system was developed for the separation of complicated natural products. It was based on the use of a silica gel packed medium-pressure column as the first dimension and an ODS preparative HPLC column as the second dimension. The two dimensions were connected with normal-phase (NP) and reversed-phase (RP) enrichment units, involving a newly developed airflow assisted adsorption (AAA) technique. The instrument operation and the performance of this NPLC × RPLC separation method were illustrated by gram-scale isolation of ethanol extract from the roots of Peucedanum praeruptorum. In total, 19 compounds with high purity were obtained via automated multi-step preparative separation in a short period of time using this system, and their structures were comprehensively characterized by ESI-MS, (1)H NMR, and (13)C NMR. Including two new compounds, five isomers in two groups with identical HPLC and TLC retention values were also obtained and identified by 1D NMR and 2D NMR. This is the first report of an NPLC × RPLC system successfully applied in an on-line preparative process. This system not only solved the interfacing problem of mobile-phase immiscibility caused by NP and RP separation, it also exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods.
Faux, D. A.; McDonald, P. J.; Howlett, N. C.
2017-03-01
Nuclear-magnetic-resonance (NMR) relaxation experimentation is an effective technique for nondestructively probing the dynamics of proton-bearing fluids in porous media. The frequency-dependent relaxation rate T1-1 can yield a wealth of information on the fluid dynamics within the pore provided data can be fit to a suitable spin diffusion model. A spin diffusion model yields the dipolar correlation function G (t ) describing the relative translational motion of pairs of 1H spins which then can be Fourier transformed to yield T1-1. G (t ) for spins confined to a quasi-two-dimensional (Q2D) pore of thickness h is determined using theoretical and Monte Carlo techniques. G (t ) shows a transition from three- to two-dimensional motion with the transition time proportional to h2. T1-1 is found to be independent of frequency over the range 0.01-100 MHz provided h ≳5 nm and increases with decreasing frequency and decreasing h for pores of thickness h <3 nm. T1-1 increases linearly with the bulk water diffusion correlation time τb allowing a simple and direct estimate of the bulk water diffusion coefficient from the high-frequency limit of T1-1 dispersion measurements in systems where the influence of paramagnetic impurities is negligible. Monte Carlo simulations of hydrated Q2D pores are executed for a range of surface-to-bulk desorption rates for a thin pore. G (t ) is found to decorrelate when spins move from the surface to the bulk, display three-dimensional properties at intermediate times, and finally show a bulk-mediated surface diffusion (Lévy) mechanism at longer times. The results may be used to interpret NMR relaxation rates in hydrated porous systems in which the paramagnetic impurity density is negligible.
通光藤皂苷B的2D—NMR研究%Study on the 2D-NMR spectrum of tenacissoside B
Institute of Scientific and Technical Information of China (English)
刘亚萍; 陆兔林
2008-01-01
目的 研究通光藤(Caulis Marsdeniae Tenacissimae)藤茎的化学成分.方法 用色谱方法 分离通光藤的乙醇提取物并用2D-NMR法鉴定一个C21甾体苷类化合物Ⅰ.结果 归属了该化合物的的全部核磁信号.结论 化合物Ⅰ的结构是通光藤皂苷B.
Suh, B J
2000-01-01
A comprehensive analysis of the sup 3 sup 5 Cl nuclear magnetic resonance (NMR) relaxation data in Sr sub 2 CuO sub 2 Cl sub 2 single crystals is presented. Both the spin-lattice relaxation rate, T sub 1 sup - sup 1 (=2W), and the spin-spin relaxation rate, T sub 2 sup - sup 1 , show a crossover of the spin dimensionality well above the Neel temperature T sub N. The crossover is due to easy-plane anisotropy and is apparently signaled by the partial suppression of the Cu sup 2 sup + spin fluctuations along the tetragonal c-axis. By analyzing 2W for H ll c in terms of the critical behavior of the spin correlation length, we estimate the temperature for the crossover of the Cu sup 2 sup + spin correlations from Heisenberg to XY-like behavior to be T approx =290 K.
Makatini, Maya M; Petzold, Katja; Alves, Cláudio Nahum; Arvidsson, Per I; Honarparvar, Bahareh; Govender, Patrick; Govender, Thavendran; Kruger, Hendrik G; Sayed, Yasien; JerônimoLameira; Maguire, Glenn E M; Soliman, Mahmoud E S
2013-02-01
In this study, eight non-natural peptides and peptoids incorporating the pentacycloundecane (PCU) lactam were designed and synthesized as potential inhibitors of the wild type C-SA HIV-protease. Five of these inhibitors gave IC(50) values ranging from 0.5 up to 0.75 µM against the resistance-prone wild type C-South African HIV-protease. NMR EASY-ROESY studies enabled us to describe the secondary structure of three of these compounds in solution. The 3D structures of the selected cage peptides were also modelled in solution using QM/MM/MD simulations. Satisfactory agreement between the NMR observations and the low energy calculated structures exists. Only one of these inhibitors (11 peptoid), which showed the best IC(50)(0.5 µM), exhibited a definable 3-D structure in solution. Autodock4 and AutodockVina were used to model the potential interaction between these inhibitors and the HIV-PR. It appears that the docking results are too crude to be correlated with the relative narrow range of experimental IC(50) values (0.5-10 µM). The PCU-peptides and peptoides were several orders less toxic (145 μM for 11 and 102 μM for 11 peptoid) to human MT-4 cells than lopinavir (0.025 μM). This is the first example of a polycyclic cage framework to be employed as an HIV-PR transition state analogue inhibitor and can potentially be utilized for other diseases related proteases. [Figure: see text].
Three-dimensional versus two-dimensional vision in laparoscopy
DEFF Research Database (Denmark)
Sørensen, Stine Maya Dreier; Savran, Mona M; Konge, Lars;
2016-01-01
BACKGROUND: Laparoscopic surgery is widely used, and results in accelerated patient recovery time and hospital stay were compared with laparotomy. However, laparoscopic surgery is more challenging compared with open surgery, in part because surgeons must operate in a three-dimensional (3D) space...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...
Complex Saddles in Two-dimensional Gauge Theory
Buividovich, P V; Valgushev, S N
2015-01-01
We study numerically the saddle point structure of two-dimensional (2D) lattice gauge theory, represented by the Gross-Witten-Wadia unitary matrix model. The saddle points are in general complex-valued, even though the original integration variables and action are real. We confirm the trans-series/instanton gas structure in the weak-coupling phase, and identify a new complex-saddle interpretation of non-perturbative effects in the strong-coupling phase. In both phases, eigenvalue tunneling refers to eigenvalues moving off the real interval, into the complex plane, and the weak-to-strong coupling phase transition is driven by saddle condensation.
Determination of the structure of [Nle7]-endothelin by 1H NMR.
Aumelas, A; Chiche, L; Mahe, E; Le-Nguyen, D; Sizun, P; Berthault, P; Perly, B
1991-04-01
[Nle7]-endothelin was synthesized and studied by 1H NMR and distance geometry calculations. The NMR study was performed first in DMSO-d6 and then in 50% acetonitrile/water since this peptide aggregates in pure water. In both cases, all spin systems were identified and assigned with the aid of two-dimensional spectroscopy (2D): COSY (for scalar couplings) and NOESY (for dipolar couplings). On the basis of the acetonitrile/water NMR parameters, and using the DISGEO program, a three-dimensional structure of [Nle7]-endothelin is proposed and discussed.
Two Dimensional Spatial Independent Component Analysis and Its Application in fMRI Data Process
Institute of Scientific and Technical Information of China (English)
CHEN Hua-fu; YAO De-zhong
2005-01-01
One important application of independent component analysis (ICA) is in image processing. A two dimensional (2-D) composite ICA algorithm framework for 2-D image independent component analysis (2-D ICA) is proposed. The 2-D nature of the algorithm provides it an advantage of circumventing the roundabout transforming procedures between two dimensional (2-D) image data and one-dimensional (1-D) signal. Moreover the combination of the Newton (fixed-point algorithm) and natural gradient algorithms in this composite algorithm increases its efficiency and robustness. The convincing results of a successful example in functional magnetic resonance imaging (fMRI) show the potential application of composite 2-D ICA in the brain activity detection.
NMR Structural Elucidation of Mogrol and Its Glycosides%应用2D NMR技术研究罗汉果醇及其苷的结构
Institute of Scientific and Technical Information of China (English)
杨秀伟; 张建业
2007-01-01
从传统中药罗汉果中分离得到一系列三萜皂苷类化合物,其苷元为罗汉果醇,应用1D和2D NMR脉冲梯度场反相技术(gCOSY,gNOESY,gHMQC,gHMBC)研究了罗汉果醇及其苷的结构,对其碳氢NMR信号进行了全归属,应用gNOESY技术研究了罗汉果醇的立体构型,并探讨了取代基对苷元质子和碳化学位移的影响.
Schmidt-Krey, Ingeborg; Rubinstein, John L.
2010-01-01
Membrane protein structure and function can be studied by two powerful and highly complementary electron cryomicroscopy (cryo-EM) methods: electron crystallography of two-dimensional (2D) crystals and single particle analysis of detergent-solubilized protein complexes. To obtain the highest-possible resolution data from membrane proteins, whether prepared as 2D crystals or single particles, cryo-EM samples must be vitrified with great care. Grid preparation for cryo-EM of 2D crystals is possi...
25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials.
Huang, Xiao; Tan, Chaoliang; Yin, Zongyou; Zhang, Hua
2014-04-09
Two-dimensional (2D) nanomaterials, such as graphene and transition metal dichalcogenides (TMDs), receive a lot of attention, because of their intriguing properties and wide applications in catalysis, energy-storage devices, electronics, optoelectronics, and so on. To further enhance the performance of their application, these 2D nanomaterials are hybridized with other functional nanostructures. In this review, the latest studies of 2D nanomaterial-based hybrid nanostructures are discussed, focusing on their preparation methods, properties, and applications.
Li, Kuiyong; Zhu, Wenya; Fu, Qing; Ke, Yanxiong; Jin, Yu; Liang, Xinmiao
2013-06-07
A comprehensive off-line two-dimensional liquid chromatography (2D-LC) method coupling normal phase liquid chromatography (NPLC) and reversed phase liquid chromatography (RPLC) was developed for separation and purification of amide alkaloids from Piper longum L. In the first dimension, the crude alkaloid fractions were separated in NPLC mode and 20 fractions were collected. Then fractions 5-20 were selected for further purification in RPLC mode in the second dimension. The purities of RPLC fractions with similar structures were all identified accurately by ultra performance liquid chromatography (UPLC). In total, 28 compounds with high purity were obtained and their structures were comprehensively characterized by electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy. The results demonstrate that this 2D NPLC × RPLC method with good orthogonality (58.3%) was effective for the preparative separation and purification of amide alkaloids from Piper longum L.
Jiang, Shujing; Liu, Qi; Xie, Yixi; Zeng, Hualiang; Zhang, Li; Jiang, Xinyu; Chen, Xiaoqing
2015-11-01
An off-line two dimensional (2D) high-speed counter-current chromatography (HSCCC) strategy was successfully used for preparative separation of five flavonoids from tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) grains with different solvent systems for the first time in this paper. n-Hexane-ethyl acetate-methanol-water 3:5:3:5 (v/v) was selected as the first dimension solvent system to purify quercetin (4) and kaempferol (5). The second dimension solvent system, ethyl acetate-n-butanol-water 7:3:10 (v/v), was used to isolate quercetin 3-O-rutinoside-3'-O-β-glucopyranoside (1), rutin (2) and kaempferol 3-rutinoside (3). The purities of these compounds were all above 96.0% and their structures were identified through UV, MS and (1)H NMR. The results indicated that the off-line 2D HSCCC is an efficient technique to isolate flavonoids compounds from grains.
Perspectives for spintronics in 2D materials
Directory of Open Access Journals (Sweden)
Wei Han
2016-03-01
Full Text Available The past decade has been especially creative for spintronics since the (rediscovery of various two dimensional (2D materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.
Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.
Aharon, Sigalit; Etgar, Lioz
2016-05-11
Organo-metal halide perovskite is an efficient light harvester in photovoltaic solar cells. Organometal halide perovskite is used mainly in its "bulk" form in the solar cell. Confined perovskite nanostructures could be a promising candidate for efficient optoelectronic devices, taking advantage of the superior bulk properties of organo-metal halide perovskite, as well as the nanoscale properties. In this paper, we present facile low-temperature synthesis of two-dimensional (2D) lead halide perovskite nanorods (NRs). These NRs show a shift to higher energies in the absorbance and in the photoluminescence compared to the bulk material, which supports their 2D structure. X-ray diffraction (XRD) analysis of the NRs demonstrates their 2D nature combined with the tetragonal 3D perovskite structure. In addition, by alternating the halide composition, we were able to tune the optical properties of the NRs. Fast Fourier transform, and electron diffraction show the tetragonal structure of these NRs. By varying the ligands ratio (e.g., octylammonium to oleic acid) in the synthesis, we were able to provide the formation mechanism of these novel 2D perovskite NRs. The 2D perovskite NRs are promising candidates for a variety of optoelectronic applications, such as light-emitting diodes, lasing, solar cells, and sensors.
Generalized non-separable two-dimensional Dammann encoding method
Yu, Junjie; Zhou, Changhe; Zhu, Linwei; Lu, Yancong; Wu, Jun; Jia, Wei
2017-01-01
We generalize for the first time, to the best of our knowledge, the Dammann encoding method into non-separable two-dimensional (2D) structures for designing various pure-phase Dammann encoding gratings (DEGs). For examples, three types of non-separable 2D DEGs, including non-separable binary Dammann vortex gratings, non-separable binary distorted Dammann gratings, and non-separable continuous-phase cubic gratings, are designed theoretically and demonstrated experimentally. Correspondingly, it is shown that 2D square arrays of optical vortices with topological charges proportional to the diffraction orders, focus spots shifting along both transversal and axial directions with equal spacings, and Airy-like beams with controllable orientation for each beam, are generated in symmetry or asymmetry by these three DEGs, respectively. Also, it is shown that a more complex-shaped array of modulated beams could be achieved by this non-separable 2D Dammann encoding method, which will be a big challenge for those conventional separable 2D Dammann encoding gratings. Furthermore, the diffractive efficiency of the gratings can be improved around ∼10% when the non-separable structure is applied, compared with their conventional separable counterparts. Such improvement in the efficiency should be of high significance for some specific applications.
Gate-induced superconductivity in two-dimensional atomic crystals
Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro
2016-09-01
Two-dimensional (2D) crystals are attracting growing interest in condensed matter physics, since these systems exhibit not only rich electronic and photonic properties but also exotic electronic phase transitions including superconductivity and charge density wave. Moreover, owing to the recent development of transfer methods after exfoliation and electric-double-layer transistors, superconducting 2D atomic crystals, the thicknesses of which are below 1-2 nm, have been successfully obtained. Here, we present a topical review on the recent discoveries of 2D crystalline superconductors by ionic-liquid gating and a series of their novel properties. In particular, we highlight two topics; quantum metallic states (or possible metallic ground states) and superconductivity robust against in-plane magnetic fields. These phenomena can be discussed with the effects of weakened disorder and/or broken spacial inversion symmetry leading to valley-dependent spin-momentum locking (spin-valley locking). These examples suggest the superconducting 2D crystals are new platforms for investigating the intrinsic quantum phases as well as exotic nature in 2D superconductors.
Band alignment of two-dimensional lateral heterostructures
Zhang, Junfeng; Xie, Weiyu; Zhao, Jijun; Zhang, Shengbai
2017-03-01
Recent experimental synthesis of two-dimensional (2D) heterostructures opens a door to new opportunities in tailoring the electronic properties for novel 2D devices. Here, we show that a wide range of lateral 2D heterostructures could have a prominent advantage over the traditional three-dimensional (3D) heterostructures, because their band alignments are insensitive to the interfacial conditions. They should be at the Schottky-Mott limits for semiconductor-metal junctions and at the Anderson limits for semiconductor junctions, respectively. This fundamental difference from the 3D heterostructures is rooted in the fact that, in the asymptotic limit of large distance, the effect of the interfacial dipole vanishes for 2D systems. Due to the slow decay of the dipole field and the dependence on the vacuum thickness, however, studies based on first-principles calculations often failed to reach such a conclusion. Taking graphene/hexagonal-BN and MoS2/WS2 lateral heterostructures as the respective prototypes, we show that the converged junction width can be order of magnitude longer than that for 3D junctions. The present results provide vital guidance to high-quality transport devices wherever a lateral 2D heterostructure is involved.
Two-Dimensional Tail-Biting Convolutional Codes
Alfandary, Liam
2011-01-01
The multidimensional convolutional codes are an extension of the notion of convolutional codes (CCs) to several dimensions of time. This paper explores the class of two-dimensional convolutional codes (2D CCs) and 2D tail-biting convolutional codes (2D TBCCs), in particular, from several aspects. First, we derive several basic algebraic properties of these codes, applying algebraic methods in order to find bijective encoders, create parity check matrices and to inverse encoders. Next, we discuss the minimum distance and weight distribution properties of these codes. Extending an existing tree-search algorithm to two dimensions, we apply it to find codes with high minimum distance. Word-error probability asymptotes for sample codes are given and compared with other codes. The results of this approach suggest that 2D TBCCs can perform better than comparable 1D TBCCs or other codes. We then present several novel iterative suboptimal algorithms for soft decoding 2D CCs, which are based on belief propagation. Two ...
Institute of Scientific and Technical Information of China (English)
黄俊; 胡元平; 宋樟伟; 杨炜宇; 徐瑞; 倪显达
2012-01-01
Objective To assess the left ventricular systolic function in patients with dilated cardiomyopathy ( DCM ) . Methods 35 healthy subjects and 39 dilated cardiomyopathy patients underwent conventional echocardiography examination. Left atrial ( LA) diameter were measured by M - mode echocardiography, left ventricular( LV) end - systolic volume, end - diastolic volume and left ventricular ejection fraction (LVEF) were calculated by bi -plane Simpson's method. The peak velocity during early diastole(Ve) and late diastole (Va) of anterior mitral valve were measured by pulse -waved doppler, and the ratio Ve/Va was calculated. We acquired the apical four - chamber, two - chamber and the long - axis views of the left ventricular images in these patients with GE - Vivid7 - dimension. Then the peak longitudinal velocity, strain and strain rate in systolic period were measured and recorded. Results The values of LAD, LVESV and LVEDV in DCM patients were significantly higher than those of healthy subjects (P 0. 05 ) . The peak velocity in systolic period of the base and middle LV segments in DCM patients were lower than those of the healthy subjects (P < 0. 05). The peak longitudinal strain and strain rate were significantly lower than healthy subjects (P < 0. 01). The peak velocity of the healthy subjects and the DCM patients were descent from the base to the apex. Conclusion The peak velocity, stain and strain rate of regional myocardial function in long - axis of left ventricular can be analyzed by 2D - STI, and it is a feasible technique for the assessment of cardiac longitudinal systolic function in DCM patients, and it can be widely used in the cardiac examination.%目的 评价二维斑点追踪成像技术(2D - STI)在扩张型心肌病(dilated cardiomyopathy,DCM)患者的左心室心肌纵向收缩功能应用价值.方法 对39例DCM患者和35例正常对照组行常规超声心动图检查得到左心房内径(LAD)、左心室射血分数(LVEF)、过二尖瓣口
Interpolation by two-dimensional cubic convolution
Shi, Jiazheng; Reichenbach, Stephen E.
2003-08-01
This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.
Epi-two-dimensional flow and generalized enstrophy
Yoshida, Zensho
2016-01-01
The conservation of the enstrophy ($L^2$ norm of the vorticity $\\omega$) plays an essential role in the physics and mathematics of two-dimensional (2D) Euler fluids. Generalizing to compressible ideal (inviscid and barotropic) fluids, the generalized enstrophy $\\int_{\\Sigma(t)} f(\\omega/\\rho)\\rho\\, d^2 x$, ($f$ an arbitrary smooth function, $\\rho$ the density, and $\\Sigma(t)$ an arbitrary 2D domain co-moving with the fluid) is a constant of motion, and plays the same role. On the other hand, for the three-dimensional (3D) ideal fluid, the helicity $\\int_{M} {V}\\cdot\\omega\\,d^3x$, ($V$ the flow velocity, $\\omega=\
Two-dimensional atom localization induced by a squeezed vacuum
Wang, Fei; Xu, Jun
2016-10-01
A scheme of two-dimensional (2D) atom localization induced by a squeezed vacuum is proposed, in which the three-level V-type atoms interact with two classical standing-wave fields. It is found that when the environment is changed from an ordinary vacuum to a squeezed vacuum, the 2D atom localization is realized by detecting the position-dependent resonance fluorescence spectrum. For comparison, we demonstrate that the atom localization originating from the quantum interference effect is distinct from that induced by a squeezed vacuum. Furthermore, the combined effects of the squeezed vacuum and quantum interference are also discussed under appropriate conditions. The internal physical mechanism is analyzed in terms of dressed-state representation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574179 and 11204099) and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFC1148).
Oriented Two-Dimensional Porous Organic Cage Crystals.
Jiang, Shan; Song, Qilei; Massey, Alan; Chong, Samantha Y; Chen, Linjiang; Sun, Shijing; Hasell, Tom; Raval, Rasmita; Sivaniah, Easan; Cheetham, Anthony K; Cooper, Andrew I
2017-08-01
The formation of two-dimensional (2D) oriented porous organic cage crystals (consisting of imine-based tetrahedral molecules) on various substrates (such as silicon wafers and glass) by solution-processing is reported. Insight into the crystallinity, preferred orientation, and cage crystal growth was obtained by experimental and computational techniques. For the first time, structural defects in porous molecular materials were observed directly and the defect concentration could be correlated with crystal growth rate. These oriented crystals suggest potential for future applications, such as solution-processable molecular crystalline 2D membranes for molecular separations. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Thermal conductivity of disordered two-dimensional binary alloys.
Zhou, Yang; Guo, Zhi-Xin; Cao, Hai-Yuan; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao
2016-10-20
Using non-equilibrium molecular dynamics simulations, we have studied the effect of disorder on the thermal conductivity of two-dimensional (2D) C1-xNx alloys. We find that the thermal conductivity not only depends on the substitution concentration of nitrogen, but also strongly depends on the disorder distribution. A general linear relationship is revealed between the thermal conductivity and the participation ratio of phonons in 2D alloys. Localization mode analysis further indicates that the thermal conductivity variation in the ordered alloys can be attributed to the number of inequivalent atoms. As for the disordered alloys, we find that the thermal conductivity variation can be described by a simple linear formula with the disorder degree and the substitution concentration. The present study suggests some general guidance for phonon manipulation and thermal engineering in low dimensional alloys.
Two-dimensional random arrays for real time volumetric imaging
DEFF Research Database (Denmark)
Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.
1994-01-01
Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...
Soliton nanoantennas in two-dimensional arrays of quantum dots
Gligorić, G; Hadžievski, Lj; Slepyan, G Ya; Malomed, B A
2015-01-01
We consider two-dimensional (2D) arrays of self-organized semiconductor quantum dots (QDs) strongly interacting with electromagnetic field in the regime of Rabi oscillations. The QD array built of two-level states is modelled by two coupled systems of discrete nonlinear Schr\\"{o}dinger equations. Localized modes in the form of single-peaked fundamental and vortical stationary Rabi solitons and self-trapped breathers have been found. The results for the stability, mobility and radiative properties of the Rabi modes suggest a concept of a self-assembled 2D \\textit{% soliton-based nano-antenna}, which should be stable against imperfections In particular, we discuss the implementation of such a nano-antenna in the form of surface plasmon solitons in graphene, and illustrate possibilities to control their operation by means of optical tools.
Design of two-dimensional digital filters using neural networks
Institute of Scientific and Technical Information of China (English)
Wang Xiaohua; He Yigang
2005-01-01
A new approach for the design of two-dimensional (2-D) linear phase FIR digital filters based on a new neural networks algorithm (NNA) is provided. A compact expression for the transfer function of a 2-D linear phase FIR filter is derived based on its frequency response characteristic, and the NNA, based on minimizing the square-error in the frequency-domain, is established according to the compact expression. To illustrate the stability of the NNA, the convergence theorem is presented and proved. Design examples are also given, and the results show that the ripple is considerably small in passband and stopband, and the NNA-based method is of powerful stability and requires quite little amount of computations.
Two-dimensional spatial patterning in developmental systems.
Torii, Keiko U
2012-08-01
Multicellular organisms produce complex tissues with specialized cell types. During animal development, numerous cell-cell interactions shape tissue patterning through mechanisms involving contact-dependent cell migration and ligand-receptor-mediated lateral inhibition. Owing to the presence of cell walls, plant cells neither migrate nor undergo apoptosis as a means to correct for mis-specified cells. How can plants generate functional tissue patterns? This review aims to deduce fundamental principles of pattern formation through examining two-dimensional (2-D) spatial tissue patterning in plants and animals. Turing's mathematical framework will be introduced and applied to classic examples of de novo 2-D patterning in both animal and plant systems. By comparing their regulatory circuits, new insights into the similarities and differences of the basic principles governing tissue patterning will be discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ultrabroadband two-quantum two-dimensional electronic spectroscopy
Gellen, Tobias A.; Bizimana, Laurie A.; Carbery, William P.; Breen, Ilana; Turner, Daniel B.
2016-08-01
A recent theoretical study proposed that two-quantum (2Q) two-dimensional (2D) electronic spectroscopy should be a background-free probe of post-Hartree-Fock electronic correlations. Testing this theoretical prediction requires an instrument capable of not only detecting multiple transitions among molecular excited states but also distinguishing molecular 2Q signals from nonresonant response. Herein we describe a 2Q 2D spectrometer with a spectral range of 300 nm that is passively phase stable and uses only beamsplitters and mirrors. We developed and implemented a dual-chopping balanced-detection method to resolve the weak molecular 2Q signals. Experiments performed on cresyl violet perchlorate and rhodamine 6G revealed distinct 2Q signals convolved with nonresonant response. Density functional theory computations helped reveal the molecular origin of these signals. The experimental and computational results demonstrate that 2Q electronic spectra can provide a singular probe of highly excited electronic states.
Two-Dimensional Hexagonal Transition-Metal Oxide for Spintronics.
Kan, Erjun; Li, Ming; Hu, Shuanglin; Xiao, Chuanyun; Xiang, Hongjun; Deng, Kaiming
2013-04-04
Two-dimensional materials have been the hot subject of studies due to their great potential in applications. However, their applications in spintronics have been blocked by the difficulty in producing ordered spin structures in 2D structures. Here we demonstrated that the ultrathin films of recently experimentally realized wurtzite MnO can automatically transform into a stable graphitic structure with ordered spin arrangement via density functional calculation, and the stability of graphitic structure can be enhanced by external strain. Moreover, the antiferromagnetic ordering of graphitic MnO single layer can be switched into half-metallic ferromagnetism by small hole-doping, and the estimated Curie temperature is higher than 300 K. Thus, our results highlight a promising way toward 2D magnetic materials.
Review—Two-Dimensional Layered Materials for Energy Storage Applications
Kumar, Pushpendra
2016-07-02
Rechargeable batteries are most important energy storage devices in modern society with the rapid development and increasing demand for handy electronic devices and electric vehicles. The higher surface-to-volume ratio two-dimensional (2D) materials, especially transition metal dichalcogenides (TMDCs) and transition metal carbide/nitrite generally referred as MXene, have attracted intensive research activities due to their fascinating physical/chemical properties with extensive applications. One of the growing applications is to use these 2D materials as potential electrodes for rechargeable batteries and electrochemical capacitors. This review is an attempt to summarize the research and development of TMDCs, MXenes and their hybrid structures in energy storage systems. (C) The Author(s) 2016. Published by ECS. All rights reserved.
TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION
Energy Technology Data Exchange (ETDEWEB)
Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)
2015-11-20
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.
Two dimensional topology of cosmological reionization
Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan
2015-01-01
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.
On final states of two-dimensional decaying turbulence
Yin, Z.
2004-12-01
Numerical and analytical studies of final states of two-dimensional (2D) decaying turbulence are carried out. The first part of this work is trying to give a definition for final states of 2D decaying turbulence. The functional relation of ω-ψ, which is frequently adopted as the characterization of those final states, is merely a sufficient but not necessary condition; moreover, it is not proper to use it as the definition. It is found that the method through the value of the effective area S covered by the scatter ω-ψ plot, initially suggested by Read, Rhines, and White ["Geostrophic scatter diagrams and potential vorticity dynamics," J. Atmos. Sci. 43, 3226 (1986)] is more general and suitable for the definition. Based on this concept, a definition is presented, which covers all existing results in late states of decaying 2D flows (including some previous unexplainable weird double-valued ω-ψ scatter plots). The remaining part of the paper is trying to further study 2D decaying turbulence with the assistance of this definition. Some numerical results, leading to "bar" final states and further verifying the predictive ability of statistical mechanics [Yin, Montgomery, and Clercx, "Alternative statistical-mechanical descriptions of decaying two-dimensional turbulence in terms of patches and points," Phys. Fluids 15, 1937 (2003)], are reported. It is realized that some simulations with narrow-band energy spectral initial conditions result in some final states that cannot be very well interpreted by the statistical theory (meanwhile, those final states are still in the scope of the definition).
Materials synthesis: Two-dimensional gallium nitride
Koratkar, Nikhil A.
2016-11-01
Graphene is used as a capping sheet to synthesize 2D gallium nitride by means of migration-enhanced encapsulation growth. This technique may allow the stabilization of 2D materials that are not amenable to synthesis by traditional methods.
Rabahi, Amal; Hamdi, Safouane M.; Rachedi, Yahia; Hamdi, Maamar; Talhi, Oualid; Almeida Paz, Filipe A.; Silva, Artur S. M.; Fadila, Balegroune; Malika, Hamadène; Kamel, Taïbi
2014-03-01
The synthesis of 1,5-benzodiazepines by the reaction of o-phenylenediamines (o-PDAs) with dehydroacetic acid DHAA [3-acetyl-4-hydroxy-6-methyl-2H-pyran-2-one] or conjugate analogues is largely reported in the literature, but still with uncontrolled stereochemistry. In this work, a comprehensive mechanistic study on the formation of some synthesized 1,5-benzodiazepine models following different organic routes is established based on liquid-state 2D NMR, single-crystal X-ray diffraction and theoretical calculations allowing the classification of two prototropic forms A (enaminopyran-2,4-dione) and B (imino-4-hydroxypyran-2-one). Evidences are presented to show that most of the reported 1,5-benzodiazepine structures arising from DHAA and derivatives preferentially adopt the (E)-enaminopyran-2,4-diones A.
Atom-Based Geometrical Fingerprinting of Conformal Two-Dimensional Materials
Mehboudi, Mehrshad
The shape of two-dimensional materials plays a significant role on their chemical and physical properties. Two-dimensional materials are basic meshes that are formed by mesh points (vertices) given by atomic positions, and connecting lines (edges) between points given by chemical bonds. Therefore the study of local shape and geometry of two-dimensional materials is a fundamental prerequisite to investigate physical and chemical properties. Hereby the use of discrete geometry to discuss the shape of two-dimensional materials is initiated. The local geometry of a surface embodied in 3D space is determined using four invariant numbers from the metric and curvature tensors which indicates how much the surface is stretched and curved under a deformation as compared to a reference pre-deformed conformation. Many different disciplines advance theories on conformal two-dimensional materials by relying on continuum mechanics and fitting continuum surfaces to the shape of conformal two-dimensional materials. However two-dimensional materials are inherently discrete. The continuum models are only applicable when the size of two-dimensional materials is significantly large and the deformation is less than a few percent. In this research, the knowledge of discrete differential geometry was used to tell the local shape of conformal two-dimensional materials. Three kind of two-dimensional materials are discussed: 1) one atom thickness structures such as graphene and hexagonal boron nitride; 2) high and low buckled 2D meshes like stanene, leadene, aluminum phosphate; and, 3) multi layer 2D materials such as Bi2Se3 and WSe2. The lattice structures of these materials were created by designing a mechanical model - the mechanical model was devised in the form of a Gaussian bump and density-functional theory was used to inform the local height; and, the local geometries are also discussed.
Image interpolation by two-dimensional parametric cubic convolution.
Shi, Jiazheng; Reichenbach, Stephen E
2006-07-01
Cubic convolution is a popular method for image interpolation. Traditionally, the piecewise-cubic kernel has been derived in one dimension with one parameter and applied to two-dimensional (2-D) images in a separable fashion. However, images typically are statistically nonseparable, which motivates this investigation of nonseparable cubic convolution. This paper derives two new nonseparable, 2-D cubic-convolution kernels. The first kernel, with three parameters (designated 2D-3PCC), is the most general 2-D, piecewise-cubic interpolator defined on [-2, 2] x [-2, 2] with constraints for biaxial symmetry, diagonal (or 90 degrees rotational) symmetry, continuity, and smoothness. The second kernel, with five parameters (designated 2D-5PCC), relaxes the constraint of diagonal symmetry, based on the observation that many images have rotationally asymmetric statistical properties. This paper also develops a closed-form solution for determining the optimal parameter values for parametric cubic-convolution kernels with respect to ensembles of scenes characterized by autocorrelation (or power spectrum). This solution establishes a practical foundation for adaptive interpolation based on local autocorrelation estimates. Quantitative fidelity analyses and visual experiments indicate that these new methods can outperform several popular interpolation methods. An analysis of the error budgets for reconstruction error associated with blurring and aliasing illustrates that the methods improve interpolation fidelity for images with aliased components. For images with little or no aliasing, the methods yield results similar to other popular methods. Both 2D-3PCC and 2D-5PCC are low-order polynomials with small spatial support and so are easy to implement and efficient to apply.
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong
2016-12-01
The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.
Towards two-dimensional search engines
Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...
Brus, J; Czernek, J; Urbanova, M; Kobera, L; Jegorov, A
2016-12-21
The difficulty in the prediction of the complicated solid-state structure of boronic acid derivatives, resulting from the complex pathway of reversible covalent interactions, represents a significant obstacle to the development of a new generation of advanced supramolecular systems such as covalent organic frameworks of efficient anticancer drugs. In this contribution, various 2D (11)B-(11)B solid-state NMR correlation techniques supported by DFT calculations were explored to formulate a reliable tool for monitoring the covalent assembly of boronic acid residues in the solid state. This way, the self-condensation of bortezomib molecules was investigated, different local constitutions of boroxine motifs were unveiled, and the previously unreported boroxine structures of bortezomib polymorphs exhibiting secondary coordination were discovered and described in detail. The recorded (11)B NMR parameters responded sensitively to subtle changes in the local geometries, which were reliably interpreted and directly visualized by the DFT calculations. A uniform 2.6 Å distance in bortezomib (11)B-(11)B spin pairs was conclusively identified by the through-space (11)B-(11)B double-quantum (DQ) coherence build-up curves, whereas distinct 2D (11)B-(11)B DQ correlation patterns revealed unique boroxine structures existing in the crystalline as well as amorphous state. The boroxine rings were found to be internally stabilized through the transformation of the trigonal boron sites toward tetrahedral geometry, as the secondary five-membered rings were formed. This way, the nature of bortezomib polymorphism is disclosed, and an efficient strategy for exploring the assembly of boronic acid derivatives in the solid state, for which no crystallographic data are available, is thus demonstrated.
The two dimensional fold test in paleomagnetism using ipython notebook
Setiabudidaya, Dedi; Piper, John D. A.
2016-01-01
One aspect of paleomagnetic analysis prone to controversy is the result of the fold test used to evaluate the age of a magnetisation component relative to the age of a structural event. Initially, the fold test was conducted by comparing the Fisherian precision parameter (k) to results from different limbs of a fold structure before and after tilt adjustment. To accommodate synfolding magnetisation, the tilt correction can be performed in stepwise fashion to both limbs simultaneously, here called one dimensional (1D) fold test. The two dimensional (2D) fold test described in this paper is carried out by applying stepwise tilt adjustment to each limb of the fold separately. The rationale for this is that tilts observed on contrasting limbs of deformed structure may not be synchronous or even belong to the same episode of deformation. A program for the procedure is presented here which generates two dimensional values of the k-parameter visually presented in contoured form. The use of ipython notebook enables this 2D fold test to be performed interactively and yield a more precise evaluation than the primitive 1D fold test.
Comprehensive two-dimensional liquid chromatographic analysis of poloxamers.
Malik, Muhammad Imran; Lee, Sanghoon; Chang, Taihyun
2016-04-15
Poloxamers are low molar mass triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), having number of applications as non-ionic surfactants. Comprehensive one and two-dimensional liquid chromatographic (LC) analysis of these materials is proposed in this study. The separation of oligomers of both types (PEO and PPO) is demonstrated for several commercial poloxamers. This is accomplished at the critical conditions for one of the block while interaction for the other block. Reversed phase LC at CAP of PEO allowed for oligomeric separation of triblock copolymers with regard to PPO block whereas normal phase LC at CAP of PPO renders oligomeric separation with respect to PEO block. The oligomeric separation with regard to PEO and PPO are coupled online (comprehensive 2D-LC) to reveal two-dimensional contour plots by unconventional 2D IC×IC (interaction chromatography) coupling. The study provides chemical composition mapping of both PEO and PPO, equivalent to combined molar mass and chemical composition mapping for several commercial poloxamers.
Two dimensional IR-FID-CPMG acquisition and adaptation of a maximum entropy reconstruction
Rondeau-Mouro, C.; Kovrlija, R.; Van Steenberge, E.; Moussaoui, S.
2016-04-01
By acquiring the FID signal in two-dimensional TD-NMR spectroscopy, it is possible to characterize mixtures or complex samples composed of solid and liquid phases. We have developed a new sequence for this purpose, called IR-FID-CPMG, making it possible to correlate spin-lattice T1 and spin-spin T2 relaxation times, including both liquid and solid phases in samples. We demonstrate here the potential of a new algorithm for the 2D inverse Laplace transformation of IR-FID-CPMG data based on an adapted reconstruction of the maximum entropy method, combining the standard decreasing exponential decay function with an additional term drawn from Abragam's FID function. The results show that the proposed IR-FID-CPMG sequence and its related inversion model allow accurate characterization and quantification of both solid and liquid phases in multiphasic and compartmentalized systems. Moreover, it permits to distinguish between solid phases having different T1 relaxation times or to highlight cross-relaxation phenomena.
Analysis of human urine metabolites using SPE and NMR spectroscopy
Institute of Scientific and Technical Information of China (English)
2008-01-01
Nuclear magnetic resonance (NMR) spectroscopic analysis of metabonome/metabolome has widespread applications in biomedical science researches. However, most of NMR resonances for urinary metabolites remain to be fully assigned. In the present study, human urine samples from two healthy volunteers were pre-treated with C18 solid-phase extraction and the resultant 5 sub-fractions were subjected to one- and two-dimensional NMR studies, including 1H J-Resolved, 1H-1H COSY, 1H-1H TOCSY, 1H-13C HSQC, and HMBC 2D NMR. More than 70 low molecular weight metabolites were identified, and complete assignments of 1H and 13C resonances including many complex coupled spin systems were obtained.
Kronecker Product of Two-dimensional Arrays
Institute of Scientific and Technical Information of China (English)
Lei Hu
2006-01-01
Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.
Two-Dimensional Toda-Heisenberg Lattice
Directory of Open Access Journals (Sweden)
Vadim E. Vekslerchik
2013-06-01
Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.
A novel two dimensional particle velocity sensor
Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.
2013-01-01
In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Two-dimensional magma-repository interactions
Bokhove, O.
2001-01-01
Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of
Performance Estimation for Two-Dimensional Brownian Rotary Ratchet Systems
Tutu, Hiroki; Horita, Takehiko; Ouchi, Katsuya
2015-04-01
Within the context of the Brownian ratchet model, a molecular rotary system that can perform unidirectional rotations induced by linearly polarized ac fields and produce positive work under loads was studied. The model is based on the Langevin equation for a particle in a two-dimensional (2D) three-tooth ratchet potential of threefold symmetry. The performance of the system is characterized by the coercive torque, i.e., the strength of the load competing with the torque induced by the ac driving field, and the energy efficiency in force conversion from the driving field to the torque. We propose a master equation for coarse-grained states, which takes into account the boundary motion between states, and develop a kinetic description to estimate the mean angular momentum (MAM) and powers relevant to the energy balance equation. The framework of analysis incorporates several 2D characteristics and is applicable to a wide class of models of smooth 2D ratchet potential. We confirm that the obtained expressions for MAM, power, and efficiency of the model can enable us to predict qualitative behaviors. We also discuss the usefulness of the torque/power relationship for experimental analyses, and propose a characteristic for 2D ratchet systems.
Filtering and control for classes of two-dimensional systems
Wu, Ligang
2015-01-01
This book focuses on filtering, control and model-reduction problems for two-dimensional (2-D) systems with imperfect information. The time-delayed 2-D systems covered have system parameters subject to uncertain, stochastic and parameter-varying changes. After an initial introduction of 2-D systems and the ideas of linear repetitive processes, the text is divided into two parts detailing: · general theory and methods of analysis and optimal synthesis for 2-D systems; and · application of the general theory to the particular case of differential/discrete linear repetitive processes. The methods developed provide a framework for stability and performance analysis, optimal and robust controller and filter design and model approximation for the systems considered. Solutions to the design problems are couched in terms of linear matrix inequalities. For readers interested in the state of the art in linear filtering, control and model reduction, Filtering and Control for Classes of ...
Two-dimensional state in driven magnetohydrodynamic turbulence.
Bigot, Barbara; Galtier, Sébastien
2011-02-01
The dynamics of the two-dimensional (2D) state in driven three-dimensional (3D) incompressible magnetohydrodynamic turbulence is investigated through high-resolution direct numerical simulations and in the presence of an external magnetic field at various intensities. For such a flow the 2D state (or slow mode) and the 3D modes correspond, respectively, to spectral fluctuations in the plane k(∥)=0 and in the area k(∥)>0. It is shown that if initially the 2D state is set to zero it becomes nonnegligible in few turnover times, particularly when the external magnetic field is strong. The maintenance of a large-scale driving leads to a break for the energy spectra of 3D modes; when the driving is stopped, the previous break is removed and a decay phase emerges with Alfvénic fluctuations. For a strong external magnetic field the energy at large perpendicular scales lies mainly in the 2D state, and in all situations a pinning effect is observed at small scales.
Two dimensional electron spin resonance: Structure and dynamics of biomolecules
Saxena, Sunil; Freed, Jack H.
1998-03-01
The potential of two dimensional (2D) electron spin resonance (ESR) for measuring the structural properties and slow dynamics of labeled biomolecules will be presented. Specifically, it will be shown how the recently developed method of double quantum (DQ) 2D ESR (S. Saxena and J. H. Freed, J. Chem. Phys. 107), 1317, (1997) can be used to measure large interelectron distances in bilabeled peptides. The need for DQ ESR spectroscopy, as well as the challenges and advantages of this method will be discussed. The elucidation of the slow reorientational dynamics of this peptide (S. Saxena and J. H. Freed, J. Phys. Chem. A, 101) 7998 (1997) in a glassy medium using COSY and 2D ELDOR ESR spectroscopy will be demonstrated. The contributions to the homogeneous relaxation time, T_2, from the overall and/or internal rotations of the nitroxide can be distinguished from the COSY spectrum. The growth of spectral diffusion cross-peaks^2 with mixing time in the 2D ELDOR spectra can be used to directly determine a correlation time from the experiment which can be related to the rotational correlation time.
Low-cost two-dimensional gel densitometry.
Levenson, R M; Maytin, E V; Young, D A
1986-11-01
A major obstacle to full utilization of the powerful technique of two-dimensional (2-D) gel electrophoresis is the expense and complexity of quantifying the results. Using an analog-to-digital converter already present in the widely available Commodore 64 or Commodore 128 microcomputer, we have developed a 2-D gel densitometer (GELSCAN) which adds only $20.00 to the cost of the Commodore system (currently around $700.00). The system is designed to work with autoradiograms of 2-D gels. Spots of interest are identified visually and then positioned manually over a light source. A pinhole photoelectric sensor mounted in a hand-held, Plexiglas holder, or "mouse," is briefly rubbed over each spot. Maximum density of the spot is determined and its value is converted to counts per minute via an internal calibration curve which corrects for the nonlinear response of film to radiation. Local spot backgrounds can be subtracted and values can be normalized between gels to adjust for variation in amount of radioactivity applied or in exposure time. Reproducibility is excellent and the technique has some practical as well as theoretical advantages over other more complicated approaches to 2-D gel densitometry. In addition, the GELSCAN system can also be used for scanning individual bands in 1-D gels, quantitation of "dot-blot" autoradiograms and other tasks involving transmission densitometry.
Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects.
Liu, Yuanyue; Xiao, Hai; Goddard, William A
2016-05-11
Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gap states. We show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them.
Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence
Shebalin, John V.
2010-01-01
Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures
Photonics and optoelectronics of two-dimensional materials beyond graphene
Ponraj, Joice Sophia; Xu, Zai-Quan; Chander Dhanabalan, Sathish; Mu, Haoran; Wang, Yusheng; Yuan, Jian; Li, Pengfei; Thakur, Siddharatha; Ashrafi, Mursal; Mccoubrey, Kenneth; Zhang, Yupeng; Li, Shaojuan; Zhang, Han; Bao, Qiaoliang
2016-11-01
Apart from conventional materials, the study of two-dimensional (2D) materials has emerged as a significant field of study for a variety of applications. Graphene-like 2D materials are important elements of potential optoelectronics applications due to their exceptional electronic and optical properties. The processing of these materials towards the realization of devices has been one of the main motivations for the recent development of photonics and optoelectronics. The recent progress in photonic devices based on graphene-like 2D materials, especially topological insulators (TIs) and transition metal dichalcogenides (TMDs) with the methodology level discussions from the viewpoint of state-of-the-art designs in device geometry and materials are detailed in this review. We have started the article with an overview of the electronic properties and continued by highlighting their linear and nonlinear optical properties. The production of TIs and TMDs by different methods is detailed. The following main applications focused towards device fabrication are elaborated: (1) photodetectors, (2) photovoltaic devices, (3) light-emitting devices, (4) flexible devices and (5) laser applications. The possibility of employing these 2D materials in different fields is also suggested based on their properties in the prospective part. This review will not only greatly complement the detailed knowledge of the device physics of these materials, but also provide contemporary perception for the researchers who wish to consider these materials for various applications by following the path of graphene.
Energy Technology Data Exchange (ETDEWEB)
Soubias, O.; Saurel, O.; Reat, V.; Milon, A. [Institut de Pharmacologie et de Biologie Structurale (France)], E-mail: alain.milon@ipbs.fr
2002-09-15
{sup 13}C NMR spectra routinely performed on oriented lipid bilayers display linewidth of 1-2 ppm, although T{sub 2} measurements indicate that 0.1-0.2 ppm could be obtained. We have prepared a DMPC - {sup 13}C{sub 4}-cholesterol (7/3) sample, and oriented the lipid bilayers between glass plates so that the bilayer normal makes an angle of 90 deg. (or of the magic angle) with B{sub 0}. We have measured T{sub 2}s, CSAs, and linewidths for the choline {sup 13}C-{gamma}-methyl, the cholesterol-C{sub 4} carbons and the lipid head group phosphorus, at both angles and 313 K. The magnetic field distribution within the sample was calculated using the surface current formalism. The line shapes were simulated as a function of B{sub 0} field inhomogeneities and sample mosaic spread. Both effects contribute to the experimental linewidth. Using three signals of different CSA, we have quantified both contributions and measured the mosaic spread accurately. Direct shimming on a sample signal is essential to obtain sharp resonances and {sup 13}C labelled choline methyl resonance of DMPC is a good candidate for this task. After optimisation of the important parameters (shimming on the choline resonance, mosaic spread of {+-} 0.30 deg.), {sup 13}C linewidth of 0.2-0.3 ppm have been obtained. This newly achieved resolution on bilayers oriented at 90 deg., has allowed to perform two 2D experiments, with a good sensitivity: 2D PELF (correlation of carbon chemical shifts and C-H dipolar couplings) and 2D D-resolved experiment (correlation of carbon chemical shifts and C-C dipolar couplings). A C-C dipolar coupling of 35 {+-} 2 Hz between the choline methyl carbons was determined.
Anisotropic dielectric properties of two-dimensional matrix in pseudo-spin ferroelectric system
Kim, Se-Hun
2016-10-01
The anisotropic dielectric properties of a two-dimensional (2D) ferroelectric system were studied using the statistical calculation of the pseudo-spin Ising Hamiltonian model. It is necessary to delay the time for measurements of the observable and the independence of the new spin configuration under Monte Carlo sampling, in which the thermal equilibrium state depends on the temperature and size of the system. The autocorrelation time constants of the normalized relaxation function were determined by taking temperature and 2D lattice size into account. We discuss the dielectric constants of a two-dimensional ferroelectric system by using the Metropolis method in view of the Slater-Takagi defect energies.
Non-Linear Non Stationary Analysis of Two-Dimensional Time-Series Applied to GRACE Data Project
National Aeronautics and Space Administration — The proposed innovative two-dimensional (2D) adaptive analysis will be tested NASA's Gravity Recovery and Climate Experiment (GRACE) mission database in phase I in...
Non-Linear Non Stationary Analysis of Two-Dimensional Time-Series Applied to GRACE Data Project
National Aeronautics and Space Administration — The proposed innovative two-dimensional (2D) empirical mode decomposition (EMD) analysis was applied to NASA's Gravity Recovery and Climate Experiment (GRACE)...
Students from an upper-division undergraduate spectroscopy class analyzed one- and two-dimensional 400 MHz NMR spectroscopic data from triclosan in CDCl3. Guided assignment of all proton and carbon signals was completed via 1D proton and carbon, nuclear Overhauser effect (nOe), distortionless enhanc...
Two-dimensional graphene analogues for biomedical applications.
Chen, Yu; Tan, Chaoliang; Zhang, Hua; Wang, Lianzhou
2015-05-07
The increasing demand of clinical biomedicine and fast development of nanobiotechnology has substantially promoted the generation of a variety of organic/inorganic nanosystems for biomedical applications. Biocompatible two-dimensional (2D) graphene analogues (e.g., nanosheets of transition metal dichalcogenides, transition metal oxides, g-C3N4, Bi2Se3, BN, etc.), which are referred to as 2D-GAs, have emerged as a new unique family of nanomaterials that show unprecedented advantages and superior performances in biomedicine due to their unique compositional, structural and physicochemical features. In this review, we summarize the state-of-the-art progress of this dynamically developed material family with a particular focus on biomedical applications. After the introduction, the second section of the article summarizes a range of synthetic methods for new types of 2D-GAs as well as their surface functionalization. The subsequent section provides a snapshot on the use of these biocompatible 2D-GAs for a broad spectrum of biomedical applications, including therapeutic (photothermal/photodynamic therapy, chemotherapy and synergistic therapy), diagnostic (fluorescent/magnetic resonance/computed tomography/photoacoustic imaging) and theranostic (concurrent diagnostic imaging and therapy) applications, especially on oncology. In addition, we briefly present the biosensing applications of these 2D-GAs for the detection of biomacromolecules and their in vitro/in vivo biosafety evaluations. The last section summarizes some critical unresolved issues, possible challenges/obstacles and also proposes future perspectives related to the rational design and construction of 2D-GAs for biomedical engineering, which are believed to promote their clinical translations for benefiting the personalized medicine and human health.
Two-dimensional materials for novel liquid separation membranes
Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng
2016-08-01
Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as
Defect Characterization Using Two-Dimensional Arrays
Velichko, A.; Wilcox, P. D.
2011-06-01
2D arrays are able to `view' a given defect from a range of angles leading to the possibility of obtaining richer characterization detail than possible with 1D arrays. In this paper a quantitative comparison of 2D arrays with different element layouts is performed. A technique for extracting the scattering matrix of a defect from the raw 2D array data is also presented. The method is tested on experimental data for characterization of various volumetric defects.
Bulk carbohydrate grain filling of barley ß-glucan mutants studied by 1H HR MAS NMR
DEFF Research Database (Denmark)
Seefeldt, Helene Fast; Larsen, Flemming Hofmann; Viereck, Nanna;
2008-01-01
) during grain filling. For the first time, 1H HR MAS NMR spectra of flour from immature barley seeds are analyzed. Spectral assignments are made using two-dimensional (2D) NMR methods. Both α- and β-glucan biosynthesis were characterized by inspection of the spectra as well as by calibration......Temporal and genotypic differences in bulk carbohydrate accumulation in three barley genotypes differing in the content of mixed linkage β-(1→3),(1→4)-D-glucan (β-glucan) and starch were investigated using proton high-resolution, magic angle spinning, nuclear magnetic resonance (1H HR MAS NMR...
Synthesis of two-dimensional materials by selective extraction.
Naguib, Michael; Gogotsi, Yury
2015-01-20
CONSPECTUS: Two-dimensional (2D) materials have attracted much attention in the past decade. They offer high specific surface area, as well as electronic structure and properties that differ from their bulk counterparts due to the low dimensionality. Graphene is the best known and the most studied 2D material, but metal oxides and hydroxides (including clays), dichalcogenides, boron nitride (BN), and other materials that are one or several atoms thick are receiving increasing attention. They may deliver a combination of properties that cannot be provided by other materials. The most common synthesis approach in general is by reacting different elements or compounds to form a new compound. However, this approach does not necessarily work well for low-dimensional structures, since it favors formation of energetically preferred 3D (bulk) solids. Many 2D materials are produced by exfoliation of van der Waals solids, such as graphite or MoS2, breaking large particles into 2D layers. However, these approaches are not universal; for example, 2D transition metal carbides cannot be produced by any of them. An alternative but less studied way of material synthesis is the selective extraction process, which is based on the difference in reactivity and stability between the different components (elements or structural units) of the original material. It can be achieved using thermal, chemical, or electrochemical processes. Many 2D materials have been synthesized using selective extraction, such as graphene from SiC, transition metal oxides (TMO) from layered 3D salts, and transition metal carbides or carbonitrides (MXenes) from MAX phases. Selective extraction synthesis is critically important when the bonds between the building blocks of the material are too strong (e.g., in carbides) to be broken mechanically in order to form nanostructures. Unlike extractive metallurgy, where the extracted metal is the goal of the process, selective extraction of one or more elements from
Two-Dimensional Plasmonics in Massive and Massless Electron Gases
Yoon, Hosang
Plasmonic waves in solid-state are caused by collective oscillation of mobile charges inside or at the surface of conductors. In particular, surface plasmonic waves propagating at the skin of metals have recently attracted interest, as they reduce the wavelength of electromagnetic waves coupled to them by up to ˜10 times, allowing one to create miniaturized wave devices at optical frequencies. In contrast, plasmonic waves on two-dimensional (2D) conductors appear at much lower infrared and THz-GHz frequencies, near or in the electronics regime, and can achieve far stronger wavelength reduction factor reaching well above 100. In this thesis, we study the unique machinery of 2D plasmonic waves behind this ultra-subwavelength confinement and explore how it can be used to create various interesting devices. To this end, we first develop a physically intuitive theoretical formulation of 2D plasmonic waves, whose two main components---the Coulomb restoration force and inertia of the collectively oscillating charges---are combined into a transmission-line-like model. We then use this formulation to create various ultra-subwavelength 2D plasmonic devices. For the 2D conductor, we first choose GaAs/AlGaAs heterostructure---a 2D electron gas consisting of massive (m* > 0) electrons---demonstrating plasmonic bandgap crystals, interferometers, and negatively refracting metamaterials. We then examine a 2D plasmonic device based on graphene, a 2D electron gas consisting of effectively massless (m* = 0) electrons. We theoretically show and experimentally demonstrate that the massless electrons in graphene can surprisingly exhibit a collective mass when subjected to a collective excitation, providing the inertia that is essential for the propagation of 2D plasmonic waves. Lastly, we theoretically investigate the thermal current fluctuation behaviors in massive and massless electron gases. While seemingly unrelated on first sight, we show that the thermal current fluctuation is
Institute of Scientific and Technical Information of China (English)
国伟华; 黄永箴; 陆巧银; 于丽娟
2004-01-01
Free spectral range of whispering-gallery (WG)-like modes in a two-dimensional (2D) square microcavity is found to be twice that in a 2D circular microcavity. The quality factor of the WG-like mode with the low mode number in a 2D square microcavity, calculated by the finite-difference time-domain (FDTD) technique and the Pade approximation method, is found to exceed that of the WG mode in 2D circular microcavity with the same cavity dimension and close mode wavelength.
Electronics based on two-dimensional materials.
Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi
2014-10-01
The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Towards two-dimensional search engines
Ermann, Leonardo; Shepelyansky, Dima L
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.
Toward two-dimensional search engines
Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-07-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.
Two-Dimensional Scheduling: A Review
Directory of Open Access Journals (Sweden)
Zhuolei Xiao
2013-07-01
Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.
Two dimensional fermions in four dimensional YM
Narayanan, R
2009-01-01
Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.
String breaking in two-dimensional QCD
Hornbostel, K J
1999-01-01
I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.
Two-dimensional supramolecular electron spin arrays.
Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya
2013-05-07
A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two dimensional echocardiographic detection of intraatrial masses.
DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S
1981-11-01
With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.
van Agthoven, Maria A.; Barrow, Mark P.; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A.; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B.
2015-12-01
Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules.
Volumetric display containing multiple two-dimensional color motion pictures
Hirayama, R.; Shiraki, A.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T.
2014-06-01
We have developed an algorithm which can record multiple two-dimensional (2-D) gradated projection patterns in a single three-dimensional (3-D) object. Each recorded pattern has the individual projected direction and can only be seen from the direction. The proposed algorithm has two important features: the number of recorded patterns is theoretically infinite and no meaningful pattern can be seen outside of the projected directions. In this paper, we expanded the algorithm to record multiple 2-D projection patterns in color. There are two popular ways of color mixing: additive one and subtractive one. Additive color mixing used to mix light is based on RGB colors and subtractive color mixing used to mix inks is based on CMY colors. We made two coloring methods based on the additive mixing and subtractive mixing. We performed numerical simulations of the coloring methods, and confirmed their effectiveness. We also fabricated two types of volumetric display and applied the proposed algorithm to them. One is a cubic displays constructed by light-emitting diodes (LEDs) in 8×8×8 array. Lighting patterns of LEDs are controlled by a microcomputer board. The other one is made of 7×7 array of threads. Each thread is illuminated by a projector connected with PC. As a result of the implementation, we succeeded in recording multiple 2-D color motion pictures in the volumetric displays. Our algorithm can be applied to digital signage, media art and so forth.
Theory of two-dimensional ESR with nuclear modulation
Gamliel, Dan; Freed, Jack H.
A formalism for computing 2D ESR lineshapes with nuclear modulation is developed in a form which is useful for planning phase cycles for particular purposes. A simple method of processing spectra, utilizing quadrature detection, is shown to enhance the selectivity of the phase cycling techniques. Computed ESR-COSY, ESR-SECSY, and 2D ELDOR lineshapes are presented for several kinds of polycrystalline and single-crystal samples which exhibit nuclear modulation, due to one or several nuclei. The two-dimensional methods are found to give more detailed structural information than the corresponding ESEEM spectra. New phase cycles are found to eliminate completely all transverse and axial peaks in 2D ELDOR and in ESR-COSY, and at the same time eliminate all artifacts arising from incomplete image rejection. Other phase cycles are presented for selecting in those experiments only axial peaks, for measuring T1. It is also shown how selective phase cycles may help to distinguish between coherent and exchange cross peaks. In the special case of nitroxides in typical Zeeman fields, there are no significant nuclear modulation effects from the 14N nuclear spin interaction, but those from the protons (or deuterons) will, in general, be significant.
Interactions between lasers and two-dimensional transition metal dichalcogenides.
Lu, Junpeng; Liu, Hongwei; Tok, Eng Soon; Sow, Chorng-Haur
2016-05-03
The recent increasing research interest in two-dimensional (2D) layered materials has led to an explosion of in the discovery of novel physical and chemical phenomena in these materials. Among the 2D family, group-VI transition metal dichalcogenides (TMDs), such as represented by MoS2 and WSe2, are remarkable semiconductors with sizable energy band gaps, which make the TMDs promising building blocks for new generation optoelectronics. On the other hand, the specificity and tunability of the band gaps can generate particularly strong light-matter interactions between TMD crystals and specific photons, which can trigger complex and interesting phenomena such as photo-scattering, photo-excitation, photo-destruction, photo-physical modification, photochemical reaction and photo-oxidation. Herein, we provide an overview of the phenomena explained by various interactions between lasers and the 2D TMDs. Characterizations of the optical fundamentals of the TMDs via laser spectroscopies are reviewed. Subsequently, photoelectric conversion devices enabled by laser excitation and the functionality extension and performance improvement of the TMDs materials via laser modification are comprehensively summarized. Finally, we conclude the review by discussing the prospects for further development in this research area.
Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films.
Halim, Joseph; Lukatskaya, Maria R; Cook, Kevin M; Lu, Jun; Smith, Cole R; Näslund, Lars-Åke; May, Steven J; Hultman, Lars; Gogotsi, Yury; Eklund, Per; Barsoum, Michel W
2014-04-08
Since the discovery of graphene, the quest for two-dimensional (2D) materials has intensified greatly. Recently, a new family of 2D transition metal carbides and carbonitrides (MXenes) was discovered that is both conducting and hydrophilic, an uncommon combination. To date MXenes have been produced as powders, flakes, and colloidal solutions. Herein, we report on the fabrication of ∼1 × 1 cm(2) Ti3C2 films by selective etching of Al, from sputter-deposited epitaxial Ti3AlC2 films, in aqueous HF or NH4HF2. Films that were about 19 nm thick, etched with NH4HF2, transmit ∼90% of the light in the visible-to-infrared range and exhibit metallic conductivity down to ∼100 K. Below 100 K, the films' resistivity increases with decreasing temperature and they exhibit negative magnetoresistance-both observations consistent with a weak localization phenomenon characteristic of many 2D defective solids. This advance opens the door for the use of MXenes in electronic, photonic, and sensing applications.
Two-dimensional magnetic ordering in a multilayer structure
Indian Academy of Sciences (India)
M K Mukhopadhyay; M K Sanyal
2006-07-01
The effect of confinement from one, two or from all three directions on magnetic ordering has remained an active field of research for almost 100 years. The role of dipolar interactions and anisotropy are important to obtain, the otherwise forbidden, ferromagnetic ordering at finite temperature for ions arranged in two-dimensional (2D) arrays (monolayers). We have demonstrated that conventional low-temperature magnetometry and polarized neutron scattering measurements can be performed to study short-range ferromagnetic ordering of in-plane spins in 2D systems using a multilayer stack of non-interacting monolayers of gadolinium ions formed by Langmuir–Blodgett (LB) technique. The spontaneous magnetization could not be detected in the heterogeneous magnetic phase observed here and the saturation value of the net magnetization was found to depend on the sample temperature and applied magnetic field. The net magnetization rises exponentially with lowering temperature and then reaches saturation following a ln( ) dependence. The ln( ) dependence of magnetization has been predicted from spin-wave theory of 2D in-plane spin system with ferromagnetic interaction. The experimental findings reported here could be explained by extending this theory to a temperature domain of < 1.
Criticality in Two-Dimensional Quantum Systems: Tensor Network Approach
Ran, Shi-Ju; Li, Wei; Lewenstein, Maciej; Su, Gang
2016-01-01
Determination and characterization of criticality in two-dimensional (2D) quantum many-body systems belong to the most important challenges and problems of quantum physics. In this paper we propose an efficient scheme to solve this problem by utilizing the infinite projected entangled pair state (iPEPS), and tensor network (TN) representations. We show that the criticality of a 2D state is faithfully reproduced by the ground state (dubbed as boundary state) of a one-dimensional effective Hamiltonian constructed from its iPEPS representation. We demonstrate that for a critical state the correlation length and the entanglement spectrum of the boundary state are essentially different from those of a gapped iPEPS. This provides a solid indicator that allows to identify the criticality of the 2D state. Our scheme is verified on the resonating valence bond (RVB) states on kagom\\'e and square lattices, where the boundary state of the honeycomb RVB is found to be described by a $c=1$ conformal field theory. We apply ...
Shiraga, Hiroyuki; Lee, Myongdok; Mahigashi, Norimitsu; Fujioka, Shinsuke; Azechi, Hiroshi
2008-10-01
A shell target with a cone for guiding the heating beam has been proposed for the fast ignition scheme. Implosion of such target is no longer symmetric because of the cone. A fast two-dimensional x-ray imaging technique, two-dimensional (2D) sampling image x-ray streak camera was applied for the first time to observation of the dynamics of implosion and core plasma. X-ray emission image of the plasma was sampled with two-dimensionally distributed image sampling points, streaked with the tube, and the recorded signals were reconstructed as sequential 2D frame images. Shape and movement of the core plasma were clearly observed.
Heterostructures based on two-dimensional layered materials and their potential applications
Li, Ming-yang
2015-12-04
The development of two-dimensional (2D) layered materials is driven by fundamental interest and their potential applications. Atomically thin 2D materials provide a wide range of basic building blocks with unique electrical, optical, and thermal properties which do not exist in their bulk counterparts. The van der Waals interlayer interaction enables the possibility to exfoliate and reassemble different 2D materials into arbitrarily and vertically stacked heterostructures. Recently developed vapor phase growth of 2D materials further paves the way of directly synthesizing vertical and lateral heterojunctions. This review provides insights into the layered 2D heterostructures, with a concise introduction to preparative approaches for 2D materials and heterostructures. These unique 2D heterostructures have abundant implications for many potential applications.
Two-dimensional photonic crystal sensors for visual detection of lectin concanavalin A.
Zhang, Jian-Tao; Cai, Zhongyu; Kwak, Daniel H; Liu, Xinyu; Asher, Sanford A
2014-09-16
We fabricated a two-dimensional (2-D) photonic crystal lectin sensing material that utilizes light diffraction from a 2-D colloidal array attached to the surface of a hydrogel that contains mannose carbohydrate groups. Lectin-carbohydrate interactions create hydrogel cross-links that shrink the hydrogel volume and decrease the 2-D particle spacing. This mannose containing 2-D photonic crystal sensor detects Concanavalin A (Con A) through shifts in the 2-D diffraction wavelength. Con A concentrations can be determined by measuring the diffracted wavelength or visually determined from the change in the sensor diffraction color. The concentrations are easily monitored by measuring the 2-D array Debye ring diameter. Our observed detection limit for Con A is 0.02 mg/mL (0.7 μM). The 2-D photonic crystal sensors are completely reversible and can monitor Con A solution concentration changes.
Visualising the strain distribution in suspended two-dimensional materials under local deformation
Elibol, Kenan; Bayer, Bernhard C.; Hummel, Stefan; Kotakoski, Jani; Argentero, Giacomo; Meyer, Jannik C.
2016-06-01
We demonstrate the use of combined simultaneous atomic force microscopy (AFM) and laterally resolved Raman spectroscopy to study the strain distribution around highly localised deformations in suspended two-dimensional materials. Using the AFM tip as a nanoindentation probe, we induce localised strain in suspended few-layer graphene, which we adopt as a two-dimensional membrane model system. Concurrently, we visualise the strain distribution under and around the AFM tip in situ using hyperspectral Raman mapping via the strain-dependent frequency shifts of the few-layer graphene’s G and 2D Raman bands. Thereby we show how the contact of the nm-sized scanning probe tip results in a two-dimensional strain field with μm dimensions in the suspended membrane. Our combined AFM/Raman approach thus adds to the critically required instrumental toolbox towards nanoscale strain engineering of two-dimensional materials.
Multi-Symplectic Splitting Method for Two-Dimensional Nonlinear Schriidinger Equation
Institute of Scientific and Technical Information of China (English)
陈亚铭; 朱华君; 宋松和
2011-01-01
Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting （MSS） method to solve the two-dimensional nonlinear Schrodinger equation （2D-NLSE） in this paper. It is further shown that the method constructed in this way preserve the global symplectieity exactly. Numerical experiments for the plane wave solution and singular solution of the 2D-NLSE show the accuracy and effectiveness of the proposed method.
Feasibility and Limitations of Vaccine Two-Dimensional Barcoding Using Mobile Devices
Bell, Cameron; Guerinet, Julien; Atkinson, Katherine M.; Wilson, Kumanan
2016-01-01
Background Two-dimensional (2D) barcoding has the potential to enhance documentation of vaccine encounters at the point of care. However, this is currently limited to environments equipped with dedicated barcode scanners and compatible record systems. Mobile devices may present a cost-effective alternative to leverage 2D vaccine vial barcodes and improve vaccine product-specific information residing in digital health records. Objective Mobile devices have the potential to capture product-spec...
Two-dimensional atom localization via probe absorption in a four-level atomic system
Institute of Scientific and Technical Information of China (English)
Wang Zhi-Ping; Ge Qiang; Ruan Yu-Hua; Yu Ben-Li
2013-01-01
We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven fourlevel atomic system by means of a radio-frequency field driving a hyperfine transition.It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters.As a result,our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization.
First-principles study of two-dimensional van der Waals heterojunctions
Hu, Wei; Yang, Jinlong
2015-01-01
Research on graphene and other two-dimensional (2D) materials, such as silicene, germanene, phosphorene, hexagonal boron nitride (h-BN), graphitic carbon nitride (g-C3N4), graphitic zinc oxide (g-ZnO) and molybdenum disulphide (MoS2), has recently received considerable interest owing to their outstanding properties and wide applications. Looking beyond this field, combining the electronic structures of 2D materials in ultrathin van der Waals heterojunctions has also emerged to widely study th...
Design of two-dimensional recursive filters by using neural networks.
Mladenov, V M; Mastorakis, N E
2001-01-01
A new design method for two-dimensional (2-D) recursive digital filters is investigated. The design of the 2-D filter is reduced to a constrained minimization problem the solution of which is achieved by the convergence of an appropriate neural network. The method is tested on a numerical example and compared with previously published methods when applied to the same example. Advantages of the proposed method over the existing ones are discussed as well.
Two-Dimensional (2-D) Acoustic Fish Tracking at River Mile 85, Sacramento River, California
2013-06-01
be recovered rather than being lost due to sediment dunes, large woody material floating downstream, and vandalism. The RM 85 site was a relatively...growth rate among PIT, PIT+acoustic tag, and sham+PIT treatments . VEMCO V7 tags ERDC/EL TR-13-7 40 in the study represented a tag burden of 2.6–5.6...W. Dawley, M. Russell, A. Whiting, and D. J. Teel. 2010. Juvenile salmonid use of reconnected tidal freshwater wetlands in Grays River, lower
Two-dimensional (2-D) deformation measurements with ASAR and PHARUS
Groot, J.S.; Halsema, D. van; Maarseveen, R.A. van; Blommaart, P.J.L.; Kruse, G.A.M.; Loon, D. van; Hanssen, R.F.; Samson, J.; Striegel, A.J.; Visser, J.M.P.C.M.
2001-01-01
Deformation measurements are important in the field of ground engineering. Deformation can have a non-natural cause (e.g., surface deformation due to tunnel construction) or a natural one (e.g., dike deformation due to a high water level). Radar interferometry can in principle provide deformations w
Phase coding by grid cells in unconstrained environments: Two-dimensional (2D) phase precession
Climer, Jason R.; Newman, Ehren L.; Hasselmo, Michael E.
2014-01-01
Action potential timing is thought to play a critical role in neural representation. For example, theta phase precession is a robust phenomenon exhibited by spatial cells of the rat entorhinal-hippocampal circuit. In phase precession, the time a neuron fires relative to the phase of theta rhythm (6-10Hz) oscillations in the local field potential reduces uncertainty about the position of the animal. This relationship between neural firing and behavior has made precession an important constraint for hypothetical mechanisms of temporal coding. However, challenges exist in identifying what regulates the spike timing of these cells. We have developed novel analytical techniques for mapping between behavior and neural firing that provide sufficient sensitivity to examine features of grid cell phase coding in open environments. Here, we show robust, omnidirectional phase precession by entorhinal grid cells in openfield enclosures. We present evidence that full phase precession persists regardless of how close the animal comes to the center of a firing field. We found many conjunctive grid cells, previously thought to be phase locked, also exhibit phase coding. However, we were unable to detect directional or field specific phase coding predicted by some variants of models. Finally, we present data that suggests bursting of layer II grid cells contributes to the bimodality of phase precession. We discuss implications of these observations for models of temporal coding and propose the utility of these techniques in other domains where behavior is aligned to neural spiking. PMID:23718553
2D Saturable Absorbers for Fibre Lasers
Directory of Open Access Journals (Sweden)
Robert I. Woodward
2015-11-01
Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.
Quantum creep in a highly crystalline two-dimensional superconductor
Saito, Yu; Kasahara, Yuichi; Ye, Jianting; Iwasa, Yoshihiro; Nojima, Tsutomu
Conventional studies on quantum phase transitions, especially on superconductor-insulator or superconductor-metal-insulator transitions have been performed in deposited metallic thin films such as Bismuth or MoGe. Although the techniques of thin films deposition have been considerably improved, unintentional disorder such as impurities and deficiencies, generating the pinning centers, seems to still exist in such systems. The mechanical exfoliated highly crystalline two-dimensional material can be a good candidate to realize a less-disordered 2D superconductor with extremely weak pinning, combined with transfer method or ionic-liquid gating. We report on the quantum metal, namely, magnetic-field-induced metallic state observed in an ion-gated two-dimensional superconductor based on an ultra-highly crystalline layered band insulator, ZrNCl. We found that the superconducting state is extremely fragile against external magnetic fields; that is, zero resistance state immediately disappears, once an external magnetic field switches on. This is because the present system is relatively clean and the pinning potential is extremely weak, which cause quantum tunneling and flux flow of vortices, resulting in metallic ground state.
Acoustic resonances in two-dimensional radial sonic crystal shells
Torrent, Daniel; Sánchez-Dehesa, José
2010-07-01
Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction that verify the Bloch theorem and are possible only if certain specially designed acoustic metamaterials with mass density anisotropy can be engineered (see Torrent and Sánchez-Dehesa 2009 Phys. Rev. Lett. 103 064301). A comprehensive analysis of two-dimensional (2D) RSC shells is reported here. A given shell is in fact a circular slab with a central cavity. These finite crystal structures contain Fabry-Perot-like resonances and modes strongly localized at the central cavity. Semi-analytical expressions are developed to obtain the quality factors of the different resonances, their symmetry features and their excitation properties. The results reported here are completely general and can be extended to equivalent 3D spherical shells and to their photonic counterparts.
Dielectric-barrier discharges in two-dimensional lattice potentials
Sinclair, Josiah
2011-01-01
We use a pin-grid electrode to introduce a corrugated electrical potential into a planar dielectric-barrier discharge (DBD) system, so that the amplitude of the applied electric field has the profile of a two-dimensional square lattice. The lattice potential provides a template for the spatial distribution of plasma filaments in the system and has pronounced effects on the patterns that can form. The positions at which filaments become localized within the lattice unit cell vary with the width of the discharge gap. The patterns that appear when filaments either overfill or under-fill the lattice are reminiscent of those observed in other physical systems involving 2d lattices. We suggest that the connection between lattice-driven DBDs and other areas of physics may benefit from the further development of models that treat plasma filaments as interacting particles.
The random discrete action for two-dimensional spacetime
Benincasa, Dionigi M. T.; Dowker, Fay; Schmitzer, Bernhard
2011-05-01
A one-parameter family of random variables, called the Discrete Action, is defined for a two-dimensional Lorentzian spacetime of finite volume. The single parameter is a discreteness scale. The expectation value of this discrete action is calculated for various regions of 2D Minkowski spacetime, {M}^2. When a causally convex region of {M}^2 is divided into subregions using null lines the mean of the discrete action is equal to the alternating sum of the numbers of vertices, edges and faces of the null tiling, up to corrections that tend to 0 as the discreteness scale is taken to 0. This result is used to predict that the mean of the discrete action of the flat Lorentzian cylinder is zero up to corrections, which is verified. The 'topological' character of the discrete action breaks down for causally convex regions of the flat trousers spacetime that contain the singularity and for non-causally convex rectangles.
Bounds on the Capacity of Weakly constrained two-dimensional Codes
DEFF Research Database (Denmark)
Forchhammer, Søren
2002-01-01
Upper and lower bounds are presented for the capacity of weakly constrained two-dimensional codes. The maximum entropy is calculated for two simple models of 2-D codes constraining the probability of neighboring 1s as an example. For given models of the coded data, upper and lower bounds...
Metallic ground state in an ion-gated two-dimensional superconductor
Saito, Yu; Kasahara, Yuichi; Ye, Jianting; Iwasa, Yoshihiro; Nojima, Tsutomu
2015-01-01
Recently emerging two-dimensional (2D) superconductors in atomically thin layers and at heterogeneous interfaces are attracting growing interest in condensed matter physics. Here, we report that an ion-gated zirconium nitride chloride surface, exhibiting a dome-shaped phase diagram with a maximum cr
Li, Zhenyu; Abramavicius, Darius; Zhuang, Wei; Mukamel, Shaul
2007-11-15
The two dimensional (2D) photon echo spectrum of the amide ultraviolet (UV) bands of proteins are simulated. Two effective exciton Hamiltonian parameter sets developed by Woody and Hirst, which predict similar CD spectra, may be distinguished by their very different 2DUV spectra. These differences are enhanced in specific configurations of pulse polarizations which provide chirality-induced signals.
Collective modes of a quasi-two-dimensional Bose condensate in large gas parameter regime
Indian Academy of Sciences (India)
S R Mishra; S P Ram; Arup Banerjee
2007-06-01
We have theoretically studied the collective modes of a quasi-two-dimensional (Q2D) Bose condensate in the large gas parameter regime by using a formalism which treats the interaction energy beyond the mean-field approximation. The results show that incorporation of this higher order term leads to significant modifications in the mode frequencies.
A proteomic approach based on two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) for protein separation and subsequent mass spectrometry (MS) for protein identification was applied to establish a proteomic reference map for the soybean embryonic axis. Proteins were extracted from dissecte...
Mapping of 34 minisatellite loci resolved by two-dimensional DNA typing
DEFF Research Database (Denmark)
Børglum, Anders; Nyegaard, Mette; Kvistgaard, AB
1997-01-01
Two-dimensional (2-D) DNA typing is based on electrophoretic separation of genomic DNA fragments in two dimensions according to independent criteria (size and base-pair sequence), followed by hybridization analysis using multilocus probes. The technique allows simultaneous visualization of severa...
Quantitative analysis of target components by comprehensive two-dimensional gas chromatography
Mispelaar, V.G. van; Tas, A.C.; Smilde, A.K.; Schoenmakers, P.J.; Asten, A.C. van
2003-01-01
Quantitative analysis using comprehensive two-dimensional (2D) gas chromatography (GC) is still rarely reported. This is largely due to a lack of suitable software. The objective of the present study is to generate quantitative results from a large GC x GC data set, consisting of 32 chromatograms. I
High-flux two-dimensional magneto-optical-trap source for cold lithium atoms
Tiecke, T.G.; Gensemer, S.D.; Ludewig, A.; Walraven, J.T.M.
2009-01-01
We demonstrate a two-dimensional magneto-optical trap (2D MOT) as a beam source for cold Li-6 atoms. The source is side loaded from an oven operated at temperatures in the range 600 less than or similar to T less than or similar to 700 K. The performance is analyzed by loading the atoms into a
Huang, N.; Chen, X.; Krishna, R.; Jiang, D.
2015-01-01
Ordered open channels found in two-dimensional covalent organic frameworks (2D COFs) could enable them to adsorb carbon dioxide. However, the frameworks' dense layer architecture results in low porosity that has thus far restricted their potential for carbon dioxide adsorption. Here we report a
Volumetric and two-dimensional image interpretation show different cognitive processes in learners
van der Gijp, Anouk; Ravesloot, C.J.; van der Schaaf, Marieke F; van der Schaaf, Irene C; Huige, Josephine C B M; Vincken, Koen L; Ten Cate, Olle Th J; van Schaik, JPJ
2015-01-01
RATIONALE AND OBJECTIVES: In current practice, radiologists interpret digital images, including a substantial amount of volumetric images. We hypothesized that interpretation of a stack of a volumetric data set demands different skills than interpretation of two-dimensional (2D) cross-sectional imag
Comparison of Yeast Cell Protein Solubilization Procedures for Two-dimensional Electrophoresis
DEFF Research Database (Denmark)
Harder, A; Wildgruber, R; Nawrocki, A;
1999-01-01
Three different procedures for the solubilization of yeast (S. cerevisiae) cell proteins were compared on the basis of the obtained two-dimensional (2-D) polypeptide patterns. Major emphasis was laid on minimizing handling steps, protein modification or degradation, and quantitative loss of high ...
Glentis, George-Othon; Slump, Cornelis H.; Hermann, Otto E.
2000-01-01
In this paper a novel algorithm is presented for the efficient two-dimensional (2-D), mean squared error (MSE), FIR filtering and system identification. Filter masks of general boundaries are allowed. Efficient order updating recursions are developed by exploiting the spatial shift invariance
Two-dimensional visualization of cluster beams by microchannel plates
Energy Technology Data Exchange (ETDEWEB)
Khoukaz, A., E-mail: khoukaz@uni-muenster.de; Bonaventura, D.; Grieser, S.; Hergemöller, A.-K.; Köhler, E.; Täschner, A.
2014-01-21
An advanced technique for a two-dimensional real time visualization of cluster beams in a vacuum as well as of the overlap volume of cluster beams with particle accelerator beams is presented. The detection system consists of an array of microchannel plates (MCPs) in combination with a phosphor screen which is read out by a CCD camera. This setup together with the ionization of a cluster beam by an electron or ion beam allows for spatial resolved investigations of the cluster beam position, size, and intensity. Moreover, since electrically uncharged clusters remain undetected, the operation in an internal beam experiment opens the way to monitor the overlap region and thus the position and size of an accelerator beam crossing an originally electrically neutral cluster jet. The observed intensity distribution of the recorded image is directly proportional to the convolution of the spatial ion beam and cluster beam intensities and is by this a direct measure of the two-dimensional luminosity distribution. This information can directly be used for the reconstruction of vertex positions as well as for an input for numerical simulations of the reaction zone. The spatial resolution of the images is dominated by the granularity of the complete MCP device and was found to be in the order of σ≈100μm. -- Highlights: • We present a MCP system for a 2D real time visualization of cluster target beams. • With this device the vertex region of storage ring experiments can be investigated. • Time resolved 2D information about the target thickness distribution is accessible. • A spatial resolution of the MCP device of 0.1 mm was achieved. • The presented MCP system also allows for measurements on cluster masses.
Compact triplexer in two-dimensional hexagonal lattice photonic crystals
Institute of Scientific and Technical Information of China (English)
Hongliang Ren; Jianping Ma; Hao Wen; Yali Qin; Zhefu Wu; Weisheng Hu; Chun Jiang; Yaohui Jin
2011-01-01
We design a contpact triplexer based on two-dimensional (2D) hexagonal lattice photonic crystals (PCs). A folded directional coupler (FDC) is introduced in the triplexer beside the point-defect micro-cavities and line-defect waveguides. Because of the reflection feedback of the FDC, high channel drop efficiency can be realized and a compact size with the order of micrometers can be maintained. The proposed device is analyzed using the plane wave expansion method, and its transmission characteristics are calculated using the finites-difference time-domain method. The footprint of the triplexer is about 12× 9 μm, and its extinction ratios are less than -20 dB for 1310 nm, approximately -20 dB for 1490 nm, and under -4O dB for 1550 nm, making it a potentially essential device ii future fiber-to-the-home networks.%@@ We design a compact triplexer based on two-dimensional (2D) hexagonal lattice photonic crystals (PCs).A folded directional coupler (FDC) is introduced in the triplexer beside the point-defect micro-cavities and line-defect waveguides.Because of the reflection feedback of the FDC, high channel drop efficiency can be realized and a compact size with the order of micrometers can be maintained.The proposed device is analyzed using the plane wave expansion method, and its transmission characteristics are calculated using the finite-difference time-domain method.The footprint of the triplexer is about 12×9 μm, and its extinction ratios are less than -20 dB for 1310 nm, approximately -20 dB for 1490 nm, and under -40 dB for 1550 nm, making it a potentially essential device in future fiber-to-the-home networks.
Electronic nanobiosensors based on two-dimensional materials
Ping, Jinglei
Atomically-thick two-dimensional (2D) nanomaterials have tremendous potential to be applied as transduction elements in biosensors and bioelectronics. We developed scalable methods for synthesis and large-area transfer of two-dimensional nanomaterials, particularly graphene and metal dichalcogenides (so called ``MX2'' materials). We also developed versatile fabrication methods for large arrays of field-effect transistors (FETs) and micro-electrodes with these nanomaterials based on either conventional photolithography or innovative approaches that minimize contamination of the 2D layer. By functionalizing the FETs with a computationally redesigned water-soluble mu-opioid receptor, we created selective and sensitive biosensors suitable for detection of the drug target naltrexone and the neuropeptide enkephalin at pg/mL concentrations. We also constructed DNA-functionalized biosensors and nano-particle decorated biosensors by applying related bio-nano integration techniques. Our methodology paves the way for multiplexed nanosensor arrays with all-electronic readout suitable for inexpensive point-of-care diagnostics, drug-development and biomedical research. With graphene field-effect transistors, we investigated the graphene/solution interface and developed a quantitative model for the effect of ionic screening on the graphene carrier density based on theories of the electric double layer. Finally, we have developed a technique for measuring low-level Faradaic charge-transfer current (fA) across the graphene/solution interface via real-time charge monitoring of graphene microelectrodes in ionic solution. This technique enables the development of flexible and transparent pH sensors that are promising for in vivo applications. The author acknowledges the support from the Defense Advanced Research Projects Agency (DARPA) and the U. S. Army Research Office under Grant Number W911NF1010093.
Canonical structure of 2D black holes
Navarro-Salas, J; Talavera, C F
1994-01-01
We determine the canonical structure of two-dimensional black-hole solutions arising in $2D$ dilaton gravity. By choosing the Cauchy surface appropriately we find that the canonically conjugate variable to the black hole mass is given by the difference of local (Schwarzschild) time translations at right and left spatial infinities. This can be regarded as a generalization of Birkhoff's theorem.
Pseudo-two-dimensional random dimer lattices
Energy Technology Data Exchange (ETDEWEB)
Naether, U., E-mail: naether@unizar.es [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC – Universidad de Zaragoza, 50009 Zaragoza (Spain); Mejía-Cortés, C.; Vicencio, R.A. [Departamento de Física and MSI – Nucleus for Advanced Optics, Center for Optics and Photonics (CEFOP), Facultad de Ciencias, Universidad de Chile, Santiago (Chile)
2015-06-05
We study the long-time wave transport in correlated and uncorrelated disordered 2D arrays. When a separation of dimensions is applied to the model, we find that the previously predicted 1D random dimer phenomenology also appears in so-called pseudo-2D arrays. Therefore, a threshold behavior is observed in terms of the effective size for eigenmodes, as well as in long-time dynamics. A minimum system size is required to observe this threshold, which is very important when considering a possible experimental realization. For the long-time evolution, we find that for correlated lattices a super-diffusive long-range transport is observed. For completely uncorrelated disorder 2D transport becomes sub-diffusive within the localization length and for random binary pseudo-2D arrays localization is observed.
Proteome analysis of human colorectal cancer tissue using 2-D ...
African Journals Online (AJOL)
Jane
2010-10-11
Oct 11, 2010 ... Laser capture microdissection and two-dimensional difference gel electrophoresis were used to establish ... As a technique with high-flux and high resolution, pro- teomics ... in which the protein sample was labeled before 2-D.
Weakly disordered two-dimensional Frenkel excitons
Boukahil, A.; Zettili, Nouredine
2004-03-01
We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.
Two-dimensional ranking of Wikipedia articles
Zhirov, A O; Shepelyansky, D L
2010-01-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....
Dynamics of film. [two dimensional continua theory
Zak, M.
1979-01-01
The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.
Ono, Junichi; Takada, Shoji; Saito, Shinji
2015-06-07
An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchical conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.
Nonstationarity of a two-dimensional perpendicular shock: Competing mechanisms
Lembège, Bertrand; Savoini, Philippe; Hellinger, Petr; Trávníček, Pavel M.
2009-03-01
Two-dimensional particle-in-cell (PIC) simulations are used for analyzing in detail different nonstationary behaviors of a perpendicular supercritical shock. A recent study by Hellinger et al. (2007) has shown that the front of a supercritical shock can be dominated by the emission of large-amplitude whistler waves. These waves inhibit the self-reformation driven by the reflected ions; then, the shock front appears almost ``quasi-stationary.'' The present study stresses new complementary results. First, for a fixed β i value, the whistler waves emission (WWE) persists for high M A above a critical Mach number (i.e., M A >= M A WWE). The quasi-stationarity is only apparent and disappears when considering the full 3-D field profiles. Second, for lower M A , the self-reformation is retrieved and becomes dominant as the amplitude of the whistler waves becomes negligible. Third, there exists a transition regime in M A within which both processes compete each other. Fourth, these results are observed for a strictly perpendicular shock only as B 0 is within the simulation plane. When B 0 is out of the simulation plane, no whistler waves emission is evidenced and only self-reformation is recovered. Fifth, the occurrence and disappearance of the nonlinear whistler waves are well recovered in both 2-D PIC and 2-D hybrid simulations. The impacts on the results of the mass ratio (2-D PIC simulations), of the resistivity and spatial resolution (2-D hybrid simulations), and of the size of the simulation box along the shock front are analyzed in detail.
Yan, Xia; Wang, Li-Juan; Wu, Zhen; Wu, Yun-Long; Liu, Xiu-Xiu; Chang, Fang-Rong; Fang, Mei-Juan; Qiu, Ying-Kun
2016-10-15
Microbial metabolites represent an important source of bioactive natural products, but always exhibit diverse of chemical structures or complicated chemical composition with low active ingredients content. Traditional separation methods rely mainly on off-line combination of open-column chromatography and preparative high performance liquid chromatography (HPLC). However, the multi-step and prolonged separation procedure might lead to exposure to oxygen and structural transformation of metabolites. In the present work, a new two-dimensional separation workflow for fast isolation and analysis of microbial metabolites from Chaetomium globosum SNSHI-5, a cytotoxic fungus derived from extreme environment. The advantage of this analytical comprehensive two-dimensional liquid chromatography (2D-LC) lies on its ability to analyze the composition of the metabolites, and to optimize the separation conditions for the preparative 2D-LC. Furthermore, gram scale preparative 2D-LC separation of the crude fungus extract could be performed on a medium-pressure liquid chromatograph×preparative high-performance liquid chromatography system, under the optimized condition. Interestingly, 12 cytochalasan derivatives, including two new compounds named cytoglobosin Ab (3) and isochaetoglobosin Db (8), were successfully obtained with high purity in a short period of time. The structures of the isolated metabolites were comprehensively characterized by HR ESI-MS and NMR. To be highlighted, this is the first report on the combination of analytical and preparative 2D-LC for the separation of microbial metabolites. The new workflow exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods.
Institute of Scientific and Technical Information of China (English)
段学欣; 袁飞; 温笑菁; 杨淼; 林海; 孙平川; 何炳林; 王维
2004-01-01
Tri-block amphiphilic copolymers with hybrid architectures were synthesized by coupling linear poly(ethylene glycol)(PEG) and dendritic second-generation Fréchet-type poly (benzyl ether)(PBE) via the Williarnson reaction (Gisotv, et al. Angew Chem, Int Ed Engl, 1992,31:1200 - 1202). Our experimental study shows that the powerful two-dimensional 1H-13C heteronuclear multiple-quantum correlation (HMQC) and two-dimensional 1H-13C heteronuclear multiple-bond correlation (HMBC) NMR techniques rather than the classical one-dimensional 1H and 13C-NMR methods can provide clear evidence to verify the formation of the tri-block copolymers. In our measurements HMQC and HMBC NMR techniques directly detected the signal of ether bonds bridged inbetween PBE dendrons and PEG blocks, therefore, the formation of the block copolymers are evidently confirmed in molecular level. This work also provides a general method to exactly confirm the formation of block copolymers.
Two-dimensional gauge theoretic supergravities
Cangemi, D.; Leblanc, M.
1994-05-01
We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
Two-dimensional shape memory graphene oxide
Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe
2016-06-01
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2007-01-01
Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.
Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides
Congxin, Xia; Jingbo, Li
2016-05-01
Since two-dimensional (2D) graphene was fabricated successfully, many kinds of graphene-like 2D materials have attracted extensive attention. Among them, the studies of 2D metal chalcogenides have become the focus of intense research due to their unique physical properties and promising applications. Here, we review significant recent advances in optoelectronic properties and applications of 2D metal chalcogenides. This review highlights the recent progress of synthesis, characterization and isolation of single and few layer metal chalcogenides nanosheets. Moreover, we also focus on the recent important progress of electronic, optical properties and optoelectronic devices of 2D metal chalcogenides. Additionally, the theoretical model and understanding on the band structures, optical properties and related physical mechanism are also reviewed. Finally, we give some personal perspectives on potential research problems in the optoelectronic characteristics of 2D metal chalcogenides and related device applications.
Esumi, Y; Kabir, M D; Kannari, F
2009-10-12
A novel non-interferometric vector pulse-shaping scheme is developed for femtosecond laser pulses using a two-dimensional spatial light modulator (2D-SLM). By utilizing spatiotemporal pulse shaping obtainable by the 2D-SLM, we demonstrate spatiotemporal vector pulse shaping for the first time.
Driving performance of a two-dimensional homopolar linear DC motor
Energy Technology Data Exchange (ETDEWEB)
Wang, Y.; Yamaguchi, M.; Kano, Y. [Tokyo University of Agriculture and Technology, Tokyo (Japan)
1998-05-01
This paper presents a novel two-dimensional homopolar linear de motor (LDM) which can realize two-dimensional (2-D) motion. For position control purposes, two kinds of position detecting methods are proposed. The position in one position is detected by means of a capacitive sensor which makes the output of the sensor partially immune to the variation of the gap between electrodes. The position in the other direction is achieved by exploiting the position dependent property of the driving coil inductance, instead of using an independent sensor. The position control is implemented on the motor and 2-D tracking performance is analyzed. Experiments show that the motor demonstrates satisfactory driving performance, 2-D tracking error being within 5.5% when the angular frequency of reference signal is 3.14 rad./s. 7 refs., 17 figs., 2 tabs.
Hilbert Statistics of Vorticity Scaling in Two-Dimensional Turbulence
Tan, H S; Meng, Jianping
2014-01-01
In this paper, the scaling property of the inverse energy cascade and forward enstrophy cascade of the vorticity filed $\\omega(x,y)$ in two-dimensional (2D) turbulence is analyzed. This is accomplished by applying a Hilbert-based technique, namely Hilbert-Huang Transform, to a vorticity field obtained from a $8192^2$ grid-points direct numerical simulation of the 2D turbulence with a forcing scale $k_f=100$ and an Ekman friction. The measured joint probability density function $p(C,k)$ of mode $C_i(x)$ of the vorticity $\\omega$ and instantaneous wavenumber $k(x)$ is separated by the forcing scale $k_f$ into two parts, which corresponding to the inverse energy cascade and the forward enstrophy cascade. It is found that all conditional pdf $p(C\\vert k)$ at given wavenumber $k$ has an exponential tail. In the inverse energy cascade, the shape of $p(C\\vert k)$ does collapse with each other, indicating a nonintermittent cascade. The measured scaling exponent $\\zeta_{\\omega}^I(q)$ is linear with the statistical ord...
Two-dimensional Fourier transform ESR correlation spectroscopy
Gorcester, Jeff; Freed, Jack H.
1988-04-01
We describe our pulsed two-dimensional Fourier transform ESR experiment and demonstrate its applicabilty for the double resonance of motionally narrowed nitroxides. Multiple pulse irradiation of the entire nitroxide spectrum enables the correlation of two precessional periods, allowing observation of cross correlations between hyperfine lines introduced by magnetization transfer in the case of a three-pulse experiment (2D ELDOR), or coherence transfer in the case of a two-pulse experiment (COSY). Cross correlations are revealed by the presence of cross peaks which connect the autocorrelation lines appearing along the diagonal ω1=ω2. The amplitudes of these cross peaks are determined by the rates of magnetization transfer in the 2D ELDOR experiment. The density operator theory for the experiment is outlined and applied to the determination of Heisenberg exchange (HE) rates in 2,2,6,6-tetramethyl-4-piperidone-N-oxyl-d15 (PD-tempone) dissolved in toluene-d8. The quantitative accuracy of this experiment is established by comparison with the HE rate measured from the dependence of the spin echo T2 on nitroxide concentration.
Subsurface imaging of two-dimensional materials at the nanoscale
Dinelli, Franco; Pingue, Pasqualantonio; Kay, Nicholas D.; Kolosov, Oleg V.
2017-02-01
Scanning probe microscopy (SPM) represents a powerful tool that, in the past 30 years, has allowed for the investigation of material surfaces in unprecedented ways at the nanoscale level. However, SPM has shown very little capability for depth penetration, which several nanotechnology applications require. Subsurface imaging has been achieved only in a few cases, when subsurface features influence the physical properties of the surface, such as the electronic states or the heat transfer. Ultrasonic force microscopy (UFM), an adaption of the contact mode atomic force microscopy, can dynamically measure the stiffness of the elastic contact between the probing tip and the sample surface. In particular, UFM has proven highly sensitive to the near-surface elastic field in non-homogeneous samples. In this paper, we present an investigation of two-dimensional (2D) materials, namely flakes of graphite and molybdenum disulphide placed on structured polymeric substrates. We show that UFM can non-destructively distinguish suspended and supported areas and localise defects, such as buckling or delamination of adjacent monolayers, generated by residual stress. Specifically, UFM can probe small variations in the local indentation induced by the mechanical interaction between the tip and the sample. Therefore, any change in the elastic modulus within the volume perturbed by the applied load or the flexural bending of the suspended areas can be detected and imaged. These investigation capabilities are very promising in order to study the buried interfaces of nanostructured 2D materials such as in graphene-based devices.
Mathematical modeling of the neuron morphology using two dimensional images.
Rajković, Katarina; Marić, Dušica L; Milošević, Nebojša T; Jeremic, Sanja; Arsenijević, Valentina Arsić; Rajković, Nemanja
2016-02-01
In this study mathematical analyses such as the analysis of area and length, fractal analysis and modified Sholl analysis were applied on two dimensional (2D) images of neurons from adult human dentate nucleus (DN). Using mathematical analyses main morphological properties were obtained including the size of neuron and soma, the length of all dendrites, the density of dendritic arborization, the position of the maximum density and the irregularity of dendrites. Response surface methodology (RSM) was used for modeling the size of neurons and the length of all dendrites. However, the RSM model based on the second-order polynomial equation was only possible to apply to correlate changes in the size of the neuron with other properties of its morphology. Modeling data provided evidence that the size of DN neurons statistically depended on the size of the soma, the density of dendritic arborization and the irregularity of dendrites. The low value of mean relative percent deviation (MRPD) between the experimental data and the predicted neuron size obtained by RSM model showed that model was suitable for modeling the size of DN neurons. Therefore, RSM can be generally used for modeling neuron size from 2D images.
Two-dimensional investigation of forced bubble oscillation under microgravity
Institute of Scientific and Technical Information of China (English)
HONG Ruoyu; Masahiro KAWAJI
2003-01-01
Recent referential studies of fluid interfaces subjected to small vibration under microgravity conditions are reviewed. An experimental investigation was carried out aboard the American Space Shuttle Discovery. Two-dimensional (2-D) modeling and simulation were conducted to further understand the experimental results. The oscillation of a bubble in fluid under surface tension is governed by the incompressible Navier-Stokes equations. The SIMPLEC algorithm was used to solve the partial differential equations on an Eulerian mesh in a 2-D coordinate. Free surfaces were represented with the volume of fluid (VOF) obtained by solving a kinematic equation. Surface tension was modeled via a continuous surface force (CSF) algorithm that ensures robustness and accuracy. A new surface reconstruction scheme, alternative phase integration (API) scheme, was adopted to solve the kinematic equation, and was compared with referential schemes. Numerical computations were conducted to simulate the transient behavior of an oscillating gas bubble in mineral oil under different conditions. The bubble positions and shapes under different external vibrations were obtained numerically. The computed bubble oscillation amplitudes were compared with experimental data.
Institute of Scientific and Technical Information of China (English)
YANG XunYu; WANG Fang; CHEN QiuXia; WANG LiYan; WANG ZhiQiang
2007-01-01
We described the formation of self-organized two-dimensional (2D) assemblies of N-(2,3,5,6-tetrafluoro- 4-iodophenyl)hexadecylamine and 1-dodecyl-imidazole at the liquid/HOPG interface. The two-dimen- sional assemblies showed a fishbone-like pattern structure as revealed by high-resolution scanning tunneling microscopy. Although different interactions can drive the formation of 2D assemblies,as far as we know,this is the first report on halogen bond-driven 2D assemblies.
Two-dimensional Fibonacci grating for far-field super-resolution imaging
Wu, Kedi; Wang, Guo Ping
2016-12-01
A two-dimensional (2D) Fibonacci grating is used to transform evanescent waves into propagating waves for far-field super-resolution imaging. By detecting far-field intensity distributions of light field through objects in front of the 2D Fibonacci grating in free space at once, we can retrieve the image of objects with beyond λ/7 spatial resolution. We also find that the coherent illumination case can give a better resolution than incoherent illumination case by such 2D grating-assisted imaging system. The analytical results are verified by numerical simulation.
Two-dimensional relativistic electromagnetic dromion-like soliton in a cold transparent plasma
Institute of Scientific and Technical Information of China (English)
Wang Yun-Liang; Zhou Zhong-Xiang; Yuan Cheng-Xun; Jiang Xiang-Qian; Qin Ru-Hu
2006-01-01
By using a standard multiple scale method, a Davey-Stewartson (DS) equation has been derived and also applied to a multi-dimensional analytical investigation on the interaction of an ultra-intense laser pulse with a cold unmagnetized transparent electron-ion plasma. The regions of instability are found by considering the modulation instability of a plane wave solution of the DS equation. The DS equation is just of the Daveylution, i.e. a two-dimensional (2D) dromion soliton decaying exponentially in all spatial directions. A 2D relativistic electromagnetic dromion-like soliton (2D REDLS) is derived for a vector potential.
Entropy of Bit-Stuffing-Induced Measures for Two-Dimensional Checkerboard Constraints
DEFF Research Database (Denmark)
Forchhammer, Søren; Vaarby, Torben Strange
2007-01-01
A modified bit-stuffing scheme for two-dimensional (2-D) checkerboard constraints is introduced. The entropy of the scheme is determined based on a probability measure defined by the modified bit-stuffing. Entropy results of the scheme are given for 2-D constraints on a binary alphabet....... The constraints considered are 2-D RLL (d, infinity) for d = 2, 3 and 4 as well as for the constraint with a minimum 1-norm distance of 3 between Is. For these results the entropy is within 1-2% of an upper bound on the capacity for the constraint. As a variation of the scheme, periodic merging arrays are also...
Simulated annealing applied to two-dimensional low-beta reduced magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Chikasue, Y., E-mail: chikasue@ppl.k.u-tokyo.ac.jp [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561 (Japan); Furukawa, M., E-mail: furukawa@damp.tottori-u.ac.jp [Graduate School of Engineering, Tottori University, Minami 4-101, Koyama-cho, Tottori-shi, Tottori 680-8552 (Japan)
2015-02-15
The simulated annealing (SA) method is applied to two-dimensional (2D) low-beta reduced magnetohydrodynamics (R-MHD). We have successfully obtained stationary states of the system numerically by the SA method with Casimir invariants preserved. Since the 2D low-beta R-MHD has two fields, the relaxation process becomes complex compared to a single field system such as 2D Euler flow. The obtained stationary state can have fine structure. We have found that the fine structure appears because the relaxation processes are different between kinetic energy and magnetic energy.
Tupikov, Y.; Kuntsevich, A. Yu.; Pudalov, V. M.; Burmistrov, I. S.
2015-01-01
We report first thermodynamic measurements of the temperature derivative of chemical potential (d{\\mu}/dT) in two-dimensional (2D) electron systems. In order to test the technique we have chosen Schottky gated GaAs/AlGaAs heterojunctions and detected experimentally in this 2D system quantum magnetooscillations of d{\\mu}/dT. We also present a Lifshits-Kosevitch type theory for the d{\\mu}/dT magnetooscillations in 2D systems and compare the theory with experimental data. The magnetic field depe...
Institute of Scientific and Technical Information of China (English)
YANG Ming-yang; ZHOU Jun; L Petti; S De Nicola; P Mormile
2011-01-01
We report a numerical method to analyze the fractal characteristics of far-field diffraction patterns for two-dimensional Thue-Morse(2-D TM) structures.The far-field diffraction patterns of the 2-D TM structures can be obtained by the numerical method,and they have a good agreement with the experimental ones.The analysis shows that the fractal characteristics of far-field diffraction patterns for the 2-D TM structures are determined by the inflation rule,which have potential applications in the design of optical diffraction devices.
The PLSI Method of Stabilizing Two-Dimensional Nonsymmetric Half-Plane Recursive Digital Filters
Gangatharan N; Reddy PS
2003-01-01
Two-dimensional (2D) recursive digital filters find applications in image processing as in medical X-ray processing. Nonsymmetric half-plane (NSHP) filters have definitely positive magnitude characteristics as opposed to quarter-plane (QP) filters. In this paper, we provide methods for stabilizing the given 2D NSHP polynomial by the planar least squares inverse (PLSI) method. We have proved in this paper that if the given 2D unstable NSHP polynomial and its PLSI are of the same degree, the P...
Cavity-enhanced ultrafast two-dimensional spectroscopy using higher order modes
Allison, Thomas K.
2017-02-01
We describe methods using frequency combs and optical resonators for recording two-dimensional (2D) ultrafast spectroscopy signals with high sensitivity. By coupling multiple frequency combs to higher-order modes of one or more optical cavities, background-free, cavity-enhanced 2D spectroscopy signals are naturally generated via phase cycling. As in cavity-enhanced ultrafast transient absorption spectroscopy, the signal to noise is enhanced by a factor proportional to the cavity finesse squared, so even using cavities of modest finesse, a very high sensitivity is expected, enabling ultrafast 2D spectroscopy experiments in dilute molecular beams.
Cavity-enhanced ultrafast two-dimensional spectroscopy using higher-order modes
Allison, Thomas K
2016-01-01
We describe methods using frequency combs and optical resonators for recording two-dimensional (2D) ultrafast spectroscopy signals with high sensitivity. By coupling multiple frequency combs to higher-order modes of one or more optical cavities, background-free, cavity-enhanced 2D spectroscopy signals are naturally generated via phase cycling. As in cavity-enhanced ultrafast transient absorption spectroscopy (CE-TAS), the signal to noise is enhanced by a factor proportional to the cavity finesse squared, so even using cavities of modest finesse, a very high sensitivity is expected, enabling ultrafast 2D spectroscopy experiments in dilute molecular beams.
The two-dimensional alternative binary L-J system: liquid-gas phase diagram
Institute of Scientific and Technical Information of China (English)
张陟; 陈立溁
2003-01-01
A two-dimensional (2D) binary system without considering the Lennard-Jones (L-J) potential has been studied by using the Collins model. In this paper, we introduce the L-J potential into the 2D binary system and consider the existence of the holes that are called the "molecular fraction". The liquid-gas phase diagram of the 2D alternative binary L-J system is obtained. The results are quite analogous to the behaviour of 3D substances.
Optimal excitation of two dimensional Holmboe instabilities
Constantinou, Navid C
2010-01-01
Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...
Phonon hydrodynamics in two-dimensional materials.
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-06
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Probabilistic Universality in two-dimensional Dynamics
Lyubich, Mikhail
2011-01-01
In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.
Two-dimensional position sensitive neutron detector
Indian Academy of Sciences (India)
A M Shaikh; S S Desai; A K Patra
2004-08-01
A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.
Janus Spectra in Two-Dimensional Flows
Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki
2016-09-01
In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.
Equivalency of two-dimensional algebras
Energy Technology Data Exchange (ETDEWEB)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica
2011-07-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
Imaging hemodynamic changes in preterm infant brains with two-dimensional diffuse optical tomography
Gao, Feng; Ma, Yiwen; Yang, Fang; Zhao, Huijuan; Jiang, Jingying; Kusaka, Takashi; Ueno, Masanori; Yamada, Yukio
2008-02-01
We present our preliminary results on two-dimensional (2-D) optical tomographic imaging of hemodynamic changes of two preterm infant brains in different ventilation settings conditions. The investigations use the established two-wavelength, 16-channel time-correlated single photon counting system for the detection, and the generalized pulse spectrum technique based algorithm for the image reconstruction. The experiments demonstrate that two-dimensional diffuse optical tomography may be a potent and relatively simple way of investigating the functions and neural development of infant brains in the perinatal period.
APPLICATION OF TWO-DIMENSIONAL WAVELET TRANSFORM IN NEAR-SHORE X-BAND RADAR IMAGES
Institute of Scientific and Technical Information of China (English)
FENG Xiang-bo; YAN Yi-xin; ZHANG Wei
2011-01-01
Among existing remote sensing applications, land-based X-band radar is an effective technique to monitor the wave fields,and spatial wave information could be obtained from the radar images.Two-dimensional Fourier Transform (2-D FT) is the common algorithm to derive the spectra of radar images.However, the wave field in the nearshore area is highly non-homogeneous due to wave refraction, shoaling, and other coastal mechanisms.When applied in nearshore radar images, 2-D FT would lead to ambiguity of wave characteristics in wave number domain.In this article, we introduce two-dimensional Wavelet Transform (2-D WT) to capture the non-homogeneity of wave fields from nearshore radar images.The results show that wave number spectra by 2-D WT at six parallel space locations in the given image clearly present the shoaling of nearshore waves.Wave number of the peak wave energy is increasing along the inshore direction, and dominant direction of the spectra changes from South South West (SSW) to West South West (WSW).To verify the results of2-D WT, wave shoaling in radar images is calculated based on dispersion relation.The theoretical calculation results agree with the results of 2-D WT on the whole.The encouraging performance of 2-D WT indicates its strong capability of revealing the non-homogeneity of wave fields in nearshore X-band radar images.
Internetwork magnetic field as revealed by two-dimensional inversions
Danilovic, S.; van Noort, M.; Rempel, M.
2016-09-01
Context. Properties of magnetic field in the internetwork regions are still fairly unknown because of rather weak spectropolarimetric signals. Aims: We address the matter by using the two-dimensional (2D) inversion code, which is able to retrieve the information on smallest spatial scales up to the diffraction limit, while being less susceptible to noise than most of the previous methods used. Methods: Performance of the code and the impact of various effects on the retrieved field distribution is tested first on the realistic magneto-hydrodynamic (MHD) simulations. The best inversion scenario is then applied to the real data obtained by Spectropolarimeter (SP) on board Hinode. Results: Tests on simulations show that: (1) the best choice of node position ensures a decent retrieval of all parameters; (2) the code performs well for different configurations of magnetic field; (3) slightly different noise levels or slightly different defocus included in the spatial point spread function (PSF) produces no significant effect on the results; and (4) temporal integration shifts the field distribution to a stronger, more horizontally inclined field. Conclusions: Although the contribution of the weak field is slightly overestimated owing to noise, 2D inversions are able to recover well the overall distribution of the magnetic field strength. Application of the 2D inversion code on the Hinode SP internetwork observations reveals a monotonic field strength distribution. The mean field strength at optical depth unity is ~ 130 G. At higher layers, field strength drops as the field becomes more horizontal. Regarding the distribution of the field inclination, tests show that we cannot directly retrieve it with the observations and tools at hand, however, the obtained distributions are consistent with those expected from simulations with a quasi-isotropic field inclination after accounting for observational effects.
2D materials for nanophotonic devices
Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui
2015-12-01
Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.
Optical Spectroscopy of Two Dimensional Graphene and Boron Nitride
Ju, Long
This dissertation describes the use of optical spectroscopy in studying the physical properties of two dimensional nano materials like graphene and hexagonal boron nitride. Compared to bulk materials, atomically thin two dimensional materials have a unique character that is the strong dependence of physical properties on external control. Both electronic band structure and chemical potential can be tuned in situ by electric field-which is a powerful knob in experiment. Therefore the optical study at atomic thickness scale can greatly benefit from modern micro-fabrication technique and electric control of the material properties. As will be shown in this dissertation, such control of both gemometric and physical properties enables new possibilities of optical spectroscopic measurement as well as opto-electronic studies. Other experimental techniques like electric transport and scanning tunneling microscopy and spectroscopy are also combined with optical spectroscopy to reveal the physics that is beyond the reach of each individual technique. There are three major themes in the dissertation. The first one is focused on the study of plasmon excitation of Dirac electrons in monolayer graphene. Unlike plasmons in ordinary two dimensional electron gas, plasmons of 2D electrons as in graphene obey unusual scaling laws. We fabricate graphene micro-ribbon arrays with photolithography technique and use optical absorption spectroscopy to study its absorption spectrum. The experimental result demonstrates the extraordinarily strong light-plasmon coupling and its novel dependence on both charge doping and geometric dimensions. This work provides a first glance at the fundamental properties of graphene plasmons and forms the basis of an emerging subfield of graphene research and applications such as graphene terahertz metamaterials. The second part describes the opto-electronic response of heterostructures composed of graphene and hexagonal boron nitride. We found that there is
Two dimensional soft material: new faces of graphene oxide.
Kim, Jaemyung; Cote, Laura J; Huang, Jiaxing
2012-08-21
Graphite oxide sheets, now called graphene oxide (GO), can be made from chemical exfoliation of graphite by reactions that have been known for 150 years. Because GO is a promising solution-processable precursor for the bulk production of graphene, interest in this old material has resurged. The reactions to produce GO add oxygenated functional groups to the graphene sheets on their basal plane and edges, and this derivatization breaks the π-conjugated network, resulting in electrically insulating but highly water-dispersible sheets. Apart from making graphene, GO itself has many intriguing properties. Like graphene, GO is a two-dimensional (2D) sheet with feature sizes at two abruptly different length scales. The apparent thickness of the functionalized carbon sheet is approximately 1 nm, but the lateral dimensions can range from a few nanometers to hundreds of micrometers. Therefore, researchers can think of GO as either a single molecule or a particle, depending on which length scale is of greater interest. At the same time, GO can be viewed as an unconventional soft material, such as a 2D polymer, highly anisotropic colloid, membrane, liquid crystal, or amphiphile. In this Account, we highlight the soft material characteristics of GO. GO consists of nanographitic patches surrounded by largely disordered, oxygenated domains. Such structural characteristics effectively make GO a 2D amphiphile with a hydrophilic periphery and largely hydrophobic center. This insight has led to better understanding of the solution properties of GO for making thin films and new applications of GO as a surfactant. Changes in pH and sheet size can tune the amphiphilicity of GO, leading to intriguing interfacial activities. In addition, new all-carbon composites made of only graphitic nanostructures using GO as a dispersing agent have potential applications in photovoltaics and energy storage. On the other hand, GO can function as a 2D random diblock copolymer, one block graphitic and
On numerical evaluation of two-dimensional phase integrals
DEFF Research Database (Denmark)
Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans
1975-01-01
The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....
Ionic solutions of two-dimensional materials
Cullen, Patrick L.; Cox, Kathleen M.; Bin Subhan, Mohammed K.; Picco, Loren; Payton, Oliver D.; Buckley, David J.; Miller, Thomas S.; Hodge, Stephen A.; Skipper, Neal T.; Tileli, Vasiliki; Howard, Christopher A.
2016-11-01
Strategies for forming liquid dispersions of nanomaterials typically focus on retarding reaggregation, for example via surface modification, as opposed to promoting the thermodynamically driven dissolution common for molecule-sized species. Here we demonstrate the true dissolution of a wide range of important 2D nanomaterials by forming layered material salts that spontaneously dissolve in polar solvents yielding ionic solutions. The benign dissolution advantageously maintains the morphology of the starting material, is stable against reaggregation and can achieve solutions containing exclusively individualized monolayers. Importantly, the charge on the anionic nanosheet solutes is reversible, enables targeted deposition over large areas via electroplating and can initiate novel self-assembly upon drying. Our findings thus reveal a unique solution-like behaviour for 2D materials that enables their scalable production and controlled manipulation.
Electrical and optoelectronic properties of two-dimensional materials
Wang, Qiaoming
Electrical and optoelectronic properties of bulk semiconductor materials have been extensively explored in last century. However, when reduced to one-dimensional and two-dimensional, many semiconductors start to show unique electrical and optoelectronic behaviors. In this dissertation, electrical and optoelectronic properties of one-dimensional (nanowires) and two-dimensional semiconductor materials are investigated by various techniques, including scanning photocurrent microscopy, scanning Kelvin probe microscopy, Raman spectroscopy, photoluminescence, and finite-element simulations. In our work, gate-tunable photocurrent in ZnO nanowires has been observed under optical excitation in the visible regime, which originates from the nanowire/substrate interface states. This gate tunability in the visible regime can be used to enhance the photon absorption efficiency, and suppress the undesirable visible-light photodetection in ZnO-based solar cells. The power conversion efficiency of CuInSe2/CdS core-shell nanowire solar cells has been investigated. The highest power conversion efficiency per unit area/volume is achieved with core diameter of 50 nm and the thinnest shell thickness. The existence of the optimal geometrical parameters is due to a combined effect of optical resonances and carrier transport/dynamics. Significant current crowding in two-dimensional black phosphorus field-effect transistors has been found, which has been significantly underestimated by the commonly used transmission-line model. This current crowding can lead to Joule heating close to the contacts. New van der Waals metal-semiconductor junctions have been mechanically constructed and systematically studied. The photocurrent on junction area has been demonstrated to originate from the photothermal effect rather than the photovoltaic effect. Our findings suggest that a reasonable control of interface/surface state properties can enable new and beneficial functionalities in nanostructures. We
Improvement in two-dimensional barcode
Indian Academy of Sciences (India)
SONAM WASULE; SHILPA METKAR
2017-07-01
Barcode is one of the existing systems which is very fast in scanning and more accurate when compared with other coding systems. It is extensively used because speed of scanning the barcode is very high as compared with manual data entry. To increase the capacity of 2D monochrome QR code to 3 fold, 2D colour QR code is developed. The challenge in the development of colour barcode is in its decoding, since the intensity and depth of colours vary during the printing and scanning process. We need to understand the decoding process and make it insensitive to such variations. A lot of work has been already done to deal with such variations but acceptable results have not yet been achieved. The objective behind colour barcode is to increase the capacity to 3 fold as compared with 2D monochrome barcode. In this paper we proposed a novel approach that will increase the capacity of barcode beyond 3 fold and deals with decoding problem of intensity variation. In the proposed technique, quantization of grey levels is specified to handle the problem of intensity variation.
Two-dimensional graphene as a matrix for MALDI imaging mass spectrometry.
Friesen, William L; Schultz, Brian J; Destino, Joel F; Alivio, Theodore E G; Steet, Joseph R; Banerjee, Sarbajit; Wood, Troy D
2015-11-01
Here, a matrix using two-dimensional (2D) graphene is demonstrated for the first time in the context of MALDI IMS using a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Although graphene flakes have been used previously in MALDI, it is described here how a single 2D layer of graphene is applied directly on top of rat brain sections and soybean leaves. Several classes of molecules are desorbed and ionized off of the surface of the tissues examined using 2D graphene, with minimal background interference from the matrix. Moreover, no solvents are employed in application of 2D graphene, eliminating the potential for analyte diffusion in liquid droplets during matrix application. Because 2D graphene is an elemental form of carbon, an additional advantage is its high compatibility with the long duration needed for many IMS experiments. Graphical Abstract ᅟ.
Novel two-dimensional DOA estimation with L-shaped array
Xiaofei, Zhang; Jianfeng, Li; Lingyun, Xu
2011-12-01
Two-dimensional (2D) direction-of-arrival (DOA) estimation has played an important role in array signal processing. In this article, we address a problem of bind 2D-DOA estimation with L-shaped array. This article links the 2D-DOA estimation problem to the trilinear model. To exploit this link, we derive a trilinear decomposition-based 2D-DOA estimation algorithm in L-shaped array. Without spectral peak searching and pairing, the proposed algorithm employs well. Moreover, our algorithm has much better 2D-DOA estimation performance than the estimation of signal parameters via rotational invariance technique algorithms and propagator method. Simulation results illustrate validity of the algorithm.
Two-dimensional novel optical lattices with multi-well traps for cold atoms or molecules
Institute of Scientific and Technical Information of China (English)
Junfa Lu; Xianming Ji; Jianping Yin
2006-01-01
We propose some new schemes to constitute two-dimensional (2D) array of multi-well optical dipole traps for cold atoms (or molecules) by using an optical system consisting of a binary π-phase grating and a 2D array of rectangle microlens. We calculate the intensity distribution of each optical well in 2D array of multi-well traps and its geometric parameters and so on. The proposed 2D array of multi-well traps can be used to form novel 2D optical lattices with cold atoms (or molecules), and form various novel optical crystals with cold atoms (or molecules), or to perform quantum computing and quantum information processing on an atom chip, even to realize an array of all-optical multi-well atomic (or molecular) BoseEinstein condensates (BECs) on an all-optical integrated atom (or molecule) chip.
Novel two-dimensional DOA estimation with L-shaped array
Directory of Open Access Journals (Sweden)
Xiaofei Zhang
2011-01-01
Full Text Available Abstract Two-dimensional (2D direction-of-arrival (DOA estimation has played an important role in array signal processing. In this article, we address a problem of bind 2D-DOA estimation with L-shaped array. This article links the 2D-DOA estimation problem to the trilinear model. To exploit this link, we derive a trilinear decomposition-based 2D-DOA estimation algorithm in L-shaped array. Without spectral peak searching and pairing, the proposed algorithm employs well. Moreover, our algorithm has much better 2D-DOA estimation performance than the estimation of signal parameters via rotational invariance technique algorithms and propagator method. Simulation results illustrate validity of the algorithm.
A Ternary Solvent Method for Large-Sized Two-Dimensional Perovskites.
Chen, Junnian; Gan, Lin; Zhuge, Fuwei; Li, Huiqiao; Song, Jizhong; Zeng, Haibo; Zhai, Tianyou
2017-02-20
Recent reports demonstrate that a two-dimensional (2D) structural characteristic can endow perovskites with both remarkable photoelectric conversion efficiency and high stability, but the synthesis of ultrathin 2D perovskites with large sizes by facile solution methods is still a challenge. Reported herein is the controlled growth of 2D (C4 H9 NH3 )2 PbBr4 perovskites by a chlorobenzene-dimethylformide-acetonitrile ternary solvent method. The critical factors, including solvent volume ratio, crystallization temperature, and solvent polarity on the growth dynamics were systematically studied. Under optimum reaction condition, 2D (C4 H9 NH3 )2 PbBr4 perovskites, with the largest lateral dimension of up to 40 μm and smallest thickness down to a few nanometers, were fabricated. Furthermore, various iodine doped 2D (C4 H9 NH3 )2 PbBrx I4-x perovskites were accessed to tune the optical properties rationally.
Ahmed, Sohail; Yi, Jiabao
2017-10-01
Two-dimensional (2D) materials have attracted extensive interest due to their excellent electrical, thermal, mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero band gap has limited its applications in electronic devices. Transition metal dichalcogenide (TMDC), another kind of 2D material, has a nonzero direct band gap (same charge carrier momentum in valence and conduction band) at monolayer state, promising for the efficient switching devices (e.g., field-effect transistors). This review mainly focuses on the recent advances in charge carrier mobility and the challenges to achieve high mobility in the electronic devices based on 2D-TMDC materials and also includes an introduction of 2D materials along with the synthesis techniques. Finally, this review describes the possible methodology and future prospective to enhance the charge carrier mobility for electronic devices.
Weng, Jiawen; Zhong, Jingang; Hu, Cuiying
2009-06-20
We describe a numerical reconstruction technique for digital holography by means of the two-dimensional Gabor wavelet transform (2D-GWT). Applying the 2D-GWT to digital holography, the object wave can be reconstructed by calculating the wavelet coefficients of the hologram at the peak of the 2D-GWT automatically. At the same time the effect of the zero-order diffraction image and the twin image are eliminated without spatial filtering. Comparing the numerical reconstruction of a holographic image by the analysis of the one-dimensional Gabor wavelet transform (1D-GWT) with the 2D-GWT, we show that the 2D-GWT method is superior to the 1D-GWT method, especially when the fringes of the hologram are not just along the y direction. The theory and the results of a simulation and experiments are shown.
Two-Dimensional Graphene as a Matrix for MALDI Imaging Mass Spectrometry
Friesen, William L.; Schultz, Brian J.; Destino, Joel F.; Alivio, Theodore E. G.; Steet, Joseph R.; Banerjee, Sarbajit; Wood, Troy D.
2015-11-01
Here, a matrix using two-dimensional (2D) graphene is demonstrated for the first time in the context of MALDI IMS using a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Although graphene flakes have been used previously in MALDI, it is described here how a single 2D layer of graphene is applied directly on top of rat brain sections and soybean leaves. Several classes of molecules are desorbed and ionized off of the surface of the tissues examined using 2D graphene, with minimal background interference from the matrix. Moreover, no solvents are employed in application of 2D graphene, eliminating the potential for analyte diffusion in liquid droplets during matrix application. Because 2D graphene is an elemental form of carbon, an additional advantage is its high compatibility with the long duration needed for many IMS experiments.
Janus spectra in two-dimensional flows
Liu, Chien-Chia; Chakraborty, Pinaki
2016-01-01
In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...
Two-dimensional hexagonal semiconductors beyond graphene
Nguyen, Bich Ha; Hieu Nguyen, Van
2016-12-01
The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.
Two-Dimensional Phononic Crystals: Disorder Matters.
Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M
2016-09-14
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Surface and Interface Engineering of Organometallic and Two Dimensional Semiconductor
Park, Jun Hong
For over half a century, inorganic Si and III-V materials have led the modern semiconductor industry, expanding to logic transistor and optoelectronic applications. However, these inorganic materials have faced two different fundamental limitations, flexibility for wearable applications and scaling limitation as logic transistors. As a result, the organic and two dimensional have been studied intentionally for various fields. In the present dissertation, three different studies will be presented with followed order; (1) the chemical response of organic semiconductor in NO2 exposure. (2) The surface and stability of WSe2 in ambient air. (3) Deposition of dielectric on two dimensional materials using organometallic seeding layer. The organic molecules rely on the van der Waals interaction during growth of thin films, contrast to covalent bond inorganic semiconductors. Therefore, the morphology and electronic property at surface of organic semiconductor in micro scale is more sensitive to change in gaseous conditions. In addition, metal phthalocyanine, which is one of organic semiconductor materials, change their electronic property as reaction with gaseous analytes, suggesting as potential chemical sensing platforms. In the present part, the growth behavior of metal phthalocyanine and surface response to gaseous condition will be elucidated using scanning tunneling microscopy (STM). In second part, the surface of layered transition metal dichalcogenides and their chemical response to exposure ambient air will be investigated, using STM. Layered transition metal dichalcogenides (TMDs) have attracted widespread attention in the scientific community for electronic device applications because improved electrostatic gate control and suppression of short channel leakage resulted from their atomic thin body. To fabricate the transistor based on TMDs, TMDs should be exposed to ambient conditions, while the effect of air exposure has not been understood fully. In this part
Two-Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects.
Chimene, David; Alge, Daniel L; Gaharwar, Akhilesh K
2015-12-02
Two-dimensional (2D) nanomaterials are ultrathin nanomaterials with a high degree of anisotropy and chemical functionality. Research on 2D nanomaterials is still in its infancy, with the majority of research focusing on elucidating unique material characteristics and few reports focusing on biomedical applications of 2D nanomaterials. Nevertheless, recent rapid advances in 2D nanomaterials have raised important and exciting questions about their interactions with biological moieties. 2D nanoparticles such as carbon-based 2D materials, silicate clays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) provide enhanced physical, chemical, and biological functionality owing to their uniform shapes, high surface-to-volume ratios, and surface charge. Here, we focus on state-of-the-art biomedical applications of 2D nanomaterials as well as recent developments that are shaping this emerging field. Specifically, we describe the unique characteristics that make 2D nanoparticles so valuable, as well as the biocompatibility framework that has been investigated so far. Finally, to both capture the growing trend of 2D nanomaterials for biomedical applications and to identify promising new research directions, we provide a critical evaluation of potential applications of recently developed 2D nanomaterials.
Elucidation of Chemical Reactions by Two-Dimensional Resonance Raman Spectroscopy
Moran, Andrew
Two-dimensional (2D) Raman spectroscopies were proposed by Mukamel and Loring in1985 as a method for resolving line broadening mechanisms of vibrational motions in liquids. Significant technical issues challenged the development of both five- and seven-pulse 2D Raman spectroscopies. For this reason, 2D Raman experiments were largely abandoned in 2002 following the first demonstrations of 2D infrared spectroscopies (i.e., an alternate approach for obtaining similar information). We have recently shown that 2D Raman experiments conducted under electronically resonant conditions are much less susceptible to the problems encountered in the earlier 2D Raman work, which was carried out off-resonance. In effect, Franck-Condon activity obviates the problematic selection rules encountered under electronically off-resonant conditions. In this presentation, I will discuss applications of 2D resonance Raman spectroscopies to photodissocation reactions of triiodide and myoglobin. It will be shown that vibrational resonances of the reactants and products can be displayed in separate dimensions of a 2D resonance Raman spectrum when the photo-dissociation reaction is fast compared to the vibrational period. Such 2D spectra expose correlations between the nonequilibrium geometry of the reactant and the distribution of vibrational quanta in the product, thereby yielding insight in the photo-dissociation mechanism. Our results suggest that the ability of 2D resonance Raman spectroscopy to detect correlations between reactants and products will generalize to other ultrafast processes such as electron transfer and energy transfer.
Indian Academy of Sciences (India)
Shivanand M Pudakalakatti; Abhinav Dubey; Hanudatta S Atreya
2015-06-01
NMR-based approach to metabolomics typically involves the collection of two-dimensional (2D) heteronuclear correlation spectra for identification and assignment of metabolites. In case of spectral overlap, a 3D spectrum becomes necessary, which is hampered by slow data acquisition for achieving sufficient resolution. We describe here a method to simultaneously acquire three spectra (one 3D and two 2D) in a single data set, which is based on a combination of different fast data acquisition techniques such as G-matrix Fourier transform (GFT) NMR spectroscopy, parallel data acquisition and non-uniform sampling. The following spectra are acquired simultaneously: (1) 13C multiplicity edited GFT (3,2)D HSQC-TOCSY, (2) 2D [1H-1H] TOCSY and (3) 2D [13C-1H] HETCOR. The spectra are obtained at high resolution and provide high-dimensional spectral information for resolving ambiguities. While the GFT spectrum has been shown previously to provide good resolution, the editing of spin systems based on their CH multiplicities further resolves the ambiguities for resonance assignments. The experiment is demonstrated on a mixture of 21 metabolites commonly observed in metabolomics. The spectra were acquired at natural abundance of 13C. This is the first application of a combination of three fast NMR methods for small molecules and opens up new avenues for high-throughput approaches for NMR-based metabolomics.
Jeannerat, Damien
2017-01-01
The introduction of a universal data format to report the correlation data of 2D NMR spectra such as COSY, HSQC and HMBC spectra will have a large impact on the reliability of structure determination of small organic molecules. These lists of assigned cross peaks will bridge signals found in NMR 1D and 2D spectra and the assigned chemical structure. The record could be very compact, human and computer readable so that it can be included in the supplementary material of publications and easily transferred into databases of scientific literature and chemical compounds. The records will allow authors, reviewers and future users to test the consistency and, in favorable situations, the uniqueness of the assignment of the correlation data to the associated chemical structures. Ideally, the data format of the correlation data should include direct links to the NMR spectra to make it possible to validate their reliability and allow direct comparison of spectra. In order to take the full benefits of their potential, the correlation data and the NMR spectra should therefore follow any manuscript in the review process and be stored in open-access database after publication. Keeping all NMR spectra, correlation data and assigned structures together at all time will allow the future development of validation tools increasing the reliability of past and future NMR data. This will facilitate the development of artificial intelligence analysis of NMR spectra by providing a source of data than can be used efficiently because they have been validated or can be validated by future users. Copyright © 2016 John Wiley & Sons, Ltd.
Brewster Angle Microscope Investigations of Two Dimensional Phase Transitions
Schuman, Adam William
The liquid-liquid interface is investigated by microscopic and thermodynamic means to image and measure interfacial properties when the system undergoes a two-dimensional (2D) phase transition of a Gibbs monolayer by varying the sample temperature. An in-house Brewster angle microscope (BAM) is constructed to visualize the interface during this transition while a quasi-elastic light scattering technique is used to determine the interfacial tension. These results complement x-ray investigations of the same systems. Evidence of interfacial micro-separated structure, microphases, comes from observations across a hexane-water interface with the inclusion of a long-chain fluorinated alcohol surfactant into the bulk hexane. Microphases take the form of spatially modulated structure to the density of the surfactant as it spans laterally across the interface. The surfactant monolayer exhibits microphase morphology over a range of a couple degrees as the temperature of the system is scanned through the 2D gas-solid phase transition. Microphase structure was observed for heating and cooling the hexane-water system and structural comparisons are given when the temperature step and quench depth of the cooling process is varied. A complete sequence of morphological structure was observed from 2D gas to cluster to labyrinthine stripe to a 2D solid mosaic pattern. Two characteristic length scales emerge giving rise to speculation of an elastic contribution to the standard repulsive and attractive competitive forces stabilizing the microphase. The benefit of BAM to laterally image very thin films across the surface of an interface on the micrometer length scale nicely complements x-ray reflectivity methods that average structural data transverse to the liquid interface on a molecular scale. To properly analyze x-ray reflectivity data, the interface is required to be laterally homogeneous. BAM can sufficiently characterize the interface for this purpose as is done for a Langmuir
Two-dimensional materials and their prospects in transistor electronics.
Schwierz, F; Pezoldt, J; Granzner, R
2015-05-14
During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.
DEFF Research Database (Denmark)
Kretschmer, Silvan; Komsa, Hannu-Pekka; Bøggild, Peter
2017-01-01
The polymorphism of two-dimensional (w2D) transition-metal dichalcogenides (TMDs) and different electronic properties of the polymorphs make TMDs particularly promising materials in the context of applications in electronics. Recently, local transformations from the semiconducting trigonal prisma...... development and optimization of electron-beam-mediated engineering of the atomic structure and electronic properties of 2D TMDs with subnanometer resolution.......The polymorphism of two-dimensional (w2D) transition-metal dichalcogenides (TMDs) and different electronic properties of the polymorphs make TMDs particularly promising materials in the context of applications in electronics. Recently, local transformations from the semiconducting trigonal...... prismatic H phase to the metallic octahedral T phase in 2D MoS2 have been induced by electron irradiation [Nat. Nanotech. 2014, 9, 391], but the mechanism of the transformations remains elusive. Using density functional theory calculations, we study the energetics of the stable and metastable phases of 2D...
Note: Unshielded bilateral magnetoencephalography system using two-dimensional gradiometers
Seki, Yusuke; Kandori, Akihiko; Ogata, Kuniomi; Miyashita, Tsuyoshi; Kumagai, Yukio; Ohnuma, Mitsuru; Konaka, Kuni; Naritomi, Hiroaki
2010-09-01
Magnetoencephalography (MEG) noninvasively measures neuronal activity with high temporal resolution. The aim of this study was to develop a new type of MEG system that can measure bilateral MEG waveforms without a magnetically shielded room, which is an obstacle to reducing both the cost and size of an MEG system. An unshielded bilateral MEG system was developed using four two-dimensional (2D) gradiometers and two symmetric cryostats. The 2D gradiometer, which is based on a low-Tc superconducting quantum interference device and wire-wound pickup coil detects a magnetic-field gradient in two orthogonal directions, or ∂/∂x(∂2Bz/∂z2), and reduces environmental magnetic-field noise by more than 50 dB. The cryostats can be symmetrically positioned in three directions: vertical, horizontal, and rotational. This makes it possible to detect bilateral neuronal activity in the cerebral cortex simultaneously. Bilateral auditory-evoked fields (AEF) of 18 elderly subjects were measured in an unshielded hospital environment using the MEG system. As a result, both the ipsilateral and the contralateral AEF component N100m, which is the magnetic counterpart of electric N100 in electroencephalography and appears about 100 ms after the onset of an auditory stimulus, were successfully detected for all the subjects. Moreover, the ipsilateral P50m and the contralateral P50m were also detected for 12 (67%) and 16 (89%) subjects, respectively. Experimental results demonstrate that the unshielded bilateral MEG system can detect MEG waveforms, which are associated with brain dysfunction such as epilepsy, Alzheimer's disease, and Down syndrome.
Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique
Energy Technology Data Exchange (ETDEWEB)
Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)
2015-06-06
The two-dimensional slope error of an X-ray mirror has been retrieved by employing the speckle scanning technique, which will be valuable at synchrotron radiation facilities and in astronomical telescopes. In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes.
Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.
Fang, Yuan; Yushmanov, Pavel V; Furó, István
2016-12-08
Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.
Two-Dimensional Heat Transfer in a Heterogeneous Fracture Network
Gisladottir, V. R.; Roubinet, D.; Tartakovsky, D. M.
2015-12-01
Geothermal energy harvesting requires extraction and injection of geothermal fluid. Doing so in an optimal way requires a quantitative understanding of site-specific heat transfer between geothermal fluid and the ambient rock. We develop a heat transfer particle-tracking approach to model that interaction. Fracture-network models of heat transfer in fractured rock explicitly account for the presence of individual fractures, ambient rock matrix, and fracture-matrix interfaces. Computational domains of such models span the meter scale, whereas fracture apertures are on the millimeter scale. The computations needed to model these multi-scale phenomenon can be prohibitively expensive, even for methods using nonuniform meshes. Our approach appreciably decreases the computational costs. Current particle-tracking methods usually assume both infinite matrix and one-dimensional (1D) heat transfer in the matrix blocks. They rely on 1D analytical solutions for heat transfer in a single fracture, which can lead to large predictive errors. Our two-dimensional (2D) heat transfer simulation algorithm is mesh-free and takes into account both longitudinal and transversal heat conduction in the matrix. It uses a probabilistic model to transfer particle to the appropriate neighboring fracture unless it returns to the fracture of origin or remains in the matrix. We use this approach to look at the impact of a fracture-network topology (e.g. the importance of smaller scale fractures), as well as the matrix block distribution on the heat transport in heterogeneous fractured rocks.
Two-dimensional Nutation Echo Nuclear Quadrupole Resonance Spectroscopy
Harbison, Gerard S.; Slokenbergs, Andris
1990-04-01
We discuss two new two-dimensional nuclear quadrupole resonance experiments, both based on the principle of nutation spectroscopy, which can be used to determine the asymmetry parameter, and thus the full quadrupolar tensor, of spin-3/2 nuclei at zero applied magnetic field. The first experiment is a simple nutation pulse sequence in which the first time period (t1) is the duration of the radiofrequency exciting pulse; and the second (t2) is the normal free-precession of a quadrupolar nucleus at zero-field. After double Fourier-transformation, the result is a 2 D spectrum in which the first frequency dimension is the nutation spectrum for the quadrupolar nucleus at zero-field. For polycrystalline samples this sequence generates powder lineshapes; the position of the singularities, in these lineshapes can be used to determine the asymmetry parameters η in a very straightforward manner, η has previously only been obtainable using Zeeman perturbed NQR methods. The second sequence is the same nutation experiment with a spin-echo pulse added. The virtue of this refocussing pulse is that it allows acquisition of nutation spectra from samples with arbitrary inhomogeneous linewidth; thus, asymmetry parameters can be determined even where the quadrupolar resonance is wider than the bandwidth of the spectrometer. Experimental examples of 35Cl, 81Br and 63Cu nutation and nutation-echo spectra are presented.
Two dimensional discriminant neighborhood preserving embedding in face recognition
Pang, Meng; Jiang, Jifeng; Lin, Chuang; Wang, Binghui
2015-03-01
One of the key issues of face recognition is to extract the features of face images. In this paper, we propose a novel method, named two-dimensional discriminant neighborhood preserving embedding (2DDNPE), for image feature extraction and face recognition. 2DDNPE benefits from four techniques, i.e., neighborhood preserving embedding (NPE), locality preserving projection (LPP), image based projection and Fisher criterion. Firstly, NPE and LPP are two popular manifold learning techniques which can optimally preserve the local geometry structures of the original samples from different angles. Secondly, image based projection enables us to directly extract the optimal projection vectors from twodimensional image matrices rather than vectors, which avoids the small sample size problem as well as reserves useful structural information embedded in the original images. Finally, the Fisher criterion applied in 2DDNPE can boost face recognition rates by minimizing the within-class distance, while maximizing the between-class distance. To evaluate the performance of 2DDNPE, several experiments are conducted on the ORL and Yale face datasets. The results corroborate that 2DDNPE outperforms the existing 1D feature extraction methods, such as NPE, LPP, LDA and PCA across all experiments with respect to recognition rate and training time. 2DDNPE also delivers consistently promising results compared with other competing 2D methods such as 2DNPP, 2DLPP, 2DLDA and 2DPCA.
The random discrete action for two-dimensional spacetime
Energy Technology Data Exchange (ETDEWEB)
Benincasa, Dionigi M T; Dowker, Fay; Schmitzer, Bernhard, E-mail: db1808@ic.ac.uk [Theoretical Physics Group, Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2AZ (United Kingdom)
2011-05-21
A one-parameter family of random variables, called the Discrete Action, is defined for a two-dimensional Lorentzian spacetime of finite volume. The single parameter is a discreteness scale. The expectation value of this discrete action is calculated for various regions of 2D Minkowski spacetime, M{sup 2}. When a causally convex region of M{sup 2} is divided into subregions using null lines the mean of the discrete action is equal to the alternating sum of the numbers of vertices, edges and faces of the null tiling, up to corrections that tend to 0 as the discreteness scale is taken to 0. This result is used to predict that the mean of the discrete action of the flat Lorentzian cylinder is zero up to corrections, which is verified. The 'topological' character of the discrete action breaks down for causally convex regions of the flat trousers spacetime that contain the singularity and for non-causally convex rectangles.
DEFF Research Database (Denmark)
Shaw, AC; Rossel Larsen, M; Roepstorff, P
1999-01-01
magnitude of IFN-gamma responsive genes has been reported previously. Our goal is to identify and map IFN-gamma-regulated HeLa cell proteins to the two-dimensional polyacrylamide gel electrophoresis with the immobilized pH gradient (IPG) two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) system...
2015-04-01
distribution is unlimited. i CONTENTS Page Introduction 1 Two-dimensional Material Geometry and Analogs with Close-packed Systems 1 Matching...distribution is unlimited. 1 INTRODUCTION Two-dimensional (2D) material heterostructures offer novel and compelling electronic and optical...methods have undoubtedly been created for matching lattice constants of dissimilar nanomaterials , very few are actually covered explicitly in literature
Waldin, Nicholas
2016-06-24
2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.
Two-dimensional optical tomography of hemodynamic changes in a preterm infant brain
Gao, Feng; Xue, Yuan; Zhao, Huijuan; Kusaka, Takashi; Ueno, Masanori; Yamada, Yukio
2007-08-01
Our preliminary results on two-dimensional (2D) optical tomographic imaging of hemodynamic changes in a preterm infant brain are reported. We use the established 16-channel time-correlated single photon counting system for the detection and generalized pulse spectrum technique based algorithm for the image reconstruction. The experiments demonstrate that diffuse optical tomography may be a potent means for investigating brain functions and neural development of infant brains in the perinatal period.
Self-Organized Two-Dimensional Vidro-Nanodot Array on Laser-Irradiated Si Surface
Yoshida, Yutaka; Sakaguchi, Norihito; Watanabe, Seiichi; Kato, Takahiko
2011-05-01
We report a periodic two-dimensional (2D) array of uniquely shaped dotlike nanoprotrusions (NPs), which simultaneously self-organize on a Si surface under pulsed laser irradiation. The shape of the dotlike NPs can be controlled by adjusting the number of laser pulses. The flask-shaped dotlike NP array is named a vidro-nanodot (VND) array. We present a detailed analysis of the internal structure of VND using high-resolution electron microscopy.
Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots
Energy Technology Data Exchange (ETDEWEB)
Cundiff, Steven T. [Univ. of Colorado, Boulder, CO (United States)
2016-05-03
This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program was to implement optical 2-dimensional Fourier transform spectroscopy and apply it to electronic excitations, including excitons, in semiconductors. Specifically of interest are quantum wells that exhibit disorder due to well width fluctuations and quantum dots. In both cases, 2-D spectroscopy will provide information regarding coupling among excitonic localization sites.
The investigation on two-dimensional pilot-symbol-aided channel estimation method for OFDM system
Institute of Scientific and Technical Information of China (English)
Sun Juying; Zhang Yanhua
2008-01-01
Channel estimation for orthogonal frequency division multiplexing (OFDM) system has attracted widespread attention. In this paper, a novel efficient two-dimensional (2-D) channel estimation algorithm based on fast Fourier transform (FFT) is proposed for a time-variant, frequency-selective wideband wireless channel. Both theoretical analysis and simulation results are addressed in the paper. The simulation results prove that the proposed algorithm has simpler implementation, better performance and wider application than other traditional decision-directed algorithms.
Coarse error analysis and correction of a two-dimensional triangulation range finder
Institute of Scientific and Technical Information of China (English)
Huaqiao Gui; Liang Lü; Wei Huang; Jun Xu; Deyong He; Huanqin Wang; Jianping Xie; Tianpeng Zhao; Hai Ming
2006-01-01
@@ A real-time two-dimensional (2D) triangulation range finder is presented, which is composed of two linear complementary metal oxidation semiconductor (CMOS) chips, two camera lenses, and four light emitting diodes (LEDs). The high order distortion in image aberrations is the main factor responsible for the coarse errors. The theoretical prediction is in good agreement with experiments and the correction equation is used to obtain more reliable results with the unique distortion coefficient in the whole working region.
Two-dimensional optical tomography of hemodynamic changes in a preterm infant brain
Institute of Scientific and Technical Information of China (English)
Feng Gao; Yuan Xue; Huijuan Zhao; Takashi Kusaka; Masanori Ueno; Yukio Yamada
2007-01-01
Our preliminary results on two-dimensional (2D) optical tomographic imaging of hemodynamic changes in a preterm infant brain are reported. We use the established 16-channel time-correlated single photon counting system for the detection and generalized pulse spectrum technique based algorithm for the image reconstruction. The experiments demonstrate that diffuse optical tomography may be a potent means for investigating brain functions and neural development of infant brains in the perinatal period.
2016-06-22
dichroism in two-dimensional metamaterials A.B. Khanikaev1, N. Arju2, Z. Fan2, D. Purtseladze2, F. Lu3, J. Lee3, P. Sarriugarte4, M. Schnell4, R. Hillenbrand4...M.A. Belkin3 & G. Shvets2 Optical activity and circular dichroism are fascinating physical phenomena originating from the interaction of light with...spatial symmetry of their building blocks is broken on a nanoscale. Although originally discovered in 3D structures, circular dichroism can also emerge
Solvent Exfoliation of Electronic-Grade, Two-Dimensional Black Phosphorus
Kang, Joohoon; Wood, Joshua D.; Wells, Spencer A.; Lee, Jae-Hyeok; Liu, Xiaolong; Chen, Kan-Sheng; Hersam, Mark C.
2015-01-01
Solution dispersions of two-dimensional (2D) black phosphorus (BP), often referred to as phosphorene, are achieved by solvent exfoliation. These pristine, electronic-grade BP dispersions are produced with anhydrous, organic solvents in a sealed tip ultrasonication system, which circumvents BP degradation that would otherwise occur via solvated oxygen or water. Among conventional solvents, n-methyl-pyrrolidone (NMP) is found to provide stable, highly concentrated (~0.4 mg/mL) BP dispersions. A...
A Comparative Study of Stability Testing Approaches of Two-Dimensional Recursive Digital Filters
K. R. Santhi; M.Ponnavaikko; N. Gangatharan
2008-01-01
There are many problems in science and engineering whose solution is applied in the design of Multi-Dimensional (MD) digital filters. Digital filtering finds an important position in the field of digital signal and image processing. Recently there had been a great deal of interest in the design and stability analysis of Two-Dimensional (2-D) recursive digital filters. The design techniques for stable One Dimensional (1-D) digital filters are relatively well developed; but their extension to 2...
Jo, Ju-Yeon; Tanimura, Yoshitaka
2016-01-01
Frequency-domain two-dimensional Raman signals, which are equivalent to coherent two-dimensional Raman scattering (COTRAS) signals, for liquid water and carbon tetrachloride were calculated using an equilibrium-nonequilibrium hybrid MD simulation algorithm. We elucidate mechanisms governing the 2D signal pro?les involving anharmonic mode-mode coupling and the nonlinearities of the polarizability for the intermolecular and intramolecular vibrational modes. The predicted signal pro?les and intensities can be utilized to analyze recently developed single-beam 2D spectra, whose signals are generated from a coherently controlled pulse, allowing the single-beam measurement to be carried out more efficiently.
National Research Council Canada - National Science Library
Ucar, Murat; Guryildirim, Melike; Tokgoz, Nil; Kilic, Koray; Borcek, Alp; Oner, Yusuf; Akkan, Koray; Tali, Turgut
2014-01-01
...) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE...
Closed-form evaluation of two-dimensional static lattice sums
Yakubovich, S.; Drygas, P.; Mityushev, V.
2016-11-01
Closed-form formulae for the conditionally convergent two-dimensional (2D) static lattice sums S2 (for conductivity) and T2 (for elasticity) are deduced in terms of the complete elliptic integrals of the first and second kind. The obtained formulae yield asymptotic analytical formulae for the effective tensors of 2D composites with circular inclusions up to the third order in concentration. Exact relations between S2 and T2 for different lattices are established. In particular, the value S2=π for the square and hexagonal arrays is discussed and T2=π/2 for the hexagonal is deduced.
Towards complete integrability of two dimensional Poincar\\'e gauge gravity
Mielke, E W; Obukhov, Yu N; Tresguerres, R; Hehl, F W
1993-01-01
It is shown that gravity on the line can be described by the two dimensional (2D) Hilbert-Einstein Lagrangian supplemented by a kinetic term for the coframe and a translational {\\it boundary} term. The resulting model is equivalent to a Yang-Mills theory of local {\\it translations} and frozen Lorentz gauge degrees. We will show that this restricted Poincar\\'e gauge model in 2 dimensions is completely integrable. {\\it Exact} wave, charged black hole, and `dilaton' solutions are then readily found. In vacuum, the integrability of the {\\it general} 2D Poincar\\'e gauge theory is formally proved along the same line of reasoning.