WorldWideScience

Sample records for two-cycle engine oils

  1. A New, Highly Improved Two-Cycle Engine

    Science.gov (United States)

    Wiesen, Bernard

    2008-01-01

    The figure presents a cross-sectional view of a supercharged, variable-compression, two-cycle, internal-combustion engine that offers significant advantages over prior such engines. The improvements are embodied in a combination of design changes that contribute synergistically to improvements in performance and economy. Although the combination of design changes and the principles underlying them are complex, one of the main effects of the changes on the overall engine design is reduced (relative to prior two-cycle designs) mechanical complexity, which translates directly to reduced manufacturing cost and increased reliability. Other benefits include increases in the efficiency of both scavenging and supercharging. The improvements retain the simplicity and other advantages of two-cycle engines while affording increases in volumetric efficiency and performance across a wide range of operating conditions that, heretofore have been accessible to four-cycle engines but not to conventionally scavenged two-cycle ones, thereby increasing the range of usefulness of the two-cycle engine into all areas now dominated by the four-cycle engine. The design changes and benefits are too numerous to describe here in detail, but it is possible to summarize the major improvements: Reciprocating Shuttle Inlet Valve The entire reciprocating shuttle inlet valve and its operating gear is constructed as a single member. The shuttle valve is actuated in a lost-motion arrangement in which, at the ends of its stroke, projections on the shuttle valve come to rest against abutments at the ends of grooves in a piston skirt. This shuttle-valve design obviates the customary complex valve mechanism, actuated from an engine crankshaft or camshaft, yet it is effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines.

  2. Supercharged two-cycle engines employing novel single element reciprocating shuttle inlet valve mechanisms and with a variable compression ratio

    Science.gov (United States)

    Wiesen, Bernard (Inventor)

    2008-01-01

    This invention relates to novel reciprocating shuttle inlet valves, effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines, employing spark or compression ignition. Also permitting the elimination of out-of-phase piston arrangements to control scavenging and supercharging of opposed-piston engines. The reciprocating shuttle inlet valve (32) and its operating mechanism (34) is constructed as a single and simple uncomplicated member, in combination with the lost-motion abutments, (46) and (48), formed in a piston skirt, obviating the need for any complex mechanisms or auxiliary drives, unaffected by heat, friction, wear or inertial forces. The reciprocating shuttle inlet valve retains the simplicity and advantages of two-cycle engines, while permitting an increase in volumetric efficiency and performance, thereby increasing the range of usefulness of two-cycle engines into many areas that are now dominated by the four-cycle engine.

  3. Engine oil wear resistance

    Directory of Open Access Journals (Sweden)

    A.N. Farhanah

    2015-03-01

    Full Text Available Lubricants play a vital role in an internal combustion engine to lubricate parts and help to protect and prolong the engine life. Lubricant also will help to reduce wear by creating lubricating film between the moving parts hence reduce metal-to-metal contacts. Engine oil from three different manufacturers with the same SAE viscosity grade available in market does not mean it will have the same lubricity for an engine. In this study, commercial mineral lubrication oil (SAE 10W-30 from three manufacturers was investigated to compare the lubrication performance at three different temperatures (40˚C, 70˚C and 100˚C in 60 minutes time duration by using four ball wear tester. The speed will be varied from 1000 rpm to 2500 rpm. Results show that all three lubricants have different lubricity performance; the smaller the wear scar, the better the lubricant since the lubricant can protect the moving surfaces from direct metal-to-metal contact occur.

  4. Spectroscopic analysis of automotive engine oil

    Science.gov (United States)

    Dahmani, Rachid; Gupta, Neelam

    2002-02-01

    Infrared absorption spectroscopy (IR) and acousto-optic tunable filter (AOTF) technology were combined to develop a portable spectrophotometer for use in engine oil analysis to identify and quantify oil contaminants and residue products, Preliminary measurements were taken with a field-portable AOTF-based spectrometer (2 to 4.5 micrometers ) and an FTIR spectrometer (2 to 25 micrometers ) for comparison. Absorption spectra of used and unused oil samples were measured and compared to determine absorption changes between the various samples resulting from oil degradation and any chemical reactions that might have taken place during high- temperature engine lubrication. These preliminary results indicate that IR spectroscopy can be used for oil quality monitoring in automotive engines, which will help predict and prevent engine failure and degradation. This work can be extended to other remote sensing applications, such as the monitoring of environmental oil spills.

  5. application of used engine oil on of used engine oil in soil on of ...

    African Journals Online (AJOL)

    eobe

    stabilization, solidification, reuse and recycling wastes in geotechnical engineering works popularly ... optimum moisture content of the oil contaminated soils while the m dry density varied ..... “Managing Used Oil Advice for Small. Businesses”.

  6. On-Board Monitoring of Engine Oil

    Science.gov (United States)

    2011-04-01

    REPORT NUMBER(S) 21542 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release, distribution unlimited 13. SUPPLEMENTARY NOTES A Thesis...concentration* *Using techniques such as FTIR and wear particle analysis ( WPA ) Table 4: Level of significance for lubricant properties. Adapted from... distribution around the engine oil, while using less engine oil. By comparing the set-ups, it was possible to determine if the accuracy and precision of the

  7. Properties of concrete containing used engine oil

    Directory of Open Access Journals (Sweden)

    Nasir Shafiq

    2011-07-01

    Full Text Available Since last few years cement replacement materials, industrial by-products and agricultural wastes in concrete production are widely used. It imparts positive environmental effect because the waste materials are not released to the environment. It was reported that the leakage of motor oil onto concrete surfaces in old grinding units increased the resistance such concrete to freezing and thawing, it made to understand that the effect is similar to adding an air-entraining chemical admixture to the concrete. However, the hypothesis is not backed by significant research study and not reported in the available literature. This paper presents results of the experimental study conducted to investigate the effects of used engine oil on properties of fresh and hardened concrete.  With the addition of used engine oil, concrete slump was increased by 18% to 38% and air content by 26% to 58% as compare to the slump of control concrete. Porosity and oxygen permeability of concrete containing used engine oil was also reduced and the compressive strength was obtained approximately same as that of the control mix

  8. 7 CFR 2902.25 - 2-Cycle engine oils.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false 2-Cycle engine oils. 2902.25 Section 2902.25... Items § 2902.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to provide lubrication, decreased spark plug fouling, reduced deposit formation, and/or reduced engine...

  9. Gravimetric Determination of Sediment in Turbine Engine Lubricating Oils.

    Science.gov (United States)

    noncombustible sediment present in aircraft turbine engine lubricating oils . Both MIL-L-7808 and MIL-L-23699 lubricants were investigated. These...temperature. When these oils were heated to 140 F, they easily passed through a silver membrane filter. A test procedure for the gravimetric measurement of particulate contamination in turbine engine lubricating oils is proposed. (Author)

  10. Characterization of lubrication oil emissions from aircraft engines.

    Science.gov (United States)

    Yu, Zhenhong; Liscinsky, David S; Winstead, Edward L; True, Bruce S; Timko, Michael T; Bhargava, Anuj; Herndon, Scott C; Miake-Lye, Richard C; Anderson, Bruce E

    2010-12-15

    In this first ever study, particulate matter (PM) emitted from the lubrication system overboard breather vent for two different models of aircraft engines has been systematically characterized. Lubrication oil was confirmed as the predominant component of the emitted particulate matter based upon the characteristic mass spectrum of the pure oil. Total particulate mass and size distributions of the emitted oil are also investigated by several high-sensitivity aerosol characterization instruments. The emission index (EI) of lubrication oil at engine idle is in the range of 2-12 mg kg(-1) and increases with engine power. The chemical composition of the oil droplets is essentially independent of engine thrust, suggesting that engine oil does not undergo thermally driven chemical transformations during the ∼4 h test window. Volumetric mean diameter is around 250-350 nm for all engine power conditions with a slight power dependence.

  11. Qualification Lab Testing on M1 Abrams Engine Oil Filters

    Science.gov (United States)

    2016-11-01

    UNCLASSIFIED QUALIFICATION LAB TESTING ON M1 ABRAMS ENGINE OIL FILTERS FINAL REPORT TFLRF No. 483 by Kristi K. Rutta U.S...the originator. UNCLASSIFIED QUALIFICATION LAB TESTING ON M1 ABRAMS ENGINE OIL FILTERS FINAL REPORT TFLRF No. 483 by Kristi K...TITLE AND SUBTITLE Qualification Lab Testing on M1 Abrams Engine Oil Filter 5a. CONTRACT NUMBER W56HZV-15-C-0030 5b. GRANT NUMBER 5c. PROGRAM

  12. Wood pyrolysis oil for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Paro, D.; Gros, S.; Hellen, G.; Jay, D.; Maekelae, T.; Rantanen, O.; Tanska, T. [Wartsila Diesel International Ltd Oy, Vaasa (Finland)

    1996-12-01

    Wood Pyrolysis oil (WPO) has been identified by the Technical Research Centre of Finland (VTT) as the most competitive biofuel product which can be produced from biomass. The fuel is produced by a fast pyrolysis technique, using wood chipping`s or sawdust. The process can be applied to other recycling products such as straw etc. The use of WPO as a Diesel power plant fuel has been studied, and a fuel specification has been developed. The fuel characteristics have been analysed. There are several fuel properties addressed in the paper which have had to be overcome. New materials have been used in the fuel injection system. The fuel injection system development has progressed from a pump-line-pipe system to a common rail system. The fuel requires a pilot fuel oil injection to initiate combustion. The targets for the fuel injection system have been 1500 bar and 30 deg C injection period with a fuel of 15 MJ/kg lower heating value and 1220 Kg/m{sup 3} density. The combustion characteristics from both a small 80 mm bore engine initially, and then later with a single cylinder test of a 320 mm bore Waertsilae engine, have been evaluated. (author)

  13. Oil rigging firm to add 50 engineering vessels

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    China Oilfield Services Ltd., the oil service unit of the State-owned offshore oil and gas producer China NationalOffshore Oil Corporation, plans to add 50 vessels to its ocean engineering fleet, according to Cai Dian, manager of the shipping department at COSL. COSL is China's largest integrated oilfield service provider, operating a fleet of 108 vessels, which accounts for 60 percent of China's total ocean engineering vessel number.

  14. Low-temperature behaviour of the engine oil

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2013-01-01

    Full Text Available The behaviour of engine oil is very important. In this paper has been evaluated temperature dependence kinematic viscosity of engine oils in the low temperatures. Five different commercially distributed engine oils (primarily intended for automobile engines with viscosity class 0W–40, 5W–40, 10W–40, 15W–40, and 20W–40 have been evaluated. The temperature dependence kinematic viscosity has been observed in the range of temperature from −15 °C to 15 °C (for all oils. Considerable temperature dependence kinematic viscosity was found and demonstrated in case of all samples, which is in accordance with theoretical assumptions and literature data. Mathematical models have been developed and tested. Temperature dependence dynamic viscosity has been modeled using a polynomials 3rd and 4th degree. The proposed models can be used for prediction of flow behaviour of oils. With monitoring and evaluating we can prevent technical and economic losses.

  15. ESTIMATION OF VISCOSITY ENGINE OILS USING ROTATIONAL RHEOMETER

    Directory of Open Access Journals (Sweden)

    Anna M. RYNIEWICZ

    2014-06-01

    Full Text Available The operating criteria, the assurance of energy-efficiency and environmental protection impose very diversified rheological requirements on the parameters of work of car engine oils. The aim of the work was the estimation of rheological parameters of selected car engine oils at controlled shear stress in a wide range of temperatures, using a rotational rheometer. Investigated mineral engine oils, semi-synthetic and synthetic ones that belong to different viscosity classes. The characteristics of viscosity in relation to temperature in the testing node were determined. The results of tests at sub-zero and low temperatures indicate significant differentiation of rheological properties of engine oils. It can be claimed that in the exploited friction nodes, especially in the conditions of fluid and mixed friction, the smallest viscosity is characteristic to the fully synthetic oils from the tested group 5W and the semi-synthetic oil Orlen Gas Semisynthetic 10W-40. Semi-synthetic oil Platinum Rally Sport 10W-60 stands out as its viscosity values at sub-zero and low temperatures are greater than the ones of mineral oils from the tested group 15W-40. At high temperatures one can distinguish the oil called Elf Sporti SRI 15W-40 whose viscosity very slightly decreases. The conducted oil tests confirmed their catalog parameters and affiliation to viscosity classes.

  16. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    OpenAIRE

    Teerawat Apichato; Gumpon Prateepchaikul1

    2003-01-01

    Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term perfor...

  17. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    Directory of Open Access Journals (Sweden)

    Teerawat Apichato

    2003-05-01

    Full Text Available Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term performance testing was conducted for each fuel on the dynamometer engine test bed. Specific fuel consumption, exhaust temperature and black smoke density were determined and measured. Long-term performance testing (or endurance test was also done by running the engines coupled with a generator in order to supply load (electricity to a lightbulb board. For each 500 hours of engine run time, the engines were dissembled for engine wear inspection. It was found that the fuel pump and fuel valve weight losses from both engines showed insignificant differences either at the first 500 hours of running time or at the second 500 hours of running time but the inlet valve from the engine fueled by diesel oil had a higher weight loss than the engine fueled by refined palm oil at the first 500 hours and at the second 500 hours of running time. The compression rings from the engine fueled by refined palm oil showed a significant weight loss compared to the engine fueled by diesel oil both after 500 hours and after 1000 hours of running time.

  18. Comparison of lubricant properties of castor oil and commercial engine oil

    Directory of Open Access Journals (Sweden)

    Binfa Bongfa

    2015-06-01

    Full Text Available The tribological performance of crude Nigeria-based castor oil has been investigated and compared with that of a foreign, 20W-50 high quality crankcase oil, to see its suitability as base oil for lubricating oils in indigenous vehicle and power plants engines. The experiment was conducted using a four ball tester. The results showed that unrefined castor oil has superior friction reduction and load bearing capability in an unformulated form than the commercial oil; can compete favourably with the commercial oil in wear protection when formulated with suitable antiwear agent, hence can be a good alternative base stock for crankcase oils suitable for Nigeria serviced vehicles, and plants engines from tribological, environmental, and non-food competitive points of view.

  19. Performance of Diesel Engine Using Blended Crude Jatropha Oil

    Science.gov (United States)

    Kamarudin, Kamarul Azhar; Mohd Sazali, Nor Shahida Akma; Mohd Ali, Mas Fauzi; Alimin, Ahmad Jais; Khir, Saffiah Abdullah

    2010-06-01

    Vegetable oil presents a very promising alternative to diesel oil since it is renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its viscosity is reduced by blending it with diesel. Since jatropha oil has properties which are similar to mineral diesel, it can be used in compression ignition engines without any engine modification. This paper presents the results of investigation carried out on a four-cylinder, four strokes and indirect-injection diesel engine. The engine, operated using composition blends of crude jatropha oil and diesel, were compared with mineral diesel. An experimental investigation has been carried out to analyze the performance characteristics of a compression ignition engine from the blended fuel (5%, 10%, 20% and 30%). A naturally aspirated four-stroke indirect injection diesel engine was tested at full load conditions, speeds between 1000 and 3500 rpm with intervals of 500 rpm. Results obtained from the measures of torque, power, specific fuel consumptions, thermal efficiency and brake mean effective pressure are nearly the same between blended and diesel fuel. An overall graph shows that the performance of relevant parameters from blended fuel is most likely similar to the performance produced from diesel. The experimental results proved that the use of crude jatropha oil in compression ignition engines is a viable alternative to diesel.

  20. Improving peppermint essential oil yield and composition by metabolic engineering

    OpenAIRE

    Lange, Bernd Markus; Mahmoud, Soheil Seyed; Wildung, Mark R.; Turner, Glenn W.; Davis, Edward M.; Lange, Iris; Baker, Raymond C.; Boydston, Rick A.; Croteau, Rodney B.

    2011-01-01

    Peppermint (Mentha × piperita L.) was transformed with various gene constructs to evaluate the utility of metabolic engineering for improving essential oil yield and composition. Oil yield increases were achieved by overexpressing genes involved in the supply of precursors through the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. Two-gene combinations to enhance both oil yield and composition in a single transgenic line were assessed as well. The most promising results were obtained by tr...

  1. Engine Oil Condition Monitoring Using High Temperature Integrated Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Jeff Bird

    2011-01-01

    Full Text Available The present work contains two parts. In the first part, high temperature integrated ultrasonic transducers (IUTs made of thick piezoelectric composite films, were coated directly onto lubricant oil supply and sump lines of a modified CF700 turbojet engine. These piezoelectric films were fabricated using a sol-gel spray technology. By operating these IUTs in transmission mode, the amplitude and velocity of transmitted ultrasonic waves across the flow channel of the lubricant oil in supply and sump lines were measured during engine operation. Results have shown that the amplitude of the ultrasonic waves is sensitive to the presence of air bubbles in the oil and that the ultrasound velocity is linearly dependent on oil temperature. In the second part of the work, the sensitivity of ultrasound to engine lubricant oil degradation was investigated by using an ultrasonically equipped and thermally-controlled laboratory testing cell and lubricant oils of different grades. The results have shown that at a given temperature, ultrasound velocity decreases with a decrease in oil viscosity. Based on the results obtained in both parts of the study, ultrasound velocity measurement is proposed for monitoring oil degradation and transient oil temperature variation, whereas ultrasound amplitude measurement is proposed for monitoring air bubble content.

  2. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    Science.gov (United States)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  3. Improving peppermint essential oil yield and composition by metabolic engineering.

    Science.gov (United States)

    Lange, Bernd Markus; Mahmoud, Soheil Seyed; Wildung, Mark R; Turner, Glenn W; Davis, Edward M; Lange, Iris; Baker, Raymond C; Boydston, Rick A; Croteau, Rodney B

    2011-10-11

    Peppermint (Mentha × piperita L.) was transformed with various gene constructs to evaluate the utility of metabolic engineering for improving essential oil yield and composition. Oil yield increases were achieved by overexpressing genes involved in the supply of precursors through the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. Two-gene combinations to enhance both oil yield and composition in a single transgenic line were assessed as well. The most promising results were obtained by transforming plants expressing an antisense version of (+)-menthofuran synthase, which is critical for adjusting the levels of specific undesirable oil constituents, with a construct for the overexpression of the MEP pathway gene 1-deoxy-D-xylulose 5-phosphate reductoisomerase (up to 61% oil yield increase over wild-type controls with low levels of the undesirable side-product (+)-menthofuran and its intermediate (+)-pulegone). Elite transgenic lines were advanced to multiyear field trials, which demonstrated consistent oil yield increases of up to 78% over wild-type controls and desirable effects on oil composition under commercial growth conditions. The transgenic expression of a gene encoding (+)-limonene synthase was used to accumulate elevated levels of (+)-limonene, which allows oil derived from transgenic plants to be recognized during the processing of commercial formulations containing peppermint oil. Our study illustrates the utility of metabolic engineering for the sustainable agricultural production of high quality essential oils at a competitive cost.

  4. Engineering property test of kaolin clay contaminated by diesel oil

    Institute of Scientific and Technical Information of China (English)

    刘志彬; 刘松玉; 蔡奕

    2015-01-01

    Engineering property of kaolin clay contaminated by diesel oil was studied through a series of laboratory experiments. Oil contents (mass fraction) of 4%, 8%, 12%, 16% and 20% were selected to represent different contamination degrees, and the soil specimens were manually prepared through mixing and static compaction method. Initial water content and dry density of the test kaolin clay were controlled at 10% and 1.58 g/cm3, respectively. Test results indicate that since part of the diesel oil will be released from soil by evaporation, the real water content should be derived through calibration of the quasi water content obtained by traditional test method. As contamination degree of the kaolin clay increases, both liquid limit and plastic limit decrease, but there’s only a slight increase for plasticity index. Swelling pressure of contaminated kaolin clay under confined condition will be lowered when oil-content gets higher. Unconfined compressive strength (UCS) of the oil-contaminated kaolin clay is influenced by not only oil content but also curing period. Increase of contamination degree will continually lower UCS of the kaolin clay specimen. In addition, electrical resistivity of the contaminated kaolin clay with given water content decreases with the increase of oil content. However, soil resistivity is in good relationship with oil content and UCS. Finally, oil content of 8% is found to be a critical value for engineering property of kaolin clay to transit from water-dominated towards oil-dominated characteristics.

  5. [Application of PCA to diesel engine oil spectrometric analysis].

    Science.gov (United States)

    Liu, Tao; Tian, Hong-Xiang; Guo, Wen-Yong

    2010-03-01

    In order to study wear characteristics of a 6-cylinder diesel engine, six different working statuses were arranged by altering the clearance between cylinder and piston. Sixty-nine oil samples were taken from engine at different loads under 6 working statuses and analyzed by Spectroil M Instrument made in US. Principal component analysis (PCA) was applied to analyzing spectrometric data of sixty-nine oil samples and clustering those data according to elements and oil samples separately based on the weighted coefficient and principal component scores. All 21 elements were used in element clustering and only 6 wear-related elements, namely iron, chromium, aluminum, copper, plumbum and silicon, were used in sample clustering. It is shown that PCA effectively clustered oil spectrometric data into three different principal components according to elements. The projection of two different principal components exhibited five types of elements combinations, namely wear elements (Fe, Cr, Cu, Al and Pb), high concentration additives elements (Na, Zn, P, Ca and Mg), low concentration additives elements (Ba and B), base constituent of lubricating oils (C and H) and interferential elements (Ni, Ti, Mo, V, Ag and Sn). Furthermore, PCA clearly clustered oil samples according to different clearance between cylinder and piston in the diesel engine. The study suggests that analyzing oil spectrographic data by PCA could find the sources of different elements, monitor engine conditions and diagnose wear faults.

  6. Frontiers of Offshore Oil Equipment and Engineering Technology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ From a worldwide perspective, offshore gas and oil fields account for about 60% of the total. At present, more than 100 countries are going in for offshore oil and gas exploration, among which over 50 countries are exploring ocean floor. With the continuous innovation of engineering technology, the exploration of submarine oil and gas will develop toward deep water area. The reserves are expected to continue to increase in the future. The discovery rate of oil and gas in China's sea area merely amounts to 18.5% and 9.2% respectively. Compared with land exploration,offshore exploration has a great potential.

  7. Biodiesel from plant seed oils as an alternate fuel for compression ignition engines-a review.

    Science.gov (United States)

    Vijayakumar, C; Ramesh, M; Murugesan, A; Panneerselvam, N; Subramaniam, D; Bharathiraja, M

    2016-12-01

    The modern scenario reveals that the world is facing energy crisis due to the dwindling sources of fossil fuels. Environment protection agencies are more concerned about the atmospheric pollution due to the burning of fossil fuels. Alternative fuel research is getting augmented because of the above reasons. Plant seed oils (vegetable oils) are cleaner, sustainable, and renewable. So, it can be the most suitable alternative fuel for compression ignition (CI) engines. This paper reviews the availability of different types of plant seed oils, several methods for production of biodiesel from vegetable oils, and its properties. The different types of oils considered in this review are cashew nut shell liquid (CNSL) oil, ginger oil, eucalyptus oil, rice bran oil, Calophyllum inophyllum, hazelnut oil, sesame oil, clove stem oil, sardine oil, honge oil, polanga oil, mahua oil, rubber seed oil, cotton seed oil, neem oil, jatropha oil, egunsi melon oil, shea butter, linseed oil, Mohr oil, sea lemon oil, pumpkin oil, tobacco seed oil, jojoba oil, and mustard oil. Several methods for production of biodiesel are transesterification, pre-treatment, pyrolysis, and water emulsion are discussed. The various fuel properties considered for review such as specific gravity, viscosity, calorific value, flash point, and fire point are presented. The review also portrays advantages, limitations, performance, and emission characteristics of engine using plant seed oil biodiesel are discussed. Finally, the modeling and optimization of engine for various biofuels with different input and output parameters using artificial neural network, response surface methodology, and Taguchi are included.

  8. Experimental Investigation on Usage of Palm Oil as a Lubricant to Substitute Mineral Oil in CI Engines

    Directory of Open Access Journals (Sweden)

    K. S. V. Krishna Reddy

    2014-01-01

    Full Text Available Due to growing environmental concerns, vegetable oils are finding their way into lubricants for industrial and transportation applications. The substitution of mineral oil with vegetable oil as a base stock for an environment friendly lubricant in a CI engine is explored in this study without adding any additives. The experiments have been conducted with a mixture of palm oil and mineral oil, at different compositions. Blends of palm oil and mineral oil in different compositions, 0, 25, and 50 (by vol % were added to base SAE20W40 mineral oil to obtain different lubricant blends. The parameters evaluated include brake thermal efficiency, brake specific fuel consumption, volumetric efficiency, and mechanical efficiency and exhaust emissions. The engine performance and emission tests were carried out on a single cylinder, water cooled, 4-stroke CI engine. Compared to mineral oil, the palm oil-based lubricant revealed appreciable expedience on engine and emission performance.

  9. Engine Auxiliary System Guideline: Lubricating Oil Systems

    OpenAIRE

    Linna, Joni

    2015-01-01

    This thesis was done for Wärtsilä Technical Services organization, the purpose of this work was to gather and structure information about the lubricating oil systems from the company’s internal databases, interviews with system specialists and from different literature sources covering Ship Power and Power Plant products. The outcome was a guideline, covering typical power plant and marine system descriptions, all components used in the lubricating oil system with their functional description...

  10. Quick coker test: A new and rapid engine oil detergency and thermo-oxidation test

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A method of rapidly evaluating high temperature detergency and anti oxidation propertyof engine oil is developed. It takes several minutes to distinguish base oil and high, middle or lowAPI quality grade engine oil. The method simulates the vanish formation of engine oil in piston. Inthis method, varnish forms on the surface of aluminum plate in 330±10℃ with test oil dropping onit. The detergency and anti oxidation property of engine oil are evaluated on the color of varnish.According to different practise application, two procedures are developed. Procedure a is for dis-tinguishing base oil and engine oil. Procedure b is for distinguishing engine oil of various API qual-ity grades, Also, this method is specifically suitable for discriminating poor quality engine oil inmarket.

  11. Biodegradation of Used Engine Oil by Acinetobacter junii TBC 1.2

    Directory of Open Access Journals (Sweden)

    Witono Basuki

    2015-11-01

    Full Text Available AbstractThe isolates have capability to degrade used engine oil was obtained from soil in the beach contaminatedwith used engine oil. One of the selected isolates TBC 1.2 was identified by its 16s rDNA as Acinetobacterjunii. The microorganism can use hydrocarbons in used engine oil as the sole carbon source and energy, alsoit significantly degraded almost all hydrocarbon compounds in used engine oil. With its ability Acinetobacterjunii TBC 1.2 has a potency to be utilized for bioremediation of soil polluted with used engine oil.Keywords : biodegradation, used engine oil, Acenitobacter junii TBC 1.2

  12. Recycling of waste engine oil for diesel production.

    Science.gov (United States)

    Maceiras, R; Alfonsín, V; Morales, F J

    2017-02-01

    The aim of this work was to recycle waste engine oil until converting it into reusable product, diesel fuel. The waste oil was treated using pyrolytic distillation. The effect of two additives (sodium hydroxide and sodium carbonate) in the purification of the obtained fuel was also studied. Moreover, the influence of the number of distillations were analysed. Some thermal and physicochemical properties (density, viscosity, colour, turbidity, acidity value, distillation curves, cetane number, corrosiveness to Cu, water content, flash point and hydrocarbons) were determined to analyse the quality of the obtained fuel. The best results were obtained with 2% of sodium carbonate and two successive distillations. The obtained results showed that pyrolytic distillation of waste engine oil is an excellent way to produce diesel fuel to be used in engines.

  13. Engine Oil Condition Monitoring Using High Temperature Integrated Ultrasonic Transducers

    OpenAIRE

    Jeff Bird; Cheng-Kuei Jen; Zhigang Sun; Pierre Sammut; Brian Galeote; Makiko Kobayashi; Kuo-Ting Wu; Nezih Mrad

    2011-01-01

    The present work contains two parts. In the first part, high temperature integrated ultrasonic transducers (IUTs) made of thick piezoelectric composite films, were coated directly onto lubricant oil supply and sump lines of a modified CF700 turbojet engine. These piezoelectric films were fabricated using a sol-gel spray technology. By operating these IUTs in transmission mode, the amplitude and velocity of transmitted ultrasonic waves across the flow channel of the lubricant oil in supply and...

  14. Conductometric Sensors for Monitoring Degradation of Automotive Engine Oil

    Directory of Open Access Journals (Sweden)

    Franz L. Dickert

    2011-09-01

    Full Text Available Conductometric sensors have been fabricated by applying imprinted polymers as receptors for monitoring engine oil quality. Titania and silica layers are synthesized via the sol-gel technique and used as recognition materials for acidic components present in used lubricating oil. Thin-film gold electrodes forming an interdigitated structure are used as transducers to measure the conductance of polymer coatings. Optimization of layer composition is carried out by varying the precursors, e.g., dimethylaminopropyltrimethoxysilane (DMAPTMS, and aminopropyl-triethoxysilane (APTES. Characterization of these sensitive materials is performed by testing against oil oxidation products, e.g., carbonic acids. The results depict that imprinted aminopropyltriethoxysilane (APTES polymer is a promising candidate for detecting the age of used lubricating oil. In the next strategy, polyurethane-nanotubes composite as sensitive material is synthesized, producing appreciable differentiation pattern between fresh and used oils at elevated temperature with enhanced sensitivity.

  15. Oil exploration. Oil reservoir engineering; Sekiyu no kaihatsu. Choryuso kogaku

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, H. [Teikoku Oil Co. Ltd., Tokyo (Japan)

    1998-09-01

    This study is to estimate the amount of oil/gas economically producible and to discuss the increase of the amount. The reservoir rock is stuffed with rock particles, and there are impermeable and dense rocks called cap rock on the side wall and top board. Since the size of void of the reservoir is very small, the volume which oil can actually occupy largely decreases because of the existence of surface tension and water film (20-40% of the volume is occupied by water). The rate of the fluid occupying in reservoir space is called the fluid saturation rate. The primitive reserve is a static volume, but the minable reserve, which is related to economical efficiency, is a dynamic volume which changes according to conditions such as the technical progress. To predict a minable reserve is to predict a production amount under a developmental plan, estimate an income, and find out the time of disposal of the oil/gas field (economical limit). To ask for a certain level of accuracy, it is indispensable to simulate the reservoir. To add an element of time to the material balance, the equation of flow including the permeability rate is solved. The paper also described measures to increase minable reserves

  16. Temperature Relations of Selected Engine Oils Dynamic Viscosity

    Directory of Open Access Journals (Sweden)

    Hlaváč Peter

    2014-12-01

    Full Text Available This article focuses on temperature relations of dynamic viscosity for selected engine oils. The effect of temperature on new and used oil dynamic viscosity was investigated. Measurements were performed on three different motor oil samples. All the three motor oil samples were synthetic. The first oil sample was new, the second sample was used for 15,000 km, and the third sample was used for 30,000 km. There were made two measurements of samples in one week. Dynamic viscosity was measured using a digital rotational viscometer Anton Paar DV-3P. The principle of measurement is based on the dependence of sample resistance to probe rotation. The results of measurements are shown as graphical relationships between dynamic viscosity and temperature. Decreasing exponential functions in temperature relationships were used for all the samples. The highest difference between the first and second measurement was observed in the new oil, and very small differences were found in other oils. Due to different types of oils and different stage of usage, the results could not be compared.

  17. The potential of using vegetable oil fuels as fuel for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Altin, Recep [Ministry of Education, Projects Coordination Unit, Ankara (Turkey); Cetinkaya, Selim [Gazi Univ., Technical Education Faculty, Ankara (Turkey); Yucesu, Huseyin Serdar [Karaelmas Univ., Technical Education Faculty, Karabuk (Turkey)

    2001-03-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  18. The use of tyre pyrolysis oil in diesel engines.

    Science.gov (United States)

    Murugan, S; Ramaswamy, M C; Nagarajan, G

    2008-12-01

    Tests have been carried out to evaluate the performance, emission, and combustion characteristics of a single cylinder direct injection diesel engine fueled with 10%, 30%, and 50% of tyre pyrolysis oil (TPO) blended with diesel fuel (DF). The TPO was derived from waste automobile tyres through vacuum pyrolysis. The combustion parameters such as heat release rate, cylinder peak pressure, and maximum rate of pressure rise also analysed. Results showed that the brake thermal efficiency of the engine fueled with TPO-DF blends increased with an increase in blend concentration and reduction of DF concentration. NO(x), HC, CO, and smoke emissions were found to be higher at higher loads due to the high aromatic content and longer ignition delay. The cylinder peak pressure increased from 71 bars to 74 bars. The ignition delays were longer than with DF. It is concluded that it is possible to use tyre pyrolysis oil in diesel engines as an alternate fuel in the future.

  19. Engineered soy oils for new value added applications

    Science.gov (United States)

    Tran, Phuong T.

    Soybean oil is an abundant annually renewable resource. It is composed of triglycerides with long chain saturated and unsaturated fatty acids. The presence of unsaturated fatty acids allows for chemical modification to introduce new functionalities to soybean oil. A portfolio of chemically modified soy oil with suitable functional groups has been designed and engineered to serve as the starting material in applications such as polyamides, polyesters, polyurethanes, composites, and lubricants. Anhydride, hydroxyl, and silicone functionalities were introduced to soy oil. Anhydride functionality was introduced using a single-step free radical initiated process, and the chemically modified soy oils were evaluated for potential applications as a composite and lubricant. Hydroxyl functionalities were introduced in a single-step catalytic ozonolysis process recently developed in our labs, which proceeds rapidly and efficiently at room temperature without solvent. The transformed soy oil was used to successfully prepare bio-lubricants with good thermal/oxidative stability and bio-plastics such as polyamides, polyesters, and polyurethanes. A new class of organic-inorganic hybrid materials was prepared by curing vinyltrimethoxysilane functionalized soy oil. This hybrid material could have potential as biobased sealant through a moisture initiated room temperature cure. These new classes of soy-based materials are competitive both in cost and performance to petroleum based materials, but offer the advantage of being biobased.

  20. Comparison of performance of biodiesels of mahua oil and gingili oil in dual fuel engine

    Directory of Open Access Journals (Sweden)

    Nadar Kapilan N.

    2008-01-01

    Full Text Available In this work, an experimental work was carried out to compare the performance of biodiesels made from non edible mahua oil and edible gingili oil in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas was used as primary fuel. Biodiesel was prepared by transesterification process and mahua oil methyl ester (MOME and gingili oil methyl ester (GOME were used as pilot fuels. The viscosity of MOME is slightly higher than GOME. The dual fuel engine runs smoothly with MOME and GOME. The test results show that the performance of the MOME is close to GOME, at the pilot fuel quantity of 0.45 kg/h and at the advanced injection timing of 30 deg bTDC. Also it is observed that the smoke, carbon monoxide and unburnt hydro carbon emissions of GOME lower than the MOME. But the GOME results in slightly higher NOx emissions. From the experimental results it is concluded that the biodiesel made from mahua oil can be used as a substitute for diesel in dual fuel engine.

  1. Comparison of Diesel Engine Characteristic Using Pure Coconut Oil, Pure Palm Oil, and Pure Jatropha Oil as Fuel

    Directory of Open Access Journals (Sweden)

    Iman K. Reksowardojo

    2009-01-01

    Full Text Available Diesel engine can be operated on either pure plant oil (PPO oil or biodiesel. Biodiesel production process is expensive due to many stages of processes, while PPO has a lower cost of production, lower energy consumption, and simpler process. There are several potential biofuel resources in Indonesia such as coconut, palm, and jatropha. They are tropical plants with large amonts of their quantity. Experiment was conducted in 17 hours engine running test (endurance test with various operating cycle conditions. Test fuels are pure coconut oil (PCO, pure palm oil (PPaO, pure jatropha oil (PJO, and diesel fuel (DF as a datum. Each PPO blends with diesel fuel with composition 50%-volume. As a result, PCO has higher BSFC (10% before endurance test in comparison with diesel fuel, also PPaO (13% and PJO (27% show a similar condition. Surprisingly, all PPO have BSFC almost similar with DF after endurance test due to decreasing of engine components friction. On the other hand, PPO produces more uncompleted combustion than DF. Phosporus content has major responsibility of deposit growth. PCO, PPaO, and PJO result more engine deposits in comparison with DF, which accounts for 139,7%, 232,9%, and 288,9% respectively. Based on wear analysis, PCO has the best antiwear property among test fuels, whereas the worst is DF.

  2. Performance characteristics of a diesel engine with deccan hemp oil

    Energy Technology Data Exchange (ETDEWEB)

    O.D. Hebbal; K. Vijayakumar Reddy; K. Rajagopal [Poojya Doddappa Appa College of Engineering, Gulbarga (India)

    2006-10-15

    In this present investigation deccan hemp oil, a non-edible vegetable oil is selected for the test on a diesel engine and its suitability as an alternate fuel is examined. The viscosity of deccan hemp oil is reduced first by blending with diesel in 25/75%, 50/50%, 75/25%, 100/0% on volume basis, then analyzed and compared with diesel. Further blends are heated and effect of viscosity on temperature was studied. The performance and emission characteristics of blends are evaluated at variable loads of 0.37, 0.92, 1.48, 2.03, 2.58, 3.13 and 3.68 kW at a constant rated speed of 1500 rpm and results are compared with diesel. The thermal efficiency, brake specific fuel consumption (BSFC), and brake specific energy consumption (BSEC) are well comparable with diesel, and emissions are a little higher for 25% and 50% blends. At rated load, smoke, carbon monoxide (CO), and unburnt hydrocarbon (HC) emissions of 50% blend are higher compared with diesel by 51.74%, 71.42% and 33.3%, respectively. For ascertaining the validity of results obtained, pure deccan hemp oil results are compared with results of jatropha and pongamia oil for similar works available in the literature and were well comparable. From investigation it has been established that, up to 25% of blend of deccan hemp oil without heating and up to 50% blend with preheating can be substituted for diesel engine without any engine modification. 27 refs., 13 figs., 2 tabs.

  3. Experimental evaluation of diesel engine performance and emission using blends of jojoba oil and diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Huzayyin, A.S.; Rady, M.A.; Dawood, A. [Benha High Inst. of Technology (Egypt). Dept. of Mechanical Engineering Technology; Bawady, A.H. [University of Ain Shams, Cairo (Egypt). Faculty of Engineering

    2004-08-01

    An experimental evaluation of using jojoba oil as an alternate diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO{sub x} and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend. (Author)

  4. EEE (environmental engineering economics) attributes for oil and gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Isreb, M. [Monash Univ., Churchill, Victoria (Australia). Gippsland School of Applied Sciences and Engineering

    2006-07-01

    This paper outlined the basic attributes of environmental engineering economics (EEE) with reference to the oil and gas industry in Australia. The paper was designed as a reference guide for policy-makers, educators, and environmental engineers. Methods of calculating the Pareto Optimum status were discussed, and environmental values and principles were identified. Air quality indicators were outlined. The paper considered multidisciplinary approaches to EEE and sustainable development, as well as the application of statistics and qualitative methods in addressing contemporary issues. The ethical aspects of environmental policies were discussed. Issues related to environmental toxicity and public health were also examined. Various taxation approaches and financial incentives were reviewed. Environmental laws related to the oil and gas industry were outlined. Environmental assessment procedures were presented. It was concluded that environmental regulations within the industry will help to ensure appropriate pollution reductions. 7 refs.

  5. Effect of poultry fat oil biodiesel on tractor engine performance

    Directory of Open Access Journals (Sweden)

    M Bavafa

    2016-04-01

    Full Text Available Introduction: Depletion of fossil fuels and environmental degradation are two major problems faced by the world. Today fossil fuels take up to 80% of the primary energy consumed in the world, of which 58% is consumed by the transport sector alone (Mard et al., 2012. The combustion products cause global warming, which is caused of emissions like carbon monoxide (CO, sulfur dioxide (SO2 and nitrogen oxides (NOX. Thus it is essential that low emission alternative fuels to be developed for useing in diesel engines. Many researchers have concluded that biodiesel holds promise as an alternative fuel for diesel engines. Biodiesel is oxygenated, biodegradable, non-toxic, and environmentally friendly (Qi et al., 2010. Materials and Methods: In this study transesterification method was used to produce biodiesel, because of its simplicity in biodiesel production process and holding the highest conversion efficiency. Transesterification of poultry fat oil and the properties of the fuels: Fatty acid methyl ester of poultry fat oil was prepared by transesterification of oil with methanol in the presence of KOH as catalyst. The fuel properties of poultry fat oil methyl ester and diesel fuel were determined. These properties are presented in Table 1. Tests of engine performance and emissions: After securing the qualitative characteristics of produced biodiesel, different biodiesel fuels of 5%, 10%, 15%, and 20% blended with diesel fuel were prepared. A schematic diagram of the engine setup is shown in Fig.1. The MF-399 tractor engine was used in the tests. The basic specifications of the engine are shown in Table 3. The engine was loaded with an electromagnetic dynamometer. The Σ5 model dynamometer manufactured by NJ-FROMENT was used to measure the power and the torque of the tractor engine. The speed range and capacity of this device are shown in Table 2. A FTO Flow Meter, manufactured by American FLOWTECH Company, was used to measure the fuel consumption

  6. Quality control of mixtures consisting of engine oil and rapeseed oil by means of online oil sensors; Qualitaetsueberwachung von Motoroel-Rapsoelmischungen mit Online-Oelsensoren. Labortests

    Energy Technology Data Exchange (ETDEWEB)

    Thuneke, Klaus; Schreiber, Katja [Technologie- und Foerderzentrum, Straubing (Germany)

    2013-10-01

    It was the goal of the work to investigate interactions between motor oils and rapeseed oil fuel and to test oil sensors for monitoring the quality of aged mixtures of motor oil and rapeseed oil. At first oil samples were aged in the laboratory, whereby motor oil type, share of rapeseed oil and aeration was varied. Depending on type of engine oil different ageing effects were noticed. Higher shares of rapeseed and aeration stimulate increase of viscosity and acid value. In a further step online oil sensors were tested in both, a model of a lubrication system and a test engine. The signals of the sensors plausibly described the oil ageing process by the indicators dynamic or acoustic viscosity, permittivity number, specific electric conductivity. In particular viscosity and permittivity are suitable for showing changes in different motor oil rapeseed oil mixtures during oil ageing. However, for a reliable control system detecting critical rapeseed oil enrichment in the motor oil onboard, further work has to be done. (orig.)

  7. The Research of Anti-Wear Properties of Organomolybdenum Compounds in the Engine Oils

    Institute of Scientific and Technical Information of China (English)

    XIE Feng; ZHENG Fa-zheng; HU Jian-qiang; YAO Jun-bing

    2004-01-01

    A four-ball tester was used to evaluate the anti-wear performance of three kinds of organomolybdemun compounds in the engine oils, i. e., molybdenum dialkyldithiophosphate (MoDDP), molybdenum dialkyldithiocarbamate ( MoDTC), and sulphur and phosphorus freeorganomolybdeum (Molybdate). The results indicate that a low concentration of MoDDP doesn' t improve the anti-wear properties of the commercial engine oils, but a high concentration of MoDDP can obviously improve the anti-wear properties and the load-carrying capacity of the engine oils. MoDTC doesn' t improve the antiwear properties of the engine oils, but worsens the anti-wear properties of the oils. Signifi can timprove ment of frictional and wear characteristics is obtained with Molybdate added in the commercial engine oils and the formulated oils.

  8. ONBOARD MONITORING OF ENGINE OIL RESOURCE WORKING-OUT RATE IN WHEELED AND CATERPILLAR MACHINES

    Directory of Open Access Journals (Sweden)

    Yu. D. Karpievich

    2014-01-01

    Full Text Available An engine oil is capable reliably and longtime to perform specified functions only in the case when its properties correspond to those thermal, mechanical and chemical impacts to which the oil is subjected in the engine. Compatibility of the engine design, its uprate and oil properties is one of the main conditions for provision of high operational reliability. Type and properties of fuel, quality of an engine oil, engine type, its design, its health, its operational regime and conditions and a number of other factors influence on intensity of oil contamination in the operated engine. Oil quality is deteriorated due to accumulation of incomplete combustion products in it and this process is associated with the engine's health. This leads to reduction of viscosity, deterioration of lubrication ability, troubles in fluid friction mode. Combustion products have rather high amount of aggressive corrosive oxides.Service-life of engine oil prior to its change is determined not only by automobile mileage or tractor operating time but also by the period of time within which this work has been carried out. Corrosion processes are speeding up, protective processes are worsening, oil ageing is accelerating when vehicles have short daily and small mileages. So it is necessary to change oil at least annually.A new method for onboard monitoring of engine oil resource working-out rate in wheeled and caterpillar machines has been developed in the paper. Usage of fuel expended volume by engine while determining engine oil resource working-out rate makes it possible timely to assess a residual resource of the engine oil and also predict the date of its change at any operational period of wheeled and caterpillar machines.

  9. Development of dielectric sensor to monitor the engine lubricating oil degradation

    Directory of Open Access Journals (Sweden)

    Balashanmugam Vasanthan

    2016-01-01

    Full Text Available Present day practice of following fixed schedules of oil change intervals could result in loss for the equipment owner, as the oil is not utilized up-to its maximum useful life. Similarly, the extended use of engine oil beyond maximum useful life is of high risk, which could lead irreversible and catastrophic damages to engine parts. Engine oil condition indicates the condition of engine parts, in any application. Therefore, monitoring the condition of the oil in real time is of paramount importance. Researchers had established that the engine oil degradation correlates with change in dielectric property of the engine oil. The important factor to realize the on-line real time monitoring of the changes in dielectric property of the engine oil is, the cost of dielectric sensor within affordable limit for an operator. Current work aims at developing such a low cost affordable dielectric sensor and engine oil samples (SAE 15W40 grade were collected from durability test engines used in engine test rig and on-road vehicles. These samples were tested for physical and chemical properties. Any changes in the properties, of engine oil monitored, indicate that it undergoes degradation due to usage. A prototype of capacitive type sensor was developed and validated with reference fluids. The dielectric values measured using proto type sensor in the used oil samples show a correlation with change in physical properties. This trend and thresholds of dielectric provides effective plat form to monitor the engine oil degradation. The sensor could be coupled to a suitable warning device by incorporating specific algorithms.

  10. Engineered silica nanoparticles as additives in lubricant oils

    Science.gov (United States)

    Díaz-Faes López, Teresa; Fernández González, Alfonso; Del Reguero, Ángel; Matos, María; Díaz-García, Marta E.; Badía-Laíño, Rosana

    2015-10-01

    Silica nanoparticles (SiO2 NPs) synthesized by the sol-gel approach were engineered for size and surface properties by grafting hydrophobic chains to prevent their aggregation and facilitate their contact with the phase boundary, thus improving their dispersibility in lubricant base oils. The surface modification was performed by covalent binding of long chain alkyl functionalities using lauric acid and decanoyl chloride to the SiO2 NP surface. The hybrid SiO2 NPs were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, simultaneous differential thermal analysis, nuclear magnetic resonance and dynamic light scattering, while their dispersion in two base oils was studied by static multiple light scattering at low (0.01% w/v) and high (0.50%w/v) concentrations. The nature of the functional layer and the functionalization degree seemed to be directly involved in the stability of the suspensions. The potential use of the functional SiO2 NPs as lubricant additives in base oils, specially designed for being used in hydraulic circuits, has been outlined by analyzing the tribological properties of the dispersions. The dendritic structure of the external layer played a key role in the tribological characteristics of the material by reducing the friction coefficient and wear. These nanoparticles reduce drastically the waste of energy in friction processes and are more environmentally friendly than other additives.

  11. CFD analysis of turboprop engine oil cooler duct for best rate of climb condition

    Science.gov (United States)

    Kalia, Saurabh; CA, Vinay; Hegde, Suresh M.

    2016-09-01

    Turboprop engines are widely used in commuter category airplanes. Aircraft Design bureaus routinely conduct the flight tests to confirm the performance of the system. The lubrication system of the engine is designed to provide a constant supply of clean lubrication oil to the engine bearings, the reduction gears, the torque-meter, the propeller and the accessory gearbox. The oil lubricates, cools and also conducts foreign material to the oil filter where it is removed from further circulation. Thus a means of cooling the engine oil must be provided and a suitable oil cooler (OC) and ducting system was selected and designed for this purpose. In this context, it is relevant to study and analyse behaviour of the engine oil cooler system before commencing actual flight tests. In this paper, the performance of the oil cooler duct with twin flush NACA inlet housed inside the nacelle has been studied for aircraft best rate of climb (ROC) condition using RANS based SST K-omega model by commercial software ANSYS Fluent 13.0. From the CFD analysis results, it is found that the mass flow rate captured and pressure drop across the oil cooler for the best ROC condition is meeting the oil cooler manufacturer requirements thus, the engine oil temperature is maintained within prescribed limits.

  12. Durability testing modified compression ignition engines fueled with straight plant oil

    Energy Technology Data Exchange (ETDEWEB)

    Basinger, M.; Lackner, K.S. [Earth and Environmental Engineering, Columbia University, New York City 10027 (United States); Reding, T. [Mechanical Engineering, Manhattan College, New York City (United States); Rodriguez-Sanchez, F.S. [Mali Biocarburant, Bamako (Mali); Modi, V. [Mechanical Engineering, Columbia University, New York City 10027 (United States)

    2010-08-15

    Many short-run studies point to the potential for direct fueling of compression ignition engines with plant oil fuels. There is a much smaller body of work that examines the potential for these fuels in long-run tests that illuminate engine endurance and longevity issues. Generally, longevity studies involving direct fueling of engines with straight plant oils have shown significant impact to the life of the engine, though test results vary widely depending on the oil, engine type, test conditions, and measurement approach. This study utilizes a previously designed modification kit to investigate the longevity implications of directly fueling straight plant oil in an indirect injection (IDI) listeroid type, slow speed stationary engine common in agro-processing applications in developing countries. Specifically this study focuses on the lubrication oil by developing a model to characterize the engine wear and estimate lube oil change frequency. The model is extended to an analysis of the piston rings. Cylinder liner wear, emissions, engine performance, and a visual investigation of several critical engine components are also studied. The 500 hour test with waste vegetable oil fuel resulted in several important findings. The engine break-in period was identified as taking between 200 and 300 h. Emissions analysis supported the break-in definition as smoke opacity and carbon monoxide values fell from 9% and 600 ppm (respectively) during the first few hundred hours, to 5% and 400 ppm in the final 200 h. Lubrication oil viscosity was found to be the limiting degradation factor in the lube oil, requiring oil to be changed every 110 h. Piston ring mass loss was found to correlate very closely with chromium buildup in the lubrication oil and the mathematical model that was developed was used to estimate that piston ring inspection and replacement should occur after 1000 h. Cylinder ovalisation was found to be most sever at top dead center (TDC) at 53 microns of averaged

  13. BIOSTABILITY OF USED LUBRICATING OILS FOR HIGH-SPEED ENGINES WITH SPARK IGNITION

    OpenAIRE

    YUSIFOVA AIDA RAFIQ QIZI; RAFIYEV AZAD NATIG OGLU

    2015-01-01

    The article presents the investigation results of the biological stability of the waste and regenerated lubricating oil Mysella-40, designed for high-speed engines with spark ignition. Biocides were prepared to protect the oil from microbial destruction. It was found that the use of biocides in the recommended concentration has no negative effect on the basic performance of the lubricating oil.

  14. ELECTROOXIDATION OF USED SYNTHETIC ENGINE OIL IN AQUEOUS SOLUTION OF H2SO4

    Directory of Open Access Journals (Sweden)

    Paweł Piotr Włodarczyk

    2017-02-01

    Full Text Available The paper presents possibility of using used synthetic engine oil to direct electricity production. The measurements conducted in the temperature range 293-333 K. Were measured electrooxidation of used synthetic engine oil emulsion on a smooth platinum electrode in an aqueous solution of H2SO4. The emulsion prepared on the basis of a nonionic surfactant Syntanol DS-10. The maximum current density reached the level of 22 mA/cm2 (temp. 333 K. Measurements shows possibility of direct electricity production from used synthetic engine oil emulsion, so powering fuel cell of this oil.

  15. Treatment of engine-oil polluted wastewater with a mixed bacterial flora and kinetics of biodegradation

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; WANG Lei; LI Feng-ting; LIU Hua

    2007-01-01

    A mixed bacterial flora was isolated from the soil of two petroleum-contaminated sites, then cultivated and domesticated in an open environment. The bacteria were used to degrade engine oil in wastewater. The optimum biodegradation conditions for all engine oil concentrations of respectively 489 mg L(1, 1 075 mg L(1 and 2 088 mg L(1 are bacterial inoculum concentration of 0.1%, temperature at 30 (C to 35 (C, pH 7.0 to 7.5, and rotation at 190 r min(1 to 240 r min(1. The second-order kinetic model proposed by Quiroga and Sales describes the characteristics of the biodegradation of the engine oil very well. Engine oil concentration barely changes the growth rate of the bacterial consortium. The mixed bacterial flora has a high biodegrading capability for engine oil.

  16. PERFORMANCE EVALUATION OF BLENDS OF MAHUA OIL METHYL ESTER FOR COMPRESSION IGNITION ENGINE

    OpenAIRE

    2016-01-01

    Decline in fossil fuel resources along with high crude oil prices generated attention towards the development of fuel from alternate sources. One of the best alternatives is biodiesels obtained from different vegetable oils. In the present study attention is being focused on comparison of performance and emissions results of biodiesel derived from Mahua oil when applied in different proportions in compression ignition (diesel) engine. A single cylinder four stroke diesel engine (Kirloskar) wa...

  17. Study on the engine oil's wear based on the flash point

    Science.gov (United States)

    Niculescu, R.; Iorga-Simăn, V.; Trică, A.; Clenci, A.

    2016-08-01

    Increasing energy performance of internal combustion engines is largely influenced by frictional forces that arise between moving parts. Thus, in this respect, the nature and quality of the engine oil used is an important factor. Equally important is the effect of various engine injection strategies upon the oil quality. In other words, it's of utmost importance to maintain the quality of engine oil during engine's operation. Oil dilution is one of the most common causes that lead to its wear, creating lubrication problems. Moreover, at low temperatures operating conditions, the oil dilution with diesel fuel produces wax. When starting the engine, this may lead to lubrication deficiencies and even oil starvation with negative consequences on the engine mechanism parts wear (piston, rings and cylinders) but also crankcase bearings wear.Engine oil dilution with diesel fuel have several causes: wear of rings and/or injectors, late post-injection strategy for the sake of particulate filter regeneration, etc.This paper presents a study on the degree of deterioration of engine oils as a result of dilution with diesel fuel. The analysed oils used for this study were taken from various models of engines equipped with diesel particulate filter. The assessment is based on the determination of oil flash point and dilution degree using the apparatus Eraflash produced by Eralytics, Austria. Eraflash measurement is directly under the latest and safest standards ASTM D6450 & D7094), which are in excellent correlation with ASTM D93 Pensky - Martens ASTM D56 TAG methods; it uses the Continuous Closed Cup method for finding the Flash Point (CCCFP).

  18. Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil

    Directory of Open Access Journals (Sweden)

    G.DURGA DEVI

    2012-07-01

    Full Text Available Diesel engines are widely used as power sources in medium and heavy-duty applications because of their lower fuel consumption and lower emissions of carbon monoxide (CO and unburned hydrocarbons (HC compared with gasoline engines. Rudolf Diesel, the inventor ofthe diesel engine, ran an engine on groundnut oil at the Paris Exposition of 1900. Since then, vegetable oils have been used as fuels when petroleum supplies were expensive or difficult to obtain. With the increased availability of petroleum in the 1940s, research into vegetable oils decreased. Since the oil crisis of the 1970s research interest has expanded in the area of alternative fuels. The difficulties associated with using raw vegetable oils in diesel engines identified in the literature are injector coking, severe engine deposits, filter gumming problems, piston ring sticking, and injector coking and thickening of the lubricating oil. The highviscosity and low volatility of raw vegetable oils are generally considered to be the major drawbacks for their utilization as fuels in diesel engines. Castor methyl ester (CME blends showed performance characteristics close to diesel. Therefore castor methylester blends can be used in CI engines in rural area for meeting energy requirement in various agricultural operations such as irrigation, threshing, indistries etc.

  19. Assessment of lubricating oil degradation in small motorcycle engine fueled with gasohol

    OpenAIRE

    Nakorn Tippayawong

    2010-01-01

    Assessment of the degradation of lubricating oil was performed on the lubricants which had been used in a small motorcycle engine fueled with gasohol in comparison with the lubricants from gasoline-run engine. The lubricant properties examined in the assessment were lubricating capacity, viscosity and stability to oxidation. Lubricating capacity was evaluated by accelerated wear test on the Timken tester. Lubricating oils from gasohol-run engine appeared to produce about 10% greater wear than...

  20. Performance and Emission Studies of a SI Engine using Distilled Plastic Pyrolysis Oil-Petrol Blends

    OpenAIRE

    Kumar Kareddula Vijaya; Puli Ravi Kumar; Swarna Kumari A.; Shailesh P.

    2016-01-01

    In the present work, an experimental investigation is carried out to evaluate the use of plastic oil derived from waste plastic which used in a Spark Ignition engine. Experiments are conducted, the measured performance and emissions of plastic oil blends at different proportions are compared with the baseline operation of the SI engine running with gasoline fuel. Engine performance and exhaust gas emissions such as carbon monoxide, total unburned hydrocarbons, carbon dioxide and oxides of nit...

  1. Use of Palm oil Biodiesel Blends as a Fuel for Compression Ignition Engine

    OpenAIRE

    B. Deepanraj; C. Dhanesh; Senthil, R.; M. Kannan; Santhoshkumar, A.; P. Lawrence

    2011-01-01

    Problem statement: The increasing awareness of the environmental hazards and the alarming levels of air pollution have led to more restrictive regulations on engines emission control in recent years. Approach: The dwindling resources and rising cost of crude oil have resulted in an intensified search for alternate fuels. In the present study biodiesel (palm oil methyl ester) blends with diesel was investigated in a direct injection stationary diesel engine. The stationary engine test bed used...

  2. Assessment of lubricating oil degradation in small motorcycle engine fueled with gasohol

    Directory of Open Access Journals (Sweden)

    Nakorn Tippayawong

    2010-05-01

    Full Text Available Assessment of the degradation of lubricating oil was performed on the lubricants which had been used in a small motorcycle engine fueled with gasohol in comparison with the lubricants from gasoline-run engine. The lubricant properties examined in the assessment were lubricating capacity, viscosity and stability to oxidation. Lubricating capacity was evaluated by accelerated wear test on the Timken tester. Lubricating oils from gasohol-run engine appeared to produce about 10% greater wear than that made in oils from gasoline-run engine. There was no significant difference between the effect of gasohol and gasoline on the viscosity of the used lubricating oils. Moreover, no oxidation products in any used oil samples could be detected.

  3. Use of hazelnut kernel oil methyl ester and its blends as alternative fuels in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Guemues, M.; Atmaca, M. [Marmara Univ., Istanbul (Turkey). Mechanical Department

    2008-09-30

    Interest in vegetable oil as an alternative to diesel fuel in diesel engines has increased during the last few decades because reserves of petroleum fuel and its derivatives are diminishing rapidly, and because they have harmful effects on the environment. Numerous vegetable oil esters have been tried as alternatives to diesel fuel. Many researchers have reported that with the use of vegetable oil ester as a fuel in diesel engiens there is a decrease in harmful exhaust emissions and engine performance that is the equivalent of diesel fuel. Several studies have found that biodiesel emits far less of the most regulated pollutants than standard diesel fuel. Decreasing carbon dioxide (CO{sub 2}) emissions by using biodiesel contributes to reducing the greenhouse effect. Furthermore, diminishing carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO{sub x}), and smoke density improves air quality. Essential oils that have been tested in diesel engines are soybean, sunflower, corn, safflower, cottonseed, and rapeseed, which are categorized as edible oils; however, some edible oils, such as neat hazelnut kernel oil, have not been comprehensively tested as alternative fuel in diesel engines. In this study, hazelnut (Corylus avellana L.) kernel oil was evaluated as an alternative fuel in diesel engines. Firstly, the optimum transesteri.cation reaction conditions for hazelnut kernel oil, with respect to reaction temperature, volumetric ratio of reactants, and catalyst, were investigated. Secondly, an experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running on hazelnut kernel oil methyl ester and its blends with diesel fuel. Results showed that hazelnut kernel oil methyl ester and its blends with diesel fuel are generally comparable to diesel fuel, according to engine performance and emissions.

  4. Lubrication System 1. Check and Change the Engine Oil. Student Manual. Small Engine Repair Series. First Edition.

    Science.gov (United States)

    Hill, Pamela

    This student manual on checking and changing the engine oil is the second of three in an instructional package on the lubrication system in the Small Engine Repair Series for handicapped students. The stated purpose for the booklet is to help students learn what tools and equipment to use and all the steps of the job. Informative material and…

  5. Application of Brown’s Gas for a Diesel Engine Running on Rapeseed Oil

    OpenAIRE

    Alfredas Rimkus; Tomas Ulickas; Saugirdas Pukalskas; Paulius Stravinskas

    2012-01-01

    The article presents the analysis of possible applications of Brown’s gas to the diesel engine running on oil. The paper also contains a review of experimental works. The selected fuel combinations are as follows: diesel fuel, diesel fuel and Brown’s gas, oil (rapeseed oil) and oil and Brown’s gas. Test results have shown that an additional supply of Brown’s gas to the engine results in a decrease in the amounts of carbon monoxide (CO) and smoke level; however it increases the total emission ...

  6. COMBUSTION CHARACTERISTICS OF DIESEL ENGINE OPERATING ON JATROPHA OIL METHYL ESTER

    Directory of Open Access Journals (Sweden)

    Doddayaraganalu Amasegoda Dhananjaya

    2010-01-01

    Full Text Available Fuel crisis because of dramatic increase in vehicular population and environmental concerns have renewed interest of scientific community to look for alternative fuels of bio-origin such as vegetable oils. Vegetable oils can be produced from forests, vegetable oil crops, and oil bearing biomass materials. Non-edible vegetable oils such as jatropha oil, linseed oil, mahua oil, rice bran oil, karanji oil, etc., are potentially effective diesel substitute. Vegetable oils have reasonable energy content. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in diesel engines with very little or no engine modifications. This is because it has combustion characteristics similar to petroleum diesel. The current paper reports a study carried out to investigate the combustion, performance and emission characteristics of jatropha oil methyl ester and its blend B20 (80% petroleum diesel and 20% jatropha oil methyl ester and diesel fuel on a single-cylinder, four-stroke, direct injections, water cooled diesel engine. This study gives the comparative measures of brake thermal efficiency, brake specific energy consumption, smoke opacity, HC, NOx, ignition delay, cylinder peak pressure, and peak heat release rates. The engine performance in terms of higher thermal efficiency and lower emissions of blend B20 fuel operation was observed and compared with jatropha oil methyl ester and petroleum diesel fuel for injection timing of 20° bTDC, 23° bTDC and 26° bTDC at injection opening pressure of 220 bar.

  7. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion

    Science.gov (United States)

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-04-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification.

  8. Improving magnetic properties of MgB2 bulk superconductors by synthetic engine oil treatment

    Science.gov (United States)

    Taylan Koparan, E.; Savaskan, B.; Yanmaz, E.

    2016-08-01

    The present study focuses on the effects of standby time of the MgB2 samples immersed in synthetic engine oil on the critical current density (Jc(H)), magnetic field dependence of the pinning force density fp(b) and Tc performances of MgB2 bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB2 pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB2 samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB2 samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB2 sample because of the number of the pinning centers. The MgB2 sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The Jc value for the pure sample is 2.0 × 103 A/cm2, whereas for the MgB2 sample immersed at 300 min standby time in engine oil the Jc is enhanced to 4.8 × 103A/cm2 at 5 K and 3 T. The superconducting transition temperature (Tc) did not change with the increasing standby time of the samples in synthetic engine oil at all. The best diamagnetic property was obtained from the sample which kept in synthetic engine oil for 300 min. Synthetic engine oil treatment results in remarkable improvement of the critical current density and pinning force performances of MgB2 superconductors. It was found that all MgB2 samples have a different pinning property at different measuring temperatures. Using synthetic engine oil as a product which is cheap and a rich carbon source in MgB2 bulk superconductors makes MgB2 samples immersed in synthetic engine oil a good candidate for industrial applications.

  9. Failure Analysis and Regeneration Performances Evaluation on Engine Lubricating Oil

    Science.gov (United States)

    Wang, X. L.; Zhang, G. N.; Zhang, J. Y.; Yin, Y. L.; Xu, Y.

    To investigate the behavior of failure and recycling of lubricating oils, three sorts of typical 10w-40 lubricating oils used in heavy-load vehicle including the new oil, waste oil and regeneration oil regenerated by self-researched green regeneration technology were selected. The tribology properties were tested by four-ball friction wear tester as well. The results indicated that the performance of anti-extreme pressure of regeneration oil increase by 34.1% compared with the waste one and its load- carrying ability is close to the new oil; the feature of wear spot are better than those of the waste oil and frictional coefficient almost reach the level of the new oil's. As a result, the performance of anti-wear and friction reducing are getting better obviously.

  10. Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review

    Energy Technology Data Exchange (ETDEWEB)

    No, Soo-Young [Chungbuk National University, Department of Biosystems Engineering, Cheongju 361-763 (Korea, Republic of)

    2011-01-15

    The use of inedible vegetable oils as an alternative fuel for diesel engine is accelerated by the energy crisis due to depletion of resources and increased environmental problems including the great need for edible oil as food and the reduction of biodiesel production cost, etc. Of a lot of inedible vegetable oils which can be exploited for substitute fuel as diesel fuel, seven vegetable oils, i.e., jatropha, karanja, mahua, linseed, rubber seed, cottonseed and neem oils were selected for discussion in this review paper. The application of jatropha oil as a liquid fuel for CI engine can be classified with neat jatropha oil, engine modifications such as preheating, and dual fuelling, and fuel modifications such as jatropha oil blends with other fuels, mostly with diesel fuel, biodiesel, biodiesel blends and degumming. Therefore, jatropha oil is a leading candidate for the commercialization of non-edible vegetable oils. There exists a big difference in the fuel properties of seven inedible vegetable oils and its biodiesels considered in this review. It is clear from this review that biodiesel generally causes an increase in NOx emission and a decrease in HC, CO and PM emissions compared to diesel. It was reported that a diesel engine without any modification would run successfully on a blend of 20% vegetable oil and 80% diesel fuel without damage to engine parts. This trend can be applied to the biodiesel blends even though particular biodiesel shows 40% blend. In addition, the blends of biodiesel and diesel can replace the diesel fuel up to 10% by volume for running common rail direct injection system without any durability problems. (author)

  11. Characterization of Thermal Stability of Synthetic and Semi-Synthetic Engine Oils

    Directory of Open Access Journals (Sweden)

    Anand Kumar Tripathi

    2015-03-01

    Full Text Available Engine oils undergo oxidative degradation and wears out during service. Hence it is important to characterize ageing of engine oils at different simulated conditions to evaluate the performance of existing oils and also design new formulations. This work focuses on characterizing the thermo-oxidative degradation of synthetic and semi-synthetic engine oils aged at 120, 149 and 200 °C. Apparent activation energy of decomposition of aged oils evaluated using the isoconversional Kissinger-Akahira-Sunose technique was used as a thermal stability marker. The temporal variation of stability at different ageing temperatures was corroborated with kinematic viscosity, oxidation, sulfation and nitration indices, total base number, antiwear additive content and molecular structure of the organic species present in the oils. At the lowest temperature employed, synthetic oil underwent higher rate of oxidation, while semi-synthetic oil was stable for longer time periods. At higher temperatures, the initial rate of change of average apparent activation energy of synthetic oil correlated well with a similar variation in oxidation number. A mixture of long chain linear, branched, and cyclic hydrocarbons were observed when semi-synthetic oil was degraded at higher temperatures.

  12. Low-Temperature Performance of Chinese Automotive Engine Oils-Status and Perspectives

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Performance of automotive engine oils at low temperature has been extensively investigated in the last 50 years. The resulting understanding of engine oil rheology has been used to devise bench tests that predict their performance under cold starting conditions. Cold starting the engine has been essentially overcome for passenger car engines with fuel injection but pumpability of the engine oil has grown more demanding. Two tests (MRV TP1 and the Scanning Brookfield Technique with Gelation Index measurement) have become the measures of quality in pumpability response at low temperatures. As such they have become ASTM Methods and are included in a number of international specifications such as SAE J300 and ILSAC/API GF-1, 2, 3, and 4 accompanied by appropriate limits.For a number of years, the Institute of Materials (IOM) has generated a database for Asia-Pacific engine oils for IOM Subscribers. This database can be used to assess and compare the performance of Chinese engine oils at low temperature to one another and to the larger world of engine oils also covered by the IOM database. This IOM survey of Asia-Pacific provides a complete 36-test analysis of 300 passenger car engine oils from the region including a wide range of chemical analysis, rheological measurements and performance assessments. In this paper we concentrate on the low temperature analysis of the rheology of samples collected in China since 2000.The important factors affecting formulation of engine oils in China today are:1. The recent inclusion of the MRV TP-1 and Scanning Brookfield Gelation Index requirements in China's National Standards for engine oil quality; 2. The availability of higher quality oils; 3. The higher treat rate of additives will require increased attention from the formulators in the selection of VI Improvers and Pour Point Depressants (PPDs). In the latter case, new PPDs are likely to be required to provide formulators with robust and economical solutions to face these new

  13. Fuel economy opportunities for internal combustion engines by means of oil-cooling

    Science.gov (United States)

    Ma, C. F.; Li, J. C.; Qin, W. X.; Wei, Z. Y.; Chen, J.

    1997-06-01

    Comparative experiments of oil and water-cooling were performed on a 4-cylinder automotive gasoline engine and a single-cylinder direct injection Diesel engine. Measurements were made to investigate the variation of fuel consumption, combustor wall temperature and engine emissions (HC, CO, NOx and smoke) with two cooling media at steady-state conditions. Significant improvement of fuel economy was found mainly at partial load conditions with oil-cooling in comparison with the baseline water-cooling both for the two engines. The experimental results also showed general trend of reduction in engine emissions using oil as the coolant. Measurements of wall temperature demonstrated that oil-cooling resulted in considerable increase of the combustor wall temperature and reduce of warm-up period in starting process. For automotive gasoline engine, road tests indicated the same trend of fuel economy improvement with oil-cooling. The performance of the automotive oil-cooled engine was further improved by internal cooling with water or methanol injection.

  14. Engine oil. How does it cope with millions of explosions? Oil analytics enables valuable insights.; Motorenoel. Wie verkraftet es millionfache Explosionen? Oelanalytik ermoeglicht wertvolle Einblicke

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, Michael [Adam Opel AG, Ruesselsheim (Germany)

    2012-07-01

    During engine operation the engine oil is faced with millions of explosions, high local temperatures and a mix of aggressive combustion gases and fuel components. The kind of oil aging depends also on the driving profile of the engine. The lecture describes the major oil analysis methods and their value. For each single parameter the correlation to the operating profiles will be discussed. This leads to a classification of driving conditions concerning their influence on the specific oil aging and the individual oil change information to the driver. (orig.)

  15. Performance and Emission Studies of a SI Engine using Distilled Plastic Pyrolysis Oil-Petrol Blends

    Directory of Open Access Journals (Sweden)

    Kumar Kareddula Vijaya

    2016-01-01

    Full Text Available In the present work, an experimental investigation is carried out to evaluate the use of plastic oil derived from waste plastic which used in a Spark Ignition engine. Experiments are conducted, the measured performance and emissions of plastic oil blends at different proportions are compared with the baseline operation of the SI engine running with gasoline fuel. Engine performance and exhaust gas emissions such as carbon monoxide, total unburned hydrocarbons, carbon dioxide and oxides of nitrogen are measured. From the experiments it is observed that 50% Distilled Plastic Pyrolysis Oil (50%DPPO exhibits the substantial enhancement in brake power, brake thermal efficiency and reduction in brake specific fuel consumption running at full load conditions among different blends and pure petrol. There is also noticed decrement of carbon dioxide and unburned hydrocarbons emissions at the same blend. The experimental result shows that plastic oil shall conveniently be used as a substitute to gasoline in the existing SI engines without any modifications.

  16. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  17. Improving magnetic properties of MgB{sub 2} bulk superconductors by synthetic engine oil treatment

    Energy Technology Data Exchange (ETDEWEB)

    Taylan Koparan, E., E-mail: etaylan20@gmail.com [Department of Science Education, Eregli Faculty of Education, Bulent Ecevit University, TR-67300, Zonguldak (Turkey); Savaskan, B. [Energy Systems Engineering, Faculty of Technology, Karadeniz Technical University, 61830, Of, Trabzon (Turkey); Yanmaz, E. [Department of Mechatronics, Faculty of Engineering and Architecture, İstanbul Gelişim University, İstanbul (Turkey)

    2016-08-15

    Highlights: • The effects of synthetic engine oil treatment on magnetic properties of bulk MgB{sub 2} superconductors has been first time investigated and reported. • Synthetic engine oil used as a product which is cheap and a rich carbon source obviously has improved the superconducting magnetic properties of MgB{sub 2}. • The critical current density of all of MgB{sub 2} samples immersed at different standby time in engine oil in whole field range has been better than that of the pure MgB{sub 2} sample. • The MgB{sub 2} sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. - Abstract: The present study focuses on the effects of standby time of the MgB{sub 2} samples immersed in synthetic engine oil on the critical current density ( J{sub c}(H)), magnetic field dependence of the pinning force density f{sub p}(b) and T{sub c} performances of MgB{sub 2} bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB{sub 2} pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB{sub 2} samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB{sub 2} samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB{sub 2} sample because of the number of the pinning centers. The MgB{sub 2} sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The J{sub c} value for the pure sample is 2.0 × 10{sup 3} A/cm{sup 2}, whereas for the MgB{sub 2} sample immersed at 300 min standby time in engine oil the J{sub c} is enhanced to 4.8 × 10{sup 3} A/cm{sup 2} at 5 K and 3 T. The superconducting transition temperature (T{sub c}) did not change

  18. Performance and emission study on DICI and HCCI engine using raw pongamia oil and diesel

    Directory of Open Access Journals (Sweden)

    Mani Venkatraman

    2016-01-01

    Full Text Available The present work investigates the performance and emission characteristics of pongamia oil and diesel fuelled direct injection compression ignition (DICI and homogeneous charge compression ignition (HCCI engine. The primary objective of the work is to investigate the feasibility of application of unmodified pongamia oil in Diesel engine and to estimate the maximum fraction of diesel fuel replaced by the neat pongamia oil. This investigation also deals with the HCCI operation using unmodified pongamia oil. In DICI mode the neat pongamia oil is admitted into the engine in the form of pongamia oil and diesel blends. The blend that offers highest diesel replacement is considered as the test blend and it is tested further to find its maximum possible brake thermal efficiency by changing the engine operating parameters. The selected maximum blend is then tested in the new setting of the engine to determine the maximum possible performance and emission characteristics. The conventional emissions of DICI engine such as NO and smoke are disappeared in the homogeneous charge compression ignition mode of operation. The HCCI engine tested in the present work is fuelled by 40% neat pongamia oil and 60% diesel fuel through direct injection and vapour induction, respectively. The ignition or combustion phasing of the HCCI operation is carried out by the exhaust gas recirculation method. The amount of exhaust gas re-circulation governs the timing of combustion. The results of the experiments show that the neat pongamia oil performed well in HCCI mode and offered approximately ten times lower NO and smoke emission. Finally, the results of the DICI mode and HCCI mode are compared with each other to reveal the truths of neat pongamia oil in heterogeneous and homogeneous combustion.

  19. Fuel properties and engine performance of biodiesel from waste cooking oil collected in Dhaka city

    Science.gov (United States)

    Islam, R. B.; Islam, R.; Uddin, M. N.; Ehsan, Md.

    2016-07-01

    Waste cooking oil can be a potential source of biodiesel that has least effect on the edible oil consumption. Increasing number of hotel-restaurants and more active monitoring by health authorities have increased the generation of waste cooking oil significantly in densely populated cities like Dhaka. If not used or disposed properly, waste cooking oil itself may generate lot of environmental issues. In this work, waste cooking oils from different restaurants within Dhaka City were collected and some relevant properties of these waste oils were measured. Based on the samples studied one with the highest potential as biodiesel feed was identified and processed for engine performance. Standard trans-esterification process was used to produce biodiesel from the selected waste cooking oil. Biodiesel blends of B20 and B40 category were made and tested on a single cylinder direct injection diesel engine. Engine performance parameters included - bhp, bsfc and exhaust emission for rated and part load conditions. Results give a quantitative assessment of the potential of using biodiesel from waste cooking oil as fuel for diesel engines in Bangladesh.

  20. Substrate Bioaugmentation of Waste Engine Oil Polluted Soil

    Directory of Open Access Journals (Sweden)

    Beckley Ikhajiagbe

    2012-01-01

    Full Text Available The present study investigated the impact of substrate microbial augmentation on the bioremediation of Waste Engine Oil (WEO polluted soil. Five different concentrations of WEO in soil on weight basis were obtained by thoroughly mixing WEO in measured soil: 1.0, 2.5, 5.0 and 10.0% w/w. The unpolluted soil was used as the control (0% w/w experiment. The set up was left for 5 months without physically disturbing the soil. After 5 months, the soils were first amended with sawdust and then inoculated with mycelia of Pleurotus tuberregium. Significant (p = 0.05 decreases in soil physicochemical parameters were recorded 9 months after bioaugmentation (9 MAB, excepting total organic carbon and total nitrogen, which showed significant increases throughout the experiment period. Total (100% remediation of some PAH compounds - benzo(aanthracene, benzo(apyrene, benzo(bfluoranthene, benzo(g,h,iperylene, benzo(kfluoranthene, chrysene, dibenzo(a,hanthracene, fluoranthene, fluorene, and indeno(1,2,3-c,dpyrene - was recorded. Over sixty per cent (66.22% of total individual PAH compounds were completely (100% remediated. Achromobacter sp., Clostridium sp., Sarcina sp., Micrococcus sp., Nocardia sp., Penicillium sp., Rhizopus stolonifer, Mucor sp., Trichoderma sp., Aspergillus niger, A. fumigatus, A. flavus and Geotrichum sp. were dominant microorganism species in the WEO polluted soil. Significant decreases in heavy metal concentration resulted in significant reductions in Environmental Risk Factor (ERF, which implied less possibility for ecological risk for heavy metal constituents. ERF presupposes that Pb (ERF range, -69.30 to -14.97 and V (ERF range, -0.01 to 0.86 were significant potential ecological threats at 5MAP, but at 9 MAB, ERF value had decreased, with ERF ranges for Pb and V being 5.64 to 32.64 and 1.70 to 1.83, respectively.

  1. Performance of C.I Engine by Using Biodiesel-Mahua Oil.

    Directory of Open Access Journals (Sweden)

    sudheer nandi

    2013-10-01

    Full Text Available - India is looking at renewable alternative fuel sources to reduce its dependence on foreign imports of oils. As India imports 70% of the oil, the country has been hit hard by increasing cost and uncertainty. Recently the biomass resources are being used as alternative fuels and effective use of those fuels is gaining prominence as a substitute way to solve the problem of global warming and the energy crisis. Among all the alternative fuels existing mahua oil is also one. In this work, conventional laboratory equipment has been used for the transesterification of mahua oil. Various properties of esterified mahua oil have been tested for comparison with diesel fuel; further the investigations are carried out on a laboratory based diesel engine to study its performance.An attempt has been made in the present work to find out the suitability of transesterified mahua oil as a fuel in C.I. engine. Experimental work was carried out on 7B.H.P single cylinder four stroke and vertical, water cooled Kirloskar diesel engine at rated speed of 1500rpm different blends of transesterified mahua oil with diesel were tested at 200bar injection pressure.From the performance characteristics of transesterified mahua oil diesel blends the efficiencies obtained were found to be better with 75% transesterified mahua oil. The thermal efficiencies of transesterified mahua oil are higher at 25% diesel blends. The cost of transesterified mahua oil is low compared to the cost of diesel. Hence mahua oil blended with diesel is more economical and this can provide an immediate, though partial solution to the growing diesel scarcity in developing countries like ours

  2. Series 190 Diesel Engines Used in China's Oil Drilling

    Institute of Scientific and Technical Information of China (English)

    Liu Qimin

    1996-01-01

    @@ Jinan Diesel Engine Works, located in Jinan,Shandong Province, was established more than 70 years ago. Now it produces series 190 diesel engines and diesel generating sets. Over 95 percent of land drilling power engines used in China are from Jinan Diesel Engine Works.

  3. Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

    Science.gov (United States)

    This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cottonseed biodiesel while assessing the IDI engine multi-fuel capability. Millions of tons of cotton seeds are available in the southeast of the USA every year and they contain oils that can be transesteri...

  4. Experimental Investigation of Bio-Diesel Obtained From Waste Cooking Oil and Its Blends with Diesel on Single Cylinder Engine

    National Research Council Canada - National Science Library

    R. B. Sharma; Dr. Amit Pal

    2014-01-01

    In this experiment a comprehensive experimental investigation of bio-diesel oil on single cylinder engine running with biodiesel obtained from Waste cooking oil and its blends with diesel was carried...

  5. Application of Canola Oil Biodiesel/Diesel Blends in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2016-12-01

    Full Text Available In this study, the application effects of canola oil biodiesel/diesel blends in a common rail diesel engine was experimentally investigated. The test fuels were denoted as ULSD (ultra low sulfur diesel, BD20 (20% canola oil blended with 80% ULSD by volume, and PCO (pure canola oil, respectively. These three fuels were tested under an engine speed of 1500 rpm with various brake mean effective pressures (BMEPs. The results indicated that PCO can be used well in the diesel engine without engine modification, and that BD20 can be used as a good alternative fuel to reduce the exhaust pollution. In addition, at low engine loads (0.13 MPa and 0.26 MPa, the combustion pressure of PCO is the smallest, compared with BD20 and ULSD, because the lower calorific value of PCO is lower than that of ULSD. However, at high engine loads (0.39 MPa and 0.52 MPa, the rate of heat release (ROHR of BD20 is the highest because the canola oil biodiesel is an oxygenated fuel that promotes combustion, shortening the ignition delay period. For exhaust emissions, by using canola oil biodiesel, the particulate matter (PM and carbon monoxide (CO emissions were considerably reduced with increased BMEP. The nitrogen oxide (NOx emissions increased only slightly due to the inherent presence of oxygen in biodiesel.

  6. Gas-oil/water emulsion fuel for automotive diesel engines. energia

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    In this paper the work performed within the contract EE-C-201-I is reported. The results achieved in the tests of high speed diesel engines with water in oil emulsion feeding system are summarized. First, carried out trials on test bench are described; then operation in light duty truck on the road and on roller test bench is reported and trials with constant speed diesel engine are related. Finally, the work about emulsion characterization is synthetized. The conclusion shows as the water in oil emulsion is a feeding system suitable for high speed diesel engine operation because BSFC, grade of smoke, exhaust temperature and emission are lowered without considerable troubles.

  7. Experimental Investigation of Performanec of Single Cylinder 4s Diesel Engine Using Dual Vegetable Oil Blended

    Directory of Open Access Journals (Sweden)

    Prof. C. S. Koli

    2014-03-01

    Full Text Available Over the last two decades there has been a tremendous increase in the number of automobiles and a corresponding increase in the fuel price. In this regard, alternative fuels like vegetable oils play a major role. Use of pure vegetable oil in diesel engines causes some problems due to their high viscosity compared with diesel fuel. To solve the problems due to high viscosity various techniques are used. One such technique is fuel blending. This paper investigated the performance parameters of dual vegetable oil blends (mixture of Mustard oil and Palm oil with diesel on a stationary single cylinder, four stroke direct injection compression ignition engine. The blends of BB 10 (combination of Diesel 90% by volume, Mustard oil 5% by volume and Palm oil 5% by volume and blends of BB 20 (combination of Diesel 80% by volume, Mustard oil 10% by volume and Palm oil 10% by volume gave better brake thermal efficiency, lower total fuel consumption and lower brake specific fuel consumption than other blends (BB 30, BB 40 and BB 50.

  8. Studies on orange oil methyl ester in diesel engine with hemispherical and toroidal combustion chamber

    Directory of Open Access Journals (Sweden)

    Karthickeyan Viswanathan

    2016-01-01

    Full Text Available An investigation has been made to compare the emission characteristics of 20% orange oil methyl ester and 80% diesel in volumetric basis with Neat diesel in hemispherical combustion chamber and toroidal combustion chamber. Non-edible orange oil is selected and utilized to prepare alternative fuel to be utilized in Diesel engine. The traditional method of transestrification is employed for preparation orange oil methyl ester. The chemical properties of prepared methyl ester were determined using fouriertransform infrared spectroscopy method. Further its fuel properties were found based on American Society for Testing and Materials standards and compared with Neat diesel fuel properties. A compression ignition engine with electrical dynamometer test rig with gas analyzer has been used. It is observed that 1% of NOx and 4% of HC emission reduced in toroidal combustion chamber engine. However, smoke emission is found to be lower in hemispherical combustion chamber engine.

  9. Recent developments in reservoir engineering and their impact on oil and gas field development

    Energy Technology Data Exchange (ETDEWEB)

    Davies, R.H.; Niko, H. [Shell Internationale Petroleum Maatschappij BV, Den Haag (Netherlands)

    1996-12-31

    With much of the reservoir engineering development activities prior to 1986 being directed to new processes such as EOR, reservoir engineering of today has, like the other petroleum engineering disciplines, become part of an integrated effort to extract the maximum amount of oil from a reservoir. We will discuss some of the new developments in reservoir engineering which had a real impact on oil field operations in Shell and on the working practices of the individual reservoir engineers. Examples of recent advances in reservoir engineering are: (1) progress in the field of measuring residual oil saturations to water under representative conditions which will enable a more realistic assessment of trapped/bypassed oil in water floods such as those in large North Sea fields; (2) improved understanding of the production behaviour of horizontal wells based on analytical and numerical modelling which led to successful applications in Gabon and Oman; (3) advances in our understanding of production in naturally fractured reservoirs which provided the basis for a unique field experiment in the Natih Field in Oman; (4) understanding of the mechanism of fracturing in water injection wells, a process which has large cost-saving potential. The one factor largely responsible for the change in working practices of individual reservoir engineers is the availability of modern integrated IT technology. (author)

  10. Beneficiation-hydroretort processing of US oil shales, engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.R.; Riley, R.H.

    1988-12-01

    This report describes a beneficiation facility designed to process 1620 tons per day of run-of-mine Alabama oil shale containing 12.7 gallons of kerogen per ton of ore (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay) suitable for feed to a hydroretort oil extraction facility of nominally 20,000 barrels per day capacity. The beneficiation plant design prepared includes the operations of crushing, grinding, flotation, thickening, filtering, drying, briquetting, conveying and tailings empoundment. A complete oil shale beneficiation plant is described including all anticipated ancillary facilities. For purposes of determining capital and operating costs, the beneficiation facility is assumed to be located on a generic site in the state of Alabama. The facility is described in terms of the individual unit operations with the capital costs being itemized in a similar manner. Additionally, the beneficiation facility estimated operating costs are presented to show operating costs per ton of concentrate produced, cost per barrel of oil contained in concentrate and beneficiation cost per barrel of oil extracted from concentrate by hydroretorting. All costs are presented in fourth quarter of 1988 dollars.

  11. Isolation and characterization of engine oil degrading indigenous ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-01-04

    Jan 4, 2007 ... bacterial isolates were responsible for the oil degradation. All isolates were ... and water soluble) hydrocarbons that would be more of a concern for ... Mechanical method to reduce hydrocarbon pollution is expensive and time ...

  12. Genetically engineered plants with increased vegetative oil content

    Science.gov (United States)

    Benning, Christoph

    2017-05-23

    The invention relates to genetically modified agricultural plants with increased oil content in vegetative tissues, as well as to expression systems, plant cells, seeds and vegetative tissues related thereto.

  13. The Stability of Lubricant Oil Acidity of Biogas Fuelled Engine due to Biogas Desulfurization

    Science.gov (United States)

    Gde Tirta Nindhia, Tjokorda; Wayan Surata, I.; Wardana, Ari

    2017-05-01

    This research is established for the purpose of the understanding the stability of the acidity of lubricant oil in biogas fuelled engine due to the absence of hydrogen sulfide (H2S). As was recognized that other than Methane (CH4), there are also other gas impurities in the biogas such as carbon dioxide (CO2), hydrogen sulfide (H2S), moisture (H2O) and ammonia (NH3). Due to H2S contents in the biogas fuel, the engine was found failure. This is caused by corrosion in the combustion chamber due to increase of lubricant acidity. To overcome this problem in practical, the lubricant is increased the pH to basic level with the hope will be decrease to normal value after several time use. Other method is by installing pH measurement sensor in the engine lubricant so that when lubricant is known turn to be acid, then lubricant replacement should be done. In this research, the effect of biogas desulfurization down to zero level to the acidity of lubricant oil in the four stroke engine was carried out with the hope that neutral lubrication oil to be available during running the engine. The result indicates that by eliminating H2S due desulfurization process, effect on stability and neutrality of pH lubricant. By this method the engine safety can be obtained without often replacement the lubricant oil.

  14. Effects of diesel and bio-diesel oils temperature on spray and performance of a diesel engine

    Directory of Open Access Journals (Sweden)

    Ekkachai Sutheerasak

    2014-06-01

    Full Text Available Research paper is the spray and engine performance investigation from preheated diesel and biodiesel oils at fuel temperature from 60 to 90 o C by comparing with non-preheated oil. In the experiment, there are fuel injection modeling and diesel engine testing, which is direct injection, 4 stroke and 4 cylinders. Results of fuel spray show that preheated diesel oil increase 4.7degree of spray angle and decrease 4.30 % of fuel injection pressure, as preheated bio-diesel oil increase 7.6degree of spray angle and decrease 13.90 % of fuel injection pressure to compare with non-preheated oil. As engine preformance testing results, preheated diesel oil increase 26.20% of thermal efficiency and decrease 4.30 % of BSFC, as preheated bio-diesel oil increase 30% of thermal efficiency and decrease 29.90 % of BSFC to compare with non-preheated oil.

  15. Comparative Study on Particles Formation in a Diesel Engine When Lubricating Oil Involved in Fuel Combustion

    Directory of Open Access Journals (Sweden)

    Lihui Dong

    2015-01-01

    Full Text Available The effect of lubricating oil on the morphology of particulate matter (PM was studied in a diesel engine fueled with pure diesel fuel and blended fuel containing 0.5% by weight of lubricating oil. Particulate matter emitted by diesel engines is formed primarily by soot agglomerates which are composed of primary particles. In this paper, particulate matter was collected with a thermophoretic sampling system, and a high-resolution transmission electron microscope (TEM was used to investigate the primary particles. A Fast Particulate Spectrometer, DMS 500, was used to determine the particle size distributions. The TEM results indicated that the mean diameters of the primary particles increased after the oil was added into the fuel. Particle size distributions results showed that lubricating oil in the fuel gave rise to a higher concentration in nucleation mode.

  16. Performance and emission analysis of cottonseed oil methyl ester in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Hueseyin [Department of Automotive, Faculty of Technical Education, Batman University, Batman 72060 (Turkey); Bayindir, Hasan [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Dicle University, Diyarbakir, 21280 (Turkey)

    2010-03-15

    In this study, performance and emissions of cottonseed oil methyl ester in a diesel engine was experimentally investigated. For the study, cottonseed oil methyl ester (CSOME) was added to diesel fuel, numbered D2, by volume of 5%(B5), 20%(B20), 50%(B50) and 75%(B75) as well as pure CSOME (B100). Fuels were tested in a single cylinder, direct injection, air cooled diesel engine. The effects of CSOME-diesel blends on engine performance and exhaust emissions were examined at various engine speeds and full loaded engine. The effect of B5, B20, B50, B75, B100 and D2 on the engine power, engine torque, bsfc's and exhaust gasses temperature were clarified by the performance tests. The influences of blends on CO, NO{sub x}, SO{sub 2} and smoke opacity were investigated by emission tests. The experimental results showed that the use of the lower blends (B5) slightly increases the engine torque at medium and higher speeds in compression ignition engines. However, there were no significant differences in performance values of B5, B20 and diesel fuel. Also with the increase of the biodiesel in blends, the exhaust emissions were reduced. The experimental results showed that the lower contents of CSOME in the blends can partially be substituted for the diesel fuel without any modifications in diesel engines. (author)

  17. Studies on exhaust emissions of mahua oil operated compression ignition engine.

    Science.gov (United States)

    Kapilan, N; Reddy, R P

    2009-07-01

    The world is confronted with fossil fuel depletion and environmental degradation. The energy demand and pollution problems lead to research for an alternative renewable energy sources. Vegetable oils and biodiesel present a very promising alternative fuel to diesel. In this work, an experimental work was carried out to study the feasibility of using raw mahua oil (MO) as a substitute for diesel in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas (LPG) was used as primary fuel and mahua oil was used as pilot fuel. The results show that the performance of the dual fuel engine at the injector opening pressure of 220 bar and the advanced injection timing of 30 degrees bTDC results in performance close to diesel base line (DBL) operation and lower smoke and oxides of nitrogen emission.

  18. Hydraulic fluids and jet engine oil: pyrolysis and aircraft air quality.

    Science.gov (United States)

    van Netten, C; Leung, V

    2001-01-01

    Incidents of smoke in aircraft cabins often result from jet engine oil and/or hydraulic fluid that leaks into ventilation air, which can be subjected to temperatures that exceed 500 degrees C. Exposed flight-crew members have reported symptoms, including dizziness, nausea, disorientation, blurred vision, and tingling in the legs and arms. In this study, the authors investigated pyrolysis products of one jet engine oil and two hydraulic fluids at 525 degrees C. Engine oil was an important source of carbon monoxide. Volatile agents and organophosphate constituents were released from all the agents tested; however, the neurotoxin trimethyl propane phosphate was not found. The authors hypothesized that localized condensation of pyrolysis products in ventilation ducts, followed by mobilization when cabin heat demand was high, accounted for mid-flight incidents. The authors recommended that carbon monoxide data be logged continuously to capture levels during future incidents.

  19. Study on noise of rapeseed oil blends in a single-cylinder diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Y.D.; He, Y. [College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029 (China)

    2006-09-15

    This study was undertaken to obtain the knowledge necessary for reducing noise of mixed oil composed of rapeseed oil and conventional diesel oil and for improving the performance of engine fuelled by the mixture. A S195 (8.8kW) type single-cylinder diesel engine was used to determine the effect of four adjustable working parameters, i.e. intake-valve-closing angle ({alpha}), exhaust-valve-opening angle ({beta}), fuel delivery angle ({theta}) and injection pressure (P, in 10{sup 4}Pa) on noise when an oil mixture of 30% rapeseed oil and 70% diesel oil was used. Single-factor and multi-factor quadratic regressive orthogonal design test method were adopted in the experiments to find the relationship between noise and four adjustable working parameters. Relationship between these parameters and noise was analysed under two typical operating conditions and mathematical equations characterizing the relationship were formulated. The equation of noise from the regressive test under each operating condition was set as the objective function and the ranges for the four adjustable working parameters were the given constraint condition. Models of nonlinear programming were then constructed. Computer-aided optimization of the working parameters for 30:70 rapeseed oil/diesel oil mixed fuel was achieved. Field test verified that the engine (in use) working condition was found to be bad at maladjustment. The optimum working parameters for two working conditions of the engine were used to adjust the four working parameters. Test results showed that optimum adjustment could achieve noise reduction between 2 and 4dB and that the power could be increased by 0.6-1.8kW. The experimental results also provided useful reference material for selection of the most preferable combination of working parameters. (author)

  20. Genotoxic potential of organic extracts from particle emissions of diesel and rapeseed oil powered engines.

    Science.gov (United States)

    Topinka, Jan; Milcova, Alena; Schmuczerova, Jana; Mazac, Martin; Pechout, Martin; Vojtisek-Lom, Michal

    2012-07-07

    The present study was performed to identify possible genotoxicity induced by organic extracts from particulate matter in the exhaust of two typical diesel engines run on diesel fuel and neat heated fuel-grade rapeseed oil: a Cummins ISBe4 engine tested using the World Harmonized Steady State Test Cycle (WHSC) and modified Engine Steady Cycle (ESC) and a Zetor 1505 engine tested using the Non-Road Steady State Cycle (NRSC). In addition, biodiesel B-100 (neat methylester of rapeseed oil) was tested in the Cummins engine run on the modified ESC. Diluted exhaust was sampled with high-volume samplers on Teflon coated filters. Filters were extracted with dichlormethane (DCM) and DNA adduct levels induced by extractable organic matter (EOM) in an acellular assay of calf thymus DNA coupled with (32)P-postlabeling in the presence and absence of rat liver microsomal S9 fraction were employed. Simultaneously, the chemical analysis of 12 priority PAHs in EOM, including 7 carcinogenic PAHs (c-PAHs) was performed. The results suggest that diesel emissions contain substantially more total PAHs than rapeseed oil emissions (for the ESC) or that these concentrations were comparable (for the WHSC and NRSC), while c-PAHs levels were comparable (for the ESC) or significantly higher (for the WHSC and NRSC) for rapeseed oil emissions. DNA adduct levels induced by diesel and rapeseed oil derived EOM were comparable, but consistently slightly higher for diesel than for rapeseed oil. Highly significant correlations were found between 12 priority PAHs concentrations and DNA adduct levels (0.980; pparticulate emissions from the combustion of rapeseed oil is significant and is comparable to that from the combustion of diesel fuel. A more detailed study is ongoing to verify and extent these preliminary findings. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Comparison of the constituents of two jet engine lubricating oils and their volatile pyrolytic degradation products.

    Science.gov (United States)

    van Netten, C; Leung, V

    2000-03-01

    Leaking oil seals in jet engines, at locations prior to the compressor stage, can be a cause of smoke in the cabins of BAe-146 aircraft. Compressed combustion air is bled off to pressurize the cabin and to provide a source of fresh air. Bleed air is diverted from a location just prior to the combustion chamber at a temperature around 500 degrees C. To prevent oil breakdown products from entering the cabin air, catalytic converters have been used to clean the air. During an oil seal failure this device becomes overloaded and smoke is observed in the cabin. Some aircraft companies have removed the catalytic converters and claim an improvement in air quality. During an oil seal failure, however, the flight crew is potentially exposed to the thermal breakdown products of the engine oils. Because very little is known regarding the thermal breakdown products of jet engine lubrication oils, two commercially available oils were investigated under laboratory conditions at 525 degrees C to measure the release of CO, CO2,NO2, and HCN as well as volatiles which were analyzed using GC-Mass spectrometry in an attempt to see if the neurotoxic agents tricresyl phosphates (TCPs) and trimethyl propane phosphate (TMPP) would be present or formed. TMPP was not found in these experiments. Some CO2 was generated along with CO which reached levels in excess of 100 ppm. HCN and NO2 were not detected. GC compositions of the two bulk oils and their breakdown products were almost identical. The presence of TCPs was confirmed in the bulk oils and in the volatiles. Localized condensation in the ventilation ducts and filters in the air conditioning packs are likely the reason why the presence of TCPs has not been demonstrated in cabin air. It was recommended that this needed to be verified in aircraft.

  2. Improvement of a Vertical Falling Ball Viscometer for Measuring Engine Oil Properties using 532nm diode laser, with Estimation of the Concentration of operated Oil

    Directory of Open Access Journals (Sweden)

    Dawood O. Altaify

    2017-05-01

    Full Text Available In this work, an improvement of falling ball viscometer was presented using laser beam. Several parameters such as viscosity, shear stress, shear rate, Reynolds number and drag coefficient were calculated for a sample of unused engine oil. In the other words, during the operation of engine, the variation of viscosity occurs due to the increasing in the engine temperature and may in the increasing of the concentration of engine body particles inside the oil due to friction force even with existing the oil filter there are tiny particles that pass through the oil filter, therefore a Lambert’s law was used to estimate the particles concentrations of the operated oil, the resulted graphs show increasing of the impurities concentration with operation time.

  3. Synthesis of cracked Calophyllum inophyllum oil using fly ash catalyst for diesel engine application

    KAUST Repository

    Muthukumaran, N.

    2015-04-16

    In this study, production of hydrocarbon fuel from Calophyllum inophyllum oil has been characterized for diesel engine application, by appraising essential fuel processing parameters. As opposed to traditional trans-esterification process, the reported oil was cracked using a catalyst, as the latter improves the fuel properties better than the former. In a bid to make the production process economically viable, a waste and cheap catalyst, RFA (raw fly ash), has been capitalized for the cracking process as against the conventional zeolite catalyst. The fuel production process, which is performed in a fixed bed catalytic reactor, was done methodologically after comprehensively studying the characteristics of fly ash catalyst. Significantly, fly ash characterization was realized using SEM and EDS, which demarcated the surface and internal structures of fly ash particles before and after cracking. After the production of hydrocarbon fuel from C. inophyllum oil, the performed compositional analysis in GC-MS revealed the presence of esters, parfins and olefins. Followed by the characterization of catalytically cracked C. inophyllum oil, suitable blends of it with diesel were tested in a single cylinder diesel engine. From the engine experimental results, BTE (brake thermal efficiency) of the engine for B25 (25% cracked C. inophyllum oil and 75% diesel) was observed to be closer to diesel, while it decreased for higher blends. On the other hand, emissions such as HC (hydrocarbon), CO (carbon monoxide) and smoke were found to be comparable for B25 with diesel. © 2015 Elsevier Ltd. All rights reserved.

  4. Fuels Coming from Locals Vegetables Oils for Operating of Thermals Engines

    Science.gov (United States)

    Agboue, Akichi; Yobou, Bokra

    The energy crisis born from the oil problem determined a renewal of attention on the possible possibilities of production of substitute fuels for the operation of the machines and the thermal engines. The fuel`s production based on vegetable oils require a renewal attention about the research of replacement fuel for the opeating of machines and thermal engines. Actually, the scientific world takes an interest in the research of others liquids fuel obtained with renewables energy sources whose vegetables have a good place. So, for helping to solve the fuel problem and particularly in third world countries without petroleum resources but producing fruits and oils seed, this research was about search of fuel from vegetables oils. Extraction and physico-chemical analysis performed on various vegetables plants show an interesting energy aspect. Evaluation of actually energy parameters will permit to do a comparison with classics fuel like gas-oil and petrol. Finally, analysis of thermal engines show that fuels coming from biomass like jatropha, ricinodendron and pistacia can to use for operating of those thermal engines.

  5. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid.

    Science.gov (United States)

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-08-04

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2-16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.

  6. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid

    Science.gov (United States)

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-08-01

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2–16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.

  7. Emulsification of waste cooking oils and fatty acid distillates as diesel engine fuels: An attractive alternative

    Directory of Open Access Journals (Sweden)

    Eliezer Ahmed Melo Espinosa

    2016-06-01

    Full Text Available The scope of this paper is to analyze the possibility and feasibility of the use of emulsification method applied to waste cooking oils and fatty acid distillates as diesel engine fuels, compared with other commonly used methods. These waste products are obtained from the refining oil industry, food industry and service sector, mainly. They are rarely used as feedstock to produce biofuels and other things, in spite of constitute a potential source of environmental contamination. From the review of the state of arts, significant decreases in exhaust emissions of nitrogen oxides, cylinder pressure as well as increases of the ignition delay, brake specific fuel consumption, hydrocarbon, smoke opacity, carbon monoxide, particulate matters to emulsified waste cooking oils and fatty acid distillates compared with diesel fuel are reported. In some experiments the emulsified waste cooking oils achieved better performance than neat fatty acid distillates, neat waste cooking oils and their derivatives methyl esters.

  8. Development of micro engine oil condition sensor using multi-wall carbon nanotube films

    Science.gov (United States)

    Na, Dae Seok; Jung-Ho Pak, James; Kyeong Kim, Jai

    2007-03-01

    A new interdigit-type micro oil condition sensor was designed and fabricated for monitoring the deterioration of lubricating and insulating oils. The designed sensor operates based on the change of the dielectric constant and electrical conductivity. In order to improve sensor performance, an oil condition sensor was fabricated using MEMS technology and multi-wall carbon nanotube film. The experiment was performed with automobile engine oils with the same brand and quality so as to ensure measurement reliability. Capacitance changes were measured according to increasing mileage and the sensors' performance was improved. These results show that the proposed sensor could measure the degree of oil deterioration with a high sensitivity and it is applicable to other lubricating systems as well as insulating systems.

  9. Coconut Oil Based Hybrid Fuels as Alternative Fuel for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Pranil Singh

    2010-01-01

    Full Text Available Problem statement: The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with diesel. Various techniques and methods are used to solve the problems resulting from high viscosity. Approach: One of the techniques is the preparation of a microemulsion fuel, called a hybrid fuel. In this study, hybrid fuels consisting of coconut oil, ethanol and octan-1-ol were prepared with an aim to test their suitability as a fuel for diesel engines. Density, viscosity and gross calorific values of these fuels were determined and the fuels were used to run a direct injection diesel engine. The engine performance and exhaust emissions were investigated and compared with that of diesel and coconut oil. Results: The experimental results show that the engine efficiency of the hybrid fuels is comparable to that of diesel. As the percentage of ethanol and/or octan-1-ol increased, the viscosity of the hybrid fuels decreased and the engine efficiency increased. The exhaust emissions were lower than those for diesel, except carbon monoxide, which increased. Conclusion/Recommendations: Hence, it is concluded that these hybrid fuels can be used successfully as an alternative fuel in diesel engines without any modifications. Their completely renewable nature ensures that they are environmentally friendly.

  10. Genetic engineering of peppermint for improved essential oil composition and yield.

    Science.gov (United States)

    Wildung, Mark R; Croteau, Rodney B

    2005-08-01

    The biochemistry, organization, and regulation of essential oil metabolism in the epidermal oil glands of peppermint have been defined, and most of the genes encoding enzymes of the eight-step pathway to the principal monoterpene component (-)-menthol have been isolated. Using these tools for pathway engineering, two genes and two expression strategies have been employed to create transgenic peppermint plants with improved oil composition and yield. These experiments, along with related studies on other pathway genes, have led to a systematic, stepwise approach for the creation of a 'super' peppermint.

  11. Combustion characteristics of lemongrass (Cymbopogon flexuosus oil in a partial premixed charge compression ignition engine

    Directory of Open Access Journals (Sweden)

    Avinash Alagumalai

    2015-09-01

    Full Text Available Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17.5 in a 4-stroke cycle compression ignition engine. Furthermore, the engine tests were conducted with partial premixed charge compression ignition-direct injection (PCCI-DI dual fuel system to profoundly address the combustion phenomena. Analysis of cylinder pressure data and heat-release analysis of neat and premixed lemongrass oil were demonstrated in-detail and compared with conventional diesel. The experimental outcomes disclosed that successful ignition and energy release trends can be obtained from a compression ignition engine fueled with lemongrass oil.

  12. Engineering the biosynthesis of novel rhamnolipids in Escherichia coli for enhanced oil recovery.

    Science.gov (United States)

    Han, L; Liu, P; Peng, Y; Lin, J; Wang, Q; Ma, Y

    2014-07-01

    The interfacial tension of rhamnolipids and their applications in enhanced oil recovery are dependent on their chemical structures and compositions. To improve their performances of interfacial tension and enhanced oil recovery, the engineered strategies were applied to produce novel rhamnolipids with different chemical structures and compositions. By introducing different key genes for rhamnolipid biosynthesis, Escherichia coli was firstly constructed to produce rhamnolipids that showed different performances in interfacial tension from those from Pseudomonas aeruginosa due to the different fatty acyl compositions. Then, the mutant RhlBs were created by directed evolution and subsequent site-directed mutagenesis and resulted in the production of the novel rhamnolipids with the different performances in interfacial tension as well as enhanced oil recovery. Lastly, computational modelling elucidates that the single amino acid mutation at the position 168 in RhlB would change the volume of binding pocket for substrate and thus affect the selectivity of rhamnolipid formation in E. coli. The novel rhamnolipids that showed the improved performances of interfacial tension and the potential different applications in enhanced oil recovery were successfully produced by engineered E. coli. This study proved that the combination of metabolic engineering and protein engineering is an important engineered strategy to produce many novel metabolites in micro-organisms. © 2014 The Society for Applied Microbiology.

  13. Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review

    Science.gov (United States)

    Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar

    2017-05-01

    The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.

  14. Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Banapurmath, N.R.; Tewari, P.G. [Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, Vidyanagar, Poona-Bangalore Road, Hubli 580031 (India); Hosmath, R.S. [Department of Mechanical Engineering, K.L.E' s C.E.T., Belgaum (India)

    2008-09-15

    The high viscosity of vegetable oils leads to problem in pumping and spray characteristics. The inefficient mixing of vegetable oils with air contributes to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main resources for biodiesel production can be non-edible oils obtained from plant species such as Pongamia pinnata (Honge oil), Jatropha curcas (Ratanjyot), Hevea brasiliensis (Rubber) and Calophyllum inophyllum (Nagchampa). Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in CI engines with very little or no engine modifications. This is because it has properties similar to mineral diesel. This paper presents the results of investigations carried out on a single-cylinder, four-stroke, direct-injection, CI engine operated with methyl esters of Honge oil, Jatropha oil and sesame oil. Comparative measures of brake thermal efficiency, smoke opacity, HC, CO, NO{sub X}, ignition delay, combustion duration and heat release rates have been presented and discussed. Engine performance in terms of higher brake thermal efficiency and lower emissions (HC, CO, NO{sub X}) with sesame oil methyl ester operation was observed compared to methyl esters of Honge and Jatropha oil operation. (author)

  15. EXPERIMENTAL STUDY ON HIGH-SPEED CHARACTERISTICS OF AUTOMOTIVE ENGINE OIL-PUMP CHAIN

    Institute of Scientific and Technical Information of China (English)

    CHENG Yabing; MENG Fanzhong; XU Hanxue; WU Jianming

    2007-01-01

    The high-speed multi-cycle impact and speed, load fluctuant characteristics of a kind of narrow-width automotive engine oil-pump chain 06BN-1 are studied through engine assembly and road-drive tests to satisfy the light-weight demand of engine. The worn surface morphologies of rubbing area between pin, bush and roller are also analyzed based on scanning electron microscope. The results show that the main wear mechanism of automotive engine oil-pump chain is fatigue wear, and it's failure mechanism is the forming, extending and flaking of cracks on top layer of pin and bush. Pin and bush both occurred cycle-soften phenomenon, and roller occurred cycle-harden. Fretting wear is one of the most important "fall to pieces" failure causes of automotive chain. Ensuring sufficient strength and plasticity of roller, as well as adopting suitable shaping technology are the effective methods to increase its resistance to multi-cycle impact.

  16. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    Science.gov (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-03-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  17. Esters of ricebran oil with short chain alcohols as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    F.A. Zaher

    2016-06-01

    Full Text Available The potential of ricebran oil as a feedstock for the production of a fuel for diesel engines alternative to regular diesel fuel has been assessed. Esterification rate of crude ricebran oil with methyl alcohol was studied using different volumetric ratios of alcohol to oil, different catalyst loads and catalyst types. Catalysts used were sulfuric acid at a concentration of 2% of the oil/alcohol mixture in addition to hydrochloric acid and Amberlite IR-120 cation exchange resin at the same molar concentration of H+ as in case of sulfuric acid. The reaction was fastest using sulfuric acid which has been then used to prepare esters of ricebran oil with methyl, ethyl, propyl and butyl alcohols. The four products have been evaluated as a fuel for diesel engines according to their fuel properties compared to regular diesel fuel. These properties include the calorific value, flash point, viscosity, pour point, cetane number, sulfur content and ASTM distillation characteristics. The results have shown that the methyl as well as the ethyl esters have the closest properties to those of regular diesel fuel. Diesel engine performance using blends of regular diesel fuel with methyl and ethyl esters of ricebran oil have been tested and compared to that using regular diesel fuel. The results have shown that the engine performance using a blend of 50% regular diesel fuel and 50% methyl esters of ricebran oil is better than that using regular diesel fuel. The brake thermal efficiency at full load was 30.2% using the fuel blend compared to 27.5% in case of regular fuel.

  18. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    Science.gov (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2016-07-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  19. An Experimental Study on Catalytic Cracking of Polyethylene and Engine Oils

    Directory of Open Access Journals (Sweden)

    S.K. Kimutai

    2014-02-01

    Full Text Available The utility of plastics and engine oils is very important due to their wide application in the packaging and automotive industries respectively and as such their continued use has led to an in increase in plastics and oil waste. However, the huge amount of plastic and engine oil waste produced may be treated with thermal catalytic methods to produce fossil fuel substitutes. In this research, the co-processing of polyethylene resin with petrol engine oil into high value hydrocarbons using thermal catalytic cracking (consisting of initial pyrolytic stage followed by a catalytic reforming stage was investigated. Plastic resins and petrol engine oil were loaded in the thermal reactor and HZSM-5 zeolite catalyst placed in the catalytic chamber. The system was purged with nitrogen at temperatures between 400 and 520oC. The resulting products were compared with those obtained in the absence of a catalyst. At temperatures greater than 460oC the conversion into liquid and gas fuels is above 70% wt. At similar temperatures and in the absence of catalyst, thermal cracking of low density polyethylene generated majorly liquid products with a low calorific value. The use of HZSM-5 as a catalyst caused a significant increase in the proportion of gaseous hydrocarbons that consisted mainly of light fraction olefins and liquid oil with calorific value of 43.9 MJ/kg and also comparable to regular petrol fuel. This study focuses on developing a method of conversion that can be adopted by industries as a means of converting waste plastics and waste oils into resources rather than waste.

  20. Performance evaluation of common rail direct injection (CRDI) engine fuelled with Uppage Oil Methyl Ester (UOME)

    OpenAIRE

    D.N. Basavarajappa; Banapurmath, N. R.; S.V. Khandal

    2015-01-01

    For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly ...

  1. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    Science.gov (United States)

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  2. Experimental investigation of engine emissions with marine gas oil-oxygenate blends.

    Science.gov (United States)

    Nabi, Md Nurun; Hustad, Johan Einar

    2010-07-15

    This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions.

  3. Tribological Bench and Engine Dynamometer Tests of a Low Viscosity SAE 0W-16 Engine Oil Using a Combination of Ionic Liquid and ZDDP as Anti-Wear Additives

    OpenAIRE

    2015-01-01

    We have previously reported an oil-miscible phosphonium-organophosphate ionic liquid (IL) with effective anti-wear functionality when added to a base oil by itself or combined with a conventional zinc dialkyldithiophosphate (ZDDP) for a synergistic effect. In this research, we investigated whether this synergy manifests in formulated engine oils. An experimental SAE 0W-16 engine oil was generated using a combination of IL and ZDDP with equal phosphorus contribution. The prototype engine oil w...

  4. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    Science.gov (United States)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  5. Experimental investigation on a diesel engine using neem oil and its methyl ester

    Directory of Open Access Journals (Sweden)

    Sivalakshmi S.

    2011-01-01

    Full Text Available Fuel crisis and environmental concerns have led to look for alternative fuels of bio-origin sources such as vegetable oils, which can be produced from forests, vegetable oil crops and oil bearing biomass materials. Vegetable oils have energy content comparable to diesel fuel. The effect of neem oil (NeO and its methyl ester (NOME on a direct injected four stroke, single cylinder diesel engine combustion, performance and emission is investigated in this paper. The results show that at full load, peak cylinder pressure is higher for NOME; peak heat release rate during the premixed combustion phase is lower for neat NeO and NOME. Ignition delay is lower for neat NeO and NOME when compared with diesel at full load. The brake thermal efficiency is slightly lower for NeO at all engine loads, but in the case of NOME slightly higher at full load. It has been observed that there is a reduction in NOx emission for neem oil and its methyl ester along with an increase in CO, HC and smoke emissions.

  6. Engineering industrial oil biosynthesis: cloning and characterization of Kennedy pathway acyltransferases from novel oilseed species

    Science.gov (United States)

    For more than twenty years, various industrial, governmental, and academic laboratories have developed and refined genetic engineering strategies aimed at manipulating lipid metabolism in plants and microbes. The goal of these projects is to produce renewable specialized oils that can effectively c...

  7. PERFORMANCE AND EMISSION CHARACTERISTICS OF A CI ENGINE OPERATED ON VEGETABLE OILS AS ALTERNATIVE FUELS

    Directory of Open Access Journals (Sweden)

    K. Rajagopal

    2011-12-01

    Full Text Available An experimental analysis was done using a four-stroke, single cylinder, constant speed, water-cooled diesel engine, which was interfaced with Engine software. Performance and emission characteristics were evaluated for three non-edible vegetable oils, i.e. thumba, jojoba, neem oil, as well as jojoba methyl ester, to study the effect of injection pressure at 205, 220, 240 and 260 bar with a variation in injection timing at 23°bTDC and 28°bTDC. The performance of jojoba methyl ester improved with an increase in injection pressure. A maximum brake thermal efficiency of 29.72% was obtained with lower emissions compared to the other vegetable oils; this might be explained by low viscosity and better combustion. Further investigations were carried out with a new lubricant, SAE 5W-30, which improved the performance of the CI engine by 1.59%. All of the abovementioned investigations were fruitful and these results are expected to lead to substantial contributions in the development of a viable vegetable oil engine.

  8. Microbial desalination cell for enhanced biodegradation of waste engine oil using a novel bacterial strain Bacillus subtilis moh3.

    Science.gov (United States)

    Sabina, K; Fayidh, Mohammed A; Archana, G; Sivarajan, M; Babuskin, S; Babu, P Azhagu Saravana; Radha, K Krishnan; Sukumar, M

    2014-01-01

    Microbial desalination cell (MDC) is a bioelectrochemical system developed recently from microbial fuel cells (MFCs), for producing green energy from organic wastes along with desalination of saltwater. MDC is proved to be a better performer than MFC in terms of power output and chemical oxygen demand removal, with desalination as an additional feature. This study investigates the application potential of MDC for integrated biodegradation of waste engine oil. This study showed, for the first time, that waste engine oil could be used as an organic substrate in MDC, achieving biodegradation of engine oil along with considerable desalination and power production. Utilization of these wastes in MDC can protect the environment from waste engine oil contamination. Indigenous oil-degrading bacteria were isolated and identified from engine oil contaminated sludge. Degradation of waste engine oil by these novel isolates was studied in batch cultures and optimized the growth conditions. The same cultures when used in MDC, gave enhanced biodegradation (70.1 +/- 0.5%) along with desalination (68.3 +/- 0.6%) and power production (3.1 +/- 0.3 mW/m2). Fourier transform-infrared spectroscopy and gas chromatography-mass spectrometry analyses were performed to characterize the degradation metabolites in the anolyte of MDC which clearly indicated the biodegradation of long chain, branched and cyclic hydrocarbons present in waste engine oil.

  9. Gasoline engine oil durability on fuel economy improvement performance; Engine yu no nenpi kaizen koka no jizokusei

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, K.; Kikuchi, T.; Sugiyama, S.; Ashida, T.; Tanaka, I. [Toyota Motor Corp., Aichi (Japan)

    1995-04-20

    The following reports the gasoline engine oil durability on fuel economy improvement performance. As a sample oil, ECII (5W-30) in the market, a prototype oil X where the viscosity was reduced up to 5W-20 to increase the fuel economy improvement effect and organic Mo FM as a friction modifier (FM) was increased, and Y (5W-20) where the organic Mo FM was increased as compared with X and sulfuric additive was added were used, and then the durability of the effect and the viscosity/friction coefficient/amount of additive remainder of the used oil were investigated by the actual running up to 16000km. The result revealed that X and Y had a higher fuel economy improvement effect than ECII at the initial stage of driving but the effect decreased at approximately 4000 km and 12000 km for X and Y, respectively, and the reduction in the fuel economy effect was caused by the increase in the friction coefficient due to the consumption of organic Mo FM in oil due to deterioration or the increase in the HTHS viscosity. 5 refs., 15 figs., 1 tab.

  10. The future of the Canadian oil sands: Engineering and project management advances

    Energy Technology Data Exchange (ETDEWEB)

    Madden, Peter; Morawski, Jacek

    2010-09-15

    Production technology and project management developments in Canada's oil sands industry, in the context of AMEC's experience as EPCM service provider, are discussed. Effective project management systems and workfront planning are critical to achieve cost and schedule targets and optimum construction execution. Construction Work Packages divide work into discrete pieces and Construction Work Execution Plans influence scheduling of engineering and procurement deliverables. AMEC's Engineering Data Warehouse works with intelligent engineering design tools to ensure information related to a piece of equipment is consistent across all systems. HSSE systems are proactively developed and AMEC's progressive improvement in safety performance is demonstrated.

  11. COMBUSTION ANALYSIS OF ALGAL OIL METHYL ESTER IN A DIRECT INJECTION COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    HARIRAM V.

    2013-02-01

    Full Text Available Algal oil methyl ester was derived from microalgae (Spirulina sp. The microalga was cultivated in BG 11 media composition in a photobioreactor. Upon harvesting, the biomass was filtered and dried. The algal oil was obtained by a two step solvent extraction method using hexane and ether solvent. Cyclohexane was added to biomass to expel the remaining algal oil. By this method 92% of algal oil is obtained. Transesterification process was carried out to produce AOME by adding sodium hydroxide and methanol. The AOME was blended with straight diesel in 5%, 10% and 15% blend ratio. Combustion parameters were analyzed on a Kirloskar single cylinder direct injection compression ignition engine. The cylinder pressure characteristics, the rate of pressure rise, heat release analysis, performance and emissions were studied for straight diesel and the blends of AOME’s. AOME 15% blend exhibits significant variation in cylinder pressure and rate of heat release.

  12. Experimental Study on the Production of Karanja Oil Methyl Ester and Its Effect on Diesel Engine

    Directory of Open Access Journals (Sweden)

    N Shrivastava

    2012-11-01

    Full Text Available Fast depletion of fossil fuel resources forces the extensive research on the alternative fuels. Vegetable oils edible or non edible can be a better substitute for the petroleum diesel. Karanja, a non edible oil can be a potential source to replace the diesel fuel. To investigate the feasibility of Karanja oil as an alternative diesel fuel, its biodiesel was prepared through the transesterification process. The Biodiesel was then subjected to performance and emission tests in order to assess its actual performance, when used as a diesel engine fuel. The data generated for the 20, 50 and 100 percent blended biodiesel were compared with base line data generated for neat diesel fuel. Result showed that the Biodiesel and its blend showed lower thermal efficiency. Emission of Carbon monoxide, unburned Hydrocarbon and smoke was found to be reduced where as oxides of nitrogen was higher with biodiesel and its blends. Keywords: alternate Diesel fuel; Biodiesel; Karanja oil methyl ester; performance and emission

  13. Performance Assessment and Scooter Verification of Nano-Alumina Engine Oil

    Directory of Open Access Journals (Sweden)

    Yu-Feng Lue

    2016-09-01

    Full Text Available The performance assessment and vehicle verification of nano-alumina (Al2O3 engine oil (NAEO were conducted in this study. The NAEO was produced by mixing Al2O3 nanoparticles with engine oil using a two-step synthesis method. The weight fractions of the Al2O3 nanoparticles in the four test samples were 0 (base oil, 0.5, 1.5, and 2.5 wt. %. The measurement of basic properties included: (1 density; (2 viscosity at various sample temperatures (20–80 °C. A rotary tribology testing machine with a pin-on-disk apparatus was used for the wear test. The measurement of the before-and-after difference of specimen (disk weight (wear test indicates that the NAEO with 1.5 wt. % Al2O3 nanoparticles (1.5 wt. % NAEO was the chosen candidate for further study. For the scooter verification on an auto-pilot dynamometer, there were three tests, including: (1 the European Driving Cycle (ECE40 driving cycle; (2 constant speed (50 km/h; and (3 constant throttle positions (20%, 40%, 60%, and 90%. For the ECE40 driving cycle and the constant speed tests, the fuel consumption was decreased on average by 2.75%, while it was decreased by 3.57% for the constant throttle case. The experimental results prove that the engine oil with added Al2O3 nanoparticles significantly decreased the fuel consumption. In the future, experiments with property tests of other nano-engine oils and a performance assessment of the nano-engine-fuel will be conducted.

  14. Performance of Untreated Waste Cooking Oil Blends in a Diesel Engine

    Directory of Open Access Journals (Sweden)

    Md Isa Ali

    2011-01-01

    Full Text Available Untreated waste cooking oil (UWCO is not a feasible diesel fuel. The major problems in engine operation are reported mainly due to UWCO’s high viscosity. To use  UWCO's in diesel engine without modification, it is necessary to make sure that the oils properties must be similar to diesel fuel. In this study, UWCO that has been used several times for frying purposes is investigated for the utilization as an alternative fuel for diesel engines. In order to reduce the viscosity, the UWCO were blend with diesel. Two various blends of UWCO and diesel were prepared and its important properties such as viscosity, density, calorific value and flash point were  evaluated and compared with that of diesel. The blends were then tested in a direct injection diesel engine  in 10% and 30% v/v blends with a reference diesel fuel. Tests were performed under a set of engine operating conditions. It was found that blending UWCO with diesel reduces the viscosity.  Blending of UWCO with diesel has been shown to be an effective method to reduce engine problems associated with the high viscosity of UWCO. The experimental results also show that the basic engine performance such as power output and  fuelconsumptions are comparable to diesel and the emissions of CO and NOx from the UWCO/diesel blends were also found slightly higher than that of diesel fuel.

  15. Performance and Emission Characteristics of an IDI Diesel Engine Fuelled Biodiesel (Rubber Seed Oil and Palm Oil Mix Diesel Blends

    Directory of Open Access Journals (Sweden)

    Adam Ibrahim K.

    2014-07-01

    Full Text Available In this study crude rubber seed oil and palm oil were mixed at 50: 50 vol.feedstock’s blending methods is motivated by cost reduction and properties enhancement. Biodiesel was produced and thermo physical properties are studied. Blends of B5, B10 and B20 of biodiesel to diesel were prepared. Engine performance (torque, brake specific fuel consumption (BSFC, brake thermal efficiency (BTE and emission (CO, NOx and exhaust gas temperature were evaluated in a 4 cylinder, natural aspirated, indirect injection (IDI diesel engine. The results indicated that at rated engine speed of 2500 rpm torque obtained were 87, 86, 85.3 and 85 Nm for neat diesel, B5, B10 and B20 respectively. Torque in all blends case yield between 0 to 5% lower than neat diesel. BTE were 27.58, 28.52, and 26.45% for B5, B10 and B20 compared to neat diesel 26.99%. At lower blends ratio BSFC was found to be lower and increased proportional to the blends ratio. The CO emission reduced but the exhaust gas temperature and NOx increased as blends ratio increases.

  16. Effects of Diary Scum Oil Methyl Ester on a DI Diesel Engine Performance and Emission

    Directory of Open Access Journals (Sweden)

    Benson Varghese Babu

    2012-06-01

    Full Text Available Biodiesel is recognized as a clean alternative fuel or as a fuel additive to reduce pollutant emission from CI engine and minimum cost so there is need for producing biodiesel other than from seed oil. In this study the diary waste scum were used as the raw material to produce biodiesel. Scum oil methyl ester (SOME is produced in laboratory by tranestrification process. The properties of SOME thus obtained are comparable with ASTM biodiesel standards. Experiments has been carried out to estimate the performance, emission and combustion characteristics of a single cylinder; four stroke diesel engine fuelled with scum biodiesel and its blends with standard diesel. Tests has been conducted using the fuel blends of 10%, 20%, 30% and 100% biodiesel with standard diesel, with an engine speed of 1500 rpm, fixed compression ratio 17.5 and at different loading conditions. The performance parameters elucidated includes brake thermal efficiency, brake specific fuel consumption, and exhaust gas temperature.

  17. The Feasibility of Oil Analysis for Air Force Diesel Engines

    Science.gov (United States)

    1979-06-01

    analyses conducted by Mobil include automated Brookfield viscosity, membrane filtration in pentane for insolubles, and differential infrared analysis for...considered, such as microfiltration for particle size distribution and infrared (for oxida- tion and possibly nitration). Because of the limited...military (AOAP) sectors , it may be inferred that a large segment of those organizations concerned with diesel engine maintenance and utilization is

  18. The use of surface layer with boron in friction pairs lubricated by engine oils

    Science.gov (United States)

    Szczypiński-Sala, W.; Lubas, J.

    2016-09-01

    The aim of the present work is to determine the influence of surface layers with boron and engine oil on the processes of friction and wear in friction pairs. The ring samples with borided surface layer cooperated under test conditions with counterparts made with CuPb30 and AlSn20 bearing alloys. During the tests, the friction pairs were lubricated with 15W/40 Lotos mineral oil and 5W/40 Lotos synthetic oil. The lubrication of friction area with Lotos mineral oil causes the reduction of the friction force, the temperature in the friction area and the wear of the bearing alloys under study, whereas the lubrication with Lotos synthetic oil reduces the changes in the geometrical structure of the cooperating friction pair elements. Lubrication of the friction area in the start-up phase of the friction pair by mineral oil causes faster stabilization of the friction conditions in the contact area than in the cause of lubrication of the friction pair by synthetic oil. The intensity of wear of the AlSn20 bearing alloy cooperating with the borided surface layer is three times smaller than the intensity of use of the CuPb30 alloy bearing.

  19. Radial oil injection applied to main engine bearings: evaluation of injection control rules

    DEFF Research Database (Denmark)

    Estupiñan, EA; Santos, Ilmar

    2012-01-01

    The performance of main bearings in a combustion engine affects key functions such as durability, noise and vibration. Thus, with the aim of reducing friction losses and vibrations between the crankshaft and the bearings, the work reported here evaluates different strategies for applying controll......The performance of main bearings in a combustion engine affects key functions such as durability, noise and vibration. Thus, with the aim of reducing friction losses and vibrations between the crankshaft and the bearings, the work reported here evaluates different strategies for applying......, the dynamic behaviour of the main bearing of a medium-size engine is theoretically analysed when the engine operates with controllable radial oil injection and four different injection control rules. The theoretical investigation is based on a single-cylinder combustion engine model. The performance...

  20. Metabolic engineering of plant oils and waxes for use as industrial feedstocks.

    Science.gov (United States)

    Vanhercke, Thomas; Wood, Craig C; Stymne, Sten; Singh, Surinder P; Green, Allan G

    2013-02-01

    Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks. © 2012 CSIRO Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  1. Jatropha oil methyl ester and its blends used as an alternative fuel in diesel engine

    Directory of Open Access Journals (Sweden)

    Yarrapathruni Rao Hanumantha Venkata

    2009-01-01

    Full Text Available Biomass derived vegetable oils are quite promising alternative fuels for agricultural diesel engines. Use of vegetable oils in diesel engines leads to slightly inferior performance and higher smoke emissions due to their high viscosity. The performance of vegetable oils can be improved by modifying them through the transesterification process. In this present work, the performance of single cylinder water-cooled diesel engine using methyl ester of jatropha oil as the fuel was evaluated for its performance and exhaust emissions. The fuel properties of biodiesel such as kinematic viscosity, calorific value, flash point, carbon residue, and specific gravity were found. Results indicate that B25 has closer performance to diesel and B100 has lower brake thermal efficiency mainly due to its high viscosity compared to diesel. The brake thermal efficiency for biodiesel and its blends was found to be slightly higher than that of diesel fuel at tested load conditions and there was no difference of efficiency between the biodiesel and its blended fuels. For jatropha biodiesel and its blended fuels, the exhaust gas temperature increased with the increase of power and amount of biodiesel. However, its diesel blends showed reasonable efficiency, lower smoke, and CO2 and CO emissions.

  2. THE EFFECT OF ADDITIVE ON THE VISCOSITY INDEX OF LUBRICATING OIL (ENGINE OIL

    Directory of Open Access Journals (Sweden)

    ONYEJI,

    2011-03-01

    Full Text Available The effects of four different additive formulations namely 5748, 801, 264 and 261 on the viscosity index of two lubricating oils (base oils namely 150N and 500N at two temperatures 400C and 1000C wereinvestigated. The base oils were blended with the additives in three different proportions of 100/4. 100/8 and 100/12. The results gave a viscosity index of 96 and 98 respectively for 150N and 500N withoutadditives. On the other hand, the addition of 12g of 261 additive formulations to 100cm3 of both base oils gave about 180% increase in kinematic viscosity at 400C, about 161% increase and 146% increase at1000C for 150N and 500N respectively. About 60% in viscosity index was achieved by 100/12 blend of 261 additives in 150N. The results revealed that 261 additive formulations gave the highest increase inviscosity in all proportions increasing as the weight of the additive increases. Generally, all the four additive formulations used mproved the viscosities of all the blends in all the proportions and at both temperatures. The blends can be classified as very high viscosity index being above 110. This means that they will undergo very little change in viscosity with temperature extremes and so can be considered to have stable viscosity.

  3. Effects of diesel and bio-diesel oils temperature on spray and performance of a diesel engine

    OpenAIRE

    Ekkachai Sutheerasak

    2014-01-01

    Research paper is the spray and engine performance investigation from preheated diesel and biodiesel oils at fuel temperature from 60 to 90 o C by comparing with non-preheated oil. In the experiment, there are fuel injection modeling and diesel engine testing, which is direct injection, 4 stroke and 4 cylinders. Results of fuel spray show that preheated diesel oil increase 4.7degree of spray angle and decrease 4.30 % of fuel injection pressure, as preheated bio-diesel oil increase 7.6degree o...

  4. The potential of Chromolaena odorata (L) to decontaminate used engine oil impacted soil under greenhouse conditions.

    Science.gov (United States)

    Atagana, Harrison Ifeanyichukwu

    2011-08-01

    This study reports on the use of Chromolaena odorata (L) R.M. King and H. Robinson, an Asteraceae (compositae) and an invasive alien weed in Africa for the remediation of soil contaminated with used engine oil. Used engine oilfrom a motor service garage was used to artificially contaminate soil taken from a garden to give total petroleum hydrocarbon (TPH) of between 1 and 40 g kg(-1). Chromolaena odorata (L), propagated by stem cuttings were transplanted into the contaminated soil and watered just enough to keep the soil at about 70% water holding capacity for 90 day. A set of control experiments containing 40 g kg(-1) used engine oil but without plants was set up. All experiments were set up in triplicates. Although the plants in the experiments containing higher than 30 g kg(-1) used engine oil showed relatively slower growth (fewer branches and leaves, and shorter in height) compared to those containing lower concentrations, the plants in all the experiments continued to grow until the end of the 90 day period. Residual TPH after 90 days showed that between 21 and 100% of oil was lost from the planted soil while only 11.5% was lost in the control, which did not contain plants during the same period. Analysis of plant tissues showed that both shoot and root tissues contained detectable levels of TPH and selected PAHs were also detectable. Biomass accumulation by Chromolaena odorata was affected adversely by concentrations of oil higher than 20 g kg(-1). Results of germination rates and germination energy measurements showed that Chromolaena odorata was able to reduce the toxicity of the contaminated soil after 90 days as compared to soils containing freshly contaminated soiL

  5. Experimental investigation of a diesel engine with methyl ester of mango seed oil and diesel blends

    Directory of Open Access Journals (Sweden)

    K. Vijayaraj

    2016-03-01

    Full Text Available Petroleum based fuels worldwide have not only resulted in the rapid depletion of conventional energy sources, but have also caused severe air pollution. The search for an alternate fuel has led to many findings due to which a wide variety of alternative fuels are available at our disposal now. The existing studies have revealed the use of vegetable oils for engines as an alternative for diesel fuel. However, there is a limitation in using straight vegetable oils in diesel engines due to their high viscosity and low volatility. In the present work, neat mango seed oil is converted into their respective methyl ester through transesterification process. Experiments are conducted using various blends of methyl ester of mango seed oil with diesel in a single cylinder, four stroke vertical and air cooled Kirloskar diesel engine. The experimental results of this study showed that the MEMSO biodiesel has similar characteristics to those of diesel. The brake thermal efficiency, unburned hydrocarbon and smoke density are observed to be lower in case of MEMSO biodiesel blends than diesel. The CO emission for B25, B50 and B75 is observed to be lower than diesel at full load, whereas for B100 it is higher at all loads. On the other hand, BSFC and NOx of MEMSO biodiesel blends are found to be higher than diesel. It is found that the combustion characteristics of all blends of methyl ester of mango seed oil showed similar trends with those of the baseline diesel. From this study, it is concluded that optimized blend is B25 and could be used as a viable alternative fuel in a single cylinder direct injection diesel engine without any modifications.

  6. Use of Multiviscosity/Synthetic Engine Oil in Army Combat/Tactical Vehicles.

    Science.gov (United States)

    1979-09-01

    Approach to the Characterization of Military Lubricants," Interim Report AFLRL No. 77, AD A027397, prepared at U.S. Army Fuels and Lubricants Research...Lubricating Oil, Internal Com- bustion Engine, Tactical Service, November 1970. 15. "Multigrade Oils for Diesel Application," 4emorandum for Record, DRX - FB-GL...signific.ant ’cdolei rtz’oas wero e:’countered. Non vr-hi1cleo, Act-ain. #I nQ-680, sustalmed r~iajr~ engimed-r.~ dur-Ing ciprtlcn, One c tio conne

  7. PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE FUELLED WITH NON EDIBLE VEGETABLE OIL AND DIESEL BLENDS

    Directory of Open Access Journals (Sweden)

    T. ELANGO

    2011-04-01

    Full Text Available This study investigates performance and emission characteristics of a diesel engine which is fuelled with different blends of jatropha oil and diesel (10–50%. A single cylinder four stroke diesel engine was used for the experiments at various loads and speed of 1500 rpm. An AVL 5 gas analyzer and a smoke meter were used for the measurements of exhaust gas emissions. Engine performance (specific fuel consumption SFC, brake thermal efficiency, and exhaust gas temperature and emissions (HC, CO, CO2, NOx and Smoke Opacity were measured to evaluate and compute the behaviour of the diesel engine running on biodiesel. The results showed that the brake thermal efficiency of diesel is higher at all loads. Among the blends maximum brake thermal efficiency and minimum specific fuel consumption were found for blends upto 20% Jatropha oil. The specific fuel consumption of the blend having 20% Jatropha oil and 80% diesel (B20 was found to be comparable with the conventional diesel. The optimum blend is found to be B20 as the CO2 emissions were lesser than diesel while decrease in brake thermal efficiency is marginal.

  8. Biodiesel Production from Waste Cooking Oil & Its Evaluation in Compression Ignition Engine Using RSM

    Directory of Open Access Journals (Sweden)

    Jashan Deep Singha

    2014-04-01

    Full Text Available Lack of energy, deterioration of the environment and hunger,these are the three problems the humans are facing in todays era. There is an exponential rise in the demand is arrising for petroleum based energy. This has been followed by problem of depleting conventional petroleum fuels and a hike in price of these fuels, almost on a regular basis. Moreover, these green house emissions are results of petroleum fuels and other forms of pollution in the environment. The rise in the price of the fuel has also been alarming for us to find alternate energy resource.The vegetable oils has proved to be a promising source to obtain fuels for IC engines. Like, biodiesel is biodegradable, non- toxic and renewable fuel. It is obtained from vegetable oils, animal fats and waste cooking oil by transesterification with alcohols. The high cost of raw materials and lack of modern technology has led to the commercialization which can optimize the biodiesel yield. A modified engine can lead to better engine performance along with lesser specific fuel consumption. In this thesis, Response Surface Methodology (RSM has been used which has focused on the optimization of biodiesel production, engine performance and exhaust emission parameters.

  9. Emissions Characteristics of Small Diesel Engine Fuelled by Waste Cooking Oil

    Directory of Open Access Journals (Sweden)

    Khalid Amir

    2014-07-01

    Full Text Available Biodiesel is an alternative, decomposable and biological-processed fuel that has similar characteristics with mineral diesel which can be used directly into diesel engines. However, biodiesel has oxygenated, more density and viscosity compared to mineral diesel. Despite years of improvement attempts, the key issue in using waste cooking oil-based fuels is oxidation stability, stoichiometric point, bio-fuel composition, antioxidants on the degradation and much oxygen with comparing to diesel gas oil. Thus, the improvement of emission exhausted from diesel engines fueled by biodiesel derived from waste cooking oil (WCO is urgently required to meet the future stringent emission regulations. The purpose of this research is to investigate the influences of WCO blended fuel and combustion reliability in small engine on the combustion characteristics and exhaust emissions. The engine speed was varied from 1500-2500 rpm and WCO blending ratio from 5-15 vol% (W5-W15. Increased blends of WCO ratio is found to influences to the combustion process, resulting in decreased the HC emissions and also other exhaust emission element. The improvement of combustion process is expected to be strongly influenced by oxygenated fuel in biodiesel content.

  10. Investigation of Performance and Emissions Effects of Waste Vegetable Oil Methyl Ester in A Diesel Engine

    Directory of Open Access Journals (Sweden)

    Yahya ULUSOY

    2016-12-01

    Full Text Available In this study engine and emission performance of a 4-stroke, 4 cylinder, direct injection 62,5 kW engine, with three different biodiesel blends (B25, B50, B75,  was compared with those obtained with use of normal diesel (B0 through a 8-mode experimental test procedure, in convention with ISO 8178-C1. The results of the study showed that, performance and emission values of biodiesel fuels produced from vegetable oil and those obtained with diesel fuel (B0 are very close to each other.  In this context, the waste cooking oil, which is a serious risk to the environment and should be collected according to related legistlative measures,  could be processed to and used as biodiesel without creating any significant loss in terms of engine performance, while providing significant advantages in terms of engine emissions. These results revealed that, waste frying oils can be used as diesel fuel and to create an adding value for the economy instead of being potential environmental risk. 

  11. Preliminary Investigation for Engine Performance by Using Tire-Derived Pyrolysis Oil-Diesel Blended Fuels

    Science.gov (United States)

    Rofiqul, Islam M.; Haniu, Hiroyuki; Alam, Beg R.; Takai, Kazunori

    In the first phase of the present study, the pyrolysis oil derived from light automotive tire waste has been characterized including fuel properties, elemental analyses, FT-IR, 1H-NMR, GC-MS and distillation. The studies on the oil show that it can be used as liquid fuel with a gross calorific value (GCV) of 42.00 MJ/kg and empirical formula of CH1.27O0.025N0.006. In the second phase of the investigation, the performance of a diesel engine was studied blending the pyrolysis oil with diesel fuel in different ratios. The experimental results show that the bsfc of pyrolysis oil-diesel blended fuels slightly increases and hence the brake thermal efficiency decreases compared to those of neat diesel. The pyrolysis oil-diesel blends show lower carbon monoxide (CO) emission but higher oxides of nitrogen (NOx) emissions than those of neat diesel. However, NOx emissions with pyrolysis oil-diesel blended fuels reduced when EGR was applied.

  12. Emission estimation of neat paradise tree oil combustion assisted with superheated hydrogen in a 4-stroke natural aspirated DICI engine

    Directory of Open Access Journals (Sweden)

    Sundararajan Karthikayan

    2016-01-01

    Full Text Available This research work investigates the use of neat paradise tree oil in a 4-stroke natural aspirated direct injection compression ignition engine assisted with the help of super-heated hydrogen (hydrogen in gaseous state or above its saturation temperature as a combustion improver. The high calorific gaseous fuel hydrogen gas was used as a combustion improver and admitted into the engine during the suction stroke. A 4-stroke single cylinder Diesel engine was chosen and its operating parameters were suitably modified. Neat paradise tree oil was admitted through standard injector of the engine and hydrogen was admitted through induction manifold. Inducted super-heated hydrogen was initiated the intermediate compounds combustion of neat paradise tree oil. This process offers higher temperature combustion and results in complete combustion of heavier molecules of neat paradise tree oil within shorter duration. The results of the experiment reveal that 40% higher NOx, 20% lower smoke, 5% lower CO, and 45% lower HC than that of neat paradise tree oil fuel operation and the admission of superheated hydrogen has improved the combustion characteristics of neat paradise tree oil. The investigation successfully proved that the application of neat paradise tree oil with 15% of hydrogen improver is possible under a regular Diesel engine with minimal engine modification.

  13. Effects of Waste Plastic Oil Blends on a Multi Cylinder Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Vijaya Kumar Kareddula

    2017-01-01

    Full Text Available Existing fossil fuels are utilizing at their critical rate, leads to depletion of their reserves in a dramatic way. Generating alternative energy sources in a pragmatic way are necessitated, which demands the researchers to utilize the inherent energy of carbon based products as an energy source to the automobile sector. As a part of it, my research is focused on transforming and using the waste plastics as an alternative fuel in multi cylinder spark ignition engine. This paper aims to present the experimental investigations of performance and emission characteristics in an existing Maruti 800 petrol engine running with the blends of 5%, 10%, 15% and 20% of waste Plastic Pyrolysis Oil (PPO with gasoline. From the results, it is noticed that hydrocarbon emissions are substantially reduced and oxides of nitrogen emissions are increased and petrol engine can operate with PPO blends up to 20% without any engine modifications.

  14. Oil Coking Prevention Using Electric Water Pump for Turbo-Charge Spark-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Han-Ching Lin

    2014-01-01

    Full Text Available Turbocharger has been widely implemented for internal combustion engine to increase an engine's power output and reduce fuel consumption. However, its operating temperature would rise to 340°C when engine stalls. This higher temperature may results in bearing wear, run-out, and stick, due to oil coking and insufficient lubrication. In order to overcome these problems, this paper employs Electric Water Pump (EWP to supply cool liquid to turbocharger actively when the engine stalls. The system layout, operating timing, and duration of EWP are investigated for obtaining optimal performance. The primarily experimental results show that the proposed layout and control strategy have a lower temperature of 100°C than the conventional temperature 225°C.

  15. Preparation, characterisation, engine performance and emission characteristics of coconut oil based hybrid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pranil J.; Singh, Anirudh [Division of Physics, School of Engineering and Physics, Faculty of Science, Technology and Environment, University of the South Pacific, 325 Fletcher Road, Suva (Fiji); Khurma, Jagjit [Division of Chemistry, School of Biological, Chemical and Environmental Sciences, Faculty of Science, Technology and Environment, University of the South Pacific, Suva (Fiji)

    2010-09-15

    In this study, hybrid fuels consisting of coconut oil, aqueous ethanol and a surfactant (butan-1-ol) were prepared and tested as a fuel in a direct injection diesel engine. After determining fuel properties such as the density, viscosity and gross calorific values of these fuels, they were used to run a diesel engine. The engine performance and exhaust emissions were investigated and compared with that of diesel. The experimental results show that the efficiency of the hybrid fuels is comparable to that of diesel. As the viscosity of the hybrid fuels decreased and approached that of diesel, the efficiency increased progressively towards that of diesel. The exhaust emissions were lower than those for diesel, except carbon monoxide emissions, which increased. Hence, it is concluded that these hybrid fuels can be used successfully as an alternative fuel in diesel engines without any modifications. Their completely renewable nature ensures that they are environmentally friendly with regard to their emissions characteristics. (author)

  16. Implementation method of Oil and Gas Geologic Information System with ArcGIS Engine

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    ComGIS is the mainstream of developing GIS currently. Developing Geographic Information System with the technology of components can reduce the difficulties of developing, improving the developing efficiency and enhancing the flexibility and opening of system. AxcObjects(AO) is based on the technology of COM, and ArcGIS Engine(AE) is a set of embedded AO which can extend to various platforms. Compared with AO, ArcGIS Engine can shorten the period of developing and improve the efficiency greatly. Having introduced the techniques of ArcObjects and ArcGIS Engine, we offer the method of developing GIS with Visual Basic and ArcGIS Engine with Oil and Gas Geologic Information System.

  17. Study of ignition characteristics of microemulsion of coconut oil under off diesel engine conditions

    Directory of Open Access Journals (Sweden)

    Mahir H. Salmani

    2015-09-01

    Full Text Available The increasing awareness of the depletion of fossil fuel resources and the environmental benefits motivates the use of vegetable oils, however there is little known information about ignition and combustion characteristics of vegetable oil based fuels under off diesel engine conditions. These conditions are normally reached either during starting or when the engine is sufficiently worn out. A fuel was prepared by co-solvent blending of coconut oil with 20% butyl alcohol and was analysed. An experimental study of the measurement of ignition delay (ID characteristics of conical fuel sprays impinging on hot surface in cylindrical combustion chamber was carried out. The objective of the study was to investigate the effect of hot surface temperatures on ignition delays of microemulsion of coconut oil at various ambient air pressures and temperatures which would have reached under off diesel engine conditions. An experimental set-up was designed and developed for a maximum air pressure of 200 bar and a maximum temperature of 800 °C with the emphasis on optical method for the measurement of ignition delay. Hot surface temperature range chosen was 300–450 °C and ambient air pressure (inside the combustion chamber range chosen was 10–25 bar. Present study shows that at fixed injection pressure and fixed ambient (hot surface temperature, at higher ambient air pressure (25 bar inside the combustion chamber, ignition delay of diesel and microemulsion of coconut oil are comparable and therefore are having matching combustion characteristics. Although a pressure of 25 bar is much less than the precombustion pressure of most diesel engines but again conclusively establish that combustion characteristics are same despite lower air pressure, temperature and lower injection pressure. At higher injection pressure ignition delay of microemulsion of coconut oil and pure diesel attains the lower value at the same ambient air pressure inside the

  18. The Impact of Organic Friction Modifiers on Engine Oil Tribofilms

    CERN Document Server

    Ratoi, Monica; Alghawel, Husam; Suen, Yat Fan; Nelson, Kenneth

    2013-01-01

    Organic friction modifiers (OFMs) are important additives in the lubrication of machines and especially of car engines where performance improvements are constantly sought-after. Together with zinc dialkyldithiophosphates (ZDDPs) antiwear additives, OFMs have a predominant impact on the tribological behaviour of the lubricant. In the current study, the influence of OFMs on the generation, tribological properties and chemistry of ZDDP tribofilms has been investigated by combining tribological experiments (MTM) with in-situ film thickness measurements through optical interference imaging (SLIM), Alicona profilometry and X-ray photoelectron spectroscopy. OFMs and antiwear additives have been found to competitively react/adsorb on the rubbing ferrous substrates in a tribological contact. The formation and removal (through wear) of tribofilms are dynamic processes which result from the simultaneous interaction of these two additives with the surface of the wear track. By carefully selecting the chemistry of OFMs, ...

  19. Genotoxicity of diesel engine emissions during combustion of vegetable oils, mineral oil, and their blends; Gentoxizitaet von Dieselmotoremissionen bei Verbrennung von Pflanzenoelen, Mineraloeldiesel und deren Mischkraftstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Buenger, Joern

    2013-07-09

    High particle emissions and strong mutagenic effects were observed after combustion of vegetable oil in diesel engines. This study tested the hypothesis that these results are affected by the amount of unsaturated or polyunsaturated fatty acids of vegetable oils and that blends of diesel fuel and vegetable oil are mutagenic. Three different vegetable oils (linseed oil, LO; palm tree oil, PO; rapeseed oil, RO), blends of 20% vegetable oil and 80% diesel fuel (B20) and 50% vegetable oil and 50% diesel fuel (B50) as well as common diesel fuel (DF) were combusted in a heavy duty diesel engine. The exhaust was investigated for particle emissions and its mutagenic effect in comparison to emissions of DF. The engine was operated using European Stationary Cycle. Particle mass was determined gravimetrically while mutagenicity was determined using the bacterial reverse mutation assay with tester strains TA98 and TA100. Combustion of LO caused the largest amount of total particulate matter (TPM). In comparison to DF it particularly raised the soluble organic fraction (SOF). RO presented second highest TPM and SOF, followed by PO which was scarcely above DF. B50 revealed the lowest amount of TPM while B20 reached as high as DF. RO revealed the highest number of mutations of the vegetable oils closely followed by LO. PO was less mutagenic, but still induced stronger effects than DF. B50 showed higher mutagenic potential than B20. While TPM and SOF were strongly correlated with the content of polyunsaturated fatty acids in the vegetable oils, mutagenicity had a significant correlation with the amount of total unsaturated fatty acids. Vegetable oil blends seem to be less mutagenic than the pure oils with a shifted maximum compared to blends with biodiesel and DF. This study supports the hypothesis that numbers of double bounds in unsaturated fatty acids of vegetable oils combusted in diesel engines influence the amount of emitted particles and the mutagenicity of the exhaust. And

  20. Laser-induced fluorescence measurement of the oil film thickness in an internal combustion engine

    Science.gov (United States)

    Ostroski, Greg M.; Ghandhi, Jaal B.

    1997-11-01

    The use of a fluorescent dopant molecule to enhance the natural fluorescence of motor oils, and allow quantitative determination of temperature and film thickens in internal combustion engines has been investigated. Measurement of the fluorescence as a function of temperature were made with neat Mobil 1, and solutions of the dopant BTBP in mineral oil and Mobil 1. The fluorescence yield of neat Mobil 1 was found to vary by 30 percent over the temperature range explored, but the spectral characteristics, as measured with bandpass filters, were unaffected by temperature. The BTBP fluorescence was found to increase significantly with temperature, and it was found the narrower regions in the spectrum increased proportionally more than the fluorescence collected over the entire spectrum, allowing a determination of temperature to be made which can then be used to correct for the change in fluorescence yield. Solutions in Mobil 1 showed a smaller increase than that observed in mineral oil.

  1. Improvement of Waste Tire Pyrolysis Oil and Performance Test with Diesel in CI Engine

    Directory of Open Access Journals (Sweden)

    M. N. Islam

    2016-01-01

    Full Text Available The standard of living, quality of life, and development of a nation depend on its per capita energy consumption. Global energy supply that mainly depends on fossil fuel is decreasing day by day. It is estimated that the energy demand will be increased five times by the year 2021 from present scenario. Due to the fossil fuel crisis, the development of alternative fuel technologies has drawn more attraction to deliver the replacement of fossil fuel. Pyrolysis is one of the promising alternative fuel technologies which produces valuable oil, char, and gas product from organic waste. Early investigations report that tire pyrolysis oil extracted from vacuum pyrolysis method seemed to have properties similar to diesel fuel. The main concern of this paper is to produce and improve the properties of crude tire pyrolysis oil by desulfurizing, distilling, and utilizing it with diesel in CI engine to analyze the efficiency for various compositions.

  2. STUDY ON THE INFLUENCES OF BUBBLY OIL ON THE CAVITATION EROSION IN JOURNAL BEARINGS OF ENGINES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A simulating experimental device for journal bearin gs of engines is established by use of the mechanism of ultrasonic vibrationTh is device can make the pressure inside the oil film changed at ultrasonic freque ncy,which enable the specimen surface to be damaged by cavitation erosion in a c omparatively short timeConnecting with the bubbly oilproducing device,this r ig can investigate the influence of bubbly oil on the cavitation erosionThroug h detailed experimental research it is found that the bubbly oil decreases the c avitation erosion in journal bearings of enginesThis result is analyzed reason ably from mechanism of cavitation erosion

  3. Performance evaluation of common rail direct injection (CRDI engine fuelled with Uppage Oil Methyl Ester (UOME

    Directory of Open Access Journals (Sweden)

    D.N. Basavarajappa

    2015-02-01

    Full Text Available For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions. Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar. CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.

  4. A study on the performance and emission characteristics of esterified pinnai oil tested in VCR engine.

    Science.gov (United States)

    Ashok Kumar, T; Chandramouli, R; Mohanraj, T

    2015-11-01

    Biodiesel is a clean renewable fuel derived from vegetable oils and animal fats. It is biodegradable, oxygenated, non toxic and free from sulfur and aromatics. The biodiesel prepared from pinnai oil undergoes acid esterification followed by alkaline transesterification process. The fatty acid methyl esters components were identified using gas chromatography and compared with the standard properties. The properties of biodiesel are comparable with diesel. The yield of the biodiesel production depends upon the process parameters such as reaction temperature, pH, time duration and amount of catalyst. The yield of biodiesel by transesterification process was 73% at 55°C. This fuel was tested in a variable compression ratio engine with blend ratios of B10 and B20. During the test runs the compression ratio of the engine was varied from 15:1 to 18:1 and the torque is adjusted from zero to maximum value of 22Nm. The performance characteristics such as the brake thermal efficiency, brake specific energy consumption and exhaust gas temperature of the engine are analyzed. The combustion characteristics of biodiesel like ignition delay, combustion duration and maximum gas temperature and the emission characteristics are also analyzed. The performance characteristics, combustion characteristics and engine emission are effective in the variable compression ratio engine with biodiesel and it is compared with diesel.

  5. Prospects of Biodiesel Production from Macadamia Oil as an Alternative Fuel for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Md Mofijur Rahman

    2016-05-01

    Full Text Available This paper investigated the prospects of biodiesel production from macadamia oil as an alternative fuel for diesel engine. The biodiesel was produced using conventional transesterification process using the base catalyst (KOH. A multi-cylinder diesel engine was used to evaluate the performance and emission of 5% (B5 and 20% (B20 macadamia biodiesel fuel at different engine speeds and full load condition. It was found that the characteristics of biodiesel are within the limit of specified standards American Society for Testing and Materials (ASTM D6751 and comparable to diesel fuel. This study also found that the blending of macadamia biodiesel–diesel fuel significantly improves the fuel properties including viscosity, density (D, heating value and oxidation stability (OS. Engine performance results indicated that macadamia biodiesel fuel sample reduces brake power (BP and increases brake-specific fuel consumption (BSFC while emission results indicated that it reduces the average carbon monoxide (CO, hydrocarbons (HC and particulate matter (PM emissions except nitrogen oxides (NOx than diesel fuel. Finally, it can be concluded that macadamia oil can be a possible source for biodiesel production and up to 20% macadamia biodiesel can be used as a fuel in diesel engines without modifications.

  6. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    OpenAIRE

    Nattapong Namliwan; Tanakorn Wongwuttanasatian

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consum...

  7. Gasolines and Engine Oils: Literature Review, New Laboratory Oxidation Method, and Significance of Olefins in Fuel.

    Science.gov (United States)

    1980-03-01

    MAR 80 M KOLOBIELSKI. F MCCALEB UNCLASSIFIED MERADCOM-2296 NL mhE///El/l/ lEE lmmhmhhmhhhhu II II+ 1113. 1 1111. 1. 0 111 Illl .Il 0 11111"-25 IIIII...Chemical Properties of Engine Oils: Society of’ Automotive Engineers, Inc., Warrendale, PA. 65 137. C. F. Konitz . Lubrication 5S. 1 (1972). 138...urope & Seventh Army I ATTN: ATrsm-]TM;-Pr I ATTN: AFAGC-F MD (LTC Volpe)APO NY 0’-403 Fort Lee , VA 23801 Proji Mgr, Pat riot Proj 01tc [ IQ. LIS Army

  8. Application of FTIR Spectrometry Using Multivariate Analysis For Prediction Fuel in Engine Oil

    Directory of Open Access Journals (Sweden)

    Marie Sejkorová

    2017-01-01

    Full Text Available This work presents the potentiality of partial least squares (PLS regression associated with Fourier transform infrared spectroscopy (FTIR spectrometry for detecting penetration of diesel fuel into the mineral engine oil SAE 15W‑40 in the concentration range from 0 % to 9.5 % (w/w. As a best practice has proven FTIR‑PLS model, which uses the data file in the spectral range 835 – 688 cm−1.The quality of the model was evaluated using the root mean square error of calibration (RMSEC and cross validation (RMSECV. A correlation coefficient R = 0.999 and values of RMSEC, RMSECV were obtained 0.11 % and 0.38 % respectively. After the calibration of the FTIR spectrometer, the contamination engine oil with diesel fuel could be obtained in 1 – 2 min per sample.

  9. Study on Spray Characteristics and Spray Droplets Dynamic Behavior of Diesel Engine Fueled by Rapeseed Oil

    Directory of Open Access Journals (Sweden)

    Sapit Azwan

    2014-07-01

    Full Text Available Fuel-air mixing is important process in diesel combustion. It directly affects the combustion and emission of diesel engine. Biomass fuel needs great help to atomize because the fuel has high viscosity and high distillation temperature. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fueled by rapeseed oil (RO. Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the rapeseed oil spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. The results show that RO has very poor atomization due to the high viscosity nature of the fuel. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  10. Integrating experiences from operations into engineering design: modelling knowledge transfer in the offshore oil industry

    DEFF Research Database (Denmark)

    Souza da Conceição, Carolina; Broberg, Ole; Paravizo, Esdras

    2017-01-01

    and workwise distance between operations and engineering design teams, integrating human factors and transferring knowledge are key aspects when designing for better performance systems. Research Objective: Based on an in-depth empirical investigation in an offshore oil company, this study aims to provide......Summative Statement: Integrating human factors and users’ experiences in design projects is a well-known challenge. This study focus on the specific challenges for transferring these experiences and how using a knowledge transfer model can help this integration on the design of high-risk productive...... a framework for the knowledge transfer process from operations into engineering design that helps identifying and facing the challenges for such a transfer process. Methodology: The study was carried out as a case study in an offshore oil company. We used the empirical data collected through interviews...

  11. Biostimulatory Effect Of Processed Sewage Sludge In Bioremediation Of Engine Oil Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Kamaluddeen

    2015-08-01

    Full Text Available A study was conducted to evaluate the influence of sewage sludge on biodegradation of engine oil in contaminated soil. Soil samples were collected from a mechanics workshop in Sokoto metropolis. The Soil samples were taken to the laboratory for isolation of engine oil degrading bacteria. About 1 g of soil sample was used to inoculate 9 ml of trypticase soy broth and incubated at 28oC for 24 h. The growth obtained was sub-cultured in mineral salt medium overlaid with crude oil and allowed to stand at 28oC for 72 h. The culture obtained was then maintained on tryticase soy agar plates at 28oC for 48 h. A combination of microscopy and biochemical tests was carried out to identify the colonies. The sewage sludge was obtained from sewage collection point located behind Jibril Aminu Hall of Usmanu Danfodiyo University Sokoto and processed i.e. dried grounded and sterilized. A portion of land obtained in a botanical garden was divided into small portions 30 X 30 cm and the soil was excavated in-situ and sterilized in the laboratory. A polythene bag was subsequently used to demarcate between the sterilized soil and the garden soil. The sterilized soil plots were artificially contaminated with equal amount of used engine oil to represent a typical farmland oil spill. The plots were amended with various amount of processed sewage sludge i.e. 200 g 300 g and 400 g respectively. A pure culture of the bacteria was maintained on trypticase soy broth and was introduced into the sterile amended soil. The plots were watered twice daily for ten days. The degree of biodegradation and heavy metal content were assessed using standard procedures and the results obtained indicate a remarkable reduction in poly aromatic hydrocarbons PAHs total petroleum hydrocarbon TPH and heavy metal content.

  12. EXPERIMENTAL EVALUATION OF A DIESEL ENGINE WITH BLENDS OF DIESEL-PLASTIC PYROLYSIS OIL

    Directory of Open Access Journals (Sweden)

    Mr. Rajesh Guntur,

    2011-06-01

    Full Text Available Environmental degradation and depletion of oil reserves are matters of great concern around the globe. Developing countries like India depend heavily on crude oil import of about 125 Mt per annum (7:1diesel/gasoline. Diesel being the main transportation fuel in India, finding a suitable fuel alternative to diesel is an urgent need. In this context, pyrolysis of waste plastic solid is currently receiving renewed interest. Waste plastic pyrolysis oil is suitable for compression ignition engines and more attention is focused in India because of its potential to generate large-scale employment and relatively low environmental degradation. In the present work the performance and emission characteristics of a single cylinder, constant speed, and direct injection diesel engine using waste plastic pyrolysis oil blends as an alternate fuel were evaluated and the results are compared with the standard diesel fuel operation. Results indicated that the brake thermal efficiency was highercompared to diesel at part load condition. Carbon monoxide, Carbon dioxide and hydrocarbon emissions were higher and oxygen emission was lower compared to diesel operation.

  13. Performance Evaluation on Otto Engine Generator Using Gasoline and Biogas from Palm Oil Mill Effluent

    Science.gov (United States)

    Irvan; Trisakti, B.; Husaini, T.; Sitio, A.; Sitorus, TB

    2017-06-01

    Biogas is a flammable gas produced from the fermentation of organic materials by anaerobic bacteria originating from household waste manure and organic waste including palm oil mill effluent (POME). POME is mainly discharged from the sterilization unit of palm oil processing into crude palm oil. This study utilized biogas produced from liquid waste palm oil for use as fuel in the Otto engine generator 4 - stroke, type STARKE GFH1900LX with a peak power of 1.3 kW, 1.0 kW average power, bore 55 mm, stroke 40 mm, Vd 95 × 10-6 m3, Vc 10 × 10-6 m3, compression ratio of 10.5 : 1, and the number of cylinders = 1. The objective of this study is to evaluate the performance of Otto engine generator fueled with biogas that generated from POME, then comparing its performance fueled by gasoline. The performance included power, torque, specific fuel consumption, thermal efficiency, and the air-fuel ratio. Experiment was conducted by using a variation of the lamp load of 100, 200, 300, 400, and 500 W. The results revealed that the use of biogas as fuel decreased in power, torque, brake thermal efficiency, and air fuel ratio (AFR), while there is an increasing of value specific fuel consumption (SFC).

  14. Tritium Method Oil Consumption and its Relation to Oil Film Thickness in a Production Diesel Engine

    Science.gov (United States)

    1990-06-01

    Sealed Power Corporation. 1988. 11. Manual for Meriam Laminar Flow Elements, Meriam Instruments. 12. Heywood. J.B., Internal Combustion Engine...Speed Sensor Minarik, Visi-Tach Load Cell Eaton, Model #3169 Laminar Air Flow Element Meriam Instr., Model 50MW20-2 Liquid Scintillation Counter Packard

  15. Evaluation of hazelnut kernel oil of Turkish origin as alternative fuel in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Gumus, M. [Automotive Division, Department of Mechanical Education, Marmara University, Ziverbey, 34722 Istanbul (Turkey)

    2008-11-15

    In the present study, hazelnut kernel oil of Turkish origin was evaluated as alternative fuel in a diesel engine. Potential hazelnut production throughout the world and the status of Turkey were examined. Hazelnut (Corylus avellana L.) kernel oil was transesterified with methanol using potassium hydroxide as catalyst to obtain hazelnut kernel oil methyl ester (HOME) and a comprehensive experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running with HOME and its blends with diesel fuel. Experimental parameters included the percentage of HOME in the blend, engine load, injection timing, compression ratio, and injector. The cost analysis of HOME production comparing to the price of conventional diesel fuel was performed for last decade was performed. Results showed that HOME and its blends with diesel fuel are generally comparable to diesel fuel and small modifications such as increasing injection timing, compression ratio and injector opening pressure provide significant improvement in performance and emissions. It is also expected that the price of HOME will be lower than the price of conventional diesel fuel in the near future. (author)

  16. Filter clogging and power loss issues while running a diesel engine with waste cooking oil

    Energy Technology Data Exchange (ETDEWEB)

    Bari, S.; Yu, C.W.; Lim, T.H. [Universiti Sains Malaysia, School of Mechanical Engineering, Penang (Malaysia)

    2003-07-01

    As with other vegetable oils, the high viscosity of waste cooking oil (WCO) poses some challenges to engine operation. One of them is filter clogging. In this research, it was found that heating to above 55 deg C was effective in preventing clogging. However, the head loss across the filter was about 6 times higher than that of diesel. Generally, the lower calorific values of vegetable oils are held responsible for the reduction in maximum power of the engine. While running with WCO, the maximum power of the engine was reduced by 10.9 per cent from that with diesel. Raising the fuel tank level and dividing the flow through two filters to compensate for the higher head loss across the filter reduced the maximum power loss to 5.0 and 8.8 per cent respectively. Therefore, higher head loss in the filter is also responsible for the loss of maximum power. In terms of combustion, WCO had a shorter ignition delay compared with diesel, resulting in a less intense premixed combustion phase. The CO and NO emissions were on the average 8.4 and 16.2 per cent higher than those for diesel. (Author)

  17. Experimental combustion analysis of a hsdi diesel engine fuelled with palm oil biodiesel-diesel fuel blends

    OpenAIRE

    JOHN AGUDELO; ELKIN GUTIÉRREZ; PEDRO BENJUMEA

    2010-01-01

    Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB), No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively). To isolate the fuel effect, tests were executed at constant po...

  18. Engineering plant oils as high-value industrial feedstocks for biorefining: the need for underpinning cell biology research

    Science.gov (United States)

    Plant oils represent renewable sources of long-chain hydrocarbons that can be used as both fuel and chemical feedstocks, and genetic engineering offers an opportunity to create further high-value specialty oils for specific industrial uses. While many genes have been identified for the production of...

  19. Identification of lubrication oil in the particulate matter emissions from engine exhaust of in-service commercial aircraft.

    Science.gov (United States)

    Yu, Zhenhong; Herndon, Scott C; Ziemba, Luke D; Timko, Michael T; Liscinsky, David S; Anderson, Bruce E; Miake-Lye, Richard C

    2012-09-04

    Lubrication oil was identified in the organic particulate matter (PM) emissions of engine exhaust plumes from in-service commercial aircraft at Chicago Midway Airport (MDW) and O'Hare International Airport (ORD). This is the first field study focused on aircraft lubrication oil emissions, and all of the observed plumes described in this work were due to near-idle engine operations. The identification was carried out with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF AMS) via a collaborative laboratory and field investigation. A characteristic mass marker of lubrication oil, I(85)/I(71), the ratio of ion fragment intensity between m/z = 85 and 71, was used to distinguish lubrication oil from jet engine combustion products. This AMS marker was based on ion fragmentation patterns measured using electron impact ionization for two brands of widely used lubrication oil in a laboratory study. The AMS measurements of exhaust plumes from commercial aircraft in this airport field study reveal that lubrication oil is commonly present in organic PM emissions that are associated with emitted soot particles, unlike the purely oil droplets observed at the lubrication system vent. The characteristic oil marker, I(85)/I(71), was applied to quantitatively determine the contribution from lubrication oil in measured aircraft plumes, which ranges from 5% to 100%.

  20. Combustion, emission and engine performance characteristics of used cooking oil biodiesel - A review

    Energy Technology Data Exchange (ETDEWEB)

    Enweremadu, C.C. [Department of Mechanical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa); Rutto, H.L. [Department of Chemical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa)

    2010-12-15

    As the environment degrades at an alarming rate, there have been steady calls by most governments following international energy policies for the use of biofuels. One of the biofuels whose use is rapidly expanding is biodiesel. One of the economical sources for biodiesel production which doubles in the reduction of liquid waste and the subsequent burden of sewage treatment is used cooking oil (UCO). However, the products formed during frying, such as free fatty acid and some polymerized triglycerides, can affect the transesterification reaction and the biodiesel properties. This paper attempts to collect and analyze published works mainly in scientific journals about the engine performance, combustion and emissions characteristics of UCO biodiesel on diesel engine. Overall, the engine performance of the UCO biodiesel and its blends was only marginally poorer compared to diesel. From the standpoint of emissions, NOx emissions were slightly higher while un-burnt hydrocarbon (UBHC) emissions were lower for UCO biodiesel when compares to diesel fuel. There were no noticeable differences between UCO biodiesel and fresh oil biodiesel as their engine performances, combustion and emissions characteristics bear a close resemblance. This is probably more closely related to the oxygenated nature of biodiesel which is almost constant for every biodiesel (biodiesel has some level of oxygen bound to its chemical structure) and also to its higher viscosity and lower calorific value, which have a major bearing on spray formation and initial combustion. (author)

  1. Eucalyptus-Palm Kernel Oil Blends: A Complete Elimination of Diesel in a 4-Stroke VCR Diesel Engine

    Directory of Open Access Journals (Sweden)

    Srinivas Kommana

    2015-01-01

    Full Text Available Fuels derived from biomass are mostly preferred as alternative fuels for IC engines as they are abundantly available and renewable in nature. The objective of the study is to identify the parameters that influence gross indicated fuel conversion efficiency and how they are affected by the use of biodiesel relative to petroleum diesel. Important physicochemical properties of palm kernel oil and eucalyptus blend were experimentally evaluated and found within acceptable limits of relevant standards. As most of vegetable oils are edible, growing concern for trying nonedible and waste fats as alternative to petrodiesel has emerged. In present study diesel fuel is completely replaced by biofuels, namely, methyl ester of palm kernel oil and eucalyptus oil in various blends. Different blends of palm kernel oil and eucalyptus oil are prepared on volume basis and used as operating fuel in single cylinder 4-stroke variable compression ratio diesel engine. Performance and emission characteristics of these blends are studied by varying the compression ratio. In the present experiment methyl ester extracted from palm kernel oil is considered as ignition improver and eucalyptus oil is considered as the fuel. The blends taken are PKE05 (palm kernel oil 95 + eucalyptus 05, PKE10 (palm kernel oil 90 + eucalyptus 10, and PKE15 (palm kernel 85 + eucalyptus 15. The results obtained by operating with these fuels are compared with results of pure diesel; finally the most preferable combination and the preferred compression ratio are identified.

  2. Metabolic engineering plant seeds with fish oil-like levels of DHA.

    Directory of Open Access Journals (Sweden)

    James R Petrie

    Full Text Available BACKGROUND: Omega-3 long-chain (≥C(20 polyunsaturated fatty acids (ω3 LC-PUFA have critical roles in human health and development with studies indicating that deficiencies in these fatty acids can increase the risk or severity of cardiovascular and inflammatory diseases in particular. These fatty acids are predominantly sourced from fish and algal oils, but it is widely recognised that there is an urgent need for an alternative and sustainable source of EPA and DHA. Since the earliest demonstrations of ω3 LC-PUFA engineering there has been good progress in engineering the C(20 EPA with seed fatty acid levels similar to that observed in bulk fish oil (∼18%, although undesirable ω6 PUFA levels have also remained high. METHODOLOGY/PRINCIPAL FINDINGS: The transgenic seed production of the particularly important C(22 DHA has been problematic with many attempts resulting in the accumulation of EPA/DPA, but only a few percent of DHA. This study describes the production of up to 15% of the C(22 fatty acid DHA in Arabidopsis thaliana seed oil with a high ω3/ω6 ratio. This was achieved using a transgenic pathway to increase the C(18 ALA which was then converted to DHA by a microalgal Δ6-desaturase pathway. CONCLUSIONS/SIGNIFICANCE: The amount of DHA described in this study exceeds the 12% level at which DHA is generally found in bulk fish oil. This is a breakthrough in the development of sustainable alternative sources of DHA as this technology should be applicable in oilseed crops. One hectare of a Brassica napus crop containing 12% DHA in seed oil would produce as much DHA as approximately 10,000 fish.

  3. Performance and emission evaluation of a CI engine fueled with preheated raw rapeseed oil (RRO)-diesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Hazar, Hanbey [Department of Automotive, Faculty of Technical Education, Firat University, Elazig 23119 (Turkey); Aydin, Hueseyin [Department of Automotive, Faculty of Technical Education, Batman University, Batman 72060 (Turkey)

    2010-03-15

    Many studies are still being carried out to find out surplus information about how vegetable based oils can efficiently be used in compression ignition engines. Raw rapeseed oil (RRO) was used as blended with diesel fuel (DF) by 50% oil-50% diesel fuel in volume (O50) also as blended with diesel fuel by 20% oil-80% diesel fuel in volume (O20). The test fuels were used in a single cylinder, four stroke, naturally aspirated, direct injection compression ignition engine. The effects of fuel preheating to 100 C on the engine performance and emission characteristics of a CI engine fueled with rapeseed oil diesel blends were clarified. Results showed that preheating of RRO was lowered RRO's viscosity and provided smooth fuel flow Heating is necessary for smooth flow and to avoid fuel filter clogging. It can be achieved by heating RRO to 100 C. It can also be concluded that preheating of the fuel have some positive effects on engine performance and emissions when operating with vegetable oil. (author)

  4. A comparative estimation of C.I. engine fuelled with methyl esters of punnai, neem and waste cooking oil

    Energy Technology Data Exchange (ETDEWEB)

    Subramaniam, D.; Avinash, A. [Department of Mechanical Engineering - K.S.Rangasamy College of Technology –Tiruchengode, 637215 Tamil Nadu (India); Murugesan, A. [Department of Mechatronics Engineering - K.S.Rangasamy College of Technology – Tiruchengode, 637215 Tamil Nadu (India)

    2013-07-01

    In this experimental study, performance, emission, and combustion characteristics of methyl esters of Punnai, Neem, Waste Cooking Oil and their diesel blends in a C.I. engine was experimentally examined. For the study, Punnai oil methyl esters (POME), neem oil methyl esters (NOME), and Waste Cooking Oil Methyl Esters (WCOME) were prepared by tranesterification process. The Bio diesel-diesel blends were prepared by mixing 10%, 30%, 50%, and 70% of bio diesel with diesel. The effects of three methyl esters and their diesel blends on engine performance, combustion, and exhaust emissions were examined at different engine loads. Experimental results concluded that up to 30% of methyl esters did not affect the performance, combustion, and emissions characteristics. On the other hand, above B30 (30% Bio diesel with 70% diesel) a reduction in performance, combustion, and emission characteristics were clear from the study.

  5. A comparative estimation of C.I. engine fuelled with methyl esters of punnai, neem and waste cooking oil

    Directory of Open Access Journals (Sweden)

    D. Subramaniam, A. Murugesan, A. Avinashy

    2013-01-01

    Full Text Available In this experimental study, performance, emission, and combustion characteristics of methyl esters of Punnai, Neem, Waste Cooking Oil and their diesel blends in a C.I. engine was experimentally examined. For the study, Punnai oil methyl esters (POME, neem oil methyl esters (NOME, and Waste Cooking Oil Methyl Esters (WCOME were prepared by tranesterification process. The Bio diesel-diesel blends were prepared by mixing 10%, 30%, 50%, and 70% of bio diesel with diesel. The effects of three methyl esters and their diesel blends on engine performance, combustion, and exhaust emissions were examined at different engine loads. Experimental results concluded that up to 30% of methyl esters did not affect the performance, combustion, and emissions characteristics. On the other hand, above B30 (30% Bio diesel with 70% diesel a reduction in performance, combustion, and emission characteristics were clear from the study.

  6. Predicted costs of environmental controls for a commercial oil shale industry. Volume 1. An engineering analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nevens, T.D.; Culbertson, W.J. Jr.; Wallace, J.R.; Taylor, G.C.; Jovanovich, A.P.; Prien, C.H.; Hicks, R.E.; Probstein, R.F.; Domahidy, G.

    1979-07-01

    The pollution control costs for a commercial oil shale industry were determined in a joint effort by Denver Research Institute, Water Purification Associates of Cambridge, and Stone and Webster Engineering of Boston and Denver. Four commercial oil shale processes were considered. The results in terms of cost per barrel of syncrude oil are predicted to be as follows: Paraho Process, $0.67 to $1.01; TOSCO II Process, $1.43 to $1.91; MIS Process, $2.02 to $3.03; and MIS/Lurgi-Ruhrgas Process, $1.68 to $2.43. Alternative pollution control equipment and integrated pollution control strategies were considered and optimal systems selected for each full-scale plant. A detailed inventory of equipment (along with the rationale for selection), a detailed description of control strategies, itemized costs and predicted emission levels are presented for each process. Capital and operating cost data are converted to a cost per barrel basis using detailed economic evaluation procedures. Ranges of cost are determined using a subjective self-assessment of uncertainty approach. An accepted methodology for probability encoding was used, and cost ranges are presented as subjective probability distributions. Volume I presents the detailed engineering results. Volume II presents the detailed analysis of uncertainty in the predicted costs.

  7. The comparison of engine performance and exhaust emission characteristics of sesame oil-diesel fuel mixture with diesel fuel in a direct injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Sehmus [Technical Education Faculty, Automotive Division, Batman University, Batman (Turkey); Bulut, Huesamettin [Department of Mechanical Engineering, Osmanbey Campus, Harran University, 63100 Sanliurfa (Turkey); Oener, Cengiz [Technical Education Faculty, Automotive Division, Firat University, Elazig (Turkey)

    2008-08-15

    The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is fuel blending. In this study, a blend of 50% sesame oil and 50% diesel fuel was used as an alternative fuel in a direct injection diesel engine. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil-diesel fuel are close to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that blend of sesame oil and diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly fuel in terms of emission parameters. (author)

  8. Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery.

    Science.gov (United States)

    Sun, Shanshan; Zhang, Zhongzhi; Luo, Yijing; Zhong, Weizhang; Xiao, Meng; Yi, Wenjing; Yu, Li; Fu, Pengcheng

    2011-05-01

    Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an Enterobacter cloacae which is capable of producing water-insoluble biopolymers at 37°C and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at higher temperature. The resultant transformants, GW3-3.0, could produce exopolysaccharide up to 8.83 g l(-1) in molasses medium at 54°C. This elevated temperature was within the same temperature range as that for many oil reservoirs. The transformants had stable genetic phenotype which was genetically fingerprinted by RAPD analysis. Core flooding experiments were carried out to ensure effective controlled profile for the simulation of oil recovery. The results have demonstrated that this approach has a promising application potential in MEOR. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Biodiesel production from waste cotton seed oil using low cost catalyst: Engine performance and emission characteristics

    Directory of Open Access Journals (Sweden)

    Duple Sinha

    2016-09-01

    Full Text Available Production of fatty acid methyl esters from waste cotton seed oil through transesterification was reported. The GC–MS analysis of WCCO oil was studied and the major fatty acids were found to be palmitic acid (27.76% and linoleic acid (42.84%. The molecular weight of the oil was 881.039 g/mol. A maximum yield of 92% biodiesel was reported when the reaction temperature, time, methanol/oil ratio and catalyst loading rate were 60 °C, 50 min, 12:1 and 3% (wt.%, respectively. The calcined egg shell catalyst was prepared and characterized. Partial purification of the fatty acid methyl esters was proposed for increasing the purity of the biodiesel and better engine performance. The flash point and the fire point of the biodiesel were found to be 128 °C and 136 °C, respectively. The Brake thermal efficiency of WCCO B10 biodiesel was 26.04% for maximum load, specific fuel consumption for diesel was 0.32 kg/kW h at maximum load. The use of biodiesel blends showed a reduction of carbon monoxide and hydrocarbon emissions and a marginal increase in nitrogen oxides (NOx emissions improved emission characteristics.

  10. A low cost mid-infrared sensor for on line contamination monitoring of lubricating oils in marine engines

    Science.gov (United States)

    Ben Mohammadi, L.; Kullmann, F.; Holzki, M.; Sigloch, S.; Klotzbuecher, T.; Spiesen, J.; Tommingas, T.; Weismann, P.; Kimber, G.

    2010-04-01

    The chemical and physical condition of oils in marine engines must be monitored to ensure optimum performance of the engine and to avoid damage by degraded oil not adequately lubricating the engine. Routine monitoring requires expensive laboratory testing and highly skilled analysts. This work describes the adaptation and implementation of a mid infrared (MIR) sensor module for continued oil condition monitoring in two-stroke and four-stroke diesel engines. The developed sensor module will help to reduce costs in oil analysis by eliminating the need to collect and send samples to a laboratory for analysis. The online MIR-Sensor module measures the contamination of oil with water, soot, as well as the degradation indicated by the TBN (Total Base Number) value. For the analysis of water, TBN, and soot in marine engine oils, four spectral regions of interest have been identified. The optical absorption in these bands correlating with the contaminations is measured simultaneously by using a four-field thermopile detector, combined with appropriate bandpass filters. Recording of the MIR-absorption was performed in a transmission mode using a flow-through cell with appropriate path length. Since in this case no spectrometer is required, the sensor including the light source, the flowthrough- cell, and the detector can be realised at low cost and in a very compact manner. The optical configuration of the sensor with minimal component number and signal intensity optimisation at the four-field detector was implemented by using non-sequential ray tracing simulation. The used calibration model was robust enough to predict accurately the value for soot, water, and TBN concentration for two-stroke and four-stroke engine oils. The sensor device is designed for direct installation on the host engine or machine and, therefore, becoming an integral part of the lubrication system. It can also be used as a portable stand-alone system for machine fluid analysis in the field.

  11. Effects of antioxidant additives on exhaust emissions reduction in compression ignition engine fueled with methyl ester of annona oil

    Directory of Open Access Journals (Sweden)

    Ramalingam Senthil

    2016-01-01

    Full Text Available In this present study, biodiesel is a cleaner burning alternative fuel to the Neat diesel fuel. However, several studies are pointed out that increase in NOx emission for biodiesel when compared with the Neat diesel fuel. The aim of the present study is to analyze the effect of antioxidant (p-phenylenediamine on engine emissions of a Diesel engine fuelled with methyl ester of annona oil. The antioxidant is mixed in various concentrations (0.010 to 0.040% (w/w with methyl ester of annona oil. Result shows that antioxidant additive mixture (MEAO+P200 is effective in control of NOx and HC emission of methyl ester of annona oil fuelled engine without doing any engine modification.

  12. Characterization and Effect of Using Mahua Oil Biodiesel as Fuel in Compression Ignition Engine

    Institute of Scientific and Technical Information of China (English)

    N.Kapilan; T.P.Ashok Babu; R.P.Reddy

    2009-01-01

    There is an increasing interest in India, to search for suitable alternative fuels that are environment friendly. This led to the choice of Mahua Oil (MO) as one of the main alternative fuels to diesel. In this investigation, Mahua Oil Biodiesel (MOB) and its blend with diesel were used as fuel in a single cylinder, direct injection and com-pression ignition engine. The MOB was prepared from MO by transesterification using methanol and potassium hydroxide. The fuel properties of MOB are close to the diesel and confirm to the ASTM standards. From the en-gine test analysis, it was observed that the MOB, B5 and B20 blend results in lower CO, HC and smoke emis-sions as compared to diesel. But the B5 and B20 blends results in higher efficiency as compared to MOB. Hence MOB or blends of MOB and diesel 035 or B20) can be used as a substitute for diesel in diesel engines used in transportation as well as in the agriculture sector.

  13. Performance evaluation of common rail direct injection (CRDI engine fuelled with Uppage Oil Methyl Ester (UOME

    Directory of Open Access Journals (Sweden)

    D.N. Basavarajappa

    2015-02-01

    Full Text Available For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar. CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.

  14. Study on Self-Repairing Performance of Mineral Powder Lubrication Oil Additive to Engine

    Institute of Scientific and Technical Information of China (English)

    GUO Yan-bao; XU Bin-shi; XU Yi

    2004-01-01

    By means of the engine shelf test, the gas escape amount of bent axle box was measured before and after adding hydroxyl silicate mineral powder lubrication oil additives, and discovered that gas escape amount after self-repaired is obviously smaller than before, the average gas escape amount of each rotate speed descend 6.5 %. Watching friction surface with SEM, discovered that the part of net veins in the cylinder inner surface are smoothly patched. Analysis with energy spectroscopy, discovered that there are some changing of atom component. Proofed that through rub chemical reaction, hydroxyl silicate mineral powder lubrication oil additives can generate new substance layer on friction surface, and can increase cylinder inner surface bulk, thereby get the repaired effects.

  15. Application of jatropha oil and biogas in a dual fuel engine for rural electrification

    Energy Technology Data Exchange (ETDEWEB)

    Kerkhof, E.

    2008-06-15

    In this thesis, the technical feasibility of using jatropha oil and biogas for dual fuel generators is investigated. This technology could be used for electricity generation in rural areas in developing countries. The use of jatropha oil and biogas is considered a sustainable energy supply, when both fuels are produced locally. The local production of fuel and generation of electricity could result in economic development and poverty reduction. In order to investigate the technical feasibility, a parameter study is performed, an experimental set-up is constructed and experiments are carried out. Three performance parameters are investigated: thermal efficiency, because it is a direct measure for fuel efficiency; volumetric efficiency, because it is a measure for power output; and air-excess ratio, because it influences particulate emissions and HC emissions. The parameter study is conducted, to predict the effect of dual fuel operation, by deriving expressions for the performance parameters. The experiments are carried out to assess the effect of dual fuel operation on performance and to find the operation limits (smoke limit and knock limit). Experiments are carried out on a 12 kW diesel generator set. The jatropha oil that is used is pure oil. Biogas mainly consists of methane and carbon dioxide. Simulated, bottled, biogas of different quality is used (i.e. CH4/CO2 ratios). Pure methane is also tested as gaseous fuel. Gas is added to the inlet air with a venturi. The design of the venturi limited the gas flow; consequently the maximum heat release fraction of methane was 80% for pure methane and approximately 70% for biogas. Tests were performed at 6, 8 and 10 kW load. The engine showed a thermal efficiency characteristic for pure jatropha oil operation, which is expected for a diesel generator. The characteristic for jatropha oil did not deviate from that of diesel. At full load, thermal efficiency is approximately 32%. Under dual fuel operation, with biogas, at

  16. Engineering

    National Research Council Canada - National Science Library

    Includes papers in the following fields: Aerospace Engineering, Agricultural Engineering, Chemical Engineering, Civil Engineering, Electrical Engineering, Environmental Engineering, Industrial Engineering, Materials Engineering, Mechanical...

  17. Residual shale-oil/diesel-engine operating compatibility program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, M.; Derbidge, C.; Kuby, W.; Niven, H.; Richard, R.

    1983-10-01

    As part of a DOE study to determine the effective utilization of alternate fuels in medium-speed diesel engines, a residual shale oil (RSO) was fired in an APE-Allen, 1000-rpm, 9.5-in. bore diesel engine. Various fuel injection modes were considered. Based on a fuel characterization study and go/no-go tests, it was determined that the direct firing of 100 percent RSO gave performance comparable with that using No. 2 diesel fuel; consequently, performance/endurance tests were performed using 100 percent RSO. Conclusions of this test program are: Laboratory tests showed low levels of corrosion and deposit-causing elements. Therefore, corrosion and wear of engine components, when using RSO, should be no worse than for standard diesel fuel. The high wax content of RSO requires heating for supply, handling, and injection systems. Laboratory tests showed that the cetane number of RSO was equivalent to No. 2 diesel; hence, no engine modifications should be needed to burn RSO. The engine performance on RSO was essentially similar to standard diesel fuel. The thermal efficiency was slightly lower and Bosch smoke and particulates were slightly higher, especially at low load. Soft carbon deposits, formed on injectors when using RSO, did not affect performance. The 115-hour endurance test showed no significant performance deterioration. The deposit accumulation in combustion chambers and ports was not severe but was greater than standard diesel fuel would produce. Longer endurance tests are required to fully establish this conclusion. 41 figures, 21 tables.

  18. Performance of diesel engine using diesel B3 mixed with crude palm oil.

    Science.gov (United States)

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine).

  19. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    Directory of Open Access Journals (Sweden)

    Nattapong Namliwan

    2014-01-01

    Full Text Available The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7–33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6–52% fewer amount of carbon monoxide (CO, carbon dioxide (CO2, sulfur dioxide (SO2, and oxygen (O2 than those of diesel B3. On the other hand, nitric oxide (NO and nitrogen oxides (NOX emissions when using mixed fuels were 10–39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine.

  20. Performance deterioration and durability issues while running a diesel engine with crude palm oil

    Energy Technology Data Exchange (ETDEWEB)

    Bari, S.; Yu, C.W.; Lim, T.H. [Universiti Sains Malaysia, School of Mechanical Engineering, Penang (Malaysia)

    2003-07-01

    Short-term performance tests using crude palm oil (CPO) as fuel for a diesel engine showed CPO to be a suitable substitute, with a peak pressure about 5 per cent higher and an ignition delay about 3 deg shorter compared with diesel. Emissions of NO and CO were about 29 and 9 per cent higher respectively for CPO. However, prolonged use of CPO as fuel caused the engine performance to deteriorate. After 500 h cumulative running with CPO, the maximum power was reduced by about 20 per cent and the minimum brake specific fuel consumption (b.s.f.c.) was increased by about 26 per cent. Examination of the different parts after the engine was dismantled revealed heavy carbon deposits in the combustion chamber; traces of wear on the piston rings, the plunger and the delivery valve of the injection pump; slight scuffing of the cylinder liner; and uneven spray from the nozzles. The affected parts were installed in a new identical engine one by one to evaluate the performance of each respectively. Tests revealed that the main reason for engine performance deterioration was 'valve sticking', caused by carbon deposits on the valve seats and stems. This resulted in leakage during the compression and power strokes and a reduced effective compression ratio and subsequently affected the power and fuel economy. Valve sticking alone contributed about 18 and 23 per cent to the deterioration in maximum power and minimum b.s.f.c. respectively. (Author)

  1. Fuel and engine characterization study of catalytically cracked waste transformer oil

    KAUST Repository

    Prasanna Raj Yadav, S.

    2015-05-01

    This research work targets on the effective utilization of WTO (waste transformer oil) in a diesel engine and thereby, reducing the environmental problems caused by its disposal into open land. The novelty of the work lies in adoption of catalytic cracking process to chemically treat WTO, wherein waste fly ash has been considered as a catalyst for the first time. Interestingly, both the oil and catalyst used are waste products, enabling reduction in total fuel cost and providing additional benefit of effective waste management. With the considerable token that use of activated fly ash as catalyst requires lower reaction temperature, catalytic cracking was performed only in the range of 350-400°C. As a result of this fuel treatment process, the thermal and physical properties of CCWTO (catalytically cracked waste transformer oil), as determined by ASTM standard methods, were found to be agreeable for its use in a diesel engine. Further, FTIR analysis of CCWTO discerned the presence of essential hydrocarbons such as carbon and hydrogen. From the experimental investigation of CCWTO - diesel blends in a diesel engine, performance and combustion characteristics were shown to be improved, with a notable increase in BTE (brake thermal efficiency) and PHRR (peak heat release rate) for CCWTO 50 by 7.4% and 13.2%, respectively, than that of diesel at full load condition. In the same note, emissions such as smoke, HC (hydrocarbon) and CO (carbon monoxide) were noted to be reduced at the expense of increased NOx (nitrogen oxides) emission. © 2015 Elsevier Ltd. All rights reserved.

  2. Using pre-heated sunflower oil as fuel in a diesel cycle engine

    Energy Technology Data Exchange (ETDEWEB)

    Delalibera, H.C.; Neto, P.H.W.; Martini, J. [State Univ. of Ponta Grossa (Brazil)

    2010-07-01

    This paper reported on a study in which 100 per cent sunflower oil was used in a tractor to compare its performance with petroleum diesel. Work trials were carried out for 50 hours on a single cylinder direct injection micro-tractor. In the first trial (E-1), the temperature of the vegetable oil was the same as the air temperature of the engine, while in the second trial (E-2), the oil was heated to a temperature of about 90 degrees C. Only petrodiesel was used in the third (E-3) trial. The head gasket burned in the first test after 50 hours of operation. An increase in compression was noted during trials E-1 and E-2. The carbonized mass in the nozzle of the E-2 trial was 81.5 per cent lower than in the E-1 trial. The carbonized mass in the intake system of the E-2 trial was 51.7 per cent lower than in the E-1 trial. The exhaust system of the E-2 trial was 33.4 per cent lower than that of the E-1 trial. For the combustion chamber, the carbonization of the E-1 trial was nearly the same as in the E-2 trial. The hourly fuel consumption of the E-1 trial was 2.3 per cent higher than petrodiesel, while E-2 trial was 0.7 per cent higher than petrodiesel. In the first 2 tests, the lubricating oil was contaminated by vegetable oil fuel. In general, results from the first trial were better than results from the second trial.

  3. Human factors engineering in oil and gas--a review of industry guidance.

    Science.gov (United States)

    Robb, Martin; Miller, Gerald

    2012-01-01

    Oil and gas exploration and production activities are carried out in hazardous environments in many parts of the world. Recent events in the Gulf of Mexico highlight those risks and underline the importance of considering human factors during facility design. Ergonomic factors such as machinery design, facility and accommodation layout and the organization of work activities have been systematically considered over the past twenty years on a limited number of offshore facility design projects to a) minimize the occupational risks to personnel, b) support operations and maintenance tasks and c) improve personnel wellbeing. During this period, several regulators and industry bodies such as the American Bureau of Shipping (ABS), the American Society of Testing and Materials (ASTM), the UK's Health and Safety Executive (HSE), Oil and Gas Producers (OGP), and Norway's Petroleum Safety Authority (PSA) have developed specific HFE design standards and guidance documents for the application of Human Factors Engineering (HFE) to the design and operation of Oil and Gas projects. However, despite the existence of these guidance and recommended design practise documents, and documented proof of their value in enhancing crew safety and efficiency, HFE is still not well understood across the industry and application across projects is inconsistent. This paper summarizes the key Oil and Gas industry bodies' HFE guidance documents, identifies recurring themes and current trends in the use of these standards, provides examples of where and how these HFE standards have been used on past major offshore facility design projects, and suggests criteria for selecting the appropriate HFE strategy and tasks for future major oil and gas projects. It also provides a short history of the application of HFE to the offshore industry, beginning with the use of ASTM F 1166 to a major operator's Deepwater Gulf of Mexico facility in 1990 and the application of HFE to diverse world regions. This

  4. Analysis of the polycyclic aromatic hydrocarbon content of petrol and diesel engine lubricating oils and determination of DNA adducts in topically treated mice by 32P-postlabelling.

    Science.gov (United States)

    Carmichael, P L; Jacob, J; Grimmer, G; Phillips, D H

    1990-11-01

    Engine lubricating oils are known to accumulate carcinogenic polycyclic aromatic hydrocarbons (PAHs) during engine running. Oils from nine petrol-powered and 11 diesel-powered vehicles, in addition to samples of unused oil, were analysed for PAH content and ability to form DNA adducts when applied topically to mouse skin. The levels of 19 PAHs, determined by GC, were in total, approximately 22 times higher in used oils from petrol engines than in oils from diesel engines. Male Parkes mice were treated with 50 microliters of oil daily for 4 days before they were killed and DNA isolated from skin and lung tissue. DNA samples were analysed by nuclease P1-enhanced 32P-postlabelling. Used oils from both diesel and petrol engines showed several adduct spots on PEI-cellulose plates at total adduct levels of up to 0.57 fmol/microgram DNA [approximately 60 times greater than in experiments with samples of unused oil in which adduct levels (0.01-0.02 fmol adducts/microgram DNA) were close to the limit of detection]. Higher adduct levels were generally formed by petrol engine oils than by diesel engine oils. Lung DNA contained similar total adduct levels to those in skin although the adduct maps were less complex. Total adduct levels correlated with extent of oil use in the engine, the total PAH concentration in oils and with the concentrations of certain individual PAHs present in the oils. An adduct spot that co-eluted with that of the major benzo[a]pyrene-DNA adduct accounted for 9-26% of the total adducts in skin DNA, and approximately 8% of the adducts in lung DNA, of mice treated with petrol engine oils. A major, and as yet unidentified, adduct spot comprised up to 30% of the total adducts in skin DNA, and up to 89% of the total adducts in lung DNA, of these animals.

  5. Bio-derived Fuel Blend Dilution of Marine Engine Oil and Imapct on Friction and Wear Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Ajayi, Oyelayo O.; Lorenzo-Martin, Cinta; Fenske, George R.; Corlett, John; Murphy, Chris; Przesmitzki, Steve

    2016-04-01

    To reduce the amount of petroleum-derived fuel used in vehicles and vessels powered by internal combustion engines, the addition of bio-derived fuel extenders is a common practice. Ethanol is perhaps the most common bio-derived fuel used for blending, and butanol is being evaluated as a promising alternative. The present study determined the fuel dilution rate of three lubricating oils (E0, E10, and i-B16) in a marine engine operating in on-water conditions with a start-and-stop cycle protocol. The level of fuel dilution increased with the number of cycles for all three fuels. The most dilution was observed with i-B16 fuel, and the least with E10 fuel. In all cases, fuel dilution substantially reduced the oil viscosity. The impacts of fuel dilution and the consequent viscosity reduction on the lubricating capability of the engine oil in terms of friction, wear, and scuffing prevention were evaluated by four different tests protocols. Although the fuel dilution of the engine oil had minimal effect on friction, because the test conditions were under the boundary lubrication regime, significant effects were observed on wear in many cases. Fuel dilution also was observed to reduce the load-carrying capacity of the engine oils in terms of scuffing load reduction.

  6. THE EFFECT OF KARANJA OIL METHYL ESTER ON KIRLOSKAR HA394DI DIESEL ENGINE PERFORMANCE AND EXHAUST EMISSIONS

    Directory of Open Access Journals (Sweden)

    Sharanappa K Godiganur

    2010-01-01

    Full Text Available Biofuels are being investigated as potential substitutes for current high pollutant fuels obtained from the conventional sources. The primary problem associated with using straight vegetable oil as fuel in a compression ignition engine is caused by viscosity. The process of transesterifiction of vegetable oil with methyl alcohol provides a significant reduction in viscosity, thereby enhancing the physical properties of vegetable oil. The Kirloskar HA394 compression ignition, multi cylinder diesel engine does not require any modification to replace diesel by karanja methyl ester. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. The purpose of this research was to evaluate the potential of karanja oil methyl ester and its blend with diesel from 20% to 80% by volume. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power of the mixture is closed to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that the blend of karanja ester and diesel fuel can be used as an alternative successfully in a diesel engine without any modification and in terms of emission parameters; it is an environmental friendly fuel

  7. Evaluation of engine performance and emission with methyl ester of Karanja oil

    Directory of Open Access Journals (Sweden)

    Shikha Gangil

    2016-09-01

    Full Text Available Biodiesel has been considered as potential alternative to petroleum diesel with the renewable origin for the existing compression ignition engine. The main objective of the present work is evaluating performance and emission characteristics of diesel engine for various blends (B20, B40, B60, B80 and B100 of Karanja biodiesel and commercial diesel. The experimental investigation was carried out in IC (internal combustion at variable loads and compared with conventional diesel fuel with respect to engine performance parameters i.e. brake specific fuel consumption (BSFC, brake specific power consumption (BSEC, brake thermal efficiency (η-B.Th, for varying load conditions. The results obtained indicated the better fuel properties and engine performance at B40. For all cases, BSFC reduced with increase in load. It can be observed that the BSEC for various blends is lower as compared with that of diesel fuel. The availability of oxygen in the Karanja oil methyl ester-diesel fuel blend may be the reason for the lower BSEC. Brake thermal efficiency is increased due reduced heat loss with increased in load. It was found that the emission level of CO and HC level decreased with increased in blend proportion in diesel fuel. NOx emission increased with increase in blend proportion in diesel fuel.

  8. Engineering and Economics of the USGS Circum-Arctic Oil and Gas Resource Appraisal (CARA) Project

    Science.gov (United States)

    Verma, Mahendra K.; White, Loring P.; Gautier, Donald L.

    2008-01-01

    This Open-File report contains illustrative materials, in the form of PowerPoint slides, used for an oral presentation given at the Fourth U.S. Geological Survey Workshop on Reserve Growth of petroleum resources held on March 10-11, 2008. The presentation focused on engineering and economic aspects of the Circum-Arctic Oil and Gas Resource Appraisal (CARA) project, with a special emphasis on the costs related to the development of hypothetical oil and gas fields of different sizes and reservoir characteristics in the North Danmarkshavn Basin off the northeast coast of Greenland. The individual PowerPoint slides highlight the topics being addressed in an abbreviated format; they are discussed below, and are amplified with additional text as appropriate. Also included in this report are the summary results of a typical ?run? to generate the necessary capital and operating costs for the development of an offshore oil field off the northeast coast of Greenland; the data are displayed in MS Excel format generated using Questor software (IHS Energy, Inc.). U.S. Geological Survey (USGS) acknowledges that this report includes data supplied by IHS Energy, Inc.; Copyright (2008) all rights reserved. IHS Energy has granted USGS the permission to publish this report.

  9. Investigation on utilization of biogas and Karanja oil biodiesel in dual fuel mode in a single cylinder DI diesel engine

    Directory of Open Access Journals (Sweden)

    Bhabani Prasanna Pattanaik, Chandrakanta Nayak, Basanta Kumar Nanda

    2013-01-01

    Full Text Available In this work, experiments were performed on a single cylinder DI diesel engine by using bio-gas as a primary fuel and Karanja oil biodiesel and diesel oil as secondary fuels in dual fuel operation. The experiments were performed to measure performance parameters i.e. (brake specific fuel consumption, brake thermal efficiency and exhaust gas temperature and emission parameters such as carbon monoxide, carbon dioxide, nitrogen oxide unburned hydro carbon and smoke etc. at different load conditions. For the dual-fuel system, the intake system of the test engine was modified to convert into biogas and biodiesel of a dual-fueled combustion engine. Biogas was injected during the intake process by gas injectors. The study showed that, the engine performance parameters like BP, BTE and EGT gradually increase with increase in engine load for all test conditions using both pilot fuels diesel and KOBD. However, the BSFC of the engine showed decreasing slope with increase in engine load for all test conditions. Above 40% engine load the BSFC values for all test fuels are very close to each other. The engine emission analysis showed that the CO2, CO and NOx emissions increase with increase in engine load for both single and dual fuel mode operation using both pilot fuels. The NOx concentration of exhaust gases in dual fuel mode is superior than that of single mode.

  10. Investigation on utilization of biogas and Karanja oil biodiesel in dual fuel mode in a single cylinder DI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Prasanna Pattanaik, Bhabani; Nayak, Chandrakanta [Department of Mechanical Eng., Gandhi Institute for Technological Advancement, Madanpur, Bhubaneswar - 752054, Odisha (India); Kumar Nanda, Basanta [Department of Mechanical Eng., Maharaja Institute of Technology, Bhubaneswar, Odisha (India)

    2013-07-01

    In this work, experiments were performed on a single cylinder DI diesel engine by using bio-gas as a primary fuel and Karanja oil biodiesel and diesel oil as secondary fuels in dual fuel operation. The experiments were performed to measure performance parameters i.e. (brake specific fuel consumption, brake thermal efficiency and exhaust gas temperature) and emission parameters such as carbon monoxide, carbon dioxide, nitrogen oxide unburned hydro carbon and smoke etc. at different load conditions. For the dual-fuel system, the intake system of the test engine was modified to convert into biogas and biodiesel of a dual-fueled combustion engine. Biogas was injected during the intake process by gas injectors. The study showed that, the engine performance parameters like BP, BTE and EGT gradually increase with increase in engine load for all test conditions using both pilot fuels diesel and KOBD. However, the BSFC of the engine showed decreasing slope with increase in engine load for all test conditions. Above 40% engine load the BSFC values for all test fuels are very close to each other. The engine emission analysis showed that the CO2, CO and NOx emissions increase with increase in engine load for both single and dual fuel mode operation using both pilot fuels. The NOx concentration of exhaust gases in dual fuel mode is superior than that of single mode.

  11. Nurturing the geology-reservoir engineering team: Vital for efficient oil and gas recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sessions, K.P.; Lehman, D.H. (Exxon Co., Houston, TX (USA))

    1990-05-01

    Of an estimated 482 billion bbl (76.6 Gm{sup 3}) of in-place oil discovered in the US, 158 billion (25.1 Gm{sup 3}) can be recovered with existing technology and economic conditions. The cost-effective recovery through infill drilling and enhanced oil recovery methods to recover any portion of the remaining 323 billion bbl (51.4 Gm3) will require a thorough understanding of reservoirs and the close cooperation of production geologists and reservoir engineers. This paper presents the concept of increased interaction between geologists and reservoir engineers through multifunctional teams and cross-training between the disciplines. A discussion of several factors supporting this concept is covered, including educational background, technical manpower trends, employee development, and job satisfaction. There are several ways from an organizational standpoint to achieve this cross-training, with or without a formal change in job assignment. This paper outlines three approaches, including case histories where each of the approaches has been implemented and the resulting benefits.

  12. Evaluation of engine performance, emissions, of a twin cylinder diesel engine fuelled with waste plastic oil and diesel blends with a fraction of methanol

    Directory of Open Access Journals (Sweden)

    Y. Tarun

    2014-03-01

    Full Text Available A comprehensive study on the methanol and waste plastic oil as an alternative fuel has been carried out. This report deals with the exhaust emission of waste plastic fuel on twin cylinder diesel engine. The objectives of this report are to analyse the fuel consumption and the emission characteristic of a twin cylinder diesel engine that are using waste plastic oil compared to usage of ordinary diesel that are available in the market. This report describes the setups and the procedures for the experiment which is to analyse the emission characteristics and fuel consumption of diesel engine due to usage of the both fuels. Detail studies about the experimental setup and components have been done before the experiment started. Data that are required for the analysis is observed from the experiments. Calculations and analysis have been done after all the required data needed for the thesis is obtained. The experiment used diesel engine with no load which means no load exerted on it. A four stroke Twin cylinder diesel engine was adopted to study the brake thermal efficiency, brake specific energy consumption, mechanical efficiency, brake power, volumetric efficiency, indicated thermal efficiency and emissions at full load with the fuel of fraction methanol in bio-diesel. In this study, the diesel engine was tested using methanol blended with bio-diesel at certain mixing ratios of (WPO: Diesel 20:80, 40:60 and 60:40 methanol to bio-diesel respectively. By the end of the report, the successful of the project have been started which is Kirloskar engine is able to run with waste plastic oil (WPO but the engine needs to run by using diesel fuel first, then followed by waste plastic oil and finished with diesel fuel as the last fuel usage before the engine turned off. The performance of the engine using blended fuel compared to the performance of engine with diesel fuel. Experimental results of blended fuel and diesel fuel are also compared.   Keywords

  13. Lube-oil dilution of gasoline direct-injection engines with ethanol fuels; Schmieroelverduennung von direkteinspritzenden Ottomotoren unter Kaltstartrandbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Kuepper, Carsten; Pischinger, Stefan [RWTH Aachen Univ. (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen (VKA); Artmann, Chrsitina; Rabl, Hans-Peter [Hochschule Regensburg (Germany). Labor fuer Verbrennungsmotoren und Abgasnachbehandlung

    2013-09-15

    Ethanol fuel mixtures account for the majority of biofuels used worldwide. However, their properties make these fuels more difficult to use in cold conditions and especially when starting a cold engine. As part of the FVV research project 'Lubricant Dilution with Ethanol Fuels under Cold Start Conditions', the Institute for Combustion Engines (VKA) at RWTH Aachen University and the Combustion Engines and Emission Control Laboratory at Regensburg University of Applied Sciences have investigated the influence of the ethanol content in fuels on the dilution of the lubricating oil in modern direct-injection gasoline engines. (orig.)

  14. A COMPARATIVE STUDY OF CASTOR AND JATROPHA OIL SOURCE AND ITS METHYL ESTER TEST ON THE DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    DEVENDRA VASHIST,

    2011-06-01

    Full Text Available Neat non-edible oils pose problems when subjected to use when used in the CI engines. These problems are attributed to high viscosity, low volatility and polyunsaturated character of these oils. Two non-edible sources of the oils were identified i.e jatropha and castor. The biodiesel was prepared from neat oils and blends preparedwith diesel. up till 20 percent of biodiesel. Produced blends were tested for their use as a substitute fuel for diesel in a single cylinder diesel engine at varying loads. The best engine operating condition based on lower brake specific fuel consumption and higher brake thermal efficiency were identified and compared. On the observed data for both the fuels, Chi square (2 statistical test was applied. The values calculated for 2 jatropha oil methyl ester (JOME = 0.0104 and 2 castor oil methyl ester (COME = 0.0524. The values concluded that there is no effect of fuel type on fuel consumption up till 20 percent biodiesel blended fuel.

  15. Biodegradation of complex hydrocarbons in spent engine oil by novel bacterial consortium isolated from deep sea sediment.

    Science.gov (United States)

    Ganesh Kumar, A; Vijayakumar, Lakshmi; Joshi, Gajendra; Magesh Peter, D; Dharani, G; Kirubagaran, R

    2014-10-01

    Complex hydrocarbon and aromatic compounds degrading marine bacterial strains were isolated from deep sea sediment after enrichment on spent engine (SE) oil. Phenotypic characterization and phylogenetic analysis of 16S rRNA gene sequences showed the isolates were related to members of the Pseudoalteromonas sp., Ruegeria sp., Exiguobacterium sp. and Acinetobacter sp. Biodegradation using 1% (v/v) SE oil with individual and mixed strains showed the efficacy of SE oil utilization within a short retention time. The addition of non-ionic surfactant 0.05% (v/v) Tween 80 as emulsifying agent enhanced the solubility of hydrocarbons and renders them more accessible for biodegradation. The degradation of several compounds and the metabolites formed during the microbial oxidation process were confirmed by Fourier transform infrared spectroscopy and Gas chromatography-mass spectrometry analyses. The potential of this consortium to biodegrade SE oil with and without emulsifying agent provides possible application in bioremediation of oil contaminated marine environment.

  16. Performance & Emissions Characteristics of a Four Stroke Diesel Engine Fuelled With Different Blends of Palmyra Oil with Diesel

    Directory of Open Access Journals (Sweden)

    T.Venkata Srinivasa Rao

    2015-04-01

    Full Text Available Diesel engines are used for automotive application because they have lower specific fuel consumption and superior efficiency compared to S.I engines. However in spite of these advantages NOx and smoke emissions from the diesel engines cause serious environmental problems. In the present work, biodiesel was produced from Palmyra oil. In this present work, investigations were carried out to study the performance, emission and combustion characteristics of Palmyra oil. The results were compared with diesel fuel, and the selected Palmyra oil fuel blends. For this experiment a single cylinder, four stroke, water cooled diesel engine was used. Tests were carried out over entire range of engine operation at varying conditions of load. To increase the engine performance parameters and to decrease the exhaust gas emissions with increase biodiesel concentration. The experimental results provide that the use of biodiesel in compression ignition engine is a viable alternative to diesel. Additive to add the Ethanol. The blending percentage in the steps of 10%, 20% & 30%.

  17. Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673601 (India)

    2008-09-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used as supplementary or sole fuel for internal combustion engines. Dual fuel mode operation using coir-pith derived producer gas and rubber seed oil as pilot fuel was analyzed for various producer gas-air flow ratios and at different load conditions. The engine is experimentally optimized with respect to maximum pilot fuel savings in the dual fuel mode operation. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual-fuel mode of operation with oil-coir-pith operation is found to be in the higher side at all load conditions. Exhaust emission was found to be higher in the case of dual fuel mode of operation as compared to neat diesel/oil operation. Engine performance characteristics are inferior in fully renewable fueled engine operation but it suitable for stationary engine application, particularly power generation. (author)

  18. Numerical investigation of exhaust gas emissions for a dual fuel engine configuration using diesel and pongamia oil.

    Science.gov (United States)

    Mohamed Ibrahim, N H; Udayakumar, M

    2016-12-01

    The investigation presented in this paper focuses on determination of gaseous exhaust emissions by computational simulation during combustion in compression ignition engine with pongamia oil substitution. Combustion is modeled using Equilibrium Constants Method (ECM) with MATLAB program to calculate the mole fraction of 10 combustion products when pongamia oil is burnt along with diesel at variable equivalence ratio and blend ratio. It had been observed that pongamia oil substitution causes decrease in the CO emission and increase in the NOx emission as the blend ratio as well as equivalence ratio increases. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Experimental Investigation of Bio-Diesel Obtained From Waste Cooking Oil and Its Blends with Diesel on Single Cylinder Engine

    Directory of Open Access Journals (Sweden)

    R. B. Sharma,

    2014-01-01

    Full Text Available In this experiment a comprehensive experimental investigation of bio-diesel oil on single cylinder engine running with biodiesel obtained from Waste cooking oil and its blends with diesel was carried out for its performance and emission analysis. The results which obtained are significantly comparable to pure diesel. It shows that biodiesel obtained from cooking oil can be used as alternative fuel with better performance and lower emissions compared with diesel and play a very vital role for the overall economic development of the country.

  20. Engineering plant oils as high-value industrial feedstocks for biorefining - the need for underpinning cell biology research

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J.M. (US Arid-Land Agricultural Research Center, United States Dept. of Agriculture, Maricopa (US)); Mullen, R.T. (University of Guelph, Dept. of Molecular and Cellular Biology, Ontario (CA))

    2008-01-15

    Plant oils represent renewable sources of long-chain hydrocarbons that can be used as both fuel and chemical feedstocks, and genetic engineering offers an opportunity to create further high-value specialty oils for specific industrial uses. While many genes have been identified for the production of industrially important fatty acids, expression of these genes in transgenic plants has routinely resulted in a low accumulation of the desired fatty acids, indicating that significantly more knowledge of seed oil production is required before any future rational engineering designs are attempted. Here, we provide an overview of the cellular features of fatty acid desaturases, the so-called diverged desaturases, and diacylglycerol acyltransferases, three sets of enzymes that play a central role in determining the types and amounts of fatty acids that are present in seed oil, and as such, the final application and value of the oil. Recent studies of the intracellular trafficking, assembly and regulation of these enzymes have provided new insights to the mechanisms of storage oil production, and suggest that the compartmentalization of enzyme activities within specific regions or subdomains of the ER may be essential for both the synthesis of novel fatty acid structures and the channeling of these important fatty acids into seed storage oils. (au)

  1. Strong mutagenic effects of diesel engine emissions using vegetable oil as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Buenger, Juergen; Bruening, Thomas [Institute of the Ruhr University Bochum, Research Institute for Occupational Medicine of the Institutions for Statutory Accident Insurance and Prevention (BGFA), Bochum (Germany); Krahl, Juergen [University of Applied Sciences Coburg, Coburg (Germany); Munack, Axel; Ruschel, Yvonne; Schroeder, Olaf [Institute for Technology and Biosystems Engineering, Federal Agricultural Research Centre (FAL), Braunschweig (Germany); Emmert, Birgit; Westphal, Goetz; Mueller, Michael; Hallier, Ernst [University of Goettingen, Department of Occupational and Social Medicine, Goettingen (Germany)

    2007-08-15

    Diesel engine emissions (DEE) are classified as probably carcinogenic to humans. In recent years every effort was made to reduce DEE and their content of carcinogenic and mutagenic polycyclic aromatic compounds. Since 1995 we observed an appreciable reduction of mutagenicity of DEE driven by reformulated or newly designed fuels in several studies. Recently, the use of rapeseed oil as fuel for diesel engines is rapidly growing among German transportation businesses and agriculture due to economic reasons. We compared the mutagenic effects of DEE from two different batches of rapeseed oil (RSO) with rapeseed methyl ester (RME, biodiesel), natural gas derived synthetic fuel (gas-to-liquid, GTL), and a reference diesel fuel (DF). The test engine was a heavy-duty truck diesel running the European Stationary Cycle. Particulate matter from the exhaust was sampled onto PTFE-coated glass fibre filters and extracted with dichloromethane in a soxhlet apparatus. The gas phase constituents were sampled as condensates. The mutagenicity of the particle extracts and the condensates was tested using the Salmonella typhimurium/mammalian microsome assay with tester strains TA98 and TA100. Compared to DF the two RSO qualities significantly increased the mutagenic effects of the particle extracts by factors of 9.7 up to 59 in tester strain TA98 and of 5.4 up to 22.3 in tester strain TA100, respectively. The condensates of the RSO fuels caused an up to factor 13.5 stronger mutagenicity than the reference fuel. RME extracts had a moderate but significant higher mutagenic response in assays of TA98 with metabolic activation and TA100 without metabolic activation. GTL samples did not differ significantly from DF. In conclusion, the strong increase of mutagenicity using RSO as diesel fuel compared to the reference DF and other fuels causes deep concern on future usage of this biologic resource as a replacement of established diesel fuels. (orig.)

  2. Strong mutagenic effects of diesel engine emissions using vegetable oil as fuel.

    Science.gov (United States)

    Bünger, Jürgen; Krahl, Jürgen; Munack, Axel; Ruschel, Yvonne; Schröder, Olaf; Emmert, Birgit; Westphal, Götz; Müller, Michael; Hallier, Ernst; Brüning, Thomas

    2007-08-01

    Diesel engine emissions (DEE) are classified as probably carcinogenic to humans. In recent years every effort was made to reduce DEE and their content of carcinogenic and mutagenic polycyclic aromatic compounds. Since 1995 we observed an appreciable reduction of mutagenicity of DEE driven by reformulated or newly designed fuels in several studies. Recently, the use of rapeseed oil as fuel for diesel engines is rapidly growing among German transportation businesses and agriculture due to economic reasons. We compared the mutagenic effects of DEE from two different batches of rapeseed oil (RSO) with rapeseed methyl ester (RME, biodiesel), natural gas derived synthetic fuel (gas-to-liquid, GTL), and a reference diesel fuel (DF). The test engine was a heavy-duty truck diesel running the European Stationary Cycle. Particulate matter from the exhaust was sampled onto PTFE-coated glass fibre filters and extracted with dichloromethane in a soxhlet apparatus. The gas phase constituents were sampled as condensates. The mutagenicity of the particle extracts and the condensates was tested using the Salmonella typhimurium/mammalian microsome assay with tester strains TA98 and TA100. Compared to DF the two RSO qualities significantly increased the mutagenic effects of the particle extracts by factors of 9.7 up to 59 in tester strain TA98 and of 5.4 up to 22.3 in tester strain TA100, respectively. The condensates of the RSO fuels caused an up to factor 13.5 stronger mutagenicity than the reference fuel. RME extracts had a moderate but significant higher mutagenic response in assays of TA98 with metabolic activation and TA100 without metabolic activation. GTL samples did not differ significantly from DF. In conclusion, the strong increase of mutagenicity using RSO as diesel fuel compared to the reference DF and other fuels causes deep concern on future usage of this biologic resource as a replacement of established diesel fuels.

  3. Revision of the Oil Change Standard for SJ Gasoline Engine Oil%SJ汽油机油换油标准的修订

    Institute of Scientific and Technical Information of China (English)

    李静; 杨慧青

    2012-01-01

    文章主要对国内汽油机油换油标准进行了介绍,指出已有的国标GB/T 8028-1994已不能满足国内高档润滑油产品换油需求。根据SJ汽油机油在不同车型上的试验结果和国内汽车使用的实际情况对SJ汽油机油的换油指标进行了确认和修订。相比GB/T 8028-1994,新标准GB/T 8028-2010增加了闭口闪点、燃油稀释、碱值、铜元素和硅元素等控制项目,删除了开口闪点控制项目。%The oil change standard for the domestic gasoline engine oil was described in this paper. It was pointed out that the current GB/T 8028 - 1994 could not meet the oil change requirements for high - grade lubricants. Based on the experi- mental results of SJ gasoline engine oil on different types of vehicles and the practical utilization situation of domestic vehi- cles, the oil change standard of SJ gasoline engine oil was confirmed and revised. Compared with GB/T 8028 - 1994, closed flash point, fuel dilution, base number, copper element and silicon element etc. were added and the open cup flash point was deleted in the new GB/T 8028 -2010.

  4. Production of gaseous fuel from jatropha oil by cerium oxide based catalytic fuel reactor and its utilisation on diesel engine

    Directory of Open Access Journals (Sweden)

    Mylswamy Thirunavukkarasu

    2016-01-01

    Full Text Available In this study, an attempt is made to produce a hydrocarbon fuel from jatropha vegetable oil for Diesel engine applications. The “catalytic cracking” a process recently introduced by the researchers is chosen as an alternative method to trans-esterification process to match the fuel properties to diesel. Jatropha vegetable oil was cracked into a gas using the cerium oxide catalyst in a fixed bed catalytic reactor. The produced gas is introduced at constant rate into the inlet manifold of the Diesel engine. The experimental work was carried out in single cylinder water cooled direct injection Diesel engine coupled with eddy current dynamometer. The combustion parameters are measured by AVL combustion analyser. From the experimental results, the increase in brake thermal efficiency of the engine for full load was observed to be 10% (relative compared with diesel. Notably, emissions such as HC, CO, and smoke are reduced by 18%, 61%, and 18%, respectively, when compared with diesel.

  5. Wear Studies of MIL-L-23699 Aircraft Turbine Engine. Synthetic Base Lubricating Oils - I. The Development of a Procedure and Initial Findings

    Science.gov (United States)

    and contaminants in MIL-L-23699 aircraft turbine engine synthetic base lubricating oils . The procedure employs a linear ball-on-flat principle and is...wear of water in gas-turbine lubricating oils . The MIL-L-23699 oils exhibit a linear relationship between the removal of bearing surface material (wear

  6. Effects of Surface-Engineered Nanoparticle-Based Dispersants for Marine Oil Spills on the Model Organism Artemia franciscana

    OpenAIRE

    Rodd, April L.; Creighton, Megan A.; Vaslet, Charles A.; Rangel-Mendez, J. Rene; Hurt, Robert H.; Kane, Agnes B.

    2014-01-01

    Fine particles are under active consideration as alternatives to chemical dispersants for large-scale petroleum spills. Fine carbon particles with engineered surface chemistry have been shown to stabilize oil-in-water emulsions, but the environmental impacts of large-scale particle introduction to the marine environment are unknown. Here we study the impact of surface-engineered carbon-black materials on brine shrimp (Artemia franciscana) as a model marine microcrustacean. Mortality was chara...

  7. Performance analysis of compression ignition engine using rubber seed oil methyl ester blend with the effect of various injection pressures

    OpenAIRE

    Senthil Kumar Srinivasan; Purushothaman Krishnan; Rajan Kuppusamy

    2016-01-01

    Biodiesel is an alternate fuel for Diesel engine due to its properties is close to diesel fuel. Also it is biodegradable, non-toxic, and renewable in nature. In the present work, the performance, emission, and combustion characteristics of a Diesel engine using diesel and 25% rubber seed oil methyl ester diesel blend have been investigated with the effect of different injection pressures like 200 bar, 225 bar, and 250 bar with different load conditions. The...

  8. Acute toxicity of virgin and used engine oil enriched with copper nano particles in the earthworm

    Science.gov (United States)

    Khodabandeh, M.; Koohi, M. K.; Roshani, A.; Shahroziyan, E.; Badri, B.; Pourfallah, A.; Shams, Gh; Hobbenaghi, R.; Sadeghi-Hashjin, G.

    2011-07-01

    In spite of development of nanotechnology and creation of new opportunities for industry, new applications and products initiated by this technology may cause harmful effects on human health and environment. Unfortunately, there is no sufficient information on the harmful effects caused by application of some nano materials; the current knowledge in this field is limited solely to the nano particles but not the final products. Nano cupper particles, as one of the common materials produced in industrial scale is widely used as additives into engine oil to reduce friction and improve lubrication. However, the difference between the effects of virgin and used conventional engine oil (CEO) and the engine oil containing cupper nano particles (NEO) on the environment is not known. Earthworm, as a one of the species which could live and survive in different sorts of earth and has a certain role in protecting the soil structure and fertility, was used in this experiment. In accordance with the recommended method of OECD.1984, Filter Paper test in 24 and 48 h based on 8 concentrations in the range of 3×10-3 - 24×10-3 ml/cm2 and Artificial Soil test in 7 and 14 days based on 7 concentrations in the range of 0.1 mg/kg - 100 g/kg were carried out to study earthworms in terms of lifetime (LC50), morphology and pathology. It was shown that the 48 h LC50 for virgin CEO, virgin NEO, used CEO(8000 km) and used NEO (8000 km) were 6×10-3, 23×10-3, 24×10-3 and 16×10-3 ml/cm2 respectively. Furthermore, 14-day LC50 in artificial soil for all cases were above 100 g/kg. It is concluded that virgin CEO is more toxic than virgin NEO. Meanwhile, the CEO shows significant reduction in toxicity after consumption and the used NEO shows more toxicity in comparison to virgin product. It seems that more investigations on the effects of final products specifically after consumption is necessary because the products after consumption have the most contact with environment and subsequently

  9. Acute toxicity of virgin and used engine oil enriched with copper nano particles in the earthworm

    Energy Technology Data Exchange (ETDEWEB)

    Khodabandeh, M; Koohi, M K; Shahroziyan, E; Badri, B; Pourfallah, A; Shams, Gh; Sadeghi-Hashjin, G [Faculty of Veterinary Medicine, University of Tehran, Tehran (Iran, Islamic Republic of); Roshani, A [Industrial and Environmental Protection Division, Research Institute of Petroleum Industry (RRIPI), Tehran (Iran, Islamic Republic of); Hobbenaghi, R, E-mail: gsadeghi@ut.ac.ir [Faculty of Veterinary Medicine, Urmia University, Urmia (Iran, Islamic Republic of)

    2011-07-06

    In spite of development of nanotechnology and creation of new opportunities for industry, new applications and products initiated by this technology may cause harmful effects on human health and environment. Unfortunately, there is no sufficient information on the harmful effects caused by application of some nano materials; the current knowledge in this field is limited solely to the nano particles but not the final products. Nano cupper particles, as one of the common materials produced in industrial scale is widely used as additives into engine oil to reduce friction and improve lubrication. However, the difference between the effects of virgin and used conventional engine oil (CEO) and the engine oil containing cupper nano particles (NEO) on the environment is not known. Earthworm, as a one of the species which could live and survive in different sorts of earth and has a certain role in protecting the soil structure and fertility, was used in this experiment. In accordance with the recommended method of OECD.1984, Filter Paper test in 24 and 48 h based on 8 concentrations in the range of 3x10{sup -3} - 24x10{sup -3} ml/cm{sup 2} and Artificial Soil test in 7 and 14 days based on 7 concentrations in the range of 0.1 mg/kg - 100 g/kg were carried out to study earthworms in terms of lifetime (LC50), morphology and pathology. It was shown that the 48 h LC50 for virgin CEO, virgin NEO, used CEO(8000 km) and used NEO (8000 km) were 6x10{sup -3}, 23x10{sup -3}, 24x10{sup -3} and 16x10{sup -3} ml/cm{sup 2} respectively. Furthermore, 14-day LC50 in artificial soil for all cases were above 100 g/kg. It is concluded that virgin CEO is more toxic than virgin NEO. Meanwhile, the CEO shows significant reduction in toxicity after consumption and the used NEO shows more toxicity in comparison to virgin product. It seems that more investigations on the effects of final products specifically after consumption is necessary because the products after consumption have the most

  10. A Study on Performance, Combustion and Emission Characteristics of Compression Ignition Engine Using Fish Oil Biodiesel Blends

    Science.gov (United States)

    Ramesha, D. K.; Thimmannachar, Rajiv K.; Simhasan, R.; Nagappa, Manjunath; Gowda, P. M.

    2012-07-01

    Bio-fuel is a clean burning fuel made from natural renewable energy resource; it operates in C. I. engine similar to the petroleum diesel. The rising cost of diesel and the danger caused to the environment has led to an intensive and desperate search for alternative fuels. Among them, animal fats like the fish oil have proven to be a promising substitute to diesel. In this experimental study, A computerized 4-stroke, single cylinder, constant speed, direct injection diesel engine was operated on fish oil-biodiesel of different blends. Three different blends of 10, 20, and 30 % by volume were used for this study. Various engine performance, combustion and emission parameters such as Brake Thermal Efficiency, Brake Specific Fuel Consumption, Heat Release Rate, Peak Pressure, Exhaust Gas Temperature, etc. were recorded from the acquired data. The data was recorded with the help of an engine analysis software. The recorded parameters were studied for varying loads and their corresponding graphs have been plotted for comparison purposes. Petroleum Diesel has been used as the reference. From the properties and engine test results it has been established that fish oil biodiesel is a better replacement for diesel without any engine modification.

  11. Performance and emission of generator Diesel engine using methyl esters of palm oil and diesel blends at different compression ratio

    Science.gov (United States)

    Aldhaidhawi, M.; Chiriac, R.; Bădescu, V.; Pop, H.; Apostol, V.; Dobrovicescu, A.; Prisecaru, M.; Alfaryjat, A. A.; Ghilvacs, M.; Alexandru, A.

    2016-08-01

    This study proposes engine model to predicate the performance and exhaust gas emissions of a single cylinder four stroke direct injection engine which was fuelled with diesel and palm oil methyl ester of B7 (blends 7% palm oil methyl ester with 93% diesel by volume) and B10. The experiment was conducted at constant engine speed of 3000 rpm and different engine loads operations with compression ratios of 18:1, 20:1 and 22:1. The influence of the compression ratio and fuel typeson specific fuel consumption and brake thermal efficiency has been investigated and presented. The optimum compression ratio which yields better performance has been identified. The result from the present work confirms that biodiesel resulting from palm oil methyl ester could represent a superior alternative to diesel fuel when the engine operates with variable compression ratios. The blends, when used as fuel, result in a reduction of the brake specific fuel consumption and brake thermal efficiency, while NOx emissions was increased when the engine is operated with biodiesel blends.

  12. TA Research on Determining Some Performance Values by Using Proportional Mixture of Vegetable Oils and Diesel Fuel at a Diesel Engine

    Directory of Open Access Journals (Sweden)

    B. Kayisoglu

    2006-01-01

    Full Text Available The purpose of this particular study was to research the effects on characteristics of a diesel engine by using different diesel fuel and vegetable oil blends. As experimental material 6 LD 360 type diesel engine with single cylinder, direct injection, four cycles, 5.52 kW defined power was used. Nothing was changed on the diesel engine parts and refined vegetable oils were chosen to add into fuel oil. In this research, depending on the number of revaluation and time, the air intake inlet temperature, exhaust gas outlet temperature, fuel consumption, volume efficiency, engine oil pressure, cylinder indicated pressure, the quantity of soot were determined. The results in the of sunflower oil and diesel fuel blends were found better than the soybean oil and diesel fuel blends. In addition, lubrication oil of the engine by using the soybean and diesel fuel blends were get dirty excessively and viscosity of the engine lubrication oil was reduced more than the others. The results by using 75% diesel fuel+25% sunflower oil blend showed nearly the same results by using diesel fuel.

  13. A model for diagnosing and developing knowledge transfer from operations into engineering design: the case of the offshore oil industry

    DEFF Research Database (Denmark)

    Souza da Conceição, Carolina; Broberg, Ole; Jensen, Anna Rose Vagn

    2017-01-01

    Transferring knowledge from the operation phase of a product or system to the engineering design phase for a similar product or system is paramount, especially in sectors with complex design processes and dispersed design teams, like the offshore oil and maritime sectors. Such transfer helps both...

  14. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Science.gov (United States)

    2010-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.522 May used motor oil be dispensed into diesel...

  15. Influences of Fuel Additive, Crude Palm and Waste Cooking Oil on Emission Characteristics of Small Diesel Engine

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari; Basharie, Mariam

    2017-08-01

    Major research has been conducted on the use of input products, such as rapeseed, canola, soybean, sunflower oil, waste cooking oil (WCO), crude palm oil (CPO) and crude jatropha oil as alternative fuels. Biodiesel is renewable, biodegradable and oxygenated, where it can be easily adopted by current existing conventional diesel engine without any major modification of the engine. To meet the future performance and emission regulations, is urged to improve the performance and exhaust emissions from biodiesel fuels. Hence, further investigation have been carried out on the emission characteristics of small diesel engine that fuelled by variant blending ratio of WCO and CPO with booster additive. For each of the biodiesel blends ratio from 5 to 15 percent volume which are WCO5, WCO10 and WCO15 for WCO biodiesel and CPO5, CPO10 and CPO15 for CPO biodiesel. The exhaust emissions were measured at engine speeds varied at 2000 rpm and 2500 rpm with different booster additive volume DRA (biodiesel without additive), DRB (0.2 ml) and DRC (0.4 ml). Emissions characteristics that had been measured were Hydrocarbon (HC), Carbon Monoxide (CO), Carbon Dioxide (CO2), Nitrogen Oxide (NOx), and smoke opacity. The results showed that increased of blending ratio with booster additive volume significantly decreased the CO emission, while increased in NOx and CO2 due to changes of fuel characteristics in biodiesel fuel blends.

  16. Engineering and sustainability aspect of palm oil shell powder in cement

    Science.gov (United States)

    Karim, Mohammad Razaul; Hossain, Md. Moktar; Yusoff, Sumiani Binti

    2017-06-01

    Palm oil shell (POS) is a waste material which significantly produced in palm oil mills. In current practice, this waste is dumped in open land or landfill sites or is used as fuel to run a steam turbine of a boiler, which leads to environmental pollutions. The characterization, engineering and sustainability aspect of this waste for using in cement-based applications lead to reduce the emission of carbon dioxide and cost, save natural resources for cement production and also sustainable usage of waste material. The characterization was carried out using particle size analyzer, XRF, SEM and total organic carbon analyzer. ASTM standard methods were used to observe the setting time and water for normal consistency. The compressive strength of palm oil shell powder (POSP) blended cement was explored with the water to cement and cement to sand ratio of 0.40 and 0.50, respectively up to 40% replacement levels of OPC. Result found that the setting time and water demand were increased, but compressive strength was decreased to replacement levels. However, the incorporation of POSP in cement was reduced 9.6% of CO2 emission, 25 % of the cost and save natural resource, i.e. limestone, clay, iron ore, silica shale and gypsum of 35.1%, 4.95%, 0.9%, 4.05 % and 1.2 %, respectively at 30% replacement level of OPC. The results of this extensive study on POSP characterization, effect on basic cement properties and sustainability aspect provide the guidance for using the POSP at industrial scale for cement production.

  17. Metabolic engineering Camelina sativa with fish oil-like levels of DHA.

    Directory of Open Access Journals (Sweden)

    James R Petrie

    Full Text Available BACKGROUND: Omega-3 long-chain (≥C20 polyunsaturated fatty acids (ω3 LC-PUFA such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are critical for human health and development [corrected].. Numerous studies have indicated that deficiencies in these fatty acids can increase the risk or severity of cardiovascular, inflammatory and other diseases or disorders. EPA and DHA are predominantly sourced from marine fish although the primary producers are microalgae. Much work has been done to engineer a sustainable land-based source of EPA and DHA to reduce pressure on fish stocks in meeting future demand, with previous studies describing the production of fish oil-like levels of DHA in the model plant species, Arabidopsis thaliana. PRINCIPAL FINDINGS: In this study we describe the production of fish oil-like levels (>12% of DHA in the oilseed crop species Camelina sativa achieving a high ω3/ω6 ratio. The construct previously transformed in Arabidopsis as well as two modified construct versions designed to increase DHA production were used. DHA was found to be stable to at least the T5 generation and the EPA and DHA were found to be predominantly at the sn-1,3 positions of triacylglycerols. Transgenic and parental lines did not have different germination or seedling establishment rates. CONCLUSIONS: DHA can be produced at fish oil-like levels in industrially-relevant oilseed crop species using multi-gene construct designs which are stable over multiple generations. This study has implications for the future of sustainable EPA and DHA production from land-based sources.

  18. Testing and preformance measurement of straight vegetable oils as an alternative fuel for diesel engines

    Science.gov (United States)

    Lakshminarayanan, Arunachalam

    Rising fuel prices, growing energy demand, concerns over domestic energy security and global warming from greenhouse gas emissions have triggered the global interest in bio-energy and bio-fuel crop development. Backlash from these concerns can result in supply shocks of traditional fossil fuels and create immense economic pressure. It is thus widely argued that bio-fuels would particularly benefit developing countries by off-setting their dependencies on imported petroleum. Domestically, the transportation sector accounts for almost 40% of liquid fuel consumption, while on-farm application like tractors and combines for agricultural purposes uses close to an additional 18%. It is estimated that 40% of the farm budget can be attributed to the fuel costs. With the cost of diesel continuously rising, farmers are now looking at using Straight Vegetable Oil (SVO) as an alternative fuel by producing their own fuel crops. This study evaluates conventional diesel compared to the use of SVO like Camelina, Canola and Juncea grown on local farms in Colorado for their performance and emissions on a John Deere 4045 Tier-II engine. Additionally, physical properties like density and viscosity, metal/mineral content, and cold flow properties like CFPP and CP of these oils were measured using ASTM standards and compared to diesel. It was found that SVOs did not show significant differences compared to diesel fuel with regards to engine emissions, but did show an increase in thermal efficiency. Therefore, this study supports the continued development of SVO production as a viable alternative to diesel fuels, particularly for on-farm applications. The need for providing and developing a sustainable, economic and environmental friendly fuel alternative has taken an aggressive push which will require a strong multidisciplinary education in the field of bio-energy. Commercial bio-energy development has the potential to not only alleviate the energy concerns, but also to give renewed

  19. Application of microwave irradiation for the removal of polychlorinated biphenyls from siloxane transformer and hydrocarbon engine oils.

    Science.gov (United States)

    Antonetti, Claudia; Licursi, Domenico; Raspolli Galletti, Anna Maria; Martinelli, Marco; Tellini, Filippo; Valentini, Giorgio; Gambineri, Francesca

    2016-09-01

    The removal of polychlorinated biphenyls (PCBs) both from siloxane transformer oil and hydrocarbon engine oil was investigated through the application of microwave (MW) irradiation and a reaction system based on polyethyleneglycol (PEG) and potassium hydroxide. The influence of the main reaction parameters (MW irradiation time, molecular weight of PEG, amount of added reactants and temperature) on the dechlorination behavior was studied. Promising performances were reached, allowing about 50% of dechlorination under the best experimental conditions, together time and energy saving compared to conventional heating systems. Moreover, an interesting dechlorination degree (up to 32%) was achieved for siloxane transformer oil when MW irradiation was employed as the unique driving force. To the best of our knowledge, this is the first time in which MW irradiation is tested as the single driving force for the dechlorination of these two types of PCB-contaminated oils.

  20. Energy Return on Investment (EROI) for Forty Global Oilfields Using a Detailed Engineering-Based Model of Oil Production.

    Science.gov (United States)

    Brandt, Adam R; Sun, Yuchi; Bharadwaj, Sharad; Livingston, David; Tan, Eugene; Gordon, Deborah

    2015-01-01

    Studies of the energy return on investment (EROI) for oil production generally rely on aggregated statistics for large regions or countries. In order to better understand the drivers of the energy productivity of oil production, we use a novel approach that applies a detailed field-level engineering model of oil and gas production to estimate energy requirements of drilling, producing, processing, and transporting crude oil. We examine 40 global oilfields, utilizing detailed data for each field from hundreds of technical and scientific data sources. Resulting net energy return (NER) ratios for studied oil fields range from ≈2 to ≈100 MJ crude oil produced per MJ of total fuels consumed. External energy return (EER) ratios, which compare energy produced to energy consumed from external sources, exceed 1000:1 for fields that are largely self-sufficient. The lowest energy returns are found to come from thermally-enhanced oil recovery technologies. Results are generally insensitive to reasonable ranges of assumptions explored in sensitivity analysis. Fields with very large associated gas production are sensitive to assumptions about surface fluids processing due to the shifts in energy consumed under different gas treatment configurations. This model does not currently include energy invested in building oilfield capital equipment (e.g., drilling rigs), nor does it include other indirect energy uses such as labor or services.

  1. Energy Return on Investment (EROI for Forty Global Oilfields Using a Detailed Engineering-Based Model of Oil Production.

    Directory of Open Access Journals (Sweden)

    Adam R Brandt

    Full Text Available Studies of the energy return on investment (EROI for oil production generally rely on aggregated statistics for large regions or countries. In order to better understand the drivers of the energy productivity of oil production, we use a novel approach that applies a detailed field-level engineering model of oil and gas production to estimate energy requirements of drilling, producing, processing, and transporting crude oil. We examine 40 global oilfields, utilizing detailed data for each field from hundreds of technical and scientific data sources. Resulting net energy return (NER ratios for studied oil fields range from ≈2 to ≈100 MJ crude oil produced per MJ of total fuels consumed. External energy return (EER ratios, which compare energy produced to energy consumed from external sources, exceed 1000:1 for fields that are largely self-sufficient. The lowest energy returns are found to come from thermally-enhanced oil recovery technologies. Results are generally insensitive to reasonable ranges of assumptions explored in sensitivity analysis. Fields with very large associated gas production are sensitive to assumptions about surface fluids processing due to the shifts in energy consumed under different gas treatment configurations. This model does not currently include energy invested in building oilfield capital equipment (e.g., drilling rigs, nor does it include other indirect energy uses such as labor or services.

  2. Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil.

    Science.gov (United States)

    Streibel, Thorsten; Schnelle-Kreis, Jürgen; Czech, Hendryk; Harndorf, Horst; Jakobi, Gert; Jokiniemi, Jorma; Karg, Erwin; Lintelmann, Jutta; Matuschek, Georg; Michalke, Bernhard; Müller, Laarnie; Orasche, Jürgen; Passig, Johannes; Radischat, Christian; Rabe, Rom; Reda, Ahmed; Rüger, Christopher; Schwemer, Theo; Sippula, Olli; Stengel, Benjamin; Sklorz, Martin; Torvela, Tiina; Weggler, Benedikt; Zimmermann, Ralf

    2017-04-01

    Gaseous and particulate emissions from a ship diesel research engine were elaborately analysed by a large assembly of measurement techniques. Applied methods comprised of offline and online approaches, yielding averaged chemical and physical data as well as time-resolved trends of combustion by-products. The engine was driven by two different fuels, a commonly used heavy fuel oil (HFO) and a standardised diesel fuel (DF). It was operated in a standardised cycle with a duration of 2 h. Chemical characterisation of organic species and elements revealed higher concentrations as well as a larger number of detected compounds for HFO operation for both gas phase and particulate matter. A noteworthy exception was the concentration of elemental carbon, which was higher in DF exhaust aerosol. This may prove crucial for the assessment and interpretation of biological response and impact via the exposure of human lung cell cultures, which was carried out in parallel to this study. Offline and online data hinted at the fact that most organic species in the aerosol are transferred from the fuel as unburned material. This is especially distinctive at low power operation of HFO, where low volatility structures are converted to the particulate phase. The results of this study give rise to the conclusion that a mere switching to sulphur-free fuel is not sufficient as remediation measure to reduce health and environmental effects of ship emissions.

  3. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    Science.gov (United States)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  4. Particulate morphology of waste cooking oil biodiesel and diesel in a heavy duty diesel engine

    Science.gov (United States)

    Hwang, Joonsik; Jung, Yongjin; Bae, Choongsik

    2014-08-01

    The effect of biodiesel produced from waste cooking oil (WCO) on the particulate matters (PM) of a direct injection (DI) diesel engine was experimentally investigated and compared with commercial diesel fuel. Soot agglomerates were collected with a thermophoretic sampling device installed in the exhaust pipe of the engine. The morphology of soot particles was analyzed using high resolution transmission electron microscopy (TEM). The elemental and thermogravimetric analysis (TGA) were also conducted to study chemical composition of soot particles. Based on the TEM images, it was revealed that the soot derived from WCO biodiesel has a highly graphitic shell-core arrangement compared to diesel soot. The mean size was measured from averaging 400 primary particles for WCO biodiesel and diesel respectively. The values for WCO biodiesel indicated 19.9 nm which was smaller than diesel's 23.7 nm. From the TGA results, WCO biodiesel showed faster oxidation process. While the oxidation of soot particles from diesel continued until 660°C, WCO biodiesel soot oxidation terminated at 560°C. Elemental analysis results showed that the diesel soot was mainly composed of carbon and hydrogen. On the other hand, WCO biodiesel soot contained high amount of oxygen species.

  5. Artificial neural network modeling of jatropha oil fueled diesel engine for emission predictions

    Directory of Open Access Journals (Sweden)

    Ganapathy Thirunavukkarasu

    2009-01-01

    Full Text Available This paper deals with artificial neural network modeling of diesel engine fueled with jatropha oil to predict the unburned hydrocarbons, smoke, and NOx emissions. The experimental data from the literature have been used as the data base for the proposed neural network model development. For training the networks, the injection timing, injector opening pressure, plunger diameter, and engine load are used as the input layer. The outputs are hydrocarbons, smoke, and NOx emissions. The feed forward back propagation learning algorithms with two hidden layers are used in the networks. For each output a different network is developed with required topology. The artificial neural network models for hydrocarbons, smoke, and NOx emissions gave R2 values of 0.9976, 0.9976, and 0.9984 and mean percent errors of smaller than 2.7603, 4.9524, and 3.1136, respectively, for training data sets, while the R2 values of 0.9904, 0.9904, and 0.9942, and mean percent errors of smaller than 6.5557, 6.1072, and 4.4682, respectively, for testing data sets. The best linear fit of regression to the artificial neural network models of hydrocarbons, smoke, and NOx emissions gave the correlation coefficient values of 0.98, 0.995, and 0.997, respectively.

  6. The effect of clove oil and diesel fuel blends on the engine performance and exhaust emissions of a compression-ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Mbarawa, Makame [Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa)

    2010-11-15

    Diesel engines provide the major power source for transportation in the world and contribute to the prosperity of the worldwide economy. However, recent concerns over the environment, increasing fuel prices and the scarcity of fuel supplies have promoted considerable interest in searching for alternatives to petroleum based fuels. Based on this background, the main purpose of this investigation is to evaluate clove stem oil (CSO) as an alternative fuel for diesel engines. To this end, an experimental investigation was performed on a four-stroke, four-cylinder water-cooled direct injection diesel engine to study the performance and emissions of an engine operated using the CSO-diesel blended fuels. The effects of the CSO-diesel blended fuels on the engine brake thermal efficiency, brake specific fuel consumption (BSFC), specific energy consumption (SEC), exhaust gas temperatures and exhaust emissions were investigated. The experimental results reveal that the engine brake thermal efficiency and BSFC of the CSO-diesel blended fuels were higher than the pure diesel fuel while at the same time they exhibited a lower SEC than the latter over the entire engine load range. The variations in exhaust gas temperatures between the tested fuels were significant only at medium speed operating conditions. Furthermore, the HC emissions were lower for the CSO-diesel blended fuels than the pure diesel fuel whereas the NO{sub x} emissions were increased remarkably when the engine was fuelled with the 50% CSO-diesel blended fuel. (author)

  7. Improving Vegetable Oil Fueled CI Engine Characteristics Through Diethyl Ether Blending

    KAUST Repository

    Vedharaj, S.

    2016-12-01

    In this research, the flow and ignition properties of vegetable oil (VO) are improved by blending it with diethyl ether (DEE). DEE, synthesized from ethanol, has lower viscosity than diesel and VO. When DEE is blended with VO, the resultant DEEVO mixtures have favorable properties for compression ignition (CI) engine operation. As such, DEEVO20 (20% DEE + 80% VO) and DEEVO40 (40% DEE + 60% VO) were initially considered in the current study. The viscosity of VO is 32.4*10−6 m2/s; the viscosity is reduced with the increase of DEE in VO. In this study, our blends were limited to a maximum of 40% DEE in VO. The viscosity of DEEVO40 is 2.1*10−6 m2/s, which is comparable to that of diesel (2.3*10−6 m2/s). The lower boiling point and flash point of DEE improves the fuel spray and evaporation for DEEVO mixtures. In addition to the improvement in physical properties, the ignition quality of DEEVO mixtures is also improved, as DEE is a high cetane fuel (DCN = 139). The ignition characteristics of DEEVO mixtures were studied in an ignition quality tester (IQT). There is an evident reduction in ignition delay time (IDT) for DEEVO mixtures compared to VO. The IDT of VO (4.5 ms), DEEVO20 (3.2 ms) and DEEVO40 (2.7 ms) was measured in IQT. Accordingly, the derived cetane number (DCN) of DEEVO mixtures increased with the increase in proportion of DEE. The reported mixtures were also tested in a single cylinder CI engine. The start of combustion (SOC) was advanced for DEEVO20 and DEEVO40 compared to diesel, which is attributed to the high DCN of DEEVO mixtures. On the other hand, the peak heat release rate decreased for DEEVO mixtures compared to diesel. Gaseous emissions such as nitrogen oxide (NOX), total hydrocarbon (THC) and smoke were reduced for DEEVO mixtures compared to diesel. The physical and ignition properties of VO are improved by the addition of DEE, and thus, the need for the trans-esterification process is averted. Furthermore, this blending strategy is simpler

  8. A Comparative Study of Engine Performance and Exhaust Emissions Characteristics of Linseed Oil Biodiesel Blends with Diesel Fuel in a Direct Injection Diesel Engine

    Science.gov (United States)

    Salvi, B. L.; Jindal, S.

    2013-01-01

    This paper is aimed at study of the performance and emissions characteristics of direct injection diesel engine fueled with linseed oil biodiesel blends and diesel fuel. The comparison was done with base fuel as diesel and linseed oil biodiesel blends. The experiments were conducted with various blends of linseed biodiesel at different engine loads. It was found that comparable mass fraction burnt, better rate of pressure rise and BMEP, improved indicated thermal efficiency (8-11 %) and lower specific fuel consumption (3.5-6 %) were obtained with LB10 blend at full load. The emissions of CO, un-burnt hydrocarbon and smoke were less as compared to base fuel, but with slight increase in the emission of NOx. Since, linseed biodiesel is renewable in nature, so practically negligible CO2 is added to the environment. The linseed biodiesel can be one of the renewable alternative fuels for transportation vehicles and blend LB10 is preferable for better efficiency.

  9. Combustion characteristics of a 4-stroke CI engine operated on Honge oil, Neem and Rice Bran oils when directly injected and dual fuelled with producer gas induction

    Energy Technology Data Exchange (ETDEWEB)

    Banapurmath, N.R.; Tewari, P.G. [Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, Hubli 580031, Karnataka (India); Yaliwal, V.S. [Department of Mechanical Engineering, SDM College of Engineering and Technology, Dharwad Karnataka (India); Kambalimath, Satish [Wipro Technologies (India); Basavarajappa, Y.H. [K.L.E. Society' s Polytechnic, Hubli (India)

    2009-07-15

    Energy is an essential requirement for economic and social development of any country. Sky rocketing of petroleum fuel costs in present day has led to growing interest in alternative fuels like vegetable oils, alcoholic fuels, CNG, LPG, Producer gas, biogas in order to provide a suitable substitute to diesel for a compression ignition (CI) engine. The vegetable oils present a very promising alternative fuel to diesel oil since they are renewable, biodegradable and clean burning fuel having similar properties as that of diesel. They offer almost same power output with slightly lower thermal efficiency due to their lower energy content compared to diesel. Utilization of producer gas in CI engine on dual fuel mode provides an effective approach towards conservation of diesel fuel. Gasification involves conversion of solid biomass into combustible gases which completes combustion in a CI engines. Hence the producer gas can act as promising alternative fuel and it has high octane number (100-105) and calorific value (5-6 MJ/Nm{sup 3}). Because of its simpler structure with low carbon content results in substantial reduction of exhaust emission. Downdraft moving bed gasifier coupled with compression ignition engine are a good choice for moderate quantities of available mass up to 500 kW of electrical power. Hence bio-derived gas and vegetable liquids appear more attractive in view of their friendly environmental nature. Experiments have been conducted on a single cylinder, four-stroke, direct injection, water-cooled CI engine operated in single fuel mode using Honge, Neem and Rice Bran oils. In dual fuel mode combinations of Producer gas and three oils were used at different injection timings and injection pressures. Dual fuel mode of operation resulted in poor performance at all the loads when compared with single fuel mode at all injection timings tested. However, the brake thermal efficiency is improved marginally when the injection timing was advanced. Decreased

  10. Fabrication and Testing of a Ceramic Two-Cycle Diesel Engine

    Science.gov (United States)

    1986-03-31

    piston geometry should be redesigned to include a tapered profile in the crown area to compensate for the radial expansion of the crown , thereby...or insert to reduce heat transfer during combustion and reduce the magnitude of radial expansion of the crown . 13 4.2. Cylinder Design Further thermal...silicon carbide (SASC) "* partially stabilized zirconia (PSZ) - as a substitute for Zr02 coated metal components "* sialon "* fine grained SASC/Si

  11. Influence of high rotational speeds on heat transfer and oil film thickness in aero-engine bearing chambers

    Science.gov (United States)

    Wittig, S.; Glahn, A.; Himmelsbach, J.

    1994-04-01

    Increasing the thermal loading of bearing chambers in modern aero-engines requires advanced techniques for the determination of heat transfer characteristics. In the present study, film thickness and heat transfer measurements have been carried out for the complex two-phase oil/air flow in bearing chambers. In order to ensure real engine conditions, a new test facility has been built up, designed for rotational speeds up to n = 16,000 rpm and maximum flow temperatures of T(sub max) = 473 K. Sealing air and lubrication oil flow can be varied nearly in the whole range of aero-engine applications. Special interest is directed toward the development of an ultrasonic oil film thickness measuring technique, which can be used without any reaction on the flow inside the chamber. The determination of local heat transfer at the bearing chamber housing is based on a well-known temperature gradient method using surface temperature measurements and a finite element code to determine temperature distributions within the bearing chamber housing. The influence of high rotational speed on the local heat transfer and the oil film thickness is discussed.

  12. Tribological Bench and Engine Dynamometer Tests of a Low Viscosity SAE 0W-16 Engine Oil Using a Combination of Ionic Liquid and ZDDP as Anti-wear Additives

    Directory of Open Access Journals (Sweden)

    William C Barnhill

    2015-09-01

    Full Text Available We have previously reported an oil-miscible phosphonium-organophosphate ionic liquid (IL with effective anti-wear functionality when added to a base oil by itself or combined with a conventional zinc dialkyldithiophosphate (ZDDP for a synergistic effect. In this research, we investigated whether this synergy manifests in formulated engine oils. An experimental SAE 0W-16 engine oil was generated using a combination of IL and ZDDP with equal phosphorus contribution. The prototype engine oil was first evaluated using tribological bench tests: anti-wear performance in boundary lubrication and friction behavior (Stribeck curves in elastohydrodynamic, mixed, and boundary lubrication. The forthcoming standard Sequence VIE engine dynamometer test was then conducted to demonstrate improved fuel economy. Results were benchmarked against those of another experimental engine oil with almost the same formulation except using ZDDP only without the IL (similar total phosphorus content and a baseline SAE 20W-30 engine oil. The IL-ZDDP formulation consistently outperformed the ZDDP-only formulation and the results from the bench and engine tests are well correlated.

  13. Looking for diagnostics parameters of bearings of the gas turbine engine LM 2500 on the basis of mechanical contaminations in the lubricating oil

    Directory of Open Access Journals (Sweden)

    Waldemar MIRONIUK

    2009-01-01

    Full Text Available While operation a gas turbine engine more modest methods of research are brought into effect. But one of the basic methods to estimate the technical condition of gas turbine engines bearing is oil analysis. To estimate the technical condition of gas turbine engines bearing systems on the basis of oil research on, an x-ray method of radio-isotope fluorescence was used. This method has been also satisfactorily used in aircraft engine diagnosis.This paper presents the method of diagnosis bearings of marine gas turbines on the basis of studies of mechanical contamination in oil. Results of mechanical contamination research in oil vs time of engine work are presented. On the basis of experiments results the analytical function that makes calculating the future value of the process possible was chosen.

  14. Analysis of the piston ring/liner oil film development during warm-up for an SI-engine

    DEFF Research Database (Denmark)

    Frølund, Kent; Schramm, Jesper; Tian, T.;

    2001-01-01

    A one-dimensional ring-pack lubrication model developed at MIT is applied to simulate the oil film behavior during the warm-up period of a Kohler spark ignition engine. This is done by making assumptions for the evolution of the ail temperatures during warm-up and that the oil control ring during...... downstrokes is fully, flooded. The ring-pack lubrication model includes features such as three different lubrication regimes, i.e., pure hydro-dynamic lubrication, boundary lubrication and pure asperity contact, nonsteady wetting of both inlet and outlet of the piston ring, capability to use all ring face...

  15. Some Adverse Effects of Used Engine Oil (Common Waste Pollutant On Reproduction of Male Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Wasiu Olalekan Akintunde

    2015-03-01

    Full Text Available AIM: Used oil is contaminated not only with heavy metals but also with polycyclic aromatic hydrocarbons (PAHs that are insignificant in the unused oil. In our study we determined possible reproductive effects of used engine oil on male rats. MATERIAL AND METHODS: Twenty eight male Wistar rats were used for the study. The rats had average weight of 181.5 ± 10 g, animal feeds and portable water was provided ad-libitum. The rats were assigned to 4 groups (n = 7 including control. The treated groups orally received 0.1 ml/rat, 0.2 ml/rat and 0.4 ml/rat of the used engine oil every other day for 28 days using oral canulla. The spermatozoa were collected from epididymis for sperm analysis and testes were removed and preserved in Bouin’s fluid for routine histological analysis. RESULTS: Our results showed that there was progressive weight increase among the control group of rats that received distilled water. Meanwhile, rats that received 0.4 ml/rat of the used engine oil showed significant (P 0.05 weight reduction. The spermatozoa number was decreased with significance (P 0.05. The percentage of head deformity been 41.43 ± 2.61 and 42.00 ± 3.74 at 0.2 ml/rat and 0.4 ml/rat respectively, also significant increase of middle piece deformity was observed only at 0.1 ml/rat (45.71 ± 2.02 while tail deformity significantly decreased (15.71 ± 2.02, 20.00 ± 4.36 and 20.00 ± 4.47 when compared with the control (30.00 ± 1.29. The testicular seminiferous tubules were slightly degenerated with absence of Lumen. The germinal cell layer consisting of necrosis of spermatogonia and interstitial (Leydig cells with affected Sertoli cells at different maturation stages. CONCLUSION: Hence, it can be said that there is a negative relation between used engine oil and male reproductive parameters. And it can be concluded that used engine oil should be  prevented from leaking, spilling or improperly discarded as through medium it may enter storm water runoff and

  16. A new approach involving a multi transducer ultrasonic system for cleaning turbine engines' oil filters under practical conditions.

    Science.gov (United States)

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo; Chang, Soon Woong; Bui, Hong Ha

    2016-09-01

    The purpose of this paper is to provide a green technology that can clean turbine engine oil filters effectively in ships using ultrasound, with ultrasonic devices having a frequency of 25kHz and different powers of 300W and 600W, respectively. The effects of temperature, ultrasonic cleaning times, pressure losses through the oil filter, solvent washing, and ultrasonic power devices were investigated. In addition, the cleaning efficiency of three modes (hand washing, preliminary washing and ultrasonic washing) were compared to assess their relative effectiveness. Experimental results revealed that the necessary ultrasonic time varied significantly depending on which solvent was used for washing. For instance, the optimum ultrasonic cleaning time was 50-60min when the oil filter was cleaned in a solvent of kerosene oil (KO) and over 80min when in a solvent of diesel oil (DO) using the same ultrasonic generator device (25kHz, 600W) and experimental conditions. Furthermore, microscopic examination did not reveal any damage or breakdown on or within the structure of the filter after ultrasonic cleaning, even in the filter's surfaces at a constantly low frequency of 25kHz and power specific capacity (100W/gal). Overall, it may be concluded that ultrasound-assisted oil filter washing is effective, requiring a significantly shorter time than manual washing. This ultrasonic method also shows promise as a green technology for washing oil filters in turbine engines in general and Vietnamese navy ships in particular, because of its high cleaning efficiency, operational simplicity and savings.

  17. Experimental Investigation on Performance Characteristic of Diesel Engine by Using Methyl Ester of Linseed and Neem oil

    Directory of Open Access Journals (Sweden)

    B. Kesava Rao

    2014-06-01

    Full Text Available The increasing industrialization and motorization of the world has led to a steep rise for the demand of petroleum products. Petroleum based fuels are obtained from limited reserves. These finite reserves are highly concentrated in certain regions of the world. Therefore those countries not having these resources are facing a foreign exchange crisis, mainly due to the import of crude oil. Hence, it is necessary to look for alternative fuels, which can be produced from materials available within the country. In addition, the use of vegetable oils as fuel is less pollution than petroleum fuels. In this thesis work, the transesterification process of linseed oil (lso and neem oil (no in order to obtain bio diesel. Different parameters for the optimization of bio diesel products were investigated in the first phase, and the effects were characterized to test their properties as fuel in diesel engines such as viscosity, density, flash point, fire point and cetane number. While in the next phase lsome & nome was produced by transesterification method using linseed oil, neem oil and methyl alcohol, and its effects on reaction temperature, catalyst percentages, and reaction time for optimum bio diesel production have been studied. The blends of various proportions of the lsome & nome with diesel were prepared, analyzed and compared with diesel fuel, and comparison was made to suggest the better option among the bio diesel understudy. However, its diesel blends showed reasonable efficiencies.

  18. Comparative evaluation of the effect of sweet orange oil-diesel blend on performance and emissions of a multi-cylinder compression ignition engine

    Science.gov (United States)

    Rahman, S. M. Ashrafur; Hossain, F. M.; Van, Thuy Chu; Dowell, Ashley; Islam, M. A.; Rainey, Thomas J.; Ristovski, Zoran D.; Brown, Richard J.

    2017-06-01

    In 2014, global demand for essential oils was 165 kt and it is expected to grow 8.5% per annum up to 2022. Every year Australia produces approximately 1.5k tonnes of essential oils such as tea tree, orange, lavender, eucalyptus oil, etc. Usually essential oils come from non-fatty areas of plants such as the bark, roots, heartwood, leaves and the aromatic portions (flowers, fruits) of the plant. For example, orange oil is derived from orange peel using various extraction methods. Having similar properties to diesel, essential oils have become promising alternate fuels for diesel engines. The present study explores the opportunity of using sweet orange oil in a compression ignition engine. Blends of sweet orange oil-diesel (10% sweet orange oil, 90% diesel) along with neat diesel fuel were used to operate a six-cylinder diesel engine (5.9 litres, common rail, Euro-III, compression ratio 17.3:1). Some key fuel properties such as: viscosity, density, heating value, and surface tension are presented. Engine performance (brake specific fuel consumption) and emission parameters (CO, NOX, and Particulate Matter) were measured to evaluate running with the blends. The engine was operated at 1500 rpm (maximum torque condition) with different loads. The results from the property analysis showed that sweet orange oil-diesel blend exhibits lower density, viscosity and surface tension and slightly higher calorific value compared to neat diesel fuel. Also, from the engine test, the sweet orange oil-diesel blend exhibited slightly higher brake specific fuel consumption, particulate mass and particulate number; however, the blend reduced the brake specific CO emission slightly and brake specific NOX emission significantly compared to that of neat diesel.

  19. Feasibility of Using Full Synthetic Low Viscosity Engine Oil at High Ambient Temperatures in U.S. Army Engines

    Science.gov (United States)

    2011-06-01

    12.7 L direct injected turbocharged intercooled diesel engine. Its valve train consists of an overhead camshaft actuating roller rocker arms that... camshaft by roller rocker arms. The engine is rated at 375 hp @ 2100 rpm, and 1350 lb*ft of torque @ 1200 rpm using diesel fuel. The engine was from...21 Camshaft Bearing Weight Loss, grams

  20. Effect of thermal barrier coating with various blends of pumpkin seed oil methyl ester in DI diesel engine

    Science.gov (United States)

    Karthickeyan, V.; Balamurugan, P.

    2017-05-01

    The rise in oil prices, dependency on fossil fuels, degradation of non-renewable energy resources and global warming strives to find a low-carbon content alternative fuel to the conventional fuel. In the present work, Partially Stabilized Zirconia (PSZ) was used as a thermal barrier coating in piston head, cylinder head and intake and exhaust valves using plasma spray technique, which provided a rise in combustion chamber temperature. With the present study, the effects of thermal barrier coating on the blends of Pumpkin Seed Oil Methyl Ester (PSOME) were observed in both the coated and uncoated engine. Performance and emission characteristics of the PSOME in coated and uncoated engines were observed and compared. Increased thermal efficiency and reduced fuel consumption were observed for B25 and diesel in coated and uncoated engine. On comparing with the other biodiesel samples, B25 exhibited lower HC, NOx and smoke emissions in thermally coated engine than uncoated engine. After 100 h of operation, no anamolies were found in the thermally coated components except minor cracks were identified in the edges of the piston head.

  1. Combustion and emission characteristics of diesel engine fuelled with rice bran oil methyl ester and its diesel blends

    Directory of Open Access Journals (Sweden)

    Gattamaneni Rao Narayana Lakshmi

    2008-01-01

    Full Text Available There has been a worldwide interest in searching for alternatives to petroleum-derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. The direct use of vegetable oils as a diesel engine fuel is possible but not preferable because of their extremely higher viscosity, strong tendency to polymerize and bad cold start properties. On the other hand, Biodiesels, which are derived from vegetable oils, have been recently recognized as a potential alternative to diesel oil. This study deals with the analysis of rice bran oil methyl ester (RBME as a diesel fuel. RBME is derived through the transesterification process, in which the rice bran oil reacts with methanol in the presence of KOH. The properties of RBME thus obtained are comparable with ASTM biodiesel standards. Tests are conducted on a 4.4 kW, single-cylinder, naturally aspirated, direct-injection air-cooled stationary diesel engine to evaluate the feasibility of RBME and its diesel blends as alternate fuels. The ignition delay and peak heat release for RBME and its diesel blends are found to be lower than that of diesel and the ignition delay decreases with increase in RBME in the blend. Maximum heat release is found to occur earlier for RBME and its diesel blends than diesel. As the amount of RBME in the blend increases the HC, CO, and soot concentrations in the exhaust decreased when compared to mineral diesel. The NOx emissions of the RBME and its diesel blends are noted to be slightly higher than that of diesel.

  2. Performance Evaluation of a Small-Scale Turbojet Engine Running on Palm Oil Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    A. R. Abu Talib

    2014-01-01

    Full Text Available The experimental and simulated performance of an Armfield CM4 turbojet engine was investigated for palm oil methyl ester biodiesel (PME and its blends with conventional Jet A-1 fuel. The volumetric blends of PME with Jet A-1 are 20, 50, 70, and 100% (B20, B50, B70, and B100. Fuel heating values (FHV of each fuel mixture were obtained by calorimetric analysis. The experimental tests included performance tests for Jet A-1 and B20, while the performances of B50 to B100 were simulated using GasTurb 11 analytical software. In terms of maximum measured thrust, Jet A-1 yielded the highest value of 216 N, decreasing by 0.77%, 4%, 8%, and 12% with B20, B50, B70, and B100. It was found that B20 produced comparable results compared to the benchmark Jet A-1 tests, particularly with thrust and thermal efficiency. Slight performance penalties occurred due to the lower energy content of the biodiesel blends. The efficiency of the combustor improved with the addition of biodiesel while the other component efficiencies remained collectively consistent. This research shows that, at least for larger gas turbines, PME is suitable for use as an additive to Jet A-1 within 50% blends.

  3. EFFECTS OF COMPACTIVE EFFORTS ON GEOTECHNICAL PROPERTIES OF SPENT ENGINE OIL CONTAMINATED LATERITE SOIL

    Directory of Open Access Journals (Sweden)

    OLUREMI, J. ROTIMI

    2017-03-01

    Full Text Available Investigation of the effects of compactive efforts and spent engine oil (SEO contamination on the geotechnical properties of lateritic soils was made. Contaminated specimens were prepared by mixing lateritic soil with up to 10 % SEO by dry weight of the soil in step concentration of 2 % and subjected to geotechnical tests. Results indicated a decrease in the fine content, decrease in liquid limit, maximum dry density (MDD and unconfined compressive strength (UCS with up to 10 % SEO content. No general trend was observed in the optimum moisture content (OMC with increasing SEO content. The MDD, OMC and UCS values increased with increase in the compactive effort. Regression analysis of the results showed that optimum moisture content, fine content and compactive effort significantly influence the soils UCS values. Analysis of variance showed that SEO and compactive effort has significant effect on the parameters with the exception in one case. The results of laboratory tests showed that geotechnical properties of the SEO contaminated soil were immensely impaired.

  4. Experimental investigation and performance evaluation of DI diesel engine fueled by waste oil-diesel mixture in emulsion with water

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2009-01-01

    Full Text Available Exploitation of the natural reserves of petroleum products has put a tremendous onus on the automotive industry. Increasing pollution levels and the depletion of the petroleum reserves have lead to the search for alternate fuel sources for internal combustion engines. Usage of vegetable oils poses some challenges like poor spray penetration, valve sticking and clogging of injector nozzles. Most of these problems may be solved by partial substitution of diesel with vegetable oil. In this work, the performance and emission characteristics of a direct injection diesel engine fueled by waste cooking oil-diesel emulsion with different water contents are evaluated. The use of waste cooking oil-diesel emulsion lowers the peak temperature, which reduces the formation of NOx. Moreover the phenomenon of micro explosion that results during the combustion of an emulsified fuel finely atomizes the fuel droplets and thus enhances combustion. Experiments show that CO concentration is reduced as the water content is increased and it is seen that 20% water content gives optimum results. Also, there is a significant reduction in NOx emissions.

  5. Performance analysis of compression ignition engine using rubber seed oil methyl ester blend with the effect of various injection pressures

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Srinivasan

    2016-01-01

    Full Text Available Biodiesel is an alternate fuel for Diesel engine due to its properties is close to diesel fuel. Also it is biodegradable, non-toxic, and renewable in nature. In the present work, the performance, emission, and combustion characteristics of a Diesel engine using diesel and 25% rubber seed oil methyl ester diesel blend have been investigated with the effect of different injection pressures like 200 bar, 225 bar, and 250 bar with different load conditions. The biodiesel was prepared from raw rubber seed oil using transesterification process. The performance and emissions parameters were measured and compared with diesel and B25 blend with standard injection pressure of 200 bar. The results showed that the brake thermal efficiency for 25% rubber seed oil methyl ester is increased with 250 bar injection pressure compared to other injection pressures. It is closer to diesel fuel operation with standard injection pressure of 200 bar injection pressure at full load. The carbon monoxide, hydrocarbon, and smoke were decreased for the injection pressure 250 bar, whereas the NO emission is increased at full load compared to other injection pressures. The cylinder peak pressure, heat release rate are increased for 25% rubber seed oil methyl ester and the ignition delay is decreases with increase in injection pressures.

  6. Performance, emission and combustion characteristics of a semi-adiabatic diesel engine using cotton seed and neem kernel oil methyl esters

    Directory of Open Access Journals (Sweden)

    Basavaraj M. Shrigiri

    2016-03-01

    Full Text Available The performance, emission and combustion characteristics of a diesel engine are investigated using two methyl esters: One obtained from cotton seed oil and other from neem kernel oil. These two oils are transesterified using methanol and alkaline catalyst to produce the cotton seed oil methyl ester (CSOME and neem kernel oil methyl ester (NKOME respectively. These biodiesels are used as alternative fuels in low heat rejection engine (LHR, in which the combustion chamber temperature is increased by thermal barrier coating on piston face. Experimental investigations are conducted with CSOME and NKOME in a single cylinder, four stroke, direct injection LHR engine. It is found that, at peak load the brake thermal efficiency is lower by 5.91% and 7.07% and BSFC is higher by 28.57% and 10.71% for CSOME and NKOME in LHR engine, respectively when compared with conventional diesel fuel used in normal engine. It is also seen that there is an increase in NOx emission in LHR engine along with slight increase in CO, smoke and HC emissions. From the combustion characteristics, it is found that the values of cylinder pressure for CSOME and NKOME in LHR engine are near to the diesel fuel in normal engine.

  7. Production of Bio-Diesel to Neem oil and its performance and emission Analysis in two stroke Diesel Engine.

    Directory of Open Access Journals (Sweden)

    G.Mahesh BABU

    2013-02-01

    Full Text Available In India Neem tree is a widely grown up termed as a divine tree due to its wide relevance in many areas of study. This paper deals with Biodiesel production from neem oil, which is monoester produced usingtransesterification process. Biodiesel is a safe alternative fuel to replace traditional petroleum diesel. It has high lubricity, clean burning fuel and can be a fuel component for use in existing unmodified diesel engine. Neem (Azadirachita Indica is an evergreen tree, which is endemic to the Indian Sub-continent and has beenintroduced to many other areas intropics. The fuel properties of biodiesel including flash point-and fire point were examined. The engine properties and pollutant emissions characteristics under different biodiesel percentages were also studied. The results shows that the biodiesel produced using neem oil could reduce Carbon monoxide and smoke emissions significantly while the Nitrogen oxide emission changed slightly. Thus, the ester of this oil can be used as environment friendly alternative fuel for diesel engine.

  8. The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator.

    Science.gov (United States)

    Liang, Fuyan; Lu, Mingming; Keener, Tim C; Liu, Zifei; Khang, Soon-Jai

    2005-10-01

    Diesel-powered equipment is known to emit significant quantities of fine particulate matter to the atmosphere. Numerous organic compounds can be adsorbed onto the surfaces of these inhalable particles, among which polycyclic aromatic hydrocarbons (PAHs) are considered potential occupational carcinogens. Guidelines have been established by various agencies regarding diesel emissions and various control technologies are under development. The purpose of this study is to identify, quantify and compare the organic compounds in diesel particulate matter (DPM) with the diesel fuel and engine oil used in a non-road diesel generator. Approximately 90 organic compounds were quantified (with molecular weight ranging from 120 to 350), which include alkanes, PAHs, alkylated PAHs, alkylbenzenes and alkanoic acids. The low sulfur diesel fuel contains 61% alkanes and 7.1% of PAHs. The identifiable portion of the engine oil contains mainly the alkanoic and benzoic acids. The composition of DPM suggests that they may be originated from unburned diesel fuel, engine oil evaporation and combustion generated products. Compared with diesel fuel, DPM contains fewer fractions of alkanes and more PAH compounds, with the shift toward higher molecular weight ones. The enrichment of compounds with higher molecular weight in DPM may be combustion related (pyrogenic).

  9. Influence of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission.

    Science.gov (United States)

    Keskin, Ali; Gürü, Metin; Altiparmak, Duran

    2008-09-01

    The purpose of this study is to investigate influences of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission. Tall oil resinic acids were reacted with MgO and MoO(2) stoichiometrically for the production of metal-based fuel additives (combustion catalysts). The metal-based additives were added into tall oil biodiesel (B60) at the rate of 4 micromol/l, 8 micromol/l and 12 micromol/l for preparing test fuels. In general, both of the metal-based additives improved flash point, pour point and viscosity of the biodiesel fuel, depending on the rate of additives. A single cylinder DI diesel engine was used in the tests. Engine performance values did not change significantly with biodiesel fuels, but exhaust emission profile was improved. CO emissions and smoke opacity decreased by 56.42% and by 30.43%, respectively. In general, low NO(x) and CO(2) emissions were measured with the biodiesel fuels.

  10. Performance Characteristics and Analysis of 4-Stroke Single Cylinder Diesel Engine Blend With 50% of Honne Oil at Various Fuel Injection Pressures

    Directory of Open Access Journals (Sweden)

    R. Bhaskar Reddy

    2014-08-01

    Full Text Available In future demand for fossil fuels and environmental effects, a number of renewable sources of energy have been studied in worldwide. An attempt is made to apt of vegetable oil for diesel engine operation, without any change in its old construction. One of the important factors which influence the performance and emission characteristics of D.I diesel engine is fuel injection pressure. In this project honne oil has to be investigated in a constant speed, on D.I diesel engine with different fuel injection pressures. The scope of the project is to investigate the effect of injection pressures on a blend of 50% honne oil with 50% diesel and compare with pure diesel on performance and emission characteristics of the diesel engine. Two tested fuels were used during experiments like 100 % diesel and a blend of 50% honne oil mixing in the diesel. The performance tests were conducted at constant speed with variable loads. From experiment results it was found that with honne oil- diesel blend the performance of the engine is better compared with diesel. The break thermal efficiency and mechanical efficiencies were found to be maximum at 200 bar injection pressure with both honne oil- diesel blend, compared with 180 bar and 220 bar. The brake specific fuel consumption was to be minimum at 220bar compared with 180 bar and 200 bar. Hydro carbon emissions of honne oil-diesel operation were less than the diesel fuel mode at all fuel injection pressures.

  11. DNA adducts in human and mouse skin maintained in short-term culture and treated with petrol and diesel engine lubricating oils.

    Science.gov (United States)

    Carmichael, P L; Ni Shé, M; Phillips, D H

    1991-05-24

    Human and mouse skin samples maintained in short-term organ culture were treated topically with used engine oils from petrol- and diesel-powered vehicles. Mice were also treated topically in vivo for comparison. DNA was isolated and analysed by 32P-postlabelling and the labeled DNA digests were resolved on polyethyleneimine-cellulose tlc sheets. A large number of radioactive adduct spots were observed in DNA from skin treated with the used petrol-engine oil, indicating the formation of adducts by many components of the complex oil mixture. Total adduct levels were similar in mouse skin (both in vivo and in vitro) and in human skin, although qualitative differences in the adduct maps were apparent between the human and mouse skin DNA. Treatment with the used diesel engine oil produced adduct levels no greater than that of control samples in mouse skin (in vivo and in vitro), although significant levels were found in human skin DNA from one donor. The results correlate well with the carcinogenic activity of these oils in experimental animals, helping to substantiate the conclusion that petrol engine oils (but not diesel engine oils) may present a carcinogenic risk to man if appropriate measures to minimise skin contact are not observed.

  12. Characteristics of Waste Plastics Pyrolytic Oil and Its Applications as Alternative Fuel on Four Cylinder Diesel Engines

    Directory of Open Access Journals (Sweden)

    Nosal Nugroho Pratama

    2014-02-01

    Full Text Available Waste plastics recycling using pyrolysis method is not only able to decrease a number of environment pollutant but also able to produce economical and high quality hydrocarbon products. Two experiments were conducted to completely study Waste Plastic Pyrolytic Oil (WPPO characteristics and its applications.  First experiment investigated oil characteristics derived from pyrolysis process in two stages batch reactors: pyrolysis and catalytic reforming reactor, at maximum temperature 500oC and 450oC respectively. Waste Polyethylene (PE, Polypropylene (PP, Polystyrene (PS, Polyethylene Terepthalate (PET and others were used as raw material. Nitrogen flow rate at 0.8 l/minutes was used to increase oil weight percentage. Indonesian natural zeolite was used as catalyst. Then, second experiment was carried out on Diesel Engine Test Bed (DETB used blending of WPPO and Biodiesel fuel with a volume ratio of 1:9. This experiment was specifically conducted to study how much potency of blending of WPPO and biodiesel in diesel engine. The result of first experiment showed that the highest weight percentage of WPPO derived from mixture of PE waste (50%wt, PP waste (40%wt and PS waste (10%wt is 45.13%wt. The more weight percentage of PE in feedstock effected on the less weight percentage of WPPO, the more percentage of C12-C20 content in WPPO and the higher calorific value of WPPO. Characteristics of WPPO such as, Specific Gravity, Flash point, Pour Point, Kinematic Viscosity, Calorific value and percentage of C12-C20 showed interesting result that WPPO could be developed as alternative fuel on diesel fuel blending due to the proximity of their characteristics. Performance of diesel engine using blending of WPPO and biodiesel on second experiment gave good result so the WPPO will have great potency to be valuable alternative liquid fuel in future, especially on stationary diesel engine and transportation engine application.

  13. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase.

    Science.gov (United States)

    Mahmoud, S S; Croteau, R B

    2001-07-17

    Peppermint (Mentha x piperita L.) was independently transformed with a homologous sense version of the 1-deoxy-d-xylulose-5-phosphate reductoisomerase cDNA and with a homologous antisense version of the menthofuran synthase cDNA, both driven by the CaMV 35S promoter. Two groups of transgenic plants were regenerated in the reductoisomerase experiments, one of which remained normal in appearance and development; another was deficient in chlorophyll production and grew slowly. Transgenic plants of normal appearance and growth habit expressed the reductoisomerase transgene strongly and constitutively, as determined by RNA blot analysis and direct enzyme assay, and these plants accumulated substantially more essential oil (about 50% yield increase) without change in monoterpene composition compared with wild-type. Chlorophyll-deficient plants did not afford detectable reductoisomerase mRNA or enzyme activity and yielded less essential oil than did wild-type plants, indicating cosuppression of the reductoisomerase gene. Plants transformed with the antisense version of the menthofuran synthase cDNA were normal in appearance but produced less than half of this undesirable monoterpene oil component than did wild-type mint grown under unstressed or stressed conditions. These experiments demonstrate that essential oil quantity and quality can be regulated by metabolic engineering. Thus, alteration of the committed step of the mevalonate-independent pathway for supply of terpenoid precursors improves flux through the pathway that leads to increased monoterpene production, and antisense manipulation of a selected downstream monoterpene biosynthetic step leads to improved oil composition.

  14. Emissions from diesel engines using fatty acid methyl esters from different vegetable oils as blends and pure fuel

    Science.gov (United States)

    Schröder, O.; Munack, A.; Schaak, J.; Pabst, C.; Schmidt, L.; Bünger, J.; Krahl, J.

    2012-05-01

    Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non

  15. Biodegradation of spent engine oil by bacteria isolated from the rhizosphere of legumes grown in contaminated soil

    Directory of Open Access Journals (Sweden)

    HY Ismail

    2014-05-01

    Full Text Available Biodegradation of spent engine oil (SEO by bacteria isolated from the rhizosphere of Cajan cajan and Lablab purpureus was investigated. It was with a view to determining most efficient bacterial species that could degrade SEO in phytoremediation studies. Hydrocarbon degrading bacteria were isolated and identified by enrichment culture technique using oil agar supplemented with 0.1% v/v SEO. Total heterotrophic and oil utilizing bacterial count showed the occurrence of large number of bacteria predominantly in the rhizosphere soil, ranging between 54×108 - 144×108 CFU/g and 4×108- 96×108 CFU/g respectively. Percentage of oil utilizing bacteria ranged between 0% (uncontaminated non rhizosphere soil to 76% (contaminated rhizosphere. Turbidimetrically, five bacterial species namely Pseudomonas putrefacience CR33, Klebsiella pneumonia CR23, Pseudomonas alcaligenes LR14, Klebsiella aerogenes CR21, and Bacillus coagulans CR31 were shown to grow maximally and degraded the oil at the rate of 68%, 62%, 59%, 58%and 45% respectively. Chromatographic analysis using GC-MS showed the presence of lower molecular weight hydrocarbons in the residual oil (indicating degradation after 21 days, whereas the undegraded oil (control had higher molecular weight hydrocarbons after the same period. The species isolated were shown to have high ability of SEO biodegradation and therefore could be important tools in ameliorating SEO contaminated soil. DOI: http://dx.doi.org/10.3126/ije.v3i2.10515 International Journal of the Environment Vol.3(2 2014: 63-75

  16. Stabilization of sand dunes with oil residue:Application to civil engineering construction and environmental implications

    Institute of Scientific and Technical Information of China (English)

    Esmail Aflaki; Alborz Hajiannia

    2015-01-01

    The present work ascertains the feasibility of oil residue treatment for stabilizing wind-blown sand dunes. Various combinations of natural collapsible saline from the Jandaq desert of Iran and oil residue from distillation towers of Iranian refineries were tested in laboratory experiments. Stabilized sands were evaluated in terms of geotechnical properties, permeability, and oil retention characteristics (i.e. bonding mechanisms, leaching and migrating behaviour of oil residue from the stabilized sands). Since the presence of oil residue in soils can pose an environmental threat, the optimum retention capacity of the stabilized sands is of critical concern. Relative to sand that was not augmented with oil residue, specimens made of 7% oil residues had the highest compressive strength, significantly higher cohesion and load bearing capacity, and considerably lower permeability. The effect of distilled water, saline water and municipal sewage on prepared specimens were also evaluated.

  17. Flocculation-Extraction of Waste Diesel Engine Oil for Base Oil%废柴油机油絮凝抽提精制工艺

    Institute of Scientific and Technical Information of China (English)

    李瑞丽; 齐羽佳

    2013-01-01

    Waste diesel engine oil was refined by flocculation-extraction with isopropanol and/or butanone as solvents.The effects of extraction temperature,extraction time and the mass ratio of solvent to the waste oil on the yield and quality of the refined oil were researched.The experimental results showed that under the conditions of extraction temperature 40 ℃,extraction time 30 min,and the mass ratios of solvent to the waste diesel engine oil 3 for isopropanol and 5 for butanone,the refined oil yield were 27.99% and 92.68% respectively.But when butanone was used as the solvent,the quality of the refined oil was not good.A composite solvent is composed of isopropanol and butanone.Under the optimal conditions of the mass ratio of butanone to isopropanol 3,the mass ratio of the composite solvent to the waste oil 3,extraction time 30 min and extraction temperature 40 ℃,after the refined oil was treated with clay,its quality could meet the standard of HVI400 base oil and the yield reached 65.77%.%采用絮凝抽提法对4S店回收的废柴油机油进行了再生利用研究.分别用异丙醇、丁酮两种单一溶剂,考察了精制温度、精制时间、剂油比(溶剂与废柴油机油的质量比)对精制油收率及性质的影响,得到最佳精制条件为:精制温度40℃,精制时间30 min,异丙醇的剂油比3,丁酮的剂油比5.在最佳精制条件下,异丙醇精制油的收率只有27.99%;而丁酮精制油的收率达到92.68%,但精制油的质量差.将异丙醇和丁酮混合作为复合溶剂,在精制温度40℃、精制时间30 min的条件下,考察了复合溶剂配比、剂油比等因素的影响.实验结果表明,复合溶剂的最优配比为m(丁酮):m(异丙醇)=3、最佳剂油比为3.复合溶剂精制油经白土补充处理后的油品符合HVI400基础油的标准,收率达65.77%.

  18. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    Science.gov (United States)

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  19. Determination of performance and combustion characteristics of a diesel engine fueled with canola and waste palm oil methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Ozsezen, Ahmet Necati [Department of Automotive Engineering Technology, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey); Canakci, Mustafa, E-mail: canakci@kocaeli.edu.t [Department of Automotive Engineering Technology, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey)

    2011-01-15

    In this study, the performance, combustion and injection characteristics of a direct injection diesel engine have been investigated experimentally when it was fueled with canola oil methyl ester (COME) and waste (frying) palm oil methyl ester (WPOME). In order to determine the performance and combustion characteristics, the experiments were conducted at constant engine speeds under the full load condition of the engine. The results indicated that when the test engine was fueled with WPOME or COME instead of petroleum based diesel fuel (PBDF), the brake power reduced by 4-5%, while the brake specific fuel consumption increased by 9-10%. On the other hand, methyl esters caused reductions in carbon monoxide (CO) by 59-67%, in unburned hydrocarbon (HC) by 17-26%, in carbon dioxide (CO{sub 2}) by 5-8%, and smoke opacity by 56-63%. However, both methyl esters produced more nitrogen oxides (NO{sub x}) emissions by 11-22% compared with those of the PBDF over the speed range.

  20. Investigation on used oil and engine components of vehicles road test using twenty percent Fatty Acid Methyl Ester (B20

    Directory of Open Access Journals (Sweden)

    Ihwan Haryono, Muhammad Ma’ruf, Hari Setiapraja

    2016-01-01

    Full Text Available The Indonesian government has mandated to utilize biodiesel at the Indonesian market with blend ratio of 20% biodiesel and 80% diesel fuel (B20. This policy bring car manufacturers concerning in using B20 effect on the engine life time. To evaluate the effect of using B20 on engine components, vehicles road test has been done along 40,000 KM. The test was using three brands of vehicles, in which each brand was composed of two identical vehicles fuelled by B20 FAME fuel and pure diesel fuel (B0 (solar. During the road test at certain intervals in accordance with the manufacturer's maintenance recommendations, the vehicles lubricating oil replacement and other routine maintenance were required. At the completion of the test all test vehicles to be dismantled and the engine components inspected. The test results show that the most parameter of used oil lubricants still in the limits. Likewise, the condition of the vehicles engine components did not show significant difference between using the pure diesel or B20.

  1. Performance and emission characteristics of a low heat rejection engine with different air gap thicknesses with Jatropha oil based bio-diesel.

    Science.gov (United States)

    Murali Krishna, M V S; Sarita, G; Seshagiri Rao, V V R; Chowdary, R P; Ramana Reddy, Ch V

    2010-04-01

    The research work on alternate fuels has been the topic of wider interest in the context of depletion of fossil fuels and increasing of pollution levels of the engines with conventional fossil fuels. Alcohols and vegetable oils are considered to replace diesel fuels as they are renewable in nature. However, use of alcohols in internal combustion engines is limited in India, as these fuels are diverted to PetroChemical industries and hence much emphasis is given to the non-edible vegetable oils as alternate fuels in internal combustion engines. However, the drawbacks of low volatility and high viscosity associated with non-edible vegetable oils call for hot combustion chamber, provided by low heat rejection (LHR) diesel engine. Investigations are carried out on a LHR diesel engine with varied air gap thicknesses and injection pressures with jatropha oil based bio-diesel at normal temperature. Performance is improved with high degree of insulation with LHR engine with vegetable oil in comparison with conventional engine (CE) with pure diesel operation.

  2. Phytoassessment of a 5-Month Old Waste Engine Oil Polluted Soil after Augmentation with Pleurotus tuberregium

    Directory of Open Access Journals (Sweden)

    Beckley Ikhajiagbe

    2012-01-01

    Full Text Available The present study is a bioassessment of the effects of of substrate microbial augmentation on the bioremediation of Waste Engine Oil (WEO polluted soil. Four different concentrations of WEO in soil on weight basis were obtained by thoroughly mixing WEO in measured soil: 1.0, 2.5, 5.0, and 10.0% w/w. The unpolluted soil was used as the control (0% w/w experiment. The set up was left for 5 months without physically disturbing the soil. After 5 months, the soils were first amended with sawdust and then inoculated with mycelia of Pleurotus tuberregium. Nine months after bioaugmentation (9 MAB there was total (100% remediation of some PAH compounds (benzo(aanthracene, benzo(apyrene, benzo(bfluoranthene, benzo(g,h,iperylene, benzo(kfluoranthene, chrysene, dibenzo(a,hanthracene, fluoranthene, fluorene, and indeno(1,2,3-c,dpyrene was recorded. Significant (p = 0.05 decreases in heavy metal concentration from 5-9 MAB resulted in significant reductions in Hazard Quotients (HQ, which implied less possibility for ecological risk for heavy metal constituents. Phytoassessment of the polluted soil was carried at 5MAP, and results showed that virtually all the cowpea seedlings died within 2 weeks. Only those seedlings in unpolluted soils survived. Nine months after readjustment of soil treatments, all cowpea plants survived up to fruiting, with grain yields in the most polluted soil being 15.25 g/plant compared to 26.01 g/plant in the control experiment. Although heavy metals were minimally accumulated in leaves and seeds of cowpea, bioaccumulation was not significant when Bioaccumulation Quotients (BQ were computed, with BQ value ranges as 0.01-0.05 in seeds and 0.0 -0.80 in leaves. Hydrocarbons was detected in cowpea leaves but not in the seeds.

  3. Effects of Canola Oil Biodiesel Fuel Blends on Combustion, Performance, and Emissions Reduction in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Sam Ki Yoon

    2014-12-01

    Full Text Available In this study, we investigated the effects of canola oil biodiesel (BD to improve combustion and exhaust emissions in a common rail direct injection (DI diesel engine using BD fuel blended with diesel. Experiments were conducted with BD blend amounts of 10%, 20%, and 30% on a volume basis under various engine speeds. As the BD blend ratio increased, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at the low engine speed of 1500 rpm, while they increased at the middle engine speed of 2500 rpm. The brake specific fuel consumption (BSFC increased at all engine speeds while the carbon monoxide (CO and particulate matter (PM emissions were considerably reduced. On the other hand, the nitrogen oxide (NOx emissions only increased slightly. When increasing the BD blend ratio at an engine speed of 2000 rpm with exhaust gas recirculation (EGR rates of 0%, 10%, 20%, and 30%, the combustion pressure and IMEP tended to decrease. The CO and PM emissions decreased in proportion to the BD blend ratio. Also, the NOx emissions decreased considerably as the EGR rate increased whereas the BD blend ratio only slightly influenced the NOx emissions.

  4. A review of catalytic upgrading of bio-oil to engine fuels

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Grunwaldt, Jan-Dierk; Jensen, Peter Arendt

    2011-01-01

    crude oil. Two general routes for bio-oil upgrading have been considered: hydrodeoxygenation (HDO) and zeolite cracking. HDO is a high pressure operation where hydrogen is used to exclude oxygen from the bio-oil, giving a high grade oil product equivalent to crude oil. Catalysts for the reaction...... are traditional hydrodesulphurization (HDS) catalysts, such as Co–MoS2/Al2O3, or metal catalysts, as for example Pd/C. However, catalyst lifetimes of much more than 200h have not been achieved with any current catalyst due to carbon deposition. Zeolite cracking is an alternative path, where zeolites, e.g. HZSM-5......-oil results in a low H/C ratio of the oil product as no additional hydrogen is supplied. Overall, oil from zeolite cracking is of a low grade, with heating values approximately 25% lower than that of crude oil. Of the two mentioned routes, HDO appears to have the best potential, as zeolite cracking cannot...

  5. THE EFFECT OF WASTE COOKING OIL AND SUNFLOWER OIL BIOFUELS ON PERFORMANCE AND SOOT EMISSION OF A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    BENEA Bogdan Cornel

    2016-09-01

    Full Text Available Continued growth in the number of a motor vehicle has steadily increased the fuel consumption in recent years. Reserves of fossil used to produce fuels for internal combustion engines are limited and it is estimated that in the next 20 years to run out. Following the Kyoto Protocol are trying to replace polluting fossil fuels with fuels alternation, less polluting. The paper presents theoretical and experimental research on the influence of biofuels on power and soot emission of the engine fueled with biofuels. The results obtained from the simulation were compared with experimental ones.

  6. Modeling and Forecasting of Depletion of Additives in Car Engine Oils Using Attenuated Total Reflectance Fast Transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ronald Nguele

    2014-11-01

    Full Text Available On average, additives make up to 7% of a typical lubricant base. Commonly, they are blended with lube oils to enhance specific features thereby improving their qualities. Ultimately, additives participate in the performance of car engine oils. Using an analytical tool, attenuated total reflectance fast transform infrared spectroscopy, various grades of car engine oils, at different mileages, were analyzed. Sulfate oxidation and wear were found to trigger chemical processes which, in the long run, cause lubricant degradation while carbonyl oxidation was observed to occur only at a slow rate. Based upon data obtained from infrared spectra and using a curve fitting technique, mathematical equations predicting the theoretical rates of chemical change due to the aforementioned processes were examined. Additive depletions were found to obey exponential regression rather than polynomial. Moreover, breakpoint (breakpoint is used here to denote the initiation of deterioration of additives and critical mileage (critical mileage defines the distance at which the lubricant is chemically unusable of both samples were determined.

  7. ESEMISSION ANALYSIS OF SINGLE CYLINDER DIESEL ENGINE FUELED WITH PYROLYSIS OIL DIESEL AND IT’S BLEND WITH ETHANOL

    Directory of Open Access Journals (Sweden)

    Mr. Hirenkumar M. Patel

    2012-06-01

    Full Text Available Around the world, initiatives are being taken to replace gasoline and diesel fuel due to the impact of the fossil fuel crisis, increase in oil price, and the adoption of stringent emission norms. Increase in energy demand, stringent emission norms and depletion of oil resources led the researchers to find alternative fuels for internalcombustion engines. Many alternate fuels like Alcohols, Biodiesel, methanol, ethanol, LPG, CNG etc have been already commercialized in the transport sector. In this context, pyrolysis of solid waste is currently receiving renewed interest. Tests have been carried out to evaluate the emission analysis of a single cylinder direct injection diesel engine fueled with 10%, 15%, and 20% of tyre pyrolysis oil (TPO blended with diesel fuel (DF. The TPO was derived from waste automobile tires through vacuum pyrolysis. HC and CO emissions werefound to be higher at all loads due to the high aromatic content. Ethanol was added in concentration of 5%, 10% and 15% to reduce emission characteristics. Results show that CO and HC both reduced due to the addition of ethanol because ethanol is an oxygenated additives.

  8. Combusting vegetable oils in diesel engines: the impact of unsaturated fatty acids on particle emissions and mutagenic effects of the exhaust.

    Science.gov (United States)

    Bünger, Jürgen; Bünger, Jörn F; Krahl, Jürgen; Munack, Axel; Schröder, Olaf; Brüning, Thomas; Hallier, Ernst; Westphal, Götz A

    2016-06-01

    High particle emissions and strong mutagenic effects were observed after combustion of vegetable oil in diesel engines. This study tested the hypothesis that these results are affected by the amount of unsaturated or polyunsaturated fatty acids of vegetable oils. Four different vegetable oils (coconut oil, CO; linseed oil, LO; palm tree oil, PO; and rapeseed oil, RO) and common diesel fuel (DF) were combusted in a heavy-duty diesel engine. The exhausts were investigated for particle emissions and mutagenic effects in direct comparison with emissions of DF. The engine was operated using the European Stationary Cycle. Particle masses were measured gravimetrically while mutagenicity was determined using the bacterial reverse mutation assay with tester strains TA98 and TA100. Combustion of LO caused the largest amount of total particulate matter (TPM). In comparison with DF, it particularly raised the soluble organic fraction (SOF). RO presented second highest TPM and SOF, followed by CO and PO, which were scarcely above DF. RO revealed the highest number of mutations of the vegetable oils closely followed by LO. PO was less mutagenic, but still induced stronger effects than DF. While TPM and SOF were strongly correlated with the content of polyunsaturated fatty acids in the vegetable oils, mutagenicity had a significant correlation with the amount of total unsaturated fatty acids. This study supports the hypothesis that numbers of double bounds in unsaturated fatty acids of vegetable oils combusted in diesel engines influence the amount of emitted particles and the mutagenicity of the exhaust. Further investigations have to elucidate the causal relationship.

  9. EXPERIMENTAL COMBUSTION ANALYSIS OF A HSDI DIESEL ENGINE FUELLED WITH PALM OIL BIODIESEL-DIESEL FUEL BLENDS

    Directory of Open Access Journals (Sweden)

    JOHN AGUDELO

    2009-01-01

    Full Text Available Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB, No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively. To isolate the fuel effect, tests were executed at constant power output without carrying out any modification of the engine or its fuel injection system. As the POB content in the blend increased, there was a slight reduction in the fuel/air equivalence ratio from 0.39 (B0 to 0.37 (B100, an advance of injection timing and of start of combustion. Additionally, brake thermal efficiency, combustion duration, maximum mean temperature, temperature at exhaust valve opening and exhaust gas efficiency decreased; while the peak pressure, exergy destruction rate and specific fuel consumption increased. With diesel fuel and the blends B20 and B50 the same combustion stages were noticed. However, as a consequence of the differences pointed out, the thermal history of the process was affected. The diffusion combustion stage became larger with POB content. For B100 no premixed stage was observed.

  10. PERFORMANCE, EMISSION, AND COMBUSTION CHARACTERISTICS OF A CI ENGINE USING LIQUID PETROLEUM GAS AND NEEM OIL IN DUAL FUEL MODE

    Directory of Open Access Journals (Sweden)

    Palanimuthu Vijayabalan

    2010-01-01

    Full Text Available Increased environmental awareness and depletion of resources are driving the industries to develop viable alternative fuels like vegetable oils, compresed natural gas, liquid petroleum gas, producer gas, and biogas in order to provide suitable substitute to diesel for compression ignition engine. In this investigation, a single cylinder, vertical, air-cooled diesel engine was modified to use liquid petroleum gas in dual fuel mode. The liquefied petroleum gas, was mixed with air and supplied through intake manifold. The liquid fuel neem oil or diesel was injected into the combustion chamber. The performance, emission, and combustion characteristics were studied and compared for neat fuel and dual fuel mode. The experimental results on dual fuel engine show a reduction in oxides of nitrogen up to 70% of the rated power and smoke in the entire power range. However the brake thermal efficiency was found decreased in low power range due to lower calorific value of liquid petroleum gas, and increase in higher power range due to the complete burning of liquid petroleum gas. Hydrocarbon and carbon monoxide emissions were increased significantly at lower power range and marginal variation in higher power range.

  11. Drilling fluids engineering to drill extra-heavy oil reservoir on the Orinoco Oil Belt, eastern Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Pino, R.; Gonazalez, W. [Proamsa, Maturin, Monagas (Venezuela)

    2008-07-01

    Petrocedeno is an exploration and development company operating in Venezuela. As part of a multidisciplinary group, Proamsa has been working with Petrocedeno to drill horizontal wells while minimizing issues related to the handling of drilling fluids. Proamsa is the only 100 per cent Venezuelan Company involved in drilling extra-heavy oil wells. The drilling plan for Petrocedeno was divided into two campaigns. More than 400 horizontal wells were drilled during the first campaign from 1999 to 2003 which represented over 2,500,000 drilled feet into the Oficina Formation (pay zone of the field). From 2006, during the second drilling campaign, and another 154 horizontal wells having been drilled until 2006 utilizing the xantam gum viscoelastic fluid. This paper discussed the field geology of the Orinoco oil belt. Well design was also explained and discussed and drilling fluid design and new fluid formations were presented. The benefits of xantam gum viscoelastic fluid were also discussed. It was concluded that recycling of drilling fluid from well to well minimized volume and reduced costs. In addition, centrifugation of drilling fluids either on intermediate or horizontals sections while the rig was skidding was always a very good practice avoiding mixing additional volumes. It was also demonstrated that the initial idea to provide a drilling fluid service company with a 100 per cent national value was a success, as demonstrated by the high performance shown by Proamsa during the second drilling campaign with external technologic support. 6 refs., 4 tabs., 4 figs.

  12. Evaluation of Oil-Industry Stimulation Practices for Engineered Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Peter Van Dyke; Leen Weijers; Ann Robertson-Tait; Norm Warpinski; Mike Mayerhofer; Bill Minner; Craig Cipolla

    2007-10-17

    Geothermal energy extraction is typically achieved by use of long open-hole intervals in an attempt to connect the well with the greatest possible rock mass. This presents a problem for the development of Enhanced (Engineered) Geothermal Systems (EGS), owing to the challenge of obtaining uniform stimulation throughout the open-hole interval. Fluids are often injected in only a fraction of that interval, reducing heat transfer efficiency and increasing energy cost. Pinnacle Technologies, Inc. and GeothermEx, Inc. evaluated a variety of techniques and methods that are commonly used for hydraulic fracturing of oil and gas wells to increase and evaluate stimulation effectiveness in EGS wells. Headed by Leen Weijers, formerly Manager of Technical Development at Pinnacle Technologies, Inc., the project ran from August 1, 2004 to July 31, 2006 in two one-year periods to address the following tasks and milestones: 1) Analyze stimulation results from the closest oil-field equivalents for EGS applications in the United States (e.g., the Barnett Shale in North Texas) (section 3 on page 8). Pinnacle Technologies, Inc. has collected fracture growth data from thousands of stimulations (section 3.1 on page 12). This data was further evaluated in the context of: a) Identifying techniques best suited to developing a stimulated EGS fracture network (section 3.2 on page 29), and b) quantifying the growth of the network under various conditions to develop a calibrated model for fracture network growth (section 3.3 on page 30). The developed model can be used to design optimized EGS fracture networks that maximize contact with the heat source and minimize short-circuiting (section 3.4 on page 38). 2) Evaluate methods used in oil field applications to improve fluid diversion and penetration and determine their applicability to EGS (section 4 on page 50). These methods include, but are not limited to: a) Stimulation strategies (propped fracturing versus water fracturing versus injecting

  13. 32P-postlabelling analysis of DNA adducts in the skin of mice treated with petrol and diesel engine lubricating oils and exhaust condensates.

    Science.gov (United States)

    Schoket, B; Hewer, A; Grover, P L; Phillips, D H

    1989-08-01

    Samples of unused or used petrol and diesel engine lubricating oils were applied to the shaved dorsal skin of 4- to 6-week-old male Parkes mice, either as a single treatment (50 microliters/mouse) or as four consecutive daily treatments (50 microliters/application). DNA isolated from the skin 24 h after the final treatment was digested to 3'-mononucleotides and analysed by 32P-postlabelling for the presence of aromatic adducts. Enhancement of sensitivity using butanol extraction or nuclease P1 digestion of the DNA hydrolysates led to the detection of up to eight adduct spots on polyethyleneimine-cellulose thin-layer chromatograms with samples of DNA from skin treated with used engine oils, at levels of 40-150 amol total adducts/micrograms DNA. Multiple treatments with the used oils gave rise to similar patterns of adducts in lung DNA. A single treatment of mouse skin with petrol engine exhaust condensate (50 microliters), or diesel engine exhaust condensate (50 microliters), containing 20 and 46 micrograms benzo[a]pyrene (BaP)/g respectively, gave rise to approximately 75 amol total adducts/micrograms DNA in skin. A significant proportion, 31 and 48% respectively, of the adducts formed by the petrol and diesel engine exhaust condensates co-chromatographed with the major BaP-DNA adduct, but with the used engine oils, only petrol engine oil, and not diesel engine oil, produced significant amounts of an adduct (22% of total) that corresponded to the BaP-DNA adduct.

  14. Experimental and analytical investigation on the emission and combustion characteristics of CI engine fueled with tamanu oil methyl esters

    Directory of Open Access Journals (Sweden)

    Perumal Navaneetha Krishnan

    2016-01-01

    Full Text Available The emission and combustion characteristics of a four stroke multi fuel single cylinder variable compression ratio engine fueled with tamanu oil methyl ester and its blends 10%, 20%, 40%, and 60% with diesel (on volume basis are examined and compared with standard diesel. Biodiesel produced from tamanu oil by trans-esterification process has been used in this study. The experiment has been conducted at a constant engine speed of 1500 rpm with 50% load and at compression ratios of 16:1, 17:1, 18:1, 19:1, and 20:1. With different blend and for selected compression ratio the exhaust gas emissions such as CO, HC, NOx, CO2, and the combustion characteristics are measured. The variation of the emission parameters for different compression ratios and for different blends is given, and optimum compression ratio which gives best performance has been identified. The results indicate higher rate of pressure rise and minimum heat release rate at higher compression ratio for tamanu oil methyl ester when compared with standard diesel. The blend B40 for tamanu oil methyl ester is found to give minimum emission at 50% load. The blend when used as fuel results in reduction of polluting gases like HC, CO, and increase in NOx emissions. The previously mentioned emission parameters have been validated with the aid of artificial neural network. A separate model is developed for emission characteristics in which compression ratio, blend percentage and load percentage were used as the input parameter whereas CO, CO2, HC, and NOx were used as the output parameter. This study shows that there is a good correlation between the artificial neural network predicted values and the experimental data for different emission parameters.

  15. Experimental investigation of the effects of diesel-like fuel obtained from waste lubrication oil on engine performance and exhaust emission

    Energy Technology Data Exchange (ETDEWEB)

    Arpa, Orhan [Dicle University, Mechanical Engineering Department, Diyarbakir (Turkey); Yumrutas, Recep [University of Gaziantep, Mechanical Engineering Department, Gaziantep (Turkey); Argunhan, Zeki [University of Batman, Mechanical Engineering Department, Batman (Turkey)

    2010-10-15

    In this study, effects of diesel-like fuel (DLF) on engine performance and exhaust emission are investigated experimentally. The DLF is produced from waste engine lubrication oil purified from dust, heavy carbon soot, metal particles, gum-type materials and other impurities. A fuel production system mainly consisting of a waste oil storage tank, filters, a reactor, oil pump, a product storage tank, thermostats and control panel is designed and manufactured. The DLF is produced by using the system and applying pyrolitic distillation method. Characteristics, performance and exhaust emissions tests of the produced DLF are carried out at the end of the production. The characteristic tests such as density, viscosity, flash point, heating value, sulfur content and distillation of the DLF sample are performed utilizing test equipments presented in motor laboratory of Mechanical Engineering Department, University of Gaziantep, Turkey. Performance and exhaust emission tests for the DLF are performed using diesel test engine. It is observed from the test results that about 60 cc out of each 100 cc of the waste oil are converted into the DLF. Characteristics and distillation temperatures of the DLF are close to those values of a typical diesel fuel sample. It is observed that the produced DLF can be used in diesel engines without any problem in terms of engine performance. The DLF increases torque, brake mean effective pressure, brake thermal efficiency and decreases brake specific fuel consumption of the engine for full power of operation. (author)

  16. Effect of Warm Asphalt Additive on the Creep and Recovery Behaviour of Aged Binder Containing Waste Engine Oil

    Science.gov (United States)

    Hassan, Norhidayah Abdul; Kamaruddin, Nurul Hidayah Mohd; Rosli Hainin, Mohd; Ezree Abdullah, Mohd

    2017-08-01

    The use of waste engine oil as an additive in asphalt mixture has been reported to be able to offset the stiffening effect caused by the recycled asphalt mixture. Additionally, the fumes and odor of the waste engine oil has caused an uncomfortable condition for the workers during road construction particularly at higher production temperature. Therefore, this problem was addressed by integrating chemical warm asphalt additive into the mixture which functions to reduce the mixing and compaction temperature. This study was initiated by blending the additive in the asphalt binder of bitumen penetration grade 80/100 prior to the addition of pavement mixture. The effect of chemical warm asphalt additive, Rediset WMX was investigated by modifying the aged binder containing waste engine oil with 0%, 1%, 2% and 3% by weight of the binder. The samples were then tested for determining the rutting behaviour under different loading stress levels of 3Pa (low), 10Pa (medium) and 50Pa (high) using Dynamic Shear Rheometer (DSR). A reference temperature of 60 °C was fixed to reflect the maximum temperature of the pavement. The results found that the addition of Rediset did not affect the creep and recovery behavior of the modified binder under different loading. On the other hand, 2% Rediset resulted a slight decrease in its rutting resistance as shown by the reduction of non-recoverable compliance under high load stress. However, overall, the inclusion of chemical warm asphalt additive to the modified binder did not adversely affect the rutting resistance which could be beneficial in lowering the temperature of asphalt production and simultaneously not compromising the binder properties.

  17. Evaluation of a diesel engine running with stationary mixtures of soybean oil and reused oil diesel; Avaliacao de um motor diesel estacionario funcionando com misturas de oleo de soja reutilizado e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Maronhas, Maite E.S.; Fernandes, Haroldo C.; Siqueira, Wagner C.; Figueiredo, Augusto C. [Universidade Federal de Vicosa (UFV), MG (Brazil)], Emails: maronhas@gmail.com, haroldo@ufv.br, augusto.figueiredo@ufv.br

    2009-07-01

    The tests were conducted at the Laboratory of Agricultural Mechanization Department of Agricultural Engineering, Federal University of Vicosa using a stationary diesel engine Yanmar brand NS{sub B} 75, with nominal power of 5.8 kw at 2400 rpm, direct injection, and water cooled. This work aimed to examine the reuse of soybean oil to drive the engine stationary. Were used as fuel five mixtures of diesel oil (DO) and soybean oil (OS) re-used in the kitchen of the restaurant of the university in the proportions of 0-100%, 25-75%, 50-50%, 75-25 % and 100-0% respectively. The power and torque of the engine is higher for the mixture showed a 75% OD and 25% OS and 25% lower for DO and 75% OS. The lowest hourly consumption was with a mixture of 25% and 75% OD and OS was 15% lower than for the pure diesel. The values found justifying the use of mixtures of diesel and soybean oil reused, but the technical aspects, especially regarding the wear of the engine, must be evaluated to indicate the use after a long period of engine operation. (author)

  18. EVALUATION OF POLLUTANT EMISSIONS FROM TWO-STROKE MARINE DIESEL ENGINE FUELED WITH BIODIESEL PRODUCED FROM VARIOUS WASTE OILS AND DIESEL BLENDS

    Directory of Open Access Journals (Sweden)

    Danilo Nikolić

    2016-12-01

    Full Text Available Shipping represents a significant source of diesel emissions, which affects global climate, air quality and human health. As a solution to this problem, biodiesel could be used as marine fuel, which could help in reducing the negative impact of shipping on environment and achieve lower carbon intensity in the sector. In Southern Europe, some oily wastes, such as wastes from olive oil production and used frying oils could be utilized for production of the second-generation biodiesel. The present research investigates the influence of the second-generation biodiesel on the characteristics of gaseous emissions of NOx, SO2, and CO from marine diesel engines. The marine diesel engine that was used, installed aboard a ship, was a reversible low-speed two-stroke engine, without any after-treatment devices installed or engine control technology for reducing pollutant emission. Tests were carried out on three regimes of engine speeds, 150 rpm, 180 rpm and 210 rpm under heavy propeller condition, while the ship was berthed in the harbor. The engine was fueled by diesel fuel and blends containing 7% and 20% v/v of three types of second-generation biodiesel made of olive husk oil, waste frying sunflower oil, and waste frying palm oil. A base-catalyzed transesterification was implemented for biodiesel production. According to the results, there are trends of NOx, SO2, and CO emission reduction when using blended fuels. Biodiesel made of olive husk oil showed better gaseous emission performances than biodiesel made from waste frying oils.

  19. The modification of plant oil composition via metabolic engineering--better nutrition by design.

    Science.gov (United States)

    Haslam, Richard P; Ruiz-Lopez, Noemi; Eastmond, Peter; Moloney, Maurice; Sayanova, Olga; Napier, Johnathan A

    2013-02-01

    This article will focus on the modification of plant seed oils to enhance their nutritional composition. Such modifications will include C18 Δ6-desaturated fatty acids such as γ-linolenic and stearidonic acid, omega-6 long-chain polyunsaturated fatty acids such as arachidonic acid, as well as the omega-3 long-chain polyunsaturated fatty acids (often named 'fish oils') such as eicosapentaenoic acid and docosahexaenoic acid. We will consider how new technologies (such as synthetic biology, next-generation sequencing and lipidomics) can help speed up and direct the development of desired traits in transgenic oilseeds. We will also discuss how manipulating triacylglycerol structure can further enhance the nutritional value of 'designer' oils. We will also consider how advances in model systems have translated into crops and the potential end-users for such novel oils (e.g. aquaculture, animal feed, human nutrition).

  20. SRC burn test in 700-hp oil-designed boiler. Volume 2. Engineering evaluation report. Final technical report. [Oil-fired boiler to solvent-refined coal

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    Volume 2 of this report gives the results of an engineering evaluation study and economic analysis of converting an existing 560-MW residual (No. 6) oil-fired unit to burn solvent refined coal (SRC) fuel forms. Volume 1 represents an integrated overview of the test program conducted at the Pittsburgh Energy Technology Center. Three SRC forms (pulverized SRC, a solution of SRC dissolved in process-derived distillates, and a slurry of SRC and water) were examined. The scope of modifications necessary to convert the unit to each of the three SRC fuel forms was identified and a capital cost of the necessary modifications estimated. A fuel conversion feasibility study of the boiler was performed wherein boiler modifications and performance effects of each fuel on the boiler were identified. An economic analysis of the capital and operating fuel expenses of conversion of the unit was performed. It was determined that conversion of the unit to any one of the three SRC fuel forms was feasible where appropriate modifications were made. It also was determined that the conversion of the unit can be economically attractive if SRC fuel forms can be manufactured and sold at prices discounted somewhat from the price of No. 16 Fuel Oil. As expected, greater discounts are required for the pulverized SRC and the slurry than for the solution of SRC dissolved in process-derived distillates.

  1. Effect of the use of waste vegetable oil based biodiesel on the landscape in diesel engines

    Directory of Open Access Journals (Sweden)

    Bereczky Akos

    2017-01-01

    Full Text Available Petroleum-based fuels are now widely known as environmentally unfriendly because of non-renewable supplies and its contribution to environmental pollution. The challenge, therefore is to ensure appropriate energy supplies at minimum cost. There is an increasing energy demand in the world and nowadays it can be fulfilled only on the basis of fossil fuels. Therefore, it is necessary to evolve a renewable energy source with lower environmental impact. One alternative solution can be oils of plant origin, like vegetable oils and non-edible oils. With waste vegetable oil methyl ester, biofuel dependency can be decreased. Therefore, the aim of this research paper is to analyze the economic and environmental effect of waste vegetable oil methyl ester compared to fossil fuels. In some cases only the age of vehicles could raise burdens to biofuel utilization in road vehicles. Transport and energy policy – on a large scale – can play an important role in fuel consumption. Author is aware that waste vegetable oil methyl ester can play only a limited role in biofuel substitution.

  2. Conversion of by-products from the vegetable oil industry into biodiesel and its use in internal combustion engines: a review

    Directory of Open Access Journals (Sweden)

    R. Piloto-Rodríguez

    2014-06-01

    Full Text Available Biodiesel produced from by-products and waste materials can be an economical way of reducing traditional oil consumption and environmental problems. The by-products from the vegetable oil refining industry such as soapstock, acid oil and fatty acid distillates are suitable for producing biodiesel. The present work is a survey related to the use of these by-products to obtain biodiesel, covering not only the traditional and most widely used acid/base catalysis, but also solid and enzymatic catalysis. Details of the techniques are presented and compared. The advantages and drawbacks of the different approaches are mentioned and analyzed. The synthesis and use of by-products from the vegetable oil refining industry are covered in this work. The use of the obtained biodiesel in diesel engines is also included, demonstrating the disparity between the number of papers related to biodiesel production and engine performance assessment.

  3. BEHAVIOUR OF ZEOLITE 4A IN THE EXTRACTION PROCESS OF THE DIESEL LIKE FUEL OBTAINED FROM WASTE ENGINE OIL

    Directory of Open Access Journals (Sweden)

    M. KANNAN

    2015-12-01

    Full Text Available The aim of the present study is to recycle and reuse the WEO as an alternative fuel for compression ignition (CI engine. For this purpose the WEO was cracked in the catalytic fuel reformer by using the catalyst zeolite 4A. The output of the catalytic fuel reformer is in the gaseous form which is condensed using water cooled condenser. The oil obtained after condensing the reformulated gas is named as WEOZ. To know the suitability of using the WEOZ as alternate fuel for IC engines, the different properties of WEOZ were determined. The different properties include specific gravity, kinematic viscosity, flash and fire point, gross calorific value, pour point, density. The properties of WEOZ were compared to that of diesel fuel. All the fuel properties are closer to that of the neat diesel fuel. The FTIR analysis was also be conducted for diesel and WEOZ. The result of FTIR analysis was compared to that of diesel fuel. The FTIR result revealed that the major transmittance spectrums peak for diesel and WEOZ were alkanes and the presence of the hydrocarbon was clearly seen in the WEOZ. Based on this investigation, it was suggested that WEOZ has a potential to be used as alternate fuel for diesel engine. Hence an environmentally unfriendly WEO can be recycled into a useful resource and serves as an alternative source of fuel for diesel engine.

  4. Study of Miller timing on exhaust emissions of a hydrotreated vegetable oil (HVO)-fueled diesel engine.

    Science.gov (United States)

    Heikkilä, Juha; Happonen, Matti; Murtonen, Timo; Lehto, Kalle; Sarjovaara, Teemu; Larmi, Martti; Keskinen, Jorma; Virtanen, Annele

    2012-11-01

    The effect of intake valve closure (IVC) timing by utilizing Miller cycle and start of injection (SOI) on particulate matter (PM), particle number and nitrogen oxide (NOx) emissions was studied with a hydrotreated vegetable oil (HVO)-fueled nonroad diesel engine. HVO-fueled engine emissions, including aldehyde and polyaromatic hydrocarbon (PAH) emissions, were also compared with those emitted with fossil EN590 diesel fuel. At the engine standard settings, particle number and NOx emissions decreased at all the studied load points (50%, 75%, and 100%) when the fuel was changed from EN590 to HVO. Adjusting IVC timing enabled a substantial decrease in NOx emission and combined with SOI timing adjustment somewhat smaller decrease in both NOx and particle emissions at IVC -50 and -70 degrees CA points. The HVO fuel decreased PAH emissions mainly due to the absence of aromatics. Aldehyde emissions were lower with the HVO fuel with medium (50%) load. At higher loads (75% and 100%), aldehyde emissions were slightly higher with the HVO fuel. However, the aldehyde emission levels were quite low, so no clear conclusions on the effect of fuel can be made. Overall, the study indicates that paraffinic HVO fuels are suitable for emission reduction with valve and injection timing adjustment and thus provide possibilities for engine manufacturers to meet the strictening emission limits.

  5. Performance, emission and economic assessment of clove stem oil-diesel blended fuels as alternative fuels for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Mbarawa, Makame [Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa)

    2008-05-15

    In this study the performance, emission and economic evaluation of using the clove stem oil (CSO)-diesel blended fuels as alternative fuels for diesel engine have been carried out. Experiments were performed to evaluate the impact of the CSO-diesel blended fuels on the engine performance and emissions. The societal life cycle cost (LCC) was chosen as an important indicator for comparing alternative fuel operating modes. The LCC using the pure diesel fuel, 25% CSO and 50% CSO-diesel blended fuels in diesel engine are analysed. These costs include the vehicle first cost, fuel cost and exhaust emissions cost. A complete macroeconomic assessment of the effect of introducing the CSO-diesel blended fuels to the diesel engine is not included in the study. Engine tests show that performance parameters of the CSO-diesel blended fuels do not differ greatly from those of the pure diesel fuel. Slight power losses, combined with an increase in fuel consumption, were experienced with the CSO-diesel blended fuels. This is due to the low heating value of the CSO-diesel blended fuels. Emissions of CO and HC are low for the CSO-diesel blended fuels. NO{sub x} emissions were increased remarkably when the engine was fuelled with the 50% CSO-diesel blended fuel operation mode. A remarkable reduction in the exhaust smoke emissions can be achieved when operating on the CSO-diesel blended fuels. Based on the LCC analysis, the CSO-diesel blended fuels would not be competitive with the pure diesel fuel, even though the environmental impact of emission is valued monetarily. This is due to the high price of the CSO. (author)

  6. Surface and Wear Analysis of Zinc Phosphate Coated Engine Oil Ring and Cylinder Liner Tested with Commercial Lubricant

    Directory of Open Access Journals (Sweden)

    Doğuş Özkan

    2014-09-01

    Full Text Available The objective of this study was to evaluate the tribological performance through investigating protective additive layer and friction coefficient and implementing the quantitative wear measurements on the rubbed surface of the sliding pairs. The specimens of oil ring were rubbed against cast iron engine cylinder liner under boundary lubrication conditions. The ring and liner surfaces were examined by optical, scanning electron microscope and atomic force microscopy. The elemental analysis of surfaces was performed by using energy dispersive X-ray spectroscopy. Surface observations showed that coating was removed from the ring surface. Higher levels of Ca, Zn, P, and S elemental ratios (0.93%, 0.45%, 1.55%, and 1.60% as atomic percent were detected on the cylinder liner surface. Wear width, length, and depth measurements were performed by optical and atomic force microscopies on the ring and cylinder liner surface. The results showed that wear widths for oil ring were 1.59 μm and 1.65 μm; wear widths for cylinder liner were 3.20 μm and 3.18 μm; wear depths for oil ring were 100 nm; and wear depths for cylinder liner were 482 nm. Wear data were taken mostly from the additive layer points detected by SEM and X-ray measurements.

  7. Integrated, multidisciplinary reservoir characterization, modeling and engineering leading to enhanced oil recovery from the Midway-Sunset field, California

    Energy Technology Data Exchange (ETDEWEB)

    Schamel, S.; Forster, C.; Deo, M. (Univ. of Utah, Salt Lake City, UT (United States)) (and others)

    1996-01-01

    The Pru Fee property is developed in a heavy oil, Class III (slope and basin clastic sand), reservoir of the Midway-Sunset field, San Joaquin Basin, California. Wells on the property were shut-in with an estimated 85% of the original oil remaining in place because the reservoir failed to respond to conventional cyclic steaming. Producibility problems are attributed to the close proximity of the property to the margin of the field. Specific problems include complex reservoir geometry, thinning pay, bottom water, and dipping beds. These problems are likely common at the margins of the Midway-Sunset and other Class III reservoirs. This project forms the first step in returning the property to production and explores strategies that might be applied elsewhere. Reservoir characterization, modeling, and engineering methods are integrated to design, simulate, and implement a pilot steam flood. A new drillhole provides good quality, core through the pay zone and a full suite of geophysical logs. Correlations between geological and petrophysical data are used to extrapolate reservoir conditions from older logs and yield a 3-dimensional petrophysical model. Numerical results illustrate how each producibility problem might influence production and provide a framework for designing the pilot steam flood. This first phase illustrates how a multidisciplinary team can use established technologies in developing the detailed petrophysical, geological, and numerical models needed to enhance oil recovery from marginal areas of Class III reservoirs.

  8. Integrated, multidisciplinary reservoir characterization, modeling and engineering leading to enhanced oil recovery from the Midway-Sunset field, California

    Energy Technology Data Exchange (ETDEWEB)

    Schamel, S.; Forster, C.; Deo, M. [Univ. of Utah, Salt Lake City, UT (United States)] [and others

    1996-12-31

    The Pru Fee property is developed in a heavy oil, Class III (slope and basin clastic sand), reservoir of the Midway-Sunset field, San Joaquin Basin, California. Wells on the property were shut-in with an estimated 85% of the original oil remaining in place because the reservoir failed to respond to conventional cyclic steaming. Producibility problems are attributed to the close proximity of the property to the margin of the field. Specific problems include complex reservoir geometry, thinning pay, bottom water, and dipping beds. These problems are likely common at the margins of the Midway-Sunset and other Class III reservoirs. This project forms the first step in returning the property to production and explores strategies that might be applied elsewhere. Reservoir characterization, modeling, and engineering methods are integrated to design, simulate, and implement a pilot steam flood. A new drillhole provides good quality, core through the pay zone and a full suite of geophysical logs. Correlations between geological and petrophysical data are used to extrapolate reservoir conditions from older logs and yield a 3-dimensional petrophysical model. Numerical results illustrate how each producibility problem might influence production and provide a framework for designing the pilot steam flood. This first phase illustrates how a multidisciplinary team can use established technologies in developing the detailed petrophysical, geological, and numerical models needed to enhance oil recovery from marginal areas of Class III reservoirs.

  9. Engine performance and emission characteristics of plastic oil produced from waste polyethylene and its blends with diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Sudong; Tan, Zhongchao [Department of Mechanical and Mechatronics Engineering, University of Waterloo (Canada)], Email: tanz@uwaterloo.ca

    2011-07-01

    This paper describes an experiment to determine the possibility of transforming waste plastics into a potential source of diesel fuel. Experiments were done on the use of various blends of plastic oil produced from waste polyethylene (WPE) with diesel fuel (D) at different volumetric ratios and the results were reviewed. WPE was thermally degraded with catalysis of sodium aluminum silicate at optimum conditions (414-480 degree celsius range and 1 h reaction time) and the collected oil was fractionated at various temperatures. The properties of the fuel blends at different volumetric ratios were measured in this study. It was shown that these blends can be used as fuel in compression ignition engines without any modification. With respect to engine performance and exhaust emission, it was found that using a 5% WPE-D (WPE5) blend instead of diesel fuel reduced carbon monoxide (CO) emission. However, the results of experiment showed that carbon dioxide (CO2) emission and oxides of nitrogen (NOx) emission rose.

  10. Performance and exhaust emission characteristics of variable compression ratio diesel engine fuelled with esters of crude rice bran oil.

    Science.gov (United States)

    Vasudeva, Mohit; Sharma, Sumeet; Mohapatra, S K; Kundu, Krishnendu

    2016-01-01

    As a substitute to petroleum-derived diesel, biodiesel has high potential as a renewable and environment friendly energy source. For petroleum importing countries the choice of feedstock for biodiesel production within the geographical region is a major influential factor. Crude rice bran oil is found to be good and viable feedstock for biodiesel production. A two step esterification is carried out for higher free fatty acid crude rice bran oil. Blends of 10, 20 and 40 % by vol. crude rice bran biodiesel are tested in a variable compression ratio diesel engine at compression ratio 15, 16, 17 and 18. Engine performance and exhaust emission parameters are examined. Cylinder pressure-crank angle variation is also plotted. The increase in compression ratio from 15 to 18 resulted in 18.6 % decrease in brake specific fuel consumption and 14.66 % increase in brake thermal efficiency on an average. Cylinder pressure increases by 15 % when compression ratio is increased. Carbon monoxide emission decreased by 22.27 %, hydrocarbon decreased by 38.4 %, carbon dioxide increased by 17.43 % and oxides of nitrogen as NOx emission increased by 22.76 % on an average when compression ratio is increased from 15 to 18. The blends of crude rice bran biodiesel show better results than diesel with increase in compression ratio.

  11. Combustion and emission characteristics of a dual fuel engine operated with mahua oil and liquefied petroleum gas

    Directory of Open Access Journals (Sweden)

    Nadar Kapilan N.

    2008-01-01

    Full Text Available For the present work, a single cylinder diesel engine was modified to work in dual fuel mode. To study the feasibility of using methyl ester of mahua oil as pilot fuel, it was used as pilot fuel and liquefied petroleum gas was used as primary fuel. In dual fuel mode, pilot fuel quantity and injector opening pressure are the few variables, which affect the performance and emission of dual fuel engine. Hence, in the present work, pilot fuel quantity and injector opening pressure were varied. From the test results, it was observed that the pilot fuel quantity of 5 mg per cycle and injector opening pressure of 200 bar results in higher brake thermal efficiency. Also the exhaust emissions such as smoke, unburnt hydrocarbon and carbon monoxide are lower than other pressures and pilot fuel quantities. The higher injection pressure and proper pilot fuel quantity might have resulted in better atomization, penetration of methyl ester of mahua oil and better combustion of fuel.

  12. An Experimental Investigation on Performance and Emissions Characteristics of Jatropha Oil Blends with Diesel in a Direct Injection Compression Ignition Engine

    Science.gov (United States)

    De, B.; Bose, P. K.; Panua, R. S.

    2012-07-01

    Continuous effort to reducing pollutant emissions, especially smoke and nitrogen oxides from internal combustion engines, have promoted research for alternative fuels. Vegetable oils, because of their agricultural origin and due to less carbon content compared to mineral diesel are producing less CO2 emissions to the atmosphere. It also reduces import of petroleum products. In the present contribution, experiments were conducted using Jatropha oil blends with diesel to study the effect on performance and emissions characteristics of a existing diesel engine. In this study viscosity of Jatropha oil was reduced by blending with diesel. A single cylinder, four stroke, constant speed, water cooled, diesel engine was used. The results show that for lower blend concentrations various parameters such as thermal efficiency, brake specific fuel consumption, smoke opacity, CO2, and NO x emissions are acceptable compared to that of mineral diesel. But, it was observed that for higher blend concentrations, performance and emissions were much inferior compared to diesel.

  13. POSSIBILITIES OF USING THE ECOLOGICAL OIL ARNICA S 46 IN AGRICULTURAL ENGINEERING

    Directory of Open Access Journals (Sweden)

    Juraj Rusnák

    2013-12-01

    Full Text Available This paper deals with a possible use of biodegradable oil for lubrication of tribological nodes in hydraulic and transmission systems. They are mainly used in agriculture and forestry. For this reason, the research project was aimed mostly at hydraulic and gear oils, directly or indirectly designated for machinery working in these fields. The oil was tested according to the standard ASTM G77-05(2010. The study of the tribological node included monitoring the friction factor depending on time, and monitoring the temperature of the sliding node depending on time. In the triboelement shaft – bearing, we monitored the weight losses as well as changes in the selected characteristic of contact surface roughness. The monitored characteristic was Ra. A complete picture of geometric changes of the tested triboelement was described by the geometric deviation of cylindricity. The system also includes the study of lubricating medium. We determined the initial and final code of oil purity. The characteristics were statistically evaluated. Two oils were tested: PP 80 (producer: Slovnaft Bratislava and ARNICA S 46 (producer: Agip. According to the results, both oils are appropriate for using in given conditions. No significant differences in their tribological characteristics were found. In conclusion, the results confirmed that the suggested system for evaluating the suitability of biodegradable lubricants is applicable in given laboratory or operating conditions. The conclusions can be used in practice for choosing the lubricant. The results can also help to create an order of appropriate oils. The conclusions can also be used by producers of lubricants as information about functional characteristics of their products.

  14. Abnormal combustion caused by lubricating oil in high BMEP gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Yasueda, Shinji [Kyushu Univ. (Japan). GDEC Gas and Diesel Engine; Takasaki, Koji; Tajima, Hiroshi [Kyushu Univ. (Japan). Lab. of Engine and Combustion (ECO)

    2013-05-15

    In recent years, abnormal combustion with high peak firing pressure has been experienced on gas engines with high brake mean effective pressures. The abnormality is detected not as pre-ignition but as knocking. Research, including visualisation tests on a single-cylinder engine, has confirmed the phenomenon to be pre-ignition caused by the auto-ignition of in-cylinder lubricant, causing cyclical variations of peak firing pressure on premix combustion gas engines. (orig.)

  15. Research on rapeseed oil as an alternative fuel in the S195 type diesel engine%S195柴油机燃用菜籽油的试验

    Institute of Scientific and Technical Information of China (English)

    陈军; 师帅兵; 韩冰; 张娟利; 卢红春

    2001-01-01

    Using rapeseed oil as the fuel,the fuel performance of S195 type diesel engine was studied.It indicated that it is feasible to burn rapeseed oil or mixture of rapeseed oil and diesel oil without changing the structure of the engine;When burning the rapeseed oil or the mixture fuel in the engine,the exhaust pollution is on decline,but the specific fuel consumption rate and deposit charcoal of combustion chambers and injection nozzles are more than ever.The performance of the engine is rather good when burning the mixture of half rapeseed oil and half light diesel oil in volume and the angle of pre-oil-supplied be 20° CA.%以菜籽油为燃料,对S195柴油机燃油性能进行了研究。结果表明:在发动机结构不经改动的情况下,燃用菜籽油或菜籽油与柴油的混合油是可行的;发动机燃用菜籽油或混合油时,其排放污染下降,但耗油率均有所上升,且燃烧室和喷油嘴积炭较多;发动机燃用50%菜籽油与50%轻柴油的混合油,且供油提前角为20° CA时燃烧性能较好。

  16. Design of the Portable Performance Detector for Engine Oil of Motor Vehicle%便携式机动车机油性能检测仪设计

    Institute of Scientific and Technical Information of China (English)

    林峰; 严瑾; 邵建文; 郁海希

    2015-01-01

    To solve the limitation of evaluating the performance of engine oil by single parameter, and implement comprehensive online detecting the engine oil quickly, easily and accurately, the portable performance detector for engine oil of motor vehicle has been developed. With the performance of engine oil as the researching object, the online detection method of evaluating performance of engine oil is realized by detecting viscosity, dielectric constant of engine oil, and temperature, is proposed. The data information collected are sent to PIC single chip machine from transmitters via RS-485 communication module;through receiving push button signal, the measured data are displayed on LCD screen by single chip machine. The test results indicate that the detector operates stably, easy to use, and with small error.%为了解决单一参数评价机油性能的局限性,实现机油快速、方便、准确的综合在线检测,研制了便携式机动车机油性能检测仪。该检测仪以机油性能为研究对象,提出一种通过对机油黏度、介电常数以及温度的检测来实现机油性能评价的在线检测方法。RS-485通信模块将采集到的数据信息由变送器传送给PIC单片机进行处理,单片机通过接收按键信号将测量到的数据值显示在LCD液晶屏上。试验结果表明,该检测仪性能稳定、使用方便、误差小。

  17. Polycyclic aromatic hydrocarbons (PAHs) in exhaust emissions from diesel engines powered by rapeseed oil methylester and heated non-esterified rapeseed oil

    Science.gov (United States)

    Vojtisek-Lom, Michal; Czerwinski, Jan; Leníček, Jan; Sekyra, Milan; Topinka, Jan

    2012-12-01

    Polycyclic aromatic hydrocarbons (PAHs) of exhaust emissions were studied in four direct-injection turbocharged four-cylinder diesel engines, with power ratings of 90-136 kW. The engines were operated on biodiesel (B-100), a blend of 30% biodiesel in diesel fuel (B-30), and heated rapeseed oil (RO) in two independent laboratories. Diesel particle filters (DPF) and selective catalytic reduction (SCR) systems were used with B-30 and B-100. Concentrations of individual PAHs sampled in different substrates (quartz, borosilicate fiber and fluorocarbon membrane filters, polyurethane foam) were analyzed using different methods. Benzo[a]pyrene toxic equivalents (BaP TEQ) were calculated using different sets of toxic equivalency factors (TEF). Operation on B-100 without aftertreatment devices, compared to diesel fuel, yielded a mean reduction in PAHs of 73%, consistent across engines and among TEF used. A lower PAH reduction was obtained using B-30. The BaP TEQ reductions on DPF were 91-99% using B-100, for one non-catalyzed DPF, and over 99% in all other cases. The BaP TEQ for heated RO were higher than those for B-100 and one half lower to over twice as high as that of diesel fuel. B-100 and RO samples featured, compared to diesel fuel, a relatively high share of higher molecular weight PAH and a relatively low share of lighter PAHs. Using different sets of TEF or different detection methods did not consistently affect the observed effect of fuels on BaP TEQ. The compilation of multiple tests was helpful for discerning emerging patterns. The collection of milligrams of particulate matter per sample was generally needed for quantification of all individual PAHs.

  18. Development and validation of an environmentally friendly attenuated total reflectance in the mid-infrared region method for the determination of ethanol content in used engine lubrication oil.

    Science.gov (United States)

    Hatanaka, Rafael Rodrigues; Sequinel, Rodrigo; Gualtieri, Carlos Eduardo; Tercini, Antônio Carlos Bergamaschi; Flumignan, Danilo Luiz; de Oliveira, José Eduardo

    2013-05-15

    Lubricating oils are crucial in the operation of automotive engines because they both reduce friction between moving parts and protect against corrosion. However, the performance of lubricant oil may be affected by contaminants, such as gasoline, diesel, ethanol, water and ethylene glycol. Although there are many standard methods and studies related to the quantification of contaminants in lubricant oil, such as gasoline and diesel oil, to the best of our knowledge, no methods have been reported for the quantification of ethanol in used Otto cycle engine lubrication oils. Therefore, this work aimed at the development and validation of a routine method based on partial least-squares multivariate analysis combined with attenuated total reflectance in the mid-infrared region to quantify ethanol content in used lubrication oil. The method was validated based on its figures of merit (using the net analyte signal) as follows: limit of detection (0.049%), limit of quantification (0.16%), accuracy (root mean square error of prediction=0.089% w/w), repeatability (0.05% w/w), fit (R(2)=0.9997), mean selectivity (0.047), sensitivity (0.011), inverse analytical sensitivity (0.016% w/w(-1)) and signal-to-noise ratio (max: 812.4 and min: 200.9). The results show that the proposed method can be routinely implemented for the quality control of lubricant oils.

  19. Improvement of agricultural economics through integration of small scale heat and power production with non-food value-added products. Task 3: Pyrolysis oil testing for diesel engine applications

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y.; Westerholm, M.; Niinistoe, M.; Saekilahti, H.

    1997-06-01

    Diesel engine tests with pyrolysis oil are carried out as part of task 3 within the project. The objective of the task is to determine performance of a 60 kW pilot-injected diesel engine using pyrolysis oil. Both prwer output and emissions will be studied. Preliminary tests in a high-speed test diesel engine indicate that pyrolysis oil in principle could be a viable main fuel option for a pilot-engine. Combustion of pyrolysis oil appear to be rapid, even though fairly high CO and HC emissions have beenmeasured. However, with an oxidizing catalyst, the emissions may be decreased to an acceptably low level. During the reporting period a test was carried out by VTT Energy with straw derived pyrolysis oil. The oil was produced by Ensyn Techologies Inc. within a study funded by Elkraft, NOVEM and ETSU. A 60 kW high-speed VALMET diesel engine was employed. Emissions and performance with straw derived oil were comparable to those measured with wood derived oil earlier. The relatively short test run with straw pyrolysis oil demonstrated that standard engine component deterioration is a serious problem with pyrolysis oil. Wear and leakage was found in the injector needles. This could be a result of a combination of the acid fuel and abrasive particles in the fuel. The problem requires further attention. However, it is believed that by proper modifications the problems may be overcome. (au)

  20. Sensitivity Analysis of Heavy Fuel Oil Spray and Combustion under Low-Speed Marine Engine-Like Conditions

    Directory of Open Access Journals (Sweden)

    Lei Zhou

    2017-08-01

    Full Text Available On account of their high power, thermal efficiency, good reliability, safety, and durability, low-speed two-stroke marine diesel engines are used as the main drive devices for large fuel and cargo ships. Most marine engines use heavy fuel oil (HFO as the primary fuel, however, the physical and chemical characteristics of HFO are not clear because of its complex thermophysical properties. The present study was conducted to investigate the effects of fuel properties on the spray and combustion characteristics under two-stroke marine engine-like conditions via a sensitivity analysis. The sensitivity analysis of fuel properties for non-reacting and reacting simulations are conducted by comparing two fuels having different physical properties, such as fuel density, dynamic viscosity, critical temperature, and surface tension. The performances of the fuels are comprehensively studied under different ambient pressures, ambient temperatures, fuel temperatures, and swirl flow conditions. From the results of non-reacting simulations of HFO and diesel fuel properties in a constant volume combustion chamber, it can be found that the increase of the ambient pressure promotes fuel evaporation, resulting in a reduction in the steady liquid penetration of both diesel and HFO; however, the difference in the vapor penetrations of HFO and diesel reduces. Increasing the swirl flow significantly influences the atomization of both HFO and diesel, especially the liquid distribution of diesel. It is also found that the ambient temperature and fuel temperature have the negative effects on Sauter mean diameter (SMD distribution. For low-speed marine engines, the combustion performance of HFO is not sensitive to activation energy in a certain range of activation energy. At higher engine speed, the difference in the effects of different activation energies on the in-cylinder pressure increases. The swirl flow in the cylinder can significantly promote fuel evaporation and

  1. Exploration of waste cooking oil methyl esters (WCOME as fuel in compression ignition engines: A critical review

    Directory of Open Access Journals (Sweden)

    S. Kathirvel

    2016-06-01

    Full Text Available The ever growing human population and the corresponding economic development of mankind have caused a relentless surge in the energy demand of the world. The fast diminishing fossil fuel reserves and the overdependence of petroleum based fuels have already prompted the world to look for alternate sources of energy to offset the fuel crisis in the future. Waste Cooking Oil Methyl Ester (WCOME has proven itself as a viable alternate fuel that can be used in Compression Ignition (CI engines due to its low cost, non-toxicity, biodegradability and renewable nature. It also contributes a minimum amount of net greenhouse gases, such as CO2, SO2 and NO emissions to the atmosphere. The main objective of this paper is to focus on the study of the performance, combustion and emission parameters of CI engines using WCOME and to explore the possibility of utilizing WCOME blends with diesel extensively in place of diesel. The production methods used for transesterification play a vital role in the physiochemical properties of the methyl esters produced. Various production intensification technologies such as hydrodynamic cavitation and ultrasonic cavitation were employed to improve the yield of the methyl esters during transesterification. This review includes the study of WCOME from different origins in various types of diesel engines. Most of the studies comply with the decrease in carbon monoxide (CO emissions and the increase in brake thermal efficiency while using WCOME in CI engines. Many researchers reported slight increase in the emissions of oxides of nitrogen. ANN modeling has been widely used to predict the process variables of the diesel engine while using WCOME. The versatility of ANN modeling was proven by the minimum error percentages of the actual and predicted values of the performance and emission characteristics.

  2. Research on spectrographic oil analysis of 12VE-230ZC diesel engine

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With the spectrographic analysis, this paper analyzes the concentration of elements inoil, such as Fe, Cu, Cr, Al, Si etc. In order to monitor conditions and diagnose faults, the correlationcoefficient of main elements in oil has been used to study wear characteristics of friction pairs inrunning-in and working periods.

  3. Investigation of emissions and combustion characteristics of a CI engine fueled with waste cooking oil methyl ester and diesel blends

    Directory of Open Access Journals (Sweden)

    K. Nantha Gopal

    2014-06-01

    Full Text Available Biodiesel has been identified as a potential alternative fuel for CI engines because use of biodiesel can reduce petroleum diesel consumption as well as engine out emissions. Out of many biodiesel derived from various resources, biodiesel from Waste Cooking Oil (WCO can be prepared economically using usual transesterification process. In the present study, in-depth research and comparative study of blends of biodiesel made from WCO and diesel is carried out to bring out the benefits of its extensive usage in CI engines. The experimental results of the study reveal that the WCO biodiesel has similar characteristics to that of diesel. The brake thermal efficiency, carbon monoxide, unburned hydrocarbon and smoke opacity are observed to be lower in the case of WCO biodiesel blends than diesel. On the other hand specific energy consumption and oxides of nitrogen of WCO biodiesel blends are found to be higher than diesel. In addition combustion characteristics of all biodiesel blends showed similar trends when compared to that of conventional diesel.

  4. Particulate emissions from a stationary engine fueled with ultra-low-sulfur diesel and waste-cooking-oil-derived biodiesel.

    Science.gov (United States)

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-10-01

    Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture.

  5. The emission analysis of an IDI diesel engine fueled with methyl ester of waste frying palm oil and its blends

    Energy Technology Data Exchange (ETDEWEB)

    Ozsezen, Ahmet Necati; Canakci, Mustafa [Department of Automotive Engineering Technology, Kocaeli University, 41380, Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41275, Izmit (Turkey)

    2010-12-15

    In this study, the exhaust emissions of an unmodified diesel engine fueled with methyl ester of waste frying palm-oil (biodiesel) and its blends with petroleum based diesel fuel (PBDF) were investigated at the full load-variable speed condition. The relationships between the fuel properties and the air-fuel equivalence ratio, fuel line pressure, start of injection (SOI) timing, and ignition delay were also discussed to explain their effects on the emissions. The obtained test results were compared with the reference values which were determined by using PBDF. The results showed that when biodiesel was used in the test engine, the fuel line pressure increased while air-fuel equivalence ratio and ignition delay decreased. These behaviors affected the combustion phenomena of biodiesel which caused to reduction 57% in carbon monoxide (CO) emission, about 40% in unburned hydrocarbon (HC) emission and about 23% in smoke opacity when compared with PBDF. However, NO{sub x} and CO{sub 2} emissions of the biodiesel have showed different behaviors in terms of the engine speed. (author)

  6. Effects of sawdust soil amendment on the soil, growth and yield ofSolanum esculentum Linn. in waste engine oil-polluted soil

    Institute of Scientific and Technical Information of China (English)

    Babalola E Akinpelumi; Olusanya A Olatunji

    2015-01-01

    This study investigated the effects of sawdust as a soil amendment on certain growth parameters ofSolanum esculentum Linn.grown in soil polluted with various concentrations of waste engine oil, and changes in the physicochemical proper-ties of the soil. The purpose was to assess the soil remediation potentials of sawdust in waste engine oil-polluted soil. The experiment was divided into three regimes: control (air-dried soil without waste engine oil and with clean sawdust), pol-luted (waste engine oil-contaminated soil), and amended (oil-polluted soil amended with sawdust). Enough 3-kg soil samples were sieved and air-dried to prepare five treatment levels of waste engine oil-contaminated soil (30 mL, 1%; 60 mL, 2%; 90 mL, 3%; 120 mL, 4%; and 150 mL, 5%), as well as five additional treatment levels (the same amounts of oil contamination) in soil amended with sawdust. The treatment levels were replicated five times in a completely randomized design. A nursery bed was planted with a hybrid tomato variety (Roma V F) obtained from National Horticultural Research Institute (NIHORT) in Ibadan, Nigeria. During the maturation period, the growth parameters such as plant height, number of leaves, and number of branches per plant were determined and then the harvested plants were oven dried at 70 °C for 48 hours to determine their dry weights. The effects of the sawdust amendment on the soil were assessed by determining the soil pH (glass electrode pH meter),total nitrogen (Kjeldahl method), total phosphorus (Bray-1 solution), and potassium (on the leacheate by a flame photometer). Chromium, lead, and cadmium contents were determined using an atomic absorption spectrophotometer. Analysis of variance and a Duncan multiple-range test were employed to test significant differences in the soil properties of the three regimes. The growth performance ofSolanum esculentumLinn. in the amended regime (soil with sawdust) at the 150-mL waste engine oil-contamination level was

  7. Modified Thermoresponsive Hyperbranched Polymers for Improved Viscosity and Enhanced Lubricity of Engine Oils

    Energy Technology Data Exchange (ETDEWEB)

    Cosimbescu, Lelia [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Robinson, Joshua W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bays, John Timothy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qu, Jun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-30

    The manuscript captures the chronological succession of the molecular design progression through multiple architectures and topologies of the polymeric viscosity index improvers and their rheology bench test performance. Tribology testing was also performed on selected analogs and their friction and wear was evaluated. Finally, a top performing polymer was selected for engine testing, scaled-up, and its rheological performance in a complete formulation was assessed. The engine performance of the viscosity index improver was examined against an industry-established baseline.

  8. Diagnosis and predictive maintenance of diesel engines based on correction and normalization models for oil analysis; Diagnostico y mantenimiento predictivo de motores diesel basado en modelos de correcion y normalizacion del analisis del aceite

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, Henry [Universidad de Oriente, Puerto la Cruz (Venezuela). Escuela de Ingenieria y Ciencias Aplicadas. Dept. de Mecanica]. E-mail: hespinoz@dino.conicit.ve

    1995-07-01

    A predictive and diagnostic system for diesel engine is presented. The system is fundamented on correction and normalization of metallic concentrations in the oil. The correction was made by using mathematical models considering: filter effect and oil added. The normalization was accomplished by calculation of the equivalent concentration for a fixed size metallurgically normalized engine, having a constant capacity carter. The system predicts both: the time at witch a critical wearing failure appears, and the oil residual life. (author)

  9. 发动机油底壳漏油原因分析与处理%Reason Analysis and Treatment of Engine Oil Pan Leakage

    Institute of Scientific and Technical Information of China (English)

    孙景新; 杨继光

    2016-01-01

    油底壳和机体结合面之间漏油是各发动机生产厂家面对的疑难问题,因为影响因素具有复杂性,深入分析才能找到漏油主因:密封胶的固化时间长,表面清洁度不合格;涂胶机涂胶质量差,涂胶轨迹不规则;油底壳平面度超差,油底壳和机体结合面螺栓扭矩不达标;油底壳与齿轮室T型结构面过渡差。只有综合分析油底壳和机体结合面之间漏油原因,漏油故障才能降低。%The oil pan and the body surface between the oil spill is a difficult problem with the engine manufacturers. With in-depth analysis we find the engine oil leakage reasons are: sealant curing time is long and unqualified surface cleanliness; the coating quality of the machine is pool and gluing track is irregular; the flatness of the oil pan is out of tolerance; the oil pan and binding bolt torque to body surface is not up to standard; the oil pan and T transition structure with a gear chamber surface is poor, and only a comprehensive analysis of the oil pan and the combination between body surface causes of oil leakage, oil leakage fault can be reduced.

  10. Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime.

    Science.gov (United States)

    Morgner, U; Ell, R; Metzler, G; Schibli, T R; Kärtner, F X; Fujimoto, J G; Haus, H A; Ippen, E P

    2001-06-11

    Nonlinear optical effects due to the phase between carrier and envelope are observed with 5 fs pulses from a Kerr-lens mode-locked Ti:sapphire laser. These sub-two-cycle pulses with octave spanning spectra are the shortest pulses ever generated directly from a laser oscillator. Detection of the carrier-envelope phase slip is made possible by simply focusing the short pulses directly from the oscillator into a BBO crystal. As a further example of nonlinear optics with such short pulses, the interference between second- and third-harmonic components is also demonstrated.

  11. A Honeycomb-Structured Ti-6Al-4V Oil-Gas Separation Rotor Additively Manufactured by Selective Electron Beam Melting for Aero-engine Applications

    Science.gov (United States)

    Tang, H. P.; Wang, Q. B.; Yang, G. Y.; Gu, J.; Liu, N.; Jia, L.; Qian, M.

    2016-03-01

    Oil -gas separation is a key process in an aero-engine lubrication system. This study reports an innovative development in oil -gas separation. A honeycomb-structured rotor with hexagonal cone-shaped pore channels has been designed, additively manufactured from Ti-6Al-4V using selective electron beam melting (SEBM) and assessed for oil -gas separation for aero-engine application. The Ti-6Al-4V honeycomb structure showed a high compressive strength of 110 MPa compared to less than 20 MPa for metal foam structures. The oil -gas separation efficiency of the honeycomb-structured separation rotor achieved 99.8% at the rotation speed of 6000 rpm with much lower ventilation resistance (17.3 kPa) than that of the separator rotor constructed using a Ni-Cr alloy foam structure (23.5 kPa). The honeycomb-structured Ti-6Al-4V separator rotor produced by SEBM provides a promising solution to more efficient oil -gas separation in the aero-engine lubrication system.

  12. Applications of science and engineering to quantify and control the Deepwater Horizon oil spill

    Science.gov (United States)

    McNutt, Marcia K.; Chu, Steven; Lubchenco, Jane; Hunter, Tom; Dreyfus, Gabrielle; Murawski, Steven A.; Kennedy, David M.

    2012-01-01

    The unprecedented engagement of scientists from government, academia, and industry enabled multiple unanticipated and unique problems to be addressed during the Deepwater Horizon oil spill. During the months between the initial blowout on April 20, 2010, and the final well kill on September 19, 2010, researchers prepared options, analyses of tradeoffs, assessments, and calculations of uncertainties associated with the flow rate of the well, well shut in, killing the well, and determination of the location of oil released into the environment. This information was used in near real time by the National Incident Commander and other government decision-makers. It increased transparency into BP’s proposed actions and gave the government confidence that, at each stage proposed, courses of action had been thoroughly vetted to reduce risk to human life and the environment and improve chances of success.

  13. n-alkane profiles of engine lubricating oil and particulate matter by molecular sieve extraction.

    Science.gov (United States)

    Caravaggio, Gianni A; Charland, Jean-Pierre; Macdonald, Penny; Graham, Lisa

    2007-05-15

    As part of the Canadian Atmospheric Fine Particle Research Program to obtain reliable primary source emission profiles, a molecular sieve method was developed to reliably determine n-alkanes in lubricating oils, vehicle emissions, and mobile source dominated ambient particulate matter (PM). This work was also initiated to better calculate carbon preference index values (CPI: the ratio of the sums of odd over even n-alkanes), a parameter for estimating anthropogenic versus biogenic contributions in PM. n-Alkanes in lubricating oil and mobile source dominated PM are difficult to identify and quantify by gas chromatography due to the presence of similar components that cannot be fully resolved. This results in a hump, the unresolved complex mixture (UCM) that leads to incorrect n-alkane concentrations and CPI values. The sieve method yielded better chromatography, unambiguous identification of n-alkanes and allowed examination of differences between n-alkane profiles in light (LDV) and heavy duty vehicle (HDV) lubricating oils that would have been otherwise difficult. These profile differences made it possible to relate the LDV profile to that of the PM samples collected during a tunnel study in August 2001 near Vancouver (British Columbia, Canada). The n-alkane PM data revealed that longer sampling times result in a negative artifact, i.e., the desorption of the more volatile n-alkanes from the filters. Furthermore, the sieve procedure yielded n-alkane data that allowed calculation of accurate CPI values for lubricating oils and PM samples. Finally, this method may prove helpful in estimating the respective diesel and gasoline contributions to ambient PM.

  14. Calculation of Oil Film Thickness from Damping Coefficients for a Piston Ring in an Internal Combustion Engine

    DEFF Research Database (Denmark)

    Christiansen, Jens; Klit, Peder; Vølund, Anders

    2007-01-01

    engine. The basic idea is to use the fluid film damping coefficients to estimate the film thickness variation for a piston ring under cyclic varying load. Reynolds Equation is solved for a piston ring and the oil film thickness is determined. In this analysis hydrodynamic lubrication is assumed......In 1966 Jorgen W. Lund published an approach to find the dynamic coefficients of a journal bearing by a first order perturbation of the Reynold's equation. These coefficients made it possible to perform a rotor-bearing stability analysis for a statically loaded bearing. In the mid seventies Jorgen...... W. Lund pointed out in lecture notes that the dynamic damping coefficients of the bearing could be used to find the shaft orbit for dynamically loaded bearings. In the present paper this method is further developed and utilized to determine the dynamic behavior of a piston ring in a combustion...

  15. Application of non-equal interval GM(1,1) model in oil monitoring of internal combustion engine

    Institute of Scientific and Technical Information of China (English)

    CHEN Shi-wei; LI Zhu-guo; ZHOU Shou-xi

    2005-01-01

    The basic difference non-equal interval model GM(1,1) in grey theory was used to fit and forecast data series with non-equal lengths and different inertias, acquired from oil monitoring of internal combustion engines. The fitted and forecasted results show that the length or inertia of a sequence affects its precision very much, i.e. the bigger the inertia of a sequence is, or the shorter the length of a series is, the less the errors of fitted and forecasted results are. Based on the research results, it is suggested that short series should be applied to be fitted and forecasted; for longer series, the newer datum should be applied instead of the older datum to be analyzed by non-equal interval GM(1,1) to improve the forecasted and fitted precision, and that data sequence should be verified to satisfy the conditions of grey forecasting.

  16. Construction and evaluation of an exopolysaccharide-producing engineered bacterial strain by protoplast fusion for microbial enhanced oil recovery.

    Science.gov (United States)

    Sun, Shanshan; Luo, Yijing; Cao, Siyuan; Li, Wenhong; Zhang, Zhongzhi; Jiang, Lingxi; Dong, Hanping; Yu, Li; Wu, Wei-Min

    2013-09-01

    Enterobacter cloacae strain JD, which produces water-insoluble biopolymers at optimal temperature of 30°C, and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at high temperatures by protoplast fusion. The obtained fusant strain ZR3 produced exopolysaccharides at up to 45°C with optimal growth temperature at 35°C. The fusant produced exopolysaccharides of approximately 7.5 g/L or more at pH between 7.0 and 9.0. The feasibility of the enhancement of crude oil recovery with the fusant was tested in a sand-packed column at 40°C. The results demonstrated that bioaugmentation of the fusant was promising approach for MEOR. Mass growth of the fusant was confirmed in fermentor tests. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Bari, S.; Lim, T.H.; Yu, C.W. [Universiti Sains Malaysia, School of Mechanical Engineering, Penang (Malaysia)

    2002-11-01

    Crude palm oil (CPO) is one of the vegetable oils that have potential for use as fuels for diesel engines. CPO is renewable, and is safe and easy to handle. However, at room temperature (30-32 deg C) CPO has a viscosity about 10 times higher than that of diesel. To lower CPO's viscosity to the level of diesel's viscosity, a heating temperature of at least 92 deg C is needed. At this temperature, there is a concern that the close-fitting parts of the injection system might be affected. This study focused on finding out the effects of preheating of fuel on the injection system utilising a modified method of friction test, which involves injecting fuel outside the combustion chamber during motoring. Results show that preheating of CPO lowered CPO's viscosity and provided smooth fuel flow, but did not affect the injection system, even heating up to 100 deg C. Nevertheless, heating up to such a high temperature offered no benefits in terms of engine performance. However, heating is necessary for smooth flow and to avoid fuel filter clogging. Both can be achieved by heating CPO to 60 deg C. Combustion analyses comparisons between CPO and diesel found that CPO produced a higher peak pressure of 6%, a shorter ignition delay of 2.6 deg, a lower maximum heat release rate and a longer combustion period. Over the entire load range, CPO combustion produced average CO and NO emissions that were 9.2 and 29.3% higher, respectively, compared with those from diesel combustion. (Author)

  18. Assessment of infrared spectroscopy and multivariate techniques for monitoring the service condition of diesel-engine lubricating oils.

    Science.gov (United States)

    Caneca, Arnobio Roberto; Pimentel, M Fernanda; Galvão, Roberto Kawakami Harrop; da Matta, Cláudia Eliane; de Carvalho, Florival Rodrigues; Raimundo, Ivo M; Pasquini, Celio; Rohwedder, Jarbas J R

    2006-09-15

    This paper presents two methodologies for monitoring the service condition of diesel-engine lubricating oils on the basis of infrared spectra. In the first approach, oils samples are discriminated into three groups, each one associated to a given wear stage. An algorithm is proposed to select spectral variables with good discriminant power and small collinearity for the purpose of discriminant analysis classification. As a result, a classification accuracy of 93% was obtained both in the middle (MIR) and near-infrared (NIR) ranges. The second approach employs multivariate calibration methods to predict the viscosity of the lubricant. In this case, the use of absorbance measurements in the NIR spectral range was not successful, because of experimental difficulties associated to the presence of particulate matter. Such a problem was circumvented by the use of attenuated total reflectance (ATR) measurements in the MIR spectral range, in which an RMSEP of 3.8cSt and a relative average error of 3.2% were attained.

  19. Evaluation of emissions in gas powered electric generator engine with vegetable oil; Avaliacao das emissoes de gases em motor gerador eletrico alimentado com oleo vegetal

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Thalita C. de; Cunha, Joao Paulo Barreto; Cotrim, Suzane Santana; Brito, Gustavo Mendes; Delmond, Josue Gomes [Universidade Estadual de Goias (UNUCET/UEG), Anapolis, GO (Brazil). Unidade Universitaria de Ciencias Exatas e Tecnologicas], E-mail: thalitacarrijo@gmail.com

    2012-11-01

    The use of vegetable oils as fuel in diesel engines is a good alternative to reduce emissions of greenhouse gases in the atmosphere from the use of fossil fuels, either in pure form or as biodiesel. The soybean, oilseed single high-availability in Brazil, is the most viable feedstock for the production of oil and its use as a fuel because of the structure of production, distribution and grain crushing. This study aimed to evaluate the performance of a duty diesel generator fueled with blends of diesel and soybean oil at concentrations of 10%, 25%, 50% and 75%, and soybean oil pure, 100%. During the tests we evaluated the energy consumption of the generator and the emission of greenhouse gases (O{sub 2}, CO, CO{sub 2}, NO{sub x} and SO{sub 2}), according to the demand of electric charges (0, 500, 1000, 1500 and 2000 Watts) connected to the group generator. The results, using the F test, showed that the hourly consumption of fuel increased with increasing concentration in the mixture of diesel fuel and engine load demand from the generator. It follows that in the environment, increasing the oil concentration in the mixture caused a reduction in emissions, except for the emission of oxygen. The best choice for the operation for the engine generator using vegetable oil soya be provided for up to 60 % oil in the mixture and load demand up to 1000W, in which occurred lower emissions of carbon monoxide (CO) and therefore improved efficiency in the combustion process. (author)

  20. Role of reservoir engineering in the assessment of undiscovered oil and gas resources in the National Petroleum Reserve, Alaska

    Science.gov (United States)

    Verma, M.K.; Bird, K.J.

    2005-01-01

    The geology and reservoir-engineering data were integrated in the 2002 U.S. Geological Survey assessment of the National Petroleum Reserve in Alaska (NPRA). VVhereas geology defined the analog pools and fields and provided the basic information on sizes and numbers of hypothesized petroleum accumulations, reservoir engineering helped develop necessary equations and correlations, which allowed the determination of reservoir parameters for better quantification of in-place petroleum volumes and recoverable reserves. Seismic- and sequence-stratigraphic study of the NPRA resulted in identification of 24 plays. Depth ranges in these 24 plays, however, were typically greater than depth ranges of analog plays for which there were available data, necessitating the need for establishing correlations. The basic parameters required were pressure, temperature, oil and gas formation volume factors, liquid/gas ratios for the associated and nonassociated gas, and recovery factors. Finally, the re sults of U.S. Geological Survey deposit simulation were used in carrying out an economic evaluation, which has been separately published. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.

  1. 发动机油底壳的设计探讨%Discussion on Engine Oil Pan Design

    Institute of Scientific and Technical Information of China (English)

    倪伟

    2012-01-01

    油底壳是发动机上最主要的零部件之一,其结构设计是否合理、密封性能是否达标、储油功能是否满足要求、在任何规定的倾角状态下的吸油是否顺畅,这些都直接关系到整个发动机性能的好坏。文中对油底壳设计的基本流程、设计参数的确认进行了详细的描述,通过试验证明,文中设计方法是可靠的。%Oil pan is the important parts for engine, wheather the design structure is reasonable, if the saeling and storages up to par at all defined tilt angle, if it meet the suction requiement which need to be suction smoothly, all of that will affect the engine performance directly, this paper have a detail description on parameterand process for design It can offer reference for the lubrication designer.

  2. Performance and Emission Characteristics of a Compression Ignition Engine Operating on Blends of Castor Oil Biodiesel-Diesel

    Science.gov (United States)

    Kanwar, Roopesh; Sharma, Pushpendra Kumar; Singh, Aditya Narayan; Agrawal, Yadvendra Kumar

    2016-06-01

    Diesel vehicles are the nerves and veins of transportation, particularly in developing countries. With the rapid rate of modernization, increasing demand of fuel is inevitable. The exponential increase in fuel prices and the scarcity of its supply from the environment have promoted interest in the development of alternative sources of fuel. In this work, genus Ricinus communis L. was studied in order to delimit their potential as a raw material for biodiesel production. Further, castor oil, ethyl ester were prepared by transesterification using potassium hydroxide (KOH) as a catalyst and tested on a four-stroke, single-cylinder compression ignition engine. The test was carried out at a constant speed of 3000 rpm at different loads. The results represent a substantial decrease in carbon monoxide (CO) emission with an increasing biodiesel percentage. The reduction of CO in B05, B10, B15 and B20 averaged 11.75, 22.02, 24.23 and 28.79 %, respectively, compared to mineral diesel. The emission results of the comparative test indicated that CO, oxygen (O2) and smoke density emissions are found to be lower when the engine is filled with B05, B10, B15 and B20 as compared to mineral diesel, while carbon dioxide (CO2) and nitrogen oxide (NOx) with B05, B10, B15 and B20 are found to increase marginally. Brake thermal efficiency and brake specific fuel consumption decrease and increase respectively in biodiesel with different blends in comparison of mineral diesel.

  3. Engineering and construction projects for oil and gas processing facilities: Contracting, uncertainty and the economics of information

    Energy Technology Data Exchange (ETDEWEB)

    Berends, Kees [Capital Contracting Services, Shell Global Solutions International B.V., The Hague (Netherlands)

    2007-08-15

    The amount of oil and gas processing capacity required to meet demand during the next 20 years is more than twice the amount realised during the last decades. Engineering and Construction contractors (ECs) play a key role in the development and implementation of Large Engineering and Construction Projects (LECPs) for these facilities. We examine the characteristics of LECPs, demand and supply of the contracting market and the strategies traditionally adopted by owners to contract out the development and implementation of these projects to ECs. We demonstrate that these traditional strategies are not longer effective, in the current 'sellers market', to mitigate the oligopolistic economic inefficiencies. As the 'overheating' of the contracting market is expected to continue for a considerable period of time, alternative contracting strategies are required. Contract theory, particularly the economics of information on LECPs, indicates how alternative contracting strategies can be used to overcome economic inefficiencies. The effective use of these alternative strategies requires increased owner involvement and their effectiveness is contingent upon owner competency and ECs acting as the owner's agent rather than its adversary. This will require an organisational and behavioural change process for both owners and ECs. (author)

  4. Performance and Emission Characteristics of a Compression Ignition Engine Operating on Blends of Castor Oil Biodiesel-Diesel

    Science.gov (United States)

    Kanwar, Roopesh; Sharma, Pushpendra Kumar; Singh, Aditya Narayan; Agrawal, Yadvendra Kumar

    2017-04-01

    Diesel vehicles are the nerves and veins of transportation, particularly in developing countries. With the rapid rate of modernization, increasing demand of fuel is inevitable. The exponential increase in fuel prices and the scarcity of its supply from the environment have promoted interest in the development of alternative sources of fuel. In this work, genus Ricinus communis L. was studied in order to delimit their potential as a raw material for biodiesel production. Further, castor oil, ethyl ester were prepared by transesterification using potassium hydroxide (KOH) as a catalyst and tested on a four-stroke, single-cylinder compression ignition engine. The test was carried out at a constant speed of 3000 rpm at different loads. The results represent a substantial decrease in carbon monoxide (CO) emission with an increasing biodiesel percentage. The reduction of CO in B05, B10, B15 and B20 averaged 11.75, 22.02, 24.23 and 28.79 %, respectively, compared to mineral diesel. The emission results of the comparative test indicated that CO, oxygen (O2) and smoke density emissions are found to be lower when the engine is filled with B05, B10, B15 and B20 as compared to mineral diesel, while carbon dioxide (CO2) and nitrogen oxide (NOx) with B05, B10, B15 and B20 are found to increase marginally. Brake thermal efficiency and brake specific fuel consumption decrease and increase respectively in biodiesel with different blends in comparison of mineral diesel.

  5. Rapid development of a castor cultivar with increased oil content

    Science.gov (United States)

    Castor seed oil contains 90% ricinoleic acid which has a wide range of industrial applications. Improvement in oil content would be of great benefit to castor growers and oil processers. Two cycles of phenotypic recurrent selection were conducted through screening for high oil content castor seeds u...

  6. Bioremediation of oil polluted marine sediments: A bio-engineering treatment.

    Science.gov (United States)

    Cappello, Simone; Calogero, Rosario; Santisi, Santina; Genovese, Maria; Denaro, Renata; Genovese, Lucrezia; Giuliano, Laura; Mancini, Giuseppe; Yakimov, Michail M

    2015-06-01

    The fate of hydrocarbon pollutants and the development of oil-degrading indigenous marine bacteria in contaminated sediments are strongly influenced by abiotic factors such as temperature, low oxygen levels, and nutrient availability. In this work, the effects of different biodegradation processes (bioremediation) on oil-polluted anoxic sediments were analyzed. In particular, as a potential bioremediation strategy for polluted sediments, we applied a prototype of the "Modular Slurry System" (MSS), allowing containment of the sediments and their physical-chemical treatment (by air insufflations, temperature regulation, and the use of a slow-release fertilizer). Untreated polluted sediments served as the blank in a non-controlled experiment. During the experimental period (30 days), bacterial density and biochemical oxygen demand were measured and functional genes were identified by screening. Quantitative measurements of pollutants and an eco-toxicological analysis (mortality of Corophium orientale) were carried out at the beginning and end of the experiments. The results demonstrated the high biodegradative capability achieved with the proposed technology and its strong reduction of pollutant concentrations and thus toxicity.

  7. Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/diesel fuel

    Directory of Open Access Journals (Sweden)

    Mohammed EL_Kassaby

    2013-03-01

    Full Text Available Wasted cooking oil from restaurants was used to produce neat (pure biodiesel through transesterification, and then used to prepare biodiesel/diesel blends. The effect of blending ratio and compression ratio on a diesel engine performance has been investigated. Emission and combustion characteristics was studded when the engine operated using the different blends (B10, B20, B30, and B50 and normal diesel fuel (B0 as well as when varying the compression ratio from 14 to 16 to 18. The result shows that the engine torque for all blends increases as the compression ratio increases. The bsfc for all blends decreases as the compression ratio increases and at all compression ratios bsfc remains higher for the higher blends as the biodiesel percent increase. The change of compression ratio from 14 to 18 resulted in, 18.39%, 27.48%, 18.5%, and 19.82% increase in brake thermal efficiency in case of B10, B20, B30, and B50 respectively. On an average, the CO2 emission increased by 14.28%, the HC emission reduced by 52%, CO emission reduced by 37.5% and NOx emission increased by 36.84% when compression ratio was increased from 14 to 18. In spite of the slightly higher viscosity and lower volatility of biodiesel, the ignition delay seems to be lower for biodiesel than for diesel. On average, the delay period decreased by 13.95% when compression ratio was increased from 14 to 18. From this study, increasing the compression ratio had more benefits with biodiesel than that with pure diesel.

  8. Reservoir engineering optimized techniques and applications research in initial development stage of a super shallow sea marginal oil field : Development case of Chengdao Oil Field in Bohai Bay, China

    Energy Technology Data Exchange (ETDEWEB)

    Yu, D.; Ren, Y.; Zhou, Y.; Wang, D. [Shengli Oil field Inc. (China). SINOPEC Corp.

    2002-06-01

    One of the greatest Chinese neritic marginal oil fields is the Chengdao oil field, located north of Dongying City, Shandong Province, China in the southern part of Bohai Bay. The depth of the seawater is less than 15 metres, even though the field lies 5 kilometres from shore. It falls in the category of super shallow sea marginal oil field, due to a number of reasons: peculiar geographical location, abominable environment and climate, complex reservoir characteristics and high economic risk of exploration and development. The major oil-bearing series of the Chengdao oil field is upper Guantao sandstones. The establishment of a three-dimensional conceptual model and static model in initial development stage were completed using Log-Constrained Seismic Inversion technique combined with three-dimensional visual geological model establishment technique. The optimization and determination of reservoir engineering technical limits, namely development scheme, well pattern and spacing, timing of water injection, water injection scheme and injection-to-production ratio was accomplished with the application of geostatistics, numerical simulation and economic evaluation techniques. For the period 1996-2001, the cumulative oil productivity of upper Guantao reservoir in pure natural energy development increased substantially. The results were presented in this paper. 3 refs., 6 tabs., 13 figs.

  9. PERFORMANCE AND EMISSION OF CI ENGINE USING BIODIESEL OF COCONUT OIL BLENDS

    OpenAIRE

    2016-01-01

    Nonconventional energy source is one of the fast growing science in which the biodiesel is one of the method of utilizing nonconventional energy sources. Paper deals with the science of biodiesel technology. Process of biodiesel production is consists of several chemical mechanisms. And the process of transesterification for different experiments and their final conclusion is taken for review. During the review of papers, experimental parameters like Engine performance parameters namely brake...

  10. Two-Phase Air/Oil Flow in Aero-Engine Bearing Chambers – Assessment of an Analytical Prediction Method for the Internal Wall Heat Transfer

    Directory of Open Access Journals (Sweden)

    A. Glahn

    1999-01-01

    Full Text Available The present paper gives a theoretical outline on liquid film flows driven by superimposed effects of interfacial shear and gravity forces and discusses related heat transfer processes which are relevant for lubrication oil systems of aero engines. It is shown that a simple analytical approach is able to predict measured heat transfer data fairly well. Therefore, it offers scope for improvements within the analysis of bearing chamber heat transfer characteristics as well as for appropriate studies with respect to other components of the lubrication oil system such as vent pipeline elements.

  11. Feasibility of a Dual-Fuel Engine Fuelled with Waste Vegetable Oil and Municipal Organic Fraction for Power Generation in Urban Areas

    Directory of Open Access Journals (Sweden)

    L. De Simio

    2012-01-01

    Full Text Available Biomass, in form of residues and waste, can be used to produce energy with low environmental impact. It is important to use the feedstock close to the places where waste are available, and with the shortest conversion pathway, to maximize the process efficiency. In particular waste vegetable oil and the organic fraction of municipal solid waste represent a good source for fuel production in urban areas. Dual fuel engines could be taken into consideration for an efficient management of these wastes. In fact, the dual fuel technology can achieve overall efficiencies typical of diesel engines with a cleaner exhaust emission. In this paper the feasibility of a cogeneration system fuelled with waste vegetable oil and biogas is discussed and the evaluation of performance and emissions is reported on the base of experimental activities on dual fuel heavy duty engine in comparison with diesel and spark ignition engines. The ratio of biogas potential from MSW and biodiesel potential from waste vegetable oil was estimated and it results suitable for dual fuel fuelling. An electric power installation of 70 kW every 10,000 people could be achieved.

  12. Stationary engine test of diesel cycle using diesel oil and biodiesel (B100); Ensaio de motores estacionarios do ciclo diesel utilizando oleo diesel e biodiesel (B100)

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Ednildo Andrade [Universidade Federal da Bahia (DEQ/DEM/EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Dept. de Engenharia Quimica], Email: ednildo@ufba.br; Santos, Danilo Cardoso [Universidade Federal da Bahia (PPEQ/UFBA), Salvador, BA (Brazil). Programa de Pos-Graduacao em Engenharia Quimica; Souza, Daniel Vidigal D.; Peixoto, Leonardo Barbosa; Franca, Tiago [Universidade Federal da Bahia (DEM/UFBA), Salvador, BA (Brazil). Dept. de Engenharia Mecanica

    2006-07-01

    This work objectified to test an engine stationary of the cycle diesel, having as combustible diesel fossil and bio diesel. The characteristic curves of power, torque and emissions versus rotation of the engine was elaborated. The survey of these curves was carried through in the Laboratorio de Energia e Gas da Escola Politecnica da UFBA, which makes use of two stationary dynamometers and the one of chassis and necessary instrumentation for you analyze of the exhaustion gases. The tested engine was of the mark AGRALE, M-85 model stationary type, mono cylinder, with power NF (NBRISO 1585) Cv/kw/rpm 10/7,4/2500. The assays had been carried through in a hydraulically dynamometer mark Schenck, D-210 model. The fuel consumption was measured in a scale marks Filizola model BP-6, and too much ground handling equipment such as: water reservoir, tubings, valves controllers of volumetric outflow, sensors and measurers of rotation, torque, mass, connected to a system of acquisition of data on line. The emissions of the gases (CO, CO{sub 2}, and NOx), were measured by the analytical Tempest mark, model 100. The engine operated with oil diesel and bio diesel of oils and residual fats (OGR). In the tests, the use of the fuel derived from oil and the gotten ones from OGR was not detected significant differences how much. In this phase already it can show to the immediate possibility of the substitution of the oil diesel for bio diesel as combustible in the stationary engines of low power (author)

  13. Skin cleaning with kerosene facilitates passage of carcinogens to the lungs of animals treated with used gasoline engine oil.

    Science.gov (United States)

    Lee, J H; Roh, J H; Burks, D; Warshawsky, D; Talaska, G

    2000-04-01

    Solvents such as kerosene or gasoline may be used by workers to clean their skin following contact with oily materials. This practice is not recommended, as it is well known that the solvent will defat the skin. Many also suspect that solvent washing may increase exposure by carrying materials through the skin; however, there is little documentation of this. Auto mechanics may be exposed to used gasoline engine oil (UGEO), an animal carcinogen which forms carcinogen-DNA adducts in skin and lung following topical application. This study was designed to determine if cleaning with kerosene following exposure to UGEO altered absorption of carcinogens from this material. UGEO or new oil (NO) was applied to the shaved skins of groups of HSD-ICR mice for five days. At 1 or 8 hours after application, the treated skins were cleaned with either kerosene or a commercial cleaner, or were not cleaned. Animals were sacrificed 24 hours after the last application, skins and lungs harvested, and DNA analyzed for carcinogen-DNA adducts by 32P-postlabeling. Five applications of UGEO significantly increased carcinogen-DNA adduct levels in both lungs and skin compared to animals treated with NO. DNA adduct levels in the skin were reduced significantly in groups washed with kerosene or commercial cleaner. Washing at one as opposed to eight hours after UGEO application resulted in lower adduct levels regardless of cleaner. DNA adduct levels in the lung were reduced when the commercial cleaner was used, again in a time-related fashion. However, cleaning with kerosene resulted in mean carcinogen-DNA adduct levels in the lung which were significantly higher than even the positive controls, regardless of cleaning time. This is the first demonstration that kerosene cleaning facilitates passage of carcinogens through the skin, resulting in higher levels of genetic damage in a critical internal organ.

  14. Investigations on Performance and Emission Characteristics of Diesel Engine with Biodiesel (Jatropha Oil and Its Blends

    Directory of Open Access Journals (Sweden)

    Amar Pandhare

    2013-01-01

    Full Text Available This paper presents the performance of biodiesel blends in a single-cylinder water-cooled diesel engine. All experiments were carried out at constant speed 1500 rpm and the biodiesel blends were varied from B10 to B100. The engine was equipped with variable compressions ratio (VCR mechanism. For 100% Jatropha biodiesel, the maximum fuel consumption was 15% higher than that of diesel fuel. The brake thermal efficiency for biodiesel and its blends was found to be slightly higher than that of diesel at various load conditions. The increase in specific fuel consumption ranged from 2.75% to 15% for B10 to B100 fuels. The exhaust gas temperature increased with increased biodiesel blend. The highest exhaust gas temperature observed was 430°C with biodiesel for load conditions 1.5 kW, 2.5 kW, and 3.5 kW, where as for diesel the maximum exhaust gas temperature was 440°C. The CO2 emission from the biodiesel fuelled engine was higher by 25% than diesel fuel at full load. The CO emissions were lower with Jatropha by 15%, 13%, and 13% at 1.5 kW, 2.5 kW, and 3.5 kW load conditions, respectively. The NOx emissions were higher by 16%, 19%, and 20% at 1.5 kW, 2.5 kW, and 3.5 kW than that of the diesel, respectively.

  15. Emission comparison of urban bus engine fueled with diesel oil and 'biodiesel' blend.

    Science.gov (United States)

    Turrio-Baldassarri, Luigi; Battistelli, Chiara L; Conti, Luigi; Crebelli, Riccardo; De Berardis, Barbara; Iamiceli, Anna Laura; Gambino, Michele; Iannaccone, Sabato

    2004-07-05

    The chemical and toxicological characteristics of emissions from an urban bus engine fueled with diesel and biodiesel blend were studied. Exhaust gases were produced by a turbocharged EURO 2 heavy-duty diesel engine, operating in steady-state conditions on the European test 13 mode cycle (ECE R49). Regulated and unregulated pollutants, such as carcinogenic polycyclic aromatic hydrocarbons (PAHs) and nitrated derivatives (nitro-PAHs), carbonyl compounds and light aromatic hydrocarbons were quantified. Mutagenicity of the emissions was evaluated by the Salmonella typhimurium/mammalian microsome assay. The effect of the fuels under study on the size distribution of particulate matter (PM) was also evaluated. The use of biodiesel blend seems to result in small reductions of emissions of most of the aromatic and polyaromatic compounds; these differences, however, have no statistical significance at 95% confidence level. Formaldehyde, on the other hand, has a statistically significant increase of 18% with biodiesel blend. In vitro toxicological assays show an overall similar mutagenic potency and genotoxic profile for diesel and biodiesel blend emissions. The electron microscopy analysis indicates that PM for both fuels has the same chemical composition, morphology, shape and granulometric spectrum, with most of the particles in the range 0.06-0.3 microm.

  16. Less wear and oil consumption through helical slide honing of engines by Deutz; Weniger Verschleiss und Oelverbrauch durch Spiralgleithonung bei Deutz-Motoren

    Energy Technology Data Exchange (ETDEWEB)

    Hoen, Thomas [DEUTZ AG, Koeln (Germany); Schmid, Josef [Nagel Maschinen- und Werkzeugfabrik GmbH, Nuertingen (Germany); Stumpf, Walter [Federal Mogul, Burscheid (Germany)

    2009-04-15

    Within the scope of continuous development for the Deutz 2012 engines (4 l and 6 l engines) and Tier 3 emissions standards, new developments are required with regard to achieving a new maximum power requirement of 178 kW at 2100 rpm and a higher EGR rate via cooled exhaust gas recirculation. Without implementing engine design changes, the new Tier III constraints are expected to lead to higher wear in the cylinder unit (cylinder bore, piston, piston rings). Together with Deutz, Nagel found a solution for the expected cylinder unit wear on the existing engine, which not only eliminates the potential future wear problem, but also contributes to the important economic considerations of oil consumption and maintenance intervals. (orig.)

  17. EFFECT OF SOYBEAN OIL BIOFUEL BLENDING ON THE PERFORMANCE AND EMISSIONS OF DIESEL ENGINE USING DIESEL-RK SOFTWARE

    Directory of Open Access Journals (Sweden)

    Mohamed F. Al-Dawody,

    2011-06-01

    Full Text Available The scope of the technology is to provide utility and comfort with no damage to the user or to the surroundings. For many years now, petroleum products and other fossil fuels have given us utility andcomfort in a variety of areas, but causes environmental problems which threaten wild and human life. In this study, the performance and emissions of single cylinder, four stroke, direct injection diesel engine operating on diesel oil and different Soybean Methyl Ester (SME blends have been investigated theoretically using thesimulation software Diesel-RK. Based on the computed modeling results it’s found that 41.3 %, 53.2 % & 62.6 % reduction in the Bosch smoke number obtained with B20% SME, B40 % SME and B100% SME respectively, compared to pure diesel operation. In addition a reduction in PM emissions is observed 47.2%, 60 % & 68% for the B20 % SME, B40 % SME, and B 100% SME respectively. On the average basis there is a reduction in the thermal efficiency, power, and SFC, for all SME blends by 2%, 3%, and 12% respectively compared to pure diesel fuel. All blending of SME produce higher NOx emissions more than 28% compared with pure diesel fuel. A parametric study of retarding injection timing, varying engine speed and compression ratio effects has been performed. Its observed that retarding the injection timing can reduce the increase in the NOx emissions to great extent. Among all tested fuels its noticed that B20% SME was the best tested fuel which gave the same performance results with good reduction in emissions as compared to pure diesel operation. A very good agreement was obtained between the results and the available theoretical and experimental results of other researchers.

  18. Characterization of polycyclic aromatic hydrocarbons from the diesel engine by adding light cycle oil to premium diesel fuel.

    Science.gov (United States)

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chen, Chung-Bang

    2006-06-01

    Diesel fuels governed by U.S. regulations are based on the index of the total aromatic contents. Three diesel fuels, containing various fractions of light cycle oil (LCO) and various sulfur, total polyaromatic, and total aromatic contents, were used in a heavy-duty diesel engine (HDDE) under transient cycle test to assess the feasibility of using current indices in managing the emissions of polycyclic aromatic hydrocarbons (PAHs) from HDDE. The mean sulfur content in LCO is 20.8 times as much as that of premium diesel fuel (PDF). The mean total polyaromatic content in LCO is 28.7 times as much as that of PDF, and the mean total aromatic content in LCO is 2.53 times as much as that of PDF. The total polyaromatic hydrocarbon emission factors in the exhaust from the diesel engine, as determined using PDF L3.5 (3.5% LCO and 96.5% PDF), L7.5 (7.5% LCO and 92.5% PDF), and L15 (15% LCO and 85% PDF) were 14.3, 25.8, 44, and 101 mg L(-1), respectively. The total benzo(a)pyrene equivalent (BaPeq) emission factors in the exhaust from PDF, L3.5, L7.5, and L15 were 0.0402, 0.121, 0.219, and 0.548 mg L(-1), respectively. Results indicated that using L3.5 instead of PDF will result in an 80.4% and a 201% increase of emission for total PAHs and total BaPeq, respectively. The relationships between the total polyaromatic hydrocarbon emission factor and the two emission control indices, including fuel polyaromatic content and fuel aromatic content, suggest that both indices could be used feasibly to regulate total PAH emissions. These results strongly suggest that LCO used in the traveling diesel vehicles significantly influences PAH emissions.

  19. An experimental study on usage of plastic oil and B20 algae biodiesel blend as substitute fuel to diesel engine.

    Science.gov (United States)

    Ramesha, D K; Kumara, G Prema; Lalsaheb; Mohammed, Aamir V T; Mohammad, Haseeb A; Kasma, Mufteeb Ain

    2016-05-01

    Usage of plastics has been ever increasing and now poses a tremendous threat to the environment. Millions of tons of plastics are produced annually worldwide, and the waste products have become a common feature at overflowing bins and landfills. The process of converting waste plastic into value-added fuels finds a feasible solution for recycling of plastics. Thus, two universal problems such as problems of waste plastic management and problems of fuel shortage are being tackled simultaneously. Converting waste plastics into fuel holds great promise for both the environmental and economic scenarios. In order to carry out the study on plastic wastes, the pyrolysis process was used. Pyrolysis runs without oxygen and in high temperature of about 250-300 °C. The fuel obtained from plastics is blended with B20 algae oil, which is a biodiesel obtained from microalgae. For conducting the various experiments, a 10-HP single-cylinder four-stroke direct-injection water-cooled diesel engine is employed. The engine is made to run at 1500 rpm and the load is varied gradually from 0 to 100 %. The performance, emission and combustion characteristics are observed. The BTE was observed to be higher with respect to diesel for plastic-biodiesel blend and biodiesel blend by 15.7 and 12.9 %, respectively, at full load. For plastic-biodiesel blend, the emission of UBHC and CO decreases with a slight increase in NO x as compared to diesel. It reveals that fuel properties are comparable with petroleum products. Also, the process of converting plastic waste to fuel has now turned the problems into an opportunity to make wealth from waste.

  20. Experimental investigation of evaporation rate and emission studies of diesel engine fuelled with blends of used vegetable oil biodiesel and producer gas

    Directory of Open Access Journals (Sweden)

    Nanjappan Balakrishnan

    2015-01-01

    Full Text Available An experimental study to measure the evaporation rates, engine performance and emission characteristics of used vegetable oil methyl ester and its blends with producer gas on naturally aspirated vertical single cylinder water cooled four stroke single cylinder diesel engine is presented. The thermo-physical properties of all the bio fuel blends have been measured and presented. Evaporation rates of used vegetable oil methyl ester and its blends have been measured under slow convective environment of air flowing with a constant temperature and the values are compared with fossil diesel. Evaporation constants have been determined by using the droplet regression rate data. The fossil diesel, biodiesel blends and producer gas have been utilized in the test engine with different load conditions to evaluate the performance and emission characteristics of diesel engine and the results are compared with each other. From these observations, it could be noted that, smoke and hydrocarbon drastically reduced with biodiesel in the standard diesel engine without any modifications.

  1. Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil.

    Science.gov (United States)

    Di, Yage; Cheung, C S; Huang, Zuohua

    2009-01-01

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultra-low sulfur diesel, bi oesel and their blends, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev/min. Blended fuels containing 19.6%, 39.4%, 59.4% and 79.6% by volume of biodiesel, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. Biodiesel used in this study was converted from waste cooking oil. The following results are obtained with an increase of biodiesel in the fuel. The brake specific fuel consumption and the brake thermal efficiency increase. The HC and CO emissions decrease while NO(x) and NO(2) emissions increase. The smoke opacity and particulate mass concentrations reduce significantly at high engine load. In addition, for submicron particles, the geometry mean diameter of the particles becomes smaller while the total number concentration increases. For the unregulated gaseous emissions, generally, the emissions of formaldehyde, 1,3-butadiene, toluene, xylene decrease, however, acetaldehyde and benzene emissions increase. The results indicate that the combination of ultra-low sulfur diesel and biodiesel from waste cooking oil gives similar results to those in the literature using higher sulfur diesel fuels and biodiesel from other sources.

  2. PERFORMANCE, EMISSION AND COMBUSTION CHARACTERISTICS OF A METHYL ESTER SUNFLOWER OILEUCALYPTUS OIL IN A SINGLE CYLINDER AIR COOLED AND DIRECT INJECTION DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    TAMILVENDHAN.D,

    2011-03-01

    Full Text Available Biomass derived fuels are preferred as alternative fuels for IC engine due to its abundant availability and renewable nature. In the present work the performance, emission and combustion characteristics of a single cylinder constant speed , direct injection diesel engine using methyl ester of sun flower oil – eucalyptus oil blend as an alternative fuel were studied and the results are compared with thestandard diesel fuel operation. Result indicated that 50% reduction in smoke, 34% reduction in HC emission and a 37.5% reduction in CO emission for the MeS50Eu50 blend with 2.8 % increase in NOx emission at full load. Brake thermal efficiency was increased 2.7 % for eS50Eu50 blend.

  3. Emissions of particulate matter and associated polycyclic aromatic hydrocarbons from agricultural diesel engine fueled with degummed,deacidified mixed crude palm oil blends

    Institute of Scientific and Technical Information of China (English)

    Khamphe Phoungthong; Surajit Tekasakul; Perapong Tekasakul; Gumpon Prateepchaikul; Naret Jindapetch; Masami Furuuchi; Mitsuhiko Hata

    2013-01-01

    Mixed crude palm oil (MCPO),the mixture of palm fiber oil and palm kernel oil,has become of great interest as a renewable energy source.It can be easily extracted from whole dried palm fruits.In the present work,the degummed,deacidified MCPO was blended in petroleum diesel at portions of 30% and 40% by volume and then tested in agricultural diesel engines for long term usage.The particulates from the exhaust of the engines were collected every 500 hr using a four-stage cascade air sampler.The 50% cut-off aerodynamic diameters for the first three stages were 10,2.5 and 1 μm,while the last stage collected all particles smaller than 1 μm.Sixteen particle bounded polycyclic aromatic hydrocarbons (PAHs) were analyzed using a high performance liquid chromatography.The results indicated that the size distribution of particulate matter was in the accumulation mode and the pattern of total PAHs associated with fine-particles (< 1 μm) showed a dominance of larger molecular weight PAHs (4-6 aromatic rings),especially pyrene.The mass median diameter,PM and total PAH concentrations decreased when increasing the palm oil content,but increased when the running hours of the engine were increased.In addition,Commercial petroleum diesel (PB0) gave the highest value of carcinogenic potency equivalent (BaPeq) for all particle size ranges.As the palm oil was increased,the BaPeq decreased gradually.Therefore the degummed-deacidified MCPO blends are recommended for diesel substitute.

  4. Masila mamba : as Nexen predecessor Canadian Occidental raced to produce first oil from its Yemen concession, its lead engineer juggled a succession of challenges

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, A.W.

    2007-03-15

    This article described the challenges faced by Canadian Occidental's lead engineer when scouting and laying a pipeline for the Masila complex in Yemen. The engineer was sent to Yemen in 1991 to lay initial construction plans for the pipeline. The Yemeni president was relying on the project to boost the country's poor economic performance. The project's central processing facility was located on a plateau interspersed with deep canyons and limestone fault scarps. Wells drilled by Canadian Occidental produced a flow rate of 3,767 barrels per day of oil. A 24 inch pipeline was used to transport oil from holding tanks to a terminal located in Ash Shir. For the first 60 km, the pipeline climbed at an incline of 1 per cent, then sloped gradually for the next 30 km. The route included a cliff edge where pumps were used to push the oil to the edge of the escarpment. In order to build the pipeline, construction crews stockpiled equipment at several locations on the pipeline's route, which also bypassed several villages. The pipeline was buried to keep the oil at an even temperature as well as to avoid acts of vandalism. The buried pipelines did not interfere with the movement of Yemeni tribespeople. A road was then built along a series of switchbacks wide enough to allow for the haulage of hundreds of tonnes of equipment. An experienced workforce was coordinated to complete the pipeline, feeder lines, processing facility and storage tanks. The work camp assembled for the project housed approximately 5000 workers from various countries. While the initial estimates for the oilfield were 243 million barrels, drilling success led to a revised estimate of over a billion barrels of recoverable oil. Reservoir engineers were required to expand beyond their initial targets. It was concluded that the project was completed 1 year ahead of schedule. 5 figs.

  5. Engineering Behavior and Characteristics of Water-Soluble Polymers: Implication on Soil Remediation and Enhanced Oil Recovery

    National Research Council Canada - National Science Library

    Shuang Cindy Cao; Bate Bate; Jong Wan Hu; Jongwon Jung

    2016-01-01

      Biopolymers have shown a great effect in enhanced oil recovery because of the improvement of water-flood performance by mobility control, as well as having been considered for oil contaminated-soil...

  6. Performance evaluation of small scale internal combustion engine with mixtures for diesel oil-palm oil; Avaliacao do desempenho do motor de combustao interna de pequeno porte com misturas oleo diesel - oleo de dende

    Energy Technology Data Exchange (ETDEWEB)

    Seye, Omar; Souza, Rubem Cesar Rodrigues [Universidade Federal do Amazonas (CDEAM/UFAM), Manaus, AM (Brazil). Centro de Desenvolvimento Energetico Amazonico], Emails: Seye62omar@yahoo.com, rcsouza@internext.com.br

    2006-07-01

    This work aims at the performance evaluation of the Cummins 4B -3.9, an internal combustion engine of maximum power 75 hp (56.6 kW) for small scale power generation, burning different mixtures of diesel fuel and palm oil. The palm oil in nature is mixed manually, what unfortunately will influence the engine performance as it hinders the combustion. The test protocol will include the biodiesel, later on. The emissions were assessed for several proportions of mixture diesel/palm oil covering the strip from 0 to 20% and the results were compared to the engine performance when it operates with diesel only. The motor is coupled to a dynamometer, whose operation consists of the acceleration and deceleration of water in order to simulate the effect of a load being applied to the motor. The system is controlled by the software LT commander that allows the start up and the shutdown of the engine from the screen of the computer that also monitors the following parameters as speed of rotation of the motor (RPM), applied torque (N-m), potency (hp), temperature of the lubricating oil, temperature of the water in the entrance and exit of the motor, and temperature of the environment (deg C), pressures of the lubricating oil and of opening of the injector (mBar). While a flow meter coupled to the piping measures the consumption of fuel, the gas analyzer ECHO Line 6000 it monitors the concentration and temperature of carbon monoxide (CO) (ppm), nitric oxide (NO) (ppm), nitrogen dioxide (NO{sub 2}), (ppm), sulfur dioxide (SO{sub 2}) (ppm) and Oxygen (O{sub 2}) (%) in the exhaust gases. This equipment also determines the combustion parameters as excess of air and the efficiency. The technical results present the efficiency variation, the pressure of the fuel, monoxide carbon, NOx emissions, Oxygen content in the exhaust gases, for the different mixture proportions. Furthermore, the results of economic viability show generation cost values of US$ 135,66/MWh for the motor operating

  7. Development of a process maturity model for engineering, construction and maintenance projects in the oil and gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Veldman, J.; Klingenberg, W. [Faculty of Management and Organization, University of Groningen, PO BOX 800, 9700 AV Groningen (Netherlands)

    2006-07-01

    Process improvement is a topic gaining considerable attention in literature. For the processes of Engineering, Procurement, Construction and Maintenance (i.e. EPCM) projects in the oil and gas industry, no frameworks exist that can guide these firms in the management of these processes. Using a detailed gap analysis we map the typical processes of EPCM-organisations onto the Capability Maturity Model Integrated (CMMI), a stepwise process improvement model that is widely used in the software industry. Our main contribution is the conclusion that CMMI can benefit the management of EPCM-processes to a large degree, since it gives direction to the improvement of a considerable set of processes within EPCM-projects. Additional insight is given into the scientifically neglected area of learning between projects and the relationship between an organisation's goals and targeted areas of process improvement. These issues are absent in CMMI so further research is needed to develop framework support for, amongst others, downstream processes (construction and maintenance), learning between projects and goal driven process improvement.

  8. Examination of effects of multi-walled carbon nanotubes on rheological behavior of engine oil (10W40

    Directory of Open Access Journals (Sweden)

    Mohammad Hemmat Esfe

    2016-10-01

    Full Text Available In this study, effects of multi walled carbon nanotubes and temperature on rheological behavior of engine oil (10W40 have been examined. For this purpose, the experiments were carried out in the temperature range of 5-55°C for several suspensions with solid volume fractions of 0.025%, 0.05%, 0.1%, 0.25%, 0.5% and 0.75%. The viscosity of all samples was measured in the shear rate range of 666s-1 to 13333 s-1 at all temperatures considered. The viscosity measurements at different shear rates revealed that all nanofluid samples showed non-Newtonian behavior. The results also revealed that for an increase in the solid volume fraction from 0 to 0.75%, the viscosity increases to 2.5 times. The consistency and the power law index were attained by curve-fitting method for all samples and temperatures. Furthermore, the curve-fitting results revealed that the consistency index and apparent viscosity of nanofluid increases with augmenting the solid volume fraction and diminishes with growing temperature.

  9. The Comparison of Hydrotreated Vegetable Oils With Respect to Petroleum Derived Fuels and the Effects of Transient Plasma Ignition in a Compression-Ignition Engine

    Science.gov (United States)

    2012-09-01

    Content per Combustion J FAME Fatty Acid Methyl Ester FMEP Friction Mean Effective Pressure PSI or Bar FT Fischer-Tropsch h Heat...recently, algae-derived oils. Biodiesel has gained popularity in North America over the past decade, but the ester content of Fatty Acid Methyl ...Baranescu, R., Diesel Engine Reference Book, SAE Publishing, 1999. 9. Edward, T. “ Kerosene Fuels for Aerospace Propulsion – Composition and Properties

  10. 77 FR 72203 - Airworthiness Directives; Lycoming Engines and Continental Motors, Inc. Reciprocating Engines

    Science.gov (United States)

    2012-12-05

    ... Lycoming Engines TSIO-540-AK1A, and Continental Motors, Inc. TSIO-360- MB, TSIO-360-SB, and TSIO-360-RB... engine power, loss of engine oil, oil fire, and damage to the airplane. DATES: This AD is effective... wheel failure, reduction or complete loss of engine power, loss of engine oil, oil fire, and damage...

  11. Monitoring of oil leakage from a ship propulsion system using IR camera and wavelet analysis for prevention of health and ecology risks and engine faults

    Energy Technology Data Exchange (ETDEWEB)

    Soda, J.; Beros, S. [University of Split (Croatia). Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture; Antonic, R.; Vujovic, I. [University of Split (Croatia) Maritime Faculty; Kuzmanic, I.

    2009-03-15

    It is a well known fact that oil leakage from ship diesel engines is harmful both for the environment and the ship engine and therefore has to be observed and alarmed. The present paper proposes a system for overcoming described problems by installing a computer vision system. The used algorithm of pattern recognition system is based on the use of wavelet structures. Additionally, one of the problems in the system is the compensation of camera movements due to engine vibration. The compensation part of the computer vision solution is used to improve position determination. The position determination is improved more that 300 % when using farras wavelets. (Abstract Copyright [2009], Wiley Periodicals, Inc.) [German] (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  12. Cognitive impairment and associated loss in brain white microstructure in aircrew members exposed to engine oil fumes.

    Science.gov (United States)

    Reneman, Liesbeth; Schagen, Sanne B; Mulder, Michel; Mutsaerts, Henri J; Hageman, Gerard; de Ruiter, Michiel B

    2016-06-01

    Cabin air in airplanes can be contaminated with engine oil contaminants. These contaminations may contain organophosphates (OPs) which are known neurotoxins to brain white matter. However, it is currently unknown if brain white matter in aircrew is affected. We investigated whether we could objectify cognitive complaints in aircrew and whether we could find a neurobiological substrate for their complaints. After medical ethical approval from the local institutional review board, informed consent was obtained from 12 aircrew (2 females, on average aged 44.4 years, 8,130 flying hours) with cognitive complaints and 11 well matched control subjects (2 females, 43.4 years, 233 flying hours). Depressive symptoms and self-reported cognitive symptoms were assessed, in addition to a neuropsychological test battery. State of the art Magnetic Resonance Imaging (MRI) techniques were administered that assess structural and functional changes, with a focus on white matter integrity. In aircrew we found significantly more self-reported cognitive complaints and depressive symptoms, and a higher number of tests scored in the impaired range compared to the control group. We observed small clusters in the brain in which white matter microstructure was affected. Also, we observed higher cerebral perfusion values in the left occipital cortex, and reduced brain activation on a functional MRI executive function task. The extent of cognitive impairment was strongly associated with white matter integrity, but extent of estimated number of flight hours was not associated with cognitive impairment nor with reductions in white matter microstructure. Defects in brain white matter microstructure and cerebral perfusion are potential neurobiological substrates for cognitive impairments and mood deficits reported in aircrew.

  13. Genetic enhancement of oil content in potato tuber (Solanum tuberosum L.) through an integrated metabolic engineering strategy.

    Science.gov (United States)

    Liu, Qing; Guo, Qigao; Akbar, Sehrish; Zhi, Yao; El Tahchy, Anna; Mitchell, Madeline; Li, Zhongyi; Shrestha, Pushkar; Vanhercke, Thomas; Ral, Jean-Philippe; Liang, Guolu; Wang, Ming-Bo; White, Rosemary; Larkin, Philip; Singh, Surinder; Petrie, James

    2017-01-01

    Potato tuber is a high yielding food crop known for its high levels of starch accumulation but only negligible levels of triacylglycerol (TAG). In this study, we evaluated the potential for lipid production in potato tubers by simultaneously introducing three transgenes, including WRINKLED 1 (WRI1), DIACYLGLYCEROL ACYLTRANSFERASE 1 (DGAT1) and OLEOSIN under the transcriptional control of tuber-specific (patatin) and constitutive (CaMV-35S) promoters. This coordinated metabolic engineering approach resulted in over a 100-fold increase in TAG accumulation to levels up to 3.3% of tuber dry weight (DW). Phospholipids and galactolipids were also found to be significantly increased in the potato tuber. The increase of lipids in these transgenic tubers was accompanied by a significant reduction in starch content and an increase in soluble sugars. Microscopic examination revealed that starch granules in the transgenic tubers had more irregular shapes and surface indentations when compared with the relatively smooth surfaces of wild-type starch granules. Ultrastructural examination of lipid droplets showed their close proximity to endoplasmic reticulum and mitochondria, which may indicate a dynamic interaction with these organelles during the processes of lipid biosynthesis and turnover. Increases in lipid levels were also observed in the transgenic potato leaves, likely due to the constitutive expression of DGAT1 and incomplete tuber specificity of the patatin promoter. This study represents an important proof-of-concept demonstration of oil increase in tubers and provides a model system to further study carbon reallocation during development of nonphotosynthetic underground storage organs. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Combustion, Performance, and Emission Evaluation of a Diesel Engine with Biodiesel Like Fuel Blends Derived From a Mixture of Pakistani Waste Canola and Waste Transformer Oils

    Directory of Open Access Journals (Sweden)

    Muhammad Qasim

    2017-07-01

    Full Text Available The aim of this work was to study the combustion, performance, and emission characteristics of a 5.5 kW four-stroke single-cylinder water-cooled direct-injection diesel engine operated with blends of biodiesel-like fuel (BLF15, BLF20 & BLF25 obtained from a 50:50 mixture of transesterified waste transformer oil (TWTO and waste canola oil methyl esters (WCOME with petroleum diesel. The mixture of the waste oils was named as biodiesel-like fuel (BLF.The engine fuelled with BLF blends was evaluated in terms of combustion, performance, and emission characteristics. FTIR analysis was carried out to know the functional groups in the BLF fuel. The experimental results revealed the shorter ignition delay and marginally higher brake specific fuel consumption (BSFC, brake thermal efficiency (BTE and exhaust gas temperature (EGT values for BLF blends as compared to diesel. The hydrocarbon (HC and carbon monoxide (CO emissions were decreased by 10.92–31.17% and 3.80–6.32%, respectively, as compared to those of diesel fuel. Smoke opacity was significantly reduced. FTIR analysis has confirmed the presence of saturated alkanes and halide groups in BLF fuel. In comparison to BLF20 and BLF25, the blend BLF15 has shown higher brake thermal efficiency and lower fuel consumption values. The HC, CO, and smoke emissions of BLF15 were found lower than those of petroleum diesel. The fuel blend BLF15 is suggested to be used as an alternative fuel for diesel engines without any engine modification.

  15. Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value.

    Science.gov (United States)

    Liu, Jinjie; Rice, Adam; McGlew, Kathleen; Shaw, Vincent; Park, Hyunwoo; Clemente, Tom; Pollard, Mike; Ohlrogge, John; Durrett, Timothy P

    2015-08-01

    Seed oils have proved recalcitrant to modification for the production of industrially useful lipids. Here, we demonstrate the successful metabolic engineering and subsequent field production of an oilseed crop with the highest accumulation of unusual oil achieved so far in transgenic plants. Previously, expression of the Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene in wild-type Arabidopsis seeds resulted in the accumulation of 45 mol% of unusual 3-acetyl-1,2-diacyl-sn-glycerols (acetyl-TAGs) in the seed oil (Durrett et al., 2010 PNAS 107:9464). Expression of EaDAcT in dgat1 mutants compromised in their ability to synthesize regular triacylglycerols increased acetyl-TAGs to 65 mol%. Camelina and soybean transformed with the EaDAcT gene accumulate acetyl-triacylglycerols (acetyl-TAGs) at up to 70 mol% of seed oil. A similar strategy of coexpression of EaDAcT together with RNAi suppression of DGAT1 increased acetyl-TAG levels to up to 85 mol% in field-grown transgenic Camelina. Additionally, total moles of triacylglycerol (TAG) per seed increased 20%. Analysis of the acetyl-TAG fraction revealed a twofold reduction in very long chain fatty acids (VLCFA), consistent with their displacement from the sn-3 position by acetate. Seed germination remained high, and seedlings were able to metabolize the stored acetyl-TAGs as rapidly as regular triacylglycerols. Viscosity, freezing point and caloric content of the Camelina acetyl-TAG oils were reduced, enabling use of this oil in several nonfood and food applications.

  16. Genetic Engineering Modification of Microalgae to Enhance CO2 Fixation and Oil Formation%固碳产油微藻的基因工程改造

    Institute of Scientific and Technical Information of China (English)

    于水燕; 赵权宇; 史吉平

    2012-01-01

    Fossil fuels are un-renewable and over-emission of CO2 brings on the global warming. Biodiesel from microalgae is considered as a potential alternative energy. CO2 could be fixed by microalgae via photosynthesis to synthesize the oil. Microalgal biodiesel is further produced by trans-esterification of triglycerides with methanol. There are several advantages of microalgae biodiesel compared with other biofuels. Microalgae as a next generation feedstock for biofuel production have obtained worldwide attention. The neutral lipids especially triacylglycerols (TAG) which are the main feedstock of oil can be accumulated in many microalgae cells under stress conditions. Three promising strategies are feasible to enhance TAG accumulation in microalgae: the biochemical engineering approach, the genetic engineering ( GE ) approach, and the transcription factor engineering approach. The genetic engineering modification has now become a new research hot point to enhance the lipid production in oil-rich microalgae. An overview of the advances of some genes in lipid biosynthesis pathway in microalgae, and the metabolic regulation strategies for enhancing lipid accumulation was presented. Correlated with the TAG accumulating, some genes in six metabolic pathways are summarized including carbon fixation, central carbon metabolism, fatty acid biosynthesis, TAG assembling, inhibition of competing pathways of TAG and the lipid degradation catabolism. Exploring these enzymes and their functions involved in the pathways are helpful for the genetic engineering modification of microalgae. Finally, the current genetic engineering methods and technical issues of microalgae, the feasibility of genetic engineering modification of microalgae and possibilities of microalgae as feedstock for biofuels and its integrated utilization are further discussed.%藻种的选育和基因工程改造是微藻生物柴油研究的核心.为此,简要综述了微藻从光合作用到甘油三酯(TAG)合

  17. Oil as a design parameter in screw-type engines - use of non-newtonian oils. Pt. 1; Oel als Konstruktionselement in Schraubenmaschinen - Einsatz nicht newtonscher Oele. T. 1

    Energy Technology Data Exchange (ETDEWEB)

    Kauder, K.; Deipenwisch, R. [Dortmund Univ. (Germany). FG Fluidenergiemaschinen

    1998-12-31

    The model of the calculation of the friction losses caused by oil described in this report delivers a starting point for the integration of the design parameter `oil` for oil injected screw-type engines. The use of non newtonian oils with a shear thinning behaviour lead to a decrease of energy consumption over a broad speed range of screw-type compressors. The decrease is mainly caused by the shear indicated lower viscosity in the clearances of the compressor. A difficulty through the use of this oils is the estimation of the conditions in the clearances. The rate of shear in the single clearance is influenced by the relative speed of the boundaries and by the height of the clearance during operation. Up to now only cold heights were used in the model. To improve the quality of the model the clearances of a running screw compressor were measured. The losses which were determined at the screw compressor test plant are the summation of all losses including the losses caused by the power transmission and in the bearings. Experiments at a model rotor test stand make the determination of the friction losses and the losses by the acceleration of the oil in the clearances possible. A better calculation model shall deliver the conditions to describe the influence of the oil on the energy efficiency and to define the optimal oil for every screw compressor. (orig.) [Deutsch] Das beschriebene Modell zur Berechnung der hydraulischen Verluste in der nasslaufenden Schraubenmaschine liefert Ansaetze, um das Oel schon bei der Auslegung der Schraubenkompressoren als Konstruktionselement mit einzubeziehen. Sinnvoll ist die Nutzung eines nicht-newtonschen Oeles immer dann, wenn eine deutliche scherindizierte Viskositaetserniedrigung in dem Schergeschwindigkeitsbereich, der in den Spalten des Schraubenkompressors vorliegt, erreicht werden kann. Beim Einsatz dieser Oele besteht die Schwierigkeit darin, den Schergeschwindigkeitsbereich vorherzubestimmen, der waehrend des Betriebs in dem

  18. New Progress in Design and EngineeringDevelopment of Hydrogenation Units3 - Engineering Development and Commercial Application of Lube Oil Hydrogenation Technology

    Institute of Scientific and Technical Information of China (English)

    Liu Jiaming; Sun Lili

    2000-01-01

    @@1 Introduction With the automotive industry embarking on the de velopment route toward high speed, energy conservation, low fuel consumption, low emissions and extended oil condemning limits in the 1990s, better quality lubricant products are needed. The previous approach for im proving the performance of lubricant products through adjustment of additive composition can no more meet the demand. Higher requirements for the quality of lube base stocks are raised. These requirements are: (1) higher oxidation stability; (2) better viscosity tem perature performance; (3) better low temperature flow property; and (4) excellent shearing stability and anti wear property. In the meantime, the development of industrial technology and stricter environmental and safety requirements have raised their demand for high quality industrial lubricating oils. The quality of mineral lubricating oils made by traditional means of lube tech nology has been reaching its limits without room for fur ther improvement. In addition the crude oil resources that are suitable for making lube oils are depleting. The lube oil production is forced to opt for the inferior heavy crude, posing a difficult dilemma for the traditional petroleum processing industry.

  19. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Hutchings, Martin; Loft, Annika; Hansen, Mads

    2005-01-01

    ) and overall survival (OS) in Hodgkin lymphoma (HL). Seventy-seven consecutive, newly diagnosed patients underwent FDG-PET at staging, after two and four cycles of chemotherapy, and after completion of chemotherapy. Median follow-up was 23 months. After two cycles of chemotherapy, 61 patients had negative FDG...

  20. Experimental evaluation of the performance and emissions of diesel engines using blends of crude castor oil and diesel; Avaliacao experimental do desempenho e emissoes de motores diesel usando misturas de oleo de mamona e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Valeria Said de Barros; Pereira, Pedro Paulo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica; Belchior, Carlos Rodrigues Pereira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Oceanica

    2004-07-01

    This work refers to the experimental evaluation of diesel generators operating with blend of crude castor oil and diesel. Performance and emissions tests were accomplished in a diesel engine of direct injection. Because of the high viscosity of the blend a device was installed on the engine in order to lower the blend viscosity. A comprehensive analysis of the results obtained in these tests indicates the possibility of use of the blend of castor oil and diesel as fuel for diesel-generators, with modifications introduced in the engines. (author)

  1. Heavy oil recovery process: Conceptual engineering of a downhole methanator and preliminary estimate of facilities cost for application to North Slope Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Gondouin, M.

    1991-10-31

    The West Sak (Upper Cretaceous) sands, overlaying the Kuparuk field, would rank among the largest known oil fields in the US, but technical difficulties have so far prevented its commercial exploitation. Steam injection is the most successful and the most commonly-used method of heavy oil recovery, but its application to the West Sak presents major problems. Such difficulties may be overcome by using a novel approach, in which steam is generated downhole in a catalytic Methanator, from Syngas made at the surface from endothermic reactions (Table 1). The Methanator effluent, containing steam and soluble gases resulting from exothermic reactions (Table 1), is cyclically injected into the reservoir by means of a horizontal drainhole while hot produced fluids flow form a second drainhole into a central production tubing. The downhole reactor feed and BFW flow downward to two concentric tubings. The large-diameter casing required to house the downhole reactor assembly is filled above it with Arctic Pack mud, or crude oil, to further reduce heat leaks. A quantitative analysis of this production scheme for the West Sak required a preliminary engineering of the downhole and surface facilities and a tentative forecast of well production rates. The results, based on published information on the West Sak, have been used to estimate the cost of these facilities, per daily barrel of oil produced. A preliminary economic analysis and conclusions are presented together with an outline of future work. Economic and regulatory conditions which would make this approach viable are discussed. 28 figs.

  2. Pilot scale biodiesel production from microbial oil of Rhodosporidium toruloides DEBB 5533 using sugarcane juice: Performance in diesel engine and preliminary economic study.

    Science.gov (United States)

    Soccol, Carlos Ricardo; Dalmas Neto, Carlos José; Soccol, Vanete Thomaz; Sydney, Eduardo Bittencourt; da Costa, Eduardo Scopel Ferreira; Medeiros, Adriane Bianchi Pedroni; Vandenberghe, Luciana Porto de Souza

    2016-10-21

    A successful pilot-scale process for biodiesel production from microbial oil (Biooil) produced by Rhodosporidium toruloides DEBB 5533 is presented. Using fed-batch strategy (1000L working volume), a lipid productivity of 0.44g/L.h was obtained using a low-cost medium composed by sugarcane juice and urea. The microbial oil was used for biodiesel production and its performance was evaluated in diesel engine tests, showing very good performance, especially for the blend B20 SCO, when operating at 2500rpm with lower pollutant emissions (CO2 - 220% less; CO - 7-fold less; NOX 50% less and no detectable HC emissions (blends of standard biofuel from soybean oil. A preliminary analysis showed that microbial biodiesel is economically competitive (US$ 0.76/L) when compared to the vegetable biodiesel (US$ 0.81/L). Besides, the yield of biodiesel from microbial oil is higher (4172L/ha of cultivated sugarcane) that represents 6.3-fold the yield of standard biodiesel (661L/ha of cultivated soybean). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Enzymatic production of biodiesel from waste cooking oil in a packed-bed reactor: an engineering approach to separation of hydrophilic impurities.

    Science.gov (United States)

    Hama, Shinji; Yoshida, Ayumi; Tamadani, Naoki; Noda, Hideo; Kondo, Akihiko

    2013-05-01

    An engineering approach was applied to an efficient biodiesel production from waste cooking oil. In this work, an enzymatic packed-bed reactor (PBR) was integrated with a glycerol-separating system and used successfully for methanolysis, yielding a methyl ester content of 94.3% and glycerol removal of 99.7%. In the glycerol-separating system with enhanced retention time, the effluent contained lesser amounts of glycerol and methanol than those in the unmodified system, suggesting its promising ability to remove hydrophilic impurities from the oil layer. The PBR system was also applied to oils with high acid values, in which fatty acids could be esterified and the large amount of water was extracted using the glycerol-separating system. The long-term operation demonstrated the high lipase stability affording less than 0.2% residual triglyceride in 22 batches. Therefore, the PBR system, which facilitates the separation of hydrophilic impurities, is applicable to the enzymatic biodiesel production from waste cooking oil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Effects of Pilot Injection Timing and EGR on Combustion, Performance and Exhaust Emissions in a Common Rail Diesel Engine Fueled with a Canola Oil Biodiesel-Diesel Blend

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2015-07-01

    Full Text Available Biodiesel as a clean energy source could reduce environmental pollution compared to fossil fuel, so it is becoming increasingly important. In this study, we investigated the effects of different pilot injection timings from before top dead center (BTDC and exhaust gas recirculation (EGR on combustion, engine performance, and exhaust emission characteristics in a common rail diesel engine fueled with canola oil biodiesel-diesel (BD blend. The pilot injection timing and EGR rate were changed at an engine speed of 2000 rpm fueled with BD20 (20 vol % canola oil and 80 vol % diesel fuel blend. As the injection timing advanced, the combustion pressure, brake specific fuel consumption (BSFC, and peak combustion pressure (Pmax changed slightly. Carbon monoxide (CO and particulate matter (PM emissions clearly decreased at BTDC 20° compared with BTDC 5°, but nitrogen oxide (NOx emissions increased slightly. With an increasing EGR rate, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at BTDC 20° compared to other injection timings. However, the Pmax showed a remarkable decrease. The BSFC and PM emissions increased slightly, but the NOx emission decreased considerably.

  5. Phytoassessment of a waste engine oil-polluted soil exposed to two different intervals of monitored natural attenuation using African yam bean (Sphenostylis stenocarpa).

    Science.gov (United States)

    Ikhajiagbe, B; Anoliefo, G O; Jolaoso, M A; Oshomoh, E O

    2013-07-15

    The present study comparatively investigated the phytotoxic effects of waste engine oil (WEO)-polluted soil exposed to monitored natural attenuation up to 5 and 14 months respectively. Soil was previously polluted with WEO at 0, 1, 2.5, 5 and 10% w/w oil in soil. Although, there was significant reduction in heavy metal concentration of soil as well as total hydrocarbon contents, performance of Sphenostylis stenocarpa was greatly retarded when sown at 5 months after pollution (MAP), with death of all seedlings except in the control. However, growth and yield performances were significantly (p > 0.05) enhanced at 14 MAP. Computation of hazard quotient showed that ecological risk factor initially posed by the presence of heavy metals in the soil at 5 MAP was significantly (p > 0.05) reduced to safe levels at 14 MAP.

  6. Ultra-sensitive biosensor based on genetically engineered acetylcholinesterase immobilized in poly (vinyl alcohol)/Fe-Ni alloy nanocomposite for phosmet detection in olive oil.

    Science.gov (United States)

    El-Moghazy, A Y; Soliman, E A; Ibrahim, H Z; Noguer, T; Marty, J-L; Istamboulie, G

    2016-07-15

    An ultra-sensitive screen-printed biosensor was successfully developed for phosmet detection in olive oil, based on a genetically-engineered acetylcholinesterase (AChE) immobilized in a azide-unit water-pendant polyvinyl alcohol (PVA-AWP)/Fe-Ni alloy nanocomposite. Fe-Ni not only allowed amplifying the response current but also lowering the applied potential from 80 mV to 30 mV vs Ag/AgCl. The biosensor showed a very good analytical performance for phosmet detection, with a detection limit of 0.1 nM. This detection limit is lower than the allowable concentrations set by international regulations. In addition to the good reproducibility, operational and storage stability, the developed biosensor was successfully used for the determination of phosmet in olive oil samples without any laborious pre-treatment. The phosmet recovery rate was about 96% after a simple liquid-liquid extraction.

  7. The influence of natural and synthetic antioxidant on oxidation stability and emission of sapota oil methyl ester as fuel in CI engine

    Directory of Open Access Journals (Sweden)

    Ramalingam Senthil

    2016-01-01

    Full Text Available In this present study oxidation stability of sapota oil methyl ester with synthetic and natural antioxidant additives using Rancimat test is investigate. The performance and emission characteristics of the B20 blend of sapota oil methyl ester with different antioxidant additive are evaluated in a Diesel engine. The natural antioxidants namely citric acid, rosemary extract and leaf extract and synthetic antioxidants namely pyrogallol, propyl gallate and butylated hydroxylanisole are selected. Addition of all the antioxidant additive found to have improved the oxidation stability of the biodiesel to the required level. Pyrogallol is found to be the best among the synthetic antioxidant, while leaf extract is the best among the natural antioxidant. From the emission test it is found that B20 has better emission characters compared to diesel except NOx. Further the addition of leaf extract slightly reduces the NOx emission of B20 and appreciably suppresses smoke emission.

  8. Investigating SO3 Formation from the Combustion of Heavy Fuel Oil in a Four-Stroke Medium Speed Test Engine

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Lage; Schramm, Jesper; Rabe, Rom

    2013-01-01

    The validation of detailed models, in terms of SO3 formation in large marine engines operating on sulfur-containing heavy fuel oils (HFOs), relies on experimental work. The requisite is addressed in the present work, where SO3 is measured in the exhaust gas of an 80 kW medium-speed single......-cylinder HFO-fuelled test engine. SO3 formation is triggered by running the engine at altered operational conditions and speeds within 1050−1500 rpm. The test engine does not represent a large low-speed marine engine; however, the nature of high-temperature SO3 formation may well be explored with the current...... conversion and indirect detection via light absorption in a photometer. Present results show that SO3 formation is favored by elevated pressure histories, premixed combustion, and reduced speeds. The fraction of fuel sulfur converted to SO3 is measured to be on the order of 0.5%−2.4%, corresponding to 4...

  9. Experimental Investigation of 2nd Generation Bioethanol Derived from Empty-fruit-bunch (EFB of Oil-palm on Performance and Exhaust Emission of SI Engine

    Directory of Open Access Journals (Sweden)

    Yanuandri Putrasari

    2014-07-01

    Full Text Available The experimental investigation of 2nd generation bioethanol derived from EFB of oil-palm blended with gasoline for 10, 20, 25% by volume and pure gasoline were conducted on performance and exhaust emission tests of SI engine. A four stroke, four cylinders, programmed fuel injection (PGMFI, 16 valves variable valve timing and electronic lift control (VTEC, single overhead camshaft (SOHC, and 1,497 cm3 SI engine (Honda/L15A was used in this investigation. Engine performance test was carried out for brake torque, power, and fuel consumption. The exhaust emission was analyzed for carbon monoxide (CO and hydrocarbon (HC. The engine was operated on speed range from1,500 until 4,500 rev/min with 85% throttle opening position. The results showed that the highest brake torque of bioethanol blends achieved by 10% bioethanol content at 3,000 to 4,500 rpm, the brake power was greater than pure gasoline at 3,500 to 4,500 rpm for 10% bioethanol, and bioethanol-gasoline blends of 10 and 20% resulted greater bsfc than pure gasoline at low speed from 1,500 to 3,500 rpm. The trend of CO and HC emissions tended to decrease when the engine speed increased.

  10. Economic analysis and performance of a low power diesel engine using soybean oil refined; Analise economica e de desempenho de um motor diesel de baixa potencia utilizando oleo de soja refinado

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Guilherme Ladeira dos; Fernandes, Haroldo Carlos; Alvarenga, Cleyton Batista de; Leite, Daniel Mariano; Siqueira, Wagner da Cunha [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola], E-mails: glsantos@yahoo.com.br, haroldo@ufv.br, cleyton.alvarenga@ufv.br, daniel.mariano@ufv.br, wagner.siqueira@ufv.br

    2011-07-01

    Oil is the main source of energy available to power internal combustion engines, enabling its transformation into mechanical energy. To meet the production of vegetable oils, many cultures can be used, according to regional conditions, especially those that are already commercially exploited, such as peanuts, Soybeans, Corn, Palm oil, Sunflower and Canola, and other public regional and castor oil, Andiroba, Pequi, Buriti, Inaja, Carnauba, Jatropha, among others. The objective of this work make an economic analysis of replacing diesel fuel by mixing and compare performance on the engine and using B{sub 2} biodiesel fuel mixture of diesel with 2 % Refined Soybean Oil (SAB). The loads applied by the dynamometer in the engine were 7, 9, 11, 13, 15, 17, 19 and 21.5 lbs. The engine was coupled to the dynamometer with the aid of pulleys and belts of the type V with gear ratio of 1:1,9. Apparently, the best vegetable oil mixture was 30 %, both in terms of specific consumption and cost from R$ kW{sup -1} h{sup -1}. Providing the same cost of pure diesel. (author)

  11. The Application of Response Surface Methodology in the Investigation of the Tribological Behavior of Palm Cooking Oil Blended in Engine Oil

    Directory of Open Access Journals (Sweden)

    M. H. Sakinah

    2016-01-01

    Full Text Available The purpose of this study was to determine the optimal design parameters and to indicate which of the design parameters are statistically significant for obtaining a low coefficient of friction (COF and low wear rate with waste palm oil blended with SAE 40. The tribology performance was evaluated using a piston-ring-liner contact tester. The design of experiment (DOE was constructed by using response surface methodology (RSM to minimize the number of experimental conditions and to develop a mathematical model between the key process parameters such as rotational speeds (200 rpm to 300 rpm, volume concentration (0% to 10% waste oil, and applied loads (2 kg to 9 kg. Analysis of variance (ANOVA test was also carried out to check the adequacy of the empirical models developed. Scanning electron microscopy (SEM was used to examine the damage features at the worn surface under lubricant contact conditions.

  12. Experimental Analysis of Performance and Emission Parameters of Neem Oil Ethyl Ester and HHO Gas Addition with Neem Oil Ethyl Ester in a Single Cylinder Four Stroke Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    M Subramanian

    2014-04-01

    Full Text Available Need for alternate fuel is increasing day by day due various problems associated with the conventional fuels. Present work is focussed on analysing experimentally the performance and emission characteristics of Neem oil biodiesel and addition of HHO gas along with Neem oil biodiesel in a single cylinder compression ignition engine. Biodiesel is extracted by tranesterification of non edible crude Neem oil using ethanol and Naoh as catalyst. The biodiesel is blended with diesel. The blends used are N30 and N40. HHO gas is produced from the process of electrolysis the HHO gas is the combination of hydrogen and oxygen. The produced gas is made to pass through a moisture separator and sent along the intake manifold with the intake air. The performance and emission characteristics are noted down and compared. It was observed that there was a rise in brake thermal efficiency and lesser specific fuel consumption, Reduced Oxygen content in exhaust gases, lesser HC and CO emission and there was a rise in NOX emission when HHO is supplemented with biodiesel Keywords –

  13. Natural oils as lubricants

    Science.gov (United States)

    There is currently an availability of vegetable oil lubricants, with the exception of engine oils. Vegetable oils are environmentally friendly, renewable, contribute to the reduction of our dependence on imported petroleum, and add value to the farmer. However, there are inherent weaknesses in veg...

  14. Counting Fixed Points, Two-Cycles, and Collisions of the Discrete Exponential Function using p-adic Methods

    CERN Document Server

    Holden, Joshua

    2011-01-01

    Brizolis asked for which primes p greater than 3 does there exist a pair (g, h) such that h is a fixed point of the discrete exponential map with base g, or equivalently h is a fixed point of the discrete logarithm with base g. Zhang (1995) and Cobeli and Zaharescu (1999) answered with a "yes" for sufficiently large primes and gave estimates for the number of such pairs when g and h are primitive roots modulo p. In 2000, Campbell showed that the answer to Brizolis was "yes" for all primes. The first author has extended this question to questions about counting fixed points, two-cycles, and collisions of the discrete exponential map. In this paper, we use p-adic methods, primarily Hensel's lemma and p-adic interpolation, to count fixed points, two cycles, collisions, and solutions to related equations modulo powers of a prime p.

  15. Antioxidant (A-tocopherol acetate) effect on oxidation stability and NOx emission reduction in methyl ester of Annona oil operated diesel engine

    Science.gov (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2016-11-01

    There is a major drawback while using biodiesel as a alternate fuel for compression ignition diesel engine due to lower heating value, higher viscosity, higher density and higher oxides of nitrogen emission. To minimize these drawbacks, fuel additives can contribute towards engine performance and exhaust emission reduction either directly or indirectly. In this current work, the test was conducted to investigate the effect of antioxidant additive (A-tocopherol acetate) on oxidation stability and NOx emission in a of Annona methyl ester oil (MEAO) fueled diesel engine. The A-tocopherol acetate is mixed in different concentrations such as 0.01, 0.02, 0.03 and 0.04% with 100% by vol MEAO. It is concluded that the antioxidant additive very effective in increasing the oxidation stability and in controlling the NOx emission. Further, the addition of antioxidant additive is slight increase the HC, CO and smoke emissions. Hence, A-tocopherol acetate is very effective in controlling the NOx emission with MEAO operated diesel engine without any major modification.

  16. Engineering Calculation Method of Electromagnetic Effect on Oil/Gas Pipelines from 1 000 kV AC Transmission Line Having Single-phase Ground Fault

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wenliang; JIANG Jun; GUO Jian; LU Jiayu

    2012-01-01

    There will be more and more AC transmission lines near oil/gas pipelines in the future.So in order to determine the safe distance between them,simple and effective methods are required for engineers to efficiently evaluate the electromagnetic effect on oil/gas pipelines due to faults of AC transmission lines.In this paper,an easily handled fitting formula is obtained based on multiple calculation results,which is the maximum voltage on the pipeline anticorrosive coating produced by 1 000 kV AC transmission line under single phase ground fault.Although the calculation results obtained from the fitting formula differ from those gained by precise calculation with softwares,the verification of the formula shows that it is applicable for engineering calculation.This research could be applied to evaluate the electromagnetic effect of 1 000 kV AC transmission line under single-phase ground fault on nearby pipelines,as well as to determine the safe distance or the maximum parallel length.

  17. Comparative in vitro cytotoxicity assessment of airborne particulate matter emitted from stationary engine fuelled with diesel and waste cooking oil-derived biodiesel

    Science.gov (United States)

    Betha, Raghu; Pavagadhi, Shruti; Sethu, Swaminathan; Hande, M. Prakash; Balasubramanian, Rajasekhar

    2012-12-01

    Biodiesel derived from waste cooking oil (WCO) is gaining increased attention as an alternative fuel due to lower particulate emissions and other beneficial factors such as low cost and utilization of waste oil. However, very little information is available on toxicity of airborne particulate matter (PM) emitted from biodiesel combustion. In this study, PM emitted from WCO-derived biodiesel (B100) was analyzed for its toxic potential together with ultra low sulphur diesel (ULSD) as a reference fuel and their blend (B50). Human lung epithelial carcinoma cells (A549) were used for this comparative toxicity study. Results indicate that cytotoxicity and oxidative stress were higher for B100 relative to ULSD. Furthermore, caspase 3/7 activity indicates that cell death induced by B100 was due to either caspase independent apoptotic process or other programmed cell death pathways. The toxicity was also evaluated for different engine load conditions. It was observed that at lower loads there was no significant difference in the toxicological response of B100 and ULSD. However, with increase in the engine load, B100 and B50 showed significantly higher toxicity and oxidative stress compared to ULSD.

  18. Investigations on the effect of chlorine in lubricating oil and the presence of a diesel oxidation catalyst on PCDD/F releases from an internal combustion engine.

    Science.gov (United States)

    Dyke, Patrick H; Sutton, Mike; Wood, David; Marshall, Jonathan

    2007-04-01

    This paper reports on an intensive study into releases of polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated furans (PCDF) and polychlorinated biphenyls (PCB) from a diesel engine and the analysis of PCDD/F and PCB in crankcase lubricating oil. Experimental conditions were set and carefully controlled in order to maximize the possible impact of, and our ability to measure the effect of, changes in the levels of chlorine in the lubricant. Emissions to air were measured using modified EPA methods following the principles of the European EN 1948 standards. A series of 40 experimental runs were completed using three reference lubricants formulated to have three levels of chlorine present as a residual component (at levels of 12, 131 and 259 mg kg(-1) or ppm). The engine was run with and without the diesel oxidation catalyst. All lubricants were realistic oils and the use of unrealistic additives or doping of components - particularly chlorine - in the fuel and lubricant was carefully avoided. Analysis of fuel and lubricant (before and after testing) samples required strenuous attention to achieve acceptable recoveries and showed non-detectable levels of PCB and PCDD/F at a detection limit of around 1.5 ng I-TEQ kg(-1) (ppt), indistinguishable from the laboratory blank. The testing demonstrated the need for extreme care to be taken in developing measurement methods that are sufficiently sensitive for measuring chlorine content of fluids and PCDD/F in oils, the latter being particularly challenging. Mean emissions of PCDD/F with the diesel oxidation catalyst in place were 23 pg I-TEQ l(-1) of fuel and with the diesel oxidation catalyst removed 97 pg I-TEQ l(-1) of fuel. The results of this testing showed that the emissions of PCDD/F were greatly reduced by the presence of a diesel oxidation catalyst in the exhaust, a finding that has not been explicitly tested in previous work. They also show that emissions from the engine were not controlled by the level of

  19. Airliner cabin air quality: emissions of organophosphates originating from aircraft engine oil. Experimental lab simulation and measurements on flight

    NARCIS (Netherlands)

    Houtzager, M.M.G.; Havermans, J.B.G.A.; Bos, J.G.H.; Makarem Akhlaghi, H.; Hijman, W.C.; Renesse van Duivenbode, J.A.D.; Jedynska, A.D.

    2014-01-01

    In our simulation experiments, using e.g., a dedicated emission chamber, the emission of organophosphates as tricresyl phosphate (TCP) was studied using turbine oil. Experiments were carried out at 250°C and 370°C. Subsequently field studies were carried out to detect the presence of TCPs in the coc

  20. Influence of sliding surface roughness and oil temperature on piston ring pack operation of an automotive IC engine

    Science.gov (United States)

    Wolff, A.

    2016-09-01

    In the paper a comprehensive model of a piston ring pack motion on an oil film has been presented. The local oil film thickness can be compared to height of the combined roughness of sliding surfaces of piston rings and cylinder liner. Equations describing the mixed lubrication problem based on the empirical mathematical model formulated in works of Patir, Cheng and Greenwood, Tripp have been combined and used in this paper. The developed model takes the following phenomena into account: hydrodynamic and contact forces, spring and gas forces acting on piston rings. The rings motion concerning low and high temperature of cylinder surface has been compared. These results concern cases of hydrodynamic and mixed lubrication. Changes of oil wetted area and contact zone of piston rings have been shown. In addition the oil film thickness distribution along cylinder liner and all the forces acting on piston rings have been analysed and discussed. The results have been presented in form of relevant diagrams. The developed model and software can be utilized for optimization of piston rings design.

  1. Engineering Behavior and Characteristics of Water-Soluble Polymers: Implication on Soil Remediation and Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Shuang Cindy Cao

    2016-02-01

    Full Text Available Biopolymers have shown a great effect in enhanced oil recovery because of the improvement of water-flood performance by mobility control, as well as having been considered for oil contaminated-soil remediation thanks to their mobility control and water-flood performance. This study focused on the wettability analysis of biopolymers such as chitosan (85% deacetylated power, PEO (polyethylene oxide, Xanthan (xanthan gum, SA (Alginic Acid Sodium Salt, and PAA (polyacrylic acid, including the measurements of contact angles, interfacial tension, and viscosity. Furthermore, a micromodel study was conducted to explore pore-scale displacement phenomena during biopolymer injection into the pores. The contact angles of biopolymer solutions are higher on silica surfaces submerged in decane than at atmospheric conditions. While interfacial tensions of the biopolymer solutions have a relatively small range of 25 to 39 mN/m, the viscosities of biopolymer solutions have a wide range, 0.002 to 0.4 Pa·s, that dramatically affect both the capillary number and viscosity number. Both contact angles and interfacial tension have effects on the capillary entry pressure that increases along with an applied effective stress by overburden pressure in sediments. Additionally, a high injection rate of biopolymer solutions into the pores illustrates a high level of displacement ratio. Thus, oil-contaminated soil remediation and enhanced oil recovery should be operated in cost-efficient ways considering the injection rates and capillary entry pressure.

  2. Characterization of diesel oil mixtures with soy oil used for activation of engines of internal combustion; Caracterizacao de misturas de oleo diesel com oleo de soja reutilizado para acionamento de motores de combustao interna

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Wagner da Cunha; Fernandes, Haroldo Carlos; Teixiera, Mauri Martins; Abrahao, Selma Alves; Leite, Daniel Mariano [Universidade de Vicosa, (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola], Emails: wagner.siqueira@ufv.br, haroldo@ufv.br, mauri@ufv.br, selma.abrahao@ufv.br, daniel.mariano@ufv.br

    2011-07-01

    Alternative energy sources have been studied in several countries, with emphasis on ways of obtaining and using more efficient. The objective of this work to evaluate and characterize mixtures of diesel oil (DO) with soybean oil reused (OSR), the ratios of 0, 25, 50, 75, and 100% of OSR in relation to specific gravity index viscosity and calorific value. To determine the specific gravity was used beaker, thermometer and a balance for each mixture was adjusted a regression model to estimate the bulk density as a function of temperature (25 to 90 deg C). We analyzed the viscosity of the mixtures using an orifice-type viscometer Saybolt, through regression analysis models were fit to estimate the viscosity as a function of temperature, heating the OSR 100% from 40 to 90 deg C decreased by up 90.4% to its viscosity. The tests were performed calorimetric using a bomb calorimeter determines the calorific value , the variation in calorific value followed a descending order with respect to OD with the increasing content of OSR. The OSR is efficient for use in internal combustion engines in small proportions. (author)

  3. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    Energy Technology Data Exchange (ETDEWEB)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  4. Investigation on the emission quality, performance and combustion characteristics of the compression ignition engine fueled with environmental friendly corn oil methyl ester - Diesel blends.

    Science.gov (United States)

    Nagaraja, S; Soorya Prakash, K; Sudhakaran, R; Sathish Kumar, M

    2016-12-01

    This paper deals with emission quality of diesel engine based on eco toxicological studies with different methods of environmental standard toxicity tests satisfy the Bharath and European emission norms. Based on the emission norms, Corn Oil Methyl Ester (COME) with diesel is tested in a compression ignition engine and the performance and combustion characteristics are discussed. The corn oil was esterified and the property of corn oil methyl ester was within the limits specified in ASTM D 6751-03. The COME was blended together with diesel in different proportion percentages along with B20, B40, B60, B80, and B100. The emission and performance tests for various blends of COME was carried out using single cylinder, four stroke diesel engine, and compared with the performance obtained with 100% diesel (D100). The results give clear information that COME has low exhaust emissions and increase in performance compared to D100 without any modifications. It gives better performance, which is nearer to the obtained results of D100. Specific Fuel Consumption (SFC) of B100 at the full load condition is found to be 4% lower than that of (D100). The maximum Brake Thermal Efficiency (BTE) of B100 is found to be 8.5% higher than that of the D100 at full load. Also, the maximum BTE of part load for different blends is varied from 5.9% to 7.45% which is higher than D100. The exhaust gas emissions like Carbon Monoxide (CO), Carbon Dioxide (CO2), Hydro Carbon (HC) and Nitrogen Oxide (NOx) are found to be 2.3 to 18.8% lower compared to D100 for part as well as full load. The heat release rate of biodiesel and it blends are found to 16% to 35% lower as compared to D100 for part load, where as for full load it is 21% lower than D100. The results showed that the test of emissions norms are well within the limits of Bharath VI and European VI and it leads to less pollution, less effect on green eco system and potential substitute to fossil fuels.

  5. EXPERIMENTAL INVESTIGATIONS ON THE EFFECT OF HYDROGEN INDUCTION ON PERFORMANCE AND EMISSION BEHAVIOUR OF A SINGLE CYLINDER DIESEL ENGINE FUELLED WITH PALM OIL METHYL ESTER AND ITS BLEND WITH DIESEL

    Directory of Open Access Journals (Sweden)

    BOOPATHI D.

    2017-07-01

    Full Text Available Internal combustion engines are an integral part of our daily lives, especially in the agricultural and transportation sector. With depleting fossil fuel and increasing environmental pollution, the researchers are foraying into alternate sources for fuelling the internal combustion engine. Vegetable oils derived from plant seeds is one such solution, but using them in unmodified diesel engine leads to reduced thermal efficiency and increased smoke emissions. Hydrogen if induced in small quantities in the air intake manifold can enhance the engine performance running on biodiesel. In this work, experiments were performed to evaluate the engine performance when hydrogen was inducted in small quantities and blends of esterified palm oil and diesel was injected as pilot fuel in the conventional manner. Tests were performed on a single cylinder, 4 - stroke, water cooled, direct injection diesel engine running at constant speed of 1500 rpm under variable load conditions and varying hydrogen flow. At full load for 75D25POME (a blend of 75% diesel and 25% palm oil methyl ester by volume, the results indicated an increase in brake thermal efficiency from 29.75% with zero hydrogen flow to a maximum of 30.17% at 5lpm hydrogen flow rate. HC emission reduced from 34 to 31.5 ppm, by volume at maximum load. Whereas, CO emission reduced from 0.09 to 0.045 % by volume at maximum load. Due to higher combustion rates with hydrogen induction, NOx emission increased from 756 to 926 ppm, at maximum load.

  6. 高速发动机油膜惯性对活塞裙润滑的影响%Influence of Oil Film Inertia on Piston Skirt Lubrication in High Speed Engine

    Institute of Scientific and Technical Information of China (English)

    孟凡明; 张优云

    2003-01-01

    By an iteration method, the influence of oil film inertia on piston skirt lubrication in a high speed engine is investigated. By alternately solving the Navier-Stocks equations and the Reynolds equation, the new iteration method can trace the variations of velocity field and pressure field with time. Based on this, the mixed-lubrication model suitable for the piston skirt of high engines is proposed. By introducing the inertia coefficient, the new lubrication model includes the inertia term in oil film. The model can be also used to solve for the lubrication performances of a piston skirt in low or medium speed engines and for lubrication problem in general excluding the inertia term of oil film , when the inertia coefficient is put equal to zero. The calculation results show that the influence of oil film inertia on the friction force increases with the ratio of the piston skirt' s length to its diameter, the inertia coefficient and the eccentricities of the lower and the upper piston skirt, with other conditions kept constant, while the influence of it on the load capacity of oil film is small.

  7. Challenges and Development Tendency of Engineering Technology in Oil and Gas Development in Sinopec%中国石化油气田开发工程技术面临的挑战与发展方向

    Institute of Scientific and Technical Information of China (English)

    李阳; 薛兆杰

    2016-01-01

    The progress of engineering technologies in oil and gas development has provided significant support for the stable grow th of crude oil production and the fast development of natural gas exploitation . As the increase of complication of reserve targets and oil price drop ,engineering technologies should be in-novatively developed to meet the challenge with wider applicatability and lower engineering cost .In this pa-per ,the trend of oil and gas development in Sinopec and related engineering technical challenges were re-viewed .Then ,the development tendency of engineering technologies was proposed .Finally ,some sugges-tions to speed up the development of engineering techniques were put forward from the aspects of engineer-ing technology innovation ,technical and economic adaptability and R & D test platform construction ,w hich will promote the development of oil and gas development engineering technologies and realize efficient de-velopment of oil and gas resources to guarantee national energy supply .%油气田开发工程技术的进步,为原油生产的稳定增长和天然气的快速发展提供了重要的支撑,但是开发对象日趋复杂化以及持续的低油价,需要开发工程技术创新发展,形成适应性更强的、成本更低的配套开发技术。总结了中国石化油气开发的趋势及工程技术面临的挑战,分析了高含水老油田、深层油气、非常规油气、深水油气对开发工程技术的需求,提出了开发工程技术的发展方向,并从工程技术创新、技术经济适应性、研发试验平台建设等方面提出加快工程技术发展的建议。这对推动油气开发工程技术发展,实现我国油气资源的高效开发、保障国家能源供应具有重要意义。

  8. Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters.

    Science.gov (United States)

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-02-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms.

  9. Multi-elemental analysis of jet engine lubricating oils and hydraulic fluids and their implication in aircraft air quality incidents.

    Science.gov (United States)

    van Netten, C

    1999-05-07

    The flight crews of aircraft often report symptoms including dizziness, nausea, disorientation, blurred vision and tingling in legs and arms. Many of these incidents have been traced to contamination of cabin air with lubricating oil, as well as hydraulic fluid, constituents. Considering that these air contaminants are often subjected to temperatures in excess of 500 degrees C, a large number of different exposures can be expected. Although the reported symptoms are most consistent with exposures to volatile organic compounds, carbon monoxide, and the organophosphate constituents in these oils and fluids, the involvement of these agents has not been clearly demonstrated. Possible exposure to toxic elements, such as lead, mercury, thallium and others, have not been ruled out. In order to assess the potential of exposure to toxic elements a multi-elemental analysis was done on two hydraulic fluids and three lubricating oils which have been implicated in a number of air quality incidents. A secondary objective was to establish if the multi-elemental concentrations of the fluids tested are different enough to allow such an analysis to be used as a possible method of identifying the source of exposure that might have been present during aircraft air quality incidents. No significant concentrations of toxic elements were identified in any of the oils or hydraulic fluids. The elemental compositions of the samples were different enough to be used for identification purposes and the measurement of only three elements was able to achieve this. Whether these findings have an application, in aircraft air quality incident investigations, needs to be established with further studies.

  10. Engineering interfacial properties by anionic surfactant-chitosan complexes to improve stability of oil-in-water emulsions

    NARCIS (Netherlands)

    Zinoviadou, K.; Scholten, E.; Moschakis, T.; Biliaderis, C.G.

    2012-01-01

    Oil-in-water emulsions (10% w/w n-tetradecane) were prepared at pH = 5.7 by using, as surface active agents, electrostatically formed complexes of sodium stearoyl lactylate (SSL) at a concentration of 0.4% (w/w) and chitosan (CH) in a concentration range between 0 and 0.48% w/w. The use of complexes

  11. ORNL-GM: Development of Ionic Liquid-Additized, GF-5/6 Compatible Low-Viscosity Oils for Automotive Engine and Rear Axle Lubrication for 4% Improved Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhou, Yan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Luo, Huimin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Toops, Todd J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brookshear, Daniel W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stump, Benjamin C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Viola, Michael B. [General Motors (GM) Technical Center, Pontiac, MI (United States); Zreik, Khaled [General Motors (GM) Technical Center, Pontiac, MI (United States); Ahmed, Tasfia [General Motors (GM) Technical Center, Pontiac, MI (United States)

    2017-01-01

    The overall objective of this project are as follows: Further develop ionic liquid (IL)-additized lowviscosity engine oils meeting the GF-5/6 specifications and possessing superior lubricating characteristics; Expand the IL additive technology to rear axle lubricants; and Seek a combined improvement in the vehicle fuel economy

  12. Production of syngas and oil at biomass refinery and their application in low speed two stroke engines for combined cycle electric energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Pinatti, Daltro Garcia [Universidade do Sul de Santa Catarina (UNISUL), Tubarao, SC (Brazil)], E-mail: pinatti@demar.eel.usp.br; Oliveira, Isaias de; Ferreira, Joao Carlos; Romao, Erica Leonor [RM Materiais Refratarios Ltd., Lorena, SP (Brazil)], Emails: isaias@rm-gpc.com.br, joaocarlos@rm-gpc.com.br, ericaromao@rm-gpc.com.br; Conte, Rosa Ana [University of Sao Paulo (DEMAR/EEL/USP), SP (Brazil). Lorena School of Engineering. Dept. of Materials Engineering], E-mail: rosaconte@demar.eel.usp.br

    2009-07-01

    Low speed two stroke engines burn fuels of medium quality with high efficiency (47%) and allows a flexible use of oil (> 8% of total power) and syngas (< 92%, low heating value-LHV>11.2MJ/m{sup 3}). Biomass refinery (BR) generates oil from sludge and oleaginous biomass by low temperature conversion and syngas from lignocellulosic biomass treated by diluted acidic prehydrolysis. BR has low investment cost (US$1,500.00/kW) compared with hydroelectric plants (US$2,500.00/kW) and both generate electric energy with sales price below US$75.00/MWh. It allows distributed generation from 30 MW up to 170 MW or centralized power of 1 GW with six motor generator sets. BR matrix, mass and energy balance, fuels compositions, modulations and scope of supply will be presented. Besides electric energy BR can be tailored to supply other products such as ethanol, H{sub 2} for fuel cells, biodiesel, fertilizer recycling, char and simultaneously maximizes the production of animal protein. (author)

  13. Production of syngas and oil at biomass refinery and their application in low speed two stroke engines for combined cycle electric energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Pinatti, Daltro Garcia [Universidade do Sul de Santa Catarina (UNISUL), Tubarao, SC (Brazil)], E-mail: pinatti@demar.eel.usp.br; Oliveira, Isaias de; Ferreira, Joao Carlos; Romao, Erica Leonor [RM Materiais Refratarios Ltd., Lorena, SP (Brazil)], Emails: isaias@rm-gpc.com.br, joaocarlos@rm-gpc.com.br, ericaromao@rm-gpc.com.br; Conte, Rosa Ana [University of Sao Paulo (DEMAR/EEL/USP), SP (Brazil). Lorena School of Engineering. Dept. of Materials Engineering], E-mail: rosaconte@demar.eel.usp.br

    2009-07-01

    Low speed two stroke engines burn fuels of medium quality with high efficiency (47%) and allows a flexible use of oil (> 8% of total power) and syngas (< 92%, low heating value-LHV>11.2MJ/m{sup 3}). Biomass refinery (BR) generates oil from sludge and oleaginous biomass by low temperature conversion and syngas from lignocellulosic biomass treated by diluted acidic prehydrolysis. BR has low investment cost (US$1,500.00/kW) compared with hydroelectric plants (US$2,500.00/kW) and both generate electric energy with sales price below US$75.00/MWh. It allows distributed generation from 30 MW up to 170 MW or centralized power of 1 GW with six motor generator sets. BR matrix, mass and energy balance, fuels compositions, modulations and scope of supply will be presented. Besides electric energy BR can be tailored to supply other products such as ethanol, H{sub 2} for fuel cells, biodiesel, fertilizer recycling, char and simultaneously maximizes the production of animal protein. (author)

  14. Determination of ortho-cresyl phosphate isomers of tricresyl phosphate used in aircraft turbine engine oils by gas chromatography and mass spectrometry.

    Science.gov (United States)

    De Nola, G; Kibby, J; Mazurek, W

    2008-07-25

    Tricresyl phosphate (TCP) is used as an anti-wear additive in aircraft turbine engine oil. Concerns about its toxicity are largely based on the tri-o-cresyl phosphate isomer content. However, the presence of other and more toxic isomers has been previously suggested. In this work, the structural isomers of TCP have been determined by two methods (experimental and semi-theoretical). First, the TCP isomers were separated by gas chromatography (GC) and identified by mass spectrometry (MS). Second, after base cleavage of TCP, GC was used to quantify the cresol precursors. These results were used to calculate the TCP isomer distribution based on the assumption of a statistical distribution of the TCP isomers. The results from the two determinations showed reasonable agreement for three of the four oils studied. The o-cresyl isomers were found to be present almost exclusively as the more toxic mono-o-cresyl isomers in the concentration range 13-150 mg/L. The ability to analyse for the mono-o-cresyl isomers allows the toxicity of TCP to be based on the latter isomers rather than on the less toxic tri-o-cresyl phosphate isomer.

  15. Lubricating oil; Junkatsuyu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, H.

    1999-07-20

    As a reflection of business recession, sales amount of lubricating oils in 1998 in Japan was 2.334 million kl that is 96.1% of that in the previous year. In addition, export amount was 394 thousand kl that also decreased sharply to 81.9% of that in the previous year. In this situation, researches and developments of environment-adaptable lubricating oils such as fuel consumption-saving engine oils, new mechanism-corresponding drive system oils (AFT, CVT), refrigerating machine oils for substitute coolants, biodegradable oils and greases, environment corresponding processing oils (non-chlorine type cutting oils), and so on have been executed actively. In respect to lubricating oils for vehicles, numerous researches and developments of engine oils are executed while putting stress on the improvement of fuel consumption saving for reducing CO{sub 2} exhaust; improvement of adaptability to exhaust treating apparatus for purging harmful components from exhaust gas; and environmental corresponding of long drain for reducing waste oils. In respect to lubricating oils for industry, basic characteristics and utility characteristics of fire-resistant working fluids and biodegradable working fluids; and utility characteristics of new functional fluids and electric viscous fluids are reported in view of their relationship with environmental protection. (NEDO)

  16. Evaluation for Comprehensive Performances of Oil Pump Used in Vehicle Engine%汽车发动机机油泵的综合性能评价

    Institute of Scientific and Technical Information of China (English)

    吴伟蔚; 马富银

    2012-01-01

    为了提高车用发动机润滑系统中的机油泵的研究和设计水平,对机油泵的主要性能指标进行了讨论,分析了不同类型机油泵的特点和发展趋势。结合作者近期生产实践和试验研究中的一些工作,分析了车用发动机机油泵试验台的架构、功能及典型试验结果。以目前各国的文献成果为依据,综合研究了排量、容积效率、压力波动等性能指标的影响因素及相互联系。通过试验台的测试实例论证了机油泵振动和噪声的测试方法和分析手段。结果表明:定排量机油泵无法满足发动机节能减排的要求,必须进行变排量泵的研发;基于完全空化模型的数值模拟方法是分析机油泵空化现象的有效手段;机油泵的振动和噪声性能受到压力波动和机械啮合的双重影响,必须综合考虑。%In order to improve the research and design level of the oil pump used in vehicle engine lubrication system,the authors discussed its key performance indicators,and analyzed the characteristics and development trend of various oil pumps.The architecture and functions of oil pump test bench,and the typical experimental results were discussed in combination with the authors' recent work in production practice and experimental studies.On the basis of the research achievements found in literatures,the affecting factors of important performance indicators,such as displacement,volume efficiency,pressure fluctuation and the relationship among them were thoroughly studied.The oil pump vibration,noise test and analysis methods were demonstrated through a practical measurement case.The results show that the fixed-displacement oil pump cannot meet the requirements of energy saving and emission reduction.Therefore,further research and development for variable displacement pumps must be carried out.Numerical simulation based on the full cavitation model is an effective way to study the cavitation existing in the oil

  17. Mussel-inspired one-step copolymerization to engineer hierarchically structured surface with superhydrophobic properties for removing oil from water.

    Science.gov (United States)

    Huang, Shouying

    2014-10-08

    In the present study, a superhydrophobic polyurethane (PU) sponge with hierarchically structured surface, which exhibits excellent performance in absorbing oils/organic solvents, was fabricated for the first time through mussel-inspired one-step copolymerization approach. Specifically, dopamine (a small molecular bioadhesive) and n-dodecylthiol were copolymerized in an alkaline aqueous solution to generate polydopamine (PDA) nanoaggregates with n-dodecylthiol motifs on the surface of the PU sponge skeletons. Then, the superhydrophobic sponge that comprised a hierarchical structured surface similar to the chemical/topological structures of lotus leaf was fabricated. The topological structures, surface wettability, and mechanical property of the sponge were characterized by scanning electron microscopy, contact angle experiments, and compression test. Just as a result of the highly porous structure, superhydrophobic property and strong mechanical stability, this sponge exhibited desirable absorption capability of oils/organic solvents (weight gains ranging from 2494% to 8670%), suggesting a promising sorbents for the removal of oily pollutants from water. Furthermore, thanks to the nonutilization of the complicated processes or sophisticated equipment, the fabrication of the superhydrophobic sponge seemed to be quite easy to scale up. All these merits make the sponge a competitive candidate when compared to the conventional absorbents, for example, nonwoven polypropylene fabric.

  18. 柴油发动机地沟油燃烧与排放特性仿真试验%Simulation of Combustion and Emission of Diesel Engine with Waste Oil

    Institute of Scientific and Technical Information of China (English)

    李军; 刘彪; 郭超; 汪洪雷

    2012-01-01

    为解决石油资源短缺和环境污染的问题,将地沟油作为新能源应用于柴油发动机中,运用GT—Power发动机仿真软件分析地沟油的燃烧特性与排放特性。仿真结果表明:发动机燃用地沟油时较燃用纯柴油时功率有所下降,燃油消耗率升高,有害排放物中CO明显降低而NOx并无明显变化。燃用地沟油和甲醇的混合燃料时其动力性、经济性和排放特性要比单独燃用地沟油或甲醇时均有所改善。%To solve the problem of shortage of petroleum resources and environmental poIlution, waste oil as a new energy was used in diesel engines. The GT -Power engine simulation software is used to analyze the combustion characteristics and emission characteristics of the waste oil. Simulation results show that diesel engine fueled with waste oil power have shown that power drops, fuel consumption increases, harmful emissions of CO, NOx have no significant changes ; However, fueled with methanol and waste oil mixture, engine power, economy and emission characteristics were apparently improved than separate burning waste oil or methanol.

  19. 船舶柴油机滑油在线监测预警系统设计%The Design of Lubricating Oil Monitoring and Early Warning Online System for Marine Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    刘学强; 郭军武; 窦培松

    2016-01-01

    为了提高柴油机的可靠性、延长柴油机的使用寿命,设计了一种基于单片机的船舶柴油机滑油在线监测预警系统。介绍了该系统的测试原理、系统硬件及系统软件设计。该系统通过处理分析监测反馈数据来判断滑油的品质状况,在滑油完全变质前分级别向轮机人员提示预警,从而降低柴油机故障率,保证船舶的正常运营。%In order to improve the reliability of diesel engine and prolong the service life of the diesel engine, an online monitoring and warning system for lubricating oil of marine diesel engine with single chip microcomputer are designed. The test principle, hardware and software are introduced. The system can judge the quality of the lubricating oil by analyzing the feedback data. It warns the fault in classification before the oil deteriorates that could reduce the fault rate of the diesel engine, and ensure the ship in the normal service.

  20. Experimental Analysis of Performance and Emission Parameters of Neem Oil Ethyl Ester and HHO Gas Addition with Neem Oil Ethyl Ester in a Single Cylinder Four Stroke Compression Ignition Engine

    National Research Council Canada - National Science Library

    M Subramanian

    2014-01-01

    .... Present work is focussed on analysing experimentally the performance and emission characteristics of Neem oil biodiesel and addition of HHO gas along with Neem oil biodiesel in a single cylinder...

  1. Experimental investigations of ignition delay period and performance of a diesel engine operated with Jatropha oil biodiesel

    Directory of Open Access Journals (Sweden)

    Mohammed EL-Kasaby

    2013-06-01

    Full Text Available Jatropha-curcas as a non-edible methyl ester biodiesel fuel source is used to run single cylinder, variable compression ratio, and four-stroke diesel engine. Combustion characteristics as well as engine performance are measured for different biodiesel – diesel blends. It has been shown that B50 (50% of biodiesel in a mixture of biodiesel and diesel fuel gives the highest peak pressure at 1750 rpm, while B10 gives the highest peak pressure at low speed, 1000 rpm. B50 shows upper brake torque, while B0 shows the highest volumetric efficiency. B50 shows also, the highest BSFC by about (12.5–25% compared with diesel fuel. B10 gives the highest brake thermal efficiency. B50 to B30 show nearly the lowest CO concentration, besides CO concentration is the highest at both idle and high running speeds. Exhaust temperature and NOx are maximum for B50. Delay period is measured and correlated for different blends. Modified empirical formulae are obtained for each blend. The delay period is found to be decreased with the increase of cylinder pressure, temperature and equivalence ratio.

  2. Performance and emission parameters of single cylinder diesel engine using castor oil bio-diesel blended fuels

    Science.gov (United States)

    Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.

  3. Comparison of renewable oil, recycled oil, and commercial rejuvenating agent derived from crude oil in paving asphalt modification[Includes the CSCE forum on professional practice and career development : 1. international engineering mechanics and materials specialty conference : 1. international/3. coastal, estuarine and offshore engineering specialty conference : 2. international/8. construction specialty conference

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, C.; Ho, S.; Zanzotto, L. [Calgary Univ., AB (Canada). Schulich School of Engineering

    2009-07-01

    The asphalt industry relies heavily on crude oil. In response to increasing oil prices, there have been efforts to save money on asphalt by taking harder asphalts, such as recycled asphalt pavement (RAP), and softening them with rejuvenating agents. For asphalt that is to be used in cold climates, softer asphalts are preferred because they will perform better under extreme cold conditions without cracking. This study compared the performance, economic benefits, and environmental benefits of renewable materials, recycled oil and a commercially used rejuvenating agent derived from crude oil. Different oily materials including margarine, Cyclogen L (a crude oil-derived material), a vegetable wax, and recycled cooking oil were used to modify paving asphalt. Their effectiveness at improving the superpave low-temperature performance grade was compared. The samples were all tested using the 2008 AASHTO M320 procedures. The high temperature grades were determined using the dynamic shear rheometer test, and the low-temperature grades were determined using the bending beam rheometer test. The 3 varieties of margarine that were tested were able to improve the low-temperature grade, but they caused a greater depreciation of the high-temperature performance grade than the other materials, and were much more expensive. The best candidate for an effective, economic asphalt softening agent was found to be the recycled cooking oil. It out-performed the Cyclogen L oil in terms of improving the low- temperature performance grade, and was less expensive. 12 refs., 4 tabs., 6 figs.

  4. Engineered tobacco and microalgae secreting the fungal laccase POXA1b reduce phenol content in olive oil mill wastewater.

    Science.gov (United States)

    Chiaiese, Pasquale; Palomba, Francesca; Tatino, Filippo; Lanzillo, Carmine; Pinto, Gabriele; Pollio, Antonino; Filippone, Edgardo

    2011-12-10

    Olive oil mill wastewaters (OMWs) are characterised by low pH and a high content of mono- and polyaromatic compounds that exert microbial and phytotoxic activity. The laccase cDNA of the poxA1b gene from Pleurotus ostreatus, carrying a signal peptide sequence for enzyme secretion and driven by the CaMV 35S promoter, was cloned into a plant expression vector. Nuclear genetic transformation was carried out by co-cultivation of Agrobacterium tumefaciens with tobacco cv Samsun NN leaves and cells of five different microalgae accessions belonging to the genera Chlamydomonas, Chlorella and Ankistrodesmus. Transgenic plants and microalgae were able to express and secrete the recombinant laccase in the root exudates and the culture medium, respectively. In comparison to untransformed controls, the ability to reduce phenol content in OMW solution was enhanced up to 2.8-fold in transgenic tobacco lines and by up to about 40% in two microalgae accessions. The present work provides new evidence for metabolic improvement of green organisms through the transgenic approach to remediation.

  5. Medium engineering for enhanced production of undecylprodigiosin antibiotic in Streptomyces coelicolor using oil palm biomass hydrolysate as a carbon source.

    Science.gov (United States)

    Bhatia, Shashi Kant; Lee, Bo-Rahm; Sathiyanarayanan, Ganesan; Song, Hun-Seok; Kim, Junyoung; Jeon, Jong-Min; Kim, Jung-Ho; Park, Sung-Hee; Yu, Ju-Hyun; Park, Kyungmoon; Yang, Yung-Hun

    2016-10-01

    In this study, a biosugar obtained from empty fruit bunch (EFB) of oil palm by hot water treatment and subsequent enzymatic saccharification was used for undecylprodigiosin production, using Streptomyces coelicolor. Furfural is a major inhibitor present in EFB hydrolysate (EFBH), having a minimum inhibitory concentration (MIC) of 1.9mM, and it reduces utilization of glucose (27%), xylose (59%), inhibits mycelium formation, and affects antibiotic production. Interestingly, furfural was found to be a good activator of undecylprodigiosin production in S. coelicolor, which enhanced undecylprodigiosin production by up to 52%. Optimization by mixture analysis resulted in a synthetic medium containing glucose:furfural:ACN:DMSO (1%, 2mM, 0.2% and 0.3%, respectively). Finally, S. coelicolor was cultured in a fermenter in minimal medium with EFBH as a carbon source and addition of the components described above. This yielded 4.2μg/mgdcw undecylprodigiosin, which was 3.2-fold higher compared to that in un-optimized medium.

  6. Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield.

    Science.gov (United States)

    Goncalves, Elton C; Wilkie, Ann C; Kirst, Matias; Rathinasabapathi, Bala

    2016-08-01

    The great need for more sustainable alternatives to fossil fuels has increased our research interests in algal biofuels. Microalgal cells, characterized by high photosynthetic efficiency and rapid cell division, are an excellent source of neutral lipids as potential fuel stocks. Various stress factors, especially nutrient-starvation conditions, induce an increased formation of lipid bodies filled with triacylglycerol in these cells. Here we review our knowledge base on glycerolipid synthesis in the green algae with an emphasis on recent studies on carbon flux, redistribution of lipids under nutrient-limiting conditions and its regulation. We discuss the contributions and limitations of classical and novel approaches used to elucidate the algal triacylglycerol biosynthetic pathway and its regulatory network in green algae. Also discussed are gaps in knowledge and suggestions for much needed research both on the biology of triacylglycerol accumulation and possible avenues to engineer improved algal strains.

  7. Application of Pipeline Helium Nitrogen Test in Offshore Oil Engineering%管线氦氮试验在海洋石油工程中的应用

    Institute of Scientific and Technical Information of China (English)

    王海萍

    2016-01-01

    Pipeline helium nitrogen test is a kind of high sensitivity leak test method. At present, it has been widely used in offshore oil engineering at home and abroad. In this paper, the general practice of pipeline helium nitrogen test was introduced and described, including determination of the test pressure, division of the test pack, and determination of the pressure relief path. At the same time, the implementation steps of helium nitrogen test in pipeline were introduced.%管线氦氮试验是一种高灵敏度测漏试验,目前在国内外海洋石油工程中得到了广泛的应用。对管线氦氮试验的通用做法进行了介绍和阐述,包括试验压力的确定、试验包的划分、超压泄压路径的确定等,同时详细介绍了管线氦氮试验的实施步骤,对现场施工起到了指导性作用。

  8. Enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Chakma, A.; Rafiq Islam, M.; Berruti, F.

    1991-01-01

    Some forty to sixty percent of the original oil in place typically remains trapped in the reservoir after primary and secondary recoveries. Enhanced oil recovery refers to the recovery of the residual oil by different techniques. Many of the existing and proposed enhanced oil recovery techniques require sound understanding of basic chemical engineering principles such as fluid flow, heat and mass transfer, interfacial phenomena etc. Chemical EOR techniques require a good understanding of interfacial phenomena, chemical reaction, multicomponent absorption. Understanding of the fundamentals of the various EOR processes is not adequate. EOR is increasingly attracting a growing number of chemical engineers and, as a result, some of the fundamental aspect of EOR are now being investigated. However, much more remains to be done and chemical engineers can play an important role in providing a better understanding of EOR fundamentals. This volume presents selected papers on EOR presented at AICHE meetings.

  9. CHANGXINDIAN OIL STORAGE TO BE LARGEST ONE IN BEIJING

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ On August 11, the revision and expansion engineering of Changxindian Oil Storage, run by Sinopec Beijing Oil Company, kicked off formally, marking that another Olympic infrastructure engineering started building.

  10. Risk quantitative technology of oil and gas drilling engineering%石油天然气钻井工程风险量化技术

    Institute of Scientific and Technical Information of China (English)

    张洪梅; 李俊荣; 尹立华; 张涛; 宁立伟; 张庆华

    2012-01-01

    Based on the concept of risk, a quantitative approach of risk in drilling engineering-risk, assessment index system, was presented by analyzing the design of the oil and gas drilling engineering, equipment, construction management, complex situation and accidents. Combining with scientific computing and expertise, this approach determined quantitative criteria and three indicators-inherent risk indicators, accident-prone indicators and consequences severity index, and it divided drilling engineering risk into 4 levels, eventually the risk assessment system was established which was made up of index system, scoring system, and risk classification standard. This approach can be used for risk assessment of the professional institutions and also for the inspection of the safety management departments to take appropriate measures to reduce the risk of the project.%基于风险的概念,在对石油天然气钻井工程设计、工艺设备、施工管理、复杂情况和事故等总体分析的基础上,提出钻井工程风险量化方法——风险评估指数系统.此方法结合科学计算和专家经验,确定了固有风险指标、事故易发性指标和后果严重度指标等三个指标及量化标准,并将钻井工程风险划分为4个等级,最终建立了由指数体系、评分体系、风险分级标准组成的风险评估系统.本方法可用于专业机构的风险评估,也可用于安全管理部门的检查,以指导采取相应措施降低工程的危险性.

  11. Two cycles of adjuvant carboplatin in stage I seminoma: 8-year experience by the Hellenic Cooperative Oncology Group (HECOG).

    Science.gov (United States)

    Koutsoukos, Konstantinos; Tzannis, Kimon; Christodoulou, Christos; Karavasilis, Vasilios; Bakoyiannis, Charalambos; Makatsoris, Thomas; Papandreou, C N; Pectasides, Dimitrios; Dimopoulos, Meletios A; Bamias, Aristotelis

    2016-06-01

    Following the establishment of adjuvant carboplatin in stage I testicular seminoma as a standard, we adopted this treatment for all stage I seminoma patients. We report our 8-year experience and compare these results with our previous adjuvant etoposide/cisplatin (EP) strategy. Patients with stage I seminoma, treated with adjuvant carboplatin and with a minimum follow-up of 1 year, were included. Two cycles of carboplatin [area under the curve (AUC) 6] were administered. A total of 138 patients with median age of 34 years, treated from September 2003 to December 2011, were selected. There were 5 relapses [5-year relapse-free rate (RFR) 96.8 % (95 % confidence interval 91.6-98.8)]: 3 relapses at retroperitoneal lymph nodes, 1 relapse at the adrenal gland, and 1 isolated brain metastasis. Four patients with relapse were cured with salvage chemotherapy. All patients with relapse had tumor diameter ≥4 cm and/or age ≤34 years. Patients with at least 1 of the above risk factors (n = 111) had a significantly higher relapse rate compared with a similar population (n = 64) treated with 2 cycles of adjuvant EP: 5-year RFR was 95 % (SE 2 %) versus 100 % (SE 0 %), (p = 0.067). Age and tumor diameter were associated with relapse in stage I seminoma treated with adjuvant carboplatin. Although adjuvant carboplatin in patients with age ≤34 and/or tumor diameter ≥4 cm is associated with higher relapse rates than EP, the prognosis of these patients is excellent, and therefore, the use of less toxic treatment is justified.

  12. Combined vapor compression/absorption heat pump cycles for engine-driven heat pumps

    Science.gov (United States)

    Radermacher, Reinhard; Herold, Keith E.; Howe, Lawrence A.

    1988-12-01

    The performance of three combined absorption/vapor compression cycles for gas-fired internal combustion engine driven heat pumps was theoretically assessed. Two cycles were selected for the preliminary design of breadboard systems using only off-the-shelf components. The first cycle, based on the working pair ammonia/water, is termed the simple-cycle. The second cycle, based on the working pair lithium-bromide/water, is termed the compressor enhanced double-effect chiller. Both cycles are found to be technically feasible. The coefficient of performance and the capacity are increased by up to 21 percent for cooling in the first case (compressor efficiency of 0.7) and by up to 14 percent in the second (compressor efficiency of 0.5). Both were compared against the engine drive R22 vapor compression heat pump. The performance of actual machinery for both cycles is, in the current design, hampered by the fact that the desired oil-free compressors have poor isentropic efficiencies. Oil lubricated compressors together with very effective oil separators would improve the performance of the combined LiBr/water cycle to 23 percent.

  13. Study on Diesel Engine's Oil Pan's Modal of Acoustic-Liquid-Vibration Coupling System of Noise%柴油机油底壳声液振耦合系统噪声模态研究

    Institute of Scientific and Technical Information of China (English)

    胡启国; 李力克; 陈万德

    2013-01-01

    Noise analysis for the diesel engine oil pan casing vibration analysis only and ignore the lubricating fluid and cavity effects. The use of acoustic-liquid-vibration coupling finite element theory, coupling system element model is established of oil pan, oil and internal cavity of oil pan, and the modal of the finite element is analysised, then the vibration frequency of the oil pan is measured and analysised. Research oil pan system in the acoustic fluid coupled vibration mode was significantly lower vibration and noise enhancement, especially in the strong coupling 118.26 Hz modal frequencies. Lubricating fluid in the oil pan when the low-frequency sound vibration coupled system is less liquid, at high frequencies is more significant impact on the system.%针对柴油机油底壳噪声分析中只分析壳体振动而忽略了润滑液和空腔影响,利用声液振耦合有限元理论,建立油底壳结构有限元模型,润滑油、内部空腔声学有限元模型,油底壳声液振耦合系统有限元模型,并对各有限元模型进行模态研究,然后对实际油底壳振动频谱特性进行验证分析.通过研究得到油底壳在声液振耦合系统模态下振动和噪声值明显增强,特别是在118.26 Hz强耦合模态频率下.油底壳中润滑液在低频时对声液振耦合系统影响较小,在高频时对系统影响较为明显.

  14. Cottonseed Oil as Promising Biodiesel in Future

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With recent increases in petroleum prices,there is renewed interest in vegetable oil and their derivatives as alternative fuels for diesel engines.There are more than 350 oil-bearing crops identified,

  15. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XI, PART I--MAINTAINING THE FUEL SYSTEM (PART I), CUMMINS DIESEL ENGINES, PART II--UNIT REPLACEMENT (ENGINE).

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIFFERENCES BETWEEN TWO AND FOUR CYCLE ENGINES, THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM, AND THE PROCEDURES FOR DIESEL ENGINE REMOVAL. TOPICS ARE (1) REVIEW OF TWO CYCLE AND FOUR CYCLE CONCEPT, (2) SOME BASIC CHARACTERISTICS OF FOUR CYCLE ENGINES,…

  16. Application of nanometer WS2 motor oil additive on diesel engine%纳米WS2车用机油添加剂在柴油动机中的应用效果研究

    Institute of Scientific and Technical Information of China (English)

    罗仁芝; 毛大恒; 石琛

    2012-01-01

    Diesel engine bench test and road test were done to analyze the application effects of self-made nanometer WS2 motor oil additive on diesel engine under different working condition. Results show that,when applied on FC2000 diesel engine bench, nanometer WS2 motor oil additive can reduce engine' s fuel consumption to some extent under different rotate speeds or different loads .especially when the engine's rotate speed is 1 700r/min and the load is 70N · M,nanometer WS2 motor oil additive has the highest fuel saving ratio that is 9.95% and the highest PM emissions reduction ratio that is 49.3% ,and when the engine works under low speed,high speed,low load or high load,the Nox emissions reduction ratio nanometer WS2 motor oil additive is higher, best of which is 36% ,when applied on diesel engine bus, nanometer WS2 motor oil additive can decrease fuel consumption by about 14.4% , lower the engine' s working noise to some extent, and reduce the Nox emission by 34.8% ~ 51 %. All above indicate that nanometer WS2 motor oil additive has excellent energy conservation & emission reduction effects.%通过柴油发动机台架实验和行车实验,分析了不同工况下自制纳米WS2车用机油添加剂在柴油发动机中的应用效果.结果表明,在FC2000柴油发动机台架上应用时,纳米WS2车用机油添加剂在不同转速和不同负载下均能在一定程度上降低发动机油耗率,减少发动机尾气中NOx含量和颗粒物含量,并且当发动机转速为1700r/min,负载为70N·m时,节油率最高为9.95%,颗粒物减排率最高为49.3%,而当发动机处于低速、高速、低载和高载等工况时,NOx减排率较高,最高达到36%;在柴油机大客车上应用时,纳米WS2车用机油添加剂使其耗油量下降约14.4%,并能在一定程度上降低发动机的运行噪声,使发动机的有害气体(NOx)排放减少34.8% ~51%.综合表明纳米WS2车用机油添加剂具有良好的节能减排效果.

  17. Measurement of the dynamic viscosity of hybrid engine oil -Cuo-MWCNT nanofluid, development of a practical viscosity correlation and utilizing the artificial neural network

    Science.gov (United States)

    Aghaei, Alireza; Khorasanizadeh, Hossein; Sheikhzadeh, Ghanbar Ali

    2017-07-01

    The main objectives of this study have been measurement of the dynamic viscosity of CuO-MWCNTs/SAE 5w-50 hybrid nanofluid, utilization of artificial neural networks (ANN) and development of a new viscosity model. The new nanofluid has been prepared by a two-stage procedure with volume fractions of 0.05, 0.1, 0.25, 0.5, 0.75 and 1%. Then, utilizing a Brookfield viscometer, its dynamic viscosity has been measured for temperatures of 5, 15, 25, 35, 45, 55 °C. The experimental results demonstrate that the viscosity increases by increasing the nanoparticles volume fraction and decreases by increasing temperature. Based on the experimental data the maximum and minimum nanofluid viscosity enhancements, when the volume fraction increases from 0.05 to 1, are 35.52% and 12.92% for constant temperatures of 55 and 15 °C, respectively. The higher viscosity of oil engine in higher temperatures is an advantage, thus this result is important. The measured nanofluid viscosity magnitudes in various shear rates show that this hybrid nanofluid is Newtonian. An ANN model has been employed to predict the viscosity of the CuO-MWCNTs/SAE 5w-50 hybrid nanofluid and the results showed that the ANN can estimate the viscosity efficiently and accurately. Eventually, for viscosity estimation a new temperature and volume fraction based third-degree polynomial empirical model has been developed. The comparison shows that this model is in good agreement with the experimental data.

  18. 农用柴油机燃用生物质焦油与柴油混溶油性能实验%Performance Experiments of Miscible Oil Fueled with Biomass Tar and Diesel for Agricultural Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    张寰; 刘圣勇; 胡建军; 焦有宙; 张全国; 郭前辉

    2012-01-01

    New materials and equipment according to the combustible fraction of diesel miscible flammable characteristics of biomass tar was analyzed. Diesel engine fueled with different proportions of combustible biomass tar distillates and diesel miscible oil power performance was proposed. Experimental results showed that biomass tar combustible miscible distillate and diesel oil had good power and economy. When the power of agricultural diesel was low, the consumption of miscible oil sample was less than diesel. When the power of agricultural diesel was high, the consumption of miscible oil was less than diesel with the replacement ratio of 10% in diesel, but higher than diesel with replacement ratio of 20%. The maximum power of agricultural diesel engine with miscible oil was higher than the rated power of the agricultural diesel engines which met the power requirements of agricultural diesel engines.%根据生物质焦油中的可燃馏分与柴油互溶的可燃特性,研究了农用柴油机燃用不同比例的生物质焦油可燃馏分与柴油混溶油的动力性能,实验结果表明:生物质焦油可燃馏分与柴油混溶油具有良好的动力性和经济性,在农用柴油机功率较低时,各混溶油试样的消耗量均小于柴油;在农用柴油机功率较高时,生物质焦油可燃馏分掺混替代比例为10%时的混溶油消耗量低于柴油,而生物质焦油可燃馏分掺混替代比例为20%时的混溶油消耗量高于柴油,且燃用混溶油时农用柴油机的最大功率均超过农用柴油机的额定功率,可满足农用柴油机的动力要求.

  19. Study on the Anti- Wear Performance of Diesel Engine Oil Containing Soot Based on 4 - Ball Test Machine%利用四球机考察含烟炱柴油机油的抗磨损性能

    Institute of Scientific and Technical Information of China (English)

    雷爱莲; 谢惊春; 徐小红; 王爱香; 夏群英

    2012-01-01

    高档柴油机油研发中,烟炱引起的磨损是要解决的关键问题之一。该研究采用炭黑作为烟炱模拟物,加入试验油获得了被烟炱污染的柴油机油,以模拟实际发动机试验过程中产生的含烟炱油。并且利用四球磨损试验机为平台,研究建立了模拟试验方法,考察了含烟炱柴油机油的抗磨损性能。结果表明:方法能够有效区分含烟炱柴油机油的抗磨损性能,对不同类型分散剂和黏度指数改进剂在含烟炱柴油机油中的抗磨损性能具有较好的区分性,试验方法有较好的重复性,可以帮助高档柴油机油的研发。%Wear generated by soot in oil is a critical problem in high grade diesel engine oil research work. This soot genera- ted in the full size engine test stand was replaced by a simulator which is called carbon black in this bench test method re- search work. A related simulation test method was established based on 4 - ball wear test machine and the anti - wear per- formance of the diesel engine oil containing soot was also studied. A series of test results showed that the newly developed bench test method is a good screening tool for diesel engine oil formulation research work with regard to its anti - wear per- formance. And this test method has good discrimination to the anti -wear performance of oils blended with different kinds of dispersants and Ⅵ improvers. The satisfied repeatability is achieved also.

  20. Palm Oil

    Science.gov (United States)

    Palm oil is obtained from the fruit of the oil palm tree. Palm oil is used for preventing vitamin A deficiency, cancer, ... blood pressure, high cholesterol, and cyanide poisoning. Palm oil is used for weight loss and increasing the ...

  1. Diesel oil

    Science.gov (United States)

    Oil ... Diesel oil ... Diesel oil poisoning can cause symptoms in many parts of the body. EYES, EARS, NOSE, AND THROAT Loss of ... most dangerous effects of hydrocarbon (such as diesel oil) poisoning are due to inhaling the fumes. NERVOUS ...

  2. Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops.

    Science.gov (United States)

    Bhunia, Rupam Kumar; Chakraborty, Anirban; Kaur, Ranjeet; Gayatri, T; Bhattacharyya, Jagannath; Basu, Asitava; Maiti, Mrinal K; Sen, Soumitra Kumar

    2014-11-01

    The sesame 2S albumin (2Salb) promoter was evaluated for its capacity to express the reporter gusA gene encoding β-glucuronidase in transgenic tobacco seeds relative to the soybean fad3C gene promoter element. Results revealed increased expression of gusA gene in tobacco seed tissue when driven by sesame 2S albumin promoter. Prediction based deletion analysis of both the promoter elements confirmed the necessary cis-acting regulatory elements as well as the minimal promoter element for optimal expression in each case. The results also revealed that cis-regulatory elements might have been responsible for high level expression as well as spatio-temporal regulation of the sesame 2S albumin promoter. Transgenic over-expression of a fatty acid desaturase (fad3C) gene of soybean driven by 2S albumin promoter resulted in seed-specific enhanced level of α-linolenic acid in sesame. The present study, for the first time helped to identify that the sesame 2S albumin promoter is a promising endogenous genetic element in genetic engineering approaches requiring spatio-temporal regulation of gene(s) of interest in sesame and can also be useful as a heterologous genetic element in other important oil seed crop plants in general for which seed oil is the harvested product. The study also established the feasibility of fatty acid metabolic engineering strategy undertaken to improve quality of edible seed oil in sesame using the 2S albumin promoter as regulatory element.

  3. Experimental Research on Small Turbocharged Gasoline Engine Oil Adaptability%小型增压汽油发动机机油适应性的试验研究

    Institute of Scientific and Technical Information of China (English)

    马瑞瑄; 解彬

    2015-01-01

    In recent years, along with the advance of technology, and driven by energy conservation and emission reduction policy, the engine is developing along the direction of high power and small size. The application of turbo technology on new gasoline engines tends to spread. But as the wide use of turbo tech-nology results in higher engine operating temperature and increased heat load, corresponding requirements on the use of engine oil are also put forward. In car running process, the adaptability of the oil will signifi-cantly influence the reliability and durability of the engine. To determine the adaptability of engine oil, the diversity of operation condition of the engine after powering vehicle and the actual operation environment should be considered. As laboratory bench test cannot effectively evaluate the practical situation solely, the vehicle road test method is selected for validation.%近年来,随着汽车技术的不断进步及在节能减排政策的推动下,发动机正沿着大功率、小体积的方向发展。增压技术在新上市的汽油发动机上的应用也趋向于普及化,但是涡轮增压技术的广泛应用,导致发动机工作温度升高,热负荷增大,对发动机机油的使用也提出了相应的要求。在汽车运行过程中,机油适应性好与差,将对发动机的可靠性、耐久性产生显著的影响。确定机油的适应性需考虑发动机搭载整车后的运行工况和实际使用环境的多样性,仅通过试验室台架验证试验无法有效评估实际情况,因此选择试验车路试的方式进行验证。

  4. Statistical evaluation of transcriptomic data generated using the Affymetrix one-cycle, two-cycle and IVT-Express RNA labelling protocols with the Arabidopsis ATH1 microarray

    Directory of Open Access Journals (Sweden)

    Hodgman T

    2010-03-01

    Full Text Available Abstract Background Microarrays are a powerful tool used for the determination of global RNA expression. There is an increasing requirement to focus on profiling gene expression in tissues where it is difficult to obtain large quantities of material, for example individual tissues within organs such as the root, or individual isolated cells. From such samples, it is difficult to produce the amount of RNA required for labelling and hybridisation in microarray experiments, thus a process of amplification is usually adopted. Despite the increasing use of two-cycle amplification for transcriptomic analyses on the Affymetrix ATH1 array, there has been no report investigating any potential bias in gene representation that may occur as a result. Results Here we compare transcriptomic data generated using Affymetrix one-cycle (standard labelling protocol, two-cycle (small-sample protocol and IVT-Express protocols with the Affymetrix ATH1 array using Arabidopsis root samples. Results obtained with each protocol are broadly similar. However, we show that there are 35 probe sets (of a total of 22810 that are misrepresented in the two-cycle data sets. Of these, 33 probe sets were classed as mis-amplified when comparisons of two independent publicly available data sets were undertaken. Conclusions Given the unreliable nature of the highlighted probes, we caution against using data associated with the corresponding genes in analyses involving transcriptomic data generated with two-cycle amplification protocols. We have shown that the Affymetrix IVT-E labelling protocol produces data with less associated bias than the two-cycle protocol, and as such, would recommend this kit for new experiments that involve small samples.

  5. EXPLORATION ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20090712 Ge Mingjun(General Institution of Mineral Exploration & Development in Qiqihaer of Heilongjiang Province,Qiqihaer 161006,China) Application of Emulsified Diesel Oil Drilling Fluid in Under-Balanced Drilling(Exploration Engineering(Rock & Soil Drilling and Tunneling),ISSN1672-7428,CN11-5063/TD,34(11),2007,p.43-45,1 illus.,2 tables,4 refs.)

  6. Question of development of industrial chemistry of combustible minerals (from a conference on problems in development of oil chemistry and chemical engineering)

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, L.V.

    1986-04-01

    In conjunction with other scientific associations, the Department of General and Industrial Chemistry in the Soviet Academy of Sciences organized a conference in Zvenigorod in October 1985 which was devoted to the chemistry of coal, shale and oil. A series of papers were presented on the future of hydrogenation catalysis as an cost-effective method of processing coking products, coals, shaley resin, fuel oil and bituminous oil to produce synthetic liquids. Subjects included: the prospects of non-traditional methods of processing solid combustible minerals; heavy catalysis of oil residue and bituminous oils; the current state of coal chemistry in Kuzbass, new methods of coal classification and the production of liquid and chemical products from combustible shale.

  7. Comparison of neurotoxic effects and potential risks from oral administration or ingestion of tricresyl phosphate and jet engine oil containing tricresyl phosphate.

    Science.gov (United States)

    Mackerer, C R; Barth, M L; Krueger, A J; Chawla, B; Roy, T A

    1999-07-09

    Neurotoxicity of tricresyl phosphates (TCPs) and jet engine oil (JEO) containing TCPs were evaluated in studies conducted in both rat and hen. Results for currently produced samples ("conventional" and "low-toxicity") were compared with published findings on older samples to identify compositional changes and relate those changes to neurotoxic potential. Finally, a human risk assessment for exposure by oral ingestion of currently produced TCPs in JEO at 3% (JEO + 3%) was conducted. TCPs and certain other triaryl phosphates administered as single doses inhibited brain neuropathy target esterase (B-NTE; neurotoxic esterase) in the rat and the hen (hen 3.25 times as sensitive), and both species were deemed acceptable for initial screening purposes. Neither rat nor hen was sensitive enough to detect statistically significant inhibition of B-NTE after single doses of IEO + 3% "conventional" TCP. Subacute administration of 2 g/kg/d of JEO + 3% "conventional" TCP to the hen produced B-NTE inhibition (32%), which did not result in organophosphorus-induced delayed neurotoxicity (OPIDN). Subchronic administration of JEO + 3% TCP but not JEO + 1% TCP at 2 g/kg/d produced OPIDN. Thus, the threshold for OPIDN was between 20 and 60 mg "conventional" TCP/kg/d in JEO for 10 wk. The current "conventional" TCPs used in JEO and new "low-toxicity" TCPs now used in some JEO are synthesized from phenolic mixtures having reduced levels of ortho-cresol and ortho-xylenols resulting in TCPs of very high content of meta- and para-substituted phenyl moieties; this change in composition results in lower toxicity. The "conventional" TCPs still retain enough inhibitory activity to produce OPIDN, largely because of the presence of ortho-xylyl moieties; the "low-toxicity" TCPs are largely devoid of ortho substituents and have extremely low potential to cause OPIDN. The TCPs produced in the 1940s and 1950s were more than 400 times as toxic as the "low-toxicity" TCPs produced today. Analysis of the

  8. CYLINDER AND SYSTEM LUBRICATING OILS

    Directory of Open Access Journals (Sweden)

    ION ADRIAN GIRBA

    2016-06-01

    Full Text Available Increased thermal efficiency, savings in the fuel consumption and the possibility to burn low quality fuels conducted to an intense development of marine engines in past 20 years, this progress being emphasized by the increased combustion pressures and better combustion properties. These improvements represent a continuous challenge for lubricating oil manufacturers: the rise in combustion temperatures and pressures is making difficult to preserve the oil film in critical areas and the longer strokes of the piston leads to issues of spreading the oil. Adding here the new type of engines using gas or biofuel which requires different types of lubricating oils. Therefore, the success of new generation of engines will depend on lubricating oils quality. :

  9. The Experimental Research on Application of Vegetable Oil in JS6608Vehicle Engine%植物油发动机在JS6608汽车上应用的试验研究

    Institute of Scientific and Technical Information of China (English)

    沈辉; 宗慎强; 张轶; 邱云

    2011-01-01

    柴油机直接燃用植物油燃料,存在启动困难、在怠速、低转速和小负荷等工况时燃烧排放性能差等问题。本文对原车柴油机燃料供给系统进行改进设计,应用控制单元对燃油供给系统进行控制,在启动、怠速、低转速和小负荷时给发动机供柴油,中高负荷时给发动机供植物油,实现柴油和植物油燃料的双供给。改装后整车道路试验表明,燃用植物油汽车运行可靠,动力性、经济性与原车相当,在中高负荷时燃烧和排放特性优于柴油车。%When a diesel engine fuels vegetable oil fuel directly, the engine is difficult to start and has bad combustion emissions performance at idle or low speed under low load conditions. In this paper, the diesel fuel supply system for the original vehicle is designed and is controlled with control units. When the engine starts or runs at idle, low speed or at small load, it is controlled to fuel diesel fuel but changed to burn vegetable oil fuel at medium and high load. The road tests based on a modified vehicle shows that it can run reliable with similar economy and power and better com- bustion and emission characteristics under medium and high load while fueling vegetable oil with comparison to the original vehicle.

  10. The Effect of Methanol Gasoline on Low Temperature Performance of Engine Oil%甲醇汽油对发动机油低温性能的影响

    Institute of Scientific and Technical Information of China (English)

    尹兴林; 王娇; 董元虎

    2011-01-01

    In order to study the effect of methanol gasoline on the low temperature performance of engine oil, methanol gasoline and its simulated combustion products of formaldehyde and formic acid were added into the engine oils, and the pour point, solidification point and low temperature dynamic viscosity of the oil samples were analyzed.The results show that the pour point and solidification point have little change with adding methanol gasoline and its simulated combustion products of formaldehyde and formic acid to the oil samples.The low temperature dynamic viscosity has slight increase with the increase of methanol in methanol gasoline, and it is high as the mass fraction of formic acid is between 0.8% ~ 1.2%,but the whole increase tendency is gentle with the increase of formic acid.So the methanol gasoline and its simulated combustion products have little influence on the low temperature performance of engine oils.%为考察甲醇汽油对发动机油低温性能的影响,通过向发动机油中添加甲醇汽油及其模拟燃烧产物甲酸、甲醛,分析其对油样的倾点、凝点、低温动力黏度的影响.结果表明:甲醇汽油及其模拟燃烧产物甲醛、甲酸对油样的倾点、凝点影响较小;随着甲醇添加量的增加,油样的低温动力黏度有增大的趋势;在甲酸质量分数为0.8%~1.2%时,油样的低温动力黏度值较大,但其增大的趋势平缓.因此甲醇汽油及其模拟燃烧产物对发动机油的低温性能影响不大.

  11. IRP/DSM Research and Demonstrating Engineering Report of Shengli Oil Field%胜利油田IRP/DSM研究与示范工程报告

    Institute of Scientific and Technical Information of China (English)

    刘军; 江武敏; 高月民; 张小宁; 严川; 尤春蓉

    2002-01-01

    @@ 1 Project Background In July 1995, China Oil and Natural Gas Corporation brings forward IRP/DSM research at the "9th Five-year Plan" electric program and research' s meeting. In July 1996, China Traffic and Energy Department of the State Planning Committee authorized the project about IRP/DSM research at Shengli Oil Field. In 1997, the project was put in oil field key science and technology program. This is a project about IRP/DSM research and implementation with key body of large electric users, and is the first project as the key body of large electric users inland.

  12. The Development of Running-in Oil for High Speed and Large Power Motorcycle Engine%高速高负荷大功率摩托车发动机磨合油的研制

    Institute of Scientific and Technical Information of China (English)

    宋世远; 李华峰; 彭安伟; 王天懿

    2011-01-01

    高速高负荷大功率摩托车发动机凸轮轴与挺杆间载荷高,使用传统磨合油,在磨合过程中凸轮轴-挺杆出现严重擦伤,导致磨合合格率低。凸轮轴-挺杆处于边界润滑状态,解决其严重磨损、擦伤与烧结的关键在于提高磨合油的极压性能。在配方设计上,选用较高黏度的基础油,并以极压抗磨剂为主剂,通过正交试验,确定添加剂的最佳添加量,研制出满足该型号摩托车发动机磨合要求的专用磨合油,使磨合合格率达到95%以上。该油的配方组成与传统磨合油有显著差异,其最重要的性能特征为具有优异的极压性。%The severe scratch occurred on the surface of camshaft and jib when the traditional running-in oil was used to grind the parts of high speed and large power motorcycle engine,because the duty between camshaft and jib is heavy and the lubricating means between them is boundary lubrication.In order to prevent scratch,the extreme-pressure performance of running-in oil must be greatly enhanced.The formula of the running-in oil is composed of higher viscosity base oil and several kinds of additives,and the extreme-pressure agent is dominant among additives.The special purpose running-in oil was developed by means of orthogonal experiment,which can completely meet the running-in needs.The most important difference between the traditional running-in oil and the special purpose running-in oil is that the latter one is provided with outstanding extreme-pressure performance.

  13. Accounting for the waterless period of oil production in calculations on oil field production design

    Energy Technology Data Exchange (ETDEWEB)

    Aminov, M.F.; Butorin, O.I.

    1981-01-01

    Formulae on the dynamics of oil and liquid from a methodology developed by the Tatar Scientific-Research and Design Institute for the Oil Industry are adjusted, accounting for the waterless period in oil production. It is demonstrated that the process of accounting for the waterless period in oil production leads to a more accurate prediction of the engineering parameters for mining and oil field.

  14. Peanut Oil

    Science.gov (United States)

    ... and baby care products. Sometimes the less expensive soya oil is added to peanut oil. ... are pregnant or breast-feeding. Allergy to peanuts, soybeans, and related plants: Peanut oil can cause serious ...

  15. Oil Spills

    Science.gov (United States)

    Oil spills often happen because of accidents, when people make mistakes or equipment breaks down. Other causes include natural disasters or deliberate acts. Oil spills have major environmental and economic effects. Oil ...

  16. Engineering design and prototype development of a full scale ultrasound system for virgin olive oil by means of numerical and experimental analysis.

    Science.gov (United States)

    Clodoveo, Maria Lisa; Moramarco, Vito; Paduano, Antonello; Sacchi, Raffaele; Di Palmo, Tiziana; Crupi, Pasquale; Corbo, Filomena; Pesce, Vito; Distaso, Elia; Tamburrano, Paolo; Amirante, Riccardo

    2017-07-01

    The aim of the virgin olive oil extraction process is mainly to obtain the best quality oil from fruits, by only applying mechanical actions while guaranteeing the highest overall efficiency. Currently, the mechanical methods used to extract virgin oils from olives are basically of two types: the discontinuous system (obsolete) and the continuous one. Anyway the system defined as "continuous" is composed of several steps which are not all completely continuous, due to the presence of the malaxer, a device that works in batch. The aim of the paper was to design, realize and test the first full scale sono-exchanger for the virgin olive oil industry, to be placed immediately after the crusher and before the malaxer. The innovative device is mainly composed of a triple concentric pipe heat exchanger combined with three ultrasound probes. This mechanical solution allows both the cell walls (which release the oil droplets) along with the minor compounds to be destroyed more effectively and the heat exchange between the olive paste and the process water to be accelerated. This strategy represents the first step towards the transformation of the malaxing step from a batch operation into a real continuous process, thus improving the working capacity of the industrial plants. Considering the heterogeneity of the olive paste, which is composed of different tissues, the design of the sono-exchanger required a thorough fluid dynamic analysis. The thermal effects of the sono-exchanger were monitored by measuring the temperature of the product at the inlet and the outlet of the device; in addition, the measurement of the pigments concentration in the product allowed monitoring the mechanical effects of the sono-exchanger. The effects of the innovative process were also evaluated in terms of extra virgin olive oil yields and quality, evaluating the main legal parameters, the polyphenol and tocopherol content. Moreover, the activity of the polyphenol oxidase enzyme in the olive

  17. Improving oil classification quality from oil spill fingerprint beyond six sigma approach.

    Science.gov (United States)

    Juahir, Hafizan; Ismail, Azimah; Mohamed, Saiful Bahri; Toriman, Mohd Ekhwan; Kassim, Azlina Md; Zain, Sharifuddin Md; Ahmad, Wan Kamaruzaman Wan; Wah, Wong Kok; Zali, Munirah Abdul; Retnam, Ananthy; Taib, Mohd Zaki Mohd; Mokhtar, Mazlin

    2017-07-15

    This study involves the use of quality engineering in oil spill classification based on oil spill fingerprinting from GC-FID and GC-MS employing the six-sigma approach. The oil spills are recovered from various water areas of Peninsular Malaysia and Sabah (East Malaysia). The study approach used six sigma methodologies that effectively serve as the problem solving in oil classification extracted from the complex mixtures of oil spilled dataset. The analysis of six sigma link with the quality engineering improved the organizational performance to achieve its objectivity of the environmental forensics. The study reveals that oil spills are discriminated into four groups' viz. diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) according to the similarity of the intrinsic chemical properties. Through the validation, it confirmed that four discriminant component, diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) dominate the oil types with a total variance of 99.51% with ANOVA giving Fstat>Fcritical at 95% confidence level and a Chi Square goodness test of 74.87. Results obtained from this study reveals that by employing six-sigma approach in a data-driven problem such as in the case of oil spill classification, good decision making can be expedited. Copyright © 2017. Published by Elsevier Ltd.

  18. Transgenic oil palm: production and projection.

    Science.gov (United States)

    Parveez, G K; Masri, M M; Zainal, A; Majid, N A; Yunus, A M; Fadilah, H H; Rasid, O; Cheah, S C

    2000-12-01

    Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020.

  19. 75 FR 39803 - Airworthiness Directives; Thielert Aircraft Engines GmbH Model TAE 125-01 Reciprocating Engines

    Science.gov (United States)

    2010-07-13

    ... engine oil may adversely affect the gearbox clutch or the engine lubrication system. This condition, if... engine oil may adversely affect the gearbox clutch or the engine lubrication system. This condition, if..., describes the authority of the FAA Administrator. ``Subtitle VII: Aviation Programs,'' describes in...

  20. Mining Study of Oil Atomic Emission Spectrum Data of Certain Diesel Engine%某型柴油机润滑油发射光谱数据挖掘研究*

    Institute of Scientific and Technical Information of China (English)

    张乔斌; 张春辉; 朱爱芳

    2014-01-01

    Atomic emission spectroscopy is one of the most widely used techniques for oil analysis in the world now .In order to deeply mine the relation between the concentration of wearing elements of diesel engine and its loads ,cylinders'clearances and runtime after renewing oil ,a simulation model and a prediction model of Fe concentration of a type of six cyl‐inder diesel engine are established by applying neural network .The engine set up seven different working conditions and measured concentration of sixty‐nine oil samples .The results show that the relative errors of the simulation value of the 69 samples are within less than 15% .The absolute errors of prediction value of the 19 samples are lower than the acceptable ac‐curacy indices and the relative errors of 84% samples are within 15% .It is proved that Fe concentration can be predicted ef‐fectively by Neural Network algorithm .%油料原子发射光谱仪是目前国内外广泛应用的油液分析技术之一。为了深入挖掘某型柴油机润滑油中磨损元素的浓度与柴油机负荷、气缸间隙和运行时间之间的对应关系,应用神经网络建立了某型六缸柴油机主要磨损元素 Fe的浓度仿真模型和预测模型。柴油机设置了7种工况,测量了69个油样。仿真模型中,69个油样仿真值的相对误差均小于15%;预测模型中,19个油样预测值的绝对误差均小于光谱仪精确度值,且84%的油样预测值的相对误差小于15%。预测结果表明:神经网络算法能较好地预测Fe元素浓度。

  1. Performance of cycle diesel engine using Biodiesel of olive oil (B100 Desempenho de motor diesel quatro tempos alimentado com biodiesel de óleo de oliva (B100

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Silva Volpato

    2012-06-01

    Full Text Available Biodiesel is a renewable fuel derived from vegetable oils used in diesel engines, in any proportion with petroleum diesel, or pure. It is produced by chemical processes, usually by transesterification, in which the glycerin is removed. The objective of this study was to compare the performance of a four stroke, four cylinder diesel cycle engines using either olive (B100 biodiesel oil or diesel oil. The following parameters were analyzed: effective and reduced power, torque, specific and hourly fuel consumption, thermo-mechanical and volumetric efficiency. Analysis of variance was performed on a completely randomized design with treatments in factorial and the Tukey test applied at the level of 5%. Five rotation speeds were researched in four replications (650, 570, 490, 410, 320 and 240 rpm. The engine fed with biodiesel presented more satisfactory results for torque, reduced power and specific and hourly consumptions than that fed with fossil diesel.Biodiesel é um combustível renovável derivado de óleos vegetais, usado em motores de ciclo diesel, em qualquer proporção com o diesel mineral, ou puro. É produzido por meio de processos químicos, normalmente por transesterificação, no qual é removida a glicerina. Este trabalho foi realizado com o objetivo de avaliar o desempenho de um motor de ciclo diesel quatro tempos e quatro cilindros, utilizando biodiesel de óleo de oliva (B100, em comparação ao óleo diesel. Foram analisados os parâmetros: potência efetiva e reduzida, torque, consumo específico e energético de combustível, eficiência termomecânica e volumétrica. Foi instalado um ensaio com delineamento inteiramente casualizado (DIC em esquema fatorial, realizada análise de variância e aplicado teste de Tukey, a 5%. Foram pesquisados cinco níveis de rotação em quatro repetições (650, 570, 490, 410, 320 e 240 rpm. O motor alimentado com biodiesel de oliva apresentou torque, potencia reduzida e consumos especifico e

  2. In vitro starch digestibility and expected glycemic index of pound cakes baked in two-cycle microwave-toaster and conventional oven.

    Science.gov (United States)

    García-zaragoza, Francisco J; Sánchez-Pardo, María E; Ortiz-Moreno, Alicia; Bello-Pérez, Luis A

    2010-11-01

    Bread baking technology has an important effect on starch digestibility measured as its predicted glycemic index tested in vitro. The aim of this work was to evaluate the changes in predicted glycemic index of pound cake baked in a two-cycle microwave toaster and a conventional oven. The glycemic index was calculated from hydrolysis index values by the Granfeldt method. Non-significant differences (P > 0.05) were found in hydrolysis index (60.67 ± 3.96 for the product baked in microwave oven and 65.94 ± 4.09 for the product baked in conventional oven) and predicted glycemic index content (60.5 for product baked in microwave oven and 65 for the product baked in conventional oven) in freshly-baked samples. Results clearly demonstrate that the baking pound cake conventional process could be replicated using a two-cycle multifunction microwave oven, reducing the traditional baking time. Further research is required in order to achieve pound cake crumb uniformity.

  3. Catalytic Synthesis of Ethyl Ester From Some Common Oils ...

    African Journals Online (AJOL)

    ... seed oil FAEE that shows high acid value and total ash content the esters could be used directly or as blend in diesel engines to give good performance. Key words: Ethyl ester, synthesis, catalytic activity, common oils, biodiesel potential.

  4. Low emission fuel engine and method of operating same

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, M.J.

    1990-09-11

    This patent describes a low emission duel fuel engine system. It comprises: a dual fuel engine having a combustion chamber; a fuel oil supply connected to the engine; a fuel gas supply connected to the engine; and means connected between the fuel oil supply and the engine for injecting fuel oil into the engine. The means connected between the engine and fuel oil supply limiting the injection of fuel oil to the combustion chamber to pilot ignition quantities only, wherein the limiting means includes means for limiting the injection of fuel oil such that the exhaust emission of NO{sub x} is at an emission rate of less than 1 GM/PH-HR, whereby the exhaust emission performance of the dual fuel engine is enhanced.

  5. EXPLORATION ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20092040 Chen Jing(College of Petroleum Engineering,Yangtze University,Jingzhou 434023,China);Xiong Qingshan Technology of Well Cementing with Expandable Tube and Its Application(Exploration Engineering,ISSN1672-7428,CN11-5063/TD,35(8),2008,p.19-21,4 illus.,2 tables,5 refs.)Key words:cementingExpandable tube is a new technology and has been developed oversea.It can be applied in well drilling and completion for deep water,deep well,extended reach well and multilateral well,as well as in oil extraction and workover.This paper briefly introduces the technology of well cementing with

  6. Heat engines

    Science.gov (United States)

    Rekos, N. F., Jr.; Parsons, E. L., Jr.

    1989-09-01

    For the past decade, the Department of Energy (DOE) has sponsored projects to develop diesel and gas turbine engines capable of operating on low-cost, coal-based fuels. Much of the current work addresses the use of coal-water fuel (CWF) in diesel and turbines, although there is some work with dry coal feed and other coal fuels. Both the diesel and gas turbine portions of the program include proof-of-concept and support projects. Specific highlights of the program include: engine tests and economic analyses have shown that CWF can replace 70 percent of the diesel oil used in the duty cycle of a typical main-line locomotive; A. D. Little and Cooper-Bessemer completed a system and economic study of coal-fueled diesel engines for modular power and industrial cogeneration markets. The coal-fueled diesel was found to be competitive at fuel oil prices of $5.50 per million British thermal units (MBtu); Over 200 hours of testing have been completed using CWF in full-scale, single-cylinder diesel engines. Combustion efficiencies have exceeded 99 percent; Both CWF and dry coal fuel forms can be burned in short residence time in-line combustors and in off-base combustors with a combustion efficiency of over 99 percent; Rich/lean combustion systems employed by the three major DOE contractors have demonstrated low NO(sub x) emissions levels; Contractors have also achieved promising results for controlling sulfur oxide (SO(sub x)) emissions using calcium-based sorbents; Slagging combustors have achieved between 65 and 95 percent slag capture, which will limit particulate loading on pre-turbine cleanup devices. For many of the gas turbine and diesel applications emission standards do not exist. Our goal is to develop coal-fueled diesels and gas turbines that not only meet all applicable emission standards that do exist, but also are capable of meeting possible future standards.

  7. Oil risk in oil stocks

    NARCIS (Netherlands)

    Scholtens, Bert; Wang, L

    2008-01-01

    We assess the oil price sensitivities and oil risk premiums of NYSE listed oil & gas firms' returns by using a two-step regression analysis under two different arbitrage pricing models. Thus, we apply the Fama and French (1992) factor returns in a study of oil stocks. In all, we find that the return

  8. Oil risk in oil stocks

    NARCIS (Netherlands)

    Scholtens, Bert; Wang, L

    2008-01-01

    We assess the oil price sensitivities and oil risk premiums of NYSE listed oil & gas firms' returns by using a two-step regression analysis under two different arbitrage pricing models. Thus, we apply the Fama and French (1992) factor returns in a study of oil stocks. In all, we find that the return

  9. Oil Products Quality Improvement by Adsorption Method

    Directory of Open Access Journals (Sweden)

    Kulash K. Syrmanova

    2017-02-01

    Full Text Available Petroleum takes the leading place in fuel and energy sector. It is a basis of fuel and energy balance of advanced countries economics. Light oil proven reserves reducing is a general trend of modern oil industry development. Almost the entire increase in reserves is due to viscous heavy sour oil [1-2]. Nowadays quality of the most important oil products is a crucial problem in refinery industry. The problem of oil products quality is connected with their using and operation in engines and machines. Requirements increasing to stability and effective technics maintenance leads to oil products running abilities significant hardening. In order to protect the environment, the task to obtain oil products with improved environmental properties was assigned. Properties of the oil determine the direction and condition of its processing and directly affect the quality of the oil products [3-4].

  10. Identification of a Chlamydomonas plastidial 2-lysophosphatidic acid acyltransferase and its use to engineer microalgae with increased oil content.

    Science.gov (United States)

    Yamaoka, Yasuyo; Achard, Dorine; Jang, Sunghoon; Legéret, Bertrand; Kamisuki, Shogo; Ko, Donghwi; Schulz-Raffelt, Miriam; Kim, Yeongho; Song, Won-Yong; Nishida, Ikuo; Li-Beisson, Yonghua; Lee, Youngsook

    2016-11-01

    Despite a strong interest in microalgal oil production, our understanding of the biosynthetic pathways that produce algal lipids and the genes involved in the biosynthetic processes remains incomplete. Here, we report that Chlamydomonas reinhardtii Cre09.g398289 encodes a plastid-targeted 2-lysophosphatidic acid acyltransferase (CrLPAAT1) that acylates the sn-2 position of a 2-lysophosphatidic acid to form phosphatidic acid, the first common precursor of membrane and storage lipids. In vitro enzyme assays showed that CrLPAAT1 prefers 16:0-CoA to 18:1-CoA as an acyl donor. Fluorescent protein-tagged CrLPAAT1 was localized to the plastid membrane in C. reinhardtii cells. Furthermore, expression of CrLPAAT1 in plastids led to a > 20% increase in oil content under nitrogen-deficient conditions. Taken together, these results demonstrate that CrLPAAT1 is an authentic plastid-targeted LPAAT in C. reinhardtii, and that it may be used as a molecular tool to genetically increase oil content in microalgae. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. CA4DC2-12E4柴油机的机油耗开发%Oil Consumption Development on CA4DC2-12E4 Engine

    Institute of Scientific and Technical Information of China (English)

    王启航; 金喆; 吴彩丽; 张松涛; 韩祖豪

    2014-01-01

    对于CA4DC2-12E4国Ⅳ排放柴油机的机油耗开发,它是通过控制缸孔变形,优化缸套网纹和改进活塞环的措施来实现。试验结果表明:优化后的样机标定功率机油燃油比为0.1%,满足工程目标0.2%的要求。%To development China IV compliant diesel engine of CA4DC2-12E4, measures were taken of controlling cylinder bore distortion, optimizing cylinder liner crosshatch parameters and developing piston oil ring, and then relevant tests were made to verify the effect of the measures. The results show that the oil/fuel at rated power is 0.1%, much lower than the project target of 0.2%.

  12. Optimal design of mid-long term planning method for oil recovery engineering%采油工程中长期规划方法的优化设计

    Institute of Scientific and Technical Information of China (English)

    陈萍

    2015-01-01

    The mid and long-term planning for oil production plays an important role in oil quality,production safety and yield.It is optimized based on quality control PDCA mode to improve quality management system of the production engineering and meet the requirements of new planning so as to ensure that overall planning in smooth and efficient operation.%采油工程中长期规划对采油质量、采油安全、采油产量等都有重要影响,基于PDCA质量控制模式,对采油工程中长期规划方法进行优化设计,能有效完善采油工程的质量管理体系,以迎合新时期采油工程规划的应用需求,确保采油工程整体规划的顺利、高效运行.

  13. Desempenho de um motor de trator agrícola em bancada dinamométrica com biodiesel de óleo de frango e misturas binárias com óleo diesel Performance of an agricultural tractor engine in dynamometer with chicken oil biodiesel and binary mixtures with diesel oil

    Directory of Open Access Journals (Sweden)

    Diego Augusto Fiorese

    2012-04-01

    Full Text Available O Brasil, terceiro maior produtor de biodiesel do mundo e terceiro maior produtor mundial de frango, pode incrementar, na sua matriz energética, o uso de óleo oriundo de aves como alternativa aos combustíveis fósseis e à redução da dependência do óleo de soja para esse fim. O país dispõe de mais de 350 milhões de litros de óleo de frango por ano. Considerando a aplicação dos combustíveis alternativos para os motores a diesel, em máquinas agrícolas, o trabalho teve por objetivo avaliar o desempenho do motor de um trator agrícola de 53kW acoplado pela TDP em bancada dinamométrica, operando com biodiesel metílico de óleo de frango e misturas com óleo diesel, sendo: B5 (testemunha, B20, B40, B60, B80 e B100. Avaliaram-se a potência, o torque, a reserva de torque, o consumo de combustível, o consumo de energia e a eficiência térmica do motor. O ensaio foi instalado com delineamento inteiramente casualizado (DIC em esquema fatorial com seis tratamentos. Os resultados foram submetidos à análise de variância e as médias ajustadas por equações de regressão. Foram observadas perdas na geração de potência e torque, aumento no consumo de combustível, redução do consumo energético e melhoria na eficiência térmica do motor, de acordo com o aumento da proporção de biodiesel na mistura.Brazil, the world third largest producer of biodiesel, and also the third largest producer of chicken, may increase the energy matrix, using oil derived from chicken, as an alternative to fossil fuels and reduce dependence on soybean oil for this purpose. The country can produce over 350 million liters of chicken oil per year. Considering the application of alternative fuels on diesel engines in agricultural machinery. The study aimed to evaluate the performance of a engine agricultural tractor with 53kW coupled by PTO in dynamometer bench operating with methyl biodiesel oil chicken and mix with diesel oil. Fuels B5 (reference, B20, B

  14. Pyrolysis oil as diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S. [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1996-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  15. Frequency-tunable sub-two-cycle 60-MW-peak-power free-space waveforms in the mid-infrared.

    Science.gov (United States)

    Lanin, A A; Voronin, A A; Stepanov, E A; Fedotov, A B; Zheltikov, A M

    2014-11-15

    A physical scenario whereby freely propagating mid-infrared pulses can be compressed to pulse widths close to the field cycle is identified. Generation of tunable few-cycle pulses in the wavelength range from 4.2 to 6.8 μm is demonstrated at a 1-kHz repetition rate through self-focusing-assisted spectral broadening in a normally dispersive, highly nonlinear semiconductor material, followed by pulse compression in the regime of anomalous dispersion, where the dispersion-induced phase shift is finely tuned by adjusting the overall thickness of anomalously dispersive components. Sub-two-cycle pulses with a peak power up to 60 MW are generated in the range of central wavelengths tunable from 5.9 to 6.3 μm.

  16. Essential oil extraction with concentrating solar thermal energy

    OpenAIRE

    Veynandt, François

    2015-01-01

    Material complementari del cas estudi "Essential oil extraction with concentrating solar thermal energy”, part component del llibre "Case studies for developing globally responsible engineers" Peer Reviewed

  17. Petroleum Oils

    Science.gov (United States)

    Different types of crude oil and refined product, of all different chemical compositions, have distinct physical properties. These properties affect the way oil spreads and breaks down, its hazard to marine and human life, and the likelihood of threat.

  18. Oil spills

    National Research Council Canada - National Science Library

    Moghissi, A.A

    1980-01-01

    Contents: Oil spills on land as potential sources of groundwater contamination / J.J. Duffy, E. Peake and M.F. Mohtadi -- Ecological effects of experimental oil spills in eastern coastal plain estuaries...

  19. Oil additive and its effect

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2013-01-01

    Full Text Available The aim of this paper are experimental approaches, selected for analysis of the engine oils and described above, are surely sufficient for the needs of presented research. The spectrometry was used for determination of presence of selected chemical elements and especially metals in oil. Particles monitoring was employed in order to describe the amount, type, and size of friction particles. The temperature dependence of dynamic viscosity was evaluated by use of rotary viscometer. In case of