WorldWideScience

Sample records for two-component ultracold fermi

  1. Pseudogap phenomena in ultracold atomic Fermi gases

    OpenAIRE

    Chen, Qijin; Wang, Jibiao

    2014-01-01

    The pairing and superfluid phenomena in a two-component ultracold atomic Fermi gas is an analogue of Cooper pairing and superconductivity in an electron system, in particular, the high $T_c$ superconductors. Owing to the various tunable parameters that have been made accessible experimentally in recent years, atomic Fermi gases can be explored as a prototype or quantum simulator of superconductors. It is hoped that, utilizing such an analogy, the study of atomic Fermi gases may shed light to ...

  2. Thermodynamics of ultracold Fermi gases

    International Nuclear Information System (INIS)

    Nascimbene, Sylvain

    2010-01-01

    Complex Hamiltonians from condensed matter, such as the Fermi-Hubbard model, can be experimentally studied using ultracold gases. This thesis describes a new method for determining the equation of state of an ultracold gas, making the comparison with many-body theories straightforward. It is based on the measurement of the local pressure inside a trapped gas from the analysis of its in situ image. We first apply this method to the study of a Fermi gas with resonant interactions, a weakly-interacting 7 Li gas acting as a thermometer. Surprisingly, none of the existing many-body theories of the unitary gas accounts for the equation of state deduced from our study over its full range. The virial expansion extracted from the high-temperature data agrees with the resolution of the three-body problem. At low temperature, we observe, contrary to some previous studies, that the normal phase behaves as a Fermi liquid. Finally we obtain the critical temperature for superfluidity from a clear signature on the equation of state. We also measure the pressure of the ground state as a function of spin imbalance and interaction strength - measure directly relevant to describe the crust of neutron stars. Our data validate Monte-Carlo simulations and quantify the Lee-Huang-Yang corrections to mean-field interactions in low-density fermionic or bosonic superfluids. We show that, in most cases, the partially polarized normal phase can be described as a Fermi liquid of polarons. The polaron effective mass extracted from the equation of state is in agreement with a study of collective modes. (author)

  3. Dressed molecules in resonantly interacting ultracold atomic Fermi gases

    NARCIS (Netherlands)

    Falco, G.M.; Stoof, H.T.C.

    2007-01-01

    We present a detailed analysis of the two-channel atom-molecule effective Hamiltonian for an ultracold two-component homogeneous Fermi gas interacting near a Feshbach resonance. We particularly focus on the two-body and many-body properties of the dressed molecules in such a gas. An exact result

  4. Diatomic molecules in ultracold Fermi gases - Novel composite bosons

    OpenAIRE

    Petrov, D. S.; Salomon, C.; Shlyapnikov, G. V.

    2005-01-01

    We give a brief overview of recent studies of weakly bound homonuclear molecules in ultracold two-component Fermi gases. It is emphasized that they represent novel composite bosons, which exhibit features of Fermi statistics at short intermolecular distances. In particular, Pauli exclusion principle for identical fermionic atoms provides a strong suppression of collisional relaxation of such molecules into deep bound states. We then analyze heteronuclear molecules which are expected to be for...

  5. Trapping and Evolution Dynamics of Ultracold Two-Component Plasmas

    International Nuclear Information System (INIS)

    Choi, J.-H.; Knuffman, B.; Zhang, X. H.; Povilus, A. P.; Raithel, G.

    2008-01-01

    We demonstrate the trapping of a strongly magnetized, quasineutral ultracold plasma in a nested Penning trap with a background field of 2.9 T. Electrons remain trapped in this system for several milliseconds. Early in the evolution, the dynamics are driven by a breathing-mode oscillation in the ionic charge distribution, which modulates the electron trap depth. Over longer times scales, the electronic component undergoes cooling. Trap loss resulting from ExB drift is characterized

  6. Detecting Friedel oscillations in ultracold Fermi gases

    Science.gov (United States)

    Riechers, Keno; Hueck, Klaus; Luick, Niclas; Lompe, Thomas; Moritz, Henning

    2017-09-01

    Investigating Friedel oscillations in ultracold gases would complement the studies performed on solid state samples with scanning-tunneling microscopes. In atomic quantum gases interactions and external potentials can be tuned freely and the inherently slower dynamics allow to access non-equilibrium dynamics following a potential or interaction quench. Here, we examine how Friedel oscillations can be observed in current ultracold gas experiments under realistic conditions. To this aim we numerically calculate the amplitude of the Friedel oscillations which are induced by a potential barrier in a 1D Fermi gas and compare it to the expected atomic and photonic shot noise in a density measurement. We find that to detect Friedel oscillations the signal from several thousand one-dimensional systems has to be averaged. However, as up to 100 parallel one-dimensional systems can be prepared in a single run with present experiments, averaging over about 100 images is sufficient.

  7. Itinerant Ferromagnetism in a Polarized Two-Component Fermi Gas

    DEFF Research Database (Denmark)

    Massignan, Pietro; Yu, Zhenhua; Bruun, Georg

    2013-01-01

    We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles, the repul......We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles...

  8. Itinerant Ferromagnetism in Ultracold Fermi Gases

    DEFF Research Database (Denmark)

    Heiselberg, Henning

    2012-01-01

    Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC. Thermodyna......Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC...

  9. From ultracold Fermi Gases to Neutron Stars

    Science.gov (United States)

    Salomon, Christophe

    2012-02-01

    Ultracold dilute atomic gases can be considered as model systems to address some pending problem in Many-Body physics that occur in condensed matter systems, nuclear physics, and astrophysics. We have developed a general method to probe with high precision the thermodynamics of locally homogeneous ultracold Bose and Fermi gases [1,2,3]. This method allows stringent tests of recent many-body theories. For attractive spin 1/2 fermions with tunable interaction (^6Li), we will show that the gas thermodynamic properties can continuously change from those of weakly interacting Cooper pairs described by Bardeen-Cooper-Schrieffer theory to those of strongly bound molecules undergoing Bose-Einstein condensation. First, we focus on the finite-temperature Equation of State (EoS) of the unpolarized unitary gas. Surprisingly, the low-temperature properties of the strongly interacting normal phase are well described by Fermi liquid theory [3] and we localize the superfluid phase transition. A detailed comparison with theories including recent Monte-Carlo calculations will be presented. Moving away from the unitary gas, the Lee-Huang-Yang and Lee-Yang beyond-mean-field corrections for low density bosonic and fermionic superfluids are quantitatively measured for the first time. Despite orders of magnitude difference in density and temperature, our equation of state can be used to describe low density neutron matter such as the outer shell of neutron stars. [4pt] [1] S. Nascimbène, N. Navon, K. Jiang, F. Chevy, and C. Salomon, Nature 463, 1057 (2010) [0pt] [2] N. Navon, S. Nascimbène, F. Chevy, and C. Salomon, Science 328, 729 (2010) [0pt] [3] S. Nascimbène, N. Navon, S. Pilati, F. Chevy, S. Giorgini, A. Georges, and C. Salomon, Phys. Rev. Lett. 106, 215303 (2011)

  10. Vortex formation in a rotating two-component Fermi gas

    Energy Technology Data Exchange (ETDEWEB)

    Warringa, Harmen J.; Sedrakian, Armen [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt am Main, Max-von-Laue-Strasse 1, D-60438 Frankfurt am Main (Germany)

    2011-08-15

    A two-component Fermi gas with attractive s-wave interactions forms a superfluid at low temperatures. When this gas is confined in a rotating trap, fermions can unpair at the edges of the gas and vortices can arise beyond certain critical rotation frequencies. We compute these critical rotation frequencies and construct the phase diagram in the plane of scattering length and rotation frequency for different total numbers of particles. We work at zero temperature and consider a cylindrically symmetric harmonic trapping potential. The calculations are performed in the Hartree-Fock-Bogoliubov approximation which implies that our results are quantitatively reliable for weak interactions.

  11. Dimensional BCS-BEC crossover in ultracold Fermi gases

    Energy Technology Data Exchange (ETDEWEB)

    Boettcher, Igor

    2014-12-10

    We investigate thermodynamics and phase structure of ultracold Fermi gases, which can be realized and measured in the laboratory with modern trapping techniques. We approach the subject from a both theoretical and experimental perspective. Central to the analysis is the systematic comparison of the BCS-BEC crossover of two-component fermions in both three and two dimensions. A dimensional reduction can be achieved in experiments by means of highly anisotropic traps. The Functional Renormalization Group (FRG) allows for a description of both cases in a unified theoretical framework. In three dimensions we discuss with the FRG the influence of high momentum particles onto the density, extend previous approaches to the Unitary Fermi Gas to reach quantitative precision, and study the breakdown of superfluidity due to an asymmetry in the population of the two fermion components. In this context we also investigate the stability of the Sarma phase. For the two-dimensional system scattering theory in reduced dimension plays an important role. We present both the theoretically as well as experimentally relevant aspects thereof. After a qualitative analysis of the phase diagram and the equation of state in two dimensions with the FRG we describe the experimental determination of the phase diagram of the two-dimensional BCS-BEC crossover in collaboration with the group of S. Jochim at PI Heidelberg.

  12. Superfluidity and BCS-BEC crossover of ultracold atomic Fermi gases in mixed dimensions

    Science.gov (United States)

    Zhang, Leifeng; Chen, Qijin

    Atomic Fermi gases have been under active investigation in the past decade. Here we study the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas in the presence of mixed dimensionality, in which one component is confined on a 1D optical lattice whereas the other is free in the 3D continuum. We assume a short-range pairing interaction and determine the superfluid transition temperature Tc and the phase diagram for the entire BCS-BEC crossover, using a pairing fluctuation theory which includes self-consistently the contributions of finite momentum pairs. We find that, as the lattice depth increases and the lattice spacing decreases, the behavior of Tc becomes very similar to that of a population imbalance Fermi gas in a simple 3D continuum. There is no superfluidity even at T = 0 below certain threshold of pairing strength in the BCS regime. Nonmonotonic Tc behavior and intermediate temperature superfluidity emerge, and for deep enough lattice, the Tc curve will split into two parts. Implications for experiment will be discussed. References: 1. Q.J. Chen, Ioan Kosztin, B. Janko, and K. Levin, Phys. Rev. B 59, 7083 (1999). 2. Chih-Chun Chien, Qijin Chen, Yan He, and K. Levin, Phys. Rev. Lett. 97, 090402(2006). Work supported by NSF of China and the National Basic Research Program of China.

  13. Density profiles and collective excitations of a trapped two-component Fermi vapour

    International Nuclear Information System (INIS)

    Amoruso, M.; Meccoli, I.; Minguzzi, A.; Tosi, M.P.

    1999-08-01

    We discuss the ground state and the small-amplitude excitations of a degenerate vapour of fermionic atoms placed in two hyperfine states inside a spherical harmonic trap. An equations-of-motion approach is set up to discuss the hydrodynamic dissipation processes from the interactions between the two components of the fluid beyond mean-field theory and to emphasize analogies with spin dynamics and spin diffusion in a homogeneous Fermi liquid. The conditions for the establishment of a collisional regime via scattering against cold-atom impurities are analyzed. The equilibrium density profiles are then calculated for a two-component vapour of 40 K atoms: they are little modified by the interactions for presently relevant values of the system parameters, but spatial separation of the two components will spontaneously arise as the number of atoms in the trap is increased. The eigenmodes of collective oscillation in both the total particle number density and the concentration density are evaluated analytically in the special case of a symmetric two-component vapour in the collisional regime. The dispersion relation of the surface modes for the total particle density reduces in this case to that of a one-component Fermi vapour, whereas the frequencies of all other modes are shifted by the interactions. (author)

  14. Universal Properties of a Trapped Two-Component Fermi Gas at Unitarity

    International Nuclear Information System (INIS)

    Blume, D.; Stecher, J. von; Greene, Chris H.

    2007-01-01

    We treat the trapped two-component Fermi system, in which unlike fermions interact through a two-body short-range potential having no bound state but an infinite scattering length. By accurately solving the Schroedinger equation for up to N=6 fermions, we show that no many-body bound states exist other than those bound by the trapping potential, and we demonstrate unique universal properties of the system: Certain excitation frequencies are separated by 2(ℎ/2π)ω, the wave functions agree with analytical predictions and a virial theorem is fulfilled. Further calculations up to N=30 determine the excitation gap, an experimentally accessible universal quantity, and it agrees with recent predictions based on a density functional approach

  15. Disordered ultracold atomic gases in optical lattices: A case study of Fermi-Bose mixtures

    International Nuclear Information System (INIS)

    Ahufinger, V.; Sanchez-Palencia, L.; Kantian, A.; Sanpera, A.; Lewenstein, M.

    2005-01-01

    We present a review of properties of ultracold atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. In the strong interacting limit and at very low temperatures, fermions form, together with bosons or bosonic holes, composite fermions. Composite fermions behave as a spinless interacting Fermi gas, and in the presence of local disorder they interact via random couplings and feel effective random local potential. This opens a wide variety of possibilities of realizing various kinds of ultracold quantum disordered systems. In this paper we review these possibilities, discuss the accessible quantum disordered phases, and methods for their detection. The discussed quantum phases include Fermi glasses, quantum spin glasses, 'dirty' superfluids, disordered metallic phases, and phases involving quantum percolation

  16. Fulde–Ferrell superfluids in spinless ultracold Fermi gases

    Science.gov (United States)

    Zheng, Zhen-Fei; Guo, Guang-Can; Zheng, Zhen; Zou, Xu-Bo

    2018-06-01

    The Fulde–Ferrell (FF) superfluid phase, in which fermions form finite momentum Cooper pairings, is well studied in spin-singlet superfluids in past decades. Different from previous works that engineer the FF state in spinful cold atoms, we show that the FF state can emerge in spinless Fermi gases confined in optical lattice associated with nearest-neighbor interactions. The mechanism of the spinless FF state relies on the split Fermi surfaces by tuning the chemistry potential, which naturally gives rise to finite momentum Cooper pairings. The phase transition is accompanied by changed Chern numbers, in which, different from the conventional picture, the band gap does not close. By beyond-mean-field calculations, we find the finite momentum pairing is more robust, yielding the system promising for maintaining the FF state at finite temperature. Finally we present the possible realization and detection scheme of the spinless FF state.

  17. Contribution to the theory of ultracold highly polarized Fermi gases

    International Nuclear Information System (INIS)

    Giraud, Sebastien

    2010-01-01

    This thesis deals with the N+1 body problem in highly polarized Fermi gases. This is the situation where a single atom of one spin species is immersed in a Fermi sea of atoms of the other species. The first part uses a Hamiltonian approach based on a general expansion for the wave function of the system with any number of particle-hole pairs. We show that the constructed series of successive approximations converges very rapidly and thus we get an essentially exact solution for the energy and the effective mass of the polaron. In one dimension, for two particular cases, this problem can be solved analytically. The excellent agreement with our series of approximations provides a further check of the reliability of this expansion. Finally, we consider more specifically various limiting cases, as well as the effect of the mass ratio between the two spin species. In the second part, we use the Feynman diagrams formalism to describe both the polaron and the bound state. For the polaron, we develop a theory which is equivalent to the Hamiltonian approach. For the bound state, we get again a series of successive approximations whose fast convergence is perfectly understood. Therefore, this approach provides an essentially exact solution to the problem along the whole BEC-BCS crossover. Finally, by comparing the energies of the two quasi-particles, we study the position of the polaron to bound state transition. (author)

  18. Temperature and coupling dependence of the universal contact intensity for an ultracold Fermi gas

    International Nuclear Information System (INIS)

    Palestini, F.; Perali, A.; Pieri, P.; Strinati, G. C.

    2010-01-01

    Physical properties of an ultracold Fermi gas in the temperature-coupling phase diagram can be characterized by the contact intensity C, which enters the pair-correlation function at short distances and describes how the two-body problem merges into its surrounding. We show that the local order established by pairing fluctuations about the critical temperature T c of the superfluid transition considerably enhances the contact C in a temperature range where pseudogap phenomena are maximal. Our ab initio results for C in a trap compare well with recently available experimental data over a wide coupling range. An analysis is also provided for the effects of trap averaging on C.

  19. Universal relations of an ultracold Fermi gas with arbitrary spin-orbit coupling

    Science.gov (United States)

    Jie, Jianwen; Qi, Ran; Zhang, Peng

    2018-05-01

    We derive the universal relations for an ultracold two-component Fermi gas with a spin-orbit coupling (SOC) ∑α,β =x ,y ,zλα βσαpβ , where px ,y ,z and σx ,y ,z are the single-atom momentum and Pauli operators for pseudospin, respectively, and the SOC intensity λα β could take an arbitrary value. We consider the system with an s -wave short-range interspecies interaction, and ignore the SOC-induced modification for the value of the scattering length. Using the first-quantized approach developed by Tan [S. Tan, Phys. Rev. Lett. 107, 145302 (2011), 10.1103/PhysRevLett.107.145302], we obtain the short-range and high-momentum expansions for the one-body real-space correlation function and momentum distribution function, respectively. For our system these functions are a 2 ×2 matrix in the pseudospin basis. We find that the leading-order (1 /k4 ) behavior of the diagonal elements of the momentum distribution function, i.e., n↑↑(k ) and n↓↓(k ) , are not modified by the SOC. However, the SOC can significantly modify the large-k behaviors of the distribution difference δ n (k ) ≡n↑↑(k ) -n↓↓(k ) as well as the nondiagonal elements of the momentum distribution function, i.e., n↑↓(k ) and n↓↑(k ) . In the absence of the SOC, the leading order of δ n (k ) , n↑↓(k ) , and n↓↑(k ) is O (1 /k6) . When SOC appears, it can induce a term on the order of 1 /k5 for these elements. We further derive the adiabatic relation and the energy functional. Our results show that the SOC can induce an additional term in the energy functional, which describes the contribution from the SOC to the total energy. In addition, the form of the adiabatic relation for our system is not modified by the SOC. Our results are applicable for the systems with any type of single-atom trapping potential, which could be either diagonal or nondiagonal in the pseudospin basis.

  20. Observation of Spin Polarons in a Tunable Fermi Liquid of Ultracold Atoms

    Science.gov (United States)

    Zwierlein, Martin

    2009-05-01

    We have observed spin polarons, dressed spin down impurities in a spin up Fermi sea of ultracold atoms via tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom dressed with a spin up cloud constitutes the spin- or Fermi polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The spectra allow us to directly measure the polaron energy and the quasi-particle residue Z. The polarons are found to be only weakly interacting with each other, and can thus be identified with the quasi-particles of Landau's Fermi liquid theory. At a critical interaction strength, we observe a transition from spin one-half polarons to spin zero molecules. At this point the Fermi liquid undergoes a phase transition into a superfluid Bose liquid.

  1. Stability of a fully magnetized ferromagnetic state in repulsively interacting ultracold Fermi gases

    International Nuclear Information System (INIS)

    Cui Xiaoling; Zhai Hui

    2010-01-01

    We construct a variational wave function to study whether a fully polarized Fermi sea of ultracold atoms is energetically stable against a single spin flip. Our variational wave function contains short-range correlations at least to the same level as Gutzwiller's projected wave function. For the Hubbard lattice model and the continuum model with pure repulsive interaction, we show that a fully polarized Fermi sea is generally unstable even for infinite repulsive strength. By contrast, for a resonance model, the ferromagnetic state is possible if the s-wave scattering length is positive and sufficiently large and the system is prepared to be orthogonal to the molecular bound state. However, we cannot rule out the possibility that more exotic correlations can destabilize the ferromagnetic state.

  2. Response Functions for the Two-Dimensional Ultracold Fermi Gas: Dynamical BCS Theory and Beyond

    Science.gov (United States)

    Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei

    2017-12-01

    Response functions are central objects in physics. They provide crucial information about the behavior of physical systems, and they can be directly compared with scattering experiments involving particles such as neutrons or photons. Calculations of such functions starting from the many-body Hamiltonian of a physical system are challenging and extremely valuable. In this paper, we focus on the two-dimensional (2D) ultracold Fermi atomic gas which has been realized experimentally. We present an application of the dynamical BCS theory to obtain response functions for different regimes of interaction strengths in the 2D gas with zero-range attractive interaction. We also discuss auxiliary-field quantum Monte Carlo (AFQMC) methods for the calculation of imaginary time correlations in these dilute Fermi gas systems. Illustrative results are given and comparisons are made between AFQMC and dynamical BCS theory results to assess the accuracy of the latter.

  3. Ultracold Fermi and Bose gases and Spinless Bose Charged Sound Particles

    Directory of Open Access Journals (Sweden)

    Minasyan V.

    2011-10-01

    Full Text Available We propose a novel approach for investigation of the motion of Bose or Fermi liquid (or gas which consists of decoupled electrons and ions in the uppermost hyperfine state. Hence, we use such a concept as the fluctuation motion of “charged fluid particles” or “charged fluid points” representing a charged longitudinal elastic wave. In turn, this elastic wave is quantized by spinless longitudinal Bose charged sound particles with the rest mass m and charge e 0 . The existence of spinless Bose charged sound particles allows us to present a new model for description of Bose or Fermi liquid via a non-ideal Bose gas of charged sound particles . In this respect, we introduce a new postulation for the superfluid component of Bose or Fermi liquid determined by means of charged sound particles in the condensate, which may explain the results of experiments connected with ultra-cold Fermi gases of spin-polarized hydrogen, 6 Li and 40 K, and such a Bose gas as 87 Rb in the uppermost hyperfine state, where the Bose- Einstein condensation of charged sound particles is realized by tuning the magnetic field.

  4. Dynamics of trapped two-component Fermi gas: Temperature dependence of the transition from collisionless to collisional regime

    International Nuclear Information System (INIS)

    Toschi, F.; Vignolo, P.; Tosi, M.P.; Succi, S.

    2003-01-01

    We develop a numerical method to study the dynamics of a two-component atomic Fermi gas trapped inside a harmonic potential at temperature T well below the Fermi temperature T F . We examine the transition from the collisionless to the collisional regime down to T=0.2 T F and find a good qualitative agreement with the experiments of B. DeMarco and D.S. Jin [Phys. Rev. Lett. 88, 040405 (2002)]. We demonstrate a twofold role of temperature on the collision rate and on the efficiency of collisions. In particular, we observe a hitherto unreported effect, namely, the transition to hydrodynamic behavior is shifted towards lower collision rates as temperature decreases

  5. The BCS-BEC crossover: From ultra-cold Fermi gases to nuclear systems

    Science.gov (United States)

    Strinati, Giancarlo Calvanese; Pieri, Pierbiagio; Röpke, Gerd; Schuck, Peter; Urban, Michael

    2018-04-01

    This report addresses topics and questions of common interest in the fields of ultra-cold gases and nuclear physics in the context of the BCS-BEC crossover. By this crossover, the phenomena of Bardeen-Cooper-Schrieffer (BCS) superfluidity and Bose-Einstein condensation (BEC), which share the same kind of spontaneous symmetry breaking, are smoothly connected through the progressive reduction of the size of the fermion pairs involved as the fundamental entities in both phenomena. This size ranges, from large values when Cooper pairs are strongly overlapping in the BCS limit of a weak inter-particle attraction, to small values when composite bosons are non-overlapping in the BEC limit of a strong inter-particle attraction, across the intermediate unitarity limit where the size of the pairs is comparable with the average inter-particle distance. The BCS-BEC crossover has recently been realized experimentally, and essentially in all of its aspects, with ultra-cold Fermi gases. This realization, in turn, has raised the interest of the nuclear physics community in the crossover problem, since it represents an unprecedented tool to test fundamental and unanswered questions of nuclear many-body theory. Here, we focus on the several aspects of the BCS-BEC crossover, which are of broad joint interest to both ultra-cold Fermi gases and nuclear matter, and which will likely help to solve in the future some open problems in nuclear physics (concerning, for instance, neutron stars). Similarities and differences occurring in ultra-cold Fermi gases and nuclear matter will then be emphasized, not only about the relative phenomenologies but also about the theoretical approaches to be used in the two contexts. Common to both contexts is the fact that at zero temperature the BCS-BEC crossover can be described at the mean-field level with reasonable accuracy. At finite temperature, on the other hand, inclusion of pairing fluctuations beyond mean field represents an essential ingredient

  6. Stability conditions and phase diagrams for two-component Fermi gases with population imbalance

    International Nuclear Information System (INIS)

    Chen Qijin; He Yan; Chien, C.-C.; Levin, K.

    2006-01-01

    Superfluidity in atomic Fermi gases with population imbalance has recently become an exciting research focus. There is considerable disagreement in the literature about the appropriate stability conditions for states in the phase diagram throughout the BCS to Bose-Einstein condensation crossover. Here we discuss these stability conditions for homogeneous polarized superfluid phases, and compare with recent alternative proposals. The requirement of a positive second-order partial derivative of the thermodynamic potential with respect to the fermionic excitation gap Δ (at fixed chemical potentials) is demonstrated to be equivalent to the positive definiteness of the particle number susceptibility matrix. In addition, we show the positivity of the effective pair mass constitutes another nontrivial stability condition. These conditions determine the (local) stability of the system towards phase separation (or other ordered phases). We also study systematically the effects of finite temperature and the related pseudogap on the phase diagrams defined by our stability conditions

  7. Phase Transitions in Definite Total Spin States of Two-Component Fermi Gases.

    Science.gov (United States)

    Yurovsky, Vladimir A

    2017-05-19

    Second-order phase transitions have no latent heat and are characterized by a change in symmetry. In addition to the conventional symmetric and antisymmetric states under permutations of bosons and fermions, mathematical group-representation theory allows for non-Abelian permutation symmetry. Such symmetry can be hidden in states with defined total spins of spinor gases, which can be formed in optical cavities. The present work shows that the symmetry reveals itself in spin-independent or coordinate-independent properties of these gases, namely as non-Abelian entropy in thermodynamic properties. In weakly interacting Fermi gases, two phases appear associated with fermionic and non-Abelian symmetry under permutations of particle states, respectively. The second-order transitions between the phases are characterized by discontinuities in specific heat. Unlike other phase transitions, the present ones are not caused by interactions and can appear even in ideal gases. Similar effects in Bose gases and strong interactions are discussed.

  8. Universal Borromean Binding in Spin-Orbit-Coupled Ultracold Fermi Gases

    Directory of Open Access Journals (Sweden)

    Xiaoling Cui

    2014-08-01

    Full Text Available Borromean rings and Borromean binding, a class of intriguing phenomena as three objects are linked (bound together while any two of them are unlinked (unbound, widely exist in nature and have been found in systems of biology, chemistry, and physics. Previous studies have suggested that the occurrence of such a binding in physical systems typically relies on the microscopic details of pairwise interaction potentials at short range and is, therefore, nonuniversal. Here, we report a new type of Borromean binding in ultracold Fermi gases with Rashba spin-orbit coupling, which is universal against short-range interaction details, with its binding energy only dependent on the s-wave scattering length and the spin-orbit-coupling strength. We show that the occurrence of this universal Borromean binding is facilitated by the symmetry of the single-particle dispersion under spin-orbit coupling and is, therefore, symmetry selective rather than interaction selective. The state is robust over a wide range of mass ratios between composing fermions, which are accessible by Li-Li, K-K, and K-Li mixtures in cold-atom experiments. Our results reveal the importance of single- particle spectral symmetry in few-body physics and shed light on the emergence of new quantum phases in a many-body system with exotic few-body correlations.

  9. I. A model for the magnetic equation of state of liquid 3He. II. An induced interaction model for a two-component Fermi liquid

    International Nuclear Information System (INIS)

    Sanchez-Castro, C.R.

    1988-01-01

    This dissertation is divided in six chapters. Chapter 1 is an introduction to the rest of the dissertation. In it, the author presents the different models for the magnetic equation state of liquid 3 He, a derivation of the induced interaction equations for a one component Fermi liquid, and discuss the basic hamiltonian describing the heavy fermion compounds. In Chapter 2 and Chapter 3, he presents a complete discussion of the thermodynamics and Landau theory of a spin polarized Fermi liquid. A phenomenological model is then developed to predict the polarization dependence of the longitudinal Landau parameters in liquid 3 He. This model predicts a new magnetic equation of state and the possibility of liquid 3 He being 'nearly metamagnetic' at high pressures. Chapter 4 contains a microscopic calculation of the magnetic field dependence of the Landau parameters in a strongly correlated Fermi system using the induced interaction model. The system he studied consists of a single component Fermi liquid with parabolic energy bands, and a large on-site repulsive interaction. In Chapter 5, he presents a complete discussion of the Landau theory of a two component Fermi liquid. Then, he generalizes the induced interaction equations to calculate Landau parameters and scattering amplitudes for an arbitrary, spin polarized, two component Fermi liquid. The resulting equations are used to study a model for the heavy fermion Fermi liquid state: a two band electronic system with an antiferromagnetic interaction between the two bands. Chapter 6 contains the concluding remarks of the dissertation

  10. Competition between Final-State and Pairing-Gap Effects in the Radio-Frequency Spectra of Ultracold Fermi Atoms

    International Nuclear Information System (INIS)

    Perali, A.; Pieri, P.; Strinati, G. C.

    2008-01-01

    The radio-frequency spectra of ultracold Fermi atoms are calculated by including final-state interactions affecting the excited level of the transition and compared with the experimental data. A competition is revealed between pairing-gap effects which tend to push the oscillator strength toward high frequencies away from threshold and final-state effects which tend instead to pull the oscillator strength toward threshold. As a result of this competition, the position of the peak of the spectra cannot be simply related to the value of the pairing gap, whose extraction thus requires support from theoretical calculations

  11. Exploring an ultracold Fermi-Fermi mixture: Interspecies Feshbach resonances and scattering properties of 6Li and 40K

    NARCIS (Netherlands)

    Wille, E.; Spiegelhalder, F.M.; Kerner, G.; Naik, D.; Trenkwalder, A.; Hendl, G.; Schreck, F.; Grimm, R.; Tiecke, T.G.; Walraven, J.T.M.; Kokkelmans, S.J.J.M.F.; Tiesinga, E.; Julienne, P.S.

    2008-01-01

    We report on the observation of Feshbach resonances in an ultracold mixture of two fermionic species, 6Li and 40K. The experimental data are interpreted using a simple asymptotic bound state model and full coupled channels calculations. This unambiguously assigns the observed resonances in terms of

  12. Fulde-Ferrell-Like Molecular States in Spin-Orbit Coupled Ultracold Fermi Gases

    Science.gov (United States)

    Ye, Chong; Fu, Li-Bin

    2017-08-01

    We study the molecular state in three-component Fermi gases with a single impurity of 6 Li immersing in a no-interacting Fermi sea of 40 K in the presence of an equal weight combination of Rashba-type and Dresselhaus-type spin-orbit coupling. In the region where the Fermi sea has two disjointed Fermi surfaces, we find that there are two Fulde-Ferrell-like molecular states with dominating contributions from the lower helicity branch. Decreasing the scattering length or the spin-orbit coupled Fermi energy, we find the Fulde-Ferrell-like molecular state with small center-of-mass momentum is always energy favored and the other one will suddenly disappear. Supported by the National Basic Research Program of China (973 Program) under Grant Nos. 2013CBA01502, 2013CB834100, and the National Natural Science Foundation of China under Grant Nos. 11374040, 11475027, 11575027, 11274051, and 11075020

  13. Perron-Frobenius theorem on the superfluid transition of an ultracold Fermi gas

    Science.gov (United States)

    Sakumichi, Naoyuki; Kawakami, Norio; Ueda, Masahito

    2014-05-01

    The Perron-Frobenius theorem is applied to identify the superfluid transition of the BCS-BEC crossover based on a cluster expansion method of Lee and Yang. Here, the cluster expansion is a systematic expansion of the equation of state (EOS) in terms of the fugacity z = exp (βμ) as βpλ3 = 2 z +b2z2 +b3z3 + ⋯ , with inverse temperature β =(kB T) - 1 , chemical potential μ, pressure p, and thermal de Broglie length λ =(2 πℏβ / m) 1 / 2 . According to the method of Lee and Yang, EOS is expressed by the Lee-Yang graphs. A singularity of an infinite series of ladder-type Lee-Yang graphs is analyzed. We point out that the singularity is governed by the Perron-Frobenius eigenvalue of a certain primitive matrix which is defined in terms of the two-body cluster functions and the Fermi distribution functions. As a consequence, it is found that there exists a unique fugacity at the phase transition point, which implies that there is no fragmentation of Bose-Einstein condensates of dimers and Cooper pairs at the ladder-approximation level of Lee-Yang graphs. An application to a BEC of strongly bounded dimers is also made.

  14. Path-Integral Monte Carlo Determination of the Fourth-Order Virial Coefficient for a Unitary Two-Component Fermi Gas with Zero-Range Interactions.

    Science.gov (United States)

    Yan, Yangqian; Blume, D

    2016-06-10

    The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b_{4} of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b_{4}, our b_{4} agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.

  15. Statistics of work and orthogonality catastrophe in discrete level systems: an application to fullerene molecules and ultra-cold trapped Fermi gases

    Directory of Open Access Journals (Sweden)

    Antonello Sindona

    2015-03-01

    Full Text Available The sudden introduction of a local impurity in a Fermi sea leads to an anomalous disturbance of its quantum state that represents a local quench, leaving the system out of equilibrium and giving rise to the Anderson orthogonality catastrophe. The statistics of the work done describe the energy fluctuations produced by the quench, providing an accurate and detailed insight into the fundamental physics of the process. We present here a numerical approach to the non-equilibrium work distribution, supported by applications to phenomena occurring at very diverse energy ranges. One of them is the valence electron shake-up induced by photo-ionization of a core state in a fullerene molecule. The other is the response of an ultra-cold gas of trapped fermions to an embedded two-level atom excited by a fast pulse. Working at low thermal energies, we detect the primary role played by many-particle states of the perturbed system with one or two excited fermions. We validate our approach through the comparison with some photoemission data on fullerene films and previous analytical calculations on harmonically trapped Fermi gases.

  16. Magnetic-Field Dependence of Raman Coupling Strength in Ultracold "4"0K Atomic Fermi Gas

    International Nuclear Information System (INIS)

    Huang Liang-Hui; Wang Peng-Jun; Meng Zeng-Ming; Peng Peng; Chen Liang-Chao; Li Dong-Hao; Zhang Jing

    2016-01-01

    We experimentally demonstrate the relation of Raman coupling strength with the external bias magnetic field in degenerate Fermi gas of "4"0K atoms. Two Raman lasers couple two Zeeman energy levels, whose energy splitting depends on the external bias magnetic field. The Raman coupling strength is determined by measuring the Rabi oscillation frequency. The characteristics of the Rabi oscillation is to be damped after several periods due to Fermi atoms in different momentum states oscillating with different Rabi frequencies. The experimental results show that the Raman coupling strength will decrease as the external bias magnetic field increases, which is in good agreement with the theoretical prediction. (paper)

  17. Fermi

    Data.gov (United States)

    National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...

  18. Ultracold neutrons

    International Nuclear Information System (INIS)

    Steenstrup, S.

    Briefly surveys recent developments in research work with ultracold neutrons (neutrons of very low velocity, up to 10 m/s at up to 10 -7 eV and 10 -3 K). Slow neutrons can be detected in an ionisation chamber filled with B 10 F 3 . Very slow neutrons can be used for investigations into the dipole moment of neutrons. Neutrons of large wave length have properties similar to those of light. The limit angle for total reflection is governed by the wave length and by the material. Total reflection can be used to filter ultracold neutrons out of the moderator material of a reactor. Total reflection can also be used to store ultracold neutrons but certain problems with storage have not yet been clarified. Slow neutrons can be made to lose speed in a neutron turbine, and come out as ultracold neutrons. A beam of ultracold neutrons could be used in a neutron microscope. (J.S.)

  19. Strongly correlated Fermi-Bose mixtures in disordered optical lattices

    International Nuclear Information System (INIS)

    Sanchez-Palencia, L; Ahufinger, V; Kantian, A; Zakrzewski, J; Sanpera, A; Lewenstein, M

    2006-01-01

    We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes

  20. Strongly correlated Fermi-Bose mixtures in disordered optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Palencia, L [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS and Universite Paris-Sud XI, Bat 503, Centre scientifique, F-91403 Orsay Cedex (France); Ahufinger, V [ICREA and Grup d' optica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Kantian, A [Institut fuer Theoretische Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria); Zakrzewski, J [Instytut Fizyki imienia Mariana Smoluchowskiego i Centrum Badan Ukladow Zlozonych imienia Marka Kaca, Uniwersytet Jagiellonski, ulica Reymonta 4, PL-30-059 Krakow (Poland); Sanpera, A [ICREA and Grup de FIsica Teorica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Lewenstein, M [ICREA and ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la TecnologIa, E-08860 Castelldefels (Barcelona) (Spain); Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover (Germany)

    2006-05-28

    We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes.

  1. Ultracold fermions with repulsive interactions

    Directory of Open Access Journals (Sweden)

    Ketterle W.

    2013-08-01

    Full Text Available An ultracold Fermi gas with repulsive interaction has been studied. For weak interactions, the atomic gas is metastable, and the interactions were characterized by obtaining the isothermal compressibility from atomic density profiles. For stronger interactions (kFa ≈ 1, rapid conversion into Feshbach molecules is observed. When the conversion rate becomes comparable to the Fermi energy divided by η, the atomic gas cannot reach equilibrium without forming pairs. This precludes the predicted transition to a ferromagnetic state (Stoner transition. The absence of spin fluctuations proves that the gas stays paramagnetic. In free space, a Fermi gas with strong short-range repulsion does not exist because of the rapid coupling to molecular states.

  2. Spin-excited oscillations in two-component fermion condensates

    International Nuclear Information System (INIS)

    Maruyama, Tomoyuki; Bertsch, George F.

    2006-01-01

    We investigate collective spin excitations in two-component fermion condensates with special consideration of unequal populations of the two components. The frequencies of monopole and dipole modes are calculated using Thomas-Fermi theory and the scaling approximation. As the fermion-fermion coupling is varied, the system shows various phases of the spin configuration. We demonstrate that spin oscillations have more sensitivity to the spin phase structures than the density oscillations

  3. Formation of Ultracold Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Cote, Robin [Univ. of Connecticut, Storrs, CT (United States)

    2016-01-28

    Advances in our ability to slow down and cool atoms and molecules to ultracold temperatures have paved the way to a revolution in basic research on molecules. Ultracold molecules are sensitive of very weak interactions, even when separated by large distances, which allow studies of the effect of those interactions on the behavior of molecules. In this program, we have explored ways to form ultracold molecules starting from pairs of atoms that have already reached the ultracold regime. We devised methods that enhance the efficiency of ultracold molecule production, for example by tuning external magnetic fields and using appropriate laser excitations. We also investigates the properties of those ultracold molecules, especially their de-excitation into stable molecules. We studied the possibility of creating new classes of ultra-long range molecules, named macrodimers, thousand times more extended than regular molecules. Again, such objects are possible because ultra low temperatures prevent their breakup by collision. Finally, we carried out calculations on how chemical reactions are affected and modified at ultracold temperatures. Normally, reactions become less effective as the temperature decreases, but at ultracold temperatures, they can become very effective. We studied this counter-intuitive behavior for benchmark chemical reactions involving molecular hydrogen.

  4. Universal behavior of strongly correlated Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, Vasilii R [B.P. Konstantinov St. Petersburg Institute of Nuclear Physics, Russian Academy of Sciences, Gatchina, Leningrad region, Rusian Federation (Russian Federation); Amusia, M Ya [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation); Popov, Konstantin G [Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar (Russian Federation)

    2007-06-30

    This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T{sub c} superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)

  5. Universal behavior of strongly correlated Fermi systems

    International Nuclear Information System (INIS)

    Shaginyan, Vasilii R; Amusia, M Ya; Popov, Konstantin G

    2007-01-01

    This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T c superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)

  6. Exotic superfluidity and pairing phenomena in atomic Fermi gases in mixed dimensions.

    Science.gov (United States)

    Zhang, Leifeng; Che, Yanming; Wang, Jibiao; Chen, Qijin

    2017-10-11

    Atomic Fermi gases have been an ideal platform for simulating conventional and engineering exotic physical systems owing to their multiple tunable control parameters. Here we investigate the effects of mixed dimensionality on the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas with a short-range pairing interaction, while one component is confined on a one-dimensional (1D) optical lattice whereas the other is in a homogeneous 3D continuum. We study the phase diagram and the pseudogap phenomena throughout the entire BCS-BEC crossover, using a pairing fluctuation theory. We find that the effective dimensionality of the non-interacting lattice component can evolve from quasi-3D to quasi-1D, leading to strong Fermi surface mismatch. Upon pairing, the system becomes effectively quasi-two dimensional in the BEC regime. The behavior of T c bears similarity to that of a regular 3D population imbalanced Fermi gas, but with a more drastic departure from the regular 3D balanced case, featuring both intermediate temperature superfluidity and possible pair density wave ground state. Unlike a simple 1D optical lattice case, T c in the mixed dimensions has a constant BEC asymptote.

  7. Anisotropic relaxation dynamics in a dipolar Fermi gas driven out of equilibrium

    DEFF Research Database (Denmark)

    Aikawa, K.; Frisch, A.; Mark, M.

    2014-01-01

    We report on the observation of a large anisotropy in the rethermalization dynamics of an ultracold dipolar Fermi gas driven out of equilibrium. Our system consists of an ultracold sample of strongly magnetic $^{167}$Er fermions, spin-polarized in the lowest Zeeman sublevel. In this system, elastic...

  8. Diamondlike carbon can replace beryllium in physics with ultracold neutrons

    International Nuclear Information System (INIS)

    Atchison, F.; Blau, B.; Daum, M.; Fierlinger, P.; Foelske, A.; Geltenbort, P.; Gupta, M.; Henneck, R.; Heule, S.; Kasprzak, M.; Kuzniak, M.; Kirch, K.; Meier, M.; Pichlmaier, A.; Plonka, Ch.; Reiser, R.; Theiler, B.; Zimmer, O.; Zsigmond, G.

    2006-01-01

    To complete our study of ultracold neutron (UCN) storage-vessel coatings, we have measured the Fermi potential for neutrons on diamondlike carbon coatings produced by laser induced vacuum arc deposition. A sample with an sp 3 content of 0.45, measured using, for the first time, neutron transmission had a Fermi potential of (249+/-14)neV. A second sample with an sp 3 fraction of 0.67, measured using cold neutron reflectometry, gave (271+/-13)neV. These values complete the demonstration that there is a viable alternative to Be in UCN physics

  9. Many-body pairing in a two-dimensional Fermi gas

    Energy Technology Data Exchange (ETDEWEB)

    Neidig, Mathias

    2017-05-24

    This thesis reports on experiments conducted in a single layer, quasi two-dimensional, two-component ultracold Fermi gas in the strongly interacting regime. Ultracold gases can be used to simulate key aspects of more complicated systems like for example cuprates which show high-T{sub c} superconductivity. The momentum distribution of a sample of bosonic dimers in a quasi-2D square lattice geometry was measured to obtain the coherence properties. For shallow lattices, sharp peaks in the momentum distribution, indicating coherence, were observed at zero momentum as well as at positive and negative lattice momenta along each axis. For deeper lattices, heating impeded the ability to prepare a Mott-insulator. A spatially resolved radio-frequency spectroscopy was employed for a quasi-2D Fermi gas in the normal phase throughout the BEC-BCS crossover. The interaction induced energy shifts were measured in the strongly interacting region where they can be on the order of the Fermi energy and thus the local resolution is crucial. Furthermore, the onset of pairing in the strongly interacting region was measured as a function of temperature and it was shown that the fraction of free atoms decreases faster than expected from thermal non-interacting theory. At last, the pairing gap was measured using an imbalanced sample. On the BEC side it was found to be in very good agreement with two-body physics as expected. In the strongly interacting regime, however, a deviation from two-body physics indicates that here many-body effects play a role and thus further studies are required.

  10. Measuring the One-Particle Excitations of Ultracold Fermionic Atoms by Stimulated Raman Spectroscopy

    International Nuclear Information System (INIS)

    Dao, T.-L.; Georges, Antoine; Dalibard, Jean; Salomon, Christophe; Carusotto, Iacopo

    2007-01-01

    We propose a Raman spectroscopy technique which is able to probe the one-particle Green function, the Fermi surface, and the quasiparticles of a gas of strongly interacting ultracold atoms. We give quantitative examples of experimentally accessible spectra. The efficiency of the method is validated by means of simulated images for the case of a usual Fermi liquid as well as for more exotic states: specific signatures of, e.g., a d-wave pseudogap are clearly visible

  11. Analytical thermodynamics of a strongly attractive three-component Fermi gas in one dimension

    International Nuclear Information System (INIS)

    He Peng; Yin Xiangguo; Wang Yupeng; Guan Xiwen; Batchelor, Murray T.

    2010-01-01

    Ultracold three-component atomic Fermi gases in one dimension are expected to exhibit rich physics due to the presence of trions and different pairing states. Quantum phase transitions from the trion state into a paired phase and a normal Fermi liquid occur at zero temperature. We derive the analytical thermodynamics of strongly attractive three-component one-dimensional fermions with SU(3) symmetry via the thermodynamic Bethe ansatz method in unequal Zeeman splitting fields H 1 and H 2 . We find explicitly that for low temperature the system acts like either a two-component or a three-component Tomonaga-Luttinger liquid dependent on the system parameters. The phase diagrams for the chemical potential and specific heat are presented for illustrative values of the Zeeman splitting. We also demonstrate that crossover between different Tomonaga-Luttinger-liquid phases exhibit singular behavior in specific heat and entropy as the temperature tends to zero. Beyond Tomonaga-Luttinger-liquid physics, we obtain the equation of state which provides a precise description of universal thermodynamics and quantum criticality in three-component, strongly attractive Fermi gases.

  12. A microscope for Fermi gases

    International Nuclear Information System (INIS)

    Omran, Ahmed

    2016-01-01

    This thesis reports on a novel quantum gas microscope to investigate many-body systems of fermionic atoms in optical lattices. Single-site resolved imaging of ultracold lattice gases has enabled powerful studies of bosonic quantum many-body systems. The extension of this capability to Fermi gases offers new prospects to studying complex phenomena of strongly correlated systems, for which numerical simulations are often out of reach. Using standard techniques of laser cooling, optical trapping, and evaporative cooling, ultracold Fermi gases of 6 Li are prepared and loaded into a large-scale 2D optical lattice of flexible geometry. The atomic distribution is frozen using a second, short-scaled lattice, where we perform Raman sideband cooling to induce fluorescence on each atom while maintaining its position. Together with high-resolution imaging, the fluorescence signals allow for reconstructing the initial atom distribution with single-site sensitivity and high fidelity. Magnetically driven evaporative cooling in the plane allows for producing degenerate Fermi gases with almost unity filling in the initial lattice, allowing for the first microscopic studies of ultracold gases with clear signatures of Fermi statistics. By preparing an ensemble of spin-polarised Fermi gases, we detect a flattening of the density profile towards the centre of the cloud, which is a characteristic of a band-insulating state. In one set of experiments, we demonstrate that losses of atom pairs on a single lattice site due to light-assisted collisions are circumvented. The oversampling of the second lattice allows for deterministic separation of the atom pairs into different sites. Compressing a high-density sample in a trap before loading into the lattice leads to many double occupancies of atoms populating different bands, which we can image with no evidence for pairwise losses. We therefore gain direct access to the true number statistics on each lattice site. Using this feature, we can

  13. Strongly interacting Fermi gases

    Directory of Open Access Journals (Sweden)

    Bakr W.

    2013-08-01

    Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.

  14. Disorder-Induced Order in Two-Component Bose-Einstein Condensates

    International Nuclear Information System (INIS)

    Niederberger, A.; Schulte, T.; Wehr, J.; Lewenstein, M.; Sanchez-Palencia, L.; Sacha, K.

    2008-01-01

    We propose and analyze a general mechanism of disorder-induced order in two-component Bose-Einstein condensates, analogous to corresponding effects established for XY spin models. We show that a random Raman coupling induces a relative phase of π/2 between the two BECs and that the effect is robust. We demonstrate it in one, two, and three dimensions at T=0 and present evidence that it persists at small T>0. Applications to phase control in ultracold spinor condensates are discussed

  15. A hybrid two-component Bose–Einstein condensate interferometer for measuring magnetic field gradients

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fei [Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China); Huang, Jiahao, E-mail: hjiahao@mail2.sysu.edu.cn [TianQin Research Center & School of Physics and Astronomy, Sun Yat-Sen University, SYSU Zhuhai Campus, Zhuhai 519082 (China); Liu, Quan [Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China)

    2017-03-03

    Highlights: • A scheme for detecting magnetic field gradients via a double-well two-component Bose–Einstein condensate interferometer. • The magnetic field gradient can be extracted by either the spin population or the external state. • Our proposal is potentially sensitive to weak magnetic field inhomogeneity due to its small sensor size. - Abstract: We have proposed a scheme to detect magnetic field gradients via an interferometer based on a double-well two-component Bose–Einstein condensate (BEC). Utilizing a sequence of quantum control operations on both external and internal degree of the BEC, one can extract the magnetic field gradients by measuring either the population in one component or the fidelity between the final external state and the initial ground state. Our scheme can be implemented by current experimental techniques of manipulating ultracold atoms.

  16. Two component plasma vortex approach to fusion

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1978-09-01

    Two component operation of the field reversed theta pinch plasma by injection of the energetic ion beam with energy of the order of 1 MeV is considered. A possible trapping scheme of the ion beam in the plasma is discussed in detail. (author)

  17. EDITORIAL: Focus on Cold and Ultracold Molecules FOCUS ON COLD AND ULTRACOLD MOLECULES

    Science.gov (United States)

    Carr, Lincoln D.; Ye, Jun

    2009-05-01

    Cold and ultracold molecules are the next wave of ultracold physics, giving rise to an exciting array of scientific opportunities, including many body physics for novel quantum phase transitions, new states of matter, and quantum information processing. Precision tests of fundamental physical laws benefit from the existence of molecular internal structure with exquisite control. The study of novel collision and reaction dynamics will open a new chapter of quantum chemistry. Cold molecules bring together researchers from a variety of fields, including atomic, molecular, and optical physics, chemistry and chemical physics, quantum information science and quantum simulations, condensed matter physics, nuclear physics, and astrophysics, a truly remarkable synergy of scientific explorations. For the past decade there have been steady advances in direct cooling techniques, from buffer-gas cooling to cold molecular beams to electro- and magneto-molecular decelerators. These techniques have allowed a large variety of molecules to be cooled for pioneering studies. Recent amazing advances in experimental techniques combining the ultracold and the ultraprecise have furthermore brought molecules to the point of quantum degeneracy. These latter indirect cooling techniques magnetically associate atoms from a Bose-Einstein condensate and/or a quantum degenerate Fermi gas, transferring at 90% efficiency highly excited Fano-Feshbach molecules, which are on the order of 10 000 Bohr radii in size, to absolute ground state molecules just a few Bohr across. It was this latter advance, together with significant breakthroughs in internal state manipulations, which inspired us to coordinate this focus issue now, and is the reason why we say the next wave of ultracold physics has now arrived. Whether directly or indirectly cooled, heteronuclear polar molecules offer distinct new features in comparison to cold atoms, while sharing all of their advantages (purity, high coherence

  18. On the theory of ultracold neutrons scattering by Davydov solitons

    International Nuclear Information System (INIS)

    Brizhik, L.S.

    1984-01-01

    Elastic coherent scattering of ultracold neutrons by Davydov solitons in one-dimensional periodic molecular chains without account of thermal oscillations of chain atoms is studied. It is shown that the expression for the differential cross section of the elastic neutron scattering by Davydov soliton breaks down into two components. One of them corresponds to scattering by a resting soliton, the other is proportional to the soliton velocity and has a sharp maximum in the direction of mirror reflection of neutrons from the chain

  19. E Fermi

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. E Fermi. Articles written in Resonance – Journal of Science Education. Volume 19 Issue 1 January 2014 pp 82-96 Classics. Quantization of an Ideal Monoatomic Gas · E Fermi · More Details Fulltext PDF ...

  20. Two Component Signal Transduction in Desulfovibrio Species

    Energy Technology Data Exchange (ETDEWEB)

    Luning, Eric; Rajeev, Lara; Ray, Jayashree; Mukhopadhyay, Aindrila

    2010-05-17

    The environmentally relevant Desulfovibrio species are sulfate-reducing bacteria that are of interest in the bioremediation of heavy metal contaminated water. Among these, the genome of D. vulgaris Hildenborough encodes a large number of two component systems consisting of 72 putative response regulators (RR) and 64 putative histidinekinases (HK), the majority of which are uncharacterized. We classified the D. vulgaris Hildenborough RRs based on their output domains and compared the distribution of RRs in other sequenced Desulfovibrio species. We have successfully purified most RRs and several HKs as His-tagged proteins. We performed phospho-transfer experiments to verify relationships between cognate pairs of HK and RR, and we have also mapped a few non-cognate HK-RR pairs. Presented here are our discoveries from the Desulfovibrio RR categorization and results from the in vitro studies using purified His tagged D. vulgaris HKs and RRs.

  1. Primordial two-component maximally symmetric inflation

    Science.gov (United States)

    Enqvist, K.; Nanopoulos, D. V.; Quirós, M.; Kounnas, C.

    1985-12-01

    We propose a two-component inflation model, based on maximally symmetric supergravity, where the scales of reheating and the inflation potential at the origin are decoupled. This is possible because of the second-order phase transition from SU(5) to SU(3)×SU(2)×U(1) that takes place when φ≅φcinflation at the global minimum, and leads to a reheating temperature TR≅(1015-1016) GeV. This makes it possible to generate baryon asymmetry in the conventional way without any conflict with experimental data on proton lifetime. The mass of the gravitinos is m3/2≅1012 GeV, thus avoiding the gravitino problem. Monopoles are diluted by residual inflation in the broken phase below the cosmological bounds if φcUSA.

  2. Conductivity of two-component systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, A. de; Hofman, J.P.; Waal, J.A. de [Shell Research BV, Rijswijk (Netherlands). Koninklijke/Shell Exploratie en Productie Lab.; Sandor, R.K.J. [Shell International Petroleum Maatschappij, The Hague (Netherlands)

    1996-01-01

    The authors present measurements and computer simulation results on the electrical conductivity of nonconducting grains embedded in a conductive brine host. The shapes of the grains ranged from prolate-ellipsoidal (with an axis ratio of 5:1) through spherical to oblate-ellipsoidal (with an axis ratio of 1:5). The conductivity was studied as a function of porosity and packing, and Archie`s cementation exponent was found to depend on porosity. They used spatially regular and random configurations with aligned and nonaligned packings. The experimental results agree well with the computer simulation data. This data set will enable extensive tests of models for calculating the anisotropic conductivity of two-component systems.

  3. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  4. Ultracold gas shows 'lopsided' properties

    CERN Multimedia

    2002-01-01

    "Duke University researchers have created an ultracold gas that has the startling property of bursting outward in a preferred direction when released. According to the researchers, studying the properties of the "lopsided" gas will yield fundamental insights into how matter holds itself together at the subatomic level" (1 page).

  5. Strongly correlated quantum fluids: ultracold quantum gases, quantum chromodynamic plasmas and holographic duality

    OpenAIRE

    Adams, Allan; Carr, Lincoln D.; Schafer, Thomas; Steinberg, Peter; Thomas, John E.

    2012-01-01

    Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of interest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These sy...

  6. The production and storage of ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiki, Hajime [Kure University, Hiroshima (Japan); Shimizu, Hirohiko; Sakai, Kenji [and others

    1998-01-01

    The electric dipole measurement done on the ultracold neutron till now shows that its quantity is minute, not more than 10{sup -25}e.cm. It is purpose of this particular research program to produce such very slow neutrons, or so-cold ultracold neutrons in great quantity. Then, it was investigated what was the ultracold neutron important for, how is the ultracold neutron made, and how is very pure superfluid liquid helium made. As a result of these investigations, it was found that the validity of ultracold neutron production by superfluid liquid helium was established, that its efficiency is high enough to improve the neutron electric dipole moment detection sensitivity by at least one order of magnitude, and so forth. (G.K.)

  7. Superfluid drag in the two-component Bose-Hubbard model

    Science.gov (United States)

    Sellin, Karl; Babaev, Egor

    2018-03-01

    In multicomponent superfluids and superconductors, co- and counterflows of components have, in general, different properties. A. F. Andreev and E. P. Bashkin [Sov. Phys. JETP 42, 164 (1975)] discussed, in the context of He3/He4 superfluid mixtures, that interparticle interactions produce a dissipationless drag. The drag can be understood as a superflow of one component induced by phase gradients of the other component. Importantly, the drag can be both positive (entrainment) and negative (counterflow). The effect is known to have crucial importance for many properties of diverse physical systems ranging from the dynamics of neutron stars and rotational responses of Bose mixtures of ultracold atoms to magnetic responses of multicomponent superconductors. Although substantial literature exists that includes the drag interaction phenomenologically, only a few regimes are covered by quantitative studies of the microscopic origin of the drag and its dependence on microscopic parameters. Here we study the microscopic origin and strength of the drag interaction in a quantum system of two-component bosons on a lattice with short-range interaction. By performing quantum Monte Carlo simulations of a two-component Bose-Hubbard model we obtain dependencies of the drag strength on the boson-boson interactions and properties of the optical lattice. Of particular interest are the strongly correlated regimes where the ratio of coflow and counterflow superfluid stiffnesses can diverge, corresponding to the case of saturated drag.

  8. Induced interactions in a superfluid Bose-Fermi mixture

    DEFF Research Database (Denmark)

    Kinnunen, Jami; Bruun, Georg

    2015-01-01

    We analyze a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC crossover. Using a quasiparticle random-phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC, respectively, we show that the single-particle an......We analyze a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC crossover. Using a quasiparticle random-phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC, respectively, we show that the single...... shift in the excitation spectrum of the BEC. In addition, the excitation of quasiparticles in the Fermi superfluid leads to damping of the excitations in the BEC. Besides studying induced interactions themselves, we can use these prominent effects to systematically probe the strongly interacting Fermi...

  9. Fermi Large Area Telescope

    Science.gov (United States)

    are available to the public, along with standard analysis software, from NASA's Fermi Science Support Center. For general questions about Fermi, Fermi science, or Fermi classroom materials, please contact Fermi has its own music: a prelude and a symphony. Gamma Ray Bursts trasformed into visual music

  10. From few to many. Ultracold atoms in reduced dimensions

    International Nuclear Information System (INIS)

    Wenz, Andre Niklas

    2013-01-01

    This thesis reports on experimental studies exploring few and many-body physics of ultracold Bose and Fermi gases with reduced dimensionality. These experiments illustrate the versatility and great amount of control over the particle number, the interaction and other degrees of freedom, like the spin, that these generic quantum systems offer. In the first part of this thesis, we use quasi one-dimensional few-particle systems of one to ten fermionic atoms to investigate the crossover from few to many-body physics. This is achieved by measuring the interaction energy between a single impurity atom in a state vertical stroke ↓ right angle which repulsively interacts with an increasing number of majority atoms in a state vertical stroke ↑ right angle. We find that the system quickly approaches the results from the many-body theory, which describes the behavior of a single impurity immersed in a Fermi sea of an infinite number of majority particles. The second part of this thesis presents studies of the time evolution of a bosonic F=1 spinor BEC of 87 Rb atoms. In this system, we investigate the emergence and coarsening of ferromagnetic spin textures from initially unmagnetized samples. While the ferromagnetic domains grow, we observe the development of a spin space anisotropy which is in agreement with the predicted phase-diagram. The last part of this thesis presents our first steps towards the investigation of phase coherence of quasi two-dimensional quantum gases in the crossover from bosonic molecules to fermionic atoms.

  11. Scattering resonances in a degenerate Fermi gas

    DEFF Research Database (Denmark)

    Challis, Katharine; Nygaard, Nicolai; Mølmer, Klaus

    2009-01-01

    We consider elastic single-particle scattering from a one-dimensional trapped two-component superfluid Fermi gas when the incoming projectile particle is identical to one of the confined species. Our theoretical treatment is based on the Hartree-Fock ground state of the trapped gas...

  12. Ultra-cold molecule production

    International Nuclear Information System (INIS)

    Ramirez-Serrano, Jamie; Chandler, David W.; Strecker, Kevin; Rahn, Larry A.

    2005-01-01

    The production of Ultra-cold molecules is a goal of many laboratories through out the world. Here we are pursuing a unique technique that utilizes the kinematics of atomic and molecular collisions to achieve the goal of producing substantial numbers of sub Kelvin molecules confined in a trap. Here a trap is defined as an apparatus that spatially localizes, in a known location in the laboratory, a sample of molecules whose temperature is below one degree absolute Kelvin. Further, the storage time for the molecules must be sufficient to measure and possibly further cool the molecules. We utilize a technique unique to Sandia to form cold molecules from near mass degenerate collisions between atoms and molecules. This report describes the progress we have made using this novel technique and the further progress towards trapping molecules we have cooled

  13. Superconducting microtraps for ultracold atoms

    International Nuclear Information System (INIS)

    Hufnagel, C.

    2011-01-01

    Atom chips are integrated devices in which atoms and atomic clouds are stored and manipulated in miniaturized magnetic traps. State of the art fabrication technologies allow for a flexible design of the trapping potentials and consequently provide extraordinary control over atomic samples, which leads to a promising role of atom chips in the engineering and investigation of quantum mechanical systems. Naturally, for quantum mechanical applications, the atomic coherence has to be preserved. Using room temperature circuits, the coherence time of atoms close to the surface was found to be drastically limited by thermal current fluctuations in the conductors. Superconductors offer an elegant way to circumvent thermal noise and therefore present a promising option for the coherent manipulation of atomic quantum states. In this thesis trapping and manipulation of ultracold Rubidium atoms in superconducting microtraps is demonstrated. In this connection the unique properties of superconductors are used to build traps based on persistent currents, the Meissner effect and remanent magnetization. In experiment it is shown, that in superconducting atom chips, thermal magnetic field noise is significantly reduced. Furthermore it is demonstrated, that atomic samples can be employed to probe the properties of superconducting materials. (author) [de

  14. Ultrafast electron diffraction using an ultracold source

    Directory of Open Access Journals (Sweden)

    M. W. van Mourik

    2014-05-01

    Full Text Available The study of structural dynamics of complex macromolecular crystals using electrons requires bunches of sufficient coherence and charge. We present diffraction patterns from graphite, obtained with bunches from an ultracold electron source, based on femtosecond near-threshold photoionization of a laser-cooled atomic gas. By varying the photoionization wavelength, we change the effective source temperature from 300 K to 10 K, resulting in a concomitant change in the width of the diffraction peaks, which is consistent with independently measured source parameters. This constitutes a direct measurement of the beam coherence of this ultracold source and confirms its suitability for protein crystal diffraction.

  15. Two component micro injection moulding for moulded interconnect devices

    DEFF Research Database (Denmark)

    Islam, Aminul

    2008-01-01

    Moulded interconnect devices (MIDs) contain huge possibilities for many applications in micro electro-mechanical-systems because of their capability of reducing the number of components, process steps and finally in miniaturization of the product. Among the available MID process chains, two...... component injection moulding is one of the most industrially adaptive processes. However, the use of two component injection moulding for MID fabrication, with circuit patterns in the sub-millimeter range, is still a big challenge at the present state of technology. The scope of the current Ph.D. project...... and a reasonable adhesion between them. • Selective metallization of the two component plastic part (coating one polymer with metal and leaving the other one uncoated) To overcome these two main issues in MID fabrication for micro applications, the current Ph.D. project explores the technical difficulties...

  16. Momentum sharing in imbalanced Fermi systems

    Science.gov (United States)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16

    2014-10-01

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  17. Momentum sharing in imbalanced Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. M. -T.; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D' Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. M.; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatie, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using C-12, Al-27, Fe-56, and Pb-208 targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  18. Two-component feedback loops and deformed mechanics

    International Nuclear Information System (INIS)

    Tourigny, David S.

    2015-01-01

    It is shown that a general two-component feedback loop can be viewed as a deformed Hamiltonian system. Some of the implications of using ideas from theoretical physics to study biological processes are discussed. - Highlights: • Two-component molecular feedback loops are viewed as q-deformed Hamiltonian systems. • Deformations are reversed using Jackson derivatives to take advantage of working in the Hamiltonian limit. • New results are derived for the particular examples considered. • General deformations are suggested to be associated with a broader class of biological processes

  19. From few to many. Ultracold atoms in reduced dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Wenz, Andre Niklas

    2013-12-19

    This thesis reports on experimental studies exploring few and many-body physics of ultracold Bose and Fermi gases with reduced dimensionality. These experiments illustrate the versatility and great amount of control over the particle number, the interaction and other degrees of freedom, like the spin, that these generic quantum systems offer. In the first part of this thesis, we use quasi one-dimensional few-particle systems of one to ten fermionic atoms to investigate the crossover from few to many-body physics. This is achieved by measuring the interaction energy between a single impurity atom in a state vertical stroke ↓ right angle which repulsively interacts with an increasing number of majority atoms in a state vertical stroke ↑ right angle. We find that the system quickly approaches the results from the many-body theory, which describes the behavior of a single impurity immersed in a Fermi sea of an infinite number of majority particles. The second part of this thesis presents studies of the time evolution of a bosonic F=1 spinor BEC of {sup 87}Rb atoms. In this system, we investigate the emergence and coarsening of ferromagnetic spin textures from initially unmagnetized samples. While the ferromagnetic domains grow, we observe the development of a spin space anisotropy which is in agreement with the predicted phase-diagram. The last part of this thesis presents our first steps towards the investigation of phase coherence of quasi two-dimensional quantum gases in the crossover from bosonic molecules to fermionic atoms.

  20. PENTrack-a simulation tool for ultracold neutrons, protons, and electrons in complex electromagnetic fields and geometries

    Science.gov (United States)

    Schreyer, W.; Kikawa, T.; Losekamm, M. J.; Paul, S.; Picker, R.

    2017-06-01

    Modern precision experiments trapping low-energy particles require detailed simulations of particle trajectories and spin precession to determine systematic measurement limitations and apparatus deficiencies. We developed PENTrack, a tool that allows to simulate trajectories of ultracold neutrons and their decay products-protons and electrons-and the precession of their spins in complex geometries and electromagnetic fields. The interaction of ultracold neutrons with matter is implemented with the Fermi-potential formalism and diffuse scattering using Lambert and microroughness models. The results of several benchmark simulations agree with STARucn v1.2, uncovered several flaws in Geant4 v10.2.2, and agree with experimental data. Experiment geometry and electromagnetic fields can be imported from commercial computer-aided-design and finite-element software. All simulation parameters are defined in simple text files allowing quick changes. The simulation code is written in C++ and is freely available at github.com/wschreyer/PENTrack.git.

  1. PENTrack—a simulation tool for ultracold neutrons, protons, and electrons in complex electromagnetic fields and geometries

    Energy Technology Data Exchange (ETDEWEB)

    Schreyer, W., E-mail: w.schreyer@tum.de [Technical University of Munich, James-Franck-Str. 1, 85748 Garching (Germany); Kikawa, T. [TRIUMF, 4004 Wesbrook Mall, Vancouver (Canada); Losekamm, M.J.; Paul, S. [Technical University of Munich, James-Franck-Str. 1, 85748 Garching (Germany); Picker, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver (Canada); Simon Fraser University, 8888 University Drive, Burnaby (Canada)

    2017-06-21

    Modern precision experiments trapping low-energy particles require detailed simulations of particle trajectories and spin precession to determine systematic measurement limitations and apparatus deficiencies. We developed PENTrack, a tool that allows to simulate trajectories of ultracold neutrons and their decay products—protons and electrons—and the precession of their spins in complex geometries and electromagnetic fields. The interaction of ultracold neutrons with matter is implemented with the Fermi-potential formalism and diffuse scattering using Lambert and microroughness models. The results of several benchmark simulations agree with STARucn v1.2, uncovered several flaws in Geant4 v10.2.2, and agree with experimental data. Experiment geometry and electromagnetic fields can be imported from commercial computer-aided-design and finite-element software. All simulation parameters are defined in simple text files allowing quick changes. The simulation code is written in C++ and is freely available at (github.com/wschreyer/PENTrack.git).

  2. A Michelson interferometer for ultracold neutrons

    International Nuclear Information System (INIS)

    Steyerl, A.; Malik, S.S.; Steinhauser, K.A.; Berger, L.

    1979-01-01

    We propose a neutron Michelson Interferometer installed within a focussing 'gravity diffractometer' for ultracold neutrons. In this arrangement the expected interference pattern depends only on the well-defined vertical component of neutron wavevector. Possible applications of such an interferometer are discussed. (orig.)

  3. Fluctuations of Imbalanced Fermionic Superfluids in Two Dimensions Induce Continuous Quantum Phase Transitions and Non-Fermi-Liquid Behavior

    Directory of Open Access Journals (Sweden)

    Philipp Strack

    2014-04-01

    Full Text Available We study the nature of superfluid pairing in imbalanced Fermi mixtures in two spatial dimensions. We present evidence that the combined effect of Fermi surface mismatch and order parameter fluctuations of the superfluid condensate can lead to continuous quantum phase transitions from a normal Fermi mixture to an intermediate Sarma-Liu-Wilczek superfluid with two gapless Fermi surfaces—even when mean-field theory (incorrectly predicts a first-order transition to a phase-separated “Bardeen-Cooper-Schrieffer plus excess fermions” ground state. We propose a mechanism for non-Fermi-liquid behavior from repeated scattering processes between the two Fermi surfaces and fluctuating Cooper pairs. Prospects for experimental observation with ultracold atoms are discussed.

  4. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas

    OpenAIRE

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2014-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas in an optical lattice potential with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of t...

  5. Itinerant ferromagnetism in an atomic Fermi gas: Influence of population imbalance

    International Nuclear Information System (INIS)

    Conduit, G. J.; Simons, B. D.

    2009-01-01

    We investigate ferromagnetic ordering in an itinerant ultracold atomic Fermi gas with repulsive interactions and population imbalance. In a spatially uniform system, we show that at zero temperature the transition to the itinerant magnetic phase transforms from first to second order with increasing population imbalance. Drawing on these results, we elucidate the phases present in a trapped geometry, finding three characteristic types of behavior with changing population imbalance. Finally, we outline the potential experimental implications of the findings.

  6. Phase diagram of a polarized Fermi gas across a Feshbach resonance in a potential trap

    International Nuclear Information System (INIS)

    Yi, W.; Duan, L.-M.

    2006-01-01

    We map out the detailed phase diagram of a trapped ultracold Fermi gas with population imbalance across a wide Feshbach resonance. We show that under the local density approximation, the properties of the atoms in any (anisotropic) harmonic traps are universally characterized by three dimensionless parameters: the normalized temperature, the dimensionless interaction strength, and the population imbalance. We then discuss the possible quantum phases in the trap, and quantitatively characterize their phase boundaries in various typical parameter regions

  7. A two-component NZRI metamaterial based rectangular cloak

    Directory of Open Access Journals (Sweden)

    Sikder Sunbeam Islam

    2015-10-01

    Full Text Available A new two-component, near zero refractive index (NZRI metamaterial is presented for electromagnetic rectangular cloaking operation in the microwave range. In the basic design a pi-shaped, metamaterial was developed and its characteristics were investigated for the two major axes (x and z-axis wave propagation through the material. For the z-axis wave propagation, it shows more than 2 GHz bandwidth and for the x-axis wave propagation; it exhibits more than 1 GHz bandwidth of NZRI property. The metamaterial was then utilized in designing a rectangular cloak where a metal cylinder was cloaked perfectly in the C-band area of microwave regime. The experimental result was provided for the metamaterial and the cloak and these results were compared with the simulated results. This is a novel and promising design for its two-component NZRI characteristics and rectangular cloaking operation in the electromagnetic paradigm.

  8. Brazilian two-component TLD albedo neutron individual monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Martins, M.M., E-mail: marcelo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Mauricio, C.L.P., E-mail: claudia@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Fonseca, E.S. da, E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Silva, A.X. da, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao em Engenharia, COPPE/PEN Caixa Postal 68509, CEP: 21941-972, Rio de Janeiro, RJ (Brazil)

    2010-12-15

    Since 1983, Instituto de Radioprotecao e Dosimetria, Brazil, uses a TLD one-component albedo neutron monitor, which has a single different calibration factor specifically for each installation type. In order to improve its energy response, a two-component albedo monitor was developed, which measure the thermal neutron component besides the albedo one. The two-component monitor has been calibrated in reference neutron fields: thermal, five accelerator-produced monoenergetic beams (70, 144, 565, 1200 and 5000 keV) and five radionuclide sources ({sup 252}Cf, {sup 252}Cf(D{sub 2}O), {sup 241}Am-Be, {sup 241}Am-B and {sup 238}Pu-Be) at several distances. Since January 2008, mainly Brazilian workers who handle neutron sources at different distances and moderation, such as in well logging and calibration facilities are using it routinely.

  9. On the Alexander polynominals of alternating two-component links

    Directory of Open Access Journals (Sweden)

    Mark E. Kidwell

    1979-01-01

    Full Text Available Let L be an alternating two-component link with Alexander polynomial Δ(x,y. Then the polynomials (1−xΔ(x,y and (1−yΔ(x,y are alternating. That is, (1−yΔ(x,y can be written as ∑i,jcijxiyj in such a way that (−1i+jcij≥0.

  10. Two-component gravitational instability in spiral galaxies

    Science.gov (United States)

    Marchuk, A. A.; Sotnikova, N. Y.

    2018-04-01

    We applied a criterion of gravitational instability, valid for two-component and infinitesimally thin discs, to observational data along the major axis for seven spiral galaxies of early types. Unlike most papers, the dispersion equation corresponding to the criterion was solved directly without using any approximation. The velocity dispersion of stars in the radial direction σR was limited by the range of possible values instead of a fixed value. For all galaxies, the outer regions of the disc were analysed up to R ≤ 130 arcsec. The maximal and sub-maximal disc models were used to translate surface brightness into surface density. The largest destabilizing disturbance stars can exert on a gaseous disc was estimated. It was shown that the two-component criterion differs a little from the one-fluid criterion for galaxies with a large surface gas density, but it allows to explain large-scale star formation in those regions where the gaseous disc is stable. In the galaxy NGC 1167 star formation is entirely driven by the self-gravity of the stars. A comparison is made with the conventional approximations which also include the thickness effect and with models for different sound speed cg. It is shown that values of the effective Toomre parameter correspond to the instability criterion of a two-component disc Qeff < 1.5-2.5. This result is consistent with previous theoretical and observational studies.

  11. Interactions of Ultracold Impurity Particles with Bose-Einstein Condensates

    Science.gov (United States)

    2015-06-23

    AFRL-OSR-VA-TR-2015-0141 INTERACTIONS OF ULTRACOLD IMPURITY PARTICLES WITH BOSE- EINSTEIN CONDENSATES Georg Raithel UNIVERSITY OF MICHIGAN Final...SUBTITLE Interactions of ultracold impurity particles with Bose- Einstein Condensates 5a. CONTRACT NUMBER FA9550-10-1-0453 5b. GRANT NUMBER 5c...Interactions of ultracold impurity particles with Bose- Einstein Condensates Contract/Grant #: FA9550-10-1-0453 Reporting Period: 8/15/2010 to 2/14

  12. Experimental investigation of the dynamics in a strongly interacting Fermi gas : collective modes and rotational properties

    International Nuclear Information System (INIS)

    Riedl, S.

    2009-01-01

    This thesis explores the dynamics in an ultracold strongly interacting Fermi gas. Therefore we perform measurements on collective excitation modes and rotational properties of the gas. The strongly interacting gas is realized using an optically trapped Fermi gas of 6 Li atoms, where the interactions can be tuned using a broad Feshbach resonance. Our measurements allow to test the equation of state of the gas, study the transition from hydrodynamic to collisionless behavior, reveal almost ideal hydrodynamic behavior in the nonsuperfluid phase, investigate the lifetime of angular momentum, and show superfluidity through the quenching of the moment of inertia. (author)

  13. Functional renormalization and ultracold quantum gases

    International Nuclear Information System (INIS)

    Floerchinger, Stefan

    2010-01-01

    Modern techniques from quantum field theory are applied in this work to the description of ultracold quantum gases. This leads to a unified description of many phenomena including superfluidity for bosons and fermions, classical and quantum phase transitions, different dimensions, thermodynamic properties and few-body phenomena as bound state formation or the Efimov effect. The non-perturbative treatment with renormalization group flow equations can account for all known limiting cases by solving one single equation. It improves previous results quantitatively and brings qualitatively new insights. As an example, new quantum phase transitions are found for fermions with three spin states. Ultracold atomic gases can be seen as an interesting model for features of high energy physics and for condensed matter theory. The research reported in this thesis helps to solve the difficult complexity problem in modern theoretical physics. (orig.)

  14. The charge imbalance in ultracold plasmas

    International Nuclear Information System (INIS)

    Chen, Tianxing; Lu, Ronghua; Guo, Li; Han, Shensheng

    2016-01-01

    Ultracold plasmas are regarded as quasineutral but not strictly neutral. The results of charge imbalance in the expansion of ultracold plasmas are reported. The calculations are performed by a full molecular-dynamics simulation. The details of the electron velocity distributions are calculated without the assumption of electron global thermal equilibrium and Boltzmann distribution. Spontaneous evolutions of the charge imbalance from the initial states with perfect neutrality are given in the simulations. The expansion of outer plasma slows down with the charge imbalance. The influences of plasma size and parameters on the charge imbalance are discussed. The radial profiles of electron temperature are given for the first time, and the self-similar expansion can still occur even if there is no global thermal equilibrium. The electron disorder induced heating is also found in the simulation.

  15. The charge imbalance in ultracold plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tianxing; Lu, Ronghua, E-mail: lurh@siom.ac.cn; Guo, Li; Han, Shensheng [Key Laboratory for Quantum Optics and Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-09-15

    Ultracold plasmas are regarded as quasineutral but not strictly neutral. The results of charge imbalance in the expansion of ultracold plasmas are reported. The calculations are performed by a full molecular-dynamics simulation. The details of the electron velocity distributions are calculated without the assumption of electron global thermal equilibrium and Boltzmann distribution. Spontaneous evolutions of the charge imbalance from the initial states with perfect neutrality are given in the simulations. The expansion of outer plasma slows down with the charge imbalance. The influences of plasma size and parameters on the charge imbalance are discussed. The radial profiles of electron temperature are given for the first time, and the self-similar expansion can still occur even if there is no global thermal equilibrium. The electron disorder induced heating is also found in the simulation.

  16. Momentum distribution functions in ensembles: the inequivalence of microcannonical and canonical ensembles in a finite ultracold system.

    Science.gov (United States)

    Wang, Pei; Xianlong, Gao; Li, Haibin

    2013-08-01

    It is demonstrated in many thermodynamic textbooks that the equivalence of the different ensembles is achieved in the thermodynamic limit. In this present work we discuss the inequivalence of microcanonical and canonical ensembles in a finite ultracold system at low energies. We calculate the microcanonical momentum distribution function (MDF) in a system of identical fermions (bosons). We find that the microcanonical MDF deviates from the canonical one, which is the Fermi-Dirac (Bose-Einstein) function, in a finite system at low energies where the single-particle density of states and its inverse are finite.

  17. Strategic Applications of Ultra-Cold Atoms

    Science.gov (United States)

    2008-03-07

    Peer-Reviewed Conference Proceeding publications (other than abstracts): “Laser cooling in anisotropic traps”, M. Vengalattore, R.S. Conroy, M. Prentiss...IEEE Cat. No. 04CH37598. Piscataway, NJ, IEEE, 2004, 1 pp. “Guiding of light in an ultracold, anisotropic medium”, M. Vengalattore and M. Prentiss, in...molecules the rotational dynamics imposes significantly larger Rabi frequencies than would otherwise be expected, but within this limitation, a full

  18. Dissociation and decay of ultracold sodium molecules

    International Nuclear Information System (INIS)

    Mukaiyama, T.; Abo-Shaeer, J.R.; Xu, K.; Chin, J.K.; Ketterle, W.

    2004-01-01

    The dissociation of ultracold molecules was studied by ramping an external magnetic field through a Feshbach resonance. The observed dissociation energies directly yielded the strength of the atom-molecule coupling. They showed nonlinear dependence on the ramp speed. This was explained by a Wigner threshold law which predicts that the decay rate of the molecules above threshold increases with the density of states. In addition, inelastic molecule-molecule and molecule-atom collisions were characterized

  19. Illustration of Babinet's principle with ultracold atoms

    OpenAIRE

    Reinhard, Aaron; Riou, Jean-Félix; Zundel, Laura A.; Weiss, David S.

    2013-01-01

    We demonstrate Babinet's principle by the absorption of high intensity light from dense clouds of ultracold atoms. Images of the diffracted light are directly related to the spatial distribution of atoms. The advantages of employing Babinet's principle as an imaging technique are that it is easy to implement and the detected signal is large. We discuss the regimes of applicability of this technique as well as its limitations.

  20. Two-component scattering model and the electron density spectrum

    Science.gov (United States)

    Zhou, A. Z.; Tan, J. Y.; Esamdin, A.; Wu, X. J.

    2010-02-01

    In this paper, we discuss a rigorous treatment of the refractive scintillation caused by a two-component interstellar scattering medium and a Kolmogorov form of density spectrum. It is assumed that the interstellar scattering medium is composed of a thin-screen interstellar medium (ISM) and an extended interstellar medium. We consider the case that the scattering of the thin screen concentrates in a thin layer represented by a δ function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with the observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight (LOS). The theoretical modulation indices are comparatively less sensitive to the scattering strength of the thin-screen medium, but they critically depend on the distance from the observer to the thin screen. The logarithmic slope of the structure function is sensitive to the scattering strength of the thin-screen medium, but is relatively insensitive to the thin-screen location. Therefore, the proposed model can be applied to interpret the structure functions of flux density observed in pulsar PSR B2111 + 46 and PSR B0136 + 57. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the interstellar medium. Thus our work provides some insight into the distribution of the scattering along the LOS to the pulsar PSR B2111 + 46 and PSR B0136 + 57.

  1. A two-component copula with links to insurance

    Directory of Open Access Journals (Sweden)

    Ismail S.

    2017-12-01

    Full Text Available This paper presents a new copula to model dependencies between insurance entities, by considering how insurance entities are affected by both macro and micro factors. The model used to build the copula assumes that the insurance losses of two companies or lines of business are related through a random common loss factor which is then multiplied by an individual random company factor to get the total loss amounts. The new two-component copula is not Archimedean and it extends the toolkit of copulas for the insurance industry.

  2. Two component micro injection molding for MID fabrication

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2009-01-01

    Molded Interconnect Devices (MIDs) are plastic substrates with electrical infrastructure. The fabrication of MIDs is usually based on injection molding and different process chains may be identified from this starting point. The use of MIDs has been driven primarily by the automotive sector......, but recently the medical sector seems more and more interested. In particular the possibility of miniaturization of 3D components with electrical infrastructure is attractive. The paper describes possible manufacturing routes and challenges of miniaturized MIDs based on two component micro injection molding...

  3. High-resolution imaging of ultracold fermions in microscopically tailored optical potentials

    International Nuclear Information System (INIS)

    Zimmermann, B; Mueller, T; Meineke, J; Esslinger, T; Moritz, H

    2011-01-01

    We report on the local probing and preparation of an ultracold Fermi gas on the length scale of one micrometer, i.e. of the order of the Fermi wavelength. The essential tool of our experimental setup is a pair of identical, high-resolution microscope objectives. One of the microscope objectives allows local imaging of the trapped Fermi gas of 6 Li atoms with a maximum resolution of 660 nm, while the other enables the generation of arbitrary optical dipole potentials on the same length scale. Employing a two-dimensional (2D) acousto-optical deflector, we demonstrate the formation of several trapping geometries, including a tightly focused single optical dipole trap, a 4x4 site 2D optical lattice and an 8 site ring lattice configuration. Furthermore, we show the ability to load and detect a small number of atoms in these trapping potentials. A site separation down to one micrometer in combination with the low mass of 6 Li results in tunneling rates that are sufficiently large for the implementation of Hubbard models with the designed geometries.

  4. Universal Three-Body Physics in Ultracold KRb Mixtures

    DEFF Research Database (Denmark)

    Wacker, L. J.; Jørgensen, N. B.; Birkmose, Danny Matthiesen

    2016-01-01

    Ultracold atomic gases have recently become a driving force in few-body physics due to the observation of the Efimov effect. While initially observed in equal mass systems, one expects even richer few-body physics in the mass-imbalanced case. In previous experiments with ultracold mixtures of pot...

  5. Phase structure of strongly correlated Fermi gases

    International Nuclear Information System (INIS)

    Roscher, Dietrich

    2015-01-01

    Strongly correlated fermionic many-body systems are ubiquitous in nature. Their theoretical description poses challenging problems which are further complicated when imbalances in, e.g., the particle numbers of the involved species or their masses are introduced. In this thesis, a number of different approaches is developed and applied in order to obtain predictions for physical observables of such systems that mutually support and confirm each other. In a first step, analytically well-founded mean-field analyses are carried through. One- and three-dimensional ultracold Fermi gases with spin and mass imbalance as well as Gross-Neveu and NJL-type relativistic models at finite baryon chemical potential are investigated with respect to their analytic properties in general and the occurrence of spontaneous breaking of translational invariance in particular. Based on these studies, further methods are devised or adapted allowing for investigations also beyond the mean-field approximation. Lattice Monte Carlo simulations with imaginary imbalance parameters are employed to surmount the infamous sign problem and compute the equation of state of the respective unitary Fermi gases. Moreover, in-medium two-body analyses are used to confirm and explain the characteristics of inhomogeneously ordered phases. Finally, functional RG methods are applied to the unitary Fermi gas with spin and mass imbalance. Besides quantitatively competitive predictions for critical temperatures for the superfluid state, strong hints on the stability of inhomogeneous phases with respect to order parameter fluctuations in the regime of large mass imbalance are obtained. Combining the findings from these different theoretical studies suggests the possibility to find such phases in experiments presently in preparation.

  6. Quantum phases of low-dimensional ultra-cold atom systems

    Science.gov (United States)

    Mathey, Ludwig G.

    2007-06-01

    In this thesis we derive and explore the quantum phases of various types of ultracold atom systems, as well as their experimental signature. The technology of cooling, trapping and manipulating ultracold atoms has advanced in an amazing fashion during the last decade, which has led to the study of many-body effects of atomic ensembles. We first consider atomic mixtures in one dimension, which show a rich structure of phases, using a Luttinger liquid description. We then go on to consider how noise correlations in time-of-flight images of one-dimensional systems can be used to draw conclusions about the many-body state that they're in. Thirdly, we consider the quantum phases of Bose-Fermi mixtures in optical lattices, either square lattices or triangular lattices, using the powerful method of functional renormalization group analysis. Lastly, we study the phases of two-coupled quasi-superfluids in two dimensions, which shows unusual phases, and which could be used to realize the Kibble-Zurek mechanism, i.e. the generation of topological defects by ramping across a phase transition, first proposed in the context of an early universe scenario.

  7. Efficient implementation of one- and two-component analytical energy gradients in exact two-component theory

    Science.gov (United States)

    Franzke, Yannick J.; Middendorf, Nils; Weigend, Florian

    2018-03-01

    We present an efficient algorithm for one- and two-component analytical energy gradients with respect to nuclear displacements in the exact two-component decoupling approach to the one-electron Dirac equation (X2C). Our approach is a generalization of the spin-free ansatz by Cheng and Gauss [J. Chem. Phys. 135, 084114 (2011)], where the perturbed one-electron Hamiltonian is calculated by solving a first-order response equation. Computational costs are drastically reduced by applying the diagonal local approximation to the unitary decoupling transformation (DLU) [D. Peng and M. Reiher, J. Chem. Phys. 136, 244108 (2012)] to the X2C Hamiltonian. The introduced error is found to be almost negligible as the mean absolute error of the optimized structures amounts to only 0.01 pm. Our implementation in TURBOMOLE is also available within the finite nucleus model based on a Gaussian charge distribution. For a X2C/DLU gradient calculation, computational effort scales cubically with the molecular size, while storage increases quadratically. The efficiency is demonstrated in calculations of large silver clusters and organometallic iridium complexes.

  8. Zero-range approximation for two-component boson systems

    International Nuclear Information System (INIS)

    Sogo, T.; Fedorov, D.V.; Jensen, A.S.

    2005-01-01

    The hyperspherical adiabatic expansion method is combined with the zero-range approximation to derive angular Faddeev-like equations for two-component boson systems. The angular eigenvalues are solutions to a transcendental equation obtained as a vanishing determinant of a 3 x 3 matrix. The eigenfunctions are linear combinations of Jacobi functions of argument proportional to the distance between pairs of particles. We investigate numerically the influence of two-body correlations on the eigenvalue spectrum, the eigenfunctions and the effective hyperradial potential. Correlations decrease or increase the distance between pairs for effectively attractive or repulsive interactions, respectively. New structures appear for non-identical components. Fingerprints can be found in the nodal structure of the density distributions of the condensates. (author)

  9. How insects overcome two-component plant chemical defence

    DEFF Research Database (Denmark)

    Pentzold, Stefan; Zagrobelny, Mika; Rook, Frederik

    2014-01-01

    Insect herbivory is often restricted by glucosylated plant chemical defence compounds that are activated by plant β-glucosidases to release toxic aglucones upon plant tissue damage. Such two-component plant defences are widespread in the plant kingdom and examples of these classes of compounds...... are alkaloid, benzoxazinoid, cyanogenic and iridoid glucosides as well as glucosinolates and salicinoids. Conversely, many insects have evolved a diversity of counteradaptations to overcome this type of constitutive chemical defence. Here we discuss that such counter-adaptations occur at different time points......, before and during feeding as well as during digestion, and at several levels such as the insects’ feeding behaviour, physiology and metabolism. Insect adaptations frequently circumvent or counteract the activity of the plant β-glucosidases, bioactivating enzymes that are a key element in the plant’s two...

  10. Bond strength of two component injection moulded MID

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2006-01-01

    Most products of the future will require industrially adapted, cost effective production processes and on this issue two-component (2K) injection moulding is a potential candidate for MID manufacturing. MID based on 2k injection moulded plastic part with selectively metallised circuit tracks allows...... the two different plastic materials in the MID structure require good bonding between them. This paper finds suitable combinations of materials for MIDs from both bond strength and metallisation view-point. Plastic parts were made by two-shot injection moulding and the effects of some important process...... the integration of electrical and mechanical functionalities in a real 3D structure. If 2k injection moulding is applied with two polymers, of which one is plateable and the other is not, it will be possible to make 3D electrical structures directly on the component. To be applicable in the real engineering field...

  11. Two Component Injection Moulding for Moulded Interconnect Devices

    DEFF Research Database (Denmark)

    Islam, Aminul

    component (2k) injection moulding is one of the most industrially adaptive processes. However, the use of two component injection moulding for MID fabrication, with circuit patterns in sub-millimeter range, is still a big challenge. This book searches for the technical difficulties associated...... with the process and makes attempts to overcome those challenges. In search of suitable polymer materials for MID applications, potential materials are characterized in terms of polymer-polymer bond strength, polymer-polymer interface quality and selective metallization. The experimental results find the factors...... which can effectively control the quality of 2k moulded parts and metallized MIDs. This book presents documented knowledge about MID process chains, 2k moulding and selective metallization which can be valuable source of information for both academic and industrial users....

  12. Chemical evolution of two-component galaxies. II

    International Nuclear Information System (INIS)

    Caimmi, R.

    1978-01-01

    In order to confirm and refine the results obtained in a previous paper the chemical evolution of two-component (spheroid + disk) galaxies is derived rejecting the instantaneous recycling approximation, by means of numerical computations, accounting for (i) the collapse phase of the gas, assumed to be uniform in density and composition, and (ii) a birth-rate stellar function. Computations are performed relatively to the solar neighbourhood and to model galaxies which closely resemble the real morphological sequence: in both cases, numerical results are compared with analytical ones. The numerical models of this paper constitute a first-order approximation, while higher order approximations could be made by rejecting the hypothesis of uniform density and composition, and making use of detailed dynamical models. (Auth.)

  13. Phosphatase activity tunes two-component system sensor detection threshold.

    Science.gov (United States)

    Landry, Brian P; Palanki, Rohan; Dyulgyarov, Nikola; Hartsough, Lucas A; Tabor, Jeffrey J

    2018-04-12

    Two-component systems (TCSs) are the largest family of multi-step signal transduction pathways in biology, and a major source of sensors for biotechnology. However, the input concentrations to which biosensors respond are often mismatched with application requirements. Here, we utilize a mathematical model to show that TCS detection thresholds increase with the phosphatase activity of the sensor histidine kinase. We experimentally validate this result in engineered Bacillus subtilis nitrate and E. coli aspartate TCS sensors by tuning their detection threshold up to two orders of magnitude. We go on to apply our TCS tuning method to recently described tetrathionate and thiosulfate sensors by mutating a widely conserved residue previously shown to impact phosphatase activity. Finally, we apply TCS tuning to engineer B. subtilis to sense and report a wide range of fertilizer concentrations in soil. This work will enable the engineering of tailor-made biosensors for diverse synthetic biology applications.

  14. Two-component multistep direct reactions: A microscopic approach

    International Nuclear Information System (INIS)

    Koning, A.J.; Chadwick, M.B.

    1998-03-01

    The authors present two principal advances in multistep direct theory: (1) A two-component formulation of multistep direct reactions, where neutron and proton excitations are explicitly accounted for in the evolution of the reaction, for all orders of scattering. While this may at first seem to be a formidable task, especially for multistep processes where the many possible reaction pathways becomes large in a two-component formalism, the authors show that this is not so -- a rather simple generalization of the FKK convolution expression 1 automatically generates these pathways. Such considerations are particularly relevant when simultaneously analyzing both neutron and proton emission spectra, which is always important since these processes represent competing decay channels. (2) A new, and fully microscopic, method for calculating MSD cross sections which does not make use of particle-hole state densities but instead directly calculates cross sections for all possible particle-hole excitations (again including an exact book-keeping of the neutron/proton type of the particle and hole at all stages of the reaction) determined from a simple non-interacting shell model. This is in contrast to all previous numerical approaches which sample only a small number of such states to estimate the DWBA strength, and utilize simple analytical formulae for the partial state density, based on the equidistant spacing model. The new approach has been applied, along with theories for multistep compound, compound, and collective reactions, to analyze experimental emission spectra for a range of targets and energies. The authors show that the theory correctly accounts for double-differential nucleon spectra

  15. Characterization and development of diamond-like carbon coatings for storing ultracold neutrons

    CERN Document Server

    Grinten, M G D; Shiers, D; Baker, C A; Green, K; Harris, P G; Iaydjiev, P S; Ivanov, S N; Geltenbort, P

    1999-01-01

    In order to determine the suitability of diamond-like carbon (DLC) as a material for storing ultracold neutrons to use in neutron electric-dipole moment (EDM) experiments, a number of tests on DLC coatings have been performed. Thin DLC layers deposited on quartz and aluminium substrates by chemical vapour deposition have been characterised by neutron transmission, neutron reflectometry, electron microscopy and neutron and mercury storage and depolarisation lifetime measurements. Two types of DLC have been compared; DLC made by chemical vapour deposition from natural methane and DLC made by chemical vapour deposition from deuterated methane. With these samples we determined the density, hydrogen concentration and Fermi potential of the coatings. DLC coatings made from deuterated methane are now successfully being used in an experiment to measure the EDM of the neutron.

  16. Characterization and development of diamond-like carbon coatings for storing ultracold neutrons

    International Nuclear Information System (INIS)

    Grinten, M.G.D. van der; Pendlebury, J.M.; Shiers, D.; Baker, C.A.; Green, K.; Harris, P.G.; Iaydjiev, P.S.; Ivanov, S.N.; Geltenbort, P.

    1999-01-01

    In order to determine the suitability of diamond-like carbon (DLC) as a material for storing ultracold neutrons to use in neutron electric-dipole moment (EDM) experiments, a number of tests on DLC coatings have been performed. Thin DLC layers deposited on quartz and aluminium substrates by chemical vapour deposition have been characterised by neutron transmission, neutron reflectometry, electron microscopy and neutron and mercury storage and depolarisation lifetime measurements. Two types of DLC have been compared; DLC made by chemical vapour deposition from natural methane and DLC made by chemical vapour deposition from deuterated methane. With these samples we determined the density, hydrogen concentration and Fermi potential of the coatings. DLC coatings made from deuterated methane are now successfully being used in an experiment to measure the EDM of the neutron

  17. De Haas-van Alphen effect of a two-dimensional ultracold atomic gas

    Science.gov (United States)

    Farias, B.; Furtado, C.

    2016-01-01

    In this paper, we show how the ultracold atom analogue of the two-dimensional de Haas-van Alphen effect in electronic condensed matter systems can be induced by optical fields in a neutral atomic system. The interaction between the suitable spatially varying laser fields and tripod-type trapped atoms generates a synthetic magnetic field which leads the particles to organize themselves in Landau levels. Initially, with the atomic gas in a regime of lowest Landau level, we display the oscillatory behaviour of the atomic energy and its derivative with respect to the effective magnetic field (B) as a function of 1/B. Furthermore, we estimate the area of the Fermi circle of the two-dimensional atomic gas.

  18. Quasi-energy of ultracold neutrons

    International Nuclear Information System (INIS)

    Frank, A.I.; Nosov, V.G.

    1992-01-01

    A solution is found to the problem of the propagation of a neutron beam transmitted through a periodically acting high-speed chopper. It is a generalization of the Moshinsky's problem of the evolution of a plane wave in the right half-space after an ideal absorber at the origin of coordinates has been instantaneously removed. The energy spectrum of transmitted neutrons is found to be discrete and corresponding to their quasi-energy. Interference of the states corresponding to different satellite lines leads to a complex spatial pattern with typical beats. A number of experiments with ultracold neutrons are suggested and discussed. 12 refs.; 1 fig

  19. Towards quantum magnetism with ultracold atoms

    International Nuclear Information System (INIS)

    Weld, David M; Ketterle, Wolfgang

    2011-01-01

    At ICAP we presented the efforts and progress at MIT towards using ultracold atoms for the realization of various forms of quantum magnetism. These efforts include a study of fermions with strong repulsive interactions in which we obtained evidence for a phase transition to itinerant ferromagnetism, the characterization of cold atom systems by noise measurements, and a new adiabatic gradient demagnetization cooling scheme which has enabled us to realize temperatures of less than 350 picokelvin and spin temperatures of less than 50 picokelvin in optical lattices. These are the lowest temperatures ever measured in any physical system.

  20. Transfer coefficients in ultracold strongly coupled plasma

    Science.gov (United States)

    Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.

    2018-03-01

    We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.

  1. Ultracold Dipolar Gases in Optical Lattices

    OpenAIRE

    Trefzger, C.; Menotti, C.; Capogrosso-Sansone, B.; Lewenstein, M.

    2011-01-01

    This tutorial is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules that interact via dipolar forces, and that are cooled below the quantum degeneracy temperature, typically in the nK range. When such a degenerate quantum gas is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur. These systems realize then extended Hubbard-type m...

  2. Research using ultracold neutrons at the ILL

    International Nuclear Information System (INIS)

    Steyerl, A.

    1990-01-01

    In this talk I will make no effort to give an exhaustive, detailed description of the well-published results of recent work with ultracold neutrons (UCN) at the ILL. Instead, there will be a biased selection of some topics in which author happens to be most interested, though in some cases as a spectator from a considerable distance than as an actor. The selection includes the recent lifetime experiment using a Fomblin-coated bottle, the continuing search for an electric dipole moment of the neutron and some ideas on high precision neutron optics experiments

  3. Phase transitions in the hard-core Bose-Fermi-Hubbard model at non-zero temperatures in the heavy-fermion limit

    Energy Technology Data Exchange (ETDEWEB)

    Stasyuk, I.V.; Krasnov, V.O., E-mail: krasnoff@icmp.lviv.ua

    2017-04-15

    Phase transitions at non-zero temperatures in ultracold Bose- and Fermi-particles mixture in optical lattices using the Bose-Fermi-Hubbard model in the mean field and hard-core boson approximations are investigated. The case of infinitely small fermion transfer and the repulsive on-site boson-fermion interaction is considered. The possibility of change of order (from the 2nd to the 1st one) of the phase transition to the superfluid phase in the regime of fixed values of the chemical potentials of Bose- and Fermi-particles is established. The relevant phase diagrams determining the conditions at which such a change takes place, are built.

  4. Global existence and blow-up phenomena for two-component Degasperis-Procesi system and two-component b-family system

    OpenAIRE

    Liu, Jingjing; Yin, Zhaoyang

    2014-01-01

    This paper is concerned with global existence and blow-up phenomena for two-component Degasperis-Procesi system and two-component b-family system. The strategy relies on our observation on new conservative quantities of these systems. Several new global existence results and a new blowup result of strong solutions to the two-component Degasperis- Procesi system and the two-component b-family system are presented by using these new conservative quantities.

  5. A minimal model for two-component dark matter

    International Nuclear Information System (INIS)

    Esch, Sonja; Klasen, Michael; Yaguna, Carlos E.

    2014-01-01

    We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a Z_2 symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatible with all present bounds and examine their direct detection prospects at planned experiments. A generic feature of this model is that both particles give rise to observable signals in 1-ton direct detection experiments. In fact, such experiments will be able to probe even a subdominant dark matter component at the percent level.

  6. Exploring a minimal two-component p53 model

    International Nuclear Information System (INIS)

    Sun, Tingzhe; Zhu, Feng; Shen, Pingping; Yuan, Ruoshi; Xu, Wei

    2010-01-01

    The tumor suppressor p53 coordinates many attributes of cellular processes via interlocked feedback loops. To understand the biological implications of feedback loops in a p53 system, a two-component model which encompasses essential feedback loops was constructed and further explored. Diverse bifurcation properties, such as bistability and oscillation, emerge by manipulating the feedback strength. The p53-mediated MDM2 induction dictates the bifurcation patterns. We first identified irradiation dichotomy in p53 models and further proposed that bistability and oscillation can behave in a coordinated manner. Further sensitivity analysis revealed that p53 basal production and MDM2-mediated p53 degradation, which are central to cellular control, are most sensitive processes. Also, we identified that the much more significant variations in amplitude of p53 pulses observed in experiments can be derived from overall amplitude parameter sensitivity. The combined approach with bifurcation analysis, stochastic simulation and sampling-based sensitivity analysis not only gives crucial insights into the dynamics of the p53 system, but also creates a fertile ground for understanding the regulatory patterns of other biological networks

  7. Parameter studies for a two-component fusion experiment

    International Nuclear Information System (INIS)

    Towner, H.H.

    1975-01-01

    The sensitivity of the energy multiplication of a two-component fusion experiment is examined relative to the following parameters: energy confinement time (tau/sub E/), particle confinement time (tau/sub p/), effective Z of the plasma (Z/sub eff/), injection rate (j/sub I/) and injection energy (E/sub I/). The Energy Research and Development Administration recently approved funding for such a fusion device (the Toroidal Fusion Test Reactor or TFTR) which will be built at the Princeton Plasma Physics Laboratory. Hence, such a parameter study seems both timely and necessary. This work also serves as an independent check on the design values proposed for the TFTR to enable it to achieve energy breakeven (F = 1). Using the nominal TFTR design parameters and a self-consistent ion-electron power balance, the maximum F-value is found to be approximately 1.2 which occurs at an injection energy of approximately 210 KeV. The injector operation, i.e. its current and energy capability are shown to be a very critical factor in the TFTR performance. However, if the injectors meet the design objectives, there appears to be sufficient latitude in the other parameters to offer reasonable assurance that energy breakeven can be achieved. (U.S.)

  8. Composite fermion basis for two-component Bose gases

    Science.gov (United States)

    Meyer, Marius; Liabotro, Ola

    The composite fermion (CF) construction is known to produce wave functions that are not necessarily orthogonal, or even linearly independent, after projection. While usually not a practical issue in the quantum Hall regime, we have previously shown that it presents a technical challenge for rotating Bose gases with low angular momentum. These are systems where the CF approach yield surprisingly good approximations to the exact eigenstates of weak short-range interactions, and so solving the problem of linearly dependent wave functions is of interest. It can also be useful for studying CF excitations for fermions. Here we present several ways of constructing a basis for the space of ``simple CF states'' for two-component rotating Bose gases in the lowest Landau level, and prove that they all give a basis. Using the basis, we study the structure of the lowest-lying state using so-called restricted wave functions. We also examine the scaling of the overlap between the exact and CF wave functions at the maximal possible angular momentum for simple states. This work was financially supported by the Research Council of Norway.

  9. Cold component flow in a two-component mirror machine

    International Nuclear Information System (INIS)

    Rognlien, T.D.

    1975-12-01

    Steady-state solutions are given for the flow characteristics along the magnetic field of the cold plasma component in a two-component mirror machine. The hot plasma component is represented by a fixed density profile. The fluid equations are used to describe the cold plasma, which is assumed to be generated in a localized region at one end of the machine. The ion flow speed, v/sub i/, is required to satisfy the Bohm sheath condition at the end walls, i.e., v/sub i/ greater than or equal to c/sub s/, where c/sub s/ is the ion-acoustic speed. For the case when the cold plasma density, n/sub c/, is much less than the hot plasma density, n/sub h/, the cold plasma is stagnant and does not penetrate through the machine in the zero temperature case. The effect of a finite temperature is to allow for the penetration of a small amount of cold plasma through the machine. For the density range n/sub c/ approximately n/sub h/, the flow solutions are asymmetric about the midplane and have v/sub i/ = c/sub s/ near the midplane. Finally, for n/sub c/ much greater than n/sub h/, the solutions become symmetric about the midplane and approach the Lee--McNamara type solutions with v/sub i/ = c/sub s/ near the mirror throats

  10. Fast-wave heating of a two-component plasma

    International Nuclear Information System (INIS)

    Stix, T.H.

    1975-02-01

    The use of the compressional hydromagnetic mode (also called the magnetosonic or, simply, the fast wave) is examined in some detail with respect to the heating of a tritium plasma containing a few percent deuterium. Efficient absorption of wave energy by the deuteron component is found when ω = ω/sub c/ (deuterons), with Q/sub wave/ greater than or equal to 100. The dominant behavior of the high-energy deuteron distribution function is found to be f(v) approximately exp[3/2) ∫/sup v/ dv less than Δv greater than/less than(Δv/sub perpendicular to/) 2 greater than], where [Δv] is the Chandrasekhar-Spitzer drag coefficient, and [(Δv/sub perpendicular to/) 2 sigma] is the Kennel-Englemann quasilinear diffusion coefficient for wave--particle interaction at the deuteron cyclotron frequency. An analytic solution to the one-dimensional Fokker--Planck equation, with rf-induced diffusion, is developed, and using this solution together with Duane's fit to the D-T fusion cross-section, it is found that the nuclear fusion power output from an rf-produced two-component plasma can significantly exceed the incremental (radiofrequency) power input. (auth)

  11. Implementation of two-component advective flow solution in XSPEC

    Science.gov (United States)

    Debnath, Dipak; Chakrabarti, Sandip K.; Mondal, Santanu

    2014-05-01

    Spectral and temporal properties of black hole candidates can be explained reasonably well using Chakrabarti-Titarchuk solution of two-component advective flow (TCAF). This model requires two accretion rates, namely the Keplerian disc accretion rate and the halo accretion rate, the latter being composed of a sub-Keplerian, low-angular-momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disc rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time, we made it user friendly by implementing it into XSPEC software of Goddard Space Flight Center (GSFC)/NASA. This enables any user to extract physical parameters of the accretion flows, such as two accretion rates, the shock location, the shock strength, etc., for any black hole candidate. We provide some examples of fitting a few cases using this model. Most importantly, unlike any other model, we show that TCAF is capable of predicting timing properties from the spectral fits, since in TCAF, a shock is responsible for deciding spectral slopes as well as quasi-periodic oscillation frequencies. L86

  12. Light-front QCD. II. Two-component theory

    International Nuclear Information System (INIS)

    Zhang, W.; Harindranath, A.

    1993-01-01

    The light-front gauge A a + =0 is known to be a convenient gauge in practical QCD calculations for short-distance behavior, but there are persistent concerns about its use because of its ''singular'' nature. The study of nonperturbative field theory quantizing on a light-front plane for hadronic bound states requires one to gain a priori systematic control of such gauge singularities. In the second paper of this series we study the two-component old-fashioned perturbation theory and various severe infrared divergences occurring in old-fashioned light-front Hamiltonian calculations for QCD. We also analyze the ultraviolet divergences associated with a large transverse momentum and examine three currently used regulators: an explicit transverse cutoff, transverse dimensional regularization, and a global cutoff. We discuss possible difficulties caused by the light-front gauge singularity in the applications of light-front QCD to both old-fashioned perturbative calculations for short-distance physics and upcoming nonperturbative investigations for hadronic bound states

  13. Physics with Ultracold and Thermal Neutron Beams

    International Nuclear Information System (INIS)

    None

    2004-01-01

    The final report is broken into 5 segments, reflecting research conclusions reached during specific time periods: 1991-1997, 1997-1999, 1999-2000, 2000-2001, and 2001-2002. The first part of the work reported was carried out at the 2 Mw research reactor of the Rhode Island Nuclaer Science Center (RJNSC). Chosen for study was the slow phase separation in mixtures of oil and water in the presence of a surfactant, and the structural features of an oil layer during the slow build-up from the gas phase. The results of these measurements, as well as studies of the capillary wave properties of oil/surfactant/water interfaces are described. The second part of the work was performed at the neutron reflection facilities of the Intennse Pulsed Neutron Source at Argonne and of the NBSR reactor at NIST. At Argonne, the uniaxial magnetic order of an Fe/CR superlattice was investigated, while the experiments at NIST studied the swelling behavior of ordered thin films of diblock copolymers when they were exposed to solvent vapors. The third part of the work was concerned with the storage properties of ultracold neturons in a trap. New experiments on spectral evolution during storage, using the UCN source of the Institut Laue-Langevin were able to be run. Subsequent periods focussed on the ultracold neutrons work, spin valve multilayer systems, and pseudo-partial wetting

  14. Geometric phase effects in ultracold chemistry

    Science.gov (United States)

    Hazra, Jisha; Naduvalath, Balakrishnan; Kendrick, Brian K.

    2016-05-01

    In molecules, the geometric phase, also known as Berry's phase, originates from the adiabatic transport of the electronic wavefunction when the nuclei follow a closed path encircling a conical intersection between two electronic potential energy surfaces. It is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. It arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. Illustrative results are presented for the O+ OH --> H+ O2 reaction and for hydrogen exchange in H+ H2 and D+HD reactions. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and ARO MURI Grant No. W911NF-12-1-0476 (N.B.).

  15. Ultracold atoms and the Functional Renormalization Group

    International Nuclear Information System (INIS)

    Boettcher, Igor; Pawlowski, Jan M.; Diehl, Sebastian

    2012-01-01

    We give a self-contained introduction to the physics of ultracold atoms using functional integral techniques. Based on a consideration of the relevant length scales, we derive the universal effective low energy Hamiltonian describing ultracold alkali atoms. We then introduce the concept of the effective action, which generalizes the classical action principle to full quantum status and provides an intuitive and versatile tool for practical calculations. This framework is applied to weakly interacting degenerate bosons and fermions in the spatial continuum. In particular, we discuss the related BEC and BCS quantum condensation mechanisms. We then turn to the BCS-BEC crossover, which interpolates between both phenomena, and which is realized experimentally in the vicinity of a Feshbach resonance. For its description, we introduce the Functional Renormalization Group approach. After a general discussion of the method in the cold atoms context, we present a detailed and pedagogical application to the crossover problem. This not only provides the physical mechanism underlying this phenomenon. More generally, it also reveals how the renormalization group can be used as a tool to capture physics at all scales, from few-body scattering on microscopic scales, through the finite temperature phase diagram governed by many-body length scales, up to critical phenomena dictating long distance physics at the phase transition. The presentation aims to equip students at the beginning PhD level with knowledge on key physical phenomena and flexible tools for their description, and should enable to embark upon practical calculations in this field.

  16. Shear viscosity and spin-diffusion coefficient of a two-dimensional Fermi gas

    DEFF Research Database (Denmark)

    Bruun, Georg

    2012-01-01

    Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components. It is demonstr......Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components....... It is demonstrated that the minimum value of the viscosity decreases with the mass ratio, since Fermi blocking becomes less efficient. We furthermore analyze recent experimental results for the quadrupole mode of a two-dimensional gas in terms of viscous damping, obtaining a qualitative agreement using no fitting...

  17. The two-component afterglow of Swift GRB 050802

    Science.gov (United States)

    Oates, S. R.; de Pasquale, M.; Page, M. J.; Blustin, A. J.; Zane, S.; McGowan, K.; Mason, K. O.; Poole, T. S.; Schady, P.; Roming, P. W. A.; Page, K. L.; Falcone, A.; Gehrels, N.

    2007-09-01

    This paper investigates GRB 050802, one of the best examples of a Swift gamma-ray burst afterglow that shows a break in the X-ray light curve, while the optical counterpart decays as a single power law. This burst has an optically bright afterglow of 16.5 mag, detected throughout the 170-650nm spectral range of the Ultraviolet and Optical Telescope (UVOT) onboard Swift. Observations began with the X-ray Telescope and UVOT telescopes 286s after the initial trigger and continued for 1.2 ×106s. The X-ray light curve consists of three power-law segments: a rise until 420s, followed by a slow decay with α =0.63 +/-0.03 until 5000s, after which, the light curve decays faster with a slope of α3 =1.59 +/-0.03. The optical light curve decays as a single power law with αO =0.82 +/-0.03 throughout the observation. The X-ray data on their own are consistent with the break at 5000s being due to the end of energy injection. Modelling the optical to X-ray spectral energy distribution, we find that the optical afterglow cannot be produced by the same component as the X-ray emission at late times, ruling out a single-component afterglow. We therefore considered two-component jet models and find that the X-ray and optical emission is best reproduced by a model in which both components are energy injected for the duration of the observed afterglow and the X-ray break at 5000s is due to a jet break in the narrow component. This bright, well-observed burst is likely a guide for interpreting the surprising finding of Swift that bursts seldom display achromatic jet breaks.

  18. Complexation in two-component chlortetracycline-melanin solutions

    Science.gov (United States)

    Lapina, V. A.; Pershukevich, P. P.; Dontsov, A. E.; Bel'Kov, M. V.

    2008-01-01

    The spectra and kinetics of fluorescence of two-component solutions of the chlortetracycline (CHTC)-DOPA-melanin (melanin or ME) system in water have been investigated. The data obtained have been compared to similar data for solutions of CHTC-melanosome from bull eye (MB), which contains natural melanin, in K-phosphate buffer at pH 7.4. The overall results indicate the occurrence of complexation between molecules of CHTC and ME as they are being excited. The studies of complexation in the solution of CHTC-MB in the buffer are complicated by the formation of a CHTC-buffer complex. The effect of optical radiation in the range 330-750 nm on the CHTC-ME complex shows selectivity: the greatest change in the spectrum occurs when the wavelength of the exciting radiation coincides with the long-wavelength band maximum of the fluorescence excitation spectrum of the CHTC-ME complex in aqueous solution. In this range, CHTC and especially ME show high photochemical stability. The nature of the radiation effect on the studied compounds in the hard UV range (λ < 330 nm) differs greatly from that in the range 330-750 nm. It is apparently accompanied by significant photochemical transmutations of all system components. By comparing the characteristics of the CHTC-ME systems with those of the related drug doxycycline (DC-ME), the conclusion has been made that the chlorine atom plays a vital role in formation of the short-wavelength band in the fluorescence spectrum of the CHTC-ME complex.

  19. Two component systems: physiological effect of a third component.

    Directory of Open Access Journals (Sweden)

    Baldiri Salvado

    Full Text Available Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS. These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK and by a response regulator (RR that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call "third component" on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible.

  20. The fractional virial potential energy in two-component systems

    Directory of Open Access Journals (Sweden)

    Caimmi R.

    2008-01-01

    Full Text Available Two-component systems are conceived as macrogases, and the related equation of state is expressed using the virial theorem for subsystems, under the restriction of homeoidally striated density profiles. Explicit calculations are performed for a useful reference case and a few cases of astrophysical interest, both with and without truncation radius. Shallower density profiles are found to yield an equation of state, φ = φ(y, m, characterized (for assigned values of the fractional mass, m = Mj /Mi by the occurrence of two extremum points, a minimum and a maximum, as found in an earlier attempt. Steeper density profiles produce a similar equation of state, which implies that a special value of m is related to a critical curve where the above mentioned extremum points reduce to a single horizontal inflexion point, and curves below the critical one show no extremum points. The similarity of the isofractional mass curves to van der Waals' isothermal curves, suggests the possibility of a phase transition in a bell-shaped region of the (Oyφ plane, where the fractional truncation radius along a selected direction is y = Rj /Ri , and the fractional virial potential energy is φ = (Eji vir /(Eij vir . Further investigation is devoted to mass distributions described by Hernquist (1990 density profiles, for which an additional relation can be used to represent a sample of N = 16 elliptical galaxies (EGs on the (Oyφ plane. Even if the evolution of elliptical galaxies and their hosting dark matter (DM haloes, in the light of the model, has been characterized by equal fractional mass, m, and equal scaled truncation radius, or concentration, Ξu = Ru /r† , u = i, j, still it cannot be considered as strictly homologous, due to different values of fractional truncation radii, y, or fractional scaling radii, y† = r† /r† , deduced from sample objects.

  1. A compound parabolic concentrator as an ultracold neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hickerson, K.P., E-mail: hickerson@gmail.com; Filippone, B.W., E-mail: bradf@caltech.edu

    2013-09-01

    The design principles of nonimaging optics are applied to ultracold neutrons (UCN). In particular a vertical compound parabolic concentrator (CPC) that efficiently redirects UCN vertically into a bounded spatial volume where they have a maximum energy mga that depends only on the initial phase space cross sectional area πa{sup 2} creates a spectrometer which can be applied to neutron lifetime and gravitational quantum state experiments. -- Highlights: • Nonimaging optics is applied to ultracold neutrons. • A novel ultracold neutron spectrometer is discussed. • New uses may include a neutron lifetime experiment.

  2. A compound parabolic concentrator as an ultracold neutron spectrometer

    International Nuclear Information System (INIS)

    Hickerson, K.P.; Filippone, B.W.

    2013-01-01

    The design principles of nonimaging optics are applied to ultracold neutrons (UCN). In particular a vertical compound parabolic concentrator (CPC) that efficiently redirects UCN vertically into a bounded spatial volume where they have a maximum energy mga that depends only on the initial phase space cross sectional area πa 2 creates a spectrometer which can be applied to neutron lifetime and gravitational quantum state experiments. -- Highlights: • Nonimaging optics is applied to ultracold neutrons. • A novel ultracold neutron spectrometer is discussed. • New uses may include a neutron lifetime experiment

  3. Fermi comes to CERN

    CERN Multimedia

    NASA

    2009-01-01

    1. This view from NASA's Fermi Gamma-ray Space Telescope is the deepest and best-resolved portrait of the gamma-ray sky to date. The image shows how the sky appears at energies more than 150 million times greater than that of visible light. Among the signatures of bright pulsars and active galaxies is something familiar -- a faint path traced by the sun. (Credit: NASA/DOE/Fermi LAT Collaboration) 2. The Large Area Telescope (LAT) on Fermi detects gamma-rays through matter (electrons) and antimatter (positrons) they produce after striking layers of tungsten. (Credit: NASA/Goddard Space Flight Center Conceptual Image Lab)

  4. Efimov three-body states on top of a Fermi sea

    International Nuclear Information System (INIS)

    Nygaard, Nicolai Gayle; Zinner, Nikolaj Thomas

    2014-01-01

    The stabilization of Cooper pairs of bound electrons in the background of a Fermi sea is the origin of superconductivity and the paradigmatic example of the striking influence of many-body physics on few-body properties. In the quantum-mechanical three-body problem the famous Efimov effect yields unexpected scaling relations among a tower of universal states. These seemingly unrelated problems can now be studied in the same setup thanks to the success of ultracold atomic gas experiments. In light of the tremendous effect of a background Fermi sea on two-body properties, a natural question is whether a background can modify or even destroy the Efimov effect. Here we demonstrate how the generic problem of three interacting particles changes when one particle is embedded in a background Fermi sea, and show that Efimov scaling persists. It is found in a scaling that relates the three-body physics to the background density of fermionic particles

  5. The Fractional Virial Potential Energy in Two-Component Systems

    Directory of Open Access Journals (Sweden)

    Caimmi, R.

    2008-12-01

    Full Text Available Two-component systems are conceived as macrogases, and the related equation of state is expressed using the virial theorem for subsystems, under the restriction of homeoidally striated density profiles. Explicit calculations are performed for a useful reference case and a few cases of astrophysical interest, both with and without truncation radius. Shallower density profiles are found to yield an equation of state, $phi=phi(y,m$, characterized (for assigned values of the fractional mass, $m=M_j/ M_i$ by the occurrence of two extremum points, a minimum and a maximum, as found in an earlier attempt. Steeper density profiles produce a similar equation of state, which implies that a special value of $m$ is related to a critical curve where the above mentioned extremum points reduce to a single horizontal inflexion point, and curves below the critical one show no extremum points. The similarity of the isofractional mass curves to van der Waals' isothermal curves, suggests the possibility of a phase transition in a bell-shaped region of the $({sf O}yphi$ plane, where the fractional truncation radius along a selected direction is $y=R_j/R_i$, and the fractional virial potential energy is $phi=(E_{ji}_mathrm{vir}/(E_{ij}_mathrm{vir}$. Further investigation is devoted to mass distributions described by Hernquist (1990 density profiles, for which an additional relation can be used to represent a sample of $N=16$ elliptical galaxies (EGs on the $({sf O}yphi$ plane. Even if the evolution of elliptical galaxies and their hosting dark matter (DM haloes, in the light of the model, has been characterized by equal fractional mass, $m$, and equal scaled truncation radius, or concentration, $Xi_u=R_u/r_u^dagger$, $u=i,j$, still it cannot be considered as strictly homologous, due to different values of fractional truncation radii, $y$, or fractional scaling radii, $y^dagger=r_j^dagger/r_i^dagger$, deduced from sample objects.

  6. Evolution of the Normal State of a Strongly Interacting Fermi Gas from a Pseudogap Phase to a Molecular Bose Gas

    International Nuclear Information System (INIS)

    Perali, A.; Palestini, F.; Pieri, P.; Strinati, G. C.; Stewart, J. T.; Gaebler, J. P.; Drake, T. E.; Jin, D. S.

    2011-01-01

    Wave-vector resolved radio frequency spectroscopy data for an ultracold trapped Fermi gas are reported for several couplings at T c , and extensively analyzed in terms of a pairing-fluctuation theory. We map the evolution of a strongly interacting Fermi gas from the pseudogap phase into a fully gapped molecular Bose gas as a function of the interaction strength, which is marked by a rapid disappearance of a remnant Fermi surface in the single-particle dispersion. We also show that our theory of a pseudogap phase is consistent with a recent experimental observation as well as with quantum Monte Carlo data of thermodynamic quantities of a unitary Fermi gas above T c .

  7. Fermi GBM Trigger Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...

  8. Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases

    International Nuclear Information System (INIS)

    Gottwald, Tobias

    2010-01-01

    In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe

  9. Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases

    Energy Technology Data Exchange (ETDEWEB)

    Gottwald, Tobias

    2010-08-27

    In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe

  10. High-Flux Ultracold-Atom Chip Interferometers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ColdQuanta's ultimate objective is to produce a compact, turnkey, ultracold-atom system specifically designed for performing interferometry with Bose-Einstein...

  11. Cold and ultracold molecules: science, technology and applications

    International Nuclear Information System (INIS)

    Carr, Lincoln D; DeMille, David; Krems, Roman V; Ye Jun

    2009-01-01

    This paper presents a review of the current state of the art in the research field of cold and ultracold molecules. It serves as an introduction to the focus issue of New Journal of Physics on Cold and Ultracold Molecules and describes new prospects for fundamental research and technological development. Cold and ultracold molecules may revolutionize physical chemistry and few-body physics, provide techniques for probing new states of quantum matter, allow for precision measurements of both fundamental and applied interest, and enable quantum simulations of condensed-matter phenomena. Ultracold molecules offer promising applications such as new platforms for quantum computing, precise control of molecular dynamics, nanolithography and Bose-enhanced chemistry. The discussion is based on recent experimental and theoretical work and concludes with a summary of anticipated future directions and open questions in this rapidly expanding research field.

  12. Synthesis and Characterization of Two Component Alloy Nanoparticles

    Science.gov (United States)

    Tabatabaei, Salomeh

    Alloying is an old trick used to produce new materials by synergistically combining at least two components. New developments in nanoscience have enabled new degrees of freedom, such as size, solubility and concentration of the alloying element to be utilized in the design of the physical properties of alloy nanoparticles (ANPs). ANPs as multi-functional materials have applications in catalysis, biomedical technologies and electronics. Phase diagrams of ANPs are very little known and may not represent that of bulk picture, furthermore, ANPs with different crystallite orientation and compositions could remain far from equilibrium. Here, we studied the synthesis and stability of Au-Sn and Ag-Ni ANPs with chemical reduction method at room temperature. Due to the large difference in the redox potentials of Au and Sn, co-reduction is not a reproducible method. However, two step successive reductions was found to be more reliable to generate Au-Sn ANPs which consists of forming clusters in the first step (either without capping agent or with weakly coordinated surfactant molecules) and then undergoing a second reduction step in the presence of another metal salt. Our observation also showed that capping agents (Cetrimonium bromide or (CTAB)) and Polyacrylic acid (PAA)) play a key role in the alloying process and shorter length capping agent (PAA) may facilitate the diffusion of individual components and thus enabling better alloying. Different molar ratios of Sn and Au precursors were used to study the effect of alloying elements on the melting point and the crystalline structures and melting points were determined by various microscopy and spectroscopy techniques and differential scanning calorimetry (DSC). A significant depression (up to150°C) in the melting transition was observed for the Au-Sn ANPs compared to the bulk eutectic point (Tm 280°C) due to the size and shape effect. Au-Sn ANPs offer a unique set of advantages as lead-free solder material which can

  13. Enrico Fermi centenary exhibition seminar

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 01: Dr. Juan Antonio Rubio, Leader of the Education and Technology Transfer Division and CERN Director General, Prof. Luciano Maiani. Photo 03: Luciano Maiani, Welcome and Introduction Photo 09: Antonino Zichichi, The New 'Centro Enrico Fermi' at Via Panisperna Photos 10, 13: Ugo Amaldi, Fermi at Via Panisperna and the birth of Nuclear Medicine Photo 14: Jack Steinberger, Fermi in Chicago Photo 18: Valentin Telegdi, A close-up of Fermi Photo 21: Arnaldo Stefanini, Celebrating Fermi's Centenary in Documents and Pictures.

  14. Mesoscopic effects in quantum phases of ultracold quantum gases in optical lattices

    International Nuclear Information System (INIS)

    Carr, L. D.; Schirmer, D. G.; Wall, M. L.; Brown, R. C.; Williams, J. E.; Clark, Charles W.

    2010-01-01

    We present a wide array of quantum measures on numerical solutions of one-dimensional Bose- and Fermi-Hubbard Hamiltonians for finite-size systems with open boundary conditions. Finite-size effects are highly relevant to ultracold quantum gases in optical lattices, where an external trap creates smaller effective regions in the form of the celebrated 'wedding cake' structure and the local density approximation is often not applicable. Specifically, for the Bose-Hubbard Hamiltonian we calculate number, quantum depletion, local von Neumann entropy, generalized entanglement or Q measure, fidelity, and fidelity susceptibility; for the Fermi-Hubbard Hamiltonian we also calculate the pairing correlations, magnetization, charge-density correlations, and antiferromagnetic structure factor. Our numerical method is imaginary time propagation via time-evolving block decimation. As part of our study we provide a careful comparison of canonical versus grand canonical ensembles and Gutzwiller versus entangled simulations. The most striking effect of finite size occurs for bosons: we observe a strong blurring of the tips of the Mott lobes accompanied by higher depletion, and show how the location of the first Mott lobe tip approaches the thermodynamic value as a function of system size.

  15. An endoscopic detector for ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Goeltl, L.; Fertl, M.; Kirch, K. [Paul Scherrer Institute, Laboratory for Particle Physics, Villigen-PSI (Switzerland); Institute for Particle Physics, Zuerich (Switzerland); Chowdhuri, Z.; Henneck, R.; Lauss, B.; Mtchedlishvili, A.; Schmidt-Wellenburg, P.; Zsigmond, G. [Paul Scherrer Institute, Laboratory for Particle Physics, Villigen-PSI (Switzerland); Gray, F. [Regis University, Denver, CO (United States); Lefort, T. [Universite de Caen, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, Caen (France)

    2013-01-15

    A new versatile detector for ultracold neutrons (UCN) has been built and operated which combines multi-pixel photon counters and GS10 lithium-doped scintillators. Such detectors can be very small and can be used to monitor UCN inside storage vessels or guides with negligible influence (of order 10{sup -6}) on the UCN intensity itself. We have shown that such detectors can be used in a very harsh radiation environment of up to 200Gy/h via the addition of a 4m long quartz light guide in order to place the radiation-sensitive photon counters outside the hot zone. Additionally we have measured the UCN storage times in situ in this harsh environment. (orig.)

  16. A multilayer surface detector for ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui, E-mail: zwang@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hoffbauer, M.A.; Morris, C.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Callahan, N.B.; Adamek, E.R. [Indiana University, Bloomington, IN 47405 (United States); Bacon, J.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Blatnik, M. [Cleveland State University, Cleveland, OH 44115 (United States); Brandt, A.E. [North Carolina State University, Raleigh, NC 27695 (United States); Broussard, L.J.; Clayton, S.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cude-Woods, C. [North Carolina State University, Raleigh, NC 27695 (United States); Currie, S. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Dees, E.B. [North Carolina State University, Raleigh, NC 27695 (United States); Ding, X. [Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Gao, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Gray, F.E. [Regis University, Denver, CO 80221 (United States); Hickerson, K.P. [University of California Los Angeles, Los Angeles, CA 90095 (United States); Holley, A.T. [Tennessee Technological University, Cookeville, TN 38505 (United States); Ito, T.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Liu, C.-Y. [Indiana University, Bloomington, IN 47405 (United States); and others

    2015-10-21

    A multilayer surface detector for ultracold neutrons (UCNs) is described. The top {sup 10}B layer is exposed to vacuum and directly captures UCNs. The ZnS:Ag layer beneath the {sup 10}B layer is a few microns thick, which is sufficient to detect the charged particles from the {sup 10}B(n,α){sup 7}Li neutron-capture reaction, while thin enough that ample light due to α and {sup 7}Li escapes for detection by photomultiplier tubes. A 100-nm thick {sup 10}B layer gives high UCN detection efficiency, as determined by the mean UCN kinetic energy, detector materials, and other parameters. Low background, including negligible sensitivity to ambient neutrons, has also been verified through pulse-shape analysis and comparison with other existing {sup 3}He and {sup 10}B detectors. This type of detector has been configured in different ways for UCN flux monitoring, development of UCN guides and neutron lifetime research.

  17. Expansion of an ultracold Rydberg plasma

    Science.gov (United States)

    Forest, Gabriel T.; Li, Yin; Ward, Edwin D.; Goodsell, Anne L.; Tate, Duncan A.

    2018-04-01

    We report a systematic experimental and numerical study of the expansion of ultracold Rydberg plasmas. Specifically, we have measured the asymptotic expansion velocities, v0, of ultracold neutral plasmas (UNPs) which evolve from cold, dense samples of Rydberg rubidium atoms using ion time-of-flight spectroscopy. From this, we have obtained values for the effective initial plasma electron temperature, Te ,0=mionv02/kB (where mion is the Rb+ ion mass), as a function of the original Rydberg atom density and binding energy, Eb ,i. We have also simulated numerically the interaction of UNPs with a large reservoir of Rydberg atoms to obtain data to compare with our experimental results. We find that for Rydberg atom densities in the range 107-109 cm-3, for states with principal quantum number n >40 , Te ,0 is insensitive to the initial ionization mechanism which seeds the plasma. In addition, the quantity kBTe ,0 is strongly correlated with the fraction of atoms which ionize, and is in the range 0.6 ×| Eb ,i|≲ kBTe ,0≲2.5 ×|Eb ,i| . On the other hand, plasmas from Rydberg samples with n ≲40 evolve with no significant additional ionization of the remaining atoms once a threshold number of ions has been established. The dominant interaction between the plasma electrons and the Rydberg atoms is one in which the atoms are deexcited, a heating process for electrons that competes with adiabatic cooling to establish an equilibrium where Te ,0 is determined by their Coulomb coupling parameter, Γe˜0.01 .

  18. Advances in ultracold collisions: Experimentation and theory

    International Nuclear Information System (INIS)

    Weiner, J.

    1995-01-01

    Collisions between optically cooled and trapped atoms have been the subject of intensive investigation since early proposals discussed their novel features and key importance to the achievement of a gaseous ensemble in a single quantum state. Progress in both experimentation and theory has accelerated rapidly over the last three years, and two reviews, one emphasizing theory and the other, experiments, recount the state of the art published up to about the midpoint of 1993. The purpose of this chapter is to update continuing lines of research set forth in these and earlier works and to relate new results, establishing novel directions for investigation that have appeared in the literature. Two principal questions motivate research into the nature of ultracold collisions: (1) what new phenomena arise when collisionally interacting particles also exchange photons with modes of the radiation field and (2) what are the important two-body collisional heating mechanisms and how can they be overcome in order to achieve the temperature and density conditions appropriate for Bose-Einstein condensation (BEC)? In fact these two questions are not mutually exclusive, and one of the most notable developments in the past year, relevant to both, has been the demonstration of optical control of two-body ultracold collisional processes. Other important issues touching, on one or both of these questions are the magnitude and sign of the scattering length in s-wave collisions between species in various well-defined quantum states, progress in high-resolution trap loss and photoassociation spectroscopy, and application of optical cooling and compression to atomic beams. 58 refs., 21 figs

  19. Radio core dominance of Fermi blazars

    Science.gov (United States)

    Pei, Zhi-Yuan; Fan, Jun-Hui; Liu, Yi; Yuan, Yi-Hai; Cai, Wei; Xiao, Hu-Bing; Lin, Chao; Yang, Jiang-He

    2016-07-01

    During the first 4 years of mission, Fermi/LAT detected 1444 blazars (3FGL) (Ackermann et al. in Astrophys. J. 810:14, 2015). Fermi/LAT observations of blazars indicate that Fermi blazars are luminous and strongly variable with variability time scales, for some cases, as short as hours. Those observations suggest a strong beaming effect in Fermi/LAT blazars. In the present work, we will investigate the beaming effect in Fermi/LAT blazars using a core-dominance parameter, R = S_{core}/ S_{ext.}, where S_{core} is the core emission, while S_{ext.} is the extended emission. We compiled 1335 blazars with available core-dominance parameter, out of which 169 blazars have γ-ray emission (from 3FGL). We compared the core-dominance parameters, log R, between the 169 Fermi-detected blazars (FDBs) and the rest non-Fermi-detected blazars (non-FDBs), and we found that the averaged values are R+(2.25±0.10), suggesting that a source with larger log R has larger V.I. value. Thirdly, we compared the mean values of radio spectral index for FDBs and non-FDBs, and we obtained < α_{radio}rangle =0.06±0.35 for FDBs and < α_{radio}rangle =0.57±0.46 for non-FDBs. If γ-rays are composed of two components like radio emission (core and extended components), then we can expect a correlation between log R and the γ-ray spectral index. When we used the radio core-dominance parameter, log R, to investigate the relationship, we found that the spectral index for the core component is α_{γ}|_{core} = 1.11 (a photon spectral index of α_{γ}^{ph}|_{core} = 2.11) and that for the extended component is α_{γ}|_{ext.} = 0.70 (a photon spectral index of α_{γ}^{ph}|_{ext.} = 1.70). Some discussions are also presented.

  20. Enrico Fermi exhibition at CERN

    CERN Multimedia

    2002-01-01

    A touring exhibition celebrating the centenary of Enrico Fermi's birth in 1901 will be on display at CERN (Main Building, Mezzanine) from 12-27 September. You are cordially invited to the opening celebration on Thursday 12 September at 16:00 (Main Building, Council Chamber), which will include speechs from: Luciano Maiani Welcome and Introduction Arnaldo Stefanini Celebrating Fermi's Centenary in Documents and Pictures Antonino Zichichi The New 'Centro Enrico Fermi' at Via Panisperna Ugo Amaldi Fermi at Via Panisperna and the birth of Nuclear Medicine Jack Steinberger Fermi in Chicago Valentin Telegdi A Close-up of Fermi and the screening of a documentary video about Fermi: Scienziati a Pisa: Enrico Fermi (Scientists at Pisa: Enrico Fermi) created by Francesco Andreotti for La Limonaia from early film, photographs and sound recordings (In Italian, with English subtitles - c. 30 mins). This will be followed by an aperitif on the Mezz...

  1. Nuclear physics. Momentum sharing in imbalanced Fermi systems.

    Science.gov (United States)

    Hen, O; Sargsian, M; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; May-Tal Beck, S; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; D'Angelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Roy, P; Rossi, P; Sabatié, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I

    2014-10-31

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems. Copyright © 2014, American Association for the Advancement of Science.

  2. Universal structure of a strongly interacting Fermi gas

    Energy Technology Data Exchange (ETDEWEB)

    Kuhnle, Eva; Dyke, Paul; Hoinka, Sascha; Mark, Michael; Hu Hui; Liu Xiaji; Drummond, Peter; Hannaford, Peter; Vale, Chris, E-mail: cvale@swin.edu.au [ARC Centre of Excellence for Quantum Atom Optics, Swinburne University of Technology, Hawthorn 3122 (Australia)

    2011-01-10

    This paper presents studies of the universal properties of strongly interacting Fermi gases using Bragg spectroscopy. We focus on pair-correlations, their relationship to the contact C introduced by Tan, and their dependence on both the momentum and temperature. We show that short-range pair correlations obey a universal law, first derived by Tan through measurements of the static structure factor, which displays a universal scaling with the ratio of the contact to the momentum C/q. Bragg spectroscopy of ultracold {sup 6}Li atoms is employed to measure the structure factor for a wide range of momenta and interaction strengths, providing broad confirmation of this universal law. We show that calibrating our Bragg spectra using the f-sum rule leads to a dramatic improvement in the accuracy of the structure factor measurement. We also measure the temperature dependence of the contact in a unitary gas and compare our results to calculations based on a virial expansion.

  3. Competition Between Pairing and Ferromagnetic Instabilities in Ultracold Fermi Gases Near Feshbach Resonances

    Science.gov (United States)

    2010-05-13

    see the inset of Fig. 1). Thus, the two-body pairing process becomes for- bidden when the binding energy ∼ 1/ ma2 exceeds the maxi- mum energy that can...matrix in vacuum. For each value of the scattering length, the T-matrix has a line of poles on the BEC side located at ωq = Ωq+i∆q = −1/ ma2 + mq2/4

  4. Spin-orbit coupling in ultracold Fermi gases of 173Yb atoms

    Science.gov (United States)

    Song, Bo; He, Chengdong; Hajiyev, Elnur; Ren, Zejian; Seo, Bojeong; Cai, Geyue; Amanov, Dovran; Zhang, Shanchao; Jo, Gyu-Boong

    2017-04-01

    Synthetic spin-orbit coupling (SOC) in cold atoms opens an intriguing new way to probe nontrivial topological orders beyond natural conditions. Here, we report the realization of the SOC physics both in a bulk system and in an optical lattice. First, we demonstrate two hallmarks induced from SOC in a bulk system, spin dephasing in the Rabi oscillation and asymmetric atomic distribution in the momentum space respectively. Then we describe the observation of non-trivial spin textures and the determination of the topological phase transition in a spin-dependent optical lattice dressed by the periodic Raman field. Furthermore, we discuss the quench dynamics between topological and trivial states by suddenly changing the band topology. Our work paves a new way to study non-equilibrium topological states in a controlled manner. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants).

  5. Fermi comes to CERN

    CERN Multimedia

    2009-01-01

    In only 10 months of scientific activity, the Fermi space observatory has already collected an unprecedented wealth of information on some of the most amazing objects in the sky. In a recent talk at CERN, Luca Latronico, a member of the Fermi collaboration, explained some of their findings and emphasized the strong links between High Energy Physics (HEP) and High Energy Astrophysics (HEA). The Fermi gamma-ray telescope was launched by NASA in June 2008. After about two months of commissioning it started sending significant data back to the Earth. Since then, it has made observations that are changing our view of the sky: from discovering a whole new set of pulsars, the greatest total energy gamma-ray burst ever, to detecting an unexplained abundance of high-energy electrons that could be a signature of dark matter, to producing a uniquely rich and high definition sky map in gamma-rays. The high performance of the instrument comes as ...

  6. Fermi and nuclear security

    International Nuclear Information System (INIS)

    Alcober Bosch, V.

    2003-01-01

    Following the scientific life of Fermi the article reviews the historical evolution of nuclear security from the base of the first system foreseen for the CP-1 critical pile, which made it possible to demonstrate self-sustaining fission reaction, until the mid-fifties by which time the subsequent importance of this concept was perceived. Technological advances have gone hand in hand with the development of the concept of security, and have become a further point to be taken into account in any nuclear installation, and which Fermi always kept in mind during his professional life. (Author) 12 refs

  7. Time-Dependent Impurity in Ultracold Fermions: Orthogonality Catastrophe and Beyond

    Directory of Open Access Journals (Sweden)

    Michael Knap

    2012-12-01

    Full Text Available The recent experimental realization of strongly imbalanced mixtures of ultracold atoms opens new possibilities for studying impurity dynamics in a controlled setting. In this paper, we discuss how the techniques of atomic physics can be used to explore new regimes and manifestations of Anderson’s orthogonality catastrophe (OC, which could not be accessed in solid-state systems. Specifically, we consider a system of impurity atoms, localized by a strong optical-lattice potential, immersed in a sea of itinerant Fermi atoms. We point out that the Ramsey-interference-type experiments with the impurity atoms allow one to study the OC in the time domain, while radio-frequency (RF spectroscopy probes the OC in the frequency domain. The OC in such systems is universal, not only in the long-time limit, but also for all times and is determined fully by the impurity-scattering length and the Fermi wave vector of the itinerant fermions. We calculate the universal Ramsey response and RF-absorption spectra. In addition to the standard power-law contributions, which correspond to the excitation of multiple particle-hole pairs near the Fermi surface, we identify a novel, important contribution to the OC that comes from exciting one extra particle from the bottom of the itinerant band. This contribution gives rise to a nonanalytic feature in the RF-absorption spectra, which shows a nontrivial dependence on the scattering length, and evolves into a true power-law singularity with the universal exponent 1/4 at the unitarity. We extend our discussion to spin-echo-type experiments, and show that they probe more complicated nonequilibirum dynamics of the Fermi gas in processes in which an impurity switches between states with different interaction strength several times; such processes play an important role in the Kondo problem, but remained out of reach in the solid-state systems. We show that, alternatively, the OC can be seen in the energy-counting statistics

  8. Universal Behavior of Pair Correlations in a Strongly Interacting Fermi Gas

    International Nuclear Information System (INIS)

    Kuhnle, E. D.; Hu, H.; Liu, X.-J.; Dyke, P.; Mark, M.; Drummond, P. D.; Hannaford, P.; Vale, C. J.

    2010-01-01

    We show that short-range pair correlations in a strongly interacting Fermi gas follow a simple universal law described by Tan's relations. This is achieved through measurements of the static structure factor which displays a universal scaling proportional to the ratio of Tan's contact to the momentum C/q. Bragg spectroscopy of ultracold 6 Li atoms from a periodic optical potential is used to measure the structure factor for a wide range of momenta and interaction strengths, providing broad confirmation of this universal law. We calibrate our Bragg spectra using the f-sum rule, which is found to improve the accuracy of the structure factor measurement.

  9. Use of ultracold neutrons for condensed-matter studies

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A.

    1997-05-01

    Ultracold neutrons have such low velocities that they are reflected by most materials at all incident angles and can be stored in material bottles for long periods of time during which their intrinsic properties can be studied in great detail. These features have been mainly used for fundamental-physics studies including the detection of a possible neutron electric dipole moment and the precise determination of neutron-decay properties. Ultracold neutrons can also play a role in condensed-matter studies with the help of high-resolution spectrometers that use gravity as a strongly dispersive medium for low-velocity neutrons. Such studies have so far been limited by the low intensity of existing ultracold-neutron sources but could be reconsidered with more intense sources, which are now envisaged. This report provides a broad survey of the properties of ultracold neutrons (including their reflectivity by different types of samples), of ultracold-neutron spectrometers that are compared with other high-resolution instruments, of results obtained in the field of condensed matter with these instruments, and of neutron microscopes. All these subjects are illustrated by numerous examples.

  10. Use of ultracold neutrons for condensed-matter studies

    International Nuclear Information System (INIS)

    Michaudon, A.

    1997-05-01

    Ultracold neutrons have such low velocities that they are reflected by most materials at all incident angles and can be stored in material bottles for long periods of time during which their intrinsic properties can be studied in great detail. These features have been mainly used for fundamental-physics studies including the detection of a possible neutron electric dipole moment and the precise determination of neutron-decay properties. Ultracold neutrons can also play a role in condensed-matter studies with the help of high-resolution spectrometers that use gravity as a strongly dispersive medium for low-velocity neutrons. Such studies have so far been limited by the low intensity of existing ultracold-neutron sources but could be reconsidered with more intense sources, which are now envisaged. This report provides a broad survey of the properties of ultracold neutrons (including their reflectivity by different types of samples), of ultracold-neutron spectrometers that are compared with other high-resolution instruments, of results obtained in the field of condensed matter with these instruments, and of neutron microscopes. All these subjects are illustrated by numerous examples

  11. Berry Fermi liquid theory

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing-Yuan, E-mail: chjy@uchicago.edu [Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL 60637 (United States); Stanford Institute for Theoretical Physics, Stanford University, CA 94305 (United States); Son, Dam Thanh, E-mail: dtson@uchicago.edu [Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL 60637 (United States)

    2017-02-15

    We develop an extension of the Landau Fermi liquid theory to systems of interacting fermions with non-trivial Berry curvature. We propose a kinetic equation and a constitutive relation for the electromagnetic current that together encode the linear response of such systems to external electromagnetic perturbations, to leading and next-to-leading orders in the expansion over the frequency and wave number of the perturbations. We analyze the Feynman diagrams in a large class of interacting quantum field theories and show that, after summing up all orders in perturbation theory, the current–current correlator exactly matches with the result obtained from the kinetic theory. - Highlights: • We extend Landau’s kinetic theory of Fermi liquid to incorporate Berry phase. • Berry phase effects in Fermi liquid take exactly the same form as in Fermi gas. • There is a new “emergent electric dipole” contribution to the anomalous Hall effect. • Our kinetic theory is matched to field theory to all orders in Feynman diagrams.

  12. A tribute to Enrico Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Kubbinga, H. [Groningen Univ. (Netherlands)

    2009-07-01

    This article is a short biography of Enrico Fermi 'The Pope of physics'. His main contributions in theoretical physics have paved the way to quantum electrodynamics and the quantization of the fields. Fermi got also great achievements on beta decay process and on nuclear reactions brought about by slow neutrons. Fermi was awarded the Nobel prize of physics in 1938

  13. SO(3) "Nuclear Physics" with ultracold Gases

    Science.gov (United States)

    Rico, E.; Dalmonte, M.; Zoller, P.; Banerjee, D.; Bögli, M.; Stebler, P.; Wiese, U.-J.

    2018-06-01

    An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental SU(3) gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an SO(3) lattice gauge theory as a toy model for QCD. We show that this model is accessible to state-of-the-art quantum simulation experiments with ultracold atoms in an optical lattice. First, we demonstrate that our model shares characteristic many-body features with QCD, such as the spontaneous breakdown of chiral symmetry, its restoration at finite baryon density, as well as the existence of few-body bound states. Then we show that in the one-dimensional case, the dynamics in the gauge invariant sector can be encoded as a spin S = 3/2 Heisenberg model, i.e., as quantum magnetism, which has a natural realization with bosonic mixtures in optical lattices, and thus sheds light on the connection between non-Abelian gauge theories and quantum magnetism.

  14. Thermometry of ultracold atoms by electromagnetically induced transparency

    Science.gov (United States)

    Peters, Thorsten; Wittrock, Benjamin; Blatt, Frank; Halfmann, Thomas; Yatsenko, Leonid P.

    2012-06-01

    We report on systematic numerical and experimental investigations of electromagnetically induced transparency (EIT) to determine temperatures in an ultracold atomic gas. The technique relies on the strong dependence of EIT on atomic motion (i.e., Doppler shifts), when the relevant atomic transitions are driven with counterpropagating probe and control laser beams. Electromagnetically induced transparency permits thermometry with satisfactory precision over a large temperature range, which can be addressed by the appropriate choice of Rabi frequency in the control beam. In contrast to time-of-flight techniques, thermometry by EIT is fast and nondestructive, i.e., essentially it does not affect the ultracold medium. In an experimental demonstration we apply both EIT and time-of-flight measurements to determine temperatures along different symmetry axes of an anisotropic ultracold gas. As an interesting feature we find that the temperatures in the anisotropic atom cloud vary in different directions.

  15. Emulating Molecular Orbitals and Electronic Dynamics with Ultracold Atoms

    Directory of Open Access Journals (Sweden)

    Dirk-Sören Lühmann

    2015-08-01

    Full Text Available In recent years, ultracold atoms in optical lattices have proven their great value as quantum simulators for studying strongly correlated phases and complex phenomena in solid-state systems. Here, we reveal their potential as quantum simulators for molecular physics and propose a technique to image the three-dimensional molecular orbitals with high resolution. The outstanding tunability of ultracold atoms in terms of potential and interaction offer fully adjustable model systems for gaining deep insight into the electronic structure of molecules. We study the orbitals of an artificial benzene molecule and discuss the effect of tunable interactions in its conjugated π electron system with special regard to localization and spin order. The dynamical time scales of ultracold atom simulators are on the order of milliseconds, which allows for the time-resolved monitoring of a broad range of dynamical processes. As an example, we compute the hole dynamics in the conjugated π system of the artificial benzene molecule.

  16. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    Science.gov (United States)

    Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob

    2013-05-01

    We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.

  17. A device for simultaneous spin analysis of ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Afach, S. [Institute for Particle Physics, ETH Zuerich, Zuerich (Switzerland); Paul Scherrer Institute, Villigen-PSI (Switzerland); Jena University Hospital, Hans Berger Department of Neurology, Jena (Germany); Ban, G.; Lefort, T.; Lemiere, Y.; Naviliat-Cuncic, O.; Quemener, G. [Universite de Caen, CNRS/IN2P3, LPC Caen ENSICAEN, Caen (France); Bison, G.; Chowdhuri, Z.; Daum, M.; Henneck, R.; Lauss, B.; Mtchedlishvili, A.; Schmidt-Wellenburg, P.; Zsigmond, G. [Paul Scherrer Institute, Villigen-PSI (Switzerland); Bodek, K.; Rawlik, M.; Rozpedzik, D.; Zejma, J. [Jagiellonian University, Marian Smoluchowski Institute of Physics, Cracow (Poland); Fertl, M.; Franke, B.; Kirch, K.; Komposch, S. [Institute for Particle Physics, ETH Zuerich, Zuerich (Switzerland); Paul Scherrer Institute, Villigen-PSI (Switzerland); Geltenbort, P. [Institut Laue-Langevin, Grenoble (France); Grujic, Z.D.; Kasprzak, M.; Weis, A. [University of Fribourg, Physics Department, Fribourg (Switzerland); Hayen, L.; Severijns, N.; Wursten, E. [Katholieke Universiteit Leuven, Instituut voor Kernen Stralingsfysica, Leuven (Belgium); Helaine, V. [Paul Scherrer Institute, Villigen-PSI (Switzerland); Universite de Caen, CNRS/IN2P3, LPC Caen ENSICAEN, Caen (France); Kermaidic, Y.; Pignol, G.; Rebreyend, D. [Universite Grenoble Alpes, CNRS/IN2P3, LPSC, Grenoble (France); Kozela, A. [Henryk Niedwodniczanski Institute for Nuclear Physics, Cracow (Poland); Krempel, J.; Piegsa, F.M. [Institute for Particle Physics, ETH Zuerich, Zuerich (Switzerland); Prashanth, P.N. [Paul Scherrer Institute, Villigen-PSI (Switzerland); Katholieke Universiteit Leuven, Instituut voor Kernen Stralingsfysica, Leuven (Belgium); Ries, D. [Paul Scherrer Institute, Villigen-PSI (Switzerland); Jena University Hospital, Hans Berger Department of Neurology, Jena (Germany); Roccia, S. [Universite Paris Sud, CNRS/IN2P3, CSNSM, Orsay campus (France); Wyszynski, G. [Institute for Particle Physics, ETH Zuerich, Zuerich (Switzerland); Jagiellonian University, Marian Smoluchowski Institute of Physics, Cracow (Poland)

    2015-11-15

    We report on the design and first tests of a device allowing for measurement of ultracold neutrons polarisation by means of the simultaneous analysis of the two spin components. The device was developed in the framework of the neutron electric dipole moment experiment at the Paul Scherrer Institute. Individual parts and the entire newly built system have been characterised with ultracold neutrons. The gain in statistical sensitivity obtained with the simultaneous spin analyser is (18.2 ± 6.1) % relative to the former sequential analyser under nominal running conditions. (orig.)

  18. Ultracold and very cold neutron facility in KUR

    International Nuclear Information System (INIS)

    Kawabata, Yuji; Utsuro, Masahiko

    1992-01-01

    The present status of the ultracold and very cold neutron facility installed in the Kyoto University Reactor (KUR) is described in this presentation. It consists of a VCN (very cold neutrons) guide tube, a VCN bender and a supermirror neutron turbine. The guide tube extracts VCN from a liquid deuterium cold neutron source in a graphite thermal column and the neutron turbine converts VCN to UCN (ultracold neutrons). As for the utilization of the present facility, VCN radiography and an UCN gravity spectrometer are shown for the practical examples of the research with VCN and UCN. (author)

  19. Preparation of Ultracold Atom Clouds at the Shot Noise Level

    DEFF Research Database (Denmark)

    Gajdacz, M.; Hilliard, A. J.; Kristensen, Mick

    2016-01-01

    We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^6 is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔN... on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level....

  20. Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas

    Science.gov (United States)

    Adams, Allan; Carr, Lincoln D.; Schaefer, Thomas; Steinberg, Peter; Thomas, John E.

    2013-04-01

    The last few years have witnessed a dramatic convergence of three distinct lines of research concerned with different kinds of extreme quantum matter. Two of these involve new quantum fluids that can be studied in the laboratory, ultracold quantum gases and quantum chromodynamics (QCD) plasmas. Even though these systems involve vastly different energy scales, the physical properties of the two quantum fluids are remarkably similar. The third line of research is based on the discovery of a new theoretical tool for investigating the properties of extreme quantum matter, holographic dualties. The main goal of this focus issue is to foster communication and understanding between these three fields. We proceed to describe each in more detail. Ultracold quantum gases offer a new paradigm for the study of nonperturbative quantum many-body physics. With widely tunable interaction strength, spin composition, and temperature, using different hyperfine states one can model spin-1/2 fermions, spin-3/2 fermions, and many other spin structures of bosons, fermions, and mixtures thereof. Such systems have produced a revolution in the study of strongly interacting Fermi systems, for example in the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover region, where a close collaboration between experimentalists and theorists—typical in this field—enabled ground-breaking studies in an area spanning several decades. Half-way through this crossover, when the scattering length characterizing low-energy collisions diverges, one obtains a unitary quantum gas, which is universal and scale invariant. The unitary gas has close parallels in the hydrodynamics of QCD plasmas, where the ratio of viscosity to entropy density is extremely low and comparable to the minimum viscosity conjecture, an important prediction of AdS/CFT (see below). Exciting developments in the thermodynamic and transport properties of strongly interacting Fermi gases are of broad

  1. Ultracold chromium: a dipolar quantum gas

    International Nuclear Information System (INIS)

    Pfau, T.; Stuhler, J.; Griesmaier, A.; Fattori, M.; Koch, T.

    2005-01-01

    We report on our recent achievement of a Bose-Einstein condensate in a gas of chromium atoms. Peculiar electronic and magnetic properties of chromium require the implementation of novel cooling strategies. We observe up to ∼ 10 5 condensed 52 Cr atoms after forced evaporation within a crossed optical dipole trap. Due to its large magnetic moment (6μ B ), the dipole-dipole interaction strength in chromium is comparable with the one of the van der Waals interaction. We prove the anisotropic nature of the dipolar interaction by releasing the condensate from a cigar shaped trap and observe, in time of flight measurements, the change of the aspect-ratio for different in-trap orientations of the atomic dipoles. We also report on the recent observation of 14 Feshbach resonances in elastic collisions between polarized ultra-cold 52 Cr atoms. This is the first Ballistic expansion of a dipolar quantum gas: The anisotropic interaction leads to a different expansion dynamics for the case of the magnetic dipoles aligned with the symmetry axis of the cigar shaped trap as compared with the dipoles oriented perpendicular to the axis of the cigar. The straight lines correspond to the theoretical expectation according to mean field theory without free parameters. observation of collisional Feshbach resonances in an atomic species with more than one valence electron. Moreover, such resonances constitute an important tool towards the realization of a purely dipolar interacting gas because they can be used to change strength and sign of the van der Waals interaction. (author)

  2. Engineering frequency-dependent superfluidity in Bose-Fermi mixtures

    Science.gov (United States)

    Arzamasovs, Maksims; Liu, Bo

    2018-04-01

    Unconventional superconductivity and superfluidity are among the most exciting and fascinating quantum phenomena in condensed-matter physics. Usually such states are characterized by nontrivial spin or spatial symmetry of the pairing order parameter, such as "spin triplet" or "p wave." However, besides spin and spatial dependence the order parameter may have unconventional frequency dependence which is also permitted by Fermi-Dirac statistics. Odd-frequency fermionic pairing is an exciting paradigm when discussing exotic superfluidity or superconductivity and is yet to be realized in experiments. In this paper we propose a symmetry-based method of controlling frequency dependence of the pairing order parameter via manipulating the inversion symmetry of the system. First, a toy model is introduced to illustrate that frequency dependence of the order parameter can be achieved through our proposed approach. Second, by taking advantage of recent rapid developments in producing spin-orbit-coupled dispersions in ultracold gases, we propose a Bose-Fermi mixture to realize such frequency-dependent superfluid. The key idea is introducing the frequency-dependent attraction between fermions mediated by Bogoliubov phonons with asymmetric dispersion. Our proposal should pave an alternative way for exploring frequency-dependent superfluids with cold atoms.

  3. Stability of spinor Fermi gases in tight waveguides

    International Nuclear Information System (INIS)

    Campo, A. del; Muga, J. G.; Girardeau, M. D.

    2007-01-01

    The two- and three-body correlation functions of the ground state of an optically trapped ultracold spin-(1/2) Fermi gas (SFG) in a tight waveguide [one-dimensional (1D) regime] are calculated in the plane of even- and odd-wave coupling constants, assuming a 1D attractive zero-range odd-wave interaction induced by a 3D p-wave Feshbach resonance, as well as the usual repulsive zero-range even-wave interaction stemming from 3D s-wave scattering. The calculations are based on the exact mapping from the SFG to a 'Lieb-Liniger-Heisenberg' model with delta-function repulsions depending on isotropic Heisenberg spin-spin interactions, and indicate that the SFG should be stable against three-body recombination in a large region of the coupling constant plane encompassing parts of both the ferromagnetic and antiferromagnetic phases. However, the limiting case of the fermionic Tonks-Girardeau gas, a spin-aligned 1D Fermi gas with infinitely attractive p-wave interactions, is unstable in this sense. Effects due to the dipolar interaction and a Zeeman term due to a resonance-generating magnetic field do not lead to shrinkage of the region of stability of the SFG

  4. A two-component dark matter model with real singlet scalars ...

    Indian Academy of Sciences (India)

    2016-01-05

    component dark matter model with real singlet scalars confronting GeV -ray excess from galactic centre and Fermi bubble. Debasish Majumdar Kamakshya Prasad Modak Subhendu Rakshit. Special: Cosmology Volume 86 Issue ...

  5. Quantum information entropies of ultracold atomic gases in a ...

    Indian Academy of Sciences (India)

    bosonic systems and a ≃ 1.982 and b = 1 for ideal fermionic systems. These results obey the entropic uncertainty relation given by Beckner, Bialynicki-Birula and Myceilski. Keywords. Ultracold atomic gases; information entropy; foundations of quantum mechanics. PACS Nos 67.85.−d; 89.70.Cf; 03.65.Ta. 1. Introduction.

  6. Photodissociation of ultracold diatomic strontium molecules with quantum state control.

    Science.gov (United States)

    McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T

    2016-07-07

    Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.

  7. Manipulating collective quantum states of ultracold atoms by probing

    DEFF Research Database (Denmark)

    Wade, Andrew Christopher James

    2015-01-01

    The field of cold gases has grown dramatically over the past few decades. The exquisite experimental control of their environment and properties has lead to landmark achievements, and has motivated the pursuit of quantum technologies with ultracold atoms. At the same time, the theory of measureme......The field of cold gases has grown dramatically over the past few decades. The exquisite experimental control of their environment and properties has lead to landmark achievements, and has motivated the pursuit of quantum technologies with ultracold atoms. At the same time, the theory...... of measurements on quantum systems has grown into a well established field. Experimental demonstrations of nondestructive continuous measurements on individual quantum systems now occur in many laboratories. Such experiments with ultracold atoms have shown great progress, but the exploitation of the quantum...... nature of the measurement interaction and backaction is yet to be realised. This dissertation is concerned with ultracold atoms and their control via fully quantum mechanical probes. Nonclassical, squeezed and entangled states of matter and single photon sources are important for fundamental studies...

  8. Experimental testing of the dispersion law of ultracold neutrons

    International Nuclear Information System (INIS)

    Bondarenko, I.V.; Krasnoperov, A.V.; Frank, A.I.; Geltenbort, P.; Hoghoj, P.; Klein, A.G.; Cimmino, A.; Masalovich, S.V.; Nosov, V.G.

    1998-01-01

    Experiment on testing the generally accepted laws on ultracold neutron dispersion is described. The experiment is based on search of displacement lines of a neutron interference filter resonance by variation of neutrons rapidity component, parallel to the filter surface. The first results testify to the presence of statistically meaningful effect

  9. Depolarization of ultracold neutrons during their storage in material bottles

    International Nuclear Information System (INIS)

    Serebrov, A.P.; Lasakov, M.S.; Vassiljev, A.V.; Krasnoschekova, I.A.; Rudnev, Yu.P.; Fomin, A.K.; Varlamov, V.E.; Geltenbort, P.; Butterworth, J.; Young, A.R.; Pesavento, U.

    2003-01-01

    The depolarization of ultracold neutrons (UCN) during their storage in traps has been investigated. The neutron spin-flip probability for the materials studied amounts to ∼(1-2)x10 -5 per collision and does not depend on the temperature. The possible connection between the phenomenon of UCN depolarization and that of anomalous losses is discussed

  10. Depolarization of ultracold neutrons during their storage in material bottles

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A.P.; Lasakov, M.S.; Vassiljev, A.V.; Krasnoschekova, I.A.; Rudnev, Yu.P.; Fomin, A.K.; Varlamov, V.E.; Geltenbort, P.; Butterworth, J.; Young, A.R.; Pesavento, U

    2003-07-14

    The depolarization of ultracold neutrons (UCN) during their storage in traps has been investigated. The neutron spin-flip probability for the materials studied amounts to {approx}(1-2)x10{sup -5} per collision and does not depend on the temperature. The possible connection between the phenomenon of UCN depolarization and that of anomalous losses is discussed.

  11. On a magnet configuration for confining ultracold neutrons

    International Nuclear Information System (INIS)

    Abov, Yu.G.; Vasil'ev, V.V.; Vladimirskij, V.V.; Krupchitskij, P.A.; Rissukhin, V.K.

    1977-01-01

    A magnetic system for experiments on the ultracold neutron confinement is described. The magnetic field calculation results are given. They make it possible to select the geometric places of points in which the neutron depolarization may appear and to suggest the way for diminishing the depolarization

  12. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    DEFF Research Database (Denmark)

    Gajdacz, Miroslav; Pedersen, Poul Lindholm; Mørch, Troels

    2013-01-01

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit...

  13. Fermi surfaces in Kondo insulators

    Science.gov (United States)

    Liu, Hsu; Hartstein, Máté; Wallace, Gregory J.; Davies, Alexander J.; Ciomaga Hatnean, Monica; Johannes, Michelle D.; Shitsevalova, Natalya; Balakrishnan, Geetha; Sebastian, Suchitra E.

    2018-04-01

    We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB12 and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB12 exhibit similarities with the Kondo insulator SmB6, yet also crucial differences. Small heavy Fermi sections are observed in YbB12 with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB6 which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields.

  14. A Class of Two-Component Adler—Bobenko—Suris Lattice Equations

    International Nuclear Information System (INIS)

    Fu Wei; Zhang Da-Jun; Zhou Ru-Guang

    2014-01-01

    We study a class of two-component forms of the famous list of the Adler—Bobenko—Suris lattice equations. The obtained two-component lattice equations are still consistent around the cube and they admit solutions with ‘jumping properties’ between two levels. (general)

  15. Microscopy of 2D Fermi gases. Exploring excitations and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Morgener, Kai Henning

    2014-12-08

    This thesis presents experiments on three-dimensional (3D) and two-dimensional (2D) ultracold fermionic {sup 6}Li gases providing local access to microscopic quantum many-body physics. A broad magnetic Feshbach resonance is used to tune the interparticle interaction strength freely to address the entire crossover between the Bose-Einstein-Condensate (BEC) and Bardeen-Cooper-Schrieffer (BCS) regime. We map out the critical velocity in the crossover from BEC to BCS superfluidity by moving a small attractive potential through the 3D cloud. We compare the results with theoretical predictions and achieve quantitative understanding in the BEC regime by performing numerical simulations. Of particular interest is the regime of strong correlations, where no theoretical predictions exist. In the BEC regime, the critical velocity should be closely related to the speed of sound, according to the Landau criterion and Bogolyubov theory. We measure the sound velocity by exciting a density wave and tracking its propagation. The focus of this thesis is on our first experiments on general properties of quasi-2D Fermi gases. We realize strong vertical confinement by generating a 1D optical lattice by intersecting two blue-detuned laser beams under a steep angle. The large resulting lattice spacing enables us to prepare a single planar quantum gas deeply in the 2D regime. The first measurements of the speed of sound in quasi-2D gases in the BEC-BCS crossover are presented. In addition, we present preliminary results on the pressure equation of state, which is extracted from in-situ density profiles. Since the sound velocity is directly connected to the equation of state, the results provide a crosscheck of the speed of sound. Moreover, we benchmark the derived sound from available equation of state predictions, find very good agreement with recent numerical calculations, and disprove a sophisticated mean field approach. These studies are carried out with a novel apparatus which has

  16. Methods of producing epoxides from alkenes using a two-component catalyst system

    Science.gov (United States)

    Kung, Mayfair C.; Kung, Harold H.; Jiang, Jian

    2013-07-09

    Methods for the epoxidation of alkenes are provided. The methods include the steps of exposing the alkene to a two-component catalyst system in an aqueous solution in the presence of carbon monoxide and molecular oxygen under conditions in which the alkene is epoxidized. The two-component catalyst system comprises a first catalyst that generates peroxides or peroxy intermediates during oxidation of CO with molecular oxygen and a second catalyst that catalyzes the epoxidation of the alkene using the peroxides or peroxy intermediates. A catalyst system composed of particles of suspended gold and titanium silicalite is one example of a suitable two-component catalyst system.

  17. Onsager Vortex Formation in Two-component Bose-Einstein Condensates

    Science.gov (United States)

    Han, Junsik; Tsubota, Makoto

    2018-06-01

    We numerically study the dynamics of quantized vortices in two-dimensional two-component Bose-Einstein condensates (BECs) trapped by a box potential. For one-component BECs in a box potential, it is known that quantized vortices form Onsager vortices, which are clusters of same-sign vortices. We confirm that the vortices of the two components spatially separate from each other — even for miscible two-component BECs — suppressing the formation of Onsager vortices. This phenomenon is caused by the repulsive interaction between vortices belonging to different components, hence, suggesting a new possibility for vortex phase separation.

  18. Weak nonlinear matter waves in a trapped two-component Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Yong Wenmei; Xue Jukui

    2008-01-01

    The dynamics of the weak nonlinear matter solitary waves in two-component Bose-Einstein condensates (BEC) with cigar-shaped external potential are investigated analytically by a perturbation method. In the small amplitude limit, the two-components can be decoupled and the dynamics of solitary waves are governed by a variable-coefficient Korteweg-de Vries (KdV) equation. The reduction to the KdV equation may be useful to understand the dynamics of nonlinear matter waves in two-component BEC. The analytical expressions for the evolution of soliton, emitted radiation profiles and soliton oscillation frequency are also obtained

  19. Strongly-correlated ultracold atoms in optical lattices

    International Nuclear Information System (INIS)

    Dao, Tung-Lam

    2008-01-01

    This thesis is concerned with the theoretical study of strongly correlated quantum states of ultra-cold fermionic atoms trapped in optical lattices. This field has grown considerably in recent years, following the experimental progress made in cooling and controlling atomic gases, which has led to the observation of the first Bose-Einstein condensation (in 1995). The trapping of these gases in optical lattices has opened a new field of research at the interface between atomic physics and condensed matter physics. The observation of the transition from a superfluid to a Mott insulator for bosonic atoms paved the way for the study of strongly correlated phases and quantum phase transitions in these systems. Very recently, the investigation of the Mott insulator state of fermionic atoms provides additional motivation to conduct such theoretical studies. This thesis can be divided broadly into two types of work: - On the one hand, we have proposed a new type of spectroscopy to measure single-particle correlators and associated physical observables in these strongly correlated states. - On the other hand, we have studied the ground state of the fermionic Hubbard model under different conditions (mass imbalance, population imbalance) by using analytical techniques and numerical simulations. In a collaboration with J. Dalibard and C. Salomon (LKB at the ENS Paris) and I. Carusotto (Trento, Italy), we have proposed and studied a novel spectroscopic method for the measurement and characterization of single particle excitations (in particular, the low energy excitations, namely the quasiparticles) in systems of cold fermionic atoms, with energy and momentum resolution. This type of spectroscopy is an analogue of angular-resolved photoemission in solid state physics (ARPES). We have shown, via simple models, that this method of measurement can characterize quasiparticles not only in the 'conventional' phases such as the weakly interacting gas in the lattice or in Fermi

  20. FERMI multi-chip module

    CERN Multimedia

    This FERMI multi-chip module contains five million transistors. 25 000 of these modules will handle the flood of information through parts of the ATLAS and CMS detectors at the LHC. To select interesting events for recording, crucial decisions are taken before the data leaves the detector. FERMI modules are being developed at CERN in partnership with European industry.

  1. Enrico Fermi and uranium fission

    International Nuclear Information System (INIS)

    Hahn, O.

    1962-01-01

    The author describes the part of his scientific work connected to the research made by Enrico Fermi in the field of nuclear reactions. He said that 'Our gratitude to Fermi today is therefore due less perhaps for his reactor than for his experiments using uncharged neutrons in order to bring about artificial nuclear processes'

  2. Thermodynamics of two component gaseous and solid state plasmas at any degeneracy

    International Nuclear Information System (INIS)

    Kraeft, W.D.; Stolzmann, W.; Fromhold-Treu, I.; Rother, T.

    1988-10-01

    We give the results of thermodynamical calculations for two component plasmas which are of interest for dense hydrogen, noble gas and alkali plasmas and for electron hole plasmas in optically excited semiconductors as well. 25 refs, 4 figs

  3. Enrico Fermi Symposium at CERN : opening celebration

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    You are cordially invited to the opening celebration on Thursday 12 September at 16:00 (Main Building, Council Chamber), which will include speechs from: Luciano Maiani - Welcome and Introduction Antonino Zichichi - The New 'Centro Enrico Fermi' at Via Panisperna Ugo Amaldi - Fermi at Via Panisperna and the birth of Nuclear Medicine Jack Steinberger - Fermi in Chicago Valentin Telegdi - A Close-up of Fermi Arnaldo Stefanini - Celebrating Fermi's Centenary in Documents and Pictures and the screening of a documentary video about Fermi: Scienziati a Pisa: Enrico Fermi (Scientists at Pisa: Enrico Fermi) created by Francesco Andreotti for La Limonaia from early film, photographs and sound recordings (English version - c. 30 mins).

  4. Stability equation and two-component Eigenmode for domain walls in scalar potential model

    International Nuclear Information System (INIS)

    Dias, G.S.; Graca, E.L.; Rodrigues, R. de Lima

    2002-08-01

    Supersymmetric quantum mechanics involving a two-component representation and two-component eigenfunctions is applied to obtain the stability equation associated to a potential model formulated in terms of two coupled real scalar fields. We investigate the question of stability by introducing an operator technique for the Bogomol'nyi-Prasad-Sommerfield (BPS) and non-BPS states on two domain walls in a scalar potential model with minimal N 1-supersymmetry. (author)

  5. Competitive Adsorption of a Two-Component Gas on a Deformable Adsorbent

    OpenAIRE

    Usenko, A. S.

    2013-01-01

    We investigate the competitive adsorption of a two-component gas on the surface of an adsorbent whose adsorption properties vary in adsorption due to the adsorbent deformation. The essential difference of adsorption isotherms for a deformable adsorbent both from the classical Langmuir adsorption isotherms of a two-component gas and from the adsorption isotherms of a one-component gas taking into account variations in adsorption properties of the adsorbent in adsorption is obtained. We establi...

  6. Fermi, Heisenberg y Lawrence

    Directory of Open Access Journals (Sweden)

    Ynduráin, Francisco J.

    2002-01-01

    Full Text Available Not available

    Los azares de las onomásticas hacen coincidir en este año el centenario del nacimiento de tres de los más grandes físicos del siglo XX. Dos de ellos, Fermi y Heisenberg, dejaron una marca fundamental en la ciencia (ambos, pero sobre todo el segundo y, el primero, también en la tecnología. Lawrence, indudablemente de un nivel inferior al de los otros dos, estuvo sin embargo en el origen de uno de los desarrollos tecnológicos que han sido básicos para la exploración del universo subnuclear en la segunda mitad del siglo que ha terminado hace poco, el de los aceleradores de partículas.

  7. Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression.

    Science.gov (United States)

    Puthiyaveetil, Sujith; Allen, John F

    2009-06-22

    Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles-chloroplasts and mitochondria. Until recently, it was thought that two-component systems inherited from an ancestral cyanobacterial symbiont are no longer present in chloroplasts. Recent research now shows that two-component systems have survived in chloroplasts as products of both chloroplast and nuclear genes. Comparative genomic analysis of photosynthetic eukaryotes shows a lineage-specific distribution of chloroplast two-component systems. The components and the systems they comprise have homologues in extant cyanobacterial lineages, indicating their ancient cyanobacterial origin. Sequence and functional characteristics of chloroplast two-component systems point to their fundamental role in linking photosynthesis with gene expression. We propose that two-component systems provide a coupling between photosynthesis and gene expression that serves to retain genes in chloroplasts, thus providing the basis of cytoplasmic, non-Mendelian inheritance of plastid-associated characters. We discuss the role of this coupling in the chronobiology of cells and in the dialogue between nuclear and cytoplasmic genetic systems.

  8. Comparative Analysis of Wolbachia Genomes Reveals Streamlining and Divergence of Minimalist Two-Component Systems

    Science.gov (United States)

    Christensen, Steen; Serbus, Laura Renee

    2015-01-01

    Two-component regulatory systems are commonly used by bacteria to coordinate intracellular responses with environmental cues. These systems are composed of functional protein pairs consisting of a sensor histidine kinase and cognate response regulator. In contrast to the well-studied Caulobacter crescentus system, which carries dozens of these pairs, the streamlined bacterial endosymbiont Wolbachia pipientis encodes only two pairs: CckA/CtrA and PleC/PleD. Here, we used bioinformatic tools to compare characterized two-component system relays from C. crescentus, the related Anaplasmataceae species Anaplasma phagocytophilum and Ehrlichia chaffeensis, and 12 sequenced Wolbachia strains. We found the core protein pairs and a subset of interacting partners to be highly conserved within Wolbachia and these other Anaplasmataceae. Genes involved in two-component signaling were positioned differently within the various Wolbachia genomes, whereas the local context of each gene was conserved. Unlike Anaplasma and Ehrlichia, Wolbachia two-component genes were more consistently found clustered with metabolic genes. The domain architecture and key functional residues standard for two-component system proteins were well-conserved in Wolbachia, although residues that specify cognate pairing diverged substantially from other Anaplasmataceae. These findings indicate that Wolbachia two-component signaling pairs share considerable functional overlap with other α-proteobacterial systems, whereas their divergence suggests the potential for regulatory differences and cross-talk. PMID:25809075

  9. Formation of ultracold NaRb Feshbach molecules

    International Nuclear Information System (INIS)

    Wang, Fudong; He, Xiaodong; Li, Xiaoke; Zhu, Bing; Chen, Jun; Wang, Dajun

    2015-01-01

    We report the creation of ultracold bosonic 23 Na 87 Rb Feshbach molecules via magneto-association. By ramping the magnetic field across an interspecies Feshbach resonance (FR), at least 4000 molecules can be produced out of the near degenerate ultracold mixture. Fast loss due to inelastic atom–molecule collisions is observed, which limits the pure molecule number, after residual atoms removal, to 1700. The pure molecule sample can live for 21.8(8) ms in the optical trap, long enough for future molecular spectroscopy studies toward coherently transferring to the singlet ro-vibrational ground state, where these molecules are stable against chemical reaction and have a permanent electric dipole moment of 3.3 Debye. We have also measured the Feshbach molecule’s binding energy near the FR by the oscillating magnetic field method and found these molecules have a large closed-channel fraction. (paper)

  10. Metastability in spin polarised Fermi gases and quasiparticle decays

    DEFF Research Database (Denmark)

    Sadeghzadeh, Kayvan; Bruun, Georg; Lobo, Carlos

    2011-01-01

    We investigate the metastability associated with the first order transition from normal to superfluid phases in the phase diagram of two-component polarised Fermi gases.We begin by detailing the dominant decay processes of single quasiparticles.Having determined the momentum thresholds of each...... the interaction strength at which a polarised phase of molecules becomes the groundstate, to the one at which the single quasiparticle groundstate changes character from polaronic to molecular. Our argument in terms of a Fermi sea of polarons naturally suggests their use as an experimental probe. We propose...... experiments to observe the threshold of the predicted region of metastability, the interaction strength at which the quasiparticle groundstate changes character, and the decay rate of polarons....

  11. Nonlinear dynamics of ultracold gases in double-well lattices

    International Nuclear Information System (INIS)

    Yukalov, V I; Yukalova, E P

    2009-01-01

    An ultracold gas is considered, loaded into a lattice, each site of which is formed by a double-well potential. Initial conditions, after the loading, correspond to a nonequilibrium state. The nonlinear dynamics of the system, starting with a nonequilibrium state, is analysed in the local-field approximation. The importance of taking into account attenuation, caused by particle collisions, is emphasized. The presence of this attenuation dramatically influences the system dynamics

  12. An ultracold neutron storage bottle for UCN density measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bison, G.; Burri, F.; Daum, M. [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Kirch, K. [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule (ETH), Zürich (Switzerland); Krempel, J. [Institute for Particle Physics, Eidgenössische Technische Hochschule (ETH), Zürich (Switzerland); Lauss, B., E-mail: bernhard.lauss@psi.ch [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Meier, M. [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Ries, D., E-mail: dieter.ries@psi.ch [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule (ETH), Zürich (Switzerland); Schmidt-Wellenburg, P.; Zsigmond, G. [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland)

    2016-09-11

    We have developed a storage bottle for ultracold neutrons (UCNs) in order to measure the UCN density at the beamports of the Paul Scherrer Institute's (PSI) UCN source. This paper describes the design, construction and commissioning of the robust and mobile storage bottle with a volume comparable to typical storage experiments (32 L) e.g. searching for an electric dipole moment of the neutron.

  13. Coupling ultracold atoms to a superconducting coplanar waveguide resonator

    OpenAIRE

    Hattermann, H.; Bothner, D.; Ley, L. Y.; Ferdinand, B.; Wiedmaier, D.; Sárkány, L.; Kleiner, R.; Koelle, D.; Fortágh, J.

    2017-01-01

    We demonstrate coupling of magnetically trapped ultracold $^87$Rb ground state atoms to a coherently driven superconducting coplanar resonator on an integrated atom chip. We measure the microwave field strength in the cavity through observation of the AC shift of the hyperfine transition frequency when the cavity is driven off-resonance from the atomic transition. The measured shifts are used to reconstruct the field in the resonator, in close agreement with transmission measurements of the c...

  14. Theoretical model for ultracold molecule formation via adaptive feedback control

    OpenAIRE

    Poschinger, Ulrich; Salzmann, Wenzel; Wester, Roland; Weidemueller, Matthias; Koch, Christiane P.; Kosloff, Ronnie

    2006-01-01

    We investigate pump-dump photoassociation of ultracold molecules with amplitude- and phase-modulated femtosecond laser pulses. For this purpose a perturbative model for the light-matter interaction is developed and combined with a genetic algorithm for adaptive feedback control of the laser pulse shapes. The model is applied to the formation of 85Rb2 molecules in a magneto-optical trap. We find for optimized pulse shapes an improvement for the formation of ground state molecules by more than ...

  15. Absorption imaging of ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Smith, David A.; Aigner, Simon; Hofferberth, Sebastian

    2011-01-01

    Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present...... methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions....

  16. Quantum Fluctuations of Vortex Lattices in Ultracold Gases

    OpenAIRE

    Kwasigroch, M. P.; Cooper, N. R.

    2012-01-01

    We discuss the effects of quantum fluctuations on the properties of vortex lattices in rapidly rotating ultracold atomic gases. We develop a variational method that goes beyond the Bogoliubov theory by including the effects of interactions between the quasiparticle excitations. These interactions are found to have significant quantitative effects on physical properties even at relatively large filling factors. We use our theory to predict the expected experimental signatures of quantum fluctu...

  17. Extended Hubbard models for ultracold atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Juergensen, Ole

    2015-06-05

    In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.

  18. Strong dependence of ultracold chemical rates on electric dipole moments

    International Nuclear Information System (INIS)

    Quemener, Goulven; Bohn, John L.

    2010-01-01

    We use the quantum threshold laws combined with a classical capture model to provide an analytical estimate of the chemical quenching cross sections and rate coefficients of two colliding particles at ultralow temperatures. We apply this quantum threshold model (QT model) to indistinguishable fermionic polar molecules in an electric field. At ultracold temperatures and in weak electric fields, the cross sections and rate coefficients depend only weakly on the electric dipole moment d induced by the electric field. In stronger electric fields, the quenching processes scale as d 4(L+(1/2)) where L>0 is the orbital angular-momentum quantum number between the two colliding particles. For p-wave collisions (L=1) of indistinguishable fermionic polar molecules at ultracold temperatures, the quenching rate thus scales as d 6 . We also apply this model to pure two-dimensional collisions and find that chemical rates vanish as d -4 for ultracold indistinguishable fermions. This model provides a quick and intuitive way to estimate chemical rate coefficients of reactions occuring with high probability.

  19. Extended Hubbard models for ultracold atoms in optical lattices

    International Nuclear Information System (INIS)

    Juergensen, Ole

    2015-01-01

    In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.

  20. Diffusion of Magnetized Binary Ionic Mixtures at Ultracold Plasma Conditions

    Science.gov (United States)

    Vidal, Keith R.; Baalrud, Scott D.

    2017-10-01

    Ultracold plasma experiments offer an accessible means to test transport theories for strongly coupled systems. Application of an external magnetic field might further increase their utility by inhibiting heating mechanisms of ions and electrons and increasing the temperature at which strong coupling effects are observed. We present results focused on developing and validating a transport theory to describe binary ionic mixtures across a wide range of coupling and magnetization strengths relevant to ultracold plasma experiments. The transport theory is an extension of the Effective Potential Theory (EPT), which has been shown to accurately model correlation effects at these conditions, to include magnetization. We focus on diffusion as it can be measured in ultracold plasma experiments. Using EPT within the framework of the Chapman-Enskog expansion, the parallel and perpendicular self and interdiffusion coefficients for binary ionic mixtures with varying mass ratios are calculated and are compared to molecular dynamics simulations. The theory is found to accurately extend Braginskii-like transport to stronger coupling, but to break down when the magnetization strength becomes large enough that the typical gyroradius is smaller than the interaction scale length. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0221.

  1. Influence of electron evaporative cooling on ultracold plasma expansion

    International Nuclear Information System (INIS)

    Wilson, Truman; Chen, Wei-Ting; Roberts, Jacob

    2013-01-01

    The expansion of ultracold neutral plasmas (UCP) is driven primarily by the thermal pressure of the electron component and is therefore sensitive to the electron temperature. For typical UCP spatial extents, evaporative cooling has a significant influence on the UCP expansion rate at lower densities (less than 10 8 /cm 3 ). We studied the effect of electron evaporation in this density range. Owing to the low density, the effects of three-body recombination were negligible. We modeled the expansion by taking into account the change in electron temperature owing to evaporation as well as adiabatic expansion and found good agreement with our data. We also developed a simple model for initial evaporation over a range of ultracold plasma densities, sizes, and electron temperatures to determine over what parameter range electron evaporation is expected to have a significant effect. We also report on a signal calibration technique, which relates the signal at our detector to the total number of ions and electrons in the ultracold plasma

  2. Magnetic field modification of ultracold molecule-molecule collisions

    International Nuclear Information System (INIS)

    Tscherbul, T V; Suleimanov, Yu V; Aquilanti, V; Krems, R V

    2009-01-01

    We present an accurate quantum mechanical study of molecule-molecule collisions in the presence of a magnetic field. The work focuses on the analysis of elastic scattering and spin relaxation in collisions of O 2 ( 3 Σ g - ) molecules at cold (∼0.1 K) and ultracold (∼10 -6 K) temperatures. Our calculations show that magnetic spin relaxation in molecule-molecule collisions is extremely efficient except at magnetic fields below 1 mT. The rate constant for spin relaxation at T=0.1 K and a magnetic field of 0.1 T is found to be as large as 6.1x10 -11 cm -3 s -1 . The magnetic field dependence of elastic and inelastic scattering cross sections at ultracold temperatures is dominated by a manifold of Feshbach resonances with the density of ∼100 resonances per Tesla for collisions of molecules in the absolute ground state. This suggests that the scattering length of ultracold molecules in the absolute ground state can be effectively tuned in a very wide range of magnetic fields. Our calculations demonstrate that the number and properties of the magnetic Feshbach resonances are dramatically different for molecules in the absolute ground and excited spin states. The density of Feshbach resonances for molecule-molecule scattering in the low-field-seeking Zeeman state is reduced by a factor of 10.

  3. Anisotropic non-Fermi liquids

    Science.gov (United States)

    Sur, Shouvik; Lee, Sung-Sik

    2016-11-01

    We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.

  4. The Statistical Fermi Paradox

    Science.gov (United States)

    Maccone, C.

    In this paper is provided the statistical generalization of the Fermi paradox. The statistics of habitable planets may be based on a set of ten (and possibly more) astrobiological requirements first pointed out by Stephen H. Dole in his book Habitable planets for man (1964). The statistical generalization of the original and by now too simplistic Dole equation is provided by replacing a product of ten positive numbers by the product of ten positive random variables. This is denoted the SEH, an acronym standing for “Statistical Equation for Habitables”. The proof in this paper is based on the Central Limit Theorem (CLT) of Statistics, stating that the sum of any number of independent random variables, each of which may be ARBITRARILY distributed, approaches a Gaussian (i.e. normal) random variable (Lyapunov form of the CLT). It is then shown that: 1. The new random variable NHab, yielding the number of habitables (i.e. habitable planets) in the Galaxy, follows the log- normal distribution. By construction, the mean value of this log-normal distribution is the total number of habitable planets as given by the statistical Dole equation. 2. The ten (or more) astrobiological factors are now positive random variables. The probability distribution of each random variable may be arbitrary. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into the SEH by allowing an arbitrary probability distribution for each factor. This is both astrobiologically realistic and useful for any further investigations. 3. By applying the SEH it is shown that the (average) distance between any two nearby habitable planets in the Galaxy may be shown to be inversely proportional to the cubic root of NHab. This distance is denoted by new random variable D. The relevant probability density function is derived, which was named the "Maccone distribution" by Paul Davies in

  5. Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12.

    Science.gov (United States)

    Oshima, Taku; Aiba, Hirofumi; Masuda, Yasushi; Kanaya, Shigehiko; Sugiura, Masahito; Wanner, Barry L; Mori, Hirotada; Mizuno, Takeshi

    2002-10-01

    We have systematically examined the mRNA profiles of 36 two-component deletion mutants, which include all two-component regulatory systems of Escherichia coli, under a single growth condition. DNA microarray results revealed that the mutants belong to one of three groups based on their gene expression profiles in Luria-Bertani broth under aerobic conditions: (i) those with no or little change; (ii) those with significant changes; and (iii) those with drastic changes. Under these conditions, the anaeroresponsive ArcB/ArcA system, the osmoresponsive EnvZ/OmpR system and the response regulator UvrY showed the most drastic changes. Cellular functions such as flagellar synthesis and expression of the RpoS regulon were affected by multiple two-component systems. A high correlation coefficient of expression profile was found between several two-component mutants. Together, these results support the view that a network of functional interactions, such as cross-regulation, exists between different two-component systems. The compiled data are avail-able at our website (http://ecoli.aist-nara.ac.jp/xp_analysis/ 2_components).

  6. Enrico Fermi the obedient genius

    CERN Document Server

    Bruzzaniti, Giuseppe

    2016-01-01

    This biography explores the life and career of the Italian physicist Enrico Fermi, which is also the story of thirty years that transformed physics and forever changed our understanding of matter and the universe: nuclear physics and elementary particle physics were born, nuclear fission was discovered, the Manhattan Project was developed, the atomic bombs were dropped, and the era of “big science” began. It would be impossible to capture the full essence of this revolutionary period without first understanding Fermi, without whom it would not have been possible. Enrico Fermi: The Obedient Genius attempts to shed light on all aspects of Fermi’s life - his work, motivation, influences, achievements, and personal thoughts - beginning with the publication of his first paper in 1921 through his death in 1954. During this time, Fermi demonstrated that he was indeed following in the footsteps of Galileo, excelling in his work both theoretically and experimentally by deepening our understanding of the Pauli e...

  7. Nonlinear low frequency electrostatic structures in a magnetized two-component auroral plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R., E-mail: rajirufai@gmail.com [University of the Western Cape, Bellville 7535, Cape-Town (South Africa); Scientific Computing, Memorial University of Newfoundland, St John' s, Newfoundland and Labrador A1C 5S7 (Canada); Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Bellville 7535, Cape-Town (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [University of the Western Cape, Bellville 7535, Cape-Town (South Africa); Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai 410218 (India)

    2016-03-15

    Finite amplitude nonlinear ion-acoustic solitons, double layers, and supersolitons in a magnetized two-component plasma composed of adiabatic warm ions fluid and energetic nonthermal electrons are studied by employing the Sagdeev pseudopotential technique and assuming the charge neutrality condition at equilibrium. The model generates supersoliton structures at supersonic Mach numbers regime in addition to solitons and double layers, whereas in the unmagnetized two-component plasma case only, soliton and double layer solutions can be obtained. Further investigation revealed that wave obliqueness plays a critical role for the evolution of supersoliton structures in magnetized two-component plasmas. In addition, the effect of ion temperature and nonthermal energetic electron tends to decrease the speed of oscillation of the nonlinear electrostatic structures. The present theoretical results are compared with Viking satellite observations.

  8. Two component injection moulding: an interface quality and bond strength dilemma

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2008-01-01

    on quality parameters of the two component parts. Most engineering applications of two component injection moulding calls for high bond strength between the two polymers, on the other hand a sharp and well-defined interface between the two polymers are required for applications like selective metallization...... of polymers, parts for micro applications and also for the aesthetic purpose of the final product. The investigation presented in this paper indicates a dilemma between obtaining reasonably good bond strength and at the same time keeping the interface quality suitable for applications. The required process...... conditions for a sharp and well-defined interface are exactly the opposite of what is congenial for higher bond strength. So in the production of two component injection moulded parts, there is a compromise to make between the interface quality and the bond strength of the two polymers. Also the injection...

  9. Detecting high-density ultracold molecules using atom–molecule collision

    International Nuclear Information System (INIS)

    Chen, Jun-Ren; Kao, Cheng-Yang; Chen, Hung-Bin; Liu, Yi-Wei

    2013-01-01

    Utilizing single-photon photoassociation, we have achieved ultracold rubidium molecules with a high number density that provides a new efficient approach toward molecular quantum degeneracy. A new detection mechanism for ultracold molecules utilizing inelastic atom–molecule collision is demonstrated. The resonant coupling effect on the formation of the X 1 Σ + g ground state 85 Rb 2 allows for a sufficient number of more deeply bound ultracold molecules, which induced an additional trap loss and heating of the co-existing atoms owing to the inelastic atom–molecule collision. Therefore, after the photoassociation process, the ultracold molecules can be investigated using the absorption image of the ultracold rubidium atoms mixed with the molecules in a crossed optical dipole trap. The existence of the ultracold molecules was then verified, and the amount of accumulated molecules was measured. This method detects the final produced ultracold molecules, and hence is distinct from the conventional trap loss experiment, which is used to study the association resonance. It is composed of measurements of the time evolution of an atomic cloud and a decay model, by which the number density of the ultracold 85 Rb 2 molecules in the optical trap was estimated to be >5.2 × 10 11 cm −3 . (paper)

  10. MODELING THERMAL DUST EMISSION WITH TWO COMPONENTS: APPLICATION TO THE PLANCK HIGH FREQUENCY INSTRUMENT MAPS

    International Nuclear Information System (INIS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2015-01-01

    We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz, and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales

  11. Anisotropic properties of phase separation in two-component dipolar Bose-Einstein condensates

    Science.gov (United States)

    Wang, Wei; Li, Jinbin

    2018-03-01

    Using Crank-Nicolson method, we calculate ground state wave functions of two-component dipolar Bose-Einstein condensates (BECs) and show that, due to dipole-dipole interaction (DDI), the condensate mixture displays anisotropic phase separation. The effects of DDI, inter-component s-wave scattering, strength of trap potential and particle numbers on the density profiles are investigated. Three types of two-component profiles are present, first cigar, along z-axis and concentric torus, second pancake (or blood cell), in xy-plane, and two non-uniform ellipsoid, separated by the pancake and third two dumbbell shapes.

  12. Damping of electron center-of-mass oscillation in ultracold plasmas

    International Nuclear Information System (INIS)

    Chen, Wei-Ting; Witte, Craig; Roberts, Jacob L.

    2016-01-01

    Applying a short electric field pulse to an ultracold plasma induces an electron plasma oscillation. This manifests itself as an oscillation of the electron center of mass around the ion center of mass in the ultracold plasma. In general, the oscillation can damp due to either collisionless or collisional mechanisms, or a combination of the both. To investigate the nature of oscillation damping in ultracold plasmas, we developed a molecular dynamics model of the ultracold plasma electrons. Through this model, we found that depending on the neutrality of the ultracold plasma and the size of an applied DC electric field, there are some parameter ranges where the damping is primarily collisional and some primarily collisionless. We conducted experiments to compare the measured damping rate with theory predictions and found them to be in good agreement. Extension of our measurements to different parameter ranges should enable studies for strong-coupling influence on electron-ion collision rates.

  13. Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Scattering of Molecules

    Science.gov (United States)

    Huang, Jiayu; Liu, Shu; Zhang, Dong H.; Krems, Roman V.

    2018-04-01

    Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.

  14. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis

    DEFF Research Database (Denmark)

    Bisicchia, Paola; Noone, David; Lioliou, Efthimia

    2007-01-01

    Adaptation of bacteria to the prevailing environmental and nutritional conditions is often mediated by two-component signal transduction systems (TCS). The Bacillus subtilis YycFG TCS has attracted special attention as it is essential for viability and its regulon is poorly defined. Here we show...

  15. Two component system that regulates methanol and formaldehyde oxidation in Paracoccus denitrificans.

    NARCIS (Netherlands)

    Harms, N.; Reijnders, W.N.M.; Koning, S.; van Spanning, R.J.M.

    2001-01-01

    A chromosomal region encoding a two-component regulatory system, FlhRS, has been isolated from Paracoccus denitrificans. FlhRS-deficient mutants were unable to grow on methanol, methylamine, or choline as the carbon and energy source. Expression of the gene encoding glutathione-dependent

  16. Two-component system that regulates methanol and formaldehyde oxidation in Paracoccus denitrificans.

    NARCIS (Netherlands)

    Harms, N.; Reijnders, W.N.M.; Koning, S.; van Spanning, R.J.M.

    2001-01-01

    A chromosomal region encoding a two-component regulatory system, FlhRS, has been isolated from Paracoccus denitrificans. FlhRS-deficient mutants were unable to grow on methanol, methylamine, or choline as the carbon and energy source. Expression of the gene encoding glutathione-dependent

  17. A novel two-component system involved in secretion stress response in Streptomyces lividans.

    Directory of Open Access Journals (Sweden)

    Sonia Gullón

    Full Text Available BACKGROUND: Misfolded proteins accumulating outside the bacterial cytoplasmic membrane can interfere with the secretory machinery, hence the existence of quality factors to eliminate these misfolded proteins is of capital importance in bacteria that are efficient producers of secretory proteins. These bacteria normally use a specific two-component system to respond to the stress produced by the accumulation of the misfolded proteins, by activating the expression of HtrA-like proteases to specifically eliminate the incorrectly folded proteins. METHODOLOGY/PRINCIPAL FINDINGS: Overproduction of alpha-amylase in S. lividans causing secretion stress permitted the identification of a two-component system (SCO4156-SCO4155 that regulates three HtrA-like proteases which appear to be involved in secretion stress response. Mutants in each of the genes forming part of the two-genes operon that encodes the sensor and regulator protein components accumulated misfolded proteins outside the cell, strongly suggesting the involvement of this two-component system in the S. lividans secretion stress response. CONCLUSIONS/SIGNIFICANCE: To our knowledge this is the first time that a specific secretion stress response two-component system is found to control the expression of three HtrA-like protease genes in S. lividans, a bacterium that has been repeatedly used as a host for the synthesis of homologous and heterologous secretory proteins of industrial application.

  18. A two-component dark matter model with real singlet scalars ...

    Indian Academy of Sciences (India)

    Theoretical framework. In the present work, the dark matter candidate has two components S and S′ both of ... The scalar sector potential (for Higgs and two real singlet scalars) in this framework can then be written .... In this work we obtain the allowed values of model parameters (δ2, δ′2, MS and M′S) using three direct ...

  19. Design of a Novel Two-Component Hybrid Dermal Scaffold for the Treatment of Pressure Sores.

    Science.gov (United States)

    Sharma, Vaibhav; Kohli, Nupur; Moulding, Dale; Afolabi, Halimat; Hook, Lilian; Mason, Chris; García-Gareta, Elena

    2017-11-01

    The aim of this study is to design a novel two-component hybrid scaffold using the fibrin/alginate porous hydrogel Smart Matrix combined to a backing layer of plasma polymerized polydimethylsiloxane (Sil) membrane to make the fibrin-based dermal scaffold more robust for the treatment of the clinically challenging pressure sores. A design criteria are established, according to which the Sil membranes are punched to avoid collection of fluid underneath. Manual peel test shows that native silicone does not attach to the fibrin/alginate component while the plasma polymerized silicone membranes are firmly bound to fibrin/alginate. Structural characterization shows that the fibrin/alginate matrix is intact after the addition of the Sil membrane. By adding a Sil membrane to the original fibrin/alginate scaffold, the resulting two-component scaffolds have a significantly higher shear or storage modulus G'. In vitro cell studies show that dermal fibroblasts remain viable, proliferate, and infiltrate the two-component hybrid scaffolds during the culture period. These results show that the design of a novel two-component hybrid dermal scaffold is successful according to the proposed design criteria. To the best of the authors' knowledge, this is the first study that reports the combination of a fibrin-based scaffold with a plasma-polymerized silicone membrane. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Correlation inequalities for two-component hypercubic φ4 models. Pt. 2

    International Nuclear Information System (INIS)

    Soria, J.L.; Instituto Tecnologico de Tijuana

    1990-01-01

    We continue the program started in the first paper (J. Stat. Phys. 52 (1988) 711-726). We find new and already known correlation inequalities for a family of two-component hypercubic φ 4 models, using techniques of rotated correlation inequalities and random walk representation. (orig.)

  1. Multiple Two-Component Systems of Streptococcus mutans Regulate Agmatine Deiminase Gene Expression and Stress Tolerance▿

    OpenAIRE

    Liu, Yaling; Burne, Robert A.

    2009-01-01

    Induction of the agmatine deiminase system (AgDS) of Streptococcus mutans requires agmatine and is optimal at low pH. We show here that the VicRK, ComDE, and CiaRH two-component systems influence AgDS gene expression in response to acidic and thermal stresses.

  2. A two-component dark matter model with real singlet scalars ...

    Indian Academy of Sciences (India)

    2016-01-05

    Jan 5, 2016 ... We propose a two-component dark matter (DM) model, each component of which is a real singlet scalar, to explain results from both direct and indirect detection experiments. We put the constraints on the model parameters from theoretical bounds, PLANCK relic density results and direct DM experiments.

  3. The 27 Possible Intrinsic Symmetry Groups of Two-Component Links

    Directory of Open Access Journals (Sweden)

    Jason Parsley

    2012-02-01

    Full Text Available We consider the “intrinsic” symmetry group of a two-component link L, defined to be the image ∑(L of the natural homomorphism from the standard symmetry group MCG(S3, L to the product MCG(S3 × MCG(L. This group, first defined by Whitten in 1969, records directly whether L is isotopic to a link L′ obtained from L by permuting components or reversing orientations; it is a subgroup of Γ2, the group of all such operations. For two-component links, we catalog the 27 possible intrinsic symmetry groups, which represent the subgroups of Γ2 up to conjugacy. We are able to provide prime, nonsplit examples for 21 of these groups; some are classically known, some are new. We catalog the frequency at which each group appears among all 77,036 of the hyperbolic two-component links of 14 or fewer crossings in Thistlethwaite’s table. We also provide some new information about symmetry groups of the 293 non-hyperbolic two-component links of 14 or fewer crossings in the table.

  4. Light Responsive Two-Component Supramolecular Hydrogel: A Sensitive Platform for Humidity Sensors

    KAUST Repository

    Samai, Suman

    2016-02-15

    The supramolecular assembly of anionic azobenzene dicarboxylate and cationic cetyltrimethylammonium bromide (CTAB) formed a stimuli responsive hydrogel with a critical gelation concentration (CGC) of 0.33 wt%. This self-sustainable two-component system was able to repair damage upon light irradiation. Moreover, it was successfully employed in the fabrication of highly sensitive humidity sensors for the first time.

  5. Light Responsive Two-Component Supramolecular Hydrogel: A Sensitive Platform for Humidity Sensors

    KAUST Repository

    Samai, Suman; Sapsanis, Christos; Patil, Sachin; Ezzeddine, Alaa; Moosa, Basem; Omran, Hesham; Emwas, Abdul-Hamid M.; Salama, Khaled N.; Khashab, Niveen M.

    2016-01-01

    The supramolecular assembly of anionic azobenzene dicarboxylate and cationic cetyltrimethylammonium bromide (CTAB) formed a stimuli responsive hydrogel with a critical gelation concentration (CGC) of 0.33 wt%. This self-sustainable two-component system was able to repair damage upon light irradiation. Moreover, it was successfully employed in the fabrication of highly sensitive humidity sensors for the first time.

  6. New methods for the characterization of pyrocarbon; The two component model of pyrocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Luhleich, H.; Sutterlin, L.; Hoven, H.; Nickel, H.

    1972-04-19

    In the first part, new experiments to clarify the origin of different pyrocarbon components are described. Three new methods (plasma-oxidation, wet-oxidation, ultrasonic method) are presented to expose the carbon black like component in the pyrocarbon deposited in fluidized beds. In the second part, a two component model of pyrocarbon is proposed and illustrated by examples.

  7. The chemistry of two-component fluoride crystalline optical media for heavy, fast, radiation hard scintillators

    International Nuclear Information System (INIS)

    Sobolev, B.P.; Krivandina, E.A.; Fedorov, P.P.; Vasilchenko, V.G.

    1994-01-01

    Prospects for preparation of two-component dense optical materials for scintillators are shown, using data on phase diagrams of about 300 MF m - RF n (m, n ≤ 4) type systems, formed by metal fluorides. Primary characteristics (decay time and light output of luminescence, radiation hardness, etc.) of some multicomponent crystals are reported

  8. An ultra-cold neutron source at the MLNSC

    International Nuclear Information System (INIS)

    Bowles, T.J.; Brun, T.; Hill, R.; Morris, C.; Seestrom, S.J.; Crow, L.; Serebrov, A.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have carried out the research and development of an Ultra-Cold Neutron (UCN) source at the Manuel Lujan Neutron Scattering Center (MLNSC). A first generation source was constructed to test the feasibility of a rotor source. The source performed well with an UCN production rate reasonably consistent with that expected. This source can now provide the basis for further development work directed at using UCN in fundamental physics research as well as possible applications in materials science

  9. Spectroscopy with cold and ultra-cold neutrons

    Directory of Open Access Journals (Sweden)

    Abele Hartmut

    2015-01-01

    Full Text Available We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10−4 level. The second method that we refer to as gravity resonance spectroscopy (GRS allows to test Newton’s gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  10. Diamond-like carbon coated ultracold neutron guides

    International Nuclear Information System (INIS)

    Heule, S.; Atchison, F.; Daum, M.; Foelske, A.; Henneck, R.; Kasprzak, M.; Kirch, K.; Knecht, A.; Kuzniak, M.; Lippert, T.; Meier, M.; Pichlmaier, A.; Straumann, U.

    2007-01-01

    It has been shown recently that diamond-like carbon (DLC) with a sp 3 fraction above 60% is a better wall coating material for ultracold neutron applications than beryllium. We report on results of Raman spectroscopic and XPS measurements obtained for diamond-like carbon coated neutron guides produced in a new facility, which is based on pulsed laser deposition at 193 nm. For diamond-like carbon coatings on small stainless steel substrates we find sp 3 fractions in the range from 60 to 70% and showing slightly increasing values with laser pulse energy and pulse repetition rate

  11. Progress towards magnetic trapping of ultra-cold neutrons

    CERN Document Server

    Huffman, P R; Butterworth, J S; Coakley, K J; Dewey, M S; Dzhosyuk, S N; Gilliam, D M; Golub, R; Greene, G L; Habicht, K; Lamoreaux, S K; Mattoni, C E H; McKinsey, D N; Wietfeldt, F E; Doyle, J M

    2000-01-01

    We report progress towards magnetic trapping of ultra-cold neutrons (UCN) in preparation for a neutron lifetime measurement. UCN will be produced by inelastic scattering of cold (0.89 nm) neutrons in a reservoir of superfluid sup 4 He and confined in a three-dimensional magnetic trap. As the trapped neutrons decay, recoil electrons will generate scintillations in the liquid He, which should be detectable with nearly 100% efficiency. This direct measure of the number of UCN decays vs. time can be used to determine the neutron beta-decay lifetime.

  12. Quantum levitation of nanoparticles seen with ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nesvizhevsky, V. V., E-mail: nesvizhevsky@ill.eu [Institut Laue-Langevin (France); Voronin, A. Yu. [Lebedev Institute (Russian Federation); Lambrecht, A.; Reynaud, S. [Laboratoire Kastler-Brossel, CNRS, ENS, UPMC (France); Lychagin, E. V.; Muzychka, A. Yu.; Strelkov, A. V. [Joint Institute for Nuclear Research (Russian Federation)

    2013-09-15

    Analyzing new experiments with ultracold neutrons (UCNs) we show that physical adsorption of nanoparticles/nanodroplets, levitating in high-excited states in a deep and broad potential well formed by van der Waals/Casimir-Polder (vdW/CP) forces results in new effects on a cross-road of the fields of fundamental interactions, neutron, surface and nanoparticle physics. Accounting for the interaction of UCNs with nanoparticles explains a recently discovered intriguing so-called 'small heating' of UCNs in traps. It might be relevant to the striking conflict of the neutron lifetime experiments with smallest reported uncertainties by adding false effects there.

  13. Quantum levitation of nanoparticles seen with ultracold neutrons

    International Nuclear Information System (INIS)

    Nesvizhevsky, V. V.; Voronin, A. Yu.; Lambrecht, A.; Reynaud, S.; Lychagin, E. V.; Muzychka, A. Yu.; Strelkov, A. V.

    2013-01-01

    Analyzing new experiments with ultracold neutrons (UCNs) we show that physical adsorption of nanoparticles/nanodroplets, levitating in high-excited states in a deep and broad potential well formed by van der Waals/Casimir-Polder (vdW/CP) forces results in new effects on a cross-road of the fields of fundamental interactions, neutron, surface and nanoparticle physics. Accounting for the interaction of UCNs with nanoparticles explains a recently discovered intriguing so-called “small heating” of UCNs in traps. It might be relevant to the striking conflict of the neutron lifetime experiments with smallest reported uncertainties by adding false effects there

  14. Ultracold atoms for precision measurement of fundamental physical quantities

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    Cooling and trapping of neutral atoms has been one of the most active fields of research in physics in recent years. Several methods were demonstrated to reach temperatures as low as a few nanokelvin allowing, for example, the investigation of quantum degenerate gases. The ability to control the quantum degrees of freedom of atoms opens the way to applications for precision measurement of fundamental physical quantities. Experiments in progress, planned or being considered using new quantum devices based on ultracold atoms, namely atom interferometers and atomic clocks, will be discussed.

  15. Quantifying, characterizing, and controlling information flow in ultracold atomic gases

    International Nuclear Information System (INIS)

    Haikka, P.; McEndoo, S.; Maniscalco, S.; De Chiara, G.; Palma, G. M.

    2011-01-01

    We study quantum information flow in a model comprised of a trapped impurity qubit immersed in a Bose-Einstein-condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We show that this system undergoes a transition from Markovian to non-Markovian dynamics, which can be controlled by changing key parameters such as the condensate scattering length. In this way, one can realize a quantum simulator of both Markovian and non-Markovian open quantum systems, the latter ones being characterized by a reverse flow of information from the background gas (reservoir) to the impurity (system).

  16. An ultra-cold neutron source at the MLNSC

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, T.J.; Brun, T.; Hill, R.; Morris, C.; Seestrom, S.J. [Los Alamos National Lab., NM (United States); Crow, L. [Univ. of Rhode Island, Kingston, RI (United States); Serebrov, A. [Petersburg Nuclear Physics Inst. (Russian Federation)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have carried out the research and development of an Ultra-Cold Neutron (UCN) source at the Manuel Lujan Neutron Scattering Center (MLNSC). A first generation source was constructed to test the feasibility of a rotor source. The source performed well with an UCN production rate reasonably consistent with that expected. This source can now provide the basis for further development work directed at using UCN in fundamental physics research as well as possible applications in materials science.

  17. Measurement of Spectral Functions of Ultracold Atoms in Disordered Potentials

    Science.gov (United States)

    Volchkov, Valentin V.; Pasek, Michael; Denechaud, Vincent; Mukhtar, Musawwadah; Aspect, Alain; Delande, Dominique; Josse, Vincent

    2018-02-01

    We report on the measurement of the spectral functions of noninteracting ultracold atoms in a three-dimensional disordered potential resulting from an optical speckle field. Varying the disorder strength by 2 orders of magnitude, we observe the crossover from the "quantum" perturbative regime of low disorder to the "classical" regime at higher disorder strength, and find an excellent agreement with numerical simulations. The method relies on the use of state-dependent disorder and the controlled transfer of atoms to create well-defined energy states. This opens new avenues for experimental investigations of three-dimensional Anderson localization.

  18. Scattering Length Scaling Laws for Ultracold Three-Body Collisions

    International Nuclear Information System (INIS)

    D'Incao, J.P.; Esry, B.D.

    2005-01-01

    We present a simple and unifying picture that provides the energy and scattering length dependence for all inelastic three-body collision rates in the ultracold regime for three-body systems with short-range two-body interactions. Here, we present the scaling laws for vibrational relaxation, three-body recombination, and collision-induced dissociation for systems that support s-wave two-body collisions. These systems include three identical bosons, two identical bosons, and two identical fermions. Our approach reproduces all previous results, predicts several others, and gives the general form of the scaling laws in all cases

  19. Instabilities of a Fermi gas with nested Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schlottmann, Pedro [Department of Physics, Florida State University, Tallahassee, FL (United States)

    2018-01-15

    The nesting of the Fermi surfaces of an electron and a hole pocket separated by a vector Q commensurate with the lattice in conjunction with the interaction between the quasiparticles can give rise to a rich phase diagram. Of particular importance is itinerant antiferromagnetic order in the context of pnictides and heavy fermion compounds. By mismatching the nesting the order can gradually be suppressed and as the Neel temperature tends to zero a quantum critical point is obtained. A superconducting dome above the quantum critical point can be induced by the transfer of pairs of electrons between the pockets. The conditions under which such a dome arises are studied. In addition numerous other phases may arise, e.g. charge density waves, non-Fermi liquid behavior, non-s-wave superconductivity, Pomeranchuk instabilities of the Fermi surface, nematic order, and phases with persistent orbital currents. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Measurement of the Fermi potential of diamond-like carbon and other materials

    International Nuclear Information System (INIS)

    Atchison, F.; Blau, B.; Daum, M.; Fierlinger, P.; Geltenbort, P.; Gupta, M.; Henneck, R.; Heule, S.; Kasprzak, M.; Knecht, A.; Kuzniak, M.; Kirch, K.; Meier, M.; Pichlmaier, A.; Reiser, R.; Theiler, B.; Zimmer, O.; Zsigmond, G.

    2007-01-01

    The Fermi potential V f of diamond-like carbon (DLC) coatings produced with laser-controlled vacuum arc deposition and that of diamond, Al, Si, Be, Cu, Fe and Ni was measured using two different methods, (i) transmission of slow neutrons through foils in a time-of-flight experiment and (ii) cold neutron reflectometry (CNR). For diamond-like carbon in transmission we obtain V f = (249 ± 14) neV. This is approximately the same as for beryllium and consistent with the theoretical expectations for the measured diamond (sp 3 ) content of 45%. For an sp 3 -content of 67%, we find V f (271 ± 13) neV from reflectometry, again in agreement with theory. These findings open new perspectives in using DLC as storage volume and neutron guide coatings for ultracold neutron sources

  1. Superfluidity of a dipolar Fermi gas in 2D optical lattices bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Guardian, A.; Paredes, R. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (Mexico)

    2016-12-15

    Ultracold Fermi molecules lying in 2D square optical lattices bilayers with its dipole moment perpendicularly aligned to the layers, having interlayer finite range s-wave interactions, are shown to form superfluid phases, both, in the Bardeen, Cooper and Schrieffer (BCS) regime of Cooper pairs, and in the condensate regime of bound dimeric molecules. We demonstrate this result using a functional integral scheme within the Ginzburg-Landau theory. For the deep Berezinskii-Kosterlitz-Thouless (BKT) phase transition, we predict critical temperatures around 5 nK and 20 nK for {sup 23}Na{sup 40}K and OH molecules, which are within reach of current experiments [J. W. Park, S. Will and M. Zwierlein, Phys. Rev. Lett. 114, 205302 (2015)]. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. 7th International Fermi Symposium

    Science.gov (United States)

    2017-10-01

    The two Fermi instruments have been surveying the high-energy sky since August 2008. The Large Area Telescope (LAT) has discovered more than three thousand gamma-ray sources and many new source classes, bringing the importance of gamma-ray astrophysics to an ever-broadening community. The LAT catalog includes supernova remnants, pulsar wind nebulae, pulsars, binary systems, novae, several classes of active galaxies, starburst galaxies, normal galaxies, and a large number of unidentified sources. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from a wide range of transients. Fermi LAT's study of diffuse gamma-ray emission in our Galaxy revealed giant bubbles, as well as an excess of gamma-rays from the Galactic center region, both observations have become exciting puzzles for the astrophysics community. The direct measurement of a harder-than- expected cosmic-ray electron spectrum may imply the presence of nearby cosmic-ray accelerators. LAT data have provided stringent constraints on new phenomena such as supersymmetric dark-matter annihilations as well as tests of fundamental physics. The full reprocessing of the entire mission dataset with Pass 8 includes improved event reconstruction, a wider energy range, better energy measurements, and significantly increased effective area, all them boosting the discovery potential and the ability to do precision observations with LAT. The Gamma-ray Burst Monitor (GBM) continues to be a prolific detector of gamma-ray transients: magnetars, solar flares, terrestrial gamma-ray flashes and gamma-ray bursts at keV to MeV energies, complementing the higher energy LAT observations of those sources in addition to providing valuable science return in their own right. All gamma-ray data are made immediately available at the Fermi Science Support Center (http://fermi.gsfc.nasa.gov/ssc). These publicly available data and Fermi analysis tools have enabled a large number of important studies. We

  3. The Fermiac or Fermi's Trolley

    Science.gov (United States)

    Coccetti, F.

    2016-03-01

    The Fermiac, known also as Fermi's trolley or Monte Carlo trolley, is an analog computer used to determine the change in time of the neutron population in a nuclear device, via the Monte Carlo method. It was invented by Enrico Fermi and constructed by Percy King at Los Alamos in 1947, and used for about two years. A replica of the Fermiac was built at INFN mechanical workshops of Bologna in 2015, on behalf of the Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", thanks to the original drawings made available by Los Alamos National Laboratory (LANL). This reproduction of the Fermiac was put in use, and a simulation was developed.

  4. Preventive effect of two-component chemical radioprotector and variability in its application

    International Nuclear Information System (INIS)

    Lambov, V.; Metodiev, S.

    1993-01-01

    The purpose of the study is to evaluate the radioprotective efficiency of two-component radioprotective schema consisting of the chemically synthesized radioprotector WR-2721 (OK-79) and a new glycoside pigment obtained from melanoidine CL. The application of melanoidine 7-21 days before WR-2721 significantly increases the radioprotective efficiency of the chemically obtained product and enhances the 30-day survival of hybrid mice treated with 15 Gy whole body gamma irradiation. The effect of potentiated radioprotection is not observed when the interval between the application of the two agents is reduced to 24 h. It is suggested that the observed enhancement of the radioprotective efficiency in the two-component schema is due to the antioxidant and immuno modulating properties of the pigment product, observed and described in our previous investigations. (author)

  5. Competitive adsorption of a two-component gas on a deformable adsorbent

    International Nuclear Information System (INIS)

    Usenko, A S

    2014-01-01

    We investigate the competitive adsorption of a two-component gas on the surface of an adsorbent whose adsorption properties vary due to the adsorbent deformation. The essential difference of adsorption isotherms for a deformable adsorbent both from the classical Langmuir adsorption isotherms of a two-component gas and from the adsorption isotherms of a one-component gas is obtained, taking into account variations in the adsorption properties of the adsorbent in adsorption. We establish bistability and tristability of the system caused by variations in adsorption properties of the adsorbent in competitive adsorption of gas particles on it. We derive conditions under which adsorption isotherms of a binary gas mixture have two stable asymptotes. It is shown that the specific features of the behavior of the system under study can be described in terms of a potential of the known explicit form. (paper)

  6. Multistability in an optomechanical system with a two-component Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Dong Ying; Ye Jinwu; Pu Han

    2011-01-01

    We investigate a system consisting of a two-component Bose-Einstein condensate interacting dispersively with a Fabry-Perot optical cavity where the two components of the condensate are resonantly coupled to each other by another classical field. The key feature of this system is that the atomic motional degrees of freedom and the internal pseudospin degrees of freedom are coupled to the cavity field simultaneously, hence an effective spin-orbital coupling within the condensate is induced by the cavity. The interplay among the atomic center-of-mass motion, the atomic collective spin, and the cavity field leads to a strong nonlinearity, resulting in multistable behavior in both matter wave and light wave at the few-photon level.

  7. The role of the Kubo number in two-component turbulence

    International Nuclear Information System (INIS)

    Qin, G.; Shalchi, A.

    2013-01-01

    We explore the random walk of magnetic field lines in two-component turbulence by using computer simulations. It is often assumed that the two-component model provides a good approximation for solar wind turbulence. We explore the dependence of the field line diffusion coefficient on the Kubo number which is a fundamental and characteristic quantity in the theory of turbulence. We show that there are two transport regimes. One is the well-known quasilinear regime in which the diffusion coefficient is proportional to the Kubo number squared, and the second one is a nonlinear regime in which the diffusion coefficient is directly proportional to the Kubo number. The so-called percolative transport regime which is often discussed in the literature cannot be found. The numerical results obtained in the present paper confirm analytical theories for random walking field lines developed in the past

  8. Theoretical calculation of cryogenic distillation for two-component hydrogen isotope system

    International Nuclear Information System (INIS)

    Xia Xiulong; Luo Yangming; Wang Heyi; Fu Zhonghua; Liu Jun; Han Jun; Gu Mei

    2005-10-01

    Cryogenic distillation model for single column was built to simulating hydrogen isotope separation system. Three two-component system H 2 /HD, H 2 /HT and D 2 /DT was studied. Both temperature and concentration distribution was obtained and the results show a clear separation characteristics. H 2 /HT has the best separation performance while D 2 /DT was the most difficult to separate. (authors)

  9. Nutrition quality, body size and two components of mating behavior in Drosophila melanogaster.

    Science.gov (United States)

    Pavković-Lucić, Sofija; Kekić, Vladimir

    2010-01-01

    Two components of mating behavior, mating latency and duration of copulation, were investigated in Drosophila melanogaster males from three different "nutritional" strains, reared for more than 35 generations on banana, tomato and cornmeal-agar-yeast substrates. Males from different strains did not differ according to mating latency and duration of copulation. Also, the sizes of males from different strains did not contribute to these behavioral traits.

  10. A two-component generalized extreme value distribution for precipitation frequency analysis

    Czech Academy of Sciences Publication Activity Database

    Rulfová, Zuzana; Buishand, A.; Roth, M.; Kyselý, Jan

    2016-01-01

    Roč. 534, March (2016), s. 659-668 ISSN 0022-1694 R&D Projects: GA ČR(CZ) GA14-18675S Institutional support: RVO:68378289 Keywords : precipitation extremes * two-component extreme value distribution * regional frequency analysis * convective precipitation * stratiform precipitation * Central Europe Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.483, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022169416000500

  11. Two-component bond for coating materials coming into contact with radioactivity

    International Nuclear Information System (INIS)

    Svoboda, L.; Fajfr, K.

    1989-01-01

    The two-component bonding agent consists of an epoxy resin of the diane-bis-glycidyl ether type and an amine hardener containing benzyl alcohol and bis-2-ethylhexyl phthalate. The claimed bond features high radiation stability and very good decontaminability. Thanks to low viscosity of the bond, pigmented reactor-plastics can be prepared. The procedure is described of applying the bond onto a concrete surface. (E.S.)

  12. Two-component fluid membranes near repulsive walls: Linearized hydrodynamics of equilibrium and nonequilibrium states.

    Science.gov (United States)

    Sankararaman, Sumithra; Menon, Gautam I; Sunil Kumar, P B

    2002-09-01

    We study the linearized hydrodynamics of a two-component fluid membrane near a repulsive wall, using a model that incorporates curvature-concentration coupling as well as hydrodynamic interactions. This model is a simplified version of a recently proposed one [J.-B. Manneville et al., Phys. Rev. E 64, 021908 (2001)] for nonequilibrium force centers embedded in fluid membranes, such as light-activated bacteriorhodopsin pumps incorporated in phospholipid egg phosphatidyl choline (EPC) bilayers. The pump-membrane system is modeled as an impermeable, two-component bilayer fluid membrane in the presence of an ambient solvent, in which one component, representing active pumps, is described in terms of force dipoles displaced with respect to the bilayer midpoint. We first discuss the case in which such pumps are rendered inactive, computing the mode structure in the bulk as well as the modification of hydrodynamic properties by the presence of a nearby wall. These results should apply, more generally, to equilibrium fluid membranes comprised of two components, in which the effects of curvature-concentration coupling are significant, above the threshold for phase separation. We then discuss the fluctuations and mode structure in the steady state of active two-component membranes near a repulsive wall. We find that proximity to the wall smoothens membrane height fluctuations in the stable regime, resulting in a logarithmic scaling of the roughness even for initially tensionless membranes. This explicitly nonequilibrium result is a consequence of the incorporation of curvature-concentration coupling in our hydrodynamic treatment. This result also indicates that earlier scaling arguments which obtained an increase in the roughness of active membranes near repulsive walls upon neglecting the role played by such couplings may need to be reevaluated.

  13. Role of Streptococcus mutans two-component systems in antimicrobial peptide resistance in the oral cavity

    OpenAIRE

    Kawada-Matsuo, Miki; Komatsuzawa, Hitoshi

    2017-01-01

    Summary Approximately 100 trillion microorganisms exist in the oral cavity. For the commensal bacteria of the oral cavity, it is important to adapt to environmental stimuli, including human- or bacteria-derived antimicrobial agents. Recently, bacterial-specific signal transduction regulatory systems, called two-component systems (TCSs), which appear to be focused on sensing and adapting to the environment, were discovered. Streptococcus mutans is an oral commensal bacteria and is also known a...

  14. Trapping ultracold gases near cryogenic materials with rapid reconfigurability

    Energy Technology Data Exchange (ETDEWEB)

    Naides, Matthew A.; Turner, Richard W.; Lai, Ruby A.; DiSciacca, Jack M.; Lev, Benjamin L. [Departments of Applied Physics and Physics and Ginzton Laboratory, Stanford University, Stanford, California 94305 (United States)

    2013-12-16

    We demonstrate an atom chip trapping system that allows the placement and high-resolution imaging of ultracold atoms within microns from any ≲100 μm-thin, UHV-compatible material, while also allowing sample exchange with minimal experimental downtime. The sample is not connected to the atom chip, allowing rapid exchange without perturbing the atom chip or laser cooling apparatus. Exchange of the sample and retrapping of atoms has been performed within a week turnaround, limited only by chamber baking. Moreover, the decoupling of sample and atom chip provides the ability to independently tune the sample temperature and its position with respect to the trapped ultracold gas, which itself may remain in the focus of a high-resolution imaging system. As a first demonstration of this system, we have confined a 700-nK cloud of 8 × 10{sup 4} {sup 87}Rb atoms within 100 μm of a gold-mirrored 100-μm-thick silicon substrate. The substrate was cooled to 35 K without use of a heat shield, while the atom chip, 120 μm away, remained at room temperature. Atoms may be imaged and retrapped every 16 s, allowing rapid data collection.

  15. Observation of symmetry-protected topological band with ultracold fermions

    Science.gov (United States)

    Song, Bo; Zhang, Long; He, Chengdong; Poon, Ting Fung Jeffrey; Hajiyev, Elnur; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong

    2018-01-01

    Symmetry plays a fundamental role in understanding complex quantum matter, particularly in classifying topological quantum phases, which have attracted great interests in the recent decade. An outstanding example is the time-reversal invariant topological insulator, a symmetry-protected topological (SPT) phase in the symplectic class of the Altland-Zirnbauer classification. We report the observation for ultracold atoms of a noninteracting SPT band in a one-dimensional optical lattice and study quench dynamics between topologically distinct regimes. The observed SPT band can be protected by a magnetic group and a nonlocal chiral symmetry, with the band topology being measured via Bloch states at symmetric momenta. The topology also resides in far-from-equilibrium spin dynamics, which are predicted and observed in experiment to exhibit qualitatively distinct behaviors in quenching to trivial and nontrivial regimes, revealing two fundamental types of spin-relaxation dynamics related to bulk topology. This work opens the way to expanding the scope of SPT physics with ultracold atoms and studying nonequilibrium quantum dynamics in these exotic systems. PMID:29492457

  16. Light crystals for ultracold quantum degenerate bosonic gases

    International Nuclear Information System (INIS)

    Arimondo, E.

    2009-01-01

    Full text follows. The experimental realization of quantum degenerate states in ultracold atomic gases has opened the possibility to realize few body systems isolated from external perturbations and at temperatures close to absolute zero. Under these conditions counterintuitive phenomena characteristic of the quantum mechanical evolution may be assessed experimentally. Matter quantum-mechanical waves inside periodic potentials investigated in solid-state physics, where electrons propagate within a crystal lattice. Interfering laser beams create a light-induced spatial periodic potential for ultracold atoms called an 'optical lattice'. Atoms hopping between the lattice periodic potential minima emulate the motion of electrons in a crystal. The creation of one-, two-, and three-dimensional periodic structures in which atoms can be trapped and accelerated, with the possibility of switching or modulating the lattice at will, gives a great flexibility. In addition atomic physicists can tune the lattice's geometry, the rate of hopping, and the push and pull between atoms within the light crystals. So they hope to map the various behaviors of solid-state models. On the basis of the research work performed at Pisa, several processes of quantum mechanics evolution within a spatial periodic potential and associated to the solid-state physics will be presented

  17. Permanent magnetic lattices for ultracold atoms and quantum degenerate gases

    International Nuclear Information System (INIS)

    Ghanbari, Saeed; Kieu, Tien D; Sidorov, Andrei; Hannaford, Peter

    2006-01-01

    We propose the use of periodic arrays of permanent magnetic films for producing magnetic lattices of microtraps for confining, manipulating and controlling small clouds of ultracold atoms and quantum degenerate gases. Using analytical expressions and numerical calculations we show that periodic arrays of magnetic films can produce one-dimensional (1D) and two-dimensional (2D) magnetic lattices with non-zero potential minima, allowing ultracold atoms to be trapped without losses due to spin flips. In particular, we show that two crossed layers of periodic arrays of parallel rectangular magnets plus bias fields, or a single layer of periodic arrays of square-shaped magnets with three different thicknesses plus bias fields, can produce 2D magnetic lattices of microtraps having non-zero potential minima and controllable trap depth. For arrays with micron-scale periodicity, the magnetic microtraps can have very large trap depths (∼0.5 mK for the realistic parameters chosen for the 2D lattice) and very tight confinement

  18. Thomas-Fermi molecular dynamics

    International Nuclear Information System (INIS)

    Clerouin, J.; Pollock, E.L.; Zerah, G.

    1992-01-01

    A three-dimensional density-functional molecular-dynamics code is developed for the Thomas-Fermi density functional as a prototype for density functionals using only the density. Following Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)], the electronic density is treated as a dynamical variable. The electronic densities are verified against a multi-ion Thomas-Fermi algorithm due to Parker [Phys. Rev. A 38, 2205 (1988)]. As an initial application, the effect of electronic polarization in enhancing ionic diffusion in strongly coupled plasmas is demonstrated

  19. Two components of Na emission in sonoluminescence spectrum from surfactant aqueous solutions.

    Science.gov (United States)

    Hayashi, Yuichi; Choi, Pak-Kon

    2015-03-01

    Sonoluminescence from sodium dodecyl sulfate (SDS) aqueous solutions exhibits Na emission. The spectrum of Na emission was measured as a function of sonication time for a total of 30 min at an ultrasonic frequency of 148 kHz. The spectral line profiles changed with the sonication time, suggesting that the Na emission consists of two components: broadened lines, which are shifted from the original D lines, and unshifted narrow lines. The intensity of the unshifted narrow lines decreased at a greater rate than that of the broadened lines with increasing sonication time. This effect was enhanced at a higher acoustic power. The shifted broadened lines remained after sonication for 30 min. We propose that these quenching effects are caused by the accumulation of gases decomposed from SDS molecules inside bubbles. The CO₂ gas dependence of Na emission in NaCl aqueous solutions showed a similar change in the line profiles to that in SDS aqueous solutions, which supported this proposition. The unshifted narrow lines are easily affected by foreign gases. The results suggest that the two components originate from different environments around the emitting species, although both of them originate from the gas phase inside bubbles. The generation mechanisms of the two components are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Molecular Orientation in Two Component Vapor-Deposited Glasses: Effect of Substrate Temperature and Molecular Shape

    Science.gov (United States)

    Powell, Charles; Jiang, Jing; Walters, Diane; Ediger, Mark

    Vapor-deposited glasses are widely investigated for use in organic electronics including the emitting layers of OLED devices. These materials, while macroscopically homogenous, have anisotropic packing and molecular orientation. By controlling this orientation, outcoupling efficiency can be increased by aligning the transition dipole moment of the light-emitting molecules parallel to the substrate. Light-emitting molecules are typically dispersed in a host matrix, as such, it is imperative to understand molecular orientation in two-component systems. In this study we examine two-component vapor-deposited films and the orientations of the constituent molecules using spectroscopic ellipsometry, UV-vis and IR spectroscopy. The role of temperature, composition and molecular shape as it effects molecular orientation is examined for mixtures of DSA-Ph in Alq3 and in TPD. Deposition temperature relative to the glass transition temperature of the two-component mixture is the primary controlling factor for molecular orientation. In mixtures of DSA-Ph in Alq3, the linear DSA-Ph has a horizontal orientation at low temperatures and slight vertical orientation maximized at 0.96Tg,mixture, analogous to one-component films.

  1. The Umov effect in application to an optically thin two-component cloud of cosmic dust

    Science.gov (United States)

    Zubko, Evgenij; Videen, Gorden; Zubko, Nataliya; Shkuratov, Yuriy

    2018-04-01

    The Umov effect is an inverse correlation between linear polarization of the sunlight scattered by an object and its geometric albedo. The Umov effect has been observed in particulate surfaces, such as planetary regoliths, and recently it also was found in single-scattering small dust particles. Using numerical modeling, we study the Umov effect in a two-component mixture of small irregularly shaped particles. Such a complex chemical composition is suggested in cometary comae and other types of optically thin clouds of cosmic dust. We find that the two-component mixtures of small particles also reveal the Umov effect regardless of the chemical composition of their end-member components. The interrelation between log(Pmax) and log(A) in a two-component mixture of small irregularly shaped particles appears either in a straight linear form or in a slightly curved form. This curvature tends to decrease while the index n in a power-law size distribution r-n grows; at n > 2.5, the log(Pmax)-log(A) diagrams are almost straight linear in appearance. The curvature also noticeably decreases with the packing density of constituent material in irregularly shaped particles forming the mixture. That such a relation exists suggest the Umov effect may also be observed in more complex mixtures.

  2. The formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics

    Energy Technology Data Exchange (ETDEWEB)

    Dulieu, O [Laboratoire Aime Cotton, CNRS, Bat. 505, Univ Paris-Sud 11, F-91405 Orsay Cedex (France); Gabbanini, C [Istituto per i processi chimico-fisici del C.N.R., Via Moruzzi 1, 56124 Pisa (Italy)], E-mail: olivier.dulieu@lac.u-psud.fr, E-mail: carlo@ipcf.cnr.it

    2009-08-15

    Progress on research in the field of molecules at cold and ultracold temperatures is reported in this review. It covers extensively the experimental methods to produce, detect and characterize cold and ultracold molecules including association of ultracold atoms, deceleration by external fields and kinematic cooling. Confinement of molecules in different kinds of traps is also discussed. The basic theoretical issues related to the knowledge of the molecular structure, the atom-molecule and molecule-molecule mutual interactions, and to their possible manipulation and control with external fields, are reviewed. A short discussion on the broad area of applications completes the review.

  3. Fermi and the Art of Estimation

    Indian Academy of Sciences (India)

    IAS Admin

    The balance wheel will now shed some ... work best when used by someone with the ... [1] Laura Fermi, Atoms in the Family: My Life with Enrico Fermi, The. University of Chicago ... Geneva, European Organization for Nuclear Research, 1969.

  4. Spin interaction with an ideal fermi gas

    International Nuclear Information System (INIS)

    Aizenstadt, V.V.; Malyshev, V.A.

    1987-01-01

    The authors consider the equilibrium dynamics of a system consisting of a spin interacting with an ideal Fermi gas on the lattice Z/sup v, v ≥ 3. They present two examples; when this system is unitarily equivalent to an ideal Fermi gas or to a spin in an ideal Fermi gas without interactions between them

  5. A portable source of lattice-trapped and ultracold strontium (PLUS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design and demonstrate a portable source of lattice-trapped, ultracold strontium (PLUS). The device uses simplified and robust techniques for loading...

  6. A Portable Source of Lattice-Trapped and Ultracold Strontium (PLUS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate the portable source of lattice-trapped, ultracold strontium (PLUS) designed during Phase I. The device uses simplified and robust...

  7. Correlation inequalities for two-component hypercubic /varreverse arrowphi/4 models

    International Nuclear Information System (INIS)

    Soria, J.L.

    1988-01-01

    A collection of new and already known correlation inequalities is found for a family of two-component hypercubic /varreverse arrowphi/ 4 models, using techniques of duplicated variables, rotated correlation inequalities, and random walk representation. Among the interesting new inequalities are: rotated very special Dunlop-Newman inequality 2 ; /varreverse arrowphi//sub 1z/ 2 + /varreverse arrowphi//sub 2z/ 2 ≥ 0, rotated Griffiths I inequality 2 - /varreverse arrowphi//sub 2z/ 2 > ≥ 0, and anti-Lebowitz inequality u 4 1111 ≥ 0

  8. Chemically reacting flow of a compressible thermally radiating two-component plasma

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1990-12-01

    The paper studies the compressible flow of a hot two-component plasma in the presence of gravitation and chemical reaction in a vertical channel. For the optically thick gas approximation, closed form analytical solutions are possible. Asymptotic solutions are also obtained for the general differential approximation when the temperature of the two bounding walls are the same. In the general case the problem is reduced to the solution of standard nonlinear integral equations which can be tackled by iterative procedure. The results are discussed quantitatively. The problem may be applicable to the understanding of explosive hydrogen-burning model of solar flares. (author). 6 refs, 4 figs

  9. The Two-Component Virial Theorem and the Physical Properties of Stellar Systems.

    Science.gov (United States)

    Dantas; Ribeiro; Capelato; de Carvalho RR

    2000-01-01

    Motivated by present indirect evidence that galaxies are surrounded by dark matter halos, we investigate whether their physical properties can be described by a formulation of the virial theorem that explicitly takes into account the gravitational potential term representing the interaction of the dark halo with the baryonic or luminous component. Our analysis shows that the application of such a "two-component virial theorem" not only accounts for the scaling relations displayed by, in particular, elliptical galaxies, but also for the observed properties of all virialized stellar systems, ranging from globular clusters to galaxy clusters.

  10. An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation.

    Science.gov (United States)

    Ilias, Miroslav; Saue, Trond

    2007-02-14

    The authors report the implementation of a simple one-step method for obtaining an infinite-order two-component (IOTC) relativistic Hamiltonian using matrix algebra. They apply the IOTC Hamiltonian to calculations of excitation and ionization energies as well as electric and magnetic properties of the radon atom. The results are compared to corresponding calculations using identical basis sets and based on the four-component Dirac-Coulomb Hamiltonian as well as Douglas-Kroll-Hess and zeroth-order regular approximation Hamiltonians, all implemented in the DIRAC program package, thus allowing a comprehensive comparison of relativistic Hamiltonians within the finite basis approximation.

  11. Evaluation of solution stability for two-component polydisperse systems by small-angle scattering

    Science.gov (United States)

    Kryukova, A. E.; Konarev, P. V.; Volkov, V. V.

    2017-12-01

    The article is devoted to the modelling of small-angle scattering data using the program MIXTURE designed for the study of polydisperse multicomponent mixtures. In this work we present the results of solution stability studies for theoretical small-angle scattering data sets from two-component models. It was demonstrated that the addition of the noise to the data influences the stability range of the restored structural parameters. The recommendations for the optimal minimization schemes that permit to restore the volume size distributions for polydisperse systems are suggested.

  12. Simple waves in a two-component Bose-Einstein condensate

    Science.gov (United States)

    Ivanov, S. K.; Kamchatnov, A. M.

    2018-04-01

    We study the dynamics of so-called simple waves in a two-component Bose-Einstein condensate. The evolution of the condensate is described by Gross-Pitaevskii equations which can be reduced for these simple wave solutions to a system of ordinary differential equations which coincide with those derived by Ovsyannikov for the two-layer fluid dynamics. We solve the Ovsyannikov system for two typical situations of large and small difference between interspecies and intraspecies nonlinear interaction constants. Our analytic results are confirmed by numerical simulations.

  13. Two-component injection moulding simulation of ABS-POM micro structured surfaces

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Islam, Aminul

    2013-01-01

    Multi-component micro injection moulding (μIM) processes such as two-component (2k) μIM are the key technologies for the mass fabrication of multi-material micro products. 2k-μIM experiments involving a miniaturized test component with micro features in the sub-mm dimensional range and moulding...... a pair of thermoplastic materials (ABS and POM) were conducted. Three dimensional process simulations based on the finite element method have been performed to explore the capability of predicting filling pattern shape at component-level and surface micro feature-level in a polymer/polymer overmoulding...

  14. Three-wave interaction in two-component quadratic nonlinear lattices

    DEFF Research Database (Denmark)

    Konotop, V. V.; Cunha, M. D.; Christiansen, Peter Leth

    1999-01-01

    We investigate a two-component lattice with a quadratic nonlinearity and find with the multiple scale technique that integrable three-wave interaction takes place between plane wave solutions when these fulfill resonance conditions. We demonstrate that. energy conversion and pulse propagation known...... from three-wave interaction is reproduced in the lattice and that exact phase matching of parametric processes can be obtained in non-phase-matched lattices by tilting the interacting plane waves with respect to each other. [S1063-651X(99)15110-9]....

  15. Dynamics of a strongly driven two-component Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Salmond, G.L.; Holmes, C.A.; Milburn, G.J.

    2002-01-01

    We consider a two-component Bose-Einstein condensate in two spatially localized modes of a double-well potential, with periodic modulation of the tunnel coupling between the two modes. We treat the driven quantum field using a two-mode expansion and define the quantum dynamics in terms of the Floquet Operator for the time periodic Hamiltonian of the system. It has been shown that the corresponding semiclassical mean-field dynamics can exhibit regions of regular and chaotic motion. We show here that the quantum dynamics can exhibit dynamical tunneling between regions of regular motion, centered on fixed points (resonances) of the semiclassical dynamics

  16. Morphology-tunable and photoresponsive properties in a self-assembled two-component gel system.

    Science.gov (United States)

    Zhou, Yifeng; Xu, Miao; Yi, Tao; Xiao, Shuzhang; Zhou, Zhiguo; Li, Fuyou; Huang, Chunhui

    2007-01-02

    Photoresponsive C3-symmetrical trisurea self-assembling building blocks containing three azobenzene groups (LC10 and LC4) at the rim were designed and synthesized. By introducing a trisamide gelator (G18), which can self-aggregate through hydrogen bonds of acylamino moieties to form a fibrous network, the mixture of LC10 (or LC4) and G18 forms an organogel with coral-like supramolecular structure from 1,4-dioxane. The cooperation of hydrogen bonding and the hydrophobic diversity between these components are the main contributions to the specific superstructure. The two-component gel exhibits reversible photoisomerization from trans to cis transition without breakage of the gel state.

  17. Stripes and honeycomb lattice of quantized vortices in rotating two-component Bose-Einstein condensates

    Science.gov (United States)

    Kasamatsu, Kenichi; Sakashita, Kouhei

    2018-05-01

    We study numerically the structure of a vortex lattice in rotating two-component Bose-Einstein condensates with equal atomic masses and equal intra- and intercomponent coupling strengths. The numerical simulations of the Gross-Pitaevskii equation show that the quantized vortices in this situation form lattice configuration accompanying vortex stripes, honeycomb lattices, and their complexes. This is a result of the degeneracy of the system for the SU(2) symmetric operation, which causes a continuous transformation between the above structures. In terms of the pseudospin representation, the complex lattice structures are identified as a hexagonal lattice of doubly winding half skyrmions.

  18. Comparative study of BCS-BEC crossover theories above Tc: The nature of the pseudogap in ultracold atomic Fermi gases

    International Nuclear Information System (INIS)

    Chien, C.-C.; Guo Hao; He Yan; Levin, K.

    2010-01-01

    This article presents a comparison of two finite-temperature BCS-Bose-Einstein condensation (BEC) crossover theories above the transition temperature: Nozieres-Schmitt-Rink (NSR) theory and finite-T extended BCS-Leggett theory. The comparison is cast in the form of numerical studies of the behavior of the fermionic spectral function both theoretically and as constrained by (primarily) radio frequency (rf) experiments. Both theories include pair fluctuations and exhibit pseudogap effects, although the nature of this pseudogap is very different. The pseudogap in finite-T extended BCS-Leggett theory is found to follow a BCS-like dispersion which, in turn, is associated with a broadened BCS-like self-energy, rather more similar to what is observed in high-temperature superconductors (albeit, for a d-wave case). The fermionic quasiparticle dispersion is different in NSR theory and the damping is considerably larger. We argue that the two theories are appropriate in different temperature regimes with the BCS-Leggett approach being more suitable nearer to condensation. There should, in effect, be little difference at higher T as the pseudogap becomes weaker and where the simplifying approximations used in the BCS-Leggett approach break down. On the basis of momentum-integrated rf studies of unpolarized gases, it would be difficult to distinguish which theory is the better one. A full comparison for polarized gases is not possible since it is claimed that there are inconsistencies in the NSR approach (not found in the BCS-Leggett scheme). Future experiments along the lines of momentum-resolved experiments look to be very promising in distinguishing the two theories.

  19. Electric field-induced reorganization of two-component supported bilayer membranes.

    Science.gov (United States)

    Groves, J T; Boxer, S G; McConnell, H M

    1997-12-09

    Application of electric fields tangent to the plane of a confined patch of fluid bilayer membrane can create lateral concentration gradients of the lipids. A thermodynamic model of this steady-state behavior is developed for binary systems and tested with experiments in supported lipid bilayers. The model uses Flory's approximation for the entropy of mixing and allows for effects arising when the components have different molecular areas. In the special case of equal area molecules the concentration gradient reduces to a Fermi-Dirac distribution. The theory is extended to include effects from charged molecules in the membrane. Calculations show that surface charge on the supporting substrate substantially screens electrostatic interactions within the membrane. It also is shown that concentration profiles can be affected by other intermolecular interactions such as clustering. Qualitative agreement with this prediction is provided by comparing phosphatidylserine- and cardiolipin-containing membranes.

  20. Manipulating ultracold polar molecules with microwave radiation: The influence of hyperfine structure

    International Nuclear Information System (INIS)

    Aldegunde, J.; Hutson, Jeremy M.; Ran Hong

    2009-01-01

    We calculate the microwave spectra of ultracold 40 K 87 Rb alkali-metal dimers, including hyperfine interactions and in the presence of electric and magnetic fields. We show that microwave transitions may be used to transfer molecules between different hyperfine states, but only because of the presence of nuclear quadrupole interactions. Hyperfine splittings may also complicate the use of ultracold molecules for quantum computing. The spectrum of molecules oriented in electric fields may be simplified dramatically by applying a simultaneous magnetic field.

  1. Velocity selection for ultra-cold atoms using bimodal mazer cavity

    International Nuclear Information System (INIS)

    Irshad, A.; Qamar, S.

    2009-04-01

    In this paper, we discuss the velocity selection of ultra-cold three-level atoms in Λ configuration using a micromazer. Our model is the same as discussed by Arun et al., for mazer action in a bimodal cavity. We have shown that significantly narrowed velocity distribution of ultra-cold atoms can be obtained in this system due to the presence of dark states. (author)

  2. Individual Tracer Atoms in an Ultracold Dilute Gas

    Science.gov (United States)

    Hohmann, Michael; Kindermann, Farina; Lausch, Tobias; Mayer, Daniel; Schmidt, Felix; Lutz, Eric; Widera, Artur

    2017-06-01

    We report on the experimental investigation of individual Cs atoms impinging on a dilute cloud of ultracold Rb atoms with variable density. We study the relaxation of the initial nonthermal state and detect the effect of single collisions which has so far eluded observation. We show that, after few collisions, the measured spatial distribution of the tracer atoms is correctly described by a Langevin equation with a velocity-dependent friction coefficient, over a large range of Knudsen numbers. Our results extend the simple and effective Langevin treatment to the realm of light particles in dilute gases. The experimental technique developed opens up the microscopic exploration of a novel regime of diffusion at the level of individual collisions.

  3. Magnetic-field gradiometer based on ultracold collisions

    Science.gov (United States)

    Wasak, Tomasz; Jachymski, Krzysztof; Calarco, Tommaso; Negretti, Antonio

    2018-05-01

    We present a detailed analysis of the usefulness of ultracold atomic collisions for sensing the strength of an external magnetic field as well as its spatial gradient. The core idea of the sensor, which we recently proposed in Jachymski et al. [Phys. Rev. Lett. 120, 013401 (2018), 10.1103/PhysRevLett.120.013401], is to probe the transmission of the atoms through a set of quasi-one-dimensional waveguides that contain an impurity. Magnetic-field-dependent interactions between the incoming atoms and the impurity naturally lead to narrow resonances that can act as sensitive field probes since they strongly affect the transmission. We illustrate our findings with concrete examples of experimental relevance, demonstrating that for large atom fluences N a sensitivity of the order of 1 nT/√{N } for the field strength and 100 nT/(mm √{N }) for the gradient can be reached with our scheme.

  4. Quantum versus classical statistical dynamics of an ultracold Bose gas

    International Nuclear Information System (INIS)

    Berges, Juergen; Gasenzer, Thomas

    2007-01-01

    We investigate the conditions under which quantum fluctuations are relevant for the quantitative interpretation of experiments with ultracold Bose gases. This requires to go beyond the description in terms of the Gross-Pitaevskii and Hartree-Fock-Bogoliubov mean-field theories, which can be obtained as classical (statistical) field-theory approximations of the quantum many-body problem. We employ functional-integral techniques based on the two-particle irreducible (2PI) effective action. The role of quantum fluctuations is studied within the nonperturbative 2PI 1/N expansion to next-to-leading order. At this accuracy level memory integrals enter the dynamic equations, which differ for quantum and classical statistical descriptions. This can be used to obtain a classicality condition for the many-body dynamics. We exemplify this condition by studying the nonequilibrium evolution of a one-dimensional Bose gas of sodium atoms, and discuss some distinctive properties of quantum versus classical statistical dynamics

  5. Evidence of Antiblockade in an Ultracold Rydberg Gas

    Science.gov (United States)

    Amthor, Thomas; Giese, Christian; Hofmann, Christoph S.; Weidemüller, Matthias

    2010-01-01

    We present the experimental observation of the antiblockade in an ultracold Rydberg gas recently proposed by Ates et al. [Phys. Rev. Lett. 98, 023002 (2007)PRLTAO0031-900710.1103/PhysRevLett.98.023002]. Our approach allows the control of the pair distribution in the gas and is based on a strong coupling of one transition in an atomic three-level system, while introducing specific detunings of the other transition. When the coupling energy matches the interaction energy of the Rydberg long-range interactions, the otherwise blocked excitation of close pairs becomes possible. A time-resolved spectroscopic measurement of the Penning ionization signal is used to identify slight variations in the Rydberg pair distribution of a random arrangement of atoms. A model based on a pair interaction Hamiltonian is presented which well reproduces our experimental observations and allows one to deduce the distribution of nearest-neighbor distances.

  6. Sheet Fluorescence and Annular Analysis of Ultracold Neutral Plasmas

    International Nuclear Information System (INIS)

    Castro, J.; Gao, H.; Killian, T. C.

    2009-01-01

    Annular analysis of fluorescence imaging measurements on Ultracold Neutral Plasmas (UNPs) is demonstrated. Spatially-resolved fluorescence imaging of the strontium ions produces a spectrum that is Doppler-broadened due to the thermal ion velocity and shifted due to the ion expansion velocity. The fluorescence excitation beam is spatially narrowed into a sheet, allowing for localized analysis of ion temperatures within a volume of the plasma with small density variation. Annular analysis of fluorescence images permits an enhanced signal-to-noise ratio compared to previous fluorescence measurements done in strontium UNPs. Using this technique and analysis, plasma ion temperatures are measured and shown to display characteristics of plasmas with strong coupling such as disorder induced heating and kinetic energy oscillations.

  7. Spatially resolved photoionization of ultracold atoms on an atom chip

    International Nuclear Information System (INIS)

    Kraft, S.; Guenther, A.; Fortagh, J.; Zimmermann, C.

    2007-01-01

    We report on photoionization of ultracold magnetically trapped Rb atoms on an atom chip. The atoms are trapped at 5 μK in a strongly anisotropic trap. Through a hole in the chip with a diameter of 150 μm, two laser beams are focused onto a fraction of the atomic cloud. A first laser beam with a wavelength of 778 nm excites the atoms via a two-photon transition to the 5D level. With a fiber laser at 1080 nm the excited atoms are photoionized. Ionization leads to depletion of the atomic density distribution observed by absorption imaging. The resonant ionization spectrum is reported. The setup used in this experiment is suitable not only to investigate mixtures of Bose-Einstein condensates and ions but also for single-atom detection on an atom chip

  8. Theoretical model for ultracold molecule formation via adaptive feedback control

    International Nuclear Information System (INIS)

    Poschinger, Ulrich; Salzmann, Wenzel; Wester, Roland; Weidemueller, Matthias; Koch, Christiane P; Kosloff, Ronnie

    2006-01-01

    We theoretically investigate pump-dump photoassociation of ultracold molecules with amplitude- and phase-modulated femtosecond laser pulses. For this purpose, a perturbative model for light-matter interaction is developed and combined with a genetic algorithm for adaptive feedback control of the laser pulse shapes. The model is applied to the formation of 85 Rb 2 molecules in a magneto-optical trap. We find that optimized pulse shapes may maximize the formation of ground state molecules in a specific vibrational state at a pump-dump delay time for which unshaped pulses lead to a minimum of the formation rate. Compared to the maximum formation rate obtained for unshaped pulses at the optimum pump-dump delay, the optimized pulses lead to a significant improvement of about 40% for the target level population. Since our model yields the spectral amplitudes and phases of the optimized pulses, the results are directly applicable in pulse shaping experiments

  9. Quantized Ultracold Neutrons in Rough Waveguides: GRANIT Experiments and Beyond

    Directory of Open Access Journals (Sweden)

    M. Escobar

    2014-01-01

    Full Text Available We apply our general theory of transport in systems with random rough boundaries to gravitationally quantized ultracold neutrons in rough waveguides as in GRANIT experiments (ILL, Grenoble. We consider waveguides with roughness in both two and one dimensions (2D and 1D. In the biased diffusion approximation the depletion times for the gravitational quantum states can be easily expressed via each other irrespective of the system parameters. The calculation of the exit neutron count reduces to evaluation of a single constant which contains a complicated integral of the correlation function of surface roughness. In the case of 1D roughness (random grating this constant is calculated analytically for common types of the correlation functions. The results obey simple scaling relations which are slightly different in 1D and 2D. We predict the exit neutron count for the new GRANIT cell.

  10. Improved Noninterferometric Test of Collapse Models Using Ultracold Cantilevers

    Science.gov (United States)

    Vinante, A.; Mezzena, R.; Falferi, P.; Carlesso, M.; Bassi, A.

    2017-09-01

    Spontaneous collapse models predict that a weak force noise acts on any mechanical system, as a consequence of the collapse of the wave function. Significant upper limits on the collapse rate have been recently inferred from precision mechanical experiments, such as ultracold cantilevers and the space mission LISA Pathfinder. Here, we report new results from an experiment based on a high-Q cantilever cooled to millikelvin temperatures, which is potentially able to improve the current bounds on the continuous spontaneous localization (CSL) model by 1 order of magnitude. High accuracy measurements of the cantilever thermal fluctuations reveal a nonthermal force noise of unknown origin. This excess noise is compatible with the CSL heating predicted by Adler. Several physical mechanisms able to explain the observed noise have been ruled out.

  11. Rydberg-atom formation in strongly correlated ultracold plasmas

    International Nuclear Information System (INIS)

    Bannasch, G.; Pohl, T.

    2011-01-01

    In plasmas at very low temperatures, the formation of neutral atoms is dominated by collisional three-body recombination, owing to the strong ∼T -9/2 scaling of the corresponding recombination rate with the electron temperature T. While this law is well established at high temperatures, the unphysical divergence as T→0 clearly suggests a breakdown in the low-temperature regime. Here, we present a combined molecular dynamics Monte Carlo study of electron-ion recombination over a wide range of temperatures and densities. Our results reproduce the known behavior of the recombination rate at high temperatures, but reveal significant deviations with decreasing temperature. We discuss the fate of the kinetic bottleneck and resolve the divergence problem as the plasma enters the ultracold, strongly coupled domain.

  12. Two-Component Signal Transduction System SaeRS Positively Regulates Staphylococcus epidermidis Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Qiang Lou

    2014-01-01

    Full Text Available Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, we performed a proteomic analysis of differences in expression between the S. epidermidis 1457 wild-type and saeRS mutant to identify candidates regulated by saeRS using two-dimensional gel electrophoresis (2-DE combined with matrix-assisted laser desorption/lonization mass spectrometry (MALDI-TOF-MS. Of 55 identified proteins that significantly differed in expression between the two strains, 15 were upregulated and 40 were downregulated. The downregulated proteins included enzymes related to glycolysis and TCA cycle, suggesting that glucose is not properly utilized in S. epidermidis when saeRS was deleted. The study will be helpful for treatment of S. epidermidis infection from the viewpoint of metabolic modulation dependent on two-component signal transduction system SaeRS.

  13. Rotation and toroidal magnetic field effects on the stability of two-component jets

    Science.gov (United States)

    Millas, Dimitrios; Keppens, Rony; Meliani, Zakaria

    2017-09-01

    Several observations of astrophysical jets show evidence of a structure in the direction perpendicular to the jet axis, leading to the development of 'spine and sheath' models of jets. Most studies focus on a two-component jet consisting of a highly relativistic inner jet and a slower - but still relativistic - outer jet surrounded by an unmagnetized environment. These jets are believed to be susceptible to a relativistic Rayleigh-Taylor-type instability, depending on the effective inertia ratio of the two components. We extend previous studies by taking into account the presence of a non-zero toroidal magnetic field. Different values of magnetization are examined to detect possible differences in the evolution and stability of the jet. We find that the toroidal field, above a certain level of magnetization σ, roughly equal to 0.01, can stabilize the jet against the previously mentioned instabilities and that there is a clear trend in the behaviour of the average Lorentz factor and the effective radius of the jet when we continuously increase the magnetization. The simulations are performed using the relativistic MHD module from the open source, parallel, grid adaptive, mpi-amrvac code.

  14. Analytical energy gradient for the two-component normalized elimination of the small component method

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Wenli; Filatov, Michael; Cremer, Dieter, E-mail: dcremer@smu.edu [Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas 75275-0314 (United States)

    2015-06-07

    The analytical gradient for the two-component Normalized Elimination of the Small Component (2c-NESC) method is presented. The 2c-NESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac spin-orbit (SO) splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000)]. The effect of spin-orbit coupling (SOC) on molecular geometries is analyzed utilizing the properties of the frontier orbitals and calculated SO couplings. It is shown that bond lengths can either be lengthened or shortened under the impact of SOC where in the first case the influence of low lying excited states with occupied antibonding orbitals plays a role and in the second case the jj-coupling between occupied antibonding and unoccupied bonding orbitals dominates. In general, the effect of SOC on bond lengths is relatively small (≤5% of the scalar relativistic changes in the bond length). However, large effects are found for van der Waals complexes Hg{sub 2} and Cn{sub 2}, which are due to the admixture of more bonding character to the highest occupied spinors.

  15. Analytical energy gradient for the two-component normalized elimination of the small component method

    Science.gov (United States)

    Zou, Wenli; Filatov, Michael; Cremer, Dieter

    2015-06-01

    The analytical gradient for the two-component Normalized Elimination of the Small Component (2c-NESC) method is presented. The 2c-NESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac spin-orbit (SO) splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000)]. The effect of spin-orbit coupling (SOC) on molecular geometries is analyzed utilizing the properties of the frontier orbitals and calculated SO couplings. It is shown that bond lengths can either be lengthened or shortened under the impact of SOC where in the first case the influence of low lying excited states with occupied antibonding orbitals plays a role and in the second case the jj-coupling between occupied antibonding and unoccupied bonding orbitals dominates. In general, the effect of SOC on bond lengths is relatively small (≤5% of the scalar relativistic changes in the bond length). However, large effects are found for van der Waals complexes Hg2 and Cn2, which are due to the admixture of more bonding character to the highest occupied spinors.

  16. Two component WIMP-FImP dark matter model with singlet fermion, scalar and pseudo scalar

    Energy Technology Data Exchange (ETDEWEB)

    Dutta Banik, Amit; Pandey, Madhurima; Majumdar, Debasish [Saha Institute of Nuclear Physics, HBNI, Astroparticle Physics and Cosmology Division, Kolkata (India); Biswas, Anirban [Harish Chandra Research Institute, Allahabad (India)

    2017-10-15

    We explore a two component dark matter model with a fermion and a scalar. In this scenario the Standard Model (SM) is extended by a fermion, a scalar and an additional pseudo scalar. The fermionic component is assumed to have a global U(1){sub DM} and interacts with the pseudo scalar via Yukawa interaction while a Z{sub 2} symmetry is imposed on the other component - the scalar. These ensure the stability of both dark matter components. Although the Lagrangian of the present model is CP conserving, the CP symmetry breaks spontaneously when the pseudo scalar acquires a vacuum expectation value (VEV). The scalar component of the dark matter in the present model also develops a VEV on spontaneous breaking of the Z{sub 2} symmetry. Thus the various interactions of the dark sector and the SM sector occur through the mixing of the SM like Higgs boson, the pseudo scalar Higgs like boson and the singlet scalar boson. We show that the observed gamma ray excess from the Galactic Centre as well as the 3.55 keV X-ray line from Perseus, Andromeda etc. can be simultaneously explained in the present two component dark matter model and the dark matter self interaction is found to be an order of magnitude smaller than the upper limit estimated from the observational results. (orig.)

  17. Two-component vector solitons in defocusing Kerr-type media with spatially modulated nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A and M University at Qatar, P.O. Box 23874 Doha (Qatar); Belić, Milivoj [Texas A and M University at Qatar, P.O. Box 23874 Doha (Qatar); Institute of Physics, University of Belgrade, P.O. Box 57, 11001 Belgrade (Serbia)

    2014-12-15

    We present a class of exact solutions to the coupled (2+1)-dimensional nonlinear Schrödinger equation with spatially modulated nonlinearity and a special external potential, which describe the evolution of two-component vector solitons in defocusing Kerr-type media. We find a robust soliton solution, constructed with the help of Whittaker functions. For specific choices of the topological charge, the radial mode number and the modulation depth, the solitons may exist in various forms, such as the half-moon, necklace-ring, and sawtooth vortex-ring patterns. Our results show that the profile of such solitons can be effectively controlled by the topological charge, the radial mode number, and the modulation depth. - Highlights: • Two-component vector soliton clusters in defocusing Kerr-type media are reported. • These soliton clusters are constructed with the help of Whittaker functions. • The half-moon, necklace-ring and vortex-ring patterns are found. • The profile of these solitons can be effectively controlled by three soliton parameters.

  18. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media

    KAUST Repository

    Saad, Bilal Mohammed

    2013-09-01

    We propose and analyze a finite volume scheme to simulate a non equilibrium two components (water and hydrogen) two phase flow (liquid and gas) model. In this model, the assumption of local mass non equilibrium is ensured and thus the velocity of the mass exchange between dissolved hydrogen and hydrogen in the gas phase is supposed finite. The proposed finite volume scheme is fully implicit in time together with a phase-by-phase upwind approach in space and it is discretize the equations in their general form with gravity and capillary terms We show that the proposed scheme satisfies the maximum principle for the saturation and the concentration of the dissolved hydrogen. We establish stability results on the velocity of each phase and on the discrete gradient of the concentration. We show the convergence of a subsequence to a weak solution of the continuous equations as the size of the discretization tends to zero. At our knowledge, this is the first convergence result of finite volume scheme in the case of two component two phase compressible flow in several space dimensions.

  19. Patient Autonomy for the Management of Chronic Conditions: A Two-Component Re-conceptualization

    Science.gov (United States)

    Naik, Aanand D.; Dyer, Carmel B.; Kunik, Mark E.; McCullough, Laurence B.

    2010-01-01

    The clinical application of the concept of patient autonomy has centered on the ability to deliberate and make treatment decisions (decisional autonomy) to the virtual exclusion of the capacity to execute the treatment plan (executive autonomy). However, the one-component concept of autonomy is problematic in the context of multiple chronic conditions. Adherence to complex treatments commonly breaks down when patients have functional, educational, and cognitive barriers that impair their capacity to plan, sequence, and carry out tasks associated with chronic care. The purpose of this article is to call for a two-component re-conceptualization of autonomy and to argue that the clinical assessment of capacity for patients with chronic conditions should be expanded to include both autonomous decision making and autonomous execution of the agreed-upon treatment plan. We explain how the concept of autonomy should be expanded to include both decisional and executive autonomy, describe the biopsychosocial correlates of the two-component concept of autonomy, and recommend diagnostic and treatment strategies to support patients with deficits in executive autonomy. PMID:19180389

  20. Shape-persistent two-component 2D networks with atomic-size tunability.

    Science.gov (United States)

    Liu, Jia; Zhang, Xu; Wang, Dong; Wang, Jie-Yu; Pei, Jian; Stang, Peter J; Wan, Li-Jun

    2011-09-05

    Over the past few years, two-dimensional (2D) nanoporous networks have attracted great interest as templates for the precise localization and confinement of guest building blocks, such as functional molecules or clusters on the solid surfaces. Herein, a series of two-component molecular networks with a 3-fold symmetry are constructed on graphite using a truxenone derivative and trimesic acid homologues with carboxylic-acid-terminated alkyl chains. The hydrogen-bonding partner-recognition-induced 2D crystallization of alkyl chains makes the flexible alkyl chains act as rigid spacers in the networks to continuously tune the pore size with an accuracy of one carbon atom per step. The two-component networks were found to accommodate and regulate the distribution and aggregation of guest molecules, such as COR and CuPc. This procedure provides a new pathway for the design and fabrication of molecular nanostructures on solid surfaces. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Method of estimating changes in vapor concentrations continuously generated from two-component organic solvents.

    Science.gov (United States)

    Hori, Hajime; Ishidao, Toru; Ishimatsu, Sumiyo

    2010-12-01

    We measured vapor concentrations continuously evaporated from two-component organic solvents in a reservoir and proposed a method to estimate and predict the evaporation rate or generated vapor concentrations. Two kinds of organic solvents were put into a small reservoir made of glass (3 cm in diameter and 3 cm high) that was installed in a cylindrical glass vessel (10 cm in diameter and 15 cm high). Air was introduced into the glass vessel at a flow rate of 150 ml/min, and the generated vapor concentrations were intermittently monitored for up to 5 hours with a gas chromatograph equipped with a flame ionization detector. The solvent systems tested in this study were the methanoltoluene system and the ethyl acetate-toluene system. The vapor concentrations of the more volatile component, that is, methanol in the methanol-toluene system and ethyl acetate in the ethyl acetate-toluene system, were high at first, and then decreased with time. On the other hand, the concentrations of the less volatile component were low at first, and then increased with time. A model for estimating multicomponent organic vapor concentrations was developed, based on a theory of vapor-liquid equilibria and a theory of the mass transfer rate, and estimated values were compared with experimental ones. The estimated vapor concentrations were in relatively good agreement with the experimental ones. The results suggest that changes in concentrations of two-component organic vapors continuously evaporating from a liquid reservoir can be estimated by the proposed model.

  2. Determination of two-dimensional correlation lengths in an anisotropic two-component flow

    International Nuclear Information System (INIS)

    Thomson, O.

    1994-05-01

    Former studies have shown that correlation methods can be used for determination of various two-component flow parameters, among these the correlation length. In cases where the flow can be described as a mixture, in which the minority component forms spatially limited perturbations within the majority component, this parameter gives a good indication of the maximum extension of these perturbations. In the former studies, spherical symmetry of the perturbations has been assumed, and the correlation length has been measured in the direction of the flow (axially) only. However, if the flow structure is anisotropic, the correlation length will be different in different directions. In the present study, the method has been developed further, allowing also measurements perpendicular to the flow direction (radially). The measurements were carried out using laser beams and the two-component flows consisted of either glass beads and air or air and water. In order to make local measurements of both the axial and radial correlation length simultaneously, it is necessary to use 3 laser beams and to form the triple cross-covariance. This lead to some unforeseen complications, due to the character of this function. The experimental results are generally positive and size determinations with an accuracy of better than 10% have been achieved in most cases. Less accurate results appeared only for difficult conditions (symmetrical signals), when 3 beams were used. 5 refs, 13 figs, 3 tabs

  3. Regularity for 3D Navier-Stokes equations in terms of two components of the vorticity

    Directory of Open Access Journals (Sweden)

    Sadek Gala

    2010-10-01

    Full Text Available We establish regularity conditions for the 3D Navier-Stokes equation via two components of the vorticity vector. It is known that if a Leray-Hopf weak solution $u$ satisfies $$ ilde{omega}in L^{2/(2-r}(0,T;L^{3/r}(mathbb{R}^3quad hbox{with }0two components of the vorticity, $omega =operatorname{curl}u$, then $u$ becomes the classical solution on $(0,T]$ (see [5]. We prove the regularity of Leray-Hopf weak solution $u$ under each of the following two (weaker conditions: $$displaylines{ ilde{omega}in L^{2/(2-r}(0,T;dot {mathcal{M}}_{2, 3/r}(mathbb{R}^3quad hbox{for }0

  4. Thermal gravitational radiation of Fermi gases and Fermi liquids

    International Nuclear Information System (INIS)

    Schafer, G.; Dehnen, H.

    1983-01-01

    In view of neutron stars the gravitational radiation power of the thermal ''zero-sound'' phonons of a Fermi liquid and the gravitational bremsstrahlung of a degenerate Fermi gas is calculated on the basis of a hard-sphere Fermi particle model. We find for the gravitational radiation power per unit volume P/sub( s/)approx. =[(9π)/sup 1/3//5] x GQ n/sup 5/3/(kT) 4 h 2 c 5 and P/sub( g/)approx. =(4 5 /5 3 )(3/π)/sup 2/3/ G a 2 n/sup 5/3/(kT) 4 /h 2 c 5 for the cases of ''zero sound'' and bremsstrahlung, respectively. Here Q = 4πa 2 is the total cross section of the hard-sphere fermions, where a represents the radius of their hard-core potential. The application to very young neutron stars results in a total gravitational luminosity of about 10 31 erg/sec

  5. Model for paramagnetic Fermi systems

    International Nuclear Information System (INIS)

    Ainsworth, T.L.; Bedell, K.S.; Brown, G.E.; Quader, K.F.

    1983-01-01

    We develop a mode for paramagnetic Fermi liquids. This model has both direct and induced interactions, the latter including both density-density and current-current response. The direct interactions are chosen to reproduce the Fermi liquid parameters F/sup s/ 0 , F/sup a/ 0 , F/sup s/ 1 and to satify the forward scattering sum rule. The F/sup a/ 1 and F/sup s/,a/sub l/ for l>1 are determined self-consistently by the induced interactions; they are checked aginst experimental determinations. The model is applied in detail to liquid 3 He, using data from spin-echo experiments, sound attenuation, and the velocities of first and zero sound. Consistency with experiments gives definite preferences for values of m. The model is also applied to paramagnetic metals. Arguments are given that this model should provide a basis for calculating effects of magnetic fields

  6. Linearmycins Activate a Two-Component Signaling System Involved in Bacterial Competition and Biofilm Morphology

    Science.gov (United States)

    2017-01-01

    ABSTRACT Bacteria use two-component signaling systems to adapt and respond to their competitors and changing environments. For instance, competitor bacteria may produce antibiotics and other bioactive metabolites and sequester nutrients. To survive, some species of bacteria escape competition through antibiotic production, biofilm formation, or motility. Specialized metabolite production and biofilm formation are relatively well understood for bacterial species in isolation. How bacteria control these functions when competitors are present is not well studied. To address fundamental questions relating to the competitive mechanisms of different species, we have developed a model system using two species of soil bacteria, Bacillus subtilis and Streptomyces sp. strain Mg1. Using this model, we previously found that linearmycins produced by Streptomyces sp. strain Mg1 cause lysis of B. subtilis cells and degradation of colony matrix. We identified strains of B. subtilis with mutations in the two-component signaling system yfiJK operon that confer dual phenotypes of specific linearmycin resistance and biofilm morphology. We determined that expression of the ATP-binding cassette (ABC) transporter yfiLMN operon, particularly yfiM and yfiN, is necessary for biofilm morphology. Using transposon mutagenesis, we identified genes that are required for YfiLMN-mediated biofilm morphology, including several chaperones. Using transcriptional fusions, we found that YfiJ signaling is activated by linearmycins and other polyene metabolites. Finally, using a truncated YfiJ, we show that YfiJ requires its transmembrane domain to activate downstream signaling. Taken together, these results suggest coordinated dual antibiotic resistance and biofilm morphology by a single multifunctional ABC transporter promotes competitive fitness of B. subtilis. IMPORTANCE DNA sequencing approaches have revealed hitherto unexplored diversity of bacterial species in a wide variety of environments that

  7. Quantum information entropies of ultracold atomic gases in a ...

    Indian Academy of Sciences (India)

    The position and momentum space information entropies of weakly interacting trapped atomic Bose–Einstein condensates and spin-polarized trapped atomic Fermi gases at absolute zero temperature are evaluated. We find that sum of the position and momentum space information entropies of these quantum systems ...

  8. Impurity coupled to an artificial magnetic field in a Fermi gas in a ring trap

    Science.gov (United States)

    Ünal, F. Nur; Hetényi, B.; Oktel, M. Ã.-.

    2015-05-01

    The dynamics of a single impurity interacting with a many-particle background is one of the central problems of condensed-matter physics. Recent progress in ultracold-atom experiments makes it possible to control this dynamics by coupling an artificial gauge field specifically to the impurity. In this paper, we consider a narrow toroidal trap in which a Fermi gas is interacting with a single atom. We show that an external magnetic field coupled to the impurity is a versatile tool to probe the impurity dynamics. Using a Bethe ansatz, we calculate the eigenstates and corresponding energies exactly as a function of the flux through the trap. Adiabatic change of flux connects the ground state to excited states due to flux quantization. For repulsive interactions, the impurity disturbs the Fermi sea by dragging the fermions whose momentum matches the flux. This drag transfers momentum from the impurity to the background and increases the effective mass. The effective mass saturates to the total mass of the system for infinitely repulsive interactions. For attractive interactions, the drag again increases the effective mass which quickly saturates to twice the mass of a single particle as a dimer of the impurity and one fermion is formed. For excited states with momentum comparable to number of particles, effective mass shows a resonant behavior. We argue that standard tools in cold-atom experiments can be used to test these predictions.

  9. Conversion of a Degenerate Fermi Gas of 6Li Atoms to a Molecular BEC

    International Nuclear Information System (INIS)

    Strecker, K.E.; Partridge, G.B.; Kamar, R.I.; Jack, M.W.; Hulet, R.G.

    2005-01-01

    Atomic Feshbach resonances have recently been used to produce a strongly interacting Fermi gas, where the BCS/BEC crossover can be explored. We have used both narrow and broad Feshbach resonances to convert a quantum degenerate Fermi gas of 6Li atoms into an ultracold gas of Li2 molecules. For the narrow resonances, the molecules are formed by coherent adiabatic passage through the resonance. We find that 50% of the atoms are converted to molecules. Furthermore, the lifetime of these molecules was measured to be surprisingly long, 1 s. We will discuss these measurements in the context of the present theoretical understanding. Molecules can also be formed using static fields near the broad Feshbach resonance. The lifetime of these molecules is again long, and sufficient to enable their evaporation to a Bose-Einstein condensate. Phase contrast images of the molecular condensate are presented. The BCS/BEC crossover may be explored by starting with a pure molecular condensate on the low-field side of the Feshbach resonance, and adiabatically changing the field to any final value around resonance. We combine this ability with optical spectroscopy on a bound-bound molecular transition to probe the nature of the many-body wavefunction in the crossover regime

  10. Fermi Timing and Synchronization System

    International Nuclear Information System (INIS)

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D'Auria, G.

    2006-01-01

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed

  11. Fermi Timing and Synchronization System

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D' Auria, G.

    2006-07-19

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.

  12. Measuring two-phase and two-component mixtures by radiometric technique

    International Nuclear Information System (INIS)

    Mackuliak, D.; Rajniak, I.

    1984-01-01

    The possibility was tried of the application of the radiometric method in measuring steam water content. The experiments were carried out in model conditions where steam was replaced with the two-component mixture of water and air. The beta radiation source was isotope 204 Tl (Esub(max)=0.765 MeV) with an activity of 19.35 MBq. Measurements were carried out within the range of the surface density of the mixture from 0.119 kg.m -2 to 0.130 kg.m -2 . Mixture speed was 5.1 m.s -1 to 7.1 m.s -1 . The observed dependence of relative pulse frequency on the specific water content in the mixture was approximated by a linear regression. (B.S.)

  13. [Regulation of sporulation by two-component system YvcPQ in Bacillus thuringiensis].

    Science.gov (United States)

    Fan, Qingyun; Zhang, Shumeng; Gong, Yujing; He, Jin

    2017-01-04

    To study the regulation of sporulation controlled by two-component system (TCS) YvcPQ. β-galactosidase experiment was used to verify the regulation of YvcP on kapD expression; bacterial one-hybrid assay, EMSA and RT-qPCR were applied to study the regulation of AbrB on yvcPQ expression; markerless gene deletion coupled with spore count was used to reveal the influence of yvcPQ and kapD expressions on sporulation. transcriptional regulator AbrB up-regulated the expression of yvcPQ; YvcP promoted the expression of kapD to inhibit sporulation. AbrB up-regulated the transcription of yvcPQ operon, then the increased YvcP strengthened the transcriptional acitivation of sporulation inhibitor gene kapD, and subsequently inhibited sporulation.

  14. TWO-COMPONENT SYSTEM: A MOLECULAR DIALOGUE BETWEEN RUMINAL BACTERIA AND FEED PARTICLES (FORAGE PLANTS

    Directory of Open Access Journals (Sweden)

    Monica Marcela Galicia Jimenez

    2017-12-01

    Full Text Available The ability to adapt rapidly to changes in the environment is one of the main characteristics of the bacterial cell. The rumen is a highly dynamic environment, and none of the changes are permanent due to the various microbial species found in the rumen. Signal transduction networks are information processing pathways that recognize various physical and chemical stimuli, amplification, signal processing, and trigger responses of the bacterial cell. The aim of the present review is to show the importance of these two component systems in rumen bacteria, because it is based on the knowledge of the principles governing the bacterial population communication, its main interactions and products of metabolism, we can approach the manipulation of Ruminal fermentation to improve animal health, productivity and food safety.

  15. Phosphate sink containing two-component signaling systems as tunable threshold devices

    DEFF Research Database (Denmark)

    Amin, Munia; Kothamachu, Varun B; Feliu, Elisenda

    2014-01-01

    Synthetic biology aims to design de novo biological systems and reengineer existing ones. These efforts have mostly focused on transcriptional circuits, with reengineering of signaling circuits hampered by limited understanding of their systems dynamics and experimental challenges. Bacterial two......-component signaling systems offer a rich diversity of sensory systems that are built around a core phosphotransfer reaction between histidine kinases and their output response regulator proteins, and thus are a good target for reengineering through synthetic biology. Here, we explore the signal-response relationship...... rapid signal termination, whereby one of the RRs acts as a phosphate sink towards the other RR (i.e. the output RR), but also implements a sigmoidal signal-response relationship. We identify two mathematical conditions on system parameters that are necessary for sigmoidal signal-response relationships...

  16. Phase diagram of two-component bosons on an optical lattice

    International Nuclear Information System (INIS)

    Altman, Ehud; Hofstetter, Walter; Demler, Eugene; Lukin, Mikhail D

    2003-01-01

    We present a theoretical analysis of the phase diagram of two-component bosons on an optical lattice. A new formalism is developed which treats the effective spin interactions in the Mott and superfluid phases on the same footing. Using this new approach we chart the phase boundaries of the broken spin symmetry states up to the Mott to superfluid transition and beyond. Near the transition point, the magnitude of spin exchange can be very large, which facilitates the experimental realization of spin-ordered states. We find that spin and quantum fluctuations have a dramatic effect on the transition, making it first order in extended regions of the phase diagram. When each species is at integer filling, an additional phase transition may occur, from a spin-ordered insulator to a Mott insulator with no broken symmetries. We determine the phase boundaries in this regime and show that this is essentially a Mott transition in the spin sector

  17. Characterization of a two-component thermoluminescent albedo dosemeter according to ISO 21909

    Energy Technology Data Exchange (ETDEWEB)

    Martins, M.M., E-mail: marcelo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN), Av. Salvador Allende s/n, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Mauricio, C.L.P., E-mail: claudia@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN), Av. Salvador Allende s/n, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Pereira, W.W., E-mail: walsan@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN), Av. Salvador Allende s/n, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Silva, A.X. da, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao em Engenharia, COPPE/PEN Caixa Postal 68509, CEP 21941-972, Rio de Janeiro, RJ (Brazil)

    2011-05-15

    A two-component thermoluminescent albedo neutron monitoring system was developed at Instituto de Radioprotecao e Dosimetria, Brazil. As there is no Brazilian regulation for neutron individual monitoring service, the system was tested according to the ISO 21909 standard. This standard provides performance and test requirements for determining the acceptability of personal neutron dosemeters to be used for the measurement of personal dose equivalent, H{sub p}(10), in neutron fields with energies ranging from thermal to 20 MeV. Up to 40 dosemeters were used in order to accomplish satisfactorily the requirements of some tests. Despite operational difficulties, this albedo system passed all ISO 21909 performance requirements. The results and problems throughout this characterization are discussed in this paper.

  18. Modulational instability for a self-attractive two-component Bose–Einstein condensate

    International Nuclear Information System (INIS)

    Sheng-Chang, Li; Wen-Shan, Duan

    2009-01-01

    By means of the multiple-scale expansion method, the coupled nonlinear Schrödinger equations without an explicit external potential are obtained in two-dimensional geometry for a self-attractive Bose–Einstein condensate composed of different hyperfine states. The modulational instability of two-component condensate is investigated by using a simple technique. Based on the discussion about two typical cases, the explicit expression of the growth rate for a purely growing modulational instability and the optimum stable conditions are given and analysed analytically. The results show that the modulational instability of this two-dimensional system is quite different from that in a one-dimensional system. (general)

  19. A two-component system regulates hemin acquisition in Porphyromonas gingivalis.

    Directory of Open Access Journals (Sweden)

    Jodie C Scott

    Full Text Available Porphyromonas gingivalis is a Gram-negative oral anaerobe associated with infection of the periodontia. The organism has a small number of two-component signal transduction systems, and after comparing genome sequences of strains W83 and ATCC 33277 we discovered that the latter was mutant in histidine kinase (PGN_0752, while the cognate response regulator (PGN_0753 remained intact. Microarray-based transcriptional profiling and ChIP-seq assays were carried out with an ATCC 33277 transconjugant containing the functional histidine kinase from strain W83 (PG0719. The data showed that the regulon of this signal transduction system contained genes that were involved in hemin acquisition, including gingipains, at least three transport systems, as well as being self-regulated. Direct regulation by the response regulator was confirmed by electrophoretic mobility shift assays. In addition, the system appears to be activated by hemin and the regulator acts as both an activator and repressor.

  20. Two-component air heating system. Final report. Zweikomponenten-Luftheizungs-System. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, W; Thiel, D

    1986-01-01

    The two-component heating system consists of a combination of air-based floor heating and direct air heating, with ventilation and extraction and heat recovery. The direct airflow consists exclusively of heated outside air, the amount corresponding to the building's external air intake requirement. The control system comprises a two-step sequential control of the air throughput of the direct air heating system and of the air distribution for the floor heating airflow. A special heating switch makes it possible to switch off the direct air heating system separately, and to select rapid warm-up. The way in which the new heating system works has been tested in a pilot set-up and proven by comprehensive measurements. In addition, a simulation model was produced which gave substantial confirmation of the measurements. (orig.) With 9 refs., 37 tabs., 63 figs.

  1. Plasma oscillations and sound waves in collision-dominated two-component plasmas

    International Nuclear Information System (INIS)

    Hansen, J.P.; Sjoegren, L.

    1982-01-01

    Charge, mass, and electron density fluctuation spectra of strongly correlated, fully ionized two-component plasmas within the framework of the Mori--Zwanzig memory function formalism are analyzed. All dynamical correlation functions are expressed in terms of the memory functions of the ion and electron velocity autocorrelation functions by a generalized effective field approximation which preserves the exact initial values (i.e., static correlations). The theory reduces correctly to the mean field (or collisionless Vlasov) results in the weak coupling limit, and yields charge density fluctuation spectra in good agreement with available computer simulation data, as well as reasonable estimates of the transport coefficients. The collisional damping and frequency shift of the plasma oscillation mode are sizeable, even in the long wavelength limit. The theory also predicts the propagation of well-defined sound waves in dense plasmas in thermal equilibrium

  2. A two component model describing nucleon structure functions in the low-x region

    Energy Technology Data Exchange (ETDEWEB)

    Bugaev, E.V. [Institute for Nuclear Research of the Russian Academy of Sciences, 7a, 60th October Anniversary prospect, Moscow 117312 (Russian Federation); Mangazeev, B.V. [Irkutsk State University, 1, Karl Marx Street, Irkutsk 664003 (Russian Federation)

    2009-12-15

    A two component model describing the electromagnetic nucleon structure functions in the low-x region, based on generalized vector dominance and color dipole approaches is briefly described. The model operates with the mesons of rho-family having the mass spectrum of the form m{sub n}{sup 2}=m{sub r}ho{sup 2}(1+2n) and takes into account the nondiagonal transitions in meson-nucleon scattering. The special cut-off factors are introduced in the model, to exclude the gamma-qq-bar-V transitions in the case of narrow qq-bar-pairs. For the color dipole part of the model the well known FKS-parameterization is used.

  3. Two-component mixture model: Application to palm oil and exchange rate

    Science.gov (United States)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad

    2014-12-01

    Palm oil is a seed crop which is widely adopt for food and non-food products such as cookie, vegetable oil, cosmetics, household products and others. Palm oil is majority growth in Malaysia and Indonesia. However, the demand for palm oil is getting growth and rapidly running out over the years. This phenomenal cause illegal logging of trees and destroy the natural habitat. Hence, the present paper investigates the relationship between exchange rate and palm oil price in Malaysia by using Maximum Likelihood Estimation via Newton-Raphson algorithm to fit a two components mixture model. Besides, this paper proposes a mixture of normal distribution to accommodate with asymmetry characteristics and platykurtic time series data.

  4. Level shift two-components autoregressive conditional heteroscedasticity modelling for WTI crude oil market

    Science.gov (United States)

    Sin, Kuek Jia; Cheong, Chin Wen; Hooi, Tan Siow

    2017-04-01

    This study aims to investigate the crude oil volatility using a two components autoregressive conditional heteroscedasticity (ARCH) model with the inclusion of abrupt jump feature. The model is able to capture abrupt jumps, news impact, clustering volatility, long persistence volatility and heavy-tailed distributed error which are commonly observed in the crude oil time series. For the empirical study, we have selected the WTI crude oil index from year 2000 to 2016. The results found that by including the multiple-abrupt jumps in ARCH model, there are significant improvements of estimation evaluations as compared with the standard ARCH models. The outcomes of this study can provide useful information for risk management and portfolio analysis in the crude oil markets.

  5. Functional assessment of EnvZ/OmpR two-component system in Shewanella oneidensis.

    Directory of Open Access Journals (Sweden)

    Jie Yuan

    Full Text Available EnvZ and OmpR constitute the bacterial two-component signal transduction system known to mediate osmotic stress response in a number of gram-negative bacteria. In an effort to understand the mechanism through which Shewanella oneidensis senses and responds to environmental osmolarity changes, structure of the ompR-envZ operon was determined with Northern blotting assay and roles of the EnvZ/OmpR two-component system in response to various stresses were investigated with mutational analysis, quantitative reverse transcriptase PCR (qRT-PCR, and phenotype microarrays. Results from the mutational analysis and qRT-PCR suggested that the EnvZ/OmpR system contributed to osmotic stress response of S. oneidensis and very likely engaged a similar strategy employed by E. coli, which involved reciprocal regulation of two major porin coding genes. Additionally, the ompR-envZ system was also found related to cell motility. We further showed that the ompR-envZ dependent regulation of porin genes and motility resided almost completely on ompR and only partially on envZ, indicating additional mechanisms for OmpR phosphorylation. In contrast to E. coli lacking ompR-envZ, however, growth of S. oneidensis did not show a significant dependence on ompR-envZ even under osmotic stress. Further analysis with phenotype microarrays revealed that the S. oneidensis strains lacking a complete ompR-envZ system displayed hypersensitivities to a number of agents, especially in alkaline environment. Taken together, our results suggest that the function of the ompR-envZ system in S. oneidensis, although still connected with osmoregulation, has diverged considerably from that of E. coli. Additional mechanism must exist to support growth of S. oneidensis under osmotic stress.

  6. Regulation of virulence by a two-component system in group B streptococcus.

    Science.gov (United States)

    Jiang, Sheng-Mei; Cieslewicz, Michael J; Kasper, Dennis L; Wessels, Michael R

    2005-02-01

    Group B Streptococcus (GBS) is frequently carried in the gastrointestinal or genitourinary tract as a commensal organism, yet it has the potential to cause life-threatening infection in newborn infants, pregnant women, and individuals with chronic illness. Regulation of virulence factor expression may affect whether GBS behaves as an asymptomatic colonizer or an invasive pathogen, but little is known about how such factors are controlled in GBS. We now report the characterization of a GBS locus that encodes a two-component regulatory system similar to CsrRS (or CovRS) in Streptococcus pyogenes. Inactivation of csrR, encoding the putative response regulator, in two unrelated wild-type strains of GBS resulted in a marked increase in production of beta-hemolysin/cytolysin and a striking decrease in production of CAMP factor, an unrelated cytolytic toxin. Quantitative RNA hybridization experiments revealed that these two phenotypes were associated with a marked increase and decrease in expression of the corresponding genes, cylE and cfb, respectively. The CsrR mutant strains also displayed increased expression of scpB encoding C5a peptidase. Similar, but less marked, changes in gene expression were observed in CsrS (putative sensor component) mutants, evidence that CsrR and CsrS constitute a functional two-component system. Experimental infection studies in mice demonstrated reduced virulence of both CsrR and CsrS mutant strains relative to the wild type. Together, these results indicate that CsrRS regulates expression of multiple GBS virulence determinants and is likely to play an important role in GBS pathogenesis.

  7. Nonlinear light scattering in a two component medium: optical limiting application

    International Nuclear Information System (INIS)

    Joudrier, Valerie

    1998-01-01

    Scattering is a fundamental manifestation of the interaction between matter and radiation, resulting from inhomogeneities in the refractive index, which decrease transmission. This phenomenon is then especially attractive for sensor protection from laser light by optical limiting. One of the methods to induce scattering at high incident energy is to make use of the Kerr effect where the index of refraction is intensity dependent. Thus, the idea is to use a two component medium with a good index matching between the two components at low intensity, resulting in the medium transparency, and to modify it, at high intensity, due to the non linearity of one component making the medium highly scattering. Some of the experimental and theoretical investigations concerning a new material (here, a cell containing some liquid with small silica particles as inclusion in it) are presented in the visible domain (I=532 nm), for the nanosecond protection regime, beginning, with the chemical synthesis of the sample. The experimental results concerning the optical limiting process are presented, showing that nonlinear scattering is clearly the dominant mechanism in confrontation with other potential nonlinear effects. Several complementary experiments are then performed to complete the nonlinear scattering characterization, involving the measurement of the angular distribution of scattered energy and the integrating sphere measurement. Further information are also gained by studying the time response of the nonlinearities with a dual-beam (pulsed-pump, cw probe) technique. The previous experimental data is also analyzed with some simple theoretical models to evaluate the nonlinearity of the material from optical limiting, the angular scattering and the total scattering energy measurements. The good match between all the analytical results permits to delineate the physical mechanisms responsible for the nonlinear scattering effect and to direct the final conclusion. (author) [fr

  8. Interacting Fermi gases in disordered one-dimensional lattices

    International Nuclear Information System (INIS)

    Xianlong, Gao; Polini, M.; Tosi, M. P.; Tanatar, B.

    2006-01-01

    Interacting two-component Fermi gases loaded in a one-dimensional (1D) lattice and subject to harmonic trapping exhibit intriguing compound phases in which fluid regions coexist with local Mott-insulator and/or band-insulator regions. Motivated by experiments on cold atoms inside disordered optical lattices, we present a theoretical study of the effects of a random potential on these ground-state phases. Within a density-functional scheme we show that disorder has two main effects: (i) it destroys the local insulating regions if it is sufficiently strong compared with the on-site atom-atom repulsion, and (ii) it induces an anomaly in the compressibility at low density from quenching of percolation

  9. Pulsar Timing with the Fermi LAT

    Science.gov (United States)

    2010-12-01

    Pulsar Timing with the Fermi LAT Paul S. Ray∗, Matthew Kerr†, Damien Parent∗∗ and the Fermi PSC‡ ∗Naval Research Laboratory, 4555 Overlook Ave., SW...Laboratory, Washington, DC 20375, USA ‡Fermi Pulsar Search Consortium Abstract. We present an overview of precise pulsar timing using data from the Large...unbinned photon data. In addition to determining the spindown behavior of the pulsars and detecting glitches and timing noise, such timing analyses al

  10. Structural Basis for DNA Recognition by the Two-Component Response Regulator RcsB.

    Science.gov (United States)

    Filippova, Ekaterina V; Zemaitaitis, Bozena; Aung, Theint; Wolfe, Alan J; Anderson, Wayne F

    2018-02-27

    RcsB is a highly conserved transcription regulator of the Rcs phosphorelay system, a complex two-component signal transduction system (N. Majdalani and S. Gottesman, Annu Rev Microbiol 59:379-405, 2005; A. J. Wolfe, Curr Opin Microbiol 13:204-209, 2010, https://doi.org/10.1016/j.mib.2010.01.002; D. J. Clarke, Future Microbiol 5:1173-1184, 2010, https://doi.org/10.2217/fmb.10.83). RcsB plays an important role in virulence and pathogenicity in human hosts by regulating biofilm formation. RcsB can regulate transcription alone or together with its auxiliary transcription regulators by forming heterodimers. This complexity allows RcsB to regulate transcription of more than 600 bacterial genes in response to different stresses (D. Wang et al., Mol Plant Microbe Interact 25:6-17, 2012, https://doi.org/10.1094/MPMI-08-11-0207). Despite increasing knowledge of RcsB importance, molecular mechanisms that drive the ability of RcsB to control transcription of a large number of genes remain unclear. Here, we present crystal structures of unphosphorylated RcsB in complex with the consensus DNA-binding sequence of 22-mer (DNA22) and 18-mer (DNA18) of the flhDC operon from Escherichia coli determined at 3.15- and 3.37-Å resolution, respectively. The results of our structural analysis combined with the results of in vitro binding assays provide valuable insights to the protein regulatory mechanism, demonstrate how RcsB recognizes target DNA sequences, and reveal a unique oligomeric state that allows RcsB to form homo- and heterodimers. This information will help us understand the complex mechanisms of transcriptional regulation by RcsB in bacteria. IMPORTANCE RcsB is a well-studied two-component response regulator of the Rcs phosphorelay system, conserved within the family Enterobacteriaceae , which includes many pathogens. It is a global regulator, controlling more than 5% of bacterial genes associated with capsule biosynthesis, flagellar biogenesis, cell wall biosynthesis

  11. Counterbalancing Regulation in Response Memory of a Positively Autoregulated Two-Component System.

    Science.gov (United States)

    Gao, Rong; Godfrey, Katherine A; Sufian, Mahir A; Stock, Ann M

    2017-09-15

    Fluctuations in nutrient availability often result in recurrent exposures to the same stimulus conditions. The ability to memorize the past event and use the "memory" to make adjustments to current behaviors can lead to a more efficient adaptation to the recurring stimulus. A short-term phenotypic memory can be conferred via carryover of the response proteins to facilitate the recurrent response, but the additional accumulation of response proteins can lead to a deviation from response homeostasis. We used the Escherichia coli PhoB/PhoR two-component system (TCS) as a model system to study how cells cope with the recurrence of environmental phosphate (Pi) starvation conditions. We discovered that "memory" of prior Pi starvation can exert distinct effects through two regulatory pathways, the TCS signaling pathway and the stress response pathway. Although carryover of TCS proteins can lead to higher initial levels of transcription factor PhoB and a faster initial response in prestarved cells than in cells not starved, the response enhancement can be overcome by an earlier and greater repression of promoter activity in prestarved cells due to the memory of the stress response. The repression counterbalances the carryover of the response proteins, leading to a homeostatic response whether or not cells are prestimulated. A computational model based on sigma factor competition was developed to understand the memory of stress response and to predict the homeostasis of other PhoB-regulated response proteins. Our insight into the history-dependent PhoBR response may provide a general understanding of how TCSs respond to recurring stimuli and adapt to fluctuating environmental conditions. IMPORTANCE Bacterial cells in their natural environments experience scenarios that are far more complex than are typically replicated in laboratory experiments. The architectures of signaling systems and the integration of multiple adaptive pathways have evolved to deal with such complexity

  12. Counterbalancing Regulation in Response Memory of a Positively Autoregulated Two-Component System

    Science.gov (United States)

    Gao, Rong; Godfrey, Katherine A.; Sufian, Mahir A.

    2017-01-01

    ABSTRACT Fluctuations in nutrient availability often result in recurrent exposures to the same stimulus conditions. The ability to memorize the past event and use the “memory” to make adjustments to current behaviors can lead to a more efficient adaptation to the recurring stimulus. A short-term phenotypic memory can be conferred via carryover of the response proteins to facilitate the recurrent response, but the additional accumulation of response proteins can lead to a deviation from response homeostasis. We used the Escherichia coli PhoB/PhoR two-component system (TCS) as a model system to study how cells cope with the recurrence of environmental phosphate (Pi) starvation conditions. We discovered that “memory” of prior Pi starvation can exert distinct effects through two regulatory pathways, the TCS signaling pathway and the stress response pathway. Although carryover of TCS proteins can lead to higher initial levels of transcription factor PhoB and a faster initial response in prestarved cells than in cells not starved, the response enhancement can be overcome by an earlier and greater repression of promoter activity in prestarved cells due to the memory of the stress response. The repression counterbalances the carryover of the response proteins, leading to a homeostatic response whether or not cells are prestimulated. A computational model based on sigma factor competition was developed to understand the memory of stress response and to predict the homeostasis of other PhoB-regulated response proteins. Our insight into the history-dependent PhoBR response may provide a general understanding of how TCSs respond to recurring stimuli and adapt to fluctuating environmental conditions. IMPORTANCE Bacterial cells in their natural environments experience scenarios that are far more complex than are typically replicated in laboratory experiments. The architectures of signaling systems and the integration of multiple adaptive pathways have evolved to deal

  13. Progress on the Magnetic Trapping of Ultra-cold Neutrons

    Science.gov (United States)

    Doyle, John M.

    1998-04-01

    Ultra-cold neutrons (UCN) have been instrumental in making improved measurements of the neutron beta-decay lifetime and in searches for a permanent electric dipole moment.(R. Golub, D. Richardson and S.K. Lamoreaux, Ultra-cold Neutrons), Adam Hilger, 1991 The most accurate experiments have taken place using in-core devices at ILL (Grenoble, France) and PNPI (St. Petersburg, Russia). Superthermal techniques offer the promise of high-density sources of UCN via scattering of cold neutrons. Cold neutron beams are available at many neutron facilities. We are currently working on the development of a superfluid helium UCN source using the Cold Neutron Research Facility at the NIST Research Reactor (Gaithersburg) . Our first experiment plans to use superthermal scattering of neutrons in superfluid helium to produce UCN within a magnetic trapping volume. A magnetic trap 30 cm long and 4 cm diameter will be filled with helium at about 100 mK. Cold neutrons (around 11 K) will be introduced into the trapping region where some of them scatter to low enough energies (around 1 mK) so that they are magnetically trapped. Once trapped the UCN travel undisturbed; they have a very small probability of upscattering. Detection will be accomplished as the UCN beta-decay. The resultant high-energy electron creates excited molecular helium dimers, a portion which decay in less than 10 ns and emit radiation in the XUV (50-100 nm). We have developed techniques to measure these scintillations. Analysis indicates that a high accuracy measurement of the neutron beta decay lifetime should be possible using our techniques. An apparatus has been constructed and initial runs are underway. An overview of the experiment, discussion of systematic errors and recent experimental progress will be presented. This work is done in collaboration with C. Brome, J. Butterworth, S. Dzhosyuk, P. Huffman, C. Mattoni, D. McKinsey, M. Cooper, G. Greene, S. Lamoreaux, R. Golub, K. Habicht, K. Coakley, S. Dewey, D

  14. Phase diagram of strongly correlated Fermi systems

    International Nuclear Information System (INIS)

    Zverev, M.V.; Khodel', V.A.; Baldo, M.

    2000-01-01

    Phase transitions in uniform Fermi systems with repulsive forces between the particles caused by restructuring of quasiparticle filling n(p) are analyzed. It is found that in terms of variables, i.e. density ρ, nondimensional binding constant η, phase diagram of a strongly correlated Fermi system for rather a wide class of interactions reminds of a puff-pastry pie. Its upper part is filled with fermion condensate, the lower one - with normal Fermi-liquid. They are separated by a narrow interlayer - the Lifshits phase, characterized by the Fermi multibound surface [ru

  15. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas with spin–orbit coupling

    International Nuclear Information System (INIS)

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2015-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems. (paper)

  16. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas with spin-orbit coupling

    Science.gov (United States)

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2015-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems.

  17. Instability of Fulde-Ferrell-Larkin-Ovchinnikov states in atomic Fermi gases in three and two dimensions

    Science.gov (United States)

    Wang, Jibiao; Che, Yanming; Zhang, Leifeng; Chen, Qijin

    2018-04-01

    The exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states have been actively searched for experimentally since the mean-field based FFLO theories were put forward half a century ago. Here, we investigate the stability of FFLO states in the presence of pairing fluctuations. We conclude that FFLO superfluids cannot exist in continuum in three and two dimensions, due to their intrinsic instability, associated with infinite quantum degeneracy of the pairs. These results address the absence of convincing experimental observations of FFLO phases in both condensed matter and in ultracold atomic Fermi gases with a population imbalance. We predict that the true ground state has a pair momentum distribution highly peaked on an entire constant energy surface.

  18. Compositeness and the Fermi scale

    International Nuclear Information System (INIS)

    Peccei, R.D.

    1984-01-01

    The positive attitude adopted up to now, due to the non-observation of effects of substructure, is that the compositeness scale Λ must be large: Λ > or approx. 1 TeV. Such a large value of Λ gives rise to two theoretical problems which I examine here, namely: 1) What dynamics yields light composite quarks and leptons (msub(f) < < Λ) and 2) What relation does the compositeness scale Λ have with the Fermi scale Λsub(F) = (√2 Gsub(F))sup(-1/2) approx.= 250 GeV. (orig./HSI)

  19. Fermi problem in disordered systems

    Science.gov (United States)

    Menezes, G.; Svaiter, N. F.; de Mello, H. R.; Zarro, C. A. D.

    2017-10-01

    We revisit the Fermi two-atom problem in the framework of disordered systems. In our model, we consider a two-qubit system linearly coupled with a quantum massless scalar field. We analyze the energy transfer between the qubits under different experimental perspectives. In addition, we assume that the coefficients of the Klein-Gordon equation are random functions of the spatial coordinates. The disordered medium is modeled by a centered, stationary, and Gaussian process. We demonstrate that the classical notion of causality emerges only in the wave zone in the presence of random fluctuations of the light cone. Possible repercussions are discussed.

  20. Ultracold fermion cooling cycle using heteronuclear Feshbach resonances

    DEFF Research Database (Denmark)

    Morales, M. A.; Nygaard, Nicolai; Williams, J. E.

    2005-01-01

    We consider an ideal gas of Bose and Fermi atoms in a harmonic trap, with a Feshbach resonance in the interspecies atomic scattering that can lead to the formation of fermionic molecules. We map out the phase diagram for this three-component mixture in chemical and thermal equilibrium. Considering...... adiabatic association and dissociation of the molecules, we identify a possible cooling cycle, which in ideal circumstances can yield an exponential increase of the phase-space density....

  1. Identification by irradiation, in vitro, of two components of erythroprotein action

    International Nuclear Information System (INIS)

    Barcos, M.

    1978-01-01

    The effect of ionizing radiation on the response of normal cultured rat marrow cells to erythropoietin yielded two-component inactivation curves for induced iron uptake and hemoglobin synthesis. The radioresistant component of the induced hemoglobin response (1) was detected earlier, at 6 to 20 hr after irradiation, (2) had a DO 0 > or = to 900 R, (3) gave a nonlinear erythropoietin dose--response plot at 600 R, (4) disappeared when marrow from erythremic rats was used, and (5) showed maximal inactivation by 500 R when irradiation preceded hormone addition by 1.5 to 2.5 hr. The radiosensitive component (1) was observed without any contribution from the radioresistant component when the time of assay of normal marrow was postponed from 6 to 20 hr to 20 to 44 hr of culture, (2) had a D 0 = 63 R, (3) gave linear erythropoietin dose--response curves at 15 to 60 R, and (4) showed enhanced inhibition by 60 R if irradiation either preceded or followed hormone addition by 3 hr or more

  2. Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Angus, G.W.; Gentile, G. [Department of Physics and Astrophysics, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050 Belgium (Belgium); Diaferio, A. [Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, Torino, I-10125 Italy (Italy); Famaey, B. [Observatoire astronomique de Strasbourg, CNRS UMR 7550, Université de Strasbourg, 11 rue de l' Université, Strasbourg, F-67000 France (France); Heyden, K.J. van der, E-mail: garry.angus@vub.ac.be, E-mail: diaferio@ph.unito.it, E-mail: benoit.famaey@astro.unistra.fr, E-mail: gianfranco.gentile@ugent.be, E-mail: heyden@ast.uct.ac.za [Astrophysics, Cosmology and Gravity Centre, Dept. of Astronomy, University of Cape Town, Private Bag X3, Rondebosch, 7701 South Africa (South Africa)

    2014-10-01

    In this article we continue to test cosmological models centred on Modified Newtonian Dynamics (MOND) with light sterile neutrinos, which could in principle be a way to solve the fine-tuning problems of the standard model on galaxy scales while preserving successful predictions on larger scales. Due to previous failures of the simple MOND cosmological model, here we test a speculative model where the modified gravitational field is produced only by the baryons and the sterile neutrinos produce a purely Newtonian field (hence Modified Baryonic Dynamics). We use two-component cosmological simulations to separate the baryonic N-body particles from the sterile neutrino ones. The premise is to attenuate the over-production of massive galaxy cluster halos which were prevalent in the original MOND plus light sterile neutrinos scenario. Theoretical issues with such a formulation notwithstanding, the Modified Baryonic Dynamics model fails to produce the correct amplitude for the galaxy cluster mass function for any reasonable value of the primordial power spectrum normalisation.

  3. Quantum characteristics of occurrence scattering time in two-component non-ideal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Woo-Pyo [Department of Electronics Engineering, Catholic University of Daegu, Hayang, 712-702 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590 (United States)

    2015-10-30

    The quantum diffraction and plasma screening effects on the occurrence time for the collision process are investigated in two-component non-ideal plasmas. The micropotential model taking into account the quantum diffraction and screening with the eikonal analysis is employed to derive the occurrence time as functions of the collision energy, density parameter, Debye length, de Broglie wavelength, and scattering angle. It is shown that the occurrence time for forward scattering directions decreases the tendency of time-advance with increasing scattering angle and de Broglie wavelength. However, it is found that the occurrence time shows the oscillatory time-advance and time-retarded behaviors with increasing scattering angle. It is found that the plasma screening effect enhances the tendency of time-advance on the occurrence time for forward scattering regions. It is also shown the quantum diffraction effect suppresses the occurrence time advance for forward scattering angles. In addition, it is shown that the occurrence time advance decreases with an increase of the collision energy. - Highlights: • The quantum diffraction and screening effects on the occurrence scattering time are investigated in non-ideal plasmas. • It is shown the quantum diffraction effect suppresses the occurrence time advance for forward scattering angles. • It is found that the plasma screening effect enhances the tendency of time-advance on the occurrence time.

  4. Determination of the number of and classification of two-component ionic-covalent chemical compounds

    International Nuclear Information System (INIS)

    Vigdorovich, V.N.; Dzhuraev, T.D.; Khanin, V.A.

    1989-01-01

    The aim of this work was to determine the number of and to classify two-component compounds corresponding to the four-electron and full-valence concepts and characterized by the ionic-covalent type of bond, on which the metallic bond is superimposed to a greater lesser degree. At the same time it was proposed to verify the position of the axes in the periodic system. The presence of numerous compound analogs for the element prototypes of one axis of the Mendeleev periodic system [the group of noble (inert) gases] was confirmed by computer experiments. However, the other axis (the carbon group) is not so obvious and is evidently due, on account of the superimposition of the effect of noncharacteristic (possible) valences, to the elements of various groups (boron, aluminum, germanium, antimony, bismuth). In addition, the compound analogs for the element prototypes of the d block are numerous, i.e., the copper-silver-gold, manganese-technetium-rhenium, and iron and platinum families

  5. ACOUSTIC WAVES EMISSION IN THE TWO-COMPONENT HEREDITARY-ELASTIC MEDIUM

    Directory of Open Access Journals (Sweden)

    V. S. Polenov

    2014-01-01

    Full Text Available Summary. On the dynamics of two-component media a number of papers, which address the elastic waves in a homogeneous, unbounded fluid-saturated porous medium. In other studies address issues of dissipative processes in harmonic deformation hereditary elastic medium. In the article the dissipative processes of the viscoelastic porous medium, which hereditary properties are described by the core relaxation fractional exponential function U.N. Rabotnova integro-differential Boltzmann-Volterr ratio, harmonic deformation by the straining saturated incompressible liquid are investigated. Speed of wave propagation, absorption coefficient, mechanical loss tangent, logarithmic decrement, depending on fractional parameter γ, determining formulas received. The frequency logarithm and temperature graph dependences with the goal fractional parameter are constructed. Shows the dependences velocity and attenuation coefficient of the tangent of the phase angle of the logarithm of the temperature, and the dependence of the attenuation coefficient of the logarithm of the frequency. Dependencies the speed and the tangent of the phase angle of the frequency identical function of the logarithm of temperature.

  6. Temporal evolution of photon energy emitted from two-component advective flows: origin of time lag

    Science.gov (United States)

    Chatterjee, Arka; Chakrabarti, Sandip K.; Ghosh, Himadri

    2017-12-01

    X-ray time lag of black hole candidates contains important information regarding the emission geometry. Recently, study of time lags from observational data revealed very intriguing properties. To investigate the real cause of this lag behavior with energy and spectral states, we study photon paths inside a two-component advective flow (TCAF) which appears to be a satisfactory model to explain the spectral and timing properties. We employ the Monte Carlo simulation technique to carry out the Comptonization process. We use a relativistic thick disk in Schwarzschild geometry as the CENtrifugal pressure supported BOundary Layer (CENBOL) which is the Compton cloud. In TCAF, this is the post-shock region of the advective component. Keplerian disk on the equatorial plane which is truncated at the inner edge i.e. at the outer boundary of the CENBOL, acts as the soft photon source. Ray-tracing code is employed to track the photons to a distantly located observer. We compute the cumulative time taken by a photon during Comptonization, reflection and following the curved geometry on the way to the observer. Time lags between various hard and soft bands have been calculated. We study the variation of time lags with accretion rates, CENBOL size and inclination angle. Time lags for different energy channels are plotted for different inclination angles. The general trend of variation of time lag with QPO frequency and energy as observed in satellite data is reproduced.

  7. A two component system is involved in acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus.

    Science.gov (United States)

    Cui, Yanhua; Liu, Wei; Qu, Xiaojun; Chen, Zhangting; Zhang, Xu; Liu, Tong; Zhang, Lanwei

    2012-05-20

    The Gram-positive bacterium Lactobacillus delbrueckii subsp. bulgaricus is of vital importance to the food industry, especially to the dairy industry. Two component systems (TCSs) are one of the most important mechanisms for environmental sensing and signal transduction in the majority of Gram-positive and Gram-negative bacteria. A typical TCS consists of a histidine protein kinase (HPK) and a cytoplasmic response regulator (RR). To investigate the functions of TCSs during acid adaptation in L. bulgaricus, we used quantitative PCR to reveal how TCSs expression changes during acid adaptation. Two TCSs (JN675228/JN675229 and JN675230/JN675231) and two HPKs (JN675236 and JN675240) were induced during acid adaptation. These TCSs were speculated to be related with the acid adaptation ability of L. bulgaricus. The mutants of JN675228/JN675229 were constructed in order to investigate the functions of JN675228/JN675229. The mutants showed reduced acid adaptation compared to that of wild type, and the complemented strains were similar to the wild-type strain. These observations suggested that JN675228 and JN675229 were involved in acid adaptation in L. bulgaricus. The interaction between JN675228 and JN675229 was identified by means of yeast two-hybrid system. The results indicated there is interaction between JN675228 and JN675229. Crown Copyright © 2011. Published by Elsevier GmbH. All rights reserved.

  8. The Evolution of Two-Component Systems in Bacteria RevealsDifferent Strategies for Niche Adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Eric; Huang, Katherine; Arkin, Adam

    2006-09-13

    Two-component systems including histidine protein kinasesrepresent the primary signal transduction paradigm in prokaryoticorganisms. To understand how these systems adapt to allow organisms todetect niche-specific signals, we analyzed the phylogenetic distributionof nearly 5000 histidine protein kinases from 207 sequenced prokaryoticgenomes. We found that many genomes carry a large repertoire of recentlyevolved signaling genes, which may reflect selective pressure to adapt tonew environmental conditions. Both lineage-specific gene family expansionand horizontal gene transfer play major roles in the introduction of newhistidine kinases into genomes; however, there are differences in howthese two evolutionary forces act. Genes imported via horizontal transferare more likely to retain their original functionality as inferred from asimilar complement of signaling domains, while gene family expansionaccompanied by domain shuffling appears to be a major source of novelgenetic diversity. Family expansion is the dominantsource of newhistidine kinase genes in the genomes most enriched in signalingproteins, and detailed analysis reveals that divergence in domainstructure and changes in expression patterns are hallmarks of recentexpansions. Finally, while these two modes of gene acquisition arewidespread across bacterial taxa, there are clear species-specificpreferences for which mode is used.

  9. PLA and two components silicon rubber blends aiming for frozen foods packaging applications

    Directory of Open Access Journals (Sweden)

    Utai Meekum

    2018-03-01

    Full Text Available Designing of PLA and two components silicone rubber blends was studies. Frozen food packaging application is the main ultimate aim. The statistical method using 23 DOE was conducted. The standard testing methods, in particular impact testing at sub-zero temperature, were performed. The preliminary blend formula comprised 1.0 phr of silane and polyester polyols, respectively, was initially resolved. Then, the optimize the silicone portion in the blends was determined. Blending formula using 8.0 phr of silicone with respect to PLA matrix gave rise to the overall satisfactory properties. 3. TETA was used as the silicone curing agent and reactively blended onto the ingredients. TETA at 0.4 phr, with respect to the silicone, enhanced the mechanical properties, especially flexibility and toughness, of the PLA/silicone blend. Exceeding the optimal TETA loading would cause the chain scission and also the dilution effects. Hence, marginal inferior properties of the blends were be experienced. The preliminary biodegradability investigation found that the PLA/silicone blend initially triggered at the second week. Its degradation rate was likely to be faster than neat PLA. Keywords: PLA/silicone blends, Mechanical properties, Sub-zero impact strength

  10. Two-component regulators involved in the global control of virulence in Erwinia carotovora subsp. carotovora.

    Science.gov (United States)

    Eriksson, A R; Andersson, R A; Pirhonen, M; Palva, E T

    1998-08-01

    Production of extracellular, plant cell wall degrading enzymes, the main virulence determinants of the plant pathogen Erwinia carotovora subsp. carotovora, is coordinately controlled by a complex regulatory network. Insertion mutants in the exp (extracellular enzyme production) loci exhibit pleiotropic defects in virulence and the growth-phase-dependent transcriptional activation of genes encoding extracellular enzymes. Two new exp mutations, designated expA and expS, were characterized. Introduction of the corresponding wild-type alleles to the mutants complemented both the lack of virulence and the impaired production of plant cell wall degrading enzymes. The expA gene was shown to encode a 24-kDa polypeptide that is structurally and functionally related to the uvrY gene product of Escherichia coli and the GacA response regulator of Pseudomonas fluorescens. Functional similarity of expA and uvrY was demonstrated by genetic complementation. The expA gene is organized in an operon together with a uvrC-like gene, identical to the organization of uvrY and uvrC in E. coli. The unlinked expS gene encodes a putative sensor kinase that shows 92% identity to the recently described rpfA gene product from another E. carotovora subsp. carotovora strain. Our data suggest that ExpS and ExpA are members of two-component sensor kinase and response regulator families, respectively. These two proteins might interact in controlling virulence gene expression in E. carotovora subsp. carotovora.

  11. An inverse spectral problem related to the Geng-Xue two-component peakon equation

    CERN Document Server

    Lundmark, Hans

    2016-01-01

    The authors solve a spectral and an inverse spectral problem arising in the computation of peakon solutions to the two-component PDE derived by Geng and Xue as a generalization of the Novikov and Degasperisâe"Procesi equations. Like the spectral problems for those equations, this one is of a âeoediscrete cubic stringâe typeâe"a nonselfadjoint generalization of a classical inhomogeneous stringâe"but presents some interesting novel features: there are two Lax pairs, both of which contribute to the correct complete spectral data, and the solution to the inverse problem can be expressed using quantities related to Cauchy biorthogonal polynomials with two different spectral measures. The latter extends the range of previous applications of Cauchy biorthogonal polynomials to peakons, which featured either two identical, or two closely related, measures. The method used to solve the spectral problem hinges on the hidden presence of oscillatory kernels of Gantmacherâe"Krein type, implying that the spectrum of...

  12. Isomerization and dissociation in competition: the two-component dissociation rates of methyl acetate ions

    Science.gov (United States)

    Mazyar, Oleg A.; Mayer, Paul M.; Baer, Tomas

    1997-11-01

    Threshold photoelectron-photoion coincidence (TPEPICO) spectroscopy has been used to investigate the unimolecular chemistry of metastable methyl acetate ions, CH3COOCH3.+. The rate of molecular ion fragmentation with the loss of CH3O. and CH2OH radicals as a function of ion internal energy was obtained from the coincidence data and used in conjunction with Rice-Ramsperger-Kassel-Markus and ab initio molecular orbital calculations to model the dissociation/isomerization mechanism of the methyl acetate ion (A). The data were found to be consistent with the mechanism involving a hydrogen-bridged complex CH3CO[middle dot][middle dot][middle dot]H[middle dot][middle dot][middle dot]OCH2.+(E) as the direct precursor of the observed fragments CH3CO+ and CH2OH.. The two-component decay rates were modeled with a three-well-two-product potential energy surface including the distonic ion CH3C(OH)OCH2.+(B) and enol isomer CH2C(OH)OCH3.+(C), which are formed from the methyl acetate ion by two consecutive [1,4]-hydrogen shifts. The 0 K heats of formation of isomers B and C as well as transition states TSAB, TSBC, and TSBE (relative to isomer A) were calculated from Rice-Ramsperger-Kassel-Markus (RRKM) theory.

  13. Images and Spectra of Time Dependent Two Component Advective Flow in Presence of Outflows

    Science.gov (United States)

    Chatterjee, Arka; Chakrabarti, Sandip K.; Ghosh, Himadri; Garain, Sudip K.

    2018-05-01

    Two Component Advective Flow (TCAF) successfully explains the spectral and temporal properties of outbursting or persistent sources. Images of static TCAF with Compton cloud or CENtrifugal pressure supported Boundary Layer (CENBOL) due to gravitational bending of photons have been studied before. In this paper, we study time dependent images of advective flows around a Schwarzschild black hole which include cooling effects due to Comptonization of soft photons from a Keplerian disks well as the self-consistently produced jets and outflows. We show the overall image of the disk-jet system after convolving with a typical beamwidth. A long exposure image with time dependent system need not show the black hole horizon conspicuously, unless one is looking at a soft state with no jet or the system along the jet axis. Assuming these disk-jet configurations are relevant to radio emitting systems also, our results would be useful to look for event horizons in high accretion rate Supermassive Black Holes in Seyfert galaxies, RL Quasars.

  14. A two-component regulatory system controls autoregulated serpin expression in Bifidobacterium breve UCC2003.

    Science.gov (United States)

    Alvarez-Martin, Pablo; O'Connell Motherway, Mary; Turroni, Francesca; Foroni, Elena; Ventura, Marco; van Sinderen, Douwe

    2012-10-01

    This work reports on the identification and molecular characterization of a two-component regulatory system (2CRS), encoded by serRK, which is believed to control the expression of the ser(2003) locus in Bifidobacterium breve UCC2003. The ser(2003) locus consists of two genes, Bbr_1319 (sagA) and Bbr_1320 (serU), which are predicted to encode a hypothetical membrane-associated protein and a serpin-like protein, respectively. The response regulator SerR was shown to bind to the promoter region of ser(2003), and the probable recognition sequence of SerR was determined by a combinatorial approach of in vitro site-directed mutagenesis coupled to transcriptional fusion and electrophoretic mobility shift assays (EMSAs). The importance of the serRK 2CRS in the response of B. breve to protease-mediated induction was confirmed by generating a B. breve serR insertion mutant, which was shown to exhibit altered ser(2003) transcriptional induction patterns compared to the parent strain, UCC2003. Interestingly, the analysis of a B. breve serU mutant revealed that the SerRK signaling pathway appears to include a SerU-dependent autoregulatory loop.

  15. Two-component mixture cure rate model with spline estimated nonparametric components.

    Science.gov (United States)

    Wang, Lu; Du, Pang; Liang, Hua

    2012-09-01

    In some survival analysis of medical studies, there are often long-term survivors who can be considered as permanently cured. The goals in these studies are to estimate the noncured probability of the whole population and the hazard rate of the susceptible subpopulation. When covariates are present as often happens in practice, to understand covariate effects on the noncured probability and hazard rate is of equal importance. The existing methods are limited to parametric and semiparametric models. We propose a two-component mixture cure rate model with nonparametric forms for both the cure probability and the hazard rate function. Identifiability of the model is guaranteed by an additive assumption that allows no time-covariate interactions in the logarithm of hazard rate. Estimation is carried out by an expectation-maximization algorithm on maximizing a penalized likelihood. For inferential purpose, we apply the Louis formula to obtain point-wise confidence intervals for noncured probability and hazard rate. Asymptotic convergence rates of our function estimates are established. We then evaluate the proposed method by extensive simulations. We analyze the survival data from a melanoma study and find interesting patterns for this study. © 2011, The International Biometric Society.

  16. Development and characterization of two-component albedo based neutron individual monitoring system using thermoluminescent detectors

    International Nuclear Information System (INIS)

    Martins, Marcelo Marques

    2008-01-01

    A TLD-albedo based two-component neutron individual monitoring system was developed and characterized in this work. The monitor consists of a black plastic holder, an incident neutron boron loaded shield, a moderator polyethylene body (to increase its response), two pairs of TLD-600 and TLD-700 (one pair to each component) and an adjustable belt. This monitoring system was calibrated in thermal neutron fields and in 70 keV, 144 keV, 565 keV, 1.2 MeV and 5 MeV monoenergetic neutron fields. In addition, it was calibrated in 252C f(D 2 O), 252 Cf, 241 Am-B, 241 Am-Be and 238 Pu-Be source fields. For the latter, the lower detection levels are, respectively, 0.009 mSv, 0.06 mSv, 0.12 mSv, 0.09 mSv and 0.08 mSv. The participation in an international intercomparison sponsored by IAEA with simulated workplace fields validated the system. The monitoring system was successfully characterized in the ISO 21909 standard and in an IRD - the Brazilian Institute for Radioprotection and Dosimetry - technical regulation draft. Nowadays, the neutron individual system is in use by IRD for whole body individual monitoring of five institutions, which comprehend several activities. (author)

  17. Short and medium range order in two-component silica glasses by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Inoue, K.; Kataoka, H.; Nagai, Y.; Hasegawa, M.; Kobayashi, Y.

    2014-01-01

    The dependence of chemical composition on the average sizes of subnanometer-scale intrinsic structural open spaces surrounded by glass random networks in two-component silica-based glasses was investigated systematically using positronium (Ps) confined in the open spaces. The average sizes of the open spaces for SiO 2 -B 2 O 3 and SiO 2 -GeO 2 glasses are only slightly dependent on the chemical compositions because the B 2 O 3 and GeO 2 are glass network formers that are incorporated into the glass network of the base SiO 2 . However, the open space sizes for all SiO 2 -R 2 O (R = Li, Na, K) glasses, where R 2 O is a glass network modifier that occupies the open spaces, decrease rapidly with an increase in the R 2 O concentration. Despite the large difference in the ionic radii of the alkali metal (R) atoms, the open space sizes decrease similarly for all the alkali metal atoms studied. This dependence of the chemical composition on the open space sizes in SiO 2 -R 2 O observed by Ps shows that the alkali metal atoms do not randomly occupy the structural open spaces, but filling of the open spaces by R 2 O proceeds selectively from the larger to the smaller open spaces as the R 2 O concentrations are increased.

  18. Adaptation to Environmental Stimuli within the Host: Two-Component Signal Transduction Systems of Mycobacterium tuberculosis

    Science.gov (United States)

    Bretl, Daniel J.; Demetriadou, Chrystalla; Zahrt, Thomas C.

    2011-01-01

    Summary: Pathogenic microorganisms encounter a variety of environmental stresses following infection of their respective hosts. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is an unusual bacterial pathogen in that it is able to establish lifelong infections in individuals within granulomatous lesions that are formed following a productive immune response. Adaptation to this highly dynamic environment is thought to be mediated primarily through transcriptional reprogramming initiated in response to recognition of stimuli, including low-oxygen tension, nutrient depletion, reactive oxygen and nitrogen species, altered pH, toxic lipid moieties, cell wall/cell membrane-perturbing agents, and other environmental cues. To survive continued exposure to these potentially adverse factors, M. tuberculosis encodes a variety of regulatory factors, including 11 complete two-component signal transduction systems (TCSSs) and several orphaned response regulators (RRs) and sensor kinases (SKs). This report reviews our current knowledge of the TCSSs present in M. tuberculosis. In particular, we discuss the biochemical and functional characteristics of individual RRs and SKs, the environmental stimuli regulating their activation, the regulons controlled by the various TCSSs, and the known or postulated role(s) of individual TCSSs in the context of M. tuberculosis physiology and/or pathogenesis. PMID:22126994

  19. A hybrid two-component system protein from Azospirillum brasilense Sp7 was involved in chemotaxis.

    Science.gov (United States)

    Cui, Yanhua; Tu, Ran; Wu, Lixian; Hong, Yuanyuan; Chen, Sanfeng

    2011-09-20

    We here report the sequence and functional analysis of org35 of Azospirillum brasilense Sp7, which was originally identified to be able to interact with NifA in yeast-two-hybrid system. The org35 encodes a hybrid two-component system protein, including N-terminal PAS domains, a histidine kinase (HPK) domain and a response regulator (RR) domain in C-terminal. To determine the function of the Org35, a deletion-insertion mutant in PAS domain [named Sp7353] and a complemental strain Sp7353C were constructed. The mutant had reduced chemotaxis ability compared to that of wild-type, and the complemental strain was similar to the wild-type strain. These data suggested that the A. brasilense org35 played a key role in chemotaxis. Variants containing different domains of the org35 were expressed, and the functions of these domains were studied in vitro. Phosphorylation assays in vitro demonstrated that the HPK domain of Org35 possessed the autokinase activity and that the phosphorylated HPK was able to transfer phosphate groups to the RR domain. The result indicated Org35 was a phosphorylation-communicating protein. Copyright © 2010 Elsevier GmbH. All rights reserved.

  20. Discrete kink dynamics in hydrogen-bonded chains: The two-component model

    DEFF Research Database (Denmark)

    Karpan, V.M.; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2004-01-01

    We study discrete topological solitary waves (kinks and antikinks) in two nonlinear diatomic chain models that describe the collective dynamics of proton transfers in one-dimensional hydrogen-bonded networks. The essential ingredients of the models are (i) a realistic (anharmonic) ion-proton inte......We study discrete topological solitary waves (kinks and antikinks) in two nonlinear diatomic chain models that describe the collective dynamics of proton transfers in one-dimensional hydrogen-bonded networks. The essential ingredients of the models are (i) a realistic (anharmonic) ion...... chain subject to a substrate with two optical bands), both providing a bistability of the hydrogen-bonded proton. Exact two-component (kink and antikink) discrete solutions for these models are found numerically. We compare the soliton solutions and their properties in both the one- (when the heavy ions...... principal differences, like a significant difference in the stability switchings behavior for the kinks and the antikinks. Water-filled carbon nanotubes are briefly discussed as possible realistic systems, where topological discrete (anti)kink states might exist....

  1. Thermodynamics and kinetics of interstitial diffusion in a two-component system

    International Nuclear Information System (INIS)

    McKee, R.A.

    1980-01-01

    Diffusion theory is developed for a two-component system in which only the interstitial element is mobile. A thermodynamic formalism is used in direct parallel with a kinetic theory to construct a mechanism-independent relationship between tracer- and chemical-diffusion coefficients. It is found that D/sup I/=(D-italic*/f)(1+partiallnγ/partiallnC). D/sup I/ is the intrinsic- or chemical-diffusion coefficient for the interstitial, D* is the tracer-diffusion coefficient, f is the correlation factor, and γ is the activity coefficient. This expression accounts for site exclusion, correlation, and drift effects that occur as the interstitial content changes. Generalized phenomenological coefficients that are determined in this analysis can be used for standard representations of diffusion in electric fields and temperature gradients. Moreover, the forms that the phenomenological coefficients take for the interstitial system are the same as those previously derived for vacancy diffusion. A test of this predicted relationship between tracer- and chemical-diffusion coefficients is developed using a comparison between theory and experiment for carbon diffusion in fcc iron

  2. Study of the catalytic selectivity of an aqueous two-component polyurethane system by ftir spectroscopy

    Directory of Open Access Journals (Sweden)

    Stamenković Jakov V.

    2003-01-01

    Full Text Available The difficulty in formulating a two component waterborne polyurethane, is the isocyanate-water side reaction, which can lead to gassing/foaming, loss of isocyanate functionality, low gloss and a reduced pot life. To compensate for this side reaction, these formulations usually contain a large excess of isocyanate. Tin compounds, especially dibutyltin dilaurate, are widely used in coatings as catalysts for the isocyanate/hydroxyl reaction. Because of the high aquatic toxicity of some organotin compounds, there has been an attempt to ban organotin compounds from all coating applications. As a general rule, organotin catalysts are not selective, they catalyze the reaction of isocyanates with both hydroxyl groups and water and also catalyze the hydrolysis of ester groups. One novel approach to control the water side reaction is the use of catalysts which selectively catalyze the isocyanate-polyol reaction and not the isocyanate-water reaction. The selectivity of a variety of metal catalysts (metal octoates, metal acetylacetonates and mangan chelates with mixed ligands to catalyze the preferred reaction was measured using the FTIR method.

  3. PLA and two components silicon rubber blends aiming for frozen foods packaging applications

    Science.gov (United States)

    Meekum, Utai; Khiansanoi, Apichart

    2018-03-01

    Designing of PLA and two components silicone rubber blends was studies. Frozen food packaging application is the main ultimate aim. The statistical method using 23 DOE was conducted. The standard testing methods, in particular impact testing at sub-zero temperature, were performed. The preliminary blend formula comprised 1.0 phr of silane and polyester polyols, respectively, was initially resolved. Then, the optimize the silicone portion in the blends was determined. Blending formula using 8.0 phr of silicone with respect to PLA matrix gave rise to the overall satisfactory properties. 3. TETA was used as the silicone curing agent and reactively blended onto the ingredients. TETA at 0.4 phr, with respect to the silicone, enhanced the mechanical properties, especially flexibility and toughness, of the PLA/silicone blend. Exceeding the optimal TETA loading would cause the chain scission and also the dilution effects. Hence, marginal inferior properties of the blends were be experienced. The preliminary biodegradability investigation found that the PLA/silicone blend initially triggered at the second week. Its degradation rate was likely to be faster than neat PLA.

  4. Realizing analogues of color superconductivity with ultracold alkali atoms

    International Nuclear Information System (INIS)

    O'Hara, K M

    2011-01-01

    A degenerate three-component Fermi gas of atoms with identical attractive interactions is expected to exhibit superfluidity and magnetic order at low temperature and, for sufficiently strong pairwise interactions, become a Fermi liquid of weakly interacting trimers. The phase diagram of this system is analogous to that of quark matter at low temperature, motivating strong interest in its investigation. We describe how a three-component gas below the superfluid critical temperature can be prepared in an optical lattice. To realize an SU(3)-symmetric system, we show how pairwise interactions in the three-component atomic system can be made equal by applying radiofrequency and microwave radiation. Finally, motivated by the aim to make more accurate models of quark matter, which have color, flavor and spin degrees of freedom, we discuss how an atomic system with SU(2)xSU(3) symmetry can be achieved by confining a three-component Fermi gas in the p-orbital band of an optical lattice potential.

  5. Ultracold molecules: vehicles to scalable quantum information processing

    International Nuclear Information System (INIS)

    Brickman Soderberg, Kathy-Anne; Gemelke, Nathan; Chin Cheng

    2009-01-01

    In this paper, we describe a novel scheme to implement scalable quantum information processing using Li-Cs molecular states to entangle 6 Li and 133 Cs ultracold atoms held in independent optical lattices. The 6 Li atoms will act as quantum bits to store information and 133 Cs atoms will serve as messenger bits that aid in quantum gate operations and mediate entanglement between distant qubit atoms. Each atomic species is held in a separate optical lattice and the atoms can be overlapped by translating the lattices with respect to each other. When the messenger and qubit atoms are overlapped, targeted single-spin operations and entangling operations can be performed by coupling the atomic states to a molecular state with radio-frequency pulses. By controlling the frequency and duration of the radio-frequency pulses, entanglement can be either created or swapped between a qubit messenger pair. We estimate operation fidelities for entangling two distant qubits and discuss scalability of this scheme and constraints on the optical lattice lasers. Finally we demonstrate experimental control of the optical potentials sufficient to translate atoms in the lattice.

  6. Few-particle quantum magnetism with ultracold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Murmann, Simon

    2015-11-25

    This thesis reports on the deterministic preparation of magnetically ordered states in systems of few fermionic atoms. We follow the concept of quantum simulation and use {sup 6}Li atoms in two different hyperfine states to mimic the behavior of electrons in a solidstate system. In a first experiment, we simulate the two-site Hubbard model by using two atoms in an isolated double-well potential. We prepare the two-particle ground state of this model with a fidelity exceeding 90%. By introducing strong repulsive interactions, we are able to realize a pure spin model and describe the energy spectrum with a two-site Heisenberg Hamiltonian. In a second experiment, we realize Heisenberg spin chains of up to four atoms in a single strongly-elongated trapping potential. Here, the atoms self-align along the potential axis due to strong repulsive interactions. We introduce two novel measurement techniques to identify the state of the spin chains and thereby confirm that we can deterministically prepare antiferromagnetic ground-state systems. This constitutes the first observation of quantum magnetism with fermionic atoms that exceeds nearest-neighbor correlations. Both the double-well system and the spin chains can be seen as building blocks of larger ground-state spin systems. Their deterministic preparation therefore opens up a new bottom-up approach to the experimental realization of quantum many-body systems with ultracold atoms.

  7. D-state Rydberg electrons interacting with ultracold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Krupp, Alexander Thorsten

    2014-10-02

    This thesis was established in the field of ultracold atoms where the interaction of highly excited D-state electrons with rubidium atoms was examined. This work is divided into two main parts: In the first part we study D-state Rydberg molecules resulting from the binding of a D-state Rydberg electron to a ground state rubidium atom. We show that we can address specific rovibrational molecular states by changing our laser detuning and thus create perfectly aligned axial or antialigned toroidal molecules, in good agreement with our theoretical calculations. Furthermore the influence of the electric field on the Rydberg molecules was investigated, creating novel states which show a different angular dependence and alignment. In the second part of this thesis we excite single D-state Rydberg electrons in a Bose-Einstein condensate. We study the lifetime of these Rydberg electrons, the change of the shape of our condensate and the atom losses in the condensate due to this process. Moreover, we observe quadrupolar shape oscillations of the whole condensate created by the consecutive excitation of Rydberg atoms and compare all results to previous S-state measurements. In the outlook we propose a wide range of further experiments including the proposal of imaging a single electron wavefunction by the imprint of its orbit into the Bose-Einstein condensate.

  8. Scattering resonances of ultracold atoms in confined geometries

    Energy Technology Data Exchange (ETDEWEB)

    Saeidian, Shahpoor

    2008-06-18

    Subject of this thesis is the investigation of the quantum dynamics of ultracold atoms in confined geometries. We discuss the behavior of ground state atoms inside a 3D magnetic quadrupole field. Such atoms in enough weak magnetic fields can be approximately treated as neutral point-like particles. Complementary to the well-known positive energy resonances, we point out the existence of short-lived negative energy resonances. The latter originate from a fundamental symmetry of the underlying Hamiltonian. We drive a mapping of the two branches of the spectrum. Moreover, we analyze atomic hyperfine resonances in a magnetic quadrupole field. This corresponds to the case for which both the hyperfine and Zeeman interaction, are comparable, and should be taken into account. Finally, we develop a general grid method for multichannel scattering of two atoms in a two-dimensional harmonic confinement. With our approach we analyze transverse excitations/deexcitations in the course of the collisional process (distinguishable or identical atoms) including all important partial waves and their couplings due to the broken spherical symmetry. Special attention is paid to suggest a non-trivial extension of the CIRs theory developed so far only for the single-mode regime and zero-energy limit. (orig.)

  9. Scattering resonances of ultracold atoms in confined geometries

    International Nuclear Information System (INIS)

    Saeidian, Shahpoor

    2008-01-01

    Subject of this thesis is the investigation of the quantum dynamics of ultracold atoms in confined geometries. We discuss the behavior of ground state atoms inside a 3D magnetic quadrupole field. Such atoms in enough weak magnetic fields can be approximately treated as neutral point-like particles. Complementary to the well-known positive energy resonances, we point out the existence of short-lived negative energy resonances. The latter originate from a fundamental symmetry of the underlying Hamiltonian. We drive a mapping of the two branches of the spectrum. Moreover, we analyze atomic hyperfine resonances in a magnetic quadrupole field. This corresponds to the case for which both the hyperfine and Zeeman interaction, are comparable, and should be taken into account. Finally, we develop a general grid method for multichannel scattering of two atoms in a two-dimensional harmonic confinement. With our approach we analyze transverse excitations/deexcitations in the course of the collisional process (distinguishable or identical atoms) including all important partial waves and their couplings due to the broken spherical symmetry. Special attention is paid to suggest a non-trivial extension of the CIRs theory developed so far only for the single-mode regime and zero-energy limit. (orig.)

  10. The MCUCN simulation code for ultracold neutron physics

    Science.gov (United States)

    Zsigmond, G.

    2018-02-01

    Ultracold neutrons (UCN) have very low kinetic energies 0-300 neV, thereby can be stored in specific material or magnetic confinements for many hundreds of seconds. This makes them a very useful tool in probing fundamental symmetries of nature (for instance charge-parity violation by neutron electric dipole moment experiments) and contributing important parameters for the Big Bang nucleosynthesis (neutron lifetime measurements). Improved precision experiments are in construction at new and planned UCN sources around the world. MC simulations play an important role in the optimization of such systems with a large number of parameters, but also in the estimation of systematic effects, in benchmarking of analysis codes, or as part of the analysis. The MCUCN code written at PSI has been extensively used for the optimization of the UCN source optics and in the optimization and analysis of (test) experiments within the nEDM project based at PSI. In this paper we present the main features of MCUCN and interesting benchmark and application examples.

  11. Light-induced gauge fields for ultracold atoms

    Science.gov (United States)

    Goldman, N.; Juzeliūnas, G.; Öhberg, P.; Spielman, I. B.

    2014-12-01

    Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose gauge structure suggests the existence of a particle—the graviton—that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms ‘feeling’ laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials—both Abelian and non-Abelian—in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms.

  12. Light-induced gauge fields for ultracold atoms

    International Nuclear Information System (INIS)

    Goldman, N; Juzeliūnas, G; Öhberg, P; Spielman, I B

    2014-01-01

    Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose gauge structure suggests the existence of a particle—the graviton—that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms ‘feeling’ laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials—both Abelian and non-Abelian—in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms. (review article)

  13. Ultracold Anions for High-Precision Antihydrogen Experiments.

    Science.gov (United States)

    Cerchiari, G; Kellerbauer, A; Safronova, M S; Safronova, U I; Yzombard, P

    2018-03-30

    Experiments with antihydrogen (H[over ¯]) for a study of matter-antimatter symmetry and antimatter gravity require ultracold H[over ¯] to reach ultimate precision. A promising path towards antiatoms much colder than a few kelvin involves the precooling of antiprotons by laser-cooled anions. Because of the weak binding of the valence electron in anions-dominated by polarization and correlation effects-only few candidate systems with suitable transitions exist. We report on a combination of experimental and theoretical studies to fully determine the relevant binding energies, transition rates, and branching ratios of the most promising candidate La^{-}. Using combined transverse and collinear laser spectroscopy, we determined the resonant frequency of the laser cooling transition to be ν=96.592 713(91)  THz and its transition rate to be A=4.90(50)×10^{4}  s^{-1}. Using a novel high-precision theoretical treatment of La^{-} we calculated yet unmeasured energy levels, transition rates, branching ratios, and lifetimes to complement experimental information on the laser cooling cycle of La^{-}. The new data establish the suitability of La^{-} for laser cooling and show that the cooling transition is significantly stronger than suggested by a previous theoretical study.

  14. Nonextensive Thomas-Fermi model

    Science.gov (United States)

    Shivamoggi, Bhimsen; Martinenko, Evgeny

    2007-11-01

    Nonextensive Thomas-Fermi model was father investigated in the following directions: Heavy atom in strong magnetic field. following Shivamoggi work on the extension of Kadomtsev equation we applied nonextensive formalism to father generalize TF model for the very strong magnetic fields (of order 10e12 G). The generalized TF equation and the binding energy of atom were calculated which contain a new nonextensive term dominating the classical one. The binding energy of a heavy atom was also evaluated. Thomas-Fermi equations in N dimensions which is technically the same as in Shivamoggi (1998) ,but behavior is different and in interesting 2 D case nonextesivity prevents from becoming linear ODE as in classical case. Effect of nonextensivity on dielectrical screening reveals itself in the reduction of the envelope radius. It was shown that nonextesivity in each case is responsible for new term dominating classical thermal correction term by order of magnitude, which is vanishing in a limit q->1. Therefore it appears that nonextensive term is ubiquitous for a wide range of systems and father work is needed to understand the origin of it.

  15. Numerical analysis of mixing process of two component gases in vertical fluid layer

    International Nuclear Information System (INIS)

    Hatori, Hirofumi; Takeda, Tetsuaki; Funatani, Shumpei

    2015-01-01

    When the depressurization accident occurs in the Very-High-Temperature Reactor (VHTR), it is expected that air enter into the reactor core. Therefore, it is important to know a mixing process of different kind of gases in the stable or unstable stratified fluid layer. Especially, it is also important to examine an influence of localized natural convection and molecular diffusion on mixing process from a viewpoint of safety. In order to research the mixing process of two component gases and flow characteristics of the localized natural convection, we have carried out numerical analysis using three dimensional CFD code. The numerical model was consisted of a storage tank and a reverse U-shaped vertical slot. They were separated by a partition plate. One side of the left vertical fluid layer was heated and the other side was cooled. The right vertical fluid layer was also cooled. The procedure of numerical analysis is as follows. Firstly, the storage tank was filled with heavy gas and the reverse U-shaped vertical slot was filled with light gas. In the left vertical fluid layer, the localized natural convection was generated by the temperature difference between the vertical walls. The flow characteristics were obtained by a steady state analysis. The unsteady state analysis was started when the partition plate was opened. The gases were mixed by molecular diffusion and natural convection. After the time elapsed, natural circulation occurred. The result obtained in this numerical analysis is as follows. The temperature difference of the left vertical fluid layer was set to 100 K. The combination of the mixed gas was nitrogen and argon. After 76 minutes elapsed, natural circulation occurred. (author)

  16. Structural studies of the activation of the two component receiver domain NTRC by multidimensional heteronuclear NMR

    Energy Technology Data Exchange (ETDEWEB)

    Nohaile, Michael James [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    Multidimensional heteronuclear NMR spectroscopy was used to investigate the N-terminal domain of the transcriptional enhancer NTRC (NiTrogen Regulatory protein C). This domain belongs to the family of receiver domains of two-component regulatory systems involved in signal transduction. Phosphorylation of NTRC at D54 leads to an activated form of the molecule which stimulates transcription of genes involved in nitrogen regulation. Three and four dimensional NMR techniques were used to determine an intermediate resolution structure of the unphosphorylated, inactive form of the N-terminal domain of NTRC. The structure is comprised of five α-helices and a five-stranded β-sheet in a (β/α)5 topology. Analysis of the backbone dynamics of NTRC indicate that helix 4 and strand 5 are significantly more flexible than the rest of the secondary structure of the protein and that the loops making up the active site are flexible. The short lifetime of phospho-NTRC hampers the study of this form. However, conditions for determining the resonance assignments and, possibly, the three dimensional structure of phosphorylated NTRC have been obtained. Tentative assignments of the phosphorylated form indicate that the majority of the changes that NTRC experiences upon phosphorylation occur in helix 3, strand 4, helix 4, strand 5, and the loop between strand 5 and helix 5 (the 3445 face of NTRC) as well as near the site of phosphorylation. In order to examine a stable, activated form of the protein, constitutively active mutants of NTRC were investigated.

  17. A second order anti-diffusive Lagrange-remap scheme for two-component flows

    Directory of Open Access Journals (Sweden)

    Lagoutière Frédéric

    2011-11-01

    Full Text Available We build a non-dissipative second order algorithm for the approximate resolution of the one-dimensional Euler system of compressible gas dynamics with two components. The considered model was proposed in [1]. The algorithm is based on [8] which deals with a non-dissipative first order resolution in Lagrange-remap formalism. In the present paper we describe, in the same framework, an algorithm that is second order accurate in time and space, and that preserves sharp interfaces. Numerical results reported at the end of the paper are very encouraging, showing the interest of the second order accuracy for genuinely non-linear waves. Nous construisons un algorithme d’ordre deux et non dissipatif pour la résolution approchée des équations d’Euler de la dynamique des gaz compressibles à deux constituants en dimension un. Le modèle que nous considérons est celui à cinq équations proposé et analysé dans [1]. L’algorithme est basé sur [8] qui proposait une résolution approchée à l’ordre un et non dissipative au moyen d’un splitting de type Lagrange-projection. Dans le présent article, nous décrivons, dans le même formalisme, un algorithme d’ordre deux en temps et en espace, qui préserve des interfaces « parfaites » entre les constituants. Les résultats numériques rapportés à la fin de l’article sont très encourageants ; ils montrent clairement les avantages d’un schéma d’ordre deux pour les ondes vraiment non linéaires.

  18. Analysis of water hammer in two-component two-phase flows

    International Nuclear Information System (INIS)

    Warde, H.; Marzouk, E.; Ibrahim, S.

    1989-01-01

    The water hammer phenomena caused by a sudden valve closure in air-water two-phase flows must be clarified for the safety analysis of LOCA in reactors and further for the safety of boilers, chemical plants, pipe transport of fluids such as petroleum and natural gas. In the present work water hammer phenomena caused by sudden valve closure in two-component two-phase flows are investigated theoretically and experimentally. The phenomena are more complicated than in single phase-flows due to the fact of the presence of compressible component. Basic partial differential equations based on a one-dimensional homogeneous flow model are solved by the method of characteristic. The analysis is extended to include friction in a two-phase mixture depending on the local flow pattern. The profiles of the pressure transients, the propagation velocity of pressure waves and the effect of valve closure on the transient pressure are found. Different two-phase flow pattern and frictional pressure drop correlations were used including Baker, Chesholm and Beggs and Bril correlations. The effect of the flow pattern on the characteristic of wave propagation is discussed primarily to indicate the effect of void fraction on the velocity of wave propagation and on the attenuation of pressure waves. Transient pressure in the mixture were recorded at different air void fractions, rates of uniform valve closure and liquid flow velocities with the aid of pressure transducers, transient wave form recorders interfaced with an on-line pc computer. The results are compared with computation, and good agreement was obtained within experimental accuracy

  19. Transcriptome analysis of the Brucella abortus BvrR/BvrS two-component regulatory system.

    Directory of Open Access Journals (Sweden)

    Cristina Viadas

    Full Text Available BACKGROUND: The two-component BvrR/BvrS system is essential for Brucella abortus virulence. It was shown previously that its dysfunction alters the expression of some major outer membrane proteins and the pattern of lipid A acylation. To determine the genes regulated by BvrR/BvrS, we performed a whole-genome microarray analysis using B. abortus RNA obtained from wild type and bvrR mutant cells grown in the same conditions. METHODOLOGY/PRINCIPAL FINDINGS: A total of 127 differentially expressed genes were found: 83 were over expressed and 44 were less expressed in the bvrR mutant. Two operons, the phosphotransferase system and the maltose transport system, were down-regulated. Several genes involved in cell envelope or outer membrane biogenesis were differentially expressed: genes for outer membrane proteins (omp25a, omp25d, lipoproteins, LPS and fatty acid biosynthesis, stress response proteins, chaperones, flagellar genes, and twelve genes encoding ABC transport systems. Ten genes related with carbon metabolism (pckA and fumB among others were up-regulated in the bvrR mutant, and denitrification genes (nirK, norC and nosZ were also regulated. Notably, seven transcriptional regulators were affected, including VjbR, ExoR and OmpR that were less expressed in the bvrR mutant. Finally, the expression of eleven genes which have been previously related with Brucella virulence was also altered. CONCLUSIONS/SIGNIFICANCE: All these data corroborate the impact of BvrR/BvrS on cell envelope modulation, confirm that this system controls the carbon and nitrogen metabolism, and suggest a cross-talk among some regulators to adjust the Brucella physiology to the shift expected to occur during the transit from the extracellular to the intracellular niche.

  20. Salivaricin P, One of a Family of Two-Component Antilisterial Bacteriocins Produced by Intestinal Isolates of Lactobacillus salivarius▿

    Science.gov (United States)

    Barrett, Eoin; Hayes, Maria; O'Connor, Paula; Gardiner, Gillian; Fitzgerald, Gerald F.; Stanton, Catherine; Ross, R. Paul; Hill, Colin

    2007-01-01

    Lactobacillus salivarius DPC6005, a porcine intestinal isolate, produces a two-component bacteriocin, salivaricin P, with homology to ABP-118 produced by a human probiotic L. salivarius strain. Indeed, molecular characterization revealed that while the peptides Sln1 and ABP-118α are identical, their companion peptides (Sln2 and ABP-118β, respectively) differ by two amino acids. This observation suggests that two-component bacteriocins may be a common feature of intestinal L. salivarius strains. PMID:17416691

  1. Cloning of a two-component signal transduction system of Xanthomonas campestris pv. phaseoli var. fuscans strain BXPF65

    DEFF Research Database (Denmark)

    Chan, JWYF; Maynard, Scott; Goodwin, PH

    1998-01-01

    A putative two-component signal transduction system was amplified and cloned from the plant pathogenic bacterium Xanthomonas campestris pv. phaseoli var. fuscans isolate BXPF65. The 620 bp amplified fragment was sequenced and analyzed with the BLAST Enhanced Alignment Utility (BEAUTY). BEAUTY...... that the putative histidine kinase has homology with conserved “transmitter” domains of sensor proteins in two-component signal transduction systems. RFLP analysis using the putative signal transduction system showed polymorphisms among the strains....

  2. High-resolution internal state control of ultracold 23Na87Rb molecules

    Science.gov (United States)

    Guo, Mingyang; Ye, Xin; He, Junyu; Quéméner, Goulven; Wang, Dajun

    2018-02-01

    We report the full internal state control of ultracold 23Na87Rb molecules, including vibrational, rotational, and hyperfine degrees of freedom. Starting from a sample of weakly bound Feshbach molecules, we realize the creation of molecules in single hyperfine levels of both the rovibrational ground and excited states with a high-efficiency and high-resolution stimulated Raman adiabatic passage. This capability brings broad possibilities for investigating ultracold polar molecules with different chemical reactivities and interactions with a single molecular species. Moreover, starting from the rovibrational and hyperfine ground state, we achieve rotational and hyperfine control with one- and two-photon microwave spectroscopy to reach levels not accessible by the stimulated Raman transfer. The combination of these two techniques results in complete control over the internal state of ultracold polar molecules, which paves the way to study state-dependent molecular collisions and state-controlled chemical reactions.

  3. Characterization of a scintillating lithium glass ultra-cold neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, B.; Rebenitsch, L.A.; Hansen-Romu, S.; Mammei, R.; Martin, J.W. [University of Winnipeg, Department of Physics, Winnipeg (Canada); Lauss, B. [Paul Scherrer Institute, Laboratory for Particle Physics, Villigen (Switzerland); Lindner, T. [TRIUMF, Vancouver (Canada); University of Winnipeg, Department of Physics, Winnipeg (Canada); Pierre, E. [TRIUMF, Vancouver (Canada); Osaka University, Research Centre for Nuclear Physics, Osaka (Japan)

    2017-01-15

    A {sup 6}Li-glass-based scintillation detector developed for the TRIUMF neutron electric dipole moment experiment was characterized using the ultra-cold neutron source at the Paul Scherrer Institute (PSI). The data acquisition system for this detector was demonstrated to perform well at rejecting backgrounds. An estimate of the absolute efficiency of background rejection of 99.7±0.1% is made. For variable ultra-cold neutron rate (varying from < 1 kHz to approx. 100 kHz per channel) and background rate seen at the Paul Scherrer Institute, we estimate that the absolute detector efficiency is 89.7{sup +1.3}{sub -1.9}%. Finally a comparison with a commercial Cascade detector was performed for a specific setup at the West-2 beamline of the ultra-cold neutron source at PSI. (orig.)

  4. A two-component generalization of the reduced Ostrovsky equation and its integrable semi-discrete analogue

    International Nuclear Information System (INIS)

    Feng, Bao-Feng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2017-01-01

    In the present paper, we propose a two-component generalization of the reduced Ostrovsky (Vakhnenko) equation, whose differential form can be viewed as the short-wave limit of a two-component Degasperis–Procesi (DP) equation. They are integrable due to the existence of Lax pairs. Moreover, we have shown that the two-component reduced Ostrovsky equation can be reduced from an extended BKP hierarchy with negative flow through a pseudo 3-reduction and a hodograph (reciprocal) transform. As a by-product, its bilinear form and N -soliton solution in terms of pfaffians are presented. One- and two-soliton solutions are provided and analyzed. In the second part of the paper, we start with a modified BKP hierarchy, which is a Bäcklund transformation of the above extended BKP hierarchy, an integrable semi-discrete analogue of the two-component reduced Ostrovsky equation is constructed by defining an appropriate discrete hodograph transform and dependent variable transformations. In particular, the backward difference form of above semi-discrete two-component reduced Ostrovsky equation gives rise to the integrable semi-discretization of the short wave limit of a two-component DP equation. Their N -soliton solutions in terms of pffafians are also provided. (paper)

  5. Enrico Fermi significato di una scoperta

    CERN Document Server

    2001-01-01

    Questo volume è la riedizione, rinnovata ed ampliata, del volume "Enrico Fermi. Significato di una scoperta" edito dal FIEN (Forum Italiano dell'Energia Nucleare) nel 1982 e nel 1992 in occasione, rispettivamente, del 40mo e del 50mo anniversario della pila di Fermi.

  6. Vacuum alignment and radiatively induced Fermi scale

    Directory of Open Access Journals (Sweden)

    Alanne Tommi

    2017-01-01

    Full Text Available We extend the discussion about vacuum misalignment by quantum corrections in models with composite pseudo-Goldstone Higgs boson to renormalisable models with elementary scalars. As a concrete example, we propose a framework, where the hierarchy between the unification and the Fermi scale emerges radiatively. This scenario provides an interesting link between the unification and Fermi scale physics.

  7. Quantum chaos in ultracold collisions of gas-phase erbium atoms.

    Science.gov (United States)

    Frisch, Albert; Mark, Michael; Aikawa, Kiyotaka; Ferlaino, Francesca; Bohn, John L; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2014-03-27

    Atomic and molecular samples reduced to temperatures below one microkelvin, yet still in the gas phase, afford unprecedented energy resolution in probing and manipulating the interactions between their constituent particles. As a result of this resolution, atoms can be made to scatter resonantly on demand, through the precise control of a magnetic field. For simple atoms, such as alkalis, scattering resonances are extremely well characterized. However, ultracold physics is now poised to enter a new regime, where much more complex species can be cooled and studied, including magnetic lanthanide atoms and even molecules. For molecules, it has been speculated that a dense set of resonances in ultracold collision cross-sections will probably exhibit essentially random fluctuations, much as the observed energy spectra of nuclear scattering do. According to the Bohigas-Giannoni-Schmit conjecture, such fluctuations would imply chaotic dynamics of the underlying classical motion driving the collision. This would necessitate new ways of looking at the fundamental interactions in ultracold atomic and molecular systems, as well as perhaps new chaos-driven states of ultracold matter. Here we describe the experimental demonstration that random spectra are indeed found at ultralow temperatures. In the experiment, an ultracold gas of erbium atoms is shown to exhibit many Fano-Feshbach resonances, of the order of three per gauss for bosons. Analysis of their statistics verifies that their distribution of nearest-neighbour spacings is what one would expect from random matrix theory. The density and statistics of these resonances are explained by fully quantum mechanical scattering calculations that locate their origin in the anisotropy of the atoms' potential energy surface. Our results therefore reveal chaotic behaviour in the native interaction between ultracold atoms.

  8. Optimization study of ultracold neutron sources at TRIGA reactors using MCNP

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.; Rogov, A.D.

    1997-01-01

    Monte Carlo simulation for the optimization of ultracold and very cold neutron sources for TRIGA reactors is performed. The calculations of thermal and cold neutron fluxes from the TRIGA reactor for different positions and configurations of a very cold solid methane moderator were performed with using the MCNP program. The production of neutrons in the ultracold and very cold energy range was calculated for the most promising final moderators (converters): very cold solid deuterium and heavy methane. The radiation energy deposition was calculated for the optimized solid methane-heavy methane cold neutron moderator

  9. A novel apparatus for the investigation of material properties for the storage of ultracold neutrons

    International Nuclear Information System (INIS)

    Brys, T.; Daum, M.; Fierlinger, P.; Geltenbort, P.; George, D.; Gupta, M.; Henneck, R.; Heule, S.; Horvat, M.; Kasprzak, M.; Kirch, K.; Kohlik, K.; Negrazus, M.; Pichlmaier, A.; Straumann, U.; Vrankovic, V.; Wermelinger, C.

    2005-01-01

    We have built a novel apparatus for the investigation of materials for the storage of ultracold neutrons. Neutrons are filled into a storage volume, confined at the bottom by a magnetic field, at the top by gravity and at the sides by the slit-less sample surface under investigation. For different beryllium and diamond-like carbon samples, storage times up to 200s were obtained at room temperature. The corresponding loss parameters η for ultracold neutrons varied between 4.2 and 6.8x10 -4 per wall collision

  10. Tunneling and traversal of ultracold three-level atoms through vacuum-induced potentials

    Energy Technology Data Exchange (ETDEWEB)

    Badshah, Fazal; Irfan, Muhammad; Qamar, Shahid [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan); Qamar, Sajid [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2011-09-15

    The passage of ultracold three-level atoms through the potential induced by the vacuum cavity mode is discussed using cascade atomic configuration. We study the tunneling or traversal time of the ultracold atoms via a bimodal high-Q cavity. It is found that the phase time, which may be considered as a measure for the time required to traverse the cavity, exhibits superclassical and subclassical behaviors. Further, the dark states and interference effects in cascade atomic configuration may influence the passage time of the atom through the cavity.

  11. Tunneling and traversal of ultracold three-level atoms through vacuum-induced potentials

    International Nuclear Information System (INIS)

    Badshah, Fazal; Irfan, Muhammad; Qamar, Shahid; Qamar, Sajid

    2011-01-01

    The passage of ultracold three-level atoms through the potential induced by the vacuum cavity mode is discussed using cascade atomic configuration. We study the tunneling or traversal time of the ultracold atoms via a bimodal high-Q cavity. It is found that the phase time, which may be considered as a measure for the time required to traverse the cavity, exhibits superclassical and subclassical behaviors. Further, the dark states and interference effects in cascade atomic configuration may influence the passage time of the atom through the cavity.

  12. Excitation of surface waves of ultracold neutrons on absorbing trap walls as anomalous loss factor

    International Nuclear Information System (INIS)

    Bokun, R.Ch.

    2006-01-01

    One analyzed probability of excitation of surface waves of ultracold neutrons in terms of a plane model consisting of three media: vacuum, a finite depth neutron absorbing substance layer and a neutron reflecting substrate. One demonstrated the absence of the mentioned surface waves in terms of the generally accepted model of two media: vacuum contiguous to the plane surface of a substance filled half-space. One pointed out the effect of the excited surface waves of ultracold neutrons on the increase of their anomalous losses in traps [ru

  13. Determination of the Axial-Vector Weak Coupling Constant with Ultracold Neutrons

    International Nuclear Information System (INIS)

    Liu, J.; Mendenhall, M. P.; Carr, R.; Filippone, B. W.; Hickerson, K. P.; Perez Galvan, A.; Russell, R.; Holley, A. T.; Hoagland, J.; VornDick, B.; Back, H. O.; Pattie, R. W. Jr.; Young, A. R.; Bowles, T. J.; Clayton, S.; Currie, S.; Hogan, G. E.; Ito, T. M.; Makela, M.; Morris, C. L.

    2010-01-01

    A precise measurement of the neutron decay β asymmetry A 0 has been carried out using polarized ultracold neutrons from the pulsed spallation ultracold neutron source at the Los Alamos Neutron Science Center. Combining data obtained in 2008 and 2009, we report A 0 =-0.119 66±0.000 89 -0.00140 +0.00123 , from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon g A /g V =-1.275 90 -0.00445 +0.00409 .

  14. Two-component wind fields over ocean waves using atmospheric lidar and motion estimation algorithms

    Science.gov (United States)

    Mayor, S. D.

    2016-02-01

    Numerical models, such as large eddy simulations, are capable of providing stunning visualizations of the air-sea interface. One reason for this is the inherent spatial nature of such models. As compute power grows, models are able to provide higher resolution visualizations over larger domains revealing intricate details of the interactions of ocean waves and the airflow over them. Spatial observations on the other hand, which are necessary to validate the simulations, appear to lag behind models. The rough ocean environment of the real world is an additional challenge. One method of providing spatial observations of fluid flow is that of particle image velocimetry (PIV). PIV has been successfully applied to many problems in engineering and the geosciences. This presentation will show recent research results that demonstate that a PIV-style approach using pulsed-fiber atmospheric elastic backscatter lidar hardware and wavelet-based optical flow motion estimation software can reveal two-component wind fields over rough ocean surfaces. Namely, a recently-developed compact lidar was deployed for 10 days in March of 2015 in the Eureka, California area. It scanned over the ocean. Imagery reveal that breaking ocean waves provide copius amounts of particulate matter for the lidar to detect and for the motion estimation algorithms to retrieve wind vectors from. The image below shows two examples of results from the experiment. The left panel shows the elastic backscatter intensity (copper shades) under a field of vectors that was retrieved by the wavelet-based optical flow algorithm from two scans that took about 15 s each to acquire. The vectors, that reveal offshore flow toward the NW, were decimated for clarity. The bright aerosol features along the right edge of the sector scan were caused by ocean waves breaking on the beach. The right panel is the result of scanning over the ocean on a day when wave amplitudes ranged from 8-12 feet and whitecaps offshore beyond the

  15. Evolutionary tuning of protein expression levels of a positively autoregulated two-component system.

    Directory of Open Access Journals (Sweden)

    Rong Gao

    2013-10-01

    Full Text Available Cellular adaptation relies on the development of proper regulatory schemes for accurate control of gene expression levels in response to environmental cues. Over- or under-expression can lead to diminished cell fitness due to increased costs or insufficient benefits. Positive autoregulation is a common regulatory scheme that controls protein expression levels and gives rise to essential features in diverse signaling systems, yet its roles in cell fitness are less understood. It remains largely unknown how much protein expression is 'appropriate' for optimal cell fitness under specific extracellular conditions and how the dynamic environment shapes the regulatory scheme to reach appropriate expression levels. Here, we investigate the correlation of cell fitness and output response with protein expression levels of the E. coli PhoB/PhoR two-component system (TCS. In response to phosphate (Pi-depletion, the PhoB/PhoR system activates genes involved in phosphorus assimilation as well as genes encoding themselves, similarly to many other positively autoregulated TCSs. We developed a bacteria competition assay in continuous cultures and discovered that different Pi conditions have conflicting requirements of protein expression levels for optimal cell fitness. Pi-replete conditions favored cells with low levels of PhoB/PhoR while Pi-deplete conditions selected for cells with high levels of PhoB/PhoR. These two levels matched PhoB/PhoR concentrations achieved via positive autoregulation in wild-type cells under Pi-replete and -deplete conditions, respectively. The fitness optimum correlates with the wild-type expression level, above which the phosphorylation output saturates, thus further increase in expression presumably provides no additional benefits. Laboratory evolution experiments further indicate that cells with non-ideal protein levels can evolve toward the optimal levels with diverse mutational strategies. Our results suggest that the natural

  16. Two-component HLMC-gas flow instability and inhomogeneity phenomena in open-pool reactor

    International Nuclear Information System (INIS)

    Sergey I Shcherbakov

    2005-01-01

    Full text of publication follows: Consideration is being given to two-component gas-liquid flows with inhomogeneous gas content. The inhomogeneity of gas content over flow space can be caused by local mixing of gas and liquid, gas injection, gas-containing liquid jet penetration into the bulk of liquid without gas. The paper presents the computational results obtained using the direct non-stationary calculation with the TURBO-FLOW computer code. The results refer to flows near the liquid level, flows in downcomer gaps, collectors, elements with varying geometry (jet outlet into space, flow turn) for the pool-type reactors and experimental models. The following processes have been shown and discussed: formation of new liquid levels, entrainment of gas from the level, change in density composition of gas, flow stratification, effect of gas emergence rate and density convection on flow pattern. At gas phase transfer by liquid, two phenomena governing this transfer proceed: gas slip in liquid and density convection of non-uniformly aerated liquid. In horizontal flows, a vertical stratification of gas content always occurs. If the flow changes its direction to an upward one (collector at core inlet), the gas content maximum would be observed in channels nearest to the inlet. At the liquid level, the processes of gas separation from liquid and gas entrainment take place. The separation is a self-sustained process due to circulations arising near the level. The rate of gas entrainment is proportional to the rate of overflow and inversely proportional to the height of liquid level. At the downcomer region in case of its expansion, there occurs the instability of flow resulting in formation of liquid level and falling jet. The level is lower the more the gas content at inlet. The accumulation of gas occurs at sharp turns, encumbered regions (tube bundle), at all regions with upper (ceiling) constraints of flow. The flow instability being often observed in gas-liquid flows

  17. Characterization of an archaeal two-component system that regulates methanogenesis in Methanosaeta harundinacea.

    Directory of Open Access Journals (Sweden)

    Jie Li

    Full Text Available Two-component signal transduction systems (TCSs are a major mechanism used by bacteria in response to environmental changes. Although many sequenced archaeal genomes encode TCSs, they remain poorly understood. Previously, we reported that a methanogenic archaeon, Methanosaeta harundinacea, encodes FilI, which synthesizes carboxyl-acyl homoserine lactones, to regulate transitions of cellular morphology and carbon metabolic fluxes. Here, we report that filI, the cotranscribed filR2, and the adjacent filR1 constitute an archaeal TCS. FilI possesses a cytoplasmic kinase domain (histidine kinase A and histidine kinase-like ATPase and its cognate response regulator. FilR1 carries a receiver (REC domain coupled with an ArsR-related domain with potential DNA-binding ability, while FilR2 carries only a REC domain. In a phosphorelay assay, FilI was autophosphorylated and specifically transferred the phosphoryl group to FilR1 and FilR2, confirming that the three formed a cognate TCS. Through chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR using an anti-FilR1 antibody, FilR1 was shown to form in vivo associations with its own promoter and the promoter of the filI-filR2 operon, demonstrating a regulatory pattern common among TCSs. ChIP-qPCR also detected FilR1 associations with key genes involved in acetoclastic methanogenesis, acs4 and acs1. Electrophoretic mobility shift assays confirmed the in vitro tight binding of FilR1 to its own promoter and those of filI-filR2, acs4, and mtrABC. This also proves the DNA-binding ability of the ArsR-related domain, which is found primarily in Archaea. The archaeal promoters of acs4, filI, acs1, and mtrABC also initiated FilR1-modulated expression in an Escherichia coli lux reporter system, suggesting that FilR1 can up-regulate both archaeal and bacterial transcription. In conclusion, this work identifies an archaeal FilI/FilRs TCS that regulates the methanogenesis of M. harundinacea.

  18. Precision spectroscopy with ultracold 87Rb2 triplet molecules

    International Nuclear Information System (INIS)

    Strauss, Christoph

    2011-01-01

    In this thesis I report precision spectroscopy with ultracold 87 Rb 2 triplet molecules where we use lasers to couple the states in different molecular potentials. We study in detail states of the a 3 sum + u and (1) 3 sum + g potentials. These states are of great importance for transferring weakly bound molecules to the ro-vibrational triplet ground state via states of the excited potential. As most experiments start from molecules in their X 1 sum + g ground state, the triplet states were hard to access via dipole transitions and remained largely unexplored. The measurements presented in this thesis are the first detailed study of diatomic 87 Rb 2 molecules in these states. Our experiments start with an ultracold cloud of 87 Rb atoms. We then load this cloud into an optical lattice where we use a magnetic Feshbach resonance at 1007.4 G to perform a Feshbach association. After we have removed all unbound atoms, we end up with a pure sample of weakly bound Feshbach molecules inside the optical lattice. The optical lattice prevents these molecules from colliding with each other which results in molecular lifetimes on the order of a few hundred milliseconds. In the first set of experiments, we use a laser coupling the Feshbach state to the excited (1) 3 sum + g triplet state to map out its low-lying vibrational (v = 0.. 15), rotational, hyperfine, and Zeeman structure. The experimental results are in good agreement with calculations done by Marius Lysebo and Prof. Leif Veseth. We then map out in detail the vibrational, rotational, hyperfine, and Zeeman structure of the a 3 sum + u triplet ground state using dark state spectroscopy with levels in the (1) 3 sum + g potential as an intermediate state. In this scheme we are able to access molecules in triplet states because our Feshbach state has strong triplet character. Interestingly, it happens that some deeply bound states which belong to the X 1 sum + g potential are close to levels in the a 3 sum + u potential. In

  19. Band structure engineering for ultracold quantum gases in optical lattices

    International Nuclear Information System (INIS)

    Weinberg, Malte

    2014-01-01

    The energy band structure fundamentally influences the physical properties of a periodic system. It may give rise to highly exotic phenomena in yet uncharted physical regimes. Ultracold quantum gases in optical lattices provide an ideal playground for the investigation of a large variety of such intriguing effects. Experiments presented here address several issues that require the systematic manipulation of energy band structures in optical lattices with diverse geometries. These artificial crystals of light, generated by interfering laser beams, allow for an unprecedented degree of control over a wide range of parameters. A major part of this thesis employs time-periodic driving to engineer tunneling matrix elements and, thus, the dispersion relation for bosonic quantum gases in optical lattices. Resonances emerging in the excitation spectrum due to the particularly strong forcing can be attributed to multi-photon transitions that are investigated systematically. By changing the sign of the tunneling, antiferromagnetic spin-spin interactions can be emulated. In a triangular lattice this leads to geometrical frustration with a doubly degenerate ground state as the simultaneous minimization of competing interactions is inhibited. Moreover, complex-valued tunneling matrix elements can be generated with a suitable breaking of time-reversal symmetry in the driving scheme. The associated Peierls phases mimic the presence of an electromagnetic vector gauge potential acting on charged particles. First proof-of-principle experiments reveal an excellent agreement with theoretical calculations. In the weakly interacting superfluid regime, these artificial gauge fields give rise to an Ising-XY model with tunable staggered magnetic fluxes and a complex interplay between discrete and continuous symmetries. A thermal phase transition from an ordered ferromagnetic- to an unordered paramagnetic state could be observed. In the opposite hard-core boson limit of strong interactions

  20. Microscopic description and simulation of ultracold atoms in optical resonators

    International Nuclear Information System (INIS)

    Niedenzu, W.

    2012-01-01

    Ultracold atoms in optical resonators are an ideal system to investigate the full quantum regime of light-matter interaction. Microscopic insight into the underlying processes can nowadays easily be obtained from numerical calculations, e.g. with Monte Carlo wave function simulations. In the first part we discuss cold atoms in ring resonators, where the modified boundary conditions significantly alter the dynamics as compared to the standing-wave case. Quantum jumps induce momentum correlations and entanglement between the particles. We observe strong non-classical motional correlations, cooling and entanglement heralded by single photon measurements. For deeply trapped particles the complex system Hamiltonian can be mapped onto a generic optomechanical model, allowing for analytical microscopic insight into the dynamics. The rates of cavity-mediated correlated heating and cooling processes are obtained by adiabatically eliminating the cavity field from the dynamics and can be directly related to the steady-state momentum correlation coefficient. The second part is devoted to cooling and self-organisation of a cold gas in a transversally pumped standing-wave resonator, in which the atoms are directly illuminated by a laser beam. Above a certain critical laser intensity the atoms order in a specific pattern, maximising light scattering into the cavity. The particles thus create and sustain their own trap. We derive a nonlinear Fokker-Planck equation for the one-particle distribution function describing the gas dynamics below and above threshold. This kinetic theory predicts dissipation-induced self-organisation and q-Gaussian velocity distributions in steady state. (author)

  1. Thermalization and Prethermalization in an ultracold Bose Gas

    International Nuclear Information System (INIS)

    Kuhnert, M.

    2013-01-01

    Atom chips consist of microscopic current carrying structures that generate magnetic trapping potentials for ultracold neutral atoms. These atom chips provide a high design flexibility of possible trap geometries, making the creation of highly anisotropic trapping potentials feasible. The resulting magnetic traps are characterized by a high isolation from the environment and are used to create degenerate, one-dimensional (1d) Bose gases. On typical experimental time scales, these 1d Bose gases can be described as practically closed quantum many-body systems. By applying a rapid quantum quench, the many-body system is brought out of thermal equilibrium and the resulting dynamics are studied via the statistical properties of matter-wave interference measurements. These measured quantum statistical distributions reveal that thermalization of this effectively integrable 1d Bose gas happens in a two-step process. First, the system rapidly dephases to a prethermalized state, characterized by thermal-like correlation properties, which are still distinctly different from the true thermal equilibrium state. Second, on a much longer time scale, the measured distribution functions indicate a further decay to the true thermal equilibrium state. Furthermore, by studying a highly non-equilibrium system via matter-wave interferometry, the underlying multimode dynamics, characterizing one-dimensional quantum systems, are revealed. This thesis shows that these dynamics are essential in establishing the prethermalized state and that its properties are defined by the quantum shot noise of the splitting process. In conclusion, this work aims at improving the understanding of quantum thermalization processes in integrable and nearly-integrable systems in the 1d and 1d/3d crossover regimes. Apparently, the general paths to thermal equilibrium in nearly-integrable systems are indirect and complex. This work provides an in depth experimental study of the relaxation dynamics of a highly

  2. Mirror nesting of the Fermi contour and enhanced diamagnetism of the pseudogap state in cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Kapaev, V.V.; Belyavsky, V.I. [P.N. Lebedev Physical Institute of Russian Academy of Sciences, Moscow 119991 (Russian Federation); Kopaev, Yu.V. [P.N. Lebedev Physical Institute of Russian Academy of Sciences, Moscow 119991 (Russian Federation)], E-mail: kopaev@sci.lebedev.ru; Smirnov, M.Yu. [State Pedagogical University, Voronezh 394043 (Russian Federation)

    2007-09-01

    Since the insulating gap in parent spin antiferromagnet survives under a hole underdoping, it might result in a rise of a metal state with a pocket-like Fermi contour with both conventional and mirror nesting corresponding to the same momentum K = ({pi}, {pi}). The nesting leads to a possibility of singlet orbital antiferromagnetic order whereas the mirror nesting promotes the superconducting pairing with the momentum K. We assume screened Coulomb repulsion to be the dominating pairing interaction in the cuprates resulting in the two-component superconducting order parameter. The relative phase of the parameter can be related to orbital current circulations as it follows from the Ginzburg-Landau phenomenology. The orbital antiferromagnetic state with the insulating gap on the Fermi contour is related to the pseudogap state with enhanced diamagnetic response.

  3. Mirror nesting of the Fermi contour and enhanced diamagnetism of the pseudogap state in cuprates

    International Nuclear Information System (INIS)

    Kapaev, V.V.; Belyavsky, V.I.; Kopaev, Yu.V.; Smirnov, M.Yu.

    2007-01-01

    Since the insulating gap in parent spin antiferromagnet survives under a hole underdoping, it might result in a rise of a metal state with a pocket-like Fermi contour with both conventional and mirror nesting corresponding to the same momentum K = (π, π). The nesting leads to a possibility of singlet orbital antiferromagnetic order whereas the mirror nesting promotes the superconducting pairing with the momentum K. We assume screened Coulomb repulsion to be the dominating pairing interaction in the cuprates resulting in the two-component superconducting order parameter. The relative phase of the parameter can be related to orbital current circulations as it follows from the Ginzburg-Landau phenomenology. The orbital antiferromagnetic state with the insulating gap on the Fermi contour is related to the pseudogap state with enhanced diamagnetic response

  4. Fermi liquids from D-branes

    OpenAIRE

    Moshe RozaliDepartment of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; Darren Smyth(Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada)

    2014-01-01

    We discuss finite density configurations on probe D-branes, in the presence of worldvolume fermions. To this end we consider a phenomenological model whose bosonic sector is governed by the DBI action, and whose charged sector is purely fermionic. In this model, we demonstrate the existence of a compact worldvolume embedding, stabilized by a Fermi surface on the D- brane. The finite density state in the boundary QFT is a Fermi-like liquid. We comment on the possibility of realizing non-Fermi ...

  5. Quantum mechanical models for the Fermi shuttle

    Science.gov (United States)

    Sternberg, James; Ovchinnikov, S. Yu.; Macek, J. H.

    2009-05-01

    Although the Fermi shuttle was originally proposed as an explanation for highly energetic cosmic rays, it is also a mechanism for the production of high energy electrons in atomic collisions [1]. The Fermi shuttle is usually thought of as a classical effect and most models of this process rely on classical or semi-classical approximations. In this work we explore several quantum mechanical models for ion-atom collisions and examine the evidence for the Fermi shuttle in these models. [4pt] [1] B. Sulik, Cs. Koncz, K. Tok'esi, A. Orb'an, and D. Ber'enyi, Phys Rev. Lett. 88 073201 (2002)

  6. Experimental investigation of the factors influencing the polymer-polymer bond strength during two component injection moulding

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2007-01-01

    Two component injection moulding is a commercially important manufacturing process and a key technology for Moulded Interconnect Devices (MIDs). Many fascinating applications of two component or multi component polymer parts are restricted due to the weak interfacial adhesion of the polymers...... effectively control the adhesion between two polymers. The effects of environmental conditions on the bond strength after moulding are also investigated. The material selections and environmental conditions were chosen based on the suitability of MID production, but the results and discussion presented....... A thorough understanding of the factors that influence the bond strength of polymers is necessary for multi component polymer processing. This paper investigates the effects of the process and material parameters on the bond strength of two component polymer parts and identifies the factors which can...

  7. Experimental investigation of the factors influencing the polymer-polymer bond strength during two-component injection moulding

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Bondo, Martin

    2010-01-01

    Two-component injection moulding is a commercially important manufacturing process and a key technology for combining different material properties in a single plastic product. It is also one of most industrially adaptive process chain for manufacturing so-called moulded interconnect devices (MIDs......). Many fascinating applications of two-component or multi-component polymer parts are restricted due to the weak interfacial adhesion of the polymers. A thorough understanding of the factors that influence the bond strength of polymers is necessary for multi-component polymer processing. This paper...... investigates the effects of the process conditions and geometrical factors on the bond strength of two-component polymer parts and identifies the factors which can effectively control the adhesion between two polymers. The effects of environmental conditions on the bond strength are also investigated...

  8. Generalized virial theorem and pressure relation for a strongly correlated Fermi gas

    International Nuclear Information System (INIS)

    Tan, Shina

    2008-01-01

    For a two-component Fermi gas in the unitarity limit (i.e., with infinite scattering length), there is a well-known virial theorem, first shown by J.E. Thomas et al. A few people rederived this result, and extended it to few-body systems, but their results are all restricted to the unitarity limit. Here I show that there is a generalized virial theorem for FINITE scattering lengths. I also generalize an exact result concerning the pressure to the case of imbalanced populations

  9. Ultracold neutron detectors based on {sup 10}B converters used in the qBounce experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jenke, Tobias, E-mail: tjenke@ati.ac.at [Atominstitut TU Wien, Stadionallee 2, 1020 Wien (Austria); Cronenberg, Gunther; Filter, Hanno [Atominstitut TU Wien, Stadionallee 2, 1020 Wien (Austria); Geltenbort, Peter [Institut Laue-Langevin, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Klein, Martin [Physikalisches Institut Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg (Germany); Lauer, Thorsten [FRM II, TU München, Lichtenbergstraße 1, 85748 Garching (Germany); Mitsch, Kevin [Atominstitut TU Wien, Stadionallee 2, 1020 Wien (Austria); Saul, Heiko [Atominstitut TU Wien, Stadionallee 2, 1020 Wien (Austria); FRM II, TU München, Lichtenbergstraße 1, 85748 Garching (Germany); Seiler, Dominik [Physik Department, TU München, James-Franck-Straße, 85748 Garching (Germany); Stadler, David [Physikalisches Institut Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg (Germany); Thalhammer, Martin [Atominstitut TU Wien, Stadionallee 2, 1020 Wien (Austria); Abele, Hartmut, E-mail: abele@ati.ac.at [Atominstitut TU Wien, Stadionallee 2, 1020 Wien (Austria); Physikalisches Institut Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg (Germany); Physik Department, TU München, James-Franck-Straße, 85748 Garching (Germany)

    2013-12-21

    Gravity experiments with very slow, so-called ultracold neutrons connect quantum mechanics with tests of Newton's inverse square law at short distances. These experiments face a low count rate and hence need highly optimized detector concepts. In the frame of this paper, we present low-background ultracold neutron counters and track detectors with micron resolution based on a {sup 10}B converter. We discuss the optimization of {sup 10}B converter layers, detector design and concepts for read-out electronics focusing on high-efficiency and low-background. We describe modifications of the counters that allow one to detect ultracold neutrons selectively on their spin-orientation. This is required for searches of hypothetical forces with spin–mass couplings. The mentioned experiments utilize a beam-monitoring concept which accounts for variations in the neutron flux that are typical for nuclear research facilities. The converter can also be used for detectors, which feature high efficiencies paired with high spatial resolution of 1–2μm. They allow one to resolve the quantum mechanical wave function of an ultracold neutron bound in the gravity potential above a neutron mirror.

  10. Radio frequency acceleration and manipulation of ultra-cold electron bunches

    NARCIS (Netherlands)

    Franssen, J.G.H.; Vredenbregt, E.J.D.; Luiten, O.J.

    2016-01-01

    We are developing an ultra-fast and ultra-cold electron source based on a grating magneto optical trap, RF acceleration and RF (de-) compression techniques. The electrons will be created by near-threshold, femtosecond photoionization of a laser-cooled and trapped gas. The electron cloud is extracted

  11. To the problem of spatial focusing of ultracold neutrons by nonuniform magnetic field. Eikonal approximation

    CERN Document Server

    Chen, T

    2002-01-01

    Motion of the ultracold neutrons in the nonuniform magnetic field with a square nonuniformity by two coordinates is considered. The Schroedinger equation is solved with application of the quasi-classical (eikonal) approach. The theoretical possibility of the neutrons spatial focusing with formation of the point focus and also the neutrons bunches is shown

  12. Predicting scattering properties of ultracold atoms : Adiabatic accumulated phase method and mass scaling

    NARCIS (Netherlands)

    Verhaar, B.J.; Kempen, van E.G.M.; Kokkelmans, S.J.J.M.F.

    2009-01-01

    Ultracold atoms are increasingly used for high-precision experiments that can be utilized to extract accurate scattering properties. This results in a stronger need to improve on the accuracy of interatomic potentials, and in particular the usually rather inaccurate inner-range potentials. A

  13. Observation of electric quadrupole transitions to Rydberg nd states of ultracold rubidium atoms

    NARCIS (Netherlands)

    Tong, D.; Farooqi, S.M.; Kempen, van E.G.M.; Pavlovic, Z.; Stanojevic, J.; Coté, R.; Eyler, E.E.; Gould, P.L.

    2009-01-01

    We report the observation of dipole-forbidden, but quadrupole-allowed, one-photon transitions to high-Rydberg states in Rb. Using pulsed uv excitation of ultracold atoms in a magneto-optical trap, we excite 5s¿nd transitions over a range of principal quantum numbers n=27–59. Compared to

  14. Analysis of the Alkali Metal Diatomic Spectra; Using molecular beams and ultracold molecules

    Science.gov (United States)

    Kim, Jin-Tae

    2014-12-01

    This ebook illustrates the complementarity of molecular beam (MB) spectra and ultracold molecule (UM) spectra in unraveling the complex electronic spectra of diatomic alkali metal molecules, using KRb as a prime example. Researchers interested in molecular spectroscopy, whether physicist, chemist, or engineer, may find this ebook helpful and may be able to apply similar ideas to their molecules of interest.

  15. Ultra-cold WIMPs relics of non-standard pre-BBN cosmologies

    CERN Document Server

    Gelmini, Graciela B

    2008-01-01

    We point out that in scenarios in which the Universe evolves in a non-standard manner during and after the kinetic decoupling of weakly interacting massive particles (WIMPs), these relics can be much colder than in standard cosmological scenarios (i.e. can be ultra-cold), possibly leading to the formation of smaller first objects in hierarchical structure formation scenarios.

  16. Measurement of the time of storage of ultracold neutrons in a magnetic trap

    International Nuclear Information System (INIS)

    Abov, Y.G.; Borovlev, S.P.; Vasil'ev, V.V.; Vladimirskii, V.V.; Mospan, E.N.

    1983-01-01

    The storage time of ultracold neutrons in an axial magnetic trap with a simple singly connected confinement region is measured. It is shown that the storage of the neutrons is due just to the magnetic field. The storage time achieved is tau = 303 +- 37 sec. In a working cycle 3.6 neutrons are accumulated

  17. An ultracold, optically trapped mixture of 87Rb and metastable 4He atoms

    NARCIS (Netherlands)

    Flores, A.S.; Mishra, H.P.; Vassen, Wim; Knoop, S.

    2017-01-01

    We report on the realization of an ultracold (<25 μK) mixture of rubidium (87Rb) and metastable triplet helium (4He) in an optical dipole trap. Our scheme involves laser cooling in a dual-species magneto-optical trap, simultaneous MW- and RF-induced forced evaporative cooling in a quadrupole

  18. Quantum simulation of conductivity plateaux and fractional quantum Hall effect using ultracold atoms

    International Nuclear Information System (INIS)

    Barberán, Nuria; García-March, Miguel Angel; Taron, Josep; Dagnino, Daniel; Trombettoni, Andrea; Lewenstein, Maciej

    2015-01-01

    We analyze the role of impurities in the fractional quantum Hall effect using a highly controllable system of ultracold atoms. We investigate the mechanism responsible for the formation of plateaux in the resistivity/conductivity as a function of the applied magnetic field in the lowest Landau level regime. To this aim, we consider an impurity immersed in a small cloud of an ultracold quantum Bose gas subjected to an artificial magnetic field. We consider scenarios corresponding to experimentally realistic systems with gauge fields induced by rotation of the trapping parabolic potential. Systems of this kind are adequate to simulate quantum Hall effects in ultracold atom setups. We use exact diagonalization for few atoms and to emulate transport equations, we analyze the time evolution of the system under a periodic perturbation. We provide a theoretical proposal to detect the up-to-now elusive presence of strongly correlated states related to fractional filling factors in the context of ultracold atoms. We analyze the conditions under which these strongly correlated states are associated with the presence of the resistivity/conductivity plateaux. Our main result is the presence of a plateau in a region, where the transfer between localized and non-localized particles takes place, as a necessary condition to maintain a constant value of the resistivity/conductivity as the magnetic field increases. (paper)

  19. Moving converter as the possible tool for producing ultra-cold neutrons on pulsed neutron sources

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.

    1991-01-01

    A method is proposed for producing ultra-cold neutrons (UCN) at aperiodic pulse neutron sources. It is based on the use of the fast moving cooled converter of UCN in the time of the neutron pulse and includes the trapping of generated UCN's in a moving trap. 6 refs.; 2 figs

  20. Test of the fast thin-film ferromagnetic shutters for ultracold neutrons

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.; Novopol'tsev, M.I.; Geltenbort, P.

    2008-01-01

    Test of thin-film ferromagnetic shutters of two types for ultracold neutrons has been performed. The first type is based on neutron reflection from the sequence of successively placed thin ferromagnetic layers with oppositely directed magnetization. The second one is based on neutron refraction in ferromagnetic foils inserted in the beam

  1. Bacillus subtilis Two-Component System Sensory Kinase DegS Is Regulated by Serine Phosphorylation in Its Input Domain

    DEFF Research Database (Denmark)

    Jers, Carsten; Kobir, Ahasanul; Søndergaard, Elsebeth Oline

    2011-01-01

    Bacillus subtilis two-component system DegS/U is well known for the complexity of its regulation. The cytosolic sensory kinase DegS does not receive a single predominant input signal like most two-component kinases, instead it integrates a wide array of metabolic inputs that modulate its activity......S phosphorylation can be carried out by at least two B. subtilis Hanks-type kinases in vitro, and this stimulates the phosphate transfer towards DegU. The consequences of this process were studied in vivo, using phosphomimetic (Ser76Asp) and non-phosphorylatable (Ser76Ala) mutants of DegS. In a number...

  2. A Principle of Corresponding States for Two-Component, Self-Gravitating Fluids

    Directory of Open Access Journals (Sweden)

    Caimmi, R.

    2010-06-01

    Full Text Available Macrogases are defined as two-component,large-scale celestial objects where the subsystems interact only via gravitation.The macrogas equation of state is formulated and compared to the van der Waals (VDWequation of state for ordinary gases.By analogy, it is assumed that real macroisothermal curves in macrogases occur as real isothermal curves in ordinary gases, where a phase transition(vapour-liquid observed in ordinary gases and gas-stars assumed in macrogases takesplace along a horizontal linein the macrovolume-macropressure{small $({sf O}sX_mathrm{V}sX_mathrm{p}$} plane.The intersections between real and theoretical(deduced from the equation of state macro isothermalcurves, make two regions of equal surface as for ordinary gases obeying the VDW equation of state.A numerical algorithm is developed for determining the following points of a selected theoretical macroisothermal curve on the {small $({sf O}sX_mathrm{V}sX_mathrm{p}$} plane:the three intersections with the related real macroisothermal curve,and the two extremum points (one maximum and one minimum. Different kinds of macrogases are studied in detail: UU, where U density profiles are flat, to be conceived as a simple guidance case; HH, where H density profiles obey the Hernquist (1990 law, which satisfactorily fits the observed spheroidal components of galaxies; HN/NH, where N density profiles obey the Navarro-Frenk-White (1995,1996, 1997 law, which satisfactorily fits the simulated nonbaryonic dark matter haloes.A different trend is shown by theoretical macroisothermal curves on the{small $({sf O}sX_mathrm{V}sX_mathrm{p}$} plane,according to whether density profiles are sufficiently mild (UU or sufficiently steep (HH, HN/NH.In the former alternative, no critical macroisothermal curve exists, below or above which the trend is monotonous. In the latter alternative, a critical macroisothermal curve exists, as shown by VDW gases, where the critical point may be defined as the horizontal

  3. A principle of corresponding states for two-component, self-gravitating fluids

    Directory of Open Access Journals (Sweden)

    Caimmi R.

    2010-01-01

    Full Text Available Macrogases are defined as two-component, large-scale celestial objects where the subsystems interact only via gravitation. The macrogas equation of state is formulated and compared to the van der Waals (VDW equation of state for ordinary gases. By analogy, it is assumed that real macroisothermal curves in macrogases occur as real isothermal curves in ordinary gases, where a phase transition (vapour-liquid observed in ordinary gases and gas-stars assumed in macrogases takes place along a horizontal line in the macrovolume-macropressure (O, Xv, Xp plane. The intersections between real and theoretical (deduced from the equation of state macroisothermal curves, make two regions of equal surface as for ordinary gases obeying the VDW equation of state. A numerical algorithm is developed for determining the following points of a selected theoretical macroisothermal curve on the (O, Xv, Xp plane: the three intersections with the related real macroisothermal curve, and the two extremum points (one maximum and one minimum. Different kinds of macrogases are studied in detail: UU, where U density profiles are flat, to be conceived as a simple guidance case; HH, where H density profiles obey the Hernquist (1990 law, which satisfactorily fits the observed spheroidal components of galaxies; HN/NH, where N density profiles obey the Navarro-Frenk-White (1995, 1996, 1997 law, which satisfactorily fits the simulated nonbaryonic dark matter haloes. A different trend is shown by theoretical macroisothermal curves on the (O/XV/Xp plane, according to whether density profiles are sufficiently mild (UU or sufficiently steep (HH, HN/NH. In the former alternative, no critical macroisothermal curve exists, below or above which the trend is monotonous. In the latter alternative, a critical macroisothermal curve exists, as shown by VDW gases, where the critical point may be defined as the horizontal inflexion point. In any case, by analogy with VDW gases, the first quadrant

  4. Fermi: a physicist in the upheaval

    International Nuclear Information System (INIS)

    Maria, M. de

    2002-01-01

    This book summarizes the life, works and complex personality of the Italian physicist Enrico Fermi (1901-1954) whose myth is linked with the political upheaval of the 2. world war: the youth of an autodidact, the theorician and the quantum mechanics, his invention of a quantum statistics, the weak interaction theory, his works on artificial radioactivity, the end of the Fermi team and his exile in the USA, the secrete researches at the university of Columbia and the birth of the first atomic 'pile' (December 2, 1942), the building of Los Alamos center and the Alamogordo explosion test, the disagreements among the physicists of the Manhattan project and the position of Fermi, Fermi's contribution in the H-bomb construction, the creation of the physics school of Chicago, the Oppenheimer spying affair. (J.S.)

  5. Fermi's Conundrum: Proliferation and Closed Societies

    Science.gov (United States)

    Teller, Wendy; Westfall, Catherine

    2007-04-01

    On January 1, 1946 Emily Taft Douglas, a freshman Representative at Large for Illinois, sent a letter to Enrico Fermi. She wanted to know whether, if atomic energy was used for peaceful purposes, it might be possible to clandestinely divert some material for bombs. Douglas first learned about the bomb not quite five months before when Hiroshima was bombed. Even though she was not a scientist she identified a key problem of the nuclear age. Fermi responded with requirements to allow peaceful uses of atomic energy and still outlaw nuclear weapons. First, free interchange of information between people was required, and second, people who reported possible violations had to be protected. Fermi had lived in Mussolini's Italy and worked under the war time secrecy restrictions of the Manhattan Project. He was not optimistic that these conditions could be met. This paper discusses how Douglas came to recognize the proliferation issue and what led Fermi to his solution and his pessimism about its practicality.

  6. Fermi and the Theory of Weak Interactions

    Indian Academy of Sciences (India)

    IAS Admin

    Quantum Field Theory created by Dirac and used by Fermi to describe weak ... of classical electrodynamics (from which the electric field and magnetic field can be obtained .... Universe. However, thanks to weak interactions, this can be done.

  7. Bright solitons in Bose-Fermi mixtures

    International Nuclear Information System (INIS)

    Karpiuk, Tomasz; Brewczyk, Miroslaw; RzaPewski, Kazimierz

    2006-01-01

    We consider the formation of bright solitons in a mixture of Bose and Fermi degenerate gases confined in a three-dimensional elongated harmonic trap. The Bose and Fermi atoms are assumed to effectively attract each other whereas bosonic atoms repel each other. Strong enough attraction between bosonic and fermionic components can change the character of the interaction within the bosonic cloud from repulsive to attractive making thus possible the generation of bright solitons in the mixture. On the other hand, such structures might be in danger due to the collapse phenomenon existing in attractive gases. We show, however, that under some conditions (defined by the strength of the Bose-Fermi components attraction) the structures which neither spread nor collapse can be generated. For elongated enough traps the formation of solitons is possible even at the 'natural' value of the mutual Bose-Fermi ( 87 Rb- 40 K in our case) scattering length

  8. Production and spectroscopy of ultracold YbRb{sup *} molecules

    Energy Technology Data Exchange (ETDEWEB)

    Nemitz, Nils

    2008-11-15

    work presented here is an important step on the way to the formation of molecules that are not only translationally ultracold, but also in the electronic and rovibrational ground state. (orig.)

  9. Production and spectroscopy of ultracold YbRb* molecules

    International Nuclear Information System (INIS)

    Nemitz, Nils

    2008-11-01

    the way to the formation of molecules that are not only translationally ultracold, but also in the electronic and rovibrational ground state. (orig.)

  10. Thomas Fermi model of finite nuclei

    International Nuclear Information System (INIS)

    Boguta, J.; Rafelski, J.

    1977-01-01

    A relativistic Thomas-Fermi model of finite-nuclei is considered. The effective nuclear interaction is mediated by exchanges of isoscalar scalar and vector mesons. The authors include also a self-interaction of the scalar meson field and the Coulomb repulsion of the protons. The parameters of the model are constrained by the average nuclear properties. The Thomas-Fermi equations are solved numerically for finite, stable nuclei. The particular case of 208 82 Pb is considered in more detail. (Auth.)

  11. Conoscere Fermi nel centenario della nascita : 29 settembre 1901 - 2001

    CERN Document Server

    Bonolis, Luisa

    2001-01-01

    Il lavoro scientifico di Fermi riguarda molti campi disparati, ciascuno dei quali ha avuto uno sviluppo peculiare in tempi successivi alla morte. In questo volume un certo numero di specialisti contemporanei di ciascun settore espone in forma semplice l'idea originaria e la sua successiva evoluzione. INDICE. Carlo Bernardini, "Introduzione"; Giorgio Salvini, "Enrico Fermi. La sua vita, ed un commento alla sua opera"; Edoardo Amaldi, "Commemorazione del Socio Enrico Fermi"; Enrico Persico, "Commemorazione di Enrico Fermi"; Franco Rasetti, "Enrico Fermi e la Fisica Italiana"; Franco Bassani, "Enrico Fermi e la Fisica dello Stato Solido"; Giorgio Parisi, "La statistica di Fermi"; Giovanni Gallavotti, "La meccanica classica e la rivoluzione quantistica nei lavori giovanili di Fermi"; Tullio Levi-Civita, "Sugli invarianti adiabatici"; Bruno Bertotti, "Le coordinate di Fermi e il Principio di Equivalenza"; Marcello Cini, "Fermi e l'elettrodinamica quantistica"; Nicola Cabibbo. "Le interazioni deboli"; Ugo Amaldi, "...

  12. Viscous Growth in Spinodal Decomposition of the Two-component Lennard-Jones Model in Two Dimensions

    DEFF Research Database (Denmark)

    Laradji, M.; Toxvaerd, S.; Mouritsen, Ole G.

    1997-01-01

    The dynamics of phase separation of a two-component Lennard-Jones model in three dimensions is investigated by means of large scale molecular dynamics simulation. A systematic study over a wide range of quench temperatures within the coexistence region shows that the binary system reaches...

  13. Dispersion calculation method based on S-transform and coordinate rotation for Love channel waves with two components

    Science.gov (United States)

    Feng, Lei; Zhang, Yugui

    2017-08-01

    Dispersion analysis is an important part of in-seam seismic data processing, and the calculation accuracy of the dispersion curve directly influences pickup errors of channel wave travel time. To extract an accurate channel wave dispersion curve from in-seam seismic two-component signals, we proposed a time-frequency analysis method based on single-trace signal processing; in addition, we formulated a dispersion calculation equation, based on S-transform, with a freely adjusted filter window width. To unify the azimuth of seismic wave propagation received by a two-component geophone, the original in-seam seismic data undergoes coordinate rotation. The rotation angle can be calculated based on P-wave characteristics, with high energy in the wave propagation direction and weak energy in the vertical direction. With this angle acquisition, a two-component signal can be converted to horizontal and vertical directions. Because Love channel waves have a particle vibration track perpendicular to the wave propagation direction, the signal in the horizontal and vertical directions is mainly Love channel waves. More accurate dispersion characters of Love channel waves can be extracted after the coordinate rotation of two-component signals.

  14. The YvfTU Two-component System is involved in plcR expression in Bacillus cereus

    NARCIS (Netherlands)

    Brillard, Julien; Susanna, Kim; Michaud, Caroline; Dargaignaratz, Claire; Gohar, Michel; Nielsen-Leroux, Christina; Ramarao, Nalini; Kolsto, Anne-Brit; Nguyen-The, Christophe; Lereclus, Didier; Broussolle, Veronique

    2008-01-01

    Background: Most extracellular virulence factors produced by Bacillus cereus are regulated by the pleiotropic transcriptional activator PlcR. Among strains belonging to the B. cereus group, the plcR gene is always located in the vicinity of genes encoding the YvfTU two-component system. The putative

  15. Quantum-phase dynamics of two-component Bose-Einstein condensates: Collapse-revival of macroscopic superposition states

    International Nuclear Information System (INIS)

    Nakano, Masayoshi; Kishi, Ryohei; Ohta, Suguru; Takahashi, Hideaki; Furukawa, Shin-ichi; Yamaguchi, Kizashi

    2005-01-01

    We investigate the long-time dynamics of two-component dilute gas Bose-Einstein condensates with relatively different two-body interactions and Josephson couplings between the two components. Although in certain parameter regimes the quantum state of the system is known to evolve into macroscopic superposition, i.e., Schroedinger cat state, of two states with relative atom number differences between the two components, the Schroedinger cat state is also found to repeat the collapse and revival behavior in the long-time region. The dynamical behavior of the Pegg-Barnett phase difference between the two components is shown to be closely connected with the dynamics of the relative atom number difference for different parameters. The variation in the relative magnitude between the Josephson coupling and intra- and inter-component two-body interaction difference turns out to significantly change not only the size of the Schroedinger cat state but also its collapse-revival period, i.e., the lifetime of the Schroedinger cat state

  16. A Conserved Two-Component Signal Transduction System Controls the Response to Phosphate Starvation in Bifidobacterium breve UCC2003.

    NARCIS (Netherlands)

    Alvarez-Martin, P.; Fernandez, M.; O'Connell-Motherway, M.; O'Connell, K.J.; Sauvageot, N.; Fitzgerald, G.F.; Macsharry, J.; Zomer, A.L.; Sinderen, D. van

    2012-01-01

    This work reports on the identification and molecular characterization of the two-component regulatory system (2CRS) PhoRP, which controls the response to inorganic phosphate (P(i)) starvation in Bifidobacterium breve UCC2003. The response regulator PhoP was shown to bind to the promoter region of

  17. Atom-number squeezing and bipartite entanglement of two-component Bose-Einstein condensates: analytical results

    Energy Technology Data Exchange (ETDEWEB)

    Jin, G R; Wang, X W; Li, D; Lu, Y W, E-mail: grjin@bjtu.edu.c [Department of Physics, Beijing Jiaotong University, Beijing 100044 (China)

    2010-02-28

    We investigate spin dynamics of a two-component Bose-Einstein condensate with weak Josephson coupling. Analytical expressions of atom-number squeezing and bipartite entanglement are presented for atom-atom repulsive interactions. For attractive interactions, there is no number squeezing; however, the squeezing parameter is still useful to recognize the appearance of Schroedinger's cat state.

  18. Observing the drop of resistance in the flow of a superfluid Fermi gas.

    Science.gov (United States)

    Stadler, David; Krinner, Sebastian; Meineke, Jakob; Brantut, Jean-Philippe; Esslinger, Tilman

    2012-11-29

    The ability of particles to flow with very low resistance is characteristic of superfluid and superconducting states, leading to their discovery in the past century. Although measuring the particle flow in liquid helium or superconducting materials is essential to identify superfluidity or superconductivity, no analogous measurement has been performed for superfluids based on ultracold Fermi gases. Here we report direct measurements of the conduction properties of strongly interacting fermions, observing the well-known drop in resistance that is associated with the onset of superfluidity. By varying the depth of the trapping potential in a narrow channel connecting two atomic reservoirs, we observed variations of the atomic current over several orders of magnitude. We related the intrinsic conduction properties to the thermodynamic functions in a model-independent way, by making use of high-resolution in situ imaging in combination with current measurements. Our results show that, as in solid-state systems, current and resistance measurements in quantum gases provide a sensitive probe with which to explore many-body physics. Our method is closely analogous to the operation of a solid-state field-effect transistor and could be applied as a probe for optical lattices and disordered systems, paving the way for modelling complex superconducting devices.

  19. Long-lived trimers in a quasi-two-dimensional Fermi system

    Science.gov (United States)

    Laird, Emma K.; Kirk, Thomas; Parish, Meera M.; Levinsen, Jesper

    2018-04-01

    We consider the problem of three distinguishable fermions confined to a quasi-two-dimensional (quasi-2D) geometry, where there is a strong harmonic potential in one direction. We go beyond previous theoretical work and investigate the three-body bound states (trimers) for the case where the two-body short-range interactions between fermions are unequal. Using the scattering parameters from experiments on ultracold 6Li atoms, we calculate the trimer spectrum throughout the crossover from two to three dimensions. We find that the deepest Efimov trimer in the 6Li system is unaffected by realistic quasi-2D confinements, while the first excited trimer smoothly evolves from a three-dimensional-like Efimov trimer to an extended 2D-like trimer as the attractive interactions are decreased. We furthermore compute the excited trimer wave function and quantify the stability of the trimer against decay into a dimer and an atom by determining the probability that three fermions approach each other at short distances. Our results indicate that the lifetime of the trimer can be enhanced by at least an order of magnitude in the quasi-2D geometry, thus opening the door to realizing long-lived trimers in three-component Fermi gases.

  20. A comparison of two-component and quadratic models to assess survival of irradiated stage-7 oocytes of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Peres, C.A.; Koo, J.O.

    1981-01-01

    In this paper, the quadratic model to analyse data of this kind, i.e. S/S 0 = exp(-αD-bD 2 ), where S and Ssub(o) are defined as before is proposed is shown that the same biological interpretation can be given to the parameters α and A and to the parameters β and B. Furthermore it is shown that the quadratic model involves one probabilistic stage more than the two-component model, and therefore the quadratic model would perhaps be more appropriate as a dose-response model for survival of irradiated stage-7 oocytes of Drosophila melanogaster. In order to apply these results, the data presented by Sankaranarayanan and Sankaranarayanan and Volkers are reanalysed using the quadratic model. It is shown that the quadratic model fits better than the two-component model to the data in most situations. (orig./AJ)

  1. Effects of non-uniform temperature gradients on surface tension driven two component magneto convection in a porous- fluid system

    Science.gov (United States)

    Manjunatha, N.; Sumithra, R.

    2018-04-01

    The problem of surface tension driven two component magnetoconvection is investigated in a Porous-Fluid system, consisting of anincompressible two component electrically conducting fluid saturatedporous layer above which lies a layer of the same fluid in the presence of a uniform vertical magnetic field. The lower boundary of the porous layeris rigid and the upper boundary of the fluid layer is free with surfacetension effects depending on both temperature and concentration, boththese boundaries are insulating to heat and mass. At the interface thevelocity, shear and normal stress, heat and heat flux, mass and mass fluxare assumed to be continuous suitable for Darcy-Brinkman model. Theeigenvalue problem is solved in linear, parabolic and inverted parabolictemperature profiles and the corresponding Thermal Marangoni Numberis obtained for different important physical parameters.

  2. Recovering four-component solutions by the inverse transformation of the infinite-order two-component wave functions

    International Nuclear Information System (INIS)

    Barysz, Maria; Mentel, Lukasz; Leszczynski, Jerzy

    2009-01-01

    The two-component Hamiltonian of the infinite-order two-component (IOTC) theory is obtained by a unitary block-diagonalizing transformation of the Dirac-Hamiltonian. Once the IOTC spin orbitals are calculated, they can be back transformed into four-component solutions. The transformed four component solutions are then used to evaluate different moments of the electron density distribution. This formally exact method may, however, suffer from certain approximations involved in its numerical implementation. As shown by the present study, with sufficiently large basis set of Gaussian functions, the Dirac values of these moments are fully recovered in spite of using the approximate identity resolution into eigenvectors of the p 2 operator.

  3. Rayleigh-Taylor instability and mushroom-pattern formation in a two-component Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki; Akamatsu, Daisuke

    2009-01-01

    The Rayleigh-Taylor instability at the interface in an immiscible two-component Bose-Einstein condensate is investigated using the mean field and Bogoliubov theories. Rayleigh-Taylor fingers are found to grow from the interface and mushroom patterns are formed. Quantized vortex rings and vortex lines are then generated around the mushrooms. The Rayleigh-Taylor instability and mushroom-pattern formation can be observed in a trapped system.

  4. Investigation of low-latitude hydrogen emission in terms of a two-component interstellar gas model

    International Nuclear Information System (INIS)

    Baker, P.L.; Burton, W.B.

    1975-01-01

    The high-resolution 21-cm hydrogen line observations at low galactic latitude of Burton and Verschuur have been analyzed to determine the large-scale distribution of galactic hydrogen. The distribution parameters are found by model fitting. Optical depth affects have been computed using a two-component gas model. Analysis shows that a multiphase description of the medium is essential to the interpretation of low-latitude emission observations. Where possible, the number of free parameters in the gas model has been reduced. Calculations were performed for a one-component, uniform spin temperature, gas model in order to show the systematic departures between this model and the data caused by the incorrect treatment of the optical depth effect. In the two-component gas, radiative transfer is treated by a Monte Carlo calculation since the opacity of the gas arises in a randomly distributed, cold, optically thick, low velocity-dispersion, cloud medium. The emission arises in both the cloud medium and a smoothly distributed, optically thin, high velocity-dispersion, intercloud medium. The synthetic profiles computed from the two-component model reproduce both the large-scale trends of the observed emission profiles and the magnitude of the small-scale emission irregularities. The analysis permits the determination of values for []he thickness of the galactic disk between half density points, the total observed neutral hydrogen mass of the Galaxy, and the central number density of the intercloud atoms. In addition, the analysis is sensitive to the size of clouds contributing to the observations. Computations also show that synthetic emission profiles based on the two-component model display both the zero-velocity and high-velocity ridges, indicative of optical thinness on a large scale, in spite of the presence of optically thick gas

  5. Two-Component Signal Transduction Systems That Regulate the Temporal and Spatial Expression of Myxococcus xanthus Sporulation Genes.

    Science.gov (United States)

    Sarwar, Zaara; Garza, Anthony G

    2016-02-01

    When starved for nutrients, Myxococcus xanthus produces a biofilm that contains a mat of rod-shaped cells, known as peripheral rods, and aerial structures called fruiting bodies, which house thousands of dormant and stress-resistant spherical spores. Because rod-shaped cells differentiate into spherical, stress-resistant spores and spore differentiation occurs only in nascent fruiting bodies, many genes and multiple levels of regulation are required. Over the past 2 decades, many regulators of the temporal and spatial expression of M. xanthus sporulation genes have been uncovered. Of these sporulation gene regulators, two-component signal transduction circuits, which typically contain a histidine kinase sensor protein and a transcriptional regulator known as response regulator, are among the best characterized. In this review, we discuss prototypical two-component systems (Nla6S/Nla6 and Nla28S/Nla28) that regulate an early, preaggregation phase of sporulation gene expression during fruiting body development. We also discuss orphan response regulators (ActB and FruA) that regulate a later phase of sporulation gene expression, which begins during the aggregation stage of fruiting body development. In addition, we summarize the research on a complex two-component system (Esp) that is important for the spatial regulation of sporulation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Floquet Engineering of Correlated Tunneling in the Bose-Hubbard Model with Ultracold Atoms.

    Science.gov (United States)

    Meinert, F; Mark, M J; Lauber, K; Daley, A J; Nägerl, H-C

    2016-05-20

    We report on the experimental implementation of tunable occupation-dependent tunneling in a Bose-Hubbard system of ultracold atoms via time-periodic modulation of the on-site interaction energy. The tunneling rate is inferred from a time-resolved measurement of the lattice site occupation after a quantum quench. We demonstrate coherent control of the tunneling dynamics in the correlated many-body system, including full suppression of tunneling as predicted within the framework of Floquet theory. We find that the tunneling rate explicitly depends on the atom number difference in neighboring lattice sites. Our results may open up ways to realize artificial gauge fields that feature density dependence with ultracold atoms.

  7. Manipulating beams of ultra-cold atoms with a static magnetic field

    International Nuclear Information System (INIS)

    Rowlands, W.J.; Lau, D.C.; Opat, G.I.; Sidorov, A.I.; McLean, R.J.; Hannaford, P.

    1996-01-01

    The preliminary results on the deflection of a beam of ultra-cold atoms by a static magnetic field are presented. Caesium atoms trapped in a magneto-optical trap (MOT) are cooled using optical molasses, and then fall freely under gravity to form a beam of ultra-cold atoms. The atoms pass through a static inhomogeneous magnetic field produced by a single current-carrying wire, and are deflected by a force dependent on the magnetic substate of the atom. A schematical diagram of the experimental layout for laser trapping and cooling of cesium atom is given. The population of atoms in various magnetic substates can be altered by using resonant laser radiation to optically pump the atoms. The single-wire deflection experiment described can be considered as atomic reflexion from a cylindrical magnetic mirror; the underlying principles and techniques being relevant to the production of atomic mirrors and diffraction gratings. 16 refs., 10 figs

  8. Superexchange-mediated magnetization dynamics with ultracold alkaline-earth atoms in an optical lattice

    International Nuclear Information System (INIS)

    Zhu Shaobing; Qian Jun; Wang Yuzhu

    2017-01-01

    Superexchange and inter-orbital spin-exchange interactions are key ingredients for understanding (orbital) quantum magnetism in strongly correlated systems and have been realized in ultracold atomic gases. Here we study the spin dynamics of ultracold alkaline-earth atoms in an optical lattice when the two exchange interactions coexist. In the superexchange interaction dominating regime, we find that the time-resolved spin imbalance shows a remarkable modulated oscillation, which can be attributed to the interplay between local and nonlocal quantum mechanical exchange mechanisms. Moreover, the filling of the long-lived excited atoms affects the collapse and revival of the magnetization dynamics. These observations can be realized in state-dependent optical lattices combined with the state-of-the-art advances in optical lattice clock spectroscopy. (paper)

  9. Effects of mode profile on tunneling and traversal of ultracold atoms through vacuum-induced potentials

    Science.gov (United States)

    Badshah, Fazal; Irfan, Muhammad; Qamar, Sajid; Qamar, Shahid

    2016-04-01

    We consider the resonant interaction of an ultracold two-level atom with an electromagnetic field inside a high-Q micromaser cavity. In particular, we study the tunneling and traversal of ultracold atoms through vacuum-induced potentials for secant hyperbolic square and sinusoidal cavity mode functions. The phase time which may be considered as an appropriate measure of the time required for the atoms to cross the cavity, significantly modifies with the change of cavity mode profile. For example, switching between the sub and superclassical behaviors in phase time can occur due to the mode function. Similarly, negative phase time appears for the transmission of the two-level atoms in both excited and ground states for secant hyperbolic square mode function which is in contrast to the mesa mode case.

  10. Electric-field-modified Feshbach resonances in ultracold atom–molecule collision

    International Nuclear Information System (INIS)

    Cheng Dong; Li Ya; Feng Eryin; Huang Wuying

    2017-01-01

    We present a detailed analysis of near zero-energy Feshbach resonances in ultracold collisions of atom and molecule, taking the He–PH system as an example, subject to superimposed electric and magnetic static fields. We find that the electric field can induce Feshbach resonance which cannot occur when only a magnetic field is applied, through couplings of the adjacent rotational states of different parities. We show that the electric field can shift the position of the magnetic Feshbach resonance, and change the amplitude of resonance significantly. Finally, we demonstrate that, for narrow magnetic Feshbach resonance as in most cases of ultracold atom–molecule collision, the electric field may be used to modulate the resonance, because the width of resonance in electric field scale is relatively larger than that in magnetic field scale. (paper)

  11. Topology of Fermi surfaces and anomaly inflows

    Energy Technology Data Exchange (ETDEWEB)

    Adem, Alejandro; Camarena, Omar Antolín [Department of Mathematics, University of British Columbia,1984 Mathematics Road, Vancouver, V6T 1Z2 (Canada); Semenoff, Gordon W. [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver, V6T 1Z1 (Canada); Sheinbaum, Daniel [Department of Mathematics, University of British Columbia,1984 Mathematics Road, Vancouver, V6T 1Z2 (Canada)

    2016-11-14

    We derive a rigorous classification of topologically stable Fermi surfaces of non-interacting, discrete translation-invariant systems from electronic band theory, adiabatic evolution and their topological interpretations. For systems on an infinite crystal it is shown that there can only be topologically unstable Fermi surfaces. For systems on a half-space and with a gapped bulk, our derivation naturally yields a K-theory classification. Given the d−1-dimensional surface Brillouin zone X{sub s} of a d-dimensional half-space, our result implies that different classes of globally stable Fermi surfaces belong in K{sup −1}(X{sub s}) for systems with only discrete translation-invariance. This result has a chiral anomaly inflow interpretation, as it reduces to the spectral flow for d=2. Through equivariant homotopy methods we extend these results for symmetry classes AI, AII, C and D and discuss their corresponding anomaly inflow interpretation.

  12. Dark lump excitations in superfluid Fermi gases

    Science.gov (United States)

    Xu, Yan-Xia; Duan, Wen-Shan

    2012-11-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.

  13. Dark lump excitations in superfluid Fermi gases

    International Nuclear Information System (INIS)

    Xu Yan-Xia; Duan Wen-Shan

    2012-01-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity

  14. Quantum Monte Carlo simulations of the Fermi-polaron problem and bosons with Gaussian interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kroiss, Peter Michael

    2017-02-01

    This thesis deals with the application of current Quantum Monte Carlo algorithms to many-body systems of fermionic and bosonic species. The first part applies the diagrammatic Monte Carlo method to the Fermi polaron problem, a system of an impurity interacting resonantly with a homogeneous Fermi bath. It is numerically shown that the three particle-hole diagrams do not contribute significantly to the final answer in a quasi-two-dimensional setup, thus demonstrating a nearly perfect destructive interference of contributions in subspaces with higher-order particle-hole lines. Consequently, for strong-enough confinement in the third direction, the transition between the polaron and the molecule ground state is found to be in good agreement with the pure two-dimensional case and agrees very well with the one found by the wave-function approach in the two-particle-hole subspace. In three-dimensional Fermi-polaron systems with mass imbalance of impurity and bath atoms, polaron energy and quasiparticle residue can be accurately determined over a broad range of impurity masses. Furthermore, the spectral function of an imbalanced polaron demonstrates the stability of the quasiparticle and also allows us to locate the repulsive polaron as an excited state. The quantitative exactness of two-particle-hole wave functions is investigated, resulting in a relative lowering of polaronic energies in the mass-imbalance phase diagram. Tan's contact coefficient for the mass-balanced polaron system is found to be in good agreement with variational methods. Mass-imbalanced systems can be studied experimentally by ultracold atom mixtures such as {sup 6}Li-{sup 40}K. In the second part of the thesis, the ground state of a two-dimensional system of Bose particles of spin zero, interacting via a repulsive Gaussian-Core potential, is investigated by means of path integral Monte Carlo simulations. The quantum phase diagram is qualitatively identical to that of two-dimensional Yukawa

  15. Ultracold Mixtures of Rubidium and Ytterbium for Open Quantum System Engineering

    Science.gov (United States)

    2014-06-01

    species can be vanishing. 2.4.1 Miscibility Even at ultracold temperatures , our trapped gasses are very dilute. On the high side of achievable densities...essentially ideal. Therefore, any combination of isotopes will mix at high enough temperatures . Close to degeneracy, miscibility depends on the strength of...bakeout temperature is 200 ◦C, while the braze alloy melts at 305 ◦C. Custom dielectric AR coatings were designed and applied by Spectrum Thin Films

  16. Main effects of the Earth's rotation on the stationary states of ultra-cold neutrons

    International Nuclear Information System (INIS)

    Arminjon, Mayeul

    2008-01-01

    The relativistic corrections in the Hamiltonian for a particle in a uniformly rotating frame are discussed. They are shown to be negligible in the case of ultra-cold neutrons (UCN) in the Earth's gravity. The effect, on the energy levels of UCN, of the main term due to the Earth's rotation, i.e. the angular-momentum term, is calculated. The energy shift is found proportional to the energy level itself

  17. Surface roughness effect on ultracold neutron interaction with a wall and implications for computer simulations

    OpenAIRE

    Steyerl, A.; Malik, S. S.; Desai, A. M.; Kaufman, C.

    2009-01-01

    We review the diffuse scattering and the loss coefficient in ultracold neutron reflection from slightly rough surfaces, report a surprising reduction in loss coefficient due to roughness, and discuss the possibility of transition from quantum treatment to ray optics. The results are used in a computer simulation of neutron storage in a recent neutron lifetime experiment that re-ported a large discrepancy of neutron lifetime with the current particle data value. Our partial re-analysis suggest...

  18. The King model for electrons in a finite-size ultracold plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vrinceanu, D; Collins, L A [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Balaraman, G S [School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2008-10-24

    A self-consistent model for a finite-size non-neutral ultracold plasma is obtained by extending a conventional model of globular star clusters. This model describes the dynamics of electrons at quasi-equilibrium trapped within the potential created by a cloud of stationary ions. A random sample of electron positions and velocities can be generated with the statistical properties defined by this model.

  19. Looking for spectral changes occurring during storage of ultra-cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Steyerl, A; Malik, S S [Rhode Island Univ., Kingston, RI (United States); Geltenbort, P [Institut Max von Laue - Paul Langevin (ILL), 38 -Grenoble (France)

    1997-04-01

    It seems that the spectrum of ultra-cold neutrons does change. The measured data indicate with 5{sigma} reliability, that a small heating by about 2{center_dot}10{sup -10} eV ({approx} 2 mm of rise height against the earth`s gravity) occurred during the initial {approx} 10{sup 3} wall reflections, and no change thereafter. The reason of this effect is searched for. (author). 3 refs.

  20. Engineering an all-optical route to ultracold molecules in their vibronic ground state

    OpenAIRE

    Koch, Christiane P.; Moszynski, Robert

    2008-01-01

    We propose an improved photoassociation scheme to produce ultracold molecules in their vibronic ground state for the generic case where non-adiabatic effects facilitating transfer to deeply bound levels are absent. Formation of molecules is achieved by short laser pulses in a Raman-like pump-dump process where an additional near-infrared laser field couples the excited state to an auxiliary state. The coupling due to the additional field effectively changes the shape of the excited state pote...

  1. Pump-probe study of the formation of rubidium molecules by ultrafast photoassociation of ultracold atoms

    Science.gov (United States)

    McCabe, David J.; England, Duncan G.; Martay, Hugo E. L.; Friedman, Melissa E.; Petrovic, Jovana; Dimova, Emiliya; Chatel, Béatrice; Walmsley, Ian A.

    2009-09-01

    An experimental pump-probe study of the photoassociative creation of translationally ultracold rubidium molecules is presented together with numerical simulations of the process. The formation of loosely bound excited-state dimers is observed as a first step toward a fully coherent pump-dump approach to the stabilization of Rb2 into its lowest ground vibrational states. The population that contributes to the pump-probe process is characterized and found to be distinct from a background population of preassociated molecules.

  2. Making ultracold molecules in a two color pump-dump photoassociation scheme using chirped pulses

    OpenAIRE

    Koch, Christiane P.; Luc-Koenig, Eliane; Masnou-Seeuws, Françoise

    2005-01-01

    This theoretical paper investigates the formation of ground state molecules from ultracold cesium atoms in a two-color scheme. Following previous work on photoassociation with chirped picosecond pulses [Luc-Koenig et al., Phys. Rev. A {\\bf 70}, 033414 (2004)], we investigate stabilization by a second (dump) pulse. By appropriately choosing the dump pulse parameters and time delay with respect to the photoassociation pulse, we show that a large number of deeply bound molecules are created in t...

  3. Mean-field description of ultracold bosons on disordered two-dimensional optical lattices

    International Nuclear Information System (INIS)

    Buonsante, Pierfrancesco; Massel, Francesco; Penna, Vittorio; Vezzani, Alessandro

    2007-01-01

    In the present communication, we describe the properties induced by disorder on an ultracold gas of bosonic atoms loaded into a two-dimensional optical lattice with global confinement ensured by a parabolic potential. Our analysis is centred on the spatial distribution of the various phases, focusing particularly on the superfluid properties of the system as a function of external parameters and disorder amplitude. In particular, it is shown how disorder can suppress superfluidity, while partially preserving the system coherence. (fast track communication)

  4. Hofstadter's butterfly energy spectrum of ultracold fermions on the two-dimensional triangular optical lattice

    International Nuclear Information System (INIS)

    Hou Jingmin; Lu Qingqing

    2009-01-01

    We study the energy spectrum of ultracold fermionic atoms on the two-dimensional triangular optical lattice subjected to a perpendicular effective magnetic field, which can be realized with laser beams. We derive the generalized Harper's equations and numerically solve them, then we obtain the Hofstadter's butterfly-like energy spectrum, which has a novel fractal structure. The observability of the Hofstadter's butterfly spectrum is also discussed

  5. Pseudogap-generated a coexistence of Fermi arcs and Fermi pockets in cuprate superconductors

    Science.gov (United States)

    Zhao, Huaisong; Gao, Deheng; Feng, Shiping

    2017-03-01

    One of the most intriguing puzzle is why there is a coexistence of Fermi arcs and Fermi pockets in the pseudogap phase of cuprate superconductors? This puzzle is calling for an explanation. Based on the t - J model in the fermion-spin representation, the coexistence of the Fermi arcs and Fermi pockets in cuprate superconductors is studied by taking into account the pseudogap effect. It is shown that the pseudogap induces an energy band splitting, and then the poles of the electron Green's function at zero energy form two contours in momentum space, however, the electron spectral weight on these two contours around the antinodal region is gapped out by the pseudogap, leaving behind the low-energy electron spectral weight only located at the disconnected segments around the nodal region. In particular, the tips of these disconnected segments converge on the hot spots to form the closed Fermi pockets, generating a coexistence of the Fermi arcs and Fermi pockets. Moreover, the single-particle coherent weight is directly related to the pseudogap, and grows linearly with doping. The calculated result of the overall dispersion of the electron excitations is in qualitative agreement with the experimental data. The theory also predicts that the pseudogap-induced peak-dip-hump structure in the electron spectrum is absent from the hot-spot directions.

  6. The Fermi surface of CeSb

    International Nuclear Information System (INIS)

    Crabtree, G.W.; Aoki, H.; Joss, W.; Hulliger, F.

    1987-01-01

    This paper uses accurate Fermi surface measurements as a test of hybridization models in CeSb. Detailed measurements of the Fermi surface geometry and effective masses are presented which show a number of unusual properties associated with the magnetic structure and anisotropy. Measurements are compared with predictions of a band structure in which the f-electron is assumed to be local, interacting with the conduction electrons only through anisotropic Coulomb and exchange interactions. This model reproduces all the unusual features observed in the measurements and suggests that hybridization is not essential to describing the electronic properties of CeSb

  7. Supernova Remnants with Fermi Large Area Telescope

    Directory of Open Access Journals (Sweden)

    Caragiulo M.

    2017-01-01

    Full Text Available The Large Area Telescope (LAT, on-board the Fermi satellite, proved to be, after 8 years of data taking, an excellent instrument to detect and observe Supernova Remnants (SNRs in a range of energies running from few hundred MeV up to few hundred GeV. It provides essential information on physical processes that occur at the source, involving both accelerated leptons and hadrons, in order to understand the mechanisms responsible for the primary Cosmic Ray (CR acceleration. We show the latest results in the observation of Galactic SNRs by Fermi-LAT.

  8. Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime.

    Science.gov (United States)

    Schmid, T; Veit, C; Zuber, N; Löw, R; Pfau, T; Tarana, M; Tomza, M

    2018-04-13

    We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of ^{6}Li^{+}-^{6}Li and from the molecular ion fraction in the case of ^{7}Li^{+}-^{7}Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.

  9. Ground-state pressure of an ideal Fermi gas

    International Nuclear Information System (INIS)

    Delsante, A.E.; Frankel, N.E.

    1979-01-01

    A simple relationship between the pressure, internal energy and Fermi energy of an ideal ultra-degenerate Fermi gas is derived in two ways. The conditions for its validity and its use in simplifying calculations are discussed

  10. Large optical conductivity of Dirac semimetal Fermi arc surface states

    Science.gov (United States)

    Shi, Li-kun; Song, Justin C. W.

    2017-08-01

    Fermi arc surface states, a hallmark of topological Dirac semimetals, can host carriers that exhibit unusual dynamics distinct from that of their parent bulk. Here we find that Fermi arc carriers in intrinsic Dirac semimetals possess a strong and anisotropic light-matter interaction. This is characterized by a large Fermi arc optical conductivity when light is polarized transverse to the Fermi arc; when light is polarized along the Fermi arc, Fermi arc optical conductivity is significantly muted. The large surface spectral weight is locked to the wide separation between Dirac nodes and persists as a large Drude weight of Fermi arc carriers when the system is doped. As a result, large and anisotropic Fermi arc conductivity provides a novel means of optically interrogating the topological surfaces states of Dirac semimetals.

  11. Quasiparticle Lifetime in Ultracold Fermionic Mixtures with Density and Mass Imbalance

    DEFF Research Database (Denmark)

    Lan, Zhihao; Bruun, Georg; Lobo, Carlos

    2013-01-01

    We show that atomic Fermi mixtures with density and mass imbalance exhibit a rich diversity of scaling laws for the quasiparticle decay rate beyond the quadratic energy and temperature dependence of conventional Fermi liquids. For certain densities and mass ratios, the decay rate is linear, whereas...

  12. Quantum particle-number fluctuations in a two-component Bose gas in a double-well potential

    International Nuclear Information System (INIS)

    Zin, Pawel; Oles, Bartlomiej; Sacha, Krzysztof

    2011-01-01

    A two-component Bose gas in a double-well potential with repulsive interactions may undergo a phase separation transition if the interspecies interactions outweigh the intraspecies ones. We analyze the transition in the strong interaction limit within the two-mode approximation. Numbers of particles in each potential well are equal and constant. However, at the transition point, the ground state of the system reveals huge fluctuations of numbers of particles belonging to the different gas components; that is, the probability for observation of any mixture of particles in each potential well becomes uniform.

  13. Fluorescence lifetime selectivity in excitation-emission matrices for qualitative analysis of a two-component system

    International Nuclear Information System (INIS)

    Millican, D.W.; McGown, L.B.

    1989-01-01

    Steady-state fluorescence excitation-emission matrices (EEMs), and phase-resolved EEMs (PREEMs) collected at modulation frequencies of 6, 18, and 30 MHz, were used for qualitative analysis of mixtures of benzo[k]fluoranthene (τ = 8 ns) and benzo[b]fluoranthene (τ = 29 ns) in ethanol. The EEMs of the individual components were extracted from mixture EEMs by means of wavelength component vector-gram (WCV) analysis. Phase resolution was found to be superior to steady-state measurements for extraction of the component spectra, for mixtures in which the intensity contributions from the two components are unequal

  14. A new pair of hard-soft plastic combination for precision manufacturing of two component plastic parts

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Marhöfer, David Maximilian

    2011-01-01

    the pressure developed inside the socket house and finally could detect the leak of the fluid due to the sealing ring leakage. All the test procedures and results presented in this paper can be a valuable source of information for researchers and scientists who work with two component micro injection moulding....... sequential and simultaneous injection of two materials and afterwards by using a precision tensile testing machine. To characterize the sealing properties of the sealing ring material, a sealing test device was developed. It could provide hydraulic pressure inside the socket house and precisely detect...

  15. The Fermi GBM catalog (Paciesas+, 2012) [Dataset

    NARCIS (Netherlands)

    Paciesas, W.S.; Meegan, C.A.; von Kienlin, A.; Bhat, P.N.; Bissaldi, E.; Briggs, M.S.; Burgess, J.M.; Chaplin, V.; Connaughton, V.; Diehl, R.; Fishman, G.J.; Fitzpatrick, G.; Foley, S.; H. Gibby, M.; Giles, M.; Goldstein, A.; Greiner, J.; Gruber, D.; Guiriec, S.; van der Horst, A.J.; Kippen, R.M.; Kouveliotou, C.; Lichti, G.; Lin, L.; McBreen, S.; Preece, R.D.; Rau, A.; Tierney, D.; Wilson-Hodge, C.

    2012-01-01

    The Fermi Gamma-ray Space Telescope was launched on 2008 June 11 on a mission to study the universe at high energies. The onboard Gamma-ray Burst Monitor (GBM) trigger system for detecting GRBs was first enabled on 2008 July 12. In this paper, we provide a catalog of GRBs that triggered the GBM

  16. Modelling of Graphene Nanoribbon Fermi Energy

    International Nuclear Information System (INIS)

    Johari, Z.; Ahmadi, M.T.; Chek, D.C.Y.; Amin, N.A.; Ismail, R.

    2010-01-01

    Graphene nano ribbon (GNR) is a promising alternative to carbon nano tube (CNT) to overcome the chirality challenge as a nano scale device channel. Due to the one-dimensional behavior of plane GNR, the carrier statistic study is attractive. Research works have been done on carrier statistic study of GNR especially in the parabolic part of the band structure using Boltzmann approximation (nondegenerate regime). Based on the quantum confinement effect, we have improved the fundamental study in degenerate regime for both the parabolic and non parabolic parts of GNR band energy. Our results demonstrate that the band energy of GNR near to the minimum band energy is parabolic. In this part of the band structure, the Fermi-Dirac integrals are sufficient for the carrier concentration study. The Fermi energy showed the temperature-dependent behavior similar to any other one-dimensional device in nondegenerate regime. However in the degenerate regime, the normalized Fermi energy with respect to the band edge is a function of carrier concentration. The numerical solution of Fermi-Dirac integrals for non parabolic region, which is away from the minimum energy band structure of GNR, is also presented.

  17. Fermi Surface and Antiferromagnetism in Europium Metal

    DEFF Research Database (Denmark)

    Andersen, O. Krogh; Loucks, T. L.

    1968-01-01

    of the nearly cubical part of the hole surface at P, and we also discuss the effects of the electron surface at H. Since it is likely that barium and europium have similar Fermi surfaces, we have presented several extremal areas and the corresponding de Haas-van Alphen frequencies in the hope that experimental...

  18. Thomas-Fermi model of warm nuclei

    International Nuclear Information System (INIS)

    Buchler, J.R.; Epstein, R.I.

    1980-01-01

    The average nuclear level density of spherical nuclei is computed with a finite temperature Thomas-Fermi model. More than 80% of the low energy nuclear excitations can be accounted for in terms of this statistical model. The relevance for stellar collapse is discussed

  19. Vacuum alignment and radiatively induced Fermi scale

    DEFF Research Database (Denmark)

    Alanne, Tommi

    2017-01-01

    We extend the discussion about vacuum misalignment by quantum corrections in models with composite pseudo-Goldstone Higgs boson to renormalisable models with elementary scalars. As a concrete example, we propose a framework, where the hierarchy between the unification and the Fermi scale emerges ...

  20. Fermi: a physicist in the upheaval; Fermi: un physicien dans la tourmente

    Energy Technology Data Exchange (ETDEWEB)

    Maria, M. de

    2002-07-01

    This book summarizes the life, works and complex personality of the Italian physicist Enrico Fermi (1901-1954) whose myth is linked with the political upheaval of the 2. world war: the youth of an autodidact, the theorician and the quantum mechanics, his invention of a quantum statistics, the weak interaction theory, his works on artificial radioactivity, the end of the Fermi team and his exile in the USA, the secrete researches at the university of Columbia and the birth of the first atomic 'pile' (December 2, 1942), the building of Los Alamos center and the Alamogordo explosion test, the disagreements among the physicists of the Manhattan project and the position of Fermi, Fermi's contribution in the H-bomb construction, the creation of the physics school of Chicago, the Oppenheimer spying affair. (J.S.)