WorldWideScience

Sample records for two-component model consisting

  1. Two-component Abelian sandpile models.

    Science.gov (United States)

    Alcaraz, F C; Pyatov, P; Rittenberg, V

    2009-04-01

    In one-component Abelian sandpile models, the toppling probabilities are independent quantities. This is not the case in multicomponent models. The condition of associativity of the underlying Abelian algebras imposes nonlinear relations among the toppling probabilities. These relations are derived for the case of two-component quadratic Abelian algebras. We show that Abelian sandpile models with two conservation laws have only trivial avalanches.

  2. Two-component model of solar plages

    Institute of Scientific and Technical Information of China (English)

    LI; Jianping(李建平); DING; Mingde(丁明德); FANG; Cheng(方成)

    2002-01-01

    By use of the 2-m Mcmath-Pierce telescope at Kitt Peak, the high-quality spectra of a plage with moderate brightness near the center of solar disk were obtained. The data include seven spectral lines, which are Hα, Hβ, CaII H and K lines and the infrared triplet. With the consideration of fine structures of solar plages, a two-component atmospheric model is constructed by keeping the cool component to be the quiet atmosphere. Three cases of the hot component are given for different filling factors where the temperature and density distribution are adjusted in order to reproduce the seven observed spectral profiles. We also briefly discuss the influence of the column density at the base of the corona, m0, and the macro-turbulent velocity on the required filling factor and computed profiles. The two-component model is compared with precious one-component semi-empirical models. The limitation of the model is pointed out and further improvement is indicated.

  3. A polaritonic two-component Bose-Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, M J; Brandao, F G S L; Plenio, M B [Institute for Mathematical Sciences, Imperial College London, 53 Exhibition Road, SW7 2PE (United Kingdom)], E-mail: m.hartmann@imperial.ac.uk

    2008-03-15

    We demonstrate that polaritons in an array of interacting micro-cavities with strong atom-photon coupling can form a two-component Bose-Hubbard model in which both polariton species are protected against spontaneous emission as their atomic part is stored in two ground states of the atoms. The parameters of the effective model can be tuned via the driving strength of external lasers and include attractive and repulsive polariton interactions. We also describe a method to measure the number statistics in one cavity for each polariton species independently.

  4. A minimal model for two-component dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Esch, Sonja; Klasen, Michael; Yaguna, Carlos E. [Institut fuer theoretische Physik, Universitaet Muenster, Wilhelm-Klemm-Strasse 9,D-48149 Muenster (Germany)

    2015-07-01

    We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a Z{sub 2} symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatible with all present bounds and examine their direct detection prospects at planned experiments. A generic feature of this model is that both particles give rise to observable signals in 1-ton direct detection experiments. In fact, such experiments will be able to probe even a subdominant dark matter component at the percent level.

  5. A minimal model for two-component dark matter

    Science.gov (United States)

    Esch, Sonja; Klasen, Michael; Yaguna, Carlos E.

    2014-09-01

    We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a Z 2 symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatible with all present bounds and examine their direct detection prospects at planned experiments. A generic feature of this model is that both particles give rise to observable signals in 1-ton direct detection experiments. In fact, such experiments will be able to probe even a subdominant dark matter component at the percent level.

  6. A minimal model for two-component dark matter

    CERN Document Server

    Esch, Sonja; Yaguna, Carlos E

    2014-01-01

    We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a $Z_2$ symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatibl...

  7. Two-component model of the interaction of an interstellar cloud with surrounding hot plasma

    OpenAIRE

    Provornikova, E. A.; Izmodenov, V. V.; Lallement, R.

    2011-01-01

    We present a two-component gasdynamic model of an interstellar cloud embedded in a hot plasma. It is assumed that the cloud consists of atomic hydrogen gas, interstellar plasma is quasineutral. Hydrogen atoms and plasma protons interact through a charge exchange process. Magnetic felds and radiative processes are ignored in the model. The influence of heat conduction within plasma on the interaction between a cloud and plasma is studied. We consider the extreme case and assume that hot plasma...

  8. Transport of Solar Wind Fluctuations: A Two-Component Model

    Science.gov (United States)

    Oughton, S.; Matthaeus, W. H.; Smith, C. W.; Breech, B.; Isenberg, P. A.

    2011-01-01

    We present a new model for the transport of solar wind fluctuations which treats them as two interacting incompressible components: quasi-two-dimensional turbulence and a wave-like piece. Quantities solved for include the energy, cross helicity, and characteristic transverse length scale of each component, plus the proton temperature. The development of the model is outlined and numerical solutions are compared with spacecraft observations. Compared to previous single-component models, this new model incorporates a more physically realistic treatment of fluctuations induced by pickup ions and yields improved agreement with observed values of the correlation length, while maintaining good observational accord with the energy, cross helicity, and temperature.

  9. Modelling elliptical galaxies phase-space constraints on two-component (gamma1,gamma2) models

    CERN Document Server

    Ciotti, L

    1999-01-01

    In the context of the study of the properties of the mutual mass distribution of the bright and dark matter in elliptical galaxies, present a family of two-component, spherical, self-consistent galaxy models, where one density distribution follows a gamma_1 profile, and the other a gamma_2 profile [(gamma_1,gamma_2) models], with different total masses and ``core'' radii. A variable amount of Osipkov-Merritt (radial) orbital anisotropy is allowed in both components. For these models, I derive analytically the necessary and sufficient conditions that the model parameters must satisfy in order to correspond to a physical system. Moreover, the possibility of adding a black hole at the center of radially anisotropic gamma models is discussed, determining analytically a lower limit of the anisotropy radius as a function of gamma. The analytical phase-space distribution function for (1,0) models is presented, together with the solution of the Jeans equations and the quantities entering the scalar virial theorem. It...

  10. Two-component model of the interaction of an interstellar cloud with surrounding hot plasma

    CERN Document Server

    Provornikova, E A; Lallement, R

    2011-01-01

    We present a two-component gasdynamic model of an interstellar cloud embedded in a hot plasma. It is assumed that the cloud consists of atomic hydrogen gas, interstellar plasma is quasineutral. Hydrogen atoms and plasma protons interact through a charge exchange process. Magnetic felds and radiative processes are ignored in the model. The influence of heat conduction within plasma on the interaction between a cloud and plasma is studied. We consider the extreme case and assume that hot plasma electrons instantly heat the plasma in the interaction region and that plasma flow can be described as isothermal. Using the two-component model of the interaction of cold neutral cloud and hot plasma, we estimate the lifetime of interstellar clouds. We focus on the clouds typical for the cluster of local interstellar clouds embedded in the hot Local Bubble and give an estimate of the lifetime of the Local interstellar cloud where the Sun currently travels. The charge transfer between highly charged plasma ions and neutr...

  11. Travelling wave solutions for some two-component shallow water models

    Science.gov (United States)

    Dutykh, Denys; Ionescu-Kruse, Delia

    2016-07-01

    In the present study we perform a unified analysis of travelling wave solutions to three different two-component systems which appear in shallow water theory. Namely, we analyze the celebrated Green-Naghdi equations, the integrable two-component Camassa-Holm equations and a new two-component system of Green-Naghdi type. In particular, we are interested in solitary and cnoidal-type solutions, as two most important classes of travelling waves that we encounter in applications. We provide a complete phase-plane analysis of all possible travelling wave solutions which may arise in these models. In particular, we show the existence of new type of solutions.

  12. Modeling Thermal Dust Emission with Two Components: Application to the Planck High Frequency Instrument Maps

    Science.gov (United States)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2015-01-01

    We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz, and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales.

  13. Instabilities on crystal surfaces: The two-component body-centered solid-on-solid model

    NARCIS (Netherlands)

    Carlon, E.; van Beijeren, H.; Mazzeo, G.

    1996-01-01

    The free energy of crystal surfaces that can be described by the two-component body-centered solid-on-solid model has been calculated in a mean-field approximation. The system may model ionic crystals with a bcc lattice structure (for instance CsCl). Crossings between steps are energetically favored

  14. Domain Walls and Textured Vortices in a Two-Component Ginzburg-Landau Model

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Gaididei, Yu. B.; Christiansen, Peter Leth

    2005-01-01

    We look for domain wall and textured vortex solutions in a two-component Ginzburg-Landau model inspired by two-band superconductivity. The two-dimensional two-component model, with equal coherence lengths and no magnetic field, shows some interesting properties. In the absence of a Josephson type...... coupling between the two order parameters a ''textured vortex'' is found by analytical and numerical solution of the Ginzburg-Landau equations. With a Josephson type coupling between the two order parameters we find the system to split up in two domains separated by a domain wall, where the order parameter...

  15. Domain Walls and Textured Vortices in a Two-Component Ginzburg-Landau Model

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Gaididei, Yu. B.; Christiansen, Peter Leth

    2005-01-01

    We look for domain wall and textured vortex solutions in a two-component Ginzburg-Landau model inspired by two-band superconductivity. The two-dimensional two-component model, with equal coherence lengths and no magnetic field, shows some interesting properties. In the absence of a Josephson type...... coupling between the two order parameters a ''textured vortex'' is found by analytical and numerical solution of the Ginzburg-Landau equations. With a Josephson type coupling between the two order parameters we find the system to split up in two domains separated by a domain wall, where the order parameter...

  16. Freshwater DOM quantity and quality from a two-component model of UV absorbance

    Science.gov (United States)

    Carter, Heather T.; Tipping, Edward; Koprivnjak, Jean-Francois; Miller, Matthew P.; Cookson, Brenda; Hamilton-Taylor, John

    2012-01-01

    We present a model that considers UV-absorbing dissolved organic matter (DOM) to consist of two components (A and B), each with a distinct and constant spectrum. Component A absorbs UV light strongly, and is therefore presumed to possess aromatic chromophores and hydrophobic character, whereas B absorbs weakly and can be assumed hydrophilic. We parameterised the model with dissolved organic carbon concentrations [DOC] and corresponding UV spectra for c. 1700 filtered surface water samples from North America and the United Kingdom, by optimising extinction coefficients for A and B, together with a small constant concentration of non-absorbing DOM (0.80 mg DOC L-1). Good unbiased predictions of [DOC] from absorbance data at 270 and 350 nm were obtained (r2 = 0.98), the sum of squared residuals in [DOC] being reduced by 66% compared to a regression model fitted to absorbance at 270 nm alone. The parameterised model can use measured optical absorbance values at any pair of suitable wavelengths to calculate both [DOC] and the relative amounts of A and B in a water sample, i.e. measures of quantity and quality. Blind prediction of [DOC] was satisfactory for 9 of 11 independent data sets (181 of 213 individual samples).

  17. Modeling Thermal Dust Emission with Two Components: Application to the Planck HFI Maps

    CERN Document Server

    Meisner, Aaron

    2014-01-01

    We apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. This parametrization of the far-infrared dust spectrum as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody (MBB) dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We also derive full-sky 6.1' resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 micron data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.1' FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to...

  18. Chip Multithreaded Consistency Model

    Institute of Scientific and Technical Information of China (English)

    Zu-Song Li; Dan-Dan Huan; Wei-Wu Hu; Zhi-Min Tang

    2008-01-01

    Multithreaded technique is the developing trend of high performance processor. Memory consistency model is essential to the correctness, performance and complexity of multithreaded processor. The chip multithreaded consistency model adapting to multithreaded processor is proposed in this paper. The restriction imposed on memory event ordering by chip multithreaded consistency is presented and formalized. With the idea of critical cycle built by Wei-Wu Hu, we prove that the proposed chip multithreaded consistency model satisfies the criterion of correct execution of sequential consistency model. Chip multithreaded consistency model provides a way of achieving high performance compared with sequential consistency model and ensures the compatibility of software that the execution result in multithreaded processor is the same as the execution result in uniprocessor. The implementation strategy of chip multithreaded consistency model in Godson-2 SMT processor is also proposed. Godson-2 SMT processor supports chip multithreaded consistency model correctly by exception scheme based on the sequential memory access queue of each thread.

  19. Error Propagation in Equations for Geochemical Modeling of Radiogenic Isotopes in Two-Component Mixing

    Indian Academy of Sciences (India)

    Surendra P Verma

    2000-03-01

    This paper presents error propagation equations for modeling of radiogenic isotopes during mixing of two components or end-members. These equations can be used to estimate errors on an isotopic ratio in the mixture of two components, as a function of the analytical errors or the total errors of geological field sampling and analytical errors. Two typical cases (``Small errors'' and ``Large errors'') are illustrated for mixing of Sr isotopes. Similar examples can be formulated for the other radiogenic isotopic ratios. Actual isotopic data for sediment and basalt samples from the Cocos plate are also included to further illustrate the use of these equations. The isotopic compositions of the predicted mixtures can be used to constrain the origin of magmas in the central part of the Mexican Volcanic Belt. These examples show the need of high quality experimental data for them to be useful in geochemical modeling of magmatic processes.

  20. A two-component Frenkel-Kontorowa model for surface alloy formation

    CERN Document Server

    Daruka, I

    2003-01-01

    It has been shown by recent experiments that bulk immiscible metals (e.g. Ag/Cu, Ag/Co and Au/Ni) can form binary alloys on certain surfaces where the substrate mediates the elastic misfits between the two components, thus relieving the elastic strain in the overlayer. These novel surface alloys exhibit a rich phase structure. We formulate a two-component Frenkel-Kontorova model in one dimension to study surface alloy formation. This model can naturally incorporate dislocation formation that plays a crucial role in determining the actual structure of the system. Using energy minimization calculations we provide a phase diagram in terms of average alloy composition and the energy of mixing. Monte Carlo simulations were also performed to study the structure and interaction of the emerging dislocations.

  1. Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model

    DEFF Research Database (Denmark)

    Özen, C.; Zinner, Nikolaj Thomas

    2014-01-01

    of the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of a two......-component atomic fermi gas in a tight external trap can be mapped to the nuclear shell model so that readily available many-body techniques in nuclear physics, such as the Shell Model Monte Carlo (SMMC) method, can be directly applied to the study of these systems. We demonstrate an application of the SMMC method...

  2. Two-component model of strong Langmuir turbulence - Scalings, spectra, and statistics of Langmuir waves

    Science.gov (United States)

    Robinson, P. A.; Newman, D. L.

    1990-01-01

    A simple two-component model of strong turbulence that makes clear predictions for the scalings, spectra, and statistics of Langmuir waves is developed. Scalings of quantities such as energy density, power input, dissipation power wave collapse, and number density of collapsing objects are investigated in detail and found to agree well with model predictions. The nucleation model of wave-packet formation is strongly supported by the results. Nucleation proceeds with energy flowing from background to localized states even in the absence of a driver. Modulational instabilities play little or no role in maintaining the turbulent state when significant density nonuniformities are present.

  3. Consistent model driven architecture

    Science.gov (United States)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  4. Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model

    DEFF Research Database (Denmark)

    Özen, C.; Zinner, Nikolaj Thomas

    2014-01-01

    The physics of a two-component cold fermi gas is now frequently addressed in laboratories. Usually this is done for large samples of tens to hundreds of thousands of particles. However, it is now possible to produce few-body systems (1-100 particles) in very tight traps where the shell structure...... of the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of a two...

  5. Level shift two-components autoregressive conditional heteroscedasticity modelling for WTI crude oil market

    Science.gov (United States)

    Sin, Kuek Jia; Cheong, Chin Wen; Hooi, Tan Siow

    2017-04-01

    This study aims to investigate the crude oil volatility using a two components autoregressive conditional heteroscedasticity (ARCH) model with the inclusion of abrupt jump feature. The model is able to capture abrupt jumps, news impact, clustering volatility, long persistence volatility and heavy-tailed distributed error which are commonly observed in the crude oil time series. For the empirical study, we have selected the WTI crude oil index from year 2000 to 2016. The results found that by including the multiple-abrupt jumps in ARCH model, there are significant improvements of estimation evaluations as compared with the standard ARCH models. The outcomes of this study can provide useful information for risk management and portfolio analysis in the crude oil markets.

  6. Modeling and Simulation of Two-Phase Two-Component Flow with Disappearing Nonwetting Phase

    CERN Document Server

    Neumann, Rebecca; Ippisch, Olaf

    2012-01-01

    Carbon Capture and Storage (CCS) is a recently discussed new technology, aimed at allowing an ongoing use of fossil fuels while preventing the produced CO2 to be released to the atmosphere. CSS can be modeled with two components (water and CO2) in two phases (liquid and CO2). To simulate the process, a multiphase flow equation with equilibrium phase exchange is used. One of the big problems arising in two-phase two-component flow simulations is the disappearance of the nonwetting phase, which leads to a degeneration of the equations satisfied by the saturation. A standard choice of primary variables, which is the pressure of one phase and the saturation of the other phase, cannot be applied here. We developed a new approach using the pressure of the nonwetting phase and the capillary pressure as primary variables. One important advantage of this approach is the fact that we have only one set of primary variables that can be used for the biphasic as well as the monophasic case. We implemented this new choice o...

  7. Two-component mixture model: Application to palm oil and exchange rate

    Science.gov (United States)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad

    2014-12-01

    Palm oil is a seed crop which is widely adopt for food and non-food products such as cookie, vegetable oil, cosmetics, household products and others. Palm oil is majority growth in Malaysia and Indonesia. However, the demand for palm oil is getting growth and rapidly running out over the years. This phenomenal cause illegal logging of trees and destroy the natural habitat. Hence, the present paper investigates the relationship between exchange rate and palm oil price in Malaysia by using Maximum Likelihood Estimation via Newton-Raphson algorithm to fit a two components mixture model. Besides, this paper proposes a mixture of normal distribution to accommodate with asymmetry characteristics and platykurtic time series data.

  8. The two-component model of memory development, and its potential implications for educational settings.

    Science.gov (United States)

    Sander, Myriam C; Werkle-Bergner, Markus; Gerjets, Peter; Shing, Yee Lee; Lindenberger, Ulman

    2012-02-15

    We recently introduced a two-component model of the mechanisms underlying age differences in memory functioning across the lifespan. According to this model, memory performance is based on associative and strategic components. The associative component is relatively mature by middle childhood, whereas the strategic component shows a maturational lag and continues to develop until young adulthood. Focusing on work from our own lab, we review studies from the domains of episodic and working memory informed by this model, and discuss their potential implications for educational settings. The episodic memory studies uncover the latent potential of the associative component in childhood by documenting children's ability to greatly improve their memory performance following mnemonic instruction and training. The studies on working memory also point to an immature strategic component in children whose operation is enhanced under supportive conditions. Educational settings may aim at fostering the interplay between associative and strategic components. We explore possible routes towards this goal by linking our findings to recent trends in research on instructional design. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models

    Science.gov (United States)

    Hapuarachchige, Sudath; Kato, Yoshinori; Artemov, Dmitri

    2016-04-01

    The HER2 receptor is overexpressed in approximately 20% of breast cancers and is associated with tumorigenesis, metastasis, and a poor prognosis. Trastuzumab is a first-line targeted drug used against HER2(+) breast cancers; however, at least 50% of HER2(+) tumors develop resistance to trastuzumab. To treat these patients, trastuzumab-based antibody-drug conjugates (ACDs) have been developed and are currently used in the clinic. Despite their high efficacy, the long circulation half-life and non-specific binding of cytotoxic ADCs can result in systemic toxicity. In addition, standard ADCs do not provide an image-guided mode of administration. Here, we have developed a two-component, two-step, pre-targeting drug delivery system integrated with image guidance to circumvent these issues. In this strategy, HER2 receptors are pre-labeled with a functionalized trastuzumab antibody followed by the delivery of drug-loaded nanocarriers. Both components are cross-linked by multiple bioorthogonal click reactions in situ on the surface of the target cell and internalized as nanoclusters. We have explored the efficacy of this delivery strategy in HER2(+) human breast cancer models. Our therapeutic study confirms the high therapeutic efficacy of the new delivery system, with no significant toxicity.

  10. Large-scale Models Reveal the Two-component Mechanics of Striated Muscle

    Directory of Open Access Journals (Sweden)

    Robert Jarosch

    2008-12-01

    Full Text Available This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and α-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical “two-component model” of active muscle differentiated a “contractile component” which stretches the “series elastic component” during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit. Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation. Since each thin filament is anchored by four elastic α-actinin Z-filaments (provided with forceregulating sites for Ca2+ binding, the thin filament rotations change the torsional twist of the four Z-filaments as the “series elastic components”. Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments.

  11. High Energy Positrons and Gamma Radiation from Decaying Constituents of a two-component Dark Atom Model

    CERN Document Server

    Belotsky, K; Kouvaris, C; Laletin, M

    2015-01-01

    We study a two component dark matter candidate inspired by the Minimal Walking Technicolor model. Dark matter consists of a dominant SIMP-like dark atom component made of bound states between primordial helium nuclei and a doubly charged technilepton, and a small WIMP-like component made of another dark atom bound state between a doubly charged technibaryon and a technilepton. This scenario is consistent with direct search experimental findings because the dominant SIMP component interacts too strongly to reach the depths of current detectors with sufficient energy to recoil and the WIMP-like component is too small to cause significant amount of events. In this context a metastable technibaryon that decays to $e^+e^+$, $\\mu^+ \\mu^+$ and $\\tau^+ \\tau^+$ can in principle explain the observed positron excess by AMS-02 and PAMELA, while being consistent with the photon flux observed by FERMI/LAT. We scan the parameters of the model and we find the best possible fit to the latest experimental data. We find that th...

  12. Two-component density functional theory within the projector augmented-wave approach: Accurate and self-consistent computations of positron lifetimes and momentum distributions

    Science.gov (United States)

    Wiktor, Julia; Jomard, Gérald; Torrent, Marc

    2015-09-01

    Many techniques have been developed in the past in order to compute positron lifetimes in materials from first principles. However, there is still a lack of a fast and accurate self-consistent scheme that could handle accurately the forces acting on the ions induced by the presence of the positron. We will show in this paper that we have reached this goal by developing the two-component density functional theory within the projector augmented-wave (PAW) method in the open-source code abinit. This tool offers the accuracy of the all-electron methods with the computational efficiency of the plane-wave ones. We can thus deal with supercells that contain few hundreds to thousands of atoms to study point defects as well as more extended defects clusters. Moreover, using the PAW basis set allows us to use techniques able to, for instance, treat strongly correlated systems or spin-orbit coupling, which are necessary to study heavy elements, such as the actinides or their compounds.

  13. A two-component jet model based on the Blandford-Znajek and Blandford-Payne processes

    CERN Document Server

    Xie, Wei; Zou, Yuan-Chuan; Wang, Ding-Xiong; Wu, Qingwen; Wang, Jiu-Zhou

    2012-01-01

    We propose a two-component jet model consistent with the observations of several gamma ray bursts (GRBs) and active galactic nuclei (AGNs). The jet consists of inner and outer components, and they are supposed to be driven by the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes, respectively. The baryons in the BP jet is accelerated centrifugally via the magnetic field anchored in the accretion disk. The BZ jet is assumed to be entrained a fraction of accreting matter leaving the inner edge of the accretion disk, and the baryons are accelerated in the conversion from electromagnetic energy to the kinetic energy. By fitting the Lorentz factors of some GRBs (GRB 030329, GRB 051221A, GRB 080413B) and AGNs (Cen A, Mkn 501 and Mkn 421) with this model, we constrain the physical parameters related to the accretion and outflow of these two kind of objects. We conclude that the spine/sheath structure of the jet from these sources can be interpreted naturally by the BZ and BP processes.

  14. A two-component jet model based on the Blandford-Znajek and Blandford-Payne processes

    Science.gov (United States)

    Xie, Wei; Lei, Wei-Hua; Zou, Yuan-Chuan; Wang, Ding-Xiong; Wu, Qingwen; Wang, Jiu-Zhou

    2012-07-01

    We propose a two-component jet model consistent with the observations of several gamma ray bursts (GRBs) and active galactic nuclei (AGNs). The jet consists of inner and outer components, which are supposed to be driven by the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes, respectively. The baryons in the BP jet are accelerated centrifugally via the magnetic field anchored in the accretion disk. The BZ jet is assumed to be entrained in a fraction of accreting matter leaving the inner edge of the accretion disk, and the baryons are accelerated in the conversion from electromagnetic energy to kinetic energy. By fitting the Lorentz factors of some GRBs (GRB 030329, GRB 051221A and GRB 080413B) and AGNs (Cen A, Mkn 501 and Mkn 421) with this model, we constrain the physical parameters related to the accretion and outflow of these two kinds of objects. We conclude that the spine/sheath structure of the jet from these sources can be interpreted naturally by the BZ and BP processes.

  15. A two-component jet model based on the Blandford-Znajek and Blandford-Payne processes

    Institute of Scientific and Technical Information of China (English)

    Wei Xie; Wei-Hua Lei; Yuan-Chuan Zou; Ding-Xiong Wang; Qingwen Wu; Jiu-Zhou Wang

    2012-01-01

    We propose a two-component jet model consistent with the observations of several gamma ray bursts(GRBs)and active galactic nuclei(AGNs).The jet consists of inner and outer components,which are supposed to be driven by the BlandfordZnajek(BZ)and Blandford-Payne(BP)processes,respectively.The baryons in the BP jet are accelerated centrifugally via the magnetic field anchored in the accretion disk.The BZ jet is assumed to be entrained in a fraction of accreting matter leaving the inner edge of the accretion disk,and the baryons are accelerated in the conversion from electromagnetic energy to kinetic energy.By fitting the Lorentz factors of some GRBs(GRB 030329,GRB 051221A and GRB 080413B)and AGNs(Cen A,Mkn 501 and Mkn 421)with this model,we constrain the physical parameters related to the accretion and outflow of these two kinds of objects.We conclude that the spine/sheath structure of the jet from these sources can be interpreted naturally by the BZ and BP processes.

  16. Numerical modeling of sintering of two-component metal powders with laser beams

    Science.gov (United States)

    Niziev, V. G.; Koldoba, A. V.; Mirzade, F. Kh.; Panchenko, V. Ya.; Poveschenko, Yu. A.; Popov, M. V.

    2011-02-01

    Direct laser sintering of a mixture of two metal powders with significantly different melting points is investigated by numerical simulation. The model is based on self-consistent non-linear continuity equations for volume fractions of components and on energy transfer equations for the powder mixture. It includes the movement of the solid particles due to shrinkage because of the density change of the powder mixture and the liquid flow driven by the capillary and gravity forces. The liquid flow is determined by Darcy's law. The effect of surface settlement of the powder is obtained. The width increasing rate of the melting zone depend both on the parameters of the laser radiation (on the power of the beam) and on the physical parameters of the particle's material, and it increases with the increasing of the penetrability or the increasing of the phase-transition heat. The increasing of the laser power under other factors being equal results in the acceleration of the melting front propagation.

  17. Discrete kink dynamics in hydrogen-bonded chains: The two-component model

    DEFF Research Database (Denmark)

    Karpan, V.M.; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2004-01-01

    We study discrete topological solitary waves (kinks and antikinks) in two nonlinear diatomic chain models that describe the collective dynamics of proton transfers in one-dimensional hydrogen-bonded networks. The essential ingredients of the models are (i) a realistic (anharmonic) ion-proton inte......We study discrete topological solitary waves (kinks and antikinks) in two nonlinear diatomic chain models that describe the collective dynamics of proton transfers in one-dimensional hydrogen-bonded networks. The essential ingredients of the models are (i) a realistic (anharmonic) ion...... principal differences, like a significant difference in the stability switchings behavior for the kinks and the antikinks. Water-filled carbon nanotubes are briefly discussed as possible realistic systems, where topological discrete (anti)kink states might exist....

  18. Two Component Dark Matters in S_4 x Z_2 Flavor Symmetric Extra U(1) Model

    CERN Document Server

    Daikoku, Yasuhiro; Toma, Takashi

    2011-01-01

    We study cosmic-ray anomaly observed by PAMELA based on E_6 inspired extra U(1) model with S_4 x Z_2 flavor symmetry. In our model, the lightest flavon has very long lifetime of O(10^{18)) second which is longer than the age of the universe, but not long enough to explain the PAMELA result ~ O(10^{26}) sec. Such a situation could be avoidable by considering that the flavon is not the dominant component of dark matters and the dominant one is the lightest neutralino. With appropriate parameter set, density parameter of dark matter and over-abundance of positron flux in cosmic-ray are realized at the same time. There is interesting correlation between spectrum of positron flux and V_{MNS}. No excess of anti-proton in cosmic-ray suggests that sfermions are heavier than 4 TeV and the masses of the light Higgs bosons are degenerated.

  19. Two-Component Jet Models of Gamma-Ray Burst Sources

    CERN Document Server

    Peng, F; Granot, J; Peng, Fang; Konigl, Arieh; Granot, Jonathan

    2004-01-01

    Recent observational and theoretical studies have raised the possibility that the collimated outflows in gamma-ray burst (GRB) sources have two distinct components: a narrow (opening half-angle $\\theta_{\\rm n}$), highly relativistic (initial Lorentz factor $\\eta_\\rmn \\gtrsim 10^2$) outflow, from which the $\\gamma$-ray emission originates, and a wider ($\\theta_{\\rm w} \\lesssim 3 \\theta_{\\rm n}$), moderately relativistic ($\\eta_{\\rm w}\\sim 10$) surrounding flow. Using a simple synchrotron emission model, we calculate the R-band afterglow lightcurves expected in this scenario and derive algebraic expressions for the flux ratios of the emission from the two jet components at the main transition times in the lightcurve. We apply this model to GRB sources, for explaining the structure of afterglows and source energetics, as well as to X-ray flash sources, which we interpret as GRB jets viewed at an angle $\\theta_{\\rm obs} > \\theta_{\\rm n}$. Finally, we argue that a neutron-rich hydromagnetic outflow may naturally g...

  20. A two component model for thermal emission from organic grains in Comet Halley

    Science.gov (United States)

    Chyba, Christopher; Sagan, Carl

    1988-01-01

    Observations of Comet Halley in the near infrared reveal a triple-peaked emission feature near 3.4 micrometer, characteristic of C-H stretching in hydrocarbons. A variety of plausible cometary materials exhibit these features, including the organic residue of irradiated candidate cometary ices (such as the residue of irradiated methane ice clathrate, and polycyclic aromatic hydrocarbons. Indeed, any molecule containing -CH3 and -CH2 alkanes will emit at 3.4 micrometer under suitable conditions. Therefore tentative identifications must rest on additional evidence, including a plausible account of the origins of the organic material, a plausible model for the infrared emission of this material, and a demonstration that this conjunction of material and model not only matches the 3 to 4 micrometer spectrum, but also does not yield additional emission features where none is observed. In the case of the residue of irradiated low occupancy methane ice clathrate, it is argued that the lab synthesis of the organic residue well simulates the radiation processing experienced by Comet Halley.

  1. Three-body recombination of two-component cold atomic gases into deep dimers in an optical model

    DEFF Research Database (Denmark)

    Mikkelsen, Mathias; Jensen, A. S.; Fedorov, D. V.

    2015-01-01

    We consider three-body recombination into deep dimers in a mass-imbalanced two-component atomic gas. We use an optical model where a phenomenological imaginary potential is added to the lowest adiabatic hyper-spherical potential. The consequent imaginary part of the energy eigenvalue corresponds...... to the decay rate or recombination probability of the three-body system. The method is formulated in details and the relevant qualitative features are discussed as functions of scattering lengths and masses. We use zero-range model in analyses of recent recombination data. The dominating scattering length...

  2. Stochastic kinetic model of two component system signalling reveals all-or-none, graded and mixed mode stochastic switching responses.

    Science.gov (United States)

    Kierzek, Andrzej M; Zhou, Lu; Wanner, Barry L

    2010-03-01

    Two-component systems (TCSs) are prevalent signal transduction systems in bacteria that control innumerable adaptive responses to environmental cues and host-pathogen interactions. We constructed a detailed stochastic kinetic model of two component signalling based on published data. Our model has been validated with flow cytometry data and used to examine reporter gene expression in response to extracellular signal strength. The model shows that, depending on the actual kinetic parameters, TCSs exhibit all-or-none, graded or mixed mode responses. In accordance with other studies, positively autoregulated TCSs exhibit all-or-none responses. Unexpectedly, our model revealed that TCSs lacking a positive feedback loop exhibit not only graded but also mixed mode responses, in which variation of the signal strength alters the level of gene expression in induced cells while the regulated gene continues to be expressed at the basal level in a substantial fraction of cells. The graded response of the TCS changes to mixed mode response by an increase of the translation initiation rate of the histidine kinase. Thus, a TCS is an evolvable design pattern capable of implementing deterministic regulation and stochastic switches associated with both graded and threshold responses. This has implications for understanding the emergence of population diversity in pathogenic bacteria and the design of genetic circuits in synthetic biology applications. The model is available in systems biology markup language (SBML) and systems biology graphical notation (SBGN) formats and can be used as a component of large-scale biochemical reaction network models.

  3. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model

    Energy Technology Data Exchange (ETDEWEB)

    Butlitsky, M. A.; Zelener, B. V. [Joint Institute for High Temperature of Russian Academy of Science, 125412, Russia, Moscow, Izhorskaya str. 13/2 (Russian Federation); Zelener, B. B. [Joint Institute for High Temperature of Russian Academy of Science, 125412, Russia, Moscow, Izhorskaya str. 13/2 (Russian Federation); Moscow Engineering Physics Institute, 115409, Russia, Moscow, Kashirskoe sh. 31 (Russian Federation)

    2014-07-14

    A two-component plasma model, which we called a “shelf Coulomb” model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The “shelf Coulomb” model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ε parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ε and γ = βe{sup 2}n{sup 1/3} (where β = 1/k{sub B}T, n is the particle's density, k{sub B} is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ε and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ε{sub crit}≈13(T{sub crit}{sup *}≈0.076),γ{sub crit}≈1.8(v{sub crit}{sup *}≈0.17),P{sub crit}{sup *}≈0.39, where specific volume v* = 1/γ{sup 3} and reduced temperature T{sup *} = ε{sup −1}.

  4. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model.

    Science.gov (United States)

    Butlitsky, M A; Zelener, B B; Zelener, B V

    2014-07-14

    A two-component plasma model, which we called a "shelf Coulomb" model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The "shelf Coulomb" model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ɛ parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ɛ and γ = βe(2)n(1/3) (where β = 1/kBT, n is the particle's density, kB is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ɛ and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ɛ(crit) ≈ 13(T(*)(crit) ≈ 0.076), γ(crit) ≈ 1.8(v(*)(crit) ≈ 0.17), P(*)(crit) ≈ 0.39, where specific volume v* = 1/γ(3) and reduced temperature T(*) = ɛ(-1).

  5. Three-body recombination of two-component cold atomic gases into deep dimers in an optical model

    DEFF Research Database (Denmark)

    Mikkelsen, Mathias; Jensen, A. S.; Fedorov, D. V.

    2015-01-01

    . The Efimov scaling between recombination peaks is calculated and shown to depend on both scattering lengths. Recombination is predicted to be largest for heavy-heavy-light systems. Universal properties of the optical parameters are indicated. We compare to available experiments and find in general very......We consider three-body recombination into deep dimers in a mass-imbalanced two-component atomic gas. We use an optical model where a phenomenological imaginary potential is added to the lowest adiabatic hyper-spherical potential. The consequent imaginary part of the energy eigenvalue corresponds...... to the decay rate or recombination probability of the three-body system. The method is formulated in details and the relevant qualitative features are discussed as functions of scattering lengths and masses. We use zero-range model in analyses of recent recombination data. The dominating scattering length...

  6. Modelling diameter distributions of two-cohort forest stands with various proportions of dominant species: a two-component mixture model approach.

    Science.gov (United States)

    Podlaski, Rafał; Roesch, Francis A

    2014-03-01

    In recent years finite-mixture models have been employed to approximate and model empirical diameter at breast height (DBH) distributions. We used two-component mixtures of either the Weibull distribution or the gamma distribution for describing the DBH distributions of mixed-species, two-cohort forest stands, to analyse the relationships between the DBH components, age cohorts and dominant species, and to assess the significance of differences between the mixture distributions and the kernel density estimates. The data consisted of plots from the Świętokrzyski National Park (Central Poland) and areas close to and including the North Carolina section of the Great Smoky Mountains National Park (USA; southern Appalachians). The fit of the mixture Weibull model to empirical DBH distributions had a precision similar to that of the mixture gamma model, slightly less accurate estimate was obtained with the kernel density estimator. Generally, in the two-cohort, two-storied, multi-species stands in the southern Appalachians, the two-component DBH structure was associated with age cohort and dominant species. The 1st DBH component of the mixture model was associated with the 1st dominant species sp1 occurred in young age cohort (e.g., sweetgum, eastern hemlock); and to a lesser degree, the 2nd DBH component was associated with the 2nd dominant species sp2 occurred in old age cohort (e.g., loblolly pine, red maple). In two-cohort, partly multilayered, stands in the Świętokrzyski National Park, the DBH structure was usually associated with only age cohorts (two dominant species often occurred in both young and old age cohorts). When empirical DBH distributions representing stands of complex structure are approximated using mixture models, the convergence of the estimation process is often significantly dependent on the starting strategies. Depending on the number of DBHs measured, three methods for choosing the initial values are recommended: min.k/max.k, 0.5/1.5/mean

  7. Self-consistent triaxial models

    CERN Document Server

    Sanders, Jason L

    2015-01-01

    We present self-consistent triaxial stellar systems that have analytic distribution functions (DFs) expressed in terms of the actions. These provide triaxial density profiles with cores or cusps at the centre. They are the first self-consistent triaxial models with analytic DFs suitable for modelling giant ellipticals and dark haloes. Specifically, we study triaxial models that reproduce the Hernquist profile from Williams & Evans (2015), as well as flattened isochrones of the form proposed by Binney (2014). We explore the kinematics and orbital structure of these models in some detail. The models typically become more radially anisotropic on moving outwards, have velocity ellipsoids aligned in Cartesian coordinates in the centre and aligned in spherical polar coordinates in the outer parts. In projection, the ellipticity of the isophotes and the position angle of the major axis of our models generally changes with radius. So, a natural application is to elliptical galaxies that exhibit isophote twisting....

  8. Maladaptive correlates of the failure to forgive self and others: further evidence for a two-component model of forgiveness.

    Science.gov (United States)

    Ross, Scott R; Hertenstein, Matthew J; Wrobel, Thomas A

    2007-04-01

    In a sample composed of 162 young adults, we examined the generalizability of an orthogonal, 2-component model of forgiveness previously reported by Ross, Kendall, Matters, Rye, and Wrobel (2004). Furthermore, we examined the relationship of these two components with maladaptive personality characteristics as measured by the Schedule for Nonadaptive and Adaptive Personality (SNAP; Clark, 1993), with an emphasis on Five-factor model markers of personality. Using multiple measures of forgiveness, principal components analysis supported a 2-component model representing self-forgiveness and other forgiveness. Despite the independence of self-forgiveness and other forgiveness, zero order correlations with SNAP scales supported convergent more than discriminant validity. In contrast, hierarchical multiple regression analyses emphasized the discriminant validity of self-forgiveness and other forgiveness. Among indices of Neuroticism, Extraversion, and Agreeableness, Negative Temperament (+) was the sole predictor of self-forgiveness. In contrast, Positive Temperament (+), Aggression (-), and Histrionic PD (-) were most associated with other forgiveness. Overall, these findings support the validity of these factors and highlight the importance of self-forgiveness in clinical assessment.

  9. Modelling diameter distributions of two-cohort forest stands with various proportions of dominant species: a two-component mixture model approach.

    Science.gov (United States)

    Rafal Podlaski; Francis Roesch

    2014-01-01

    In recent years finite-mixture models have been employed to approximate and model empirical diameter at breast height (DBH) distributions. We used two-component mixtures of either the Weibull distribution or the gamma distribution for describing the DBH distributions of mixed-species, two-cohort forest stands, to analyse the relationships between the DBH components,...

  10. Modeling the monthly mean soil-water balance with a statistical-dynamical ecohydrology model as coupled to a two-component canopy model

    Directory of Open Access Journals (Sweden)

    J. P. Kochendorfer

    2010-10-01

    Full Text Available The statistical-dynamical annual water balance model of Eagleson (1978 is a pioneering work in the analysis of climate, soil and vegetation interactions. This paper describes several enhancements and modifications to the model that improve its physical realism at the expense of its mathematical elegance and analytical tractability. In particular, the analytical solutions for the root zone fluxes are re-derived using separate potential rates of transpiration and bare-soil evaporation. Those potential rates, along with the rate of evaporation from canopy interception, are calculated using the two-component Shuttleworth-Wallace (1985 canopy model. In addition, the soil column is divided into two layers, with the upper layer representing the dynamic root zone. The resulting ability to account for changes in root-zone water storage allows for implementation at the monthly timescale. This new version of the Eagleson model is coined the Statistical-Dynamical Ecohydrology Model (SDEM. The ability of the SDEM to capture the seasonal dynamics of the local-scale soil-water balance is demonstrated for two grassland sites in the US Great Plains. Sensitivity of the results to variations in peak green leaf area index (LAI suggests that the mean peak green LAI is determined by some minimum in root zone soil moisture during the growing season. That minimum appears to be close to the soil matric potential at which the dominant grass species begins to experience water stress and well above the wilting point, thereby suggesting an ecological optimality hypothesis in which the need to avoid water-stress-induced leaf abscission is balanced by the maximization of carbon assimilation (and associated transpiration. Finally, analysis of the sensitivity of model-determined peak green LAI to soil texture shows that the coupled model is able to reproduce the so-called "inverse texture effect", which consists of the observation that natural vegetation in dry climates tends

  11. Modeling the monthly mean soil-water balance with a statistical-dynamical ecohydrology model as coupled to a two-component canopy model

    Directory of Open Access Journals (Sweden)

    J. P. Kochendorfer

    2008-03-01

    Full Text Available The statistical-dynamical annual water balance model of Eagleson (1978 is a pioneering work in the analysis of climate, soil and vegetation interactions. This paper describes several enhancements and modifications to the model that improve its physical realism at the expense of its mathematical elegance and analytical tractability. In particular, the analytical solutions for the root zone fluxes are re-derived using separate potential rates of transpiration and bare-soil evaporation. Those potential rates, along with the rate of evaporation from canopy interception, are calculated using the two-component Shuttleworth-Wallace (1985 canopy model. In addition, the soil column is divided into two layers, with the upper layer representing the dynamic root zone. The resulting ability to account for changes in root-zone water storage allows for implementation at the monthly timescale. This new version of the Eagleson model is coined the Statistical-Dynamical Ecohydrology Model (SDEM. The ability of the SDEM to capture the seasonal dynamics of the local-scale soil-water balance is demonstrated for two grassland sites in the US Great Plains. Sensitivity of the results to variations in peak green Leaf Area Index (LAI suggests that the mean peak green LAI is determined by some minimum in root zone soil moisture during the growing season. That minimum appears to be close to the soil matric potential at which the dominant grass species begins to experience water stress and well above the wilting point, thereby suggesting an ecological optimality hypothesis in which the need to avoid water-stress-induced leaf abscission is balanced by the maximization of carbon assimilation (and associated transpiration. Finally, analysis of the sensitivity of model-determined peak green LAI to soil texture shows that the coupled model is able to reproduce the so-called "inverse texture effect", which consists of the observation that natural vegetation in dry climates tends

  12. Diagnostics for the structure of AGNs’broad line regions with reverberation mapping data:confirmation of the two-component broad line region model

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We re-examine the ten Reverberation Mapping(RM) sources with public data based on the two-component model of the Broad Line Region(BLR).In fitting their broad Hβ Mlines,six of them only need one Gaussian component,one of them has a double-peak profile,one has an irregular profile,and only two of them need two components,i.e.,a Very Broad Gaussian Component(VBGC) and an Inter-Mediate Gaussian Component(IMGC).The Gaussian components are assumed to come from two distinct regions in the two-component model;they are the Very Broad Line Region(VBLR) and the Inter-Mediate Line region(IMLR).The two sources with a two-component profile are Mrk 509 and NGC 4051.The time lags of the two components of both sources satisfy tIMLR/tVBLR=V 2VBLR/V 2IMLR,where tIMLR and tVBLR are the lags of the two components while VIMLR and VVBLR represent the mean gas velocities of the two regions,supporting the two-component model of the BLR of Active Galactic Nuclei(AGNs).The fact that most of these ten sources only have the VBGC confirms the assumption that RM mainly measures the radius of the VBLR;consequently,the radius obtained from the R-L relationship mainly represents the radius of VBLR.Moreover,NGC 4051,with a lag of about 5 days in the one component model,is an outlier on the R-L relationship as shown in Kaspi et al.(2005);however this problem disappears in our two-component model with lags of about 2 and 6 days for the VBGC and IMGC,respectively.

  13. Two-component multi-configurational second-order perturbation theory with Kramers restricted complete active space self-consistent field reference function and spin-orbit relativistic effective core potential

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Inkoo; Lee, Yoon Sup, E-mail: yslee@kaist.edu [Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of)

    2014-10-28

    We report the formulation and implementation of KRCASPT2, a two-component multi-configurational second-order perturbation theory based on Kramers restricted complete active space self-consistent field (KRCASSCF) reference function, in the framework of the spin-orbit relativistic effective core potential. The zeroth-order Hamiltonian is defined as the sum of nondiagonal one-electron operators with generalized two-component Fock matrix elements as scalar factors. The Kramers symmetry within the zeroth-order Hamiltonian is maintained via the use of a state-averaged density, allowing a consistent treatment of degenerate states. The explicit expressions are derived for the matrix elements of the zeroth-order Hamiltonian as well as for the perturbation vector. The use of a fully variational reference function and nondiagonal operators in relativistic multi-configurational perturbation theory is reported for the first time. A series of initial calculations are performed on the ionization potential and excitation energies of the atoms of the 6p-block; the results display a significant improvement over those from KRCASSCF, showing a closer agreement with experimental results. Accurate atomic properties of the superheavy elements of the 7p-block are also presented, and the electronic structures of the low-lying excited states are compared with those of their lighter homologues.

  14. Two-component multi-configurational second-order perturbation theory with Kramers restricted complete active space self-consistent field reference function and spin-orbit relativistic effective core potential.

    Science.gov (United States)

    Kim, Inkoo; Lee, Yoon Sup

    2014-10-28

    We report the formulation and implementation of KRCASPT2, a two-component multi-configurational second-order perturbation theory based on Kramers restricted complete active space self-consistent field (KRCASSCF) reference function, in the framework of the spin-orbit relativistic effective core potential. The zeroth-order Hamiltonian is defined as the sum of nondiagonal one-electron operators with generalized two-component Fock matrix elements as scalar factors. The Kramers symmetry within the zeroth-order Hamiltonian is maintained via the use of a state-averaged density, allowing a consistent treatment of degenerate states. The explicit expressions are derived for the matrix elements of the zeroth-order Hamiltonian as well as for the perturbation vector. The use of a fully variational reference function and nondiagonal operators in relativistic multi-configurational perturbation theory is reported for the first time. A series of initial calculations are performed on the ionization potential and excitation energies of the atoms of the 6p-block; the results display a significant improvement over those from KRCASSCF, showing a closer agreement with experimental results. Accurate atomic properties of the superheavy elements of the 7p-block are also presented, and the electronic structures of the low-lying excited states are compared with those of their lighter homologues.

  15. A generalized two-component model of solar wind turbulence and ab initio diffusion mean free paths and drift lengthscales of cosmic rays

    CERN Document Server

    Wiengarten, Tobias; Engelbrecht, Eugene; Fichtner, Horst; Kleimann, Jens; Scherer, Klaus

    2016-01-01

    We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic (MHD) equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations, by, for example, velocity shear and pickup ions, is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results from the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab i...

  16. The weathervane model, a functional and structural organization of the two-component alkanesulfonate oxidoreductase SsuD from Xanthomonas citri

    Energy Technology Data Exchange (ETDEWEB)

    Pegos, V.R. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Oliveira, P.S.L.; Balan, A. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil)

    2012-07-01

    Full text: In Xanthomonas citri, the phytopathogen responsible for the canker citrus disease, we identified in the ssuABCDE operon, genes encoding the alkanesulfonate ABC transporter as well as the two enzymes responsible for oxido reduction of the respective substrates. SsuD and SsuE proteins represent a two-component system that can be assigned to the group of FMNH{sub 2} -dependent monooxygenases. How- ever, despite of the biochemical information about SsuD and SsuE orthologs from Escherichia coli, there is no structural information of how the two proteins work together. In this work, we used ultracentrifugation, SAXS data and molecular modeling to construct a structural/functional model, which consists of eight molecules organized in a weathervane shape. Through this model, SsuD ligand-binding site for NADPH{sub 2} and FMN substrates is clearly exposed, in a way that might allow the protein-protein interactions with SsuE. Moreover, based on molecular dynamics simulations of SsuD in apo state, docked with NADPH{sub 2}, FMN or both substrates, we characterized the residues of the pocket, the mechanism of substrate interaction and transfer of electrons from NADPH{sub 2} to FMN. This is the first report that links functional and biochemical data with structural analyses. (author)

  17. A two-component model of host–parasitoid interactions: determination of the size of inundative releases of parasitoids in biological pest contro

    NARCIS (Netherlands)

    Grasman, J.; Herwaarden, van O.A.; Hemerik, L.; Lenteren, van J.C.

    2001-01-01

    A two-component differential equation model is formulated for a host–parasitoid interaction. Transient dynamics and population crashes of this system are analysed using differential inequalities. Two different cases can be distinguished: either the intrinsic growth rate of the host population is sma

  18. Consistent ranking of volatility models

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Lunde, Asger

    2006-01-01

    We show that the empirical ranking of volatility models can be inconsistent for the true ranking if the evaluation is based on a proxy for the population measure of volatility. For example, the substitution of a squared return for the conditional variance in the evaluation of ARCH-type models can...

  19. Consistent ranking of volatility models

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Lunde, Asger

    2006-01-01

    result in an inferior model being chosen as "best" with a probability that converges to one as the sample size increases. We document the practical relevance of this problem in an empirical application and by simulation experiments. Our results provide an additional argument for using the realized...... variance in out-of-sample evaluations rather than the squared return. We derive the theoretical results in a general framework that is not specific to the comparison of volatility models. Similar problems can arise in comparisons of forecasting models whenever the predicted variable is a latent variable.......We show that the empirical ranking of volatility models can be inconsistent for the true ranking if the evaluation is based on a proxy for the population measure of volatility. For example, the substitution of a squared return for the conditional variance in the evaluation of ARCH-type models can...

  20. A model system for pathogen detection using a two-component bacteriophage/bioluminescent signal amplification assay

    Science.gov (United States)

    Bright, Nathan G.; Carroll, Richard J.; Applegate, Bruce M.

    2004-03-01

    Microbial contamination has become a mounting concern the last decade due to an increased emphasis of minimally processed food products specifically produce, and the recognition of foodborne pathogens such as Campylobacter jejuni, Escherichia coli O157:H7, and Listeria monocytogenes. This research investigates a detection approach utilizing bacteriophage pathogen specificity coupled with a bacterial bioluminescent bioreporter utilizing the quorum sensing molecule from Vibrio fischeri, N-(3-oxohexanoyl)-homoserine lactone (3-oxo-C6-HSL). The 3-oxo-C6-HSL molecules diffuse out of the target cell after infection and induce bioluminescence from a population of 3-oxo-C6-HSL bioreporters (ROLux). E. coli phage M13, a well-characterized bacteriophage, offers a model system testing the use of bacteriophage for pathogen detection through cell-to-cell communication via a LuxR/3-oxo-C6-HSL system. Simulated temperate phage assays tested functionality of the ROLux reporter and production of 3-oxo-C6-HSL by various test strains. These assays showed detection limits of 102cfu after 24 hours in a varietry of detection formats. Assays incorporating the bacteriophage M13-luxI with the ROLux reporter and a known population of target cells were subsequently developed and have shown consistent detection limits of 105cfu target organisms. Measurable light response from high concentrations of target cells was almost immediate, suggesting an enrichment step to further improve detection limits and reduce assay time.

  1. Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: Implications for the volatile content of the Pacific upper mantle

    Science.gov (United States)

    Shimizu, Kei; Saal, Alberto E.; Myers, Corinne E.; Nagle, Ashley N.; Hauri, Erik H.; Forsyth, Donald W.; Kamenetsky, Vadim S.; Niu, Yaoling

    2016-03-01

    We report major, trace, and volatile element (CO2, H2O, F, Cl, S) contents and Sr, Nd, and Pb isotopes of mid-ocean ridge basalt (MORB) glasses from the Northern East Pacific Rise (NEPR) off-axis seamounts, the Quebrada-Discovery-GoFar (QDG) transform fault system, and the Macquarie Island. The incompatible trace element (ITE) contents of the samples range from highly depleted (DMORB, Th/La ⩽ 0.035) to enriched (EMORB, Th/La ⩾ 0.07), and the isotopic composition spans the entire range observed in EPR MORB. Our data suggest that at the time of melt generation, the source that generated the EMORB was essentially peridotitic, and that the composition of NMORB might not represent melting of a single upper mantle source (DMM), but rather mixing of melts from a two-component mantle (depleted and enriched DMM or D-DMM and E-DMM, respectively). After filtering the volatile element data for secondary processes (degassing, sulfide saturation, assimilation of seawater-derived component, and fractional crystallization), we use the volatiles to ITE ratios of our samples and a two-component mantle melting-mixing model to estimate the volatile content of the D-DMM (CO2 = 22 ppm, H2O = 59 ppm, F = 8 ppm, Cl = 0.4 ppm, and S = 100 ppm) and the E-DMM (CO2 = 990 ppm, H2O = 660 ppm, F = 31 ppm, Cl = 22 ppm, and S = 165 ppm). Our two-component mantle melting-mixing model reproduces the kernel density estimates (KDE) of Th/La and 143Nd/144Nd ratios for our samples and for EPR axial MORB compiled from the literature. This model suggests that: (1) 78% of the Pacific upper mantle is highly depleted (D-DMM) while 22% is enriched (E-DMM) in volatile and refractory ITE, (2) the melts produced during variable degrees of melting of the E-DMM controls most of the MORB geochemical variation, and (3) a fraction (∼65% to 80%) of the low degree EMORB melts (produced by ∼1.3% melting) may escape melt aggregation by freezing at the base of the oceanic lithosphere, significantly enriching it in

  2. A two-component dark matter model with real singlet scalars confronting GeV -ray excess from galactic centre and Fermi bubble

    Indian Academy of Sciences (India)

    Debasish Majumdar; Kamakshya Prasad Modak; Subhendu Rakshit

    2016-02-01

    We propose a two-component dark matter (DM) model, each component of which is a real singlet scalar, to explain results from both direct and indirect detection experiments. We put the constraints on the model parameters from theoretical bounds, PLANCK relic density results and direct DM experiments. The -ray flux is computed from DM annihilation in this framework and is then compared with the Fermi-LAT observations from galactic centre region and Fermi bubble.

  3. AN ENTROPIC ORDER QUANTITY MODEL WITH FUZZY HOLDING COST AND FUZZY DISPOSAL COST FOR PERISHABLE ITEMS UNDER TWO COMPONENT DEMAND AND DISCOUNTED SELLING PRICE

    Directory of Open Access Journals (Sweden)

    P.K. Tripathy

    2008-07-01

    Full Text Available A new type of replenishment policy is suggested in an entropy order quantity model for a perishable product possessing fuzzy holding cost and fuzzy disposal cost. This model represents an appropriate combination of two component demand with discounted selling price, particularly over a finite time horizon. Its main aim lies in the need for an entropic cost of the cycle time is a key feature of specific perishable product like fruits, vegetables, food stuffs, fishes etc. To handle this multiplicity of objectives in a pragmatic approach, entropic ordering quantity model with discounted selling price during pre and post deterioration of perishable items to optimize its payoff is proposed. It has been imperative to demonstrate this model by analysis, which reveals some important characteristics of discounted structure. Furthermore, numerical experiments are conducted to evaluate the difference between the crisp and fuzzy cases in EOQ and EnOQ separately. This paper explores the economy of investing in economics of lot sizing in Fuzzy EOQ, Crisp EOQ and Crisp EnOQ models. The proposed paper reveals itself as a pragmatic alternative to other approaches based on two component demand function with very sound theoretical underpinnings but with few possibilities of actually being put into practice. The results indicate that this can become a good model and can be replicated by researchers in neighbourhood of its possible extensions.

  4. Modeling and Testing Legacy Data Consistency Requirements

    DEFF Research Database (Denmark)

    Nytun, J. P.; Jensen, Christian Søndergaard

    2003-01-01

    An increasing number of data sources are available on the Internet, many of which offer semantically overlapping data, but based on different schemas, or models. While it is often of interest to integrate such data sources, the lack of consistency among them makes this integration difficult....... This paper addresses the need for new techniques that enable the modeling and consistency checking for legacy data sources. Specifically, the paper contributes to the development of a framework that enables consistency testing of data coming from different types of data sources. The vehicle is UML and its...... accompanying XMI. The paper presents techniques for modeling consistency requirements using OCL and other UML modeling elements: it studies how models that describe the required consistencies among instances of legacy models can be designed in standard UML tools that support XMI. The paper also considers...

  5. A Framework of Memory Consistency Models

    Institute of Scientific and Technical Information of China (English)

    胡伟武; 施巍松; 等

    1998-01-01

    Previous descriptions of memory consistency models in shared-memory multiprocessor systems are mainly expressed as constraints on the memory access event ordering and hence are hardware-centric.This paper presents a framework of memory consistency models which describes the memory consistency model on the behavior level.Based on the understanding that the behavior of an execution is determined by the execution order of conflicting accesses,a memory consistency model is defined as an interprocessor synchronization mechanism which orders the execution of operations from different processors.Synchronization order of an execution under certain consistency model is also defined.The synchronization order,together with the program order determines the behavior of an execution.This paper also presents criteria for correct program and correct implementation of consistency models.Regarding an implementation of a consistency model as certain memory event ordering constraints,this paper provides a method to prove the correctness of consistency model implementations,and the correctness of the lock-based cache coherence protocol is proved with this method.

  6. Replenishment policy for Entropic Order Quantity (EnOQ model with two component demand and partial back-logging under inflation

    Directory of Open Access Journals (Sweden)

    Bhanupriya Dash

    2017-09-01

    Full Text Available Background: Replenishment policy for entropic order quantity model with two component demand and partial backlogging under inflation is an important subject in the stock management. Methods: In this paper an inventory model for  non-instantaneous  deteriorating items with stock dependant consumption rate and partial back logged in addition the effect of inflection and time value of money on replacement policy with zero lead time consider was developed. Profit maximization model is formulated by considering the effects of partial backlogging under inflation with cash discounts. Further numerical example presented to evaluate the relative performance between the entropic order quantity and EOQ models separately. Numerical example is present to demonstrate the developed model and to illustrate the procedure. Lingo 13.0 version software used to derive optimal order quantity and total cost of inventory. Finally sensitivity analysis of the optimal solution with respect to different parameters of the system carried out. Results and conclusions: The obtained inventory model is very useful in retail business. This model can extend to total backorder.

  7. A self-consistent Maltsev pulse model

    Science.gov (United States)

    Buneman, O.

    1985-04-01

    A self-consistent model for an electron pulse propagating through a plasma is presented. In this model, the charge imbalance between plasma ions, plasma electrons and pulse electrons creates the travelling potential well in which the pulse electrons are trapped.

  8. Self-Consistent Asset Pricing Models

    CERN Document Server

    Malevergne, Y

    2006-01-01

    We discuss the foundations of factor or regression models in the light of the self-consistency condition that the market portfolio (and more generally the risk factors) is (are) constituted of the assets whose returns it is (they are) supposed to explain. As already reported in several articles, self-consistency implies correlations between the return disturbances. As a consequence, the alpha's and beta's of the factor model are unobservable. Self-consistency leads to renormalized beta's with zero effective alpha's, which are observable with standard OLS regressions. Analytical derivations and numerical simulations show that, for arbitrary choices of the proxy which are different from the true market portfolio, a modified linear regression holds with a non-zero value $\\alpha_i$ at the origin between an asset $i$'s return and the proxy's return. Self-consistency also introduces ``orthogonality'' and ``normality'' conditions linking the beta's, alpha's (as well as the residuals) and the weights of the proxy por...

  9. Numerical modeling of Non-isothermal two-phase two-component flow process with phase change phenomena in the porous media

    Science.gov (United States)

    Huang, Y.; Shao, H.; Thullner, M.; Kolditz, O.

    2014-12-01

    In applications of Deep Geothermal reservoirs, thermal recovery processes, and contaminated groundwater sites, the multiphase multicomponent flow and transport processes are often considered the most important underlying physical process. In particular, the behavior of phase appearance and disappearance is the critical to the performance of many geo-reservoirs, and great interests exit in the scientific community to simulate this coupled process. This work is devoted to the modeling and simulation of two-phase, two components flow and transport in the porous medium, whereas the phase change behavior in non-isothermal conditions is considered. In this work, we have implemented the algorithm developed by Marchand, et al., into the open source scientific software OpenGeoSys. The governing equation is formulated in terms of molar fraction of the light component and mean pressure as the persistent primary variables, which leads to a fully coupled nonlinear PDE system. One of the important advantages of this approach is avoiding the primary variables switching between single phase and two phase zones, so that this uniform system can be applied to describe the behavior of phase change. On the other hand, due to the number of unkown variables closure relationships are also formulated to close the whole equation system by using the approach of complementarity constrains. For the numerical technical scheme: The standard Galerkin Finite element method is applied for space discretization, while a fully implicit scheme for the time discretization, and Newton-Raphson method is utilized for the global linearization, as well as the closure relationship. This model is verified based on one test case developed to simulate the heat pipe problem. This benchmark involves two-phase two-component flow in saturated/unsaturated porous media under non-isothermal condition, including phase change and mineral-water geochemical reactive transport processes. The simulation results will be

  10. Entropy-based consistent model driven architecture

    Science.gov (United States)

    Niepostyn, Stanisław Jerzy

    2016-09-01

    A description of software architecture is a plan of the IT system construction, therefore any architecture gaps affect the overall success of an entire project. The definitions mostly describe software architecture as a set of views which are mutually unrelated, hence potentially inconsistent. Software architecture completeness is also often described in an ambiguous way. As a result most methods of IT systems building comprise many gaps and ambiguities, thus presenting obstacles for software building automation. In this article the consistency and completeness of software architecture are mathematically defined based on calculation of entropy of the architecture description. Following this approach, in this paper we also propose our method of automatic verification of consistency and completeness of the software architecture development method presented in our previous article as Consistent Model Driven Architecture (CMDA). The proposed FBS (Functionality-Behaviour-Structure) entropy-based metric applied in our CMDA approach enables IT architects to decide whether the modelling process is complete and consistent. With this metric, software architects could assess the readiness of undergoing modelling work for the start of IT system building. It even allows them to assess objectively whether the designed software architecture of the IT system could be implemented at all. The overall benefit of such an approach is that it facilitates the preparation of complete and consistent software architecture more effectively as well as it enables assessing and monitoring of the ongoing modelling development status. We demonstrate this with a few industry examples of IT system designs.

  11. Quasiparticle density of states of 2H-NbSe2 single crystals revealed by low-temperature specific heat measurements according to a two-component model

    Institute of Scientific and Technical Information of China (English)

    Yan Jing; Shan Lei; Wang Yue; Xiao Zhi-Li; Wen Hai-Hu

    2008-01-01

    Low-temperature specific heat in a dichalcogenide superconductor 2H-NbSe2 is measured in various magnetic fields. It is found that the specific heat can be described very well by a simple model concerning two components corresponding to vortex normal core and ambient superconducting region, separately. For calculating the specific heat outside the vortex core region, we use the Bardeen-Cooper-Schrieffer (BCS) formalism under the assumption of a narrow distribution of the superconducting gaps. The field-dependent vortex core size in the mixed state of 2H-NbSe2, determined by using this model, can explain the nonlinear field dependence of specific heat coefficient γ(H), which is in good agreement with the previous experimental results and more formal calculations. With the high-temperature specific heat data, we can find that, in the multi-band superconductor 2H-NbSe2, the recovered density of states (or Fermi surface) below Tc under a magnetic field seems not to be gapped again by the charge density wave (CDW) gap, which suggests that the superconducting gap and the CDW gap may open on different Fermi surface sheets.

  12. Self-consistent model of fermions

    CERN Document Server

    Yershov, V N

    2002-01-01

    We discuss a composite model of fermions based on three-flavoured preons. We show that the opposite character of the Coulomb and strong interactions between these preons lead to formation of complex structures reproducing three generations of quarks and leptons with all their quantum numbers and masses. The model is self-consistent (it doesn't use input parameters). Nevertheless, the masses of the generated structures match the experimental values.

  13. Consistent Stochastic Modelling of Meteocean Design Parameters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Sterndorff, M. J.

    2000-01-01

    Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...... velocity, and water level is presented. The stochastic model includes statistical uncertainty and dependency between the four stochastic variables. Further, a new stochastic model for annual maximum directional significant wave heights is presented. The model includes dependency between the maximum wave...... height from neighboring directional sectors. Numerical examples are presented where the models are calibrated using the Maximum Likelihood method to data from the central part of the North Sea. The calibration of the directional distributions is made such that the stochastic model for the omnidirectional...

  14. Developing consistent pronunciation models for phonemic variants

    CSIR Research Space (South Africa)

    Davel, M

    2006-09-01

    Full Text Available from a lexicon containing variants. In this paper we (the authors) address both these issues by creating ‘pseudo-phonemes’ associated with sets of ‘generation restriction rules’ to model those pronunciations that are consistently realised as two or more...

  15. Learning and evolution in bacterial taxis: an operational amplifier circuit modeling the computational dynamics of the prokaryotic 'two component system' protein network.

    Science.gov (United States)

    Di Paola, Vieri; Marijuán, Pedro C; Lahoz-Beltra, Rafael

    2004-01-01

    Adaptive behavior in unicellular organisms (i.e., bacteria) depends on highly organized networks of proteins governing purposefully the myriad of molecular processes occurring within the cellular system. For instance, bacteria are able to explore the environment within which they develop by utilizing the motility of their flagellar system as well as a sophisticated biochemical navigation system that samples the environmental conditions surrounding the cell, searching for nutrients or moving away from toxic substances or dangerous physical conditions. In this paper we discuss how proteins of the intervening signal transduction network could be modeled as artificial neurons, simulating the dynamical aspects of the bacterial taxis. The model is based on the assumption that, in some important aspects, proteins can be considered as processing elements or McCulloch-Pitts artificial neurons that transfer and process information from the bacterium's membrane surface to the flagellar motor. This simulation of bacterial taxis has been carried out on a hardware realization of a McCulloch-Pitts artificial neuron using an operational amplifier. Based on the behavior of the operational amplifier we produce a model of the interaction between CheY and FliM, elements of the prokaryotic two component system controlling chemotaxis, as well as a simulation of learning and evolution processes in bacterial taxis. On the one side, our simulation results indicate that, computationally, these protein 'switches' are similar to McCulloch-Pitts artificial neurons, suggesting a bridge between evolution and learning in dynamical systems at cellular and molecular levels and the evolutive hardware approach. On the other side, important protein 'tactilizing' properties are not tapped by the model, and this suggests further complexity steps to explore in the approach to biological molecular computing.

  16. Equation-free analysis of two-component system signalling model reveals the emergence of co-existing phenotypes in the absence of multistationarity.

    Directory of Open Access Journals (Sweden)

    Rebecca B Hoyle

    Full Text Available Phenotypic differences of genetically identical cells under the same environmental conditions have been attributed to the inherent stochasticity of biochemical processes. Various mechanisms have been suggested, including the existence of alternative steady states in regulatory networks that are reached by means of stochastic fluctuations, long transient excursions from a stable state to an unstable excited state, and the switching on and off of a reaction network according to the availability of a constituent chemical species. Here we analyse a detailed stochastic kinetic model of two-component system signalling in bacteria, and show that alternative phenotypes emerge in the absence of these features. We perform a bifurcation analysis of deterministic reaction rate equations derived from the model, and find that they cannot reproduce the whole range of qualitative responses to external signals demonstrated by direct stochastic simulations. In particular, the mixed mode, where stochastic switching and a graded response are seen simultaneously, is absent. However, probabilistic and equation-free analyses of the stochastic model that calculate stationary states for the mean of an ensemble of stochastic trajectories reveal that slow transcription of either response regulator or histidine kinase leads to the coexistence of an approximate basal solution and a graded response that combine to produce the mixed mode, thus establishing its essential stochastic nature. The same techniques also show that stochasticity results in the observation of an all-or-none bistable response over a much wider range of external signals than would be expected on deterministic grounds. Thus we demonstrate the application of numerical equation-free methods to a detailed biochemical reaction network model, and show that it can provide new insight into the role of stochasticity in the emergence of phenotypic diversity.

  17. Are there consistent models giving observable NSI ?

    CERN Document Server

    Martinez, Enrique Fernandez

    2013-01-01

    While the existing direct bounds on neutrino NSI are rather weak, order 10(−)(1) for propagation and 10(−)(2) for production and detection, the close connection between these interactions and new NSI affecting the better-constrained charged letpon sector through gauge invariance make these bounds hard to saturate in realistic models. Indeed, Standard Model extensions leading to neutrino NSI typically imply constraints at the 10(−)(3) level. The question of whether consistent models leading to observable neutrino NSI naturally arises and was discussed in a dedicated session at NUFACT 11. Here we summarize that discussion.

  18. On the characterization of dynamic supramolecular systems: a general mathematical association model for linear supramolecular copolymers and application on a complex two-component hydrogen-bonding system.

    Science.gov (United States)

    Odille, Fabrice G J; Jónsson, Stefán; Stjernqvist, Susann; Rydén, Tobias; Wärnmark, Kenneth

    2007-01-01

    A general mathematical model for the characterization of the dynamic (kinetically labile) association of supramolecular assemblies in solution is presented. It is an extension of the equal K (EK) model by the stringent use of linear algebra to allow for the simultaneous presence of an unlimited number of different units in the resulting assemblies. It allows for the analysis of highly complex dynamic equilibrium systems in solution, including both supramolecular homo- and copolymers without the recourse to extensive approximations, in a field in which other analytical methods are difficult. The derived mathematical methodology makes it possible to analyze dynamic systems such as supramolecular copolymers regarding for instance the degree of polymerization, the distribution of a given monomer in different copolymers as well as its position in an aggregate. It is to date the only general means to characterize weak supramolecular systems. The model was fitted to NMR dilution titration data by using the program Matlab, and a detailed algorithm for the optimization of the different parameters has been developed. The methodology is applied to a case study, a hydrogen-bonded supramolecular system, salen 4+porphyrin 5. The system is formally a two-component system but in reality a three-component system. This results in a complex dynamic system in which all monomers are associated to each other by hydrogen bonding with different association constants, resulting in homo- and copolymers 4n5m as well as cyclic structures 6 and 7, in addition to free 4 and 5. The system was analyzed by extensive NMR dilution titrations at variable temperatures. All chemical shifts observed at different temperatures were used in the fitting to obtain the DeltaH degrees and DeltaS degrees values producing the best global fit. From the derived general mathematical expressions, system 4+5 could be characterized with respect to above-mentioned parameters.

  19. Thermodynamically consistent model calibration in chemical kinetics

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2011-05-01

    Full Text Available Abstract Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new

  20. Consistent quadrupole-octupole collective model

    Science.gov (United States)

    Dobrowolski, A.; Mazurek, K.; Góźdź, A.

    2016-11-01

    Within this work we present a consistent approach to quadrupole-octupole collective vibrations coupled with the rotational motion. A realistic collective Hamiltonian with variable mass-parameter tensor and potential obtained through the macroscopic-microscopic Strutinsky-like method with particle-number-projected BCS (Bardeen-Cooper-Schrieffer) approach in full vibrational and rotational, nine-dimensional collective space is diagonalized in the basis of projected harmonic oscillator eigensolutions. This orthogonal basis of zero-, one-, two-, and three-phonon oscillator-like functions in vibrational part, coupled with the corresponding Wigner function is, in addition, symmetrized with respect to the so-called symmetrization group, appropriate to the collective space of the model. In the present model it is D4 group acting in the body-fixed frame. This symmetrization procedure is applied in order to provide the uniqueness of the Hamiltonian eigensolutions with respect to the laboratory coordinate system. The symmetrization is obtained using the projection onto the irreducible representation technique. The model generates the quadrupole ground-state spectrum as well as the lowest negative-parity spectrum in 156Gd nucleus. The interband and intraband B (E 1 ) and B (E 2 ) reduced transition probabilities are also calculated within those bands and compared with the recent experimental results for this nucleus. Such a collective approach is helpful in searching for the fingerprints of the possible high-rank symmetries (e.g., octahedral and tetrahedral) in nuclear collective bands.

  1. Consistent estimators in random censorship semiparametric models

    Institute of Scientific and Technical Information of China (English)

    王启华

    1996-01-01

    For the fixed design regression modelwhen Y, are randomly censored on the right, the estimators of unknown parameter and regression function g from censored observations are defined in the two cases .where the censored distribution is known and unknown, respectively. Moreover, the sufficient conditions under which these estimators are strongly consistent and pth (p>2) mean consistent are also established.

  2. Two component theory and electron magnetic moment

    NARCIS (Netherlands)

    Veltman, M.J.G.

    1998-01-01

    The two-component formulation of quantum electrodynamics is studied. The relation with the usual Dirac formulation is exhibited, and the Feynman rules for the two-component form of the theory are presented in terms of familiar objects. The transformation from the Dirac theory to the two-component th

  3. Two component theory and electron magnetic moment

    NARCIS (Netherlands)

    Veltman, M.J.G.

    1998-01-01

    The two-component formulation of quantum electrodynamics is studied. The relation with the usual Dirac formulation is exhibited, and the Feynman rules for the two-component form of the theory are presented in terms of familiar objects. The transformation from the Dirac theory to the two-component

  4. Pressure-Balance Consistency in Magnetospheric Modelling

    Institute of Scientific and Technical Information of China (English)

    肖永登; 陈出新

    2003-01-01

    There have been many magnetic field models for geophysical and astrophysical bodies.These theoretical or empirical models represent the reality very well in some cases,but in other cases they may be far from reality.We argue that these models will become more reasonable if they are modified by some coordinate transformations.In order to demonstrate the transformation,we use this method to resolve the "pressure-balance inconsistency"problem that occurs when plasma transports from the outer plasma sheet of the Earth into the inner plasma sheet.

  5. Two Component Signal Transduction in Desulfovibrio Species

    Energy Technology Data Exchange (ETDEWEB)

    Luning, Eric; Rajeev, Lara; Ray, Jayashree; Mukhopadhyay, Aindrila

    2010-05-17

    The environmentally relevant Desulfovibrio species are sulfate-reducing bacteria that are of interest in the bioremediation of heavy metal contaminated water. Among these, the genome of D. vulgaris Hildenborough encodes a large number of two component systems consisting of 72 putative response regulators (RR) and 64 putative histidinekinases (HK), the majority of which are uncharacterized. We classified the D. vulgaris Hildenborough RRs based on their output domains and compared the distribution of RRs in other sequenced Desulfovibrio species. We have successfully purified most RRs and several HKs as His-tagged proteins. We performed phospho-transfer experiments to verify relationships between cognate pairs of HK and RR, and we have also mapped a few non-cognate HK-RR pairs. Presented here are our discoveries from the Desulfovibrio RR categorization and results from the in vitro studies using purified His tagged D. vulgaris HKs and RRs.

  6. Feedback Control of Two-Component Regulatory Systems.

    Science.gov (United States)

    Groisman, Eduardo A

    2016-09-08

    Two-component systems are a dominant form of bacterial signal transduction. The prototypical two-component system consists of a sensor that responds to a specific input(s) by modifying the output of a cognate regulator. Because the output of a two-component system is the amount of phosphorylated regulator, feedback mechanisms may alter the amount of regulator, and/or modify the ability of a sensor or other proteins to alter the phosphorylation state of the regulator. Two-component systems may display intrinsic feedback whereby the amount of phosphorylated regulator changes under constant inducing conditions and without the participation of additional proteins. Feedback control allows a two-component system to achieve particular steady-state levels, to reach a given steady state with distinct dynamics, to express coregulated genes in a given order, and to activate a regulator to different extents, depending on the signal acting on the sensor.

  7. Consistent Partial Least Squares Path Modeling

    NARCIS (Netherlands)

    Dijkstra, Theo K.; Henseler, Jörg

    2015-01-01

    This paper resumes the discussion in information systems research on the use of partial least squares (PLS) path modeling and shows that the inconsistency of PLS path coefficient estimates in the case of reflective measurement can have adverse consequences for hypothesis testing. To remedy this, the

  8. Graphene Oxide: A One- versus Two-Component Material.

    Science.gov (United States)

    Naumov, Anton; Grote, Fabian; Overgaard, Marc; Roth, Alexandra; Halbig, Christian E; Nørgaard, Kasper; Guldi, Dirk M; Eigler, Siegfried

    2016-09-14

    The structure of graphene oxide (GO) is a matter of discussion. While established GO models are based on functional groups attached to the carbon framework, another frequently used model claims that GO consists of two components, a slightly oxidized graphene core and highly oxidized molecular species, oxidative debris (OD), adsorbed on it. Those adsorbents are claimed to be the origin for optical properties of GO. Here, we examine this model by preparing GO with a low degree of functionalization, combining it with OD and studying the optical properties of both components and their combination in an artificial two-component system. The analyses of absorption and emission spectra as well as lifetime measurements reveal that properties of the combined system are distinctly different from those of GO. That confirms structural models of GO as a separate oxygenated hexagonal carbon framework with optical properties governed by its internal structure rather than the presence of OD. Understanding the structure of GO allows further reliable interpretation of its optical and electronic properties and enables controlled processing of GO.

  9. Two-component Duality and Strings

    CERN Document Server

    Freund, Peter G O

    2007-01-01

    A phenomenologically successful two-component hadronic duality picture led to Veneziano's amplitude, the fundamental first step to string theory. This picture is briefly recalled and its two components are identified as the open strings (mesons and baryons) and closed strings (Pomeron).

  10. A two-component model for the electron distribution function in a high-current pseudospark or back-lighted thyratron

    Science.gov (United States)

    Bauer, Hannes R.; Kirkman, George; Gundersen, Martin A.

    1990-04-01

    Temperature, energy, and densities of two electron distribution function components, including an isotropic bulk part and an anisotropic beam, are analyzed for a hydrogen pseudospark and/or backlighted thyratron switch plasma with a peak electron density of 1-3 x 10 to the 15th/cu cm and peak current density of about 10 kA/sq cm. Estimates of a very small cathode-fall width during the conduction phase and high electric field strengths lead to the injection of an electron beam with energies of about 100 eV and density (1-10) x 10 to the 13th/cu cm into a Maxwellian bulk plasma. Collisional and radiative processes of monoenergetic beam electrons, bulk plasma electrons and ions, and atomic hydrogen are modeled by a set of rate equations, and line intensity ratios are compared with measurements. Under these high-current conditions, for an initial density nH2 = 10 to the 16th/cu cm and electron temperature of 0.8-1 eV, the estimated beam density is about (1-10) x 10 to the 13th/cu cm.

  11. A structural model of anti-anti-[sigma] inhibition by a two-component receiver domain: the PhyR stress response regulator

    Energy Technology Data Exchange (ETDEWEB)

    Herrou, Julien; Foreman, Robert; Fiebig, Aretha; Crosson, Sean (UC)

    2012-05-09

    PhyR is a hybrid stress regulator conserved in {alpha}-proteobacteria that contains an N-terminal {sigma}-like (SL) domain and a C-terminal receiver domain. Phosphorylation of the receiver domain is known to promote binding of the SL domain to an anti-{sigma} factor. PhyR thus functions as an anti-anti-{sigma} factor in its phosphorylated state. We present genetic evidence that Caulobacter crescentus PhyR is a phosphorylation-dependent stress regulator that functions in the same pathway as {sigma}{sup T} and its anti-{sigma} factor, NepR. Additionally, we report the X-ray crystal structure of PhyR at 1.25 {angstrom} resolution, which provides insight into the mechanism of anti-anti-{sigma} regulation. Direct intramolecular contact between the PhyR receiver and SL domains spans regions {sigma}{sub 2} and {sigma}{sub 4}, likely serving to stabilize the SL domain in a closed conformation. The molecular surface of the receiver domain contacting the SL domain is the structural equivalent of {alpha}4-{beta}5-{alpha}5, which is known to undergo dynamic conformational change upon phosphorylation in a diverse range of receiver proteins. We propose a structural model of PhyR regulation in which receiver phosphorylation destabilizes the intramolecular interaction between SL and receiver domains, thereby permitting regions {sigma}{sub 2} and {sigma}{sub 4} in the SL domain to open about a flexible connector loop and bind anti-{sigma} factor.

  12. A structural model of anti-anti-[sigma];#963; inhibition by a two-component receiver domain: the PhyR stress response regulator

    Energy Technology Data Exchange (ETDEWEB)

    Herrou, Julien; Foreman, Robert; Fiebig, Aretha; Crosson, Sean (UC)

    2012-03-30

    PhyR is a hybrid stress regulator conserved in {alpha}-proteobacteria that contains an N-terminal {sigma}-like (SL) domain and a C-terminal receiver domain. Phosphorylation of the receiver domain is known to promote binding of the SL domain to an anti-{sigma} factor. PhyR thus functions as an anti-anti-{sigma} factor in its phosphorylated state. We present genetic evidence that Caulobacter crescentus PhyR is a phosphorylation-dependent stress regulator that functions in the same pathway as {sigma}{sup T} and its anti-{sigma} factor, NepR. Additionally, we report the X-ray crystal structure of PhyR at 1.25 {angstrom} resolution, which provides insight into the mechanism of anti-anti-{sigma} regulation. Direct intramolecular contact between the PhyR receiver and SL domains spans regions {sigma}{sub 2} and {sigma}{sub 4}, likely serving to stabilize the SL domain in a closed conformation. The molecular surface of the receiver domain contacting the SL domain is the structural equivalent of {alpha}4-{beta}5-{alpha}5, which is known to undergo dynamic conformational change upon phosphorylation in a diverse range of receiver proteins. We propose a structural model of PhyR regulation in which receiver phosphorylation destabilizes the intramolecular interaction between SL and receiver domains, thereby permitting regions {sigma}{sub 2} and {sigma}{sub 4} in the SL domain to open about a flexible connector loop and bind anti-{sigma} factor.

  13. CONSISTENCY OF LS ESTIMATOR IN SIMPLE LINEAR EV REGRESSION MODELS

    Institute of Scientific and Technical Information of China (English)

    Liu Jixue; Chen Xiru

    2005-01-01

    Consistency of LS estimate of simple linear EV model is studied. It is shown that under some common assumptions of the model, both weak and strong consistency of the estimate are equivalent but it is not so for quadratic-mean consistency.

  14. Goal-Directed Aiming: Two Components but Multiple Processes

    Science.gov (United States)

    Elliott, Digby; Hansen, Steve; Grierson, Lawrence E. M.; Lyons, James; Bennett, Simon J.; Hayes, Spencer J.

    2010-01-01

    This article reviews the behavioral literature on the control of goal-directed aiming and presents a multiple-process model of limb control. The model builds on recent variants of Woodworth's (1899) two-component model of speed-accuracy relations in voluntary movement and incorporates ideas about dynamic online limb control based on prior…

  15. Inhibitors targeting two-component signal transduction.

    Science.gov (United States)

    Watanabe, Takafumi; Okada, Ario; Gotoh, Yasuhiro; Utsumi, Ryutaro

    2008-01-01

    A two-component signal transduction system (TCS) is an attractive target for antibacterial agents. In this chapter, we review the TCS inhibitors developed during the past decade and introduce novel drug discovery systems to isolate the inhibitors of the YycG/YycF system, an essential TCS for bacterial growth, in an effort to develop a new class of antibacterial agents.

  16. Logical consistency and sum-constrained linear models

    NARCIS (Netherlands)

    van Perlo -ten Kleij, Frederieke; Steerneman, A.G.M.; Koning, Ruud H.

    2006-01-01

    A topic that has received quite some attention in the seventies and eighties is logical consistency of sum-constrained linear models. Loosely defined, a sum-constrained model is logically consistent if the restrictions on the parameters and explanatory variables are such that the sum constraint is a

  17. The Self-Consistency Model of Subjective Confidence

    Science.gov (United States)

    Koriat, Asher

    2012-01-01

    How do people monitor the correctness of their answers? A self-consistency model is proposed for the process underlying confidence judgments and their accuracy. In answering a 2-alternative question, participants are assumed to retrieve a sample of representations of the question and base their confidence on the consistency with which the chosen…

  18. Model Checking Data Consistency for Cache Coherence Protocols

    Institute of Scientific and Technical Information of China (English)

    Hong Pan; Hui-Min Lin; Yi Lv

    2006-01-01

    A method for automatic verification of cache coherence protocols is presented, in which cache coherence protocols are modeled as concurrent value-passing processes, and control and data consistency requirement are described as formulas in first-orderμ-calculus. A model checker is employed to check if the protocol under investigation satisfies the required properties. Using this method a data consistency error has been revealed in a well-known cache coherence protocol.The error has been corrected, and the revised protocol has been shown free from data consistency error for any data domain size, by appealing to data independence technique.

  19. Standard Model Vacuum Stability and Weyl Consistency Conditions

    DEFF Research Database (Denmark)

    Antipin, Oleg; Gillioz, Marc; Krog, Jens;

    2013-01-01

    At high energy the standard model possesses conformal symmetry at the classical level. This is reflected at the quantum level by relations between the different beta functions of the model. These relations are known as the Weyl consistency conditions. We show that it is possible to satisfy them...... order by order in perturbation theory, provided that a suitable coupling constant counting scheme is used. As a direct phenomenological application, we study the stability of the standard model vacuum at high energies and compare with previous computations violating the Weyl consistency conditions....

  20. Quantum monadology: a consistent world model for consciousness and physics.

    Science.gov (United States)

    Nakagomi, Teruaki

    2003-04-01

    The NL world model presented in the previous paper is embodied by use of relativistic quantum mechanics, which reveals the significance of the reduction of quantum states and the relativity principle, and locates consciousness and the concept of flowing time consistently in physics. This model provides a consistent framework to solve apparent incompatibilities between consciousness (as our interior experience) and matter (as described by quantum mechanics and relativity theory). Does matter have an inside? What is the flowing time now? Does physics allow the indeterminism by volition? The problem of quantum measurement is also resolved in this model.

  1. Consistency and Reconciliation Model In Regional Development Planning

    Directory of Open Access Journals (Sweden)

    Dina Suryawati

    2016-10-01

    Full Text Available The aim of this study was to identify the problems and determine the conceptual model of regional development planning. Regional development planning is a systemic, complex and unstructured process. Therefore, this study used soft systems methodology to outline unstructured issues with a structured approach. The conceptual models that were successfully constructed in this study are a model of consistency and a model of reconciliation. Regional development planning is a process that is well-integrated with central planning and inter-regional planning documents. Integration and consistency of regional planning documents are very important in order to achieve the development goals that have been set. On the other hand, the process of development planning in the region involves technocratic system, that is, both top-down and bottom-up system of participation. Both must be balanced, do not overlap and do not dominate each other. regional, development, planning, consistency, reconciliation

  2. Model-Consistent Sparse Estimation through the Bootstrap

    CERN Document Server

    Bach, Francis

    2009-01-01

    We consider the least-square linear regression problem with regularization by the $\\ell^1$-norm, a problem usually referred to as the Lasso. In this paper, we first present a detailed asymptotic analysis of model consistency of the Lasso in low-dimensional settings. For various decays of the regularization parameter, we compute asymptotic equivalents of the probability of correct model selection. For a specific rate decay, we show that the Lasso selects all the variables that should enter the model with probability tending to one exponentially fast, while it selects all other variables with strictly positive probability. We show that this property implies that if we run the Lasso for several bootstrapped replications of a given sample, then intersecting the supports of the Lasso bootstrap estimates leads to consistent model selection. This novel variable selection procedure, referred to as the Bolasso, is extended to high-dimensional settings by a provably consistent two-step procedure.

  3. Consistency analysis of a nonbirefringent Lorentz-violating planar model

    CERN Document Server

    Casana, Rodolfo; Moreira, Roemir P M

    2011-01-01

    In this work analyze the physical consistency of a nonbirefringent Lorentz-violating planar model via the analysis of the pole structure of its Feynman's propagators. The nonbirefringent planar model, obtained from the dimensional reduction of the CPT-even gauge sector of the standard model extension, is composed of a gauge and a scalar fields, being affected by Lorentz-violating (LIV) coefficients encoded in the symmetric tensor $\\kappa_{\\mu\

  4. Multiscale Parameter Regionalization for consistent global water resources modelling

    Science.gov (United States)

    Wanders, Niko; Wood, Eric; Pan, Ming; Samaniego, Luis; Thober, Stephan; Kumar, Rohini; Sutanudjaja, Edwin; van Beek, Rens; Bierkens, Marc F. P.

    2017-04-01

    Due to an increasing demand for high- and hyper-resolution water resources information, it has become increasingly important to ensure consistency in model simulations across scales. This consistency can be ensured by scale independent parameterization of the land surface processes, even after calibration of the water resource model. Here, we use the Multiscale Parameter Regionalization technique (MPR, Samaniego et al. 2010, WRR) to allow for a novel, spatially consistent, scale independent parameterization of the global water resource model PCR-GLOBWB. The implementation of MPR in PCR-GLOBWB allows for calibration at coarse resolutions and subsequent parameter transfer to the hyper-resolution. In this study, the model was calibrated at 50 km resolution over Europe and validation carried out at resolutions of 50 km, 10 km and 1 km. MPR allows for a direct transfer of the calibrated transfer function parameters across scales and we find that we can maintain consistent land-atmosphere fluxes across scales. Here we focus on the 2003 European drought and show that the new parameterization allows for high-resolution calibrated simulations of water resources during the drought. For example, we find a reduction from 29% to 9.4% in the percentile difference in the annual evaporative flux across scales when compared against default simulations. Soil moisture errors are reduced from 25% to 6.9%, clearly indicating the benefits of the MPR implementation. This new parameterization allows us to show more spatial detail in water resources simulations that are consistent across scales and also allow validation of discharge for smaller catchments, even with calibrations at a coarse 50 km resolution. The implementation of MPR allows for novel high-resolution calibrated simulations of a global water resources model, providing calibrated high-resolution model simulations with transferred parameter sets from coarse resolutions. The applied methodology can be transferred to other

  5. Emergent Dynamics of a Thermodynamically Consistent Particle Model

    Science.gov (United States)

    Ha, Seung-Yeal; Ruggeri, Tommaso

    2017-03-01

    We present a thermodynamically consistent particle (TCP) model motivated by the theory of multi-temperature mixture of fluids in the case of spatially homogeneous processes. The proposed model incorporates the Cucker-Smale (C-S) type flocking model as its isothermal approximation. However, it is more complex than the C-S model, because the mutual interactions are not only " mechanical" but are also affected by the "temperature effect" as individual particles may exhibit distinct internal energies. We develop a framework for asymptotic weak and strong flocking in the context of the proposed model.

  6. Viscoelastic models with consistent hypoelasticity for fluids undergoing finite deformations

    Science.gov (United States)

    Altmeyer, Guillaume; Rouhaud, Emmanuelle; Panicaud, Benoit; Roos, Arjen; Kerner, Richard; Wang, Mingchuan

    2015-08-01

    Constitutive models of viscoelastic fluids are written with rate-form equations when considering finite deformations. Trying to extend the approach used to model these effects from an infinitesimal deformation to a finite transformation framework, one has to ensure that the tensors and their rates are indifferent with respect to the change of observer and to the superposition with rigid body motions. Frame-indifference problems can be solved with the use of an objective stress transport, but the choice of such an operator is not obvious and the use of certain transports usually leads to physically inconsistent formulation of hypoelasticity. The aim of this paper is to present a consistent formulation of hypoelasticity and to combine it with a viscosity model to construct a consistent viscoelastic model. In particular, the hypoelastic model is reversible.

  7. Two-Component Description for Relativistic Fermions

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-Qi; SANG Wen-Long; YANG Lan-Fei

    2009-01-01

    We propose a two-component form to describe massive relativistic fermions in gauge theories. Relations between the Green's functions in this form and those in the conventional four-component form are derived. It is shown that the S-matrix elements in both forms are exactly the same. The description of the fermion in the new form simplifies significantly the γ-matrix algebra in the four-component form. In particular, in perturbative calculations the propagator of the fermion is a scalar function. As examples, we use this form to reproduce the relativistic spectrum of hydrodron atom, the S-matrix of e+ e-→μ+ μ- and QED one-loop vacuum polarization of photon.

  8. Bolasso: model consistent Lasso estimation through the bootstrap

    CERN Document Server

    Bach, Francis

    2008-01-01

    We consider the least-square linear regression problem with regularization by the l1-norm, a problem usually referred to as the Lasso. In this paper, we present a detailed asymptotic analysis of model consistency of the Lasso. For various decays of the regularization parameter, we compute asymptotic equivalents of the probability of correct model selection (i.e., variable selection). For a specific rate decay, we show that the Lasso selects all the variables that should enter the model with probability tending to one exponentially fast, while it selects all other variables with strictly positive probability. We show that this property implies that if we run the Lasso for several bootstrapped replications of a given sample, then intersecting the supports of the Lasso bootstrap estimates leads to consistent model selection. This novel variable selection algorithm, referred to as the Bolasso, is compared favorably to other linear regression methods on synthetic data and datasets from the UCI machine learning rep...

  9. Detection and quantification of flow consistency in business process models

    DEFF Research Database (Denmark)

    Burattin, Andrea; Bernstein, Vered; Neurauter, Manuel

    2017-01-01

    Business process models abstract complex business processes by representing them as graphical models. Their layout, as determined by the modeler, may have an effect when these models are used. However, this effect is currently not fully understood. In order to systematically study this effect......, a basic set of measurable key visual features is proposed, depicting the layout properties that are meaningful to the human user. The aim of this research is thus twofold: first, to empirically identify key visual features of business process models which are perceived as meaningful to the user and second......, to show how such features can be quantified into computational metrics, which are applicable to business process models. We focus on one particular feature, consistency of flow direction, and show the challenges that arise when transforming it into a precise metric. We propose three different metrics...

  10. A consistent transported PDF model for treating differential molecular diffusion

    Science.gov (United States)

    Wang, Haifeng; Zhang, Pei

    2016-11-01

    Differential molecular diffusion is a fundamentally significant phenomenon in all multi-component turbulent reacting or non-reacting flows caused by the different rates of molecular diffusion of energy and species concentrations. In the transported probability density function (PDF) method, the differential molecular diffusion can be treated by using a mean drift model developed by McDermott and Pope. This model correctly accounts for the differential molecular diffusion in the scalar mean transport and yields a correct DNS limit of the scalar variance production. The model, however, misses the molecular diffusion term in the scalar variance transport equation, which yields an inconsistent prediction of the scalar variance in the transported PDF method. In this work, a new model is introduced to remedy this problem that can yield a consistent scalar variance prediction. The model formulation along with its numerical implementation is discussed, and the model validation is conducted in a turbulent mixing layer problem.

  11. Simplified Models for Dark Matter Face their Consistent Completions

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Dorival [Pittsburgh U.; Machado, Pedro N. [Madrid, IFT; No, Jose Miguel [Sussex U.

    2016-11-14

    Simplified dark matter models have been recently advocated as a powerful tool to exploit the complementarity between dark matter direct detection, indirect detection and LHC experimental probes. Focusing on pseudoscalar mediators between the dark and visible sectors, we show that the simplified dark matter model phenomenology departs significantly from that of consistent ${SU(2)_{\\mathrm{L}} \\times U(1)_{\\mathrm{Y}}}$ gauge invariant completions. We discuss the key physics simplified models fail to capture, and its impact on LHC searches. Notably, we show that resonant mono-Z searches provide competitive sensitivities to standard mono-jet analyses at $13$ TeV LHC.

  12. Simplified Models for Dark Matter Face their Consistent Completions

    CERN Document Server

    Goncalves, Dorival; No, Jose Miguel

    2016-01-01

    Simplified dark matter models have been recently advocated as a powerful tool to exploit the complementarity between dark matter direct detection, indirect detection and LHC experimental probes. Focusing on pseudoscalar mediators between the dark and visible sectors, we show that the simplified dark matter model phenomenology departs significantly from that of consistent ${SU(2)_{\\mathrm{L}} \\times U(1)_{\\mathrm{Y}}}$ gauge invariant completions. We discuss the key physics simplified models fail to capture, and its impact on LHC searches. Notably, we show that resonant mono-Z searches provide competitive sensitivities to standard mono-jet analyses at $13$ TeV LHC.

  13. Towards consistent nuclear models and comprehensive nuclear data evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Bouland, O [Los Alamos National Laboratory; Hale, G M [Los Alamos National Laboratory; Lynn, J E [Los Alamos National Laboratory; Talou, P [Los Alamos National Laboratory; Bernard, D [FRANCE; Litaize, O [FRANCE; Noguere, G [FRANCE; De Saint Jean, C [FRANCE; Serot, O [FRANCE

    2010-01-01

    The essence of this paper is to enlighten the consistency achieved nowadays in nuclear data and uncertainties assessments in terms of compound nucleus reaction theory from neutron separation energy to continuum. Making the continuity of theories used in resolved (R-matrix theory), unresolved resonance (average R-matrix theory) and continuum (optical model) rangcs by the generalization of the so-called SPRT method, consistent average parameters are extracted from observed measurements and associated covariances are therefore calculated over the whole energy range. This paper recalls, in particular, recent advances on fission cross section calculations and is willing to suggest some hints for future developments.

  14. Tobacco two-component gene NTHK2

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By using a previously isolated tobacco two- component gene NTHK1 as a probe, we screened a cDNA library and obtained a homologous gene designated NTHK2. Sequencing analysis revealed that NTHK2 encoded a putative ethylene receptor homolog and contained a histidine kinase domain and a receiver domain. In the histidine kinase domain, the histidine at the phosphorylation site was replaced by an asparagine. Southern analysis indicated that NTHK2 was present at low copies in tobacco genome. The expression of NTHK2 was studied using a competitive RT-PCR method. It was found that, in young flower buds, NTHK2 was expressed abundantly, while in other organs or tissues, it was expressed in a low level. When leaf was subjected to wounding (cutting) treatment, NTHK2 expression was increased. When tobacco seedlings were stressed with PEG and heat shock, NTHK2 transcription was also enhanced. Other treatments showed little effects. These results indicated that NTHK2 might be involved in the developmental processes and in plant responses to some environmental stresses.

  15. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Cont, Rama; Kokholm, Thomas

    options on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options......We propose and study a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index, allowing options on forward variance swaps and options on the underlying index to be priced consistently. Our model reproduces various empirically...... on S&P 500 across strikes and maturities as well as options on the VIX volatility index. The calibration of the model is done in two steps, first by matching VIX option prices and then by matching prices of options on the underlying....

  16. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Kokholm, Thomas

    on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options on S&P 500 across......We propose and study a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index, allowing options on forward variance swaps and options on the underlying index to be priced consistently. Our model reproduces various empirically...... strikes and maturities as well as options on the VIX volatility index. The calibration of the model is done in two steps, first by matching VIX option prices and then by matching prices of options on the underlying....

  17. Consistency Across Standards or Standards in a New Business Model

    Science.gov (United States)

    Russo, Dane M.

    2010-01-01

    Presentation topics include: standards in a changing business model, the new National Space Policy is driving change, a new paradigm for human spaceflight, consistency across standards, the purpose of standards, danger of over-prescriptive standards, a balance is needed (between prescriptive and general standards), enabling versus inhibiting, characteristics of success-oriented standards, characteristics of success-oriented standards, and conclusions. Additional slides include NASA Procedural Requirements 8705.2B identifies human rating standards and requirements, draft health and medical standards for human rating, what's been done, government oversight models, examples of consistency from anthropometry, examples of inconsistency from air quality and appendices of government and non-governmental human factors standards.

  18. A detailed self-consistent vertical Milky Way disc model

    Directory of Open Access Journals (Sweden)

    Gao S.

    2012-02-01

    Full Text Available We present a self-consistent vertical disc model of thin and thick disc in the solar vicinity. The model is optimized to fit the local kinematics of main sequence stars by varying the star formation history and the dynamical heating function. The star formation history and the dynamical heating function are not uniquely determined by the local kinematics alone. For four different pairs of input functions we calculate star count predictions at high galactic latitude as a function of colour. The comparison with North Galactic Pole data of SDSS/SEGUE leads to significant constraints of the local star formation history.

  19. Radio data and synchrotron emission in consistent cosmic ray models

    CERN Document Server

    Bringmann, Torsten; Lineros, Roberto A

    2011-01-01

    We consider the propagation of electrons in phenomenological two-zone diffusion models compatible with cosmic-ray nuclear data and compute the diffuse synchrotron emission resulting from their interaction with galactic magnetic fields. We find models in agreement not only with cosmic ray data but also with radio surveys at essentially all frequencies. Requiring such a globally consistent description strongly disfavors both a very large (L>15 kpc) and small (L<1 kpc) effective size of the diffusive halo. This has profound implications for, e.g., indirect dark matter searches.

  20. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Kokholm, Thomas

    We propose a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index. Our model reproduces various empirically observed properties of variance swap dynamics and enables volatility derivatives and options on the underlying index...... to be priced consistently, while allowing for jumps in volatility and returns. An affine specification using Lévy processes as building blocks leads to analytically tractable pricing formulas for volatility derivatives, such as VIX options, as well as efficient numerical methods for pricing of European options...

  1. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Cont, Rama; Kokholm, Thomas

    2013-01-01

    We propose a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index. Our model reproduces various empirically observed properties of variance swap dynamics and enables volatility derivatives and options on the underlying index...... to be priced consistently, while allowing for jumps in volatility and returns. An affine specification using Lévy processes as building blocks leads to analytically tractable pricing formulas for volatility derivatives, such as VIX options, as well as efficient numerical methods for pricing of European options...

  2. Self consistent modeling of accretion columns in accretion powered pulsars

    Science.gov (United States)

    Falkner, Sebastian; Schwarm, Fritz-Walter; Wolff, Michael Thomas; Becker, Peter A.; Wilms, Joern

    2016-04-01

    We combine three physical models to self-consistently derive the observed flux and pulse profiles of neutron stars' accretion columns. From the thermal and bulk Comptonization model by Becker & Wolff (2006) we obtain seed photon continua produced in the dense inner regions of the accretion column. In a thin outer layer these seed continua are imprinted with cyclotron resonant scattering features calculated using Monte Carlo simulations. The observed phase and energy dependent flux corresponding to these emission profiles is then calculated, taking relativistic light bending into account. We present simulated pulse profiles and the predicted dependency of the observable X-ray spectrum as a function of pulse phase.

  3. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Kokholm, Thomas

    We propose a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index. Our model reproduces various empirically observed properties of variance swap dynamics and enables volatility derivatives and options on the underlying index...... to be priced consistently, while allowing for jumps in volatility and returns. An affine specification using Lévy processes as building blocks leads to analytically tractable pricing formulas for volatility derivatives, such as VIX options, as well as efficient numerical methods for pricing of European options...

  4. A consistent collinear triad approximation for operational wave models

    Science.gov (United States)

    Salmon, J. E.; Smit, P. B.; Janssen, T. T.; Holthuijsen, L. H.

    2016-08-01

    In shallow water, the spectral evolution associated with energy transfers due to three-wave (or triad) interactions is important for the prediction of nearshore wave propagation and wave-driven dynamics. The numerical evaluation of these nonlinear interactions involves the evaluation of a weighted convolution integral in both frequency and directional space for each frequency-direction component in the wave field. For reasons of efficiency, operational wave models often rely on a so-called collinear approximation that assumes that energy is only exchanged between wave components travelling in the same direction (collinear propagation) to eliminate the directional convolution. In this work, we show that the collinear approximation as presently implemented in operational models is inconsistent. This causes energy transfers to become unbounded in the limit of unidirectional waves (narrow aperture), and results in the underestimation of energy transfers in short-crested wave conditions. We propose a modification to the collinear approximation to remove this inconsistency and to make it physically more realistic. Through comparison with laboratory observations and results from Monte Carlo simulations, we demonstrate that the proposed modified collinear model is consistent, remains bounded, smoothly converges to the unidirectional limit, and is numerically more robust. Our results show that the modifications proposed here result in a consistent collinear approximation, which remains bounded and can provide an efficient approximation to model nonlinear triad effects in operational wave models.

  5. Warped 5D Standard Model Consistent with EWPT

    CERN Document Server

    Cabrer, Joan A; Quiros, Mariano

    2011-01-01

    For a 5D Standard Model propagating in an AdS background with an IR localized Higgs, compatibility of bulk KK gauge modes with EWPT yields a phenomenologically unappealing KK spectrum (m > 12.5 TeV) and leads to a "little hierarchy problem". For a bulk Higgs the solution to the hierarchy problem reduces the previous bound only by sqrt(3). As a way out, models with an enhanced bulk gauge symmetry SU(2)_R x U(1)_(B-L) were proposed. In this note we describe a much simpler (5D Standard) Model, where introduction of an enlarged gauge symmetry is no longer required. It is based on a warped gravitational background which departs from AdS at the IR brane and a bulk propagating Higgs. The model is consistent with EWPT for a range of KK masses within the LHC reach.

  6. Consistent regularization and renormalization in models with inhomogeneous phases

    CERN Document Server

    Adhikari, Prabal

    2016-01-01

    In many models in condensed matter physics and high-energy physics, one finds inhomogeneous phases at high density and low temperature. These phases are characterized by a spatially dependent condensate or order parameter. A proper calculation requires that one takes the vacuum fluctuations of the model into account. These fluctuations are ultraviolet divergent and must be regularized. We discuss different consistent ways of regularizing and renormalizing quantum fluctuations, focusing on a symmetric energy cutoff scheme and dimensional regularization. We apply these techniques calculating the vacuum energy in the NJL model in 1+1 dimensions in the large-$N_c$ limit and the 3+1 dimensional quark-meson model in the mean-field approximation both for a one-dimensional chiral-density wave.

  7. Consistent regularization and renormalization in models with inhomogeneous phases

    Science.gov (United States)

    Adhikari, Prabal; Andersen, Jens O.

    2017-02-01

    In many models in condensed matter and high-energy physics, one finds inhomogeneous phases at high density and low temperature. These phases are characterized by a spatially dependent condensate or order parameter. A proper calculation requires that one takes the vacuum fluctuations of the model into account. These fluctuations are ultraviolet divergent and must be regularized. We discuss different ways of consistently regularizing and renormalizing quantum fluctuations, focusing on momentum cutoff, symmetric energy cutoff, and dimensional regularization. We apply these techniques calculating the vacuum energy in the Nambu-Jona-Lasinio model in 1 +1 dimensions in the large-Nc limit and in the 3 +1 dimensional quark-meson model in the mean-field approximation both for a one-dimensional chiral-density wave.

  8. Self-consistent triaxial de Zeeuw-Carollo Models

    CERN Document Server

    Thakur, Parijat; Das, Mousumi; Chakraborty, D K; Ann, H B

    2007-01-01

    We use the usual method of Schwarzschild to construct self-consistent solutions for the triaxial de Zeeuw & Carollo (1996) models with central density cusps. ZC96 models are triaxial generalisations of spherical $\\gamma$-models of Dehnen whose densities vary as $r^{-\\gamma}$ near the center and $r^{-4}$ at large radii and hence, possess a central density core for $\\gamma=0$ and cusps for $\\gamma > 0$. We consider four triaxial models from ZC96, two prolate triaxials: $(p, q) = (0.65, 0.60)$ with $\\gamma = 1.0$ and 1.5, and two oblate triaxials: $(p, q) = (0.95, 0.60)$ with $\\gamma = 1.0$ and 1.5. We compute 4500 orbits in each model for time periods of $10^{5} T_{D}$. We find that a large fraction of the orbits in each model are stochastic by means of their nonzero Liapunov exponents. The stochastic orbits in each model can sustain regular shapes for $\\sim 10^{3} T_{D}$ or longer, which suggests that they diffuse slowly through their allowed phase-space. Except for the oblate triaxial models with $\\gamma ...

  9. Are paleoclimate model ensembles consistent with the MARGO data synthesis?

    Directory of Open Access Journals (Sweden)

    J. C. Hargreaves

    2011-03-01

    Full Text Available We investigate the consistency of various ensembles of model simulations with the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO sea surface temperature data synthesis. We discover that while two multi-model ensembles, created through the Paleoclimate Model Intercomparison Projects (PMIP and PMIP2, pass our simple tests of reliability, an ensemble based on parameter variation in a single model does not perform so well. We show that accounting for observational uncertainty in the MARGO database is of prime importance for correctly evaluating the ensembles. Perhaps surprisingly, the inclusion of a coupled dynamical ocean (compared to the use of a slab ocean does not appear to cause a wider spread in the sea surface temperature anomalies, but rather causes systematic changes with more heat transported north in the Atlantic. There is weak evidence that the sea surface temperature data may be more consistent with meridional overturning in the North Atlantic being similar for the LGM and the present day, however, the small size of the PMIP2 ensemble prevents any statistically significant results from being obtained.

  10. Are paleoclimate model ensembles consistent with the MARGO data synthesis?

    Directory of Open Access Journals (Sweden)

    J. C. Hargreaves

    2011-08-01

    Full Text Available We investigate the consistency of various ensembles of climate model simulations with the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO sea surface temperature data synthesis. We discover that while two multi-model ensembles, created through the Paleoclimate Model Intercomparison Projects (PMIP and PMIP2, pass our simple tests of reliability, an ensemble based on parameter variation in a single model does not perform so well. We show that accounting for observational uncertainty in the MARGO database is of prime importance for correctly evaluating the ensembles. Perhaps surprisingly, the inclusion of a coupled dynamical ocean (compared to the use of a slab ocean does not appear to cause a wider spread in the sea surface temperature anomalies, but rather causes systematic changes with more heat transported north in the Atlantic. There is weak evidence that the sea surface temperature data may be more consistent with meridional overturning in the North Atlantic being similar for the LGM and the present day. However, the small size of the PMIP2 ensemble prevents any statistically significant results from being obtained.

  11. Consistency analysis of a nonbirefringent Lorentz-violating planar model

    Energy Technology Data Exchange (ETDEWEB)

    Casana, Rodolfo; Ferreira, Manoel M.; Moreira, Roemir P.M. [Universidade Federal do Maranhao (UFMA), Departamento de Fisica, Sao Luis, MA (Brazil)

    2012-07-15

    In this work analyze the physical consistency of a nonbirefringent Lorentz-violating planar model via the analysis of the pole structure of its Feynman propagators. The nonbirefringent planar model, obtained from the dimensional reduction of the CPT-even gauge sector of the standard model extension, is composed of a gauge and a scalar fields, being affected by Lorentz-violating (LIV) coefficients encoded in the symmetric tensor {kappa}{sub {mu}{nu}}. The propagator of the gauge field is explicitly evaluated and expressed in terms of linear independent symmetric tensors, presenting only one physical mode. The same holds for the scalar propagator. A consistency analysis is performed based on the poles of the propagators. The isotropic parity-even sector is stable, causal and unitary mode for 0{<=}{kappa}{sub 00}<1. On the other hand, the anisotropic sector is stable and unitary but in general noncausal. Finally, it is shown that this planar model interacting with a {lambda}{phi}{sup 4}-Higgs field supports compact-like vortex configurations. (orig.)

  12. Consistency analysis of a nonbirefringent Lorentz-violating planar model

    Science.gov (United States)

    Casana, Rodolfo; Ferreira, Manoel M.; Moreira, Roemir P. M.

    2012-07-01

    In this work analyze the physical consistency of a nonbirefringent Lorentz-violating planar model via the analysis of the pole structure of its Feynman propagators. The nonbirefringent planar model, obtained from the dimensional reduction of the CPT-even gauge sector of the standard model extension, is composed of a gauge and a scalar fields, being affected by Lorentz-violating (LIV) coefficients encoded in the symmetric tensor κ μν . The propagator of the gauge field is explicitly evaluated and expressed in terms of linear independent symmetric tensors, presenting only one physical mode. The same holds for the scalar propagator. A consistency analysis is performed based on the poles of the propagators. The isotropic parity-even sector is stable, causal and unitary mode for 0≤ κ 00<1. On the other hand, the anisotropic sector is stable and unitary but in general noncausal. Finally, it is shown that this planar model interacting with a λ| φ|4-Higgs field supports compactlike vortex configurations.

  13. Self-Consistent Modeling of Reionization in Cosmological Hydrodynamical Simulations

    CERN Document Server

    Oñorbe, Jose; Lukić, Zarija

    2016-01-01

    The ultraviolet background (UVB) emitted by quasars and galaxies governs the ionization and thermal state of the intergalactic medium (IGM), regulates the formation of high-redshift galaxies, and is thus a key quantity for modeling cosmic reionization. The vast majority of cosmological hydrodynamical simulations implement the UVB via a set of spatially uniform photoionization and photoheating rates derived from UVB synthesis models. We show that simulations using canonical UVB rates reionize, and perhaps more importantly, spuriously heat the IGM, much earlier z ~ 15 than they should. This problem arises because at z > 6, where observational constraints are non-existent, the UVB amplitude is far too high. We introduce a new methodology to remedy this issue, and generate self-consistent photoionization and photoheating rates to model any chosen reionization history. Following this approach, we run a suite of hydrodynamical simulations of different reionization scenarios, and explore the impact of the timing of ...

  14. Consistent Static Models of Local Thermospheric Composition Profiles

    CERN Document Server

    Picone, J M; Drob, D P

    2016-01-01

    The authors investigate the ideal, nondriven multifluid equations of motion to identify consistent (i.e., truly stationary), mechanically static models for composition profiles within the thermosphere. These physically faithful functions are necessary to define the parametric core of future empirical atmospheric models and climatologies. Based on the strength of interspecies coupling, the thermosphere has three altitude regions: (1) the lower thermosphere (herein z ~200 km), in which the species flows are approximately uncoupled; and (3) a transition region in between, where the effective species particle mass and the effective species vertical flow interpolate between the solutions for the upper and lower thermosphere. We place this view in the context of current terminology within the community, i.e., a fully mixed (lower) region and an upper region in diffusive equilibrium (DE). The latter condition, DE, currently used in empirical composition models, does not represent a truly static composition profile ...

  15. Thermodynamically consistent model of brittle oil shales under overpressure

    Science.gov (United States)

    Izvekov, Oleg

    2016-04-01

    The concept of dual porosity is a common way for simulation of oil shale production. In the frame of this concept the porous fractured media is considered as superposition of two permeable continua with mass exchange. As a rule the concept doesn't take into account such as the well-known phenomenon as slip along natural fractures, overpressure in low permeability matrix and so on. Overpressure can lead to development of secondary fractures in low permeability matrix in the process of drilling and pressure reduction during production. In this work a new thermodynamically consistent model which generalizes the model of dual porosity is proposed. Particularities of the model are as follows. The set of natural fractures is considered as permeable continuum. Damage mechanics is applied to simulation of secondary fractures development in low permeability matrix. Slip along natural fractures is simulated in the frame of plasticity theory with Drucker-Prager criterion.

  16. A minimal model of self-consistent partial synchrony

    Science.gov (United States)

    Clusella, Pau; Politi, Antonio; Rosenblum, Michael

    2016-09-01

    We show that self-consistent partial synchrony in globally coupled oscillatory ensembles is a general phenomenon. We analyze in detail appearance and stability properties of this state in possibly the simplest setup of a biharmonic Kuramoto-Daido phase model as well as demonstrate the effect in limit-cycle relaxational Rayleigh oscillators. Such a regime extends the notion of splay state from a uniform distribution of phases to an oscillating one. Suitable collective observables such as the Kuramoto order parameter allow detecting the presence of an inhomogeneous distribution. The characteristic and most peculiar property of self-consistent partial synchrony is the difference between the frequency of single units and that of the macroscopic field.

  17. Short Polymer Modeling using Self-Consistent Integral Equation Method

    Science.gov (United States)

    Kim, Yeongyoon; Park, So Jung; Kim, Jaeup

    2014-03-01

    Self-consistent field theory (SCFT) is an excellent mean field theoretical tool for predicting the morphologies of polymer based materials. In the standard SCFT, the polymer is modeled as a Gaussian chain which is suitable for a polymer of high molecular weight, but not necessarily for a polymer of low molecular weight. In order to overcome this limitation, Matsen and coworkers have recently developed SCFT of discrete polymer chains in which one polymer is modeled as finite number of beads joined by freely jointed bonds of fixed length. In their model, the diffusion equation of the canonical SCFT is replaced by an iterative integral equation, and the full spectral method is used for the production of the phase diagram of short block copolymers. In this study, for the finite length chain problem, we apply pseudospectral method which is the most efficient numerical scheme to solve the iterative integral equation. We use this new numerical method to investigate two different types of polymer bonds: spring-beads model and freely-jointed chain model. By comparing these results with those of the Gaussian chain model, the influences on the morphologies of diblock copolymer melts due to the chain length and the type of bonds are examined. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (no. 2012R1A1A2043633).

  18. Self consistent tight binding model for dissociable water

    Science.gov (United States)

    Lin, You; Wynveen, Aaron; Halley, J. W.; Curtiss, L. A.; Redfern, P. C.

    2012-05-01

    We report results of development of a self consistent tight binding model for water. The model explicitly describes the electrons of the liquid self consistently, allows dissociation of the water and permits fast direct dynamics molecular dynamics calculations of the fluid properties. It is parameterized by fitting to first principles calculations on water monomers, dimers, and trimers. We report calculated radial distribution functions of the bulk liquid, a phase diagram and structure of solvated protons within the model as well as ac conductivity of a system of 96 water molecules of which one is dissociated. Structural properties and the phase diagram are in good agreement with experiment and first principles calculations. The estimated DC conductivity of a computational sample containing a dissociated water molecule was an order of magnitude larger than that reported from experiment though the calculated ratio of proton to hydroxyl contributions to the conductivity is very close to the experimental value. The conductivity results suggest a Grotthuss-like mechanism for the proton component of the conductivity.

  19. Mean-field theory and self-consistent dynamo modeling

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Akira; Yokoi, Nobumitsu [Tokyo Univ. (Japan). Inst. of Industrial Science; Itoh, Sanae-I [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-12-01

    Mean-field theory of dynamo is discussed with emphasis on the statistical formulation of turbulence effects on the magnetohydrodynamic equations and the construction of a self-consistent dynamo model. The dynamo mechanism is sought in the combination of the turbulent residual-helicity and cross-helicity effects. On the basis of this mechanism, discussions are made on the generation of planetary magnetic fields such as geomagnetic field and sunspots and on the occurrence of flow by magnetic fields in planetary and fusion phenomena. (author)

  20. Consistency of the tachyon warm inflationary universe models

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Min; Zhu, Jian-Yang, E-mail: zhangxm@mail.bnu.edu.cn, E-mail: zhujy@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2014-02-01

    This study concerns the consistency of the tachyon warm inflationary models. A linear stability analysis is performed to find the slow-roll conditions, characterized by the potential slow-roll (PSR) parameters, for the existence of a tachyon warm inflationary attractor in the system. The PSR parameters in the tachyon warm inflationary models are redefined. Two cases, an exponential potential and an inverse power-law potential, are studied, when the dissipative coefficient Γ = Γ{sub 0} and Γ = Γ(φ), respectively. A crucial condition is obtained for a tachyon warm inflationary model characterized by the Hubble slow-roll (HSR) parameter ε{sub H}, and the condition is extendable to some other inflationary models as well. A proper number of e-folds is obtained in both cases of the tachyon warm inflation, in contrast to existing works. It is also found that a constant dissipative coefficient (Γ = Γ{sub 0}) is usually not a suitable assumption for a warm inflationary model.

  1. Decelerating relativistc two-component jets

    NARCIS (Netherlands)

    Meliani, Z.; Keppens, R.

    2009-01-01

    Transverse stratification is a common intrinsic feature of astrophysical jets. There is growing evidence that jets in radio galaxies consist of a fast low-density outflow at the jet axis, surrounded by a slower, denser, extended jet. The inner and outer jet components then have a different origin

  2. Decelerating relativistic two-component jets

    NARCIS (Netherlands)

    Meliani, Z.; Keppens, R.

    2009-01-01

    Transverse stratification is a common intrinsic feature of astrophysical jets. There is growing evidence that jets in radio galaxies consist of a fast low-density outflow at the jet axis, surrounded by a slower, denser, extended jet. The inner and outer jet components then have a different origin

  3. Decelerating relativistic two-component jets

    NARCIS (Netherlands)

    Meliani, Z.; Keppens, R.

    2009-01-01

    Transverse stratification is a common intrinsic feature of astrophysical jets. There is growing evidence that jets in radio galaxies consist of a fast low-density outflow at the jet axis, surrounded by a slower, denser, extended jet. The inner and outer jet components then have a different origin an

  4. Decelerating relativistc two-component jets

    NARCIS (Netherlands)

    Meliani, Z.; Keppens, R.

    2009-01-01

    Transverse stratification is a common intrinsic feature of astrophysical jets. There is growing evidence that jets in radio galaxies consist of a fast low-density outflow at the jet axis, surrounded by a slower, denser, extended jet. The inner and outer jet components then have a different origin an

  5. A self-consistent spin-diffusion model for micromagnetics

    KAUST Repository

    Abert, Claas

    2016-12-17

    We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.

  6. Classical and Quantum Consistency of the DGP Model

    CERN Document Server

    Nicolis, A; Nicolis, Alberto; Rattazzi, Riccardo

    2004-01-01

    We study the Dvali-Gabadadze-Porrati model by the method of the boundary effective action. The truncation of this action to the bending mode \\pi consistently describes physics in a wide range of regimes both at the classical and at the quantum level. The Vainshtein effect, which restores agreement with precise tests of general relativity, follows straightforwardly. We give a simple and general proof of stability, i.e. absence of ghosts in the fluctuations, valid for most of the relevant cases, like for instance the spherical source in asymptotically flat space. However we confirm that around certain interesting self-accelerating cosmological solutions there is a ghost. We consider the issue of quantum corrections. Around flat space \\pi becomes strongly coupled below a macroscopic length of 1000 km, thus impairing the predictivity of the model. Indeed the tower of higher dimensional operators which is expected by a generic UV completion of the model limits predictivity at even larger length scales. We outline ...

  7. Consistent constraints on the Standard Model Effective Field Theory

    CERN Document Server

    Berthier, Laure

    2015-01-01

    We develop the global constraint picture in the (linear) effective field theory generalisation of the Standard Model, incorporating data from detectors that operated at PEP, PETRA, TRISTAN, SpS, Tevatron, SLAC, LEPI and LEP II, as well as low energy precision data. We fit one hundred observables. We develop a theory error metric for this effective field theory, which is required when constraints on parameters at leading order in the power counting are to be pushed to the percent level, or beyond, unless the cut off scale is assumed to be large, $\\Lambda \\gtrsim \\, 3 \\, {\\rm TeV}$. We more consistently incorporate theoretical errors in this work, avoiding this assumption, and as a direct consequence bounds on some leading parameters are relaxed. We show how an $\\rm S,T$ analysis is modified by the theory errors we include as an illustrative example.

  8. Creation of Consistent Burn Wounds: A Rat Model

    Directory of Open Access Journals (Sweden)

    Elijah Zhengyang Cai

    2014-07-01

    Full Text Available Background Burn infliction techniques are poorly described in rat models. An accurate study can only be achieved with wounds that are uniform in size and depth. We describe a simple reproducible method for creating consistent burn wounds in rats. Methods Ten male Sprague-Dawley rats were anesthetized and dorsum shaved. A 100 g cylindrical stainless-steel rod (1 cm diameter was heated to 100℃ in boiling water. Temperature was monitored using a thermocouple. We performed two consecutive toe-pinch tests on different limbs to assess the depth of sedation. Burn infliction was limited to the loin. The skin was pulled upwards, away from the underlying viscera, creating a flat surface. The rod rested on its own weight for 5, 10, and 20 seconds at three different sites on each rat. Wounds were evaluated for size, morphology and depth. Results Average wound size was 0.9957 cm2 (standard deviation [SD] 0.1845 (n=30. Wounds created with duration of 5 seconds were pale, with an indistinct margin of erythema. Wounds of 10 and 20 seconds were well-defined, uniformly brown with a rim of erythema. Average depths of tissue damage were 1.30 mm (SD 0.424, 2.35 mm (SD 0.071, and 2.60 mm (SD 0.283 for duration of 5, 10, 20 seconds respectively. Burn duration of 5 seconds resulted in full-thickness damage. Burn duration of 10 seconds and 20 seconds resulted in full-thickness damage, involving subjacent skeletal muscle. Conclusions This is a simple reproducible method for creating burn wounds consistent in size and depth in a rat burn model.

  9. TASI 2011 lectures notes: two-component fermion notation and supersymmetry

    OpenAIRE

    Martin, Stephen P.

    2012-01-01

    These notes, based on work with Herbi Dreiner and Howie Haber, discuss how to do practical calculations of cross sections and decay rates using two-component fermion notation, as appropriate for supersymmetry and other beyond-the-Standard-Model theories. Included are a list of two-component fermion Feynman rules for the Minimal Supersymmetric Standard Model, and some example calculations.

  10. A self-consistent dynamo model for fully convective stars

    Science.gov (United States)

    Yadav, Rakesh Kumar; Christensen, Ulrich; Morin, Julien; Gastine, Thomas; Reiners, Ansgar; Poppenhaeger, Katja; Wolk, Scott J.

    2016-01-01

    The tachocline region inside the Sun, where the rigidly rotating radiative core meets the differentially rotating convection zone, is thought to be crucial for generating the Sun's magnetic field. Low-mass fully convective stars do not possess a tachocline and were originally expected to generate only weak small-scale magnetic fields. Observations, however, have painted a different picture of magnetism in rapidly-rotating fully convective stars: (1) Zeeman broadening measurements revealed average surface field of several kiloGauss (kG), which is similar to the typical field strength found in sunspots. (2) Zeeman-Doppler-Imaging (ZDI) technique discovered large-scale magnetic fields with a morphology often similar to the Earth's dipole-dominated field. (3) Comparison of Zeeman broadening and ZDI results showed that more than 80% of the magnetic flux resides at small scales. So far, theoretical and computer simulation efforts have not been able to reproduce these features simultaneously. Here we present a self-consistent global model of magnetic field generation in low-mass fully convective stars. A distributed dynamo working in the model spontaneously produces a dipole-dominated surface magnetic field of the observed strength. The interaction of this field with the turbulent convection in outer layers shreds it, producing small-scale fields that carry most of the magnetic flux. The ZDI technique applied to synthetic spectropolarimetric data based on our model recovers most of the large-scale field. Our model simultaneously reproduces the morphology and magnitude of the large-scale field as well as the magnitude of the small-scale field observed on low-mass fully convective stars.

  11. Pluralistic and stochastic gene regulation: examples, models and consistent theory.

    Science.gov (United States)

    Salas, Elisa N; Shu, Jiang; Cserhati, Matyas F; Weeks, Donald P; Ladunga, Istvan

    2016-06-01

    We present a theory of pluralistic and stochastic gene regulation. To bridge the gap between empirical studies and mathematical models, we integrate pre-existing observations with our meta-analyses of the ENCODE ChIP-Seq experiments. Earlier evidence includes fluctuations in levels, location, activity, and binding of transcription factors, variable DNA motifs, and bursts in gene expression. Stochastic regulation is also indicated by frequently subdued effects of knockout mutants of regulators, their evolutionary losses/gains and massive rewiring of regulatory sites. We report wide-spread pluralistic regulation in ≈800 000 tightly co-expressed pairs of diverse human genes. Typically, half of ≈50 observed regulators bind to both genes reproducibly, twice more than in independently expressed gene pairs. We also examine the largest set of co-expressed genes, which code for cytoplasmic ribosomal proteins. Numerous regulatory complexes are highly significant enriched in ribosomal genes compared to highly expressed non-ribosomal genes. We could not find any DNA-associated, strict sense master regulator. Despite major fluctuations in transcription factor binding, our machine learning model accurately predicted transcript levels using binding sites of 20+ regulators. Our pluralistic and stochastic theory is consistent with partially random binding patterns, redundancy, stochastic regulator binding, burst-like expression, degeneracy of binding motifs and massive regulatory rewiring during evolution.

  12. Consistency of modified MLE in EV model with replicated observations

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Sanguo

    2001-01-01

    [1]Kendall, M., Stuart, A., The Advanced Theory of Statistics, Vol. 2, New York: Charles Griffin, 1979.[2]Anderson, T. W., Estimating linear statistical relationships, Ann. Statist., 1984, 12: 1.[3]Cui Hengjian, Asymptotic normality of M-estimates in the EV model, Sys. Sci. and Math. Sci., 1997, 10(3): 225.[4]Madansky, A., The fitting of straight lines when both variables are subject to error, JASA, 1959, 54: 173.[5]Villegas, C., Maximum likelihood estimations of a linear functional relationship, Ann. Math. Statist., 1961, 32(4): 1048.[6]Stout, W. F., Almost Sure Convergence, New York: Academic Press, 1974.[7]Petrov, V. V., Sums of Independent Random Variables, New York: Springer-Verlag, 1975.[8]Lai, T. L., Robbins, H., Wei, C. Z., Strong consistency of least squares estimates in multiple regression, J. Multivariate Anal., 1979, 9: 343.[9]Chen Xiru, On limiting properties of U-statistics and von-Mises statistics, Scientia Sinica (in Chinese), 1980, (6): 522.

  13. No electrostatic supersolitons in two-component plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Verheest, Frank, E-mail: frank.verheest@ugent.be [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B–9000 Gent (Belgium); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Lakhina, Gurbax S., E-mail: lakhina@iigm.iigs.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India); Hellberg, Manfred A., E-mail: hellberg@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa)

    2014-06-15

    The concept of acoustic supersolitons was introduced for a very specific plasma with five constituents, and discussed only for a single set of plasma parameters. Supersolitons are characterized by having subsidiary extrema on the sides of a typical bipolar electric field signature, or by association with a root beyond double layers in the fully nonlinear Sagdeev pseudopotential description. It was subsequently found that supersolitons could exist in several plasma models having three constituent species, rather than four or five. In the present paper, it is proved that standard two-component plasma models cannot generate supersolitons, by recalling and extending results already in the literature, and by establishing the necessary properties of a more recent model.

  14. Dynamic Consistency between Value and Coordination Models - Research Issues.

    NARCIS (Netherlands)

    Bodenstaff, L.; Wombacher, Andreas; Reichert, M.U.; meersman, R; Tari, Z; herrero, p

    Inter-organizational business cooperations can be described from different viewpoints each fulfilling a specific purpose. Since all viewpoints describe the same system they must not contradict each other, thus, must be consistent. Consistency can be checked based on common semantic concepts of the

  15. A proposal for a consistent parametrization of earth models

    Science.gov (United States)

    Forbriger, Thomas; Friederich, Wolfgang

    2005-08-01

    The current way to parametrize earth models in terms of real-valued seismic velocities and quality factors is incomplete as it does not specify how complex-valued viscoelastic moduli or complex velocities should be computed from them. Various ways to do this can be found in the literature. Depending on the context they may specify (1) the real part of the viscoelastic modulus, (2) the absolute value of the viscoelastic modulus, (3) the real part of complex velocity or (4) the phase velocity of a propagating plane wave. We propose here to exclusively use the first alternative because it is the only one which allows both a flexible choice of elastic parameters and a mathematically rigorous evaluation of the complex-valued viscoelastic moduli. The other definitions only permit an evaluation of viscoelastic moduli if the tabulated quality factors are directly associated with the listed velocities. Ignoring the subtle differences between the three definitions leads to variations in viscoelastic moduli which are second order in 1/Q where Q is a quality factor. This may be the reason why the topic has never been discussed in the literature. In case of shallow seismic media, however, where quality factors may assume values of less than 10, the subtle differences become noticeable in synthetic seismograms. It is then essential to use the same definition in all algorithms to make results comparable. Matters become worse for anisotropic media, which are commonly specified in terms of real elastic moduli and quality factors for effective isotropic moduli. In that case, the complex-valued viscoelastic moduli cannot be determined uniquely. However, interpreting the tabulated constants as the real parts of the complex-valued viscoelastic moduli at least allows a consistent definition, which respects the relative magnitude of the anelastic and anisotropic parts compared to the elastic parts. It should be noted that all these considerations apply to complex-valued viscoelastic

  16. Self-consistent modelling of resonant tunnelling structures

    DEFF Research Database (Denmark)

    Fiig, T.; Jauho, A.P.

    1992-01-01

    We report a comprehensive study of the effects of self-consistency on the I-V-characteristics of resonant tunnelling structures. The calculational method is based on a simultaneous solution of the effective-mass Schrödinger equation and the Poisson equation, and the current is evaluated with the ......We report a comprehensive study of the effects of self-consistency on the I-V-characteristics of resonant tunnelling structures. The calculational method is based on a simultaneous solution of the effective-mass Schrödinger equation and the Poisson equation, and the current is evaluated...... applied voltages and carrier densities at the emitter-barrier interface. We include the two-dimensional accumulation layer charge and the quantum well charge in our self-consistent scheme. We discuss the evaluation of the current contribution originating from the two-dimensional accumulation layer charges...

  17. Two-component jet simulations: Combining analytical and numerical approaches

    CERN Document Server

    Matsakos, T; Trussoni, E; Tsinganos, K; Vlahakis, N; Sauty, C; Mignone, A

    2009-01-01

    Recent observations as well as theoretical studies of YSO jets suggest the presence of two steady components: a disk wind type outflow needed to explain the observed high mass loss rates and a stellar wind type outflow probably accounting for the observed stellar spin down. In this framework, we construct numerical two-component jet models by properly mixing an analytical disk wind solution with a complementary analytically derived stellar outflow. Their combination is controlled by both spatial and temporal parameters, in order to address different physical conditions and time variable features. We study the temporal evolution and the interaction of the two jet components on both small and large scales. The simulations reach steady state configurations close to the initial solutions. Although time variability is not found to considerably affect the dynamics, flow fluctuations generate condensations, whose large scale structures have a strong resemblance to observed YSO jet knots.

  18. Efficient two-component relativistic method for large systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Hiromi [Department of Chemitsry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan)

    2015-12-31

    This paper reviews a series of theoretical studies to develop efficient two-component (2c) relativistic method for large systems by the author’s group. The basic theory is the infinite-order Douglas-Kroll-Hess (IODKH) method for many-electron Dirac-Coulomb Hamiltonian. The local unitary transformation (LUT) scheme can effectively produce the 2c relativistic Hamiltonian, and the divide-and-conquer (DC) method can achieve linear-scaling of Hartree-Fock and electron correlation methods. The frozen core potential (FCP) theoretically connects model potential calculations with the all-electron ones. The accompanying coordinate expansion with a transfer recurrence relation (ACE-TRR) scheme accelerates the computations of electron repulsion integrals with high angular momenta and long contractions.

  19. Budding Transition of Asymmetric Two-component Lipid Domains

    CERN Document Server

    Wolff, Jean; Andelman, David

    2016-01-01

    We propose a model that accounts for the budding transition of asymmetric two-component lipid domains, where the two monolayers (leaflets) have different average compositions controlled by independent chemical potentials. Assuming a coupling between the local curvature and local lipid composition in each of the leaflets, we discuss the morphology and thermodynamic behavior of asymmetric lipid domains. The membrane free-energy contains three contributions: the bending energy, the line tension, and a Landau free-energy for a lateral phase separation. Within a mean-field treatment, we obtain various phase diagrams containing fully budded, dimpled, and flat states as a function of the two leaflet compositions. The global phase behavior is analyzed, and depending on system parameters, the phase diagrams include one-phase, two-phase and three-phase regions. In particular, we predict various phase coexistence regions between different morphologies of domains, which may be observed in multi-component membranes or ves...

  20. The mechanism of signal transduction by two-component systems.

    Science.gov (United States)

    Casino, Patricia; Rubio, Vicente; Marina, Alberto

    2010-12-01

    Two-component systems, composed of a homodimeric histidine kinase (HK) and a response regulator (RR), are major signal transduction devices in bacteria. Typically the signal triggers HK autophosphorylation at one His residue, followed by phosphoryl transfer from the phospho-His to an Asp residue in the RR. Signal extinction frequently involves phospho-RR dephosphorylation by a phosphatase activity of the HK. Our understanding of these reactions and of the determinants of partner specificity among HK-RR couples has been greatly increased by recent crystal structures and biochemical experiments on HK-RR complexes. Cis-autophosphorylation (one subunit phosphorylates itself) occurs in some HKs while trans-autophosphorylation takes place in others. We review and integrate this new information, discuss the mechanism of the three reactions and propose a model for transmembrane signaling by these systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Kokholm, Thomas

    on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options on S&P 500 across......We propose a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index. Our model reproduces various empirically observed properties of variance swap dynamics and enables volatility derivatives and options on the underlying index...

  2. Is the island universe model consistent with observations?

    OpenAIRE

    Piao, Yun-Song

    2005-01-01

    We study the island universe model, in which initially the universe is in a cosmological constant sea, then the local quantum fluctuations violating the null energy condition create the islands of matter, some of which might corresponds to our observable universe. We examine the possibility that the island universe model is regarded as an alternative scenario of the origin of observable universe.

  3. Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression

    OpenAIRE

    Puthiyaveetil, Sujith; Allen, John F.

    2009-01-01

    Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles—chloroplasts and mitochondria. Until recently, it was thought that two-component systems i...

  4. An Introductory Idea for Teaching Two-Component Phase Diagrams

    Science.gov (United States)

    Peckham, Gavin D.; McNaught, Ian J.

    2011-01-01

    The teaching of two-component phase diagrams has attracted little attention in this "Journal," and it is hoped that this article will make a useful contribution. Current physical chemistry textbooks describe two-component phase diagrams adequately, but do so in a piecemeal fashion one section at a time; first solid-liquid equilibria, then…

  5. Two-component micro injection moulding for hearing aid applications

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Marhöfer, David Maximilian

    2012-01-01

    Two-component (2k) injection moulding is an important process technique at the present state of technology, and it is growing rapidly in the field of precision micro moulding. Besides combining different material properties in the same product, two-component moulding can eliminate many assembly s...

  6. An Extended Model Driven Framework for End-to-End Consistent Model Transformation

    Directory of Open Access Journals (Sweden)

    Mr. G. Ramesh

    2016-08-01

    Full Text Available Model Driven Development (MDD results in quick transformation from models to corresponding systems. Forward engineering features of modelling tools can help in generating source code from models. To build a robust system it is important to have consistency checking in the design models and the same between design model and the transformed implementation. Our framework named as Extensible Real Time Software Design Inconsistency Checker (XRTSDIC proposed in our previous papers supports consistency checking in design models. This paper focuses on automatic model transformation. An algorithm and defined transformation rules for model transformation from UML class diagram to ERD and SQL are being proposed. The model transformation bestows many advantages such as reducing cost of development, improving quality, enhancing productivity and leveraging customer satisfaction. Proposed framework has been enhanced to ensure that the transformed implementations conform to their model counterparts besides checking end-to-end consistency.

  7. Consistent Evolution of Software Artifacts and Non-Functional Models

    Science.gov (United States)

    2014-11-14

    Ruscio D., Pierantonio A., Arcelli D., Eramo R., Trubiani C., Tucci M. Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica ...Models (SRMs), and ( ii ) antipattern solutions as Target Role Models (TRMs). Hence, SRM-TRM pairs represent new instruments in the hands of developers to...helps to identify the antipatterns that more heavily contribute to the violation of performance requirements [10], and ( ii ) another one aimed at

  8. Towards a self-consistent dynamical nuclear model

    Science.gov (United States)

    Roca-Maza, X.; Niu, Y. F.; Colò, G.; Bortignon, P. F.

    2017-04-01

    Density functional theory (DFT) is a powerful and accurate tool, exploited in nuclear physics to investigate the ground-state and some of the collective properties of nuclei along the whole nuclear chart. Models based on DFT are not, however, suitable for the description of single-particle dynamics in nuclei. Following the field theoretical approach by A Bohr and B R Mottelson to describe nuclear interactions between single-particle and vibrational degrees of freedom, we have taken important steps towards the building of a microscopic dynamic nuclear model. In connection with this, one important issue that needs to be better understood is the renormalization of the effective interaction in the particle-vibration approach. One possible way to renormalize the interaction is by the so-called subtraction method. In this contribution, we will implement the subtraction method in our model for the first time and study its consequences.

  9. Gas Clumping in Self-Consistent Reionisation Models

    CERN Document Server

    Finlator, K; Özel, F; Davé, R

    2012-01-01

    We use a suite of cosmological hydrodynamic simulations including a self-consistent treatment for inhomogeneous reionisation to study the impact of galactic outflows and photoionisation heating on the volume-averaged recombination rate of the intergalactic medium (IGM). By incorporating an evolving ionising escape fraction and a treatment for self-shielding within Lyman limit systems, we have run the first simulations of "photon-starved" reionisation scenarios that simultaneously reproduce observations of the abundance of galaxies, the optical depth to electron scattering of cosmic microwave background photons \\tau, and the effective optical depth to Lyman\\alpha absorption at z=5. We confirm that an ionising background reduces the clumping factor C by more than 50% by smoothing moderately-overdense (\\Delta=1--100) regions. Meanwhile, outflows increase clumping only modestly. The clumping factor of ionised gas is much lower than the overall baryonic clumping factor because the most overdense gas is self-shield...

  10. Modelling plasticity of unsaturated soils in a thermodynamically consistent framework

    CERN Document Server

    Coussy, O

    2010-01-01

    Constitutive equations of unsaturated soils are often derived in a thermodynamically consistent framework through the use a unique 'effective' interstitial pressure. This later is naturally chosen as the space averaged interstitial pressure. However, experimental observations have revealed that two stress state variables were needed to describe the stress-strain-strength behaviour of unsaturated soils. The thermodynamics analysis presented here shows that the most general approach to the behaviour of unsaturated soils actually requires three stress state variables: the suction, which is required to describe the retention properties of the soil and two effective stresses, which are required to describe the soil deformation at water saturation held constant. Actually, it is shown that a simple assumption related to internal deformation leads to the need of a unique effective stress to formulate the stress-strain constitutive equation describing the soil deformation. An elastoplastic framework is then presented ...

  11. Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; Tartakovsky, Alexandre M.; Parks, Michael L.

    2017-04-01

    We present an efficient implicit incompressible smoothed particle hydrodynamics (I2SPH) discretization of Navier-Stokes, Poisson-Boltzmann, and advection-diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The I2SPH's accuracy and convergence are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. The new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.

  12. Consistency Problem with Tracer Advection in the Atmospheric Model GAMIL

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kai; WAN Hui; WANG Bin; ZHANG Meigen

    2008-01-01

    The radon transport test,which is a widely used test case for atmospheric transport models,is carried out to evaluate the tracer advection schemes in the Grid-Point Atmospheric Model of IAP-LASG (GAMIL).TWO of the three available schemes in the model are found to be associated with significant biases in the polar regions and in the upper part of the atmosphere,which implies potentially large errors in the simulation of ozone-like tracers.Theoretical analyses show that inconsistency exists between the advection schemes and the discrete continuity equation in the dynamical core of GAMIL and consequently leads to spurious sources and sinks in the tracer transport equation.The impact of this type of inconsistency is demonstrated by idealized tests and identified as the cause of the aforementioned biases.Other potential effects of this inconsistency are also discussed.Results of this study provide some hints for choosing suitable advection schemes in the GAMIL model.At least for the polar-region-concentrated atmospheric components and the closely correlated chemical species,the Flux-Form Semi-Lagrangian advection scheme produces more reasonable simulations of the large-scale transport processes without significantly increasing the computational expense.

  13. Self-consistent Models of Strong Interaction with Chiral Symmetry

    Science.gov (United States)

    Nambu, Y.; Pascual, P.

    1963-04-01

    Some simple models of (renormalizable) meson-nucleon interaction are examined in which the nucleon mass is entirely due to interaction and the chiral ( gamma {sub 5}) symmetry is "broken'' to become a hidden symmetry. It is found that such a scheme is possible provided that a vector meson is introduced as an elementary field. (auth)

  14. A seismologically consistent compositional model of Earth's core.

    Science.gov (United States)

    Badro, James; Côté, Alexander S; Brodholt, John P

    2014-05-27

    Earth's core is less dense than iron, and therefore it must contain "light elements," such as S, Si, O, or C. We use ab initio molecular dynamics to calculate the density and bulk sound velocity in liquid metal alloys at the pressure and temperature conditions of Earth's outer core. We compare the velocity and density for any composition in the (Fe-Ni, C, O, Si, S) system to radial seismological models and find a range of compositional models that fit the seismological data. We find no oxygen-free composition that fits the seismological data, and therefore our results indicate that oxygen is always required in the outer core. An oxygen-rich core is a strong indication of high-pressure and high-temperature conditions of core differentiation in a deep magma ocean with an FeO concentration (oxygen fugacity) higher than that of the present-day mantle.

  15. A more consistent intraluminal rhesus monkey model of ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Bo Zhao; Fauzia Akbary; Shengli Li; Jing Lu; Feng Ling; Xunming Ji; Guowei Shang; Jian Chen; Xiaokun Geng; Xin Ye; Guoxun Xu; Ju Wang; Jiasheng Zheng; Hongjun Li

    2014-01-01

    Endovascular surgery is advantageous in experimentally induced ischemic stroke because it causes fewer cranial traumatic lesions than invasive surgery and can closely mimic the pathophysiol-ogy in stroke patients. However, the outcomes are highly variable, which limits the accuracy of evaluations of ischemic stroke studies. In this study, eight healthy adult rhesus monkeys were randomized into two groups with four monkeys in each group:middle cerebral artery occlusion at origin segment (M1) and middle cerebral artery occlusion at M2 segment. The blood lfow in the middle cerebral artery was blocked completely for 2 hours using the endovascular microcoil placement technique (1 mm × 10 cm) (undetachable), to establish a model of cerebral ischemia. The microcoil was withdrawn and the middle cerebral artery blood lfow was restored. A revers-ible middle cerebral artery occlusion model was identiifed by hematoxylin-eosin staining, digital subtraction angiography, magnetic resonance angiography, magnetic resonance imaging, and neurological evaluation. The results showed that the middle cerebral artery occlusion model was successfully established in eight adult healthy rhesus monkeys, and ischemic lesions were apparent in the brain tissue of rhesus monkeys at 24 hours after occlusion. The rhesus monkeys had symp-toms of neurological deifcits. Compared with the M1 occlusion group, the M2 occlusion group had lower infarction volume and higher neurological scores. These experimental ifndings indicate that reversible middle cerebral artery occlusion can be produced with the endovascular microcoil technique in rhesus monkeys. The M2 occluded model had less infarction and less neurological impairment, which offers the potential for application in the ifeld of brain injury research.

  16. A more consistent intraluminal rhesus monkey model of ischemic stroke.

    Science.gov (United States)

    Zhao, Bo; Shang, Guowei; Chen, Jian; Geng, Xiaokun; Ye, Xin; Xu, Guoxun; Wang, Ju; Zheng, Jiasheng; Li, Hongjun; Akbary, Fauzia; Li, Shengli; Lu, Jing; Ling, Feng; Ji, Xunming

    2014-12-01

    Endovascular surgery is advantageous in experimentally induced ischemic stroke because it causes fewer cranial traumatic lesions than invasive surgery and can closely mimic the pathophysiology in stroke patients. However, the outcomes are highly variable, which limits the accuracy of evaluations of ischemic stroke studies. In this study, eight healthy adult rhesus monkeys were randomized into two groups with four monkeys in each group: middle cerebral artery occlusion at origin segment (M1) and middle cerebral artery occlusion at M2 segment. The blood flow in the middle cerebral artery was blocked completely for 2 hours using the endovascular microcoil placement technique (1 mm × 10 cm) (undetachable), to establish a model of cerebral ischemia. The microcoil was withdrawn and the middle cerebral artery blood flow was restored. A reversible middle cerebral artery occlusion model was identified by hematoxylin-eosin staining, digital subtraction angiography, magnetic resonance angiography, magnetic resonance imaging, and neurological evaluation. The results showed that the middle cerebral artery occlusion model was successfully established in eight adult healthy rhesus monkeys, and ischemic lesions were apparent in the brain tissue of rhesus monkeys at 24 hours after occlusion. The rhesus monkeys had symptoms of neurological deficits. Compared with the M1 occlusion group, the M2 occlusion group had lower infarction volume and higher neurological scores. These experimental findings indicate that reversible middle cerebral artery occlusion can be produced with the endovascular microcoil technique in rhesus monkeys. The M2 occluded model had less infarction and less neurological impairment, which offers the potential for application in the field of brain injury research.

  17. Flood damage: a model for consistent, complete and multipurpose scenarios

    Science.gov (United States)

    Menoni, Scira; Molinari, Daniela; Ballio, Francesco; Minucci, Guido; Mejri, Ouejdane; Atun, Funda; Berni, Nicola; Pandolfo, Claudia

    2016-12-01

    Effective flood risk mitigation requires the impacts of flood events to be much better and more reliably known than is currently the case. Available post-flood damage assessments usually supply only a partial vision of the consequences of the floods as they typically respond to the specific needs of a particular stakeholder. Consequently, they generally focus (i) on particular items at risk, (ii) on a certain time window after the occurrence of the flood, (iii) on a specific scale of analysis or (iv) on the analysis of damage only, without an investigation of damage mechanisms and root causes. This paper responds to the necessity of a more integrated interpretation of flood events as the base to address the variety of needs arising after a disaster. In particular, a model is supplied to develop multipurpose complete event scenarios. The model organizes available information after the event according to five logical axes. This way post-flood damage assessments can be developed that (i) are multisectoral, (ii) consider physical as well as functional and systemic damage, (iii) address the spatial scales that are relevant for the event at stake depending on the type of damage that has to be analyzed, i.e., direct, functional and systemic, (iv) consider the temporal evolution of damage and finally (v) allow damage mechanisms and root causes to be understood. All the above features are key for the multi-usability of resulting flood scenarios. The model allows, on the one hand, the rationalization of efforts currently implemented in ex post damage assessments, also with the objective of better programming financial resources that will be needed for these types of events in the future. On the other hand, integrated interpretations of flood events are fundamental to adapting and optimizing flood mitigation strategies on the basis of thorough forensic investigation of each event, as corroborated by the implementation of the model in a case study.

  18. Deterministic Consistency: A Programming Model for Shared Memory Parallelism

    OpenAIRE

    Aviram, Amittai; Ford, Bryan

    2009-01-01

    The difficulty of developing reliable parallel software is generating interest in deterministic environments, where a given program and input can yield only one possible result. Languages or type systems can enforce determinism in new code, and runtime systems can impose synthetic schedules on legacy parallel code. To parallelize existing serial code, however, we would like a programming model that is naturally deterministic without language restrictions or artificial scheduling. We propose "...

  19. Comparative analysis of wolbachia genomes reveals streamlining and divergence of minimalist two-component systems.

    Science.gov (United States)

    Christensen, Steen; Serbus, Laura Renee

    2015-03-24

    Two-component regulatory systems are commonly used by bacteria to coordinate intracellular responses with environmental cues. These systems are composed of functional protein pairs consisting of a sensor histidine kinase and cognate response regulator. In contrast to the well-studied Caulobacter crescentus system, which carries dozens of these pairs, the streamlined bacterial endosymbiont Wolbachia pipientis encodes only two pairs: CckA/CtrA and PleC/PleD. Here, we used bioinformatic tools to compare characterized two-component system relays from C. crescentus, the related Anaplasmataceae species Anaplasma phagocytophilum and Ehrlichia chaffeensis, and 12 sequenced Wolbachia strains. We found the core protein pairs and a subset of interacting partners to be highly conserved within Wolbachia and these other Anaplasmataceae. Genes involved in two-component signaling were positioned differently within the various Wolbachia genomes, whereas the local context of each gene was conserved. Unlike Anaplasma and Ehrlichia, Wolbachia two-component genes were more consistently found clustered with metabolic genes. The domain architecture and key functional residues standard for two-component system proteins were well-conserved in Wolbachia, although residues that specify cognate pairing diverged substantially from other Anaplasmataceae. These findings indicate that Wolbachia two-component signaling pairs share considerable functional overlap with other α-proteobacterial systems, whereas their divergence suggests the potential for regulatory differences and cross-talk.

  20. Consistency problems for Heath-Jarrow-Morton interest rate models

    CERN Document Server

    Filipović, Damir

    2001-01-01

    The book is written for a reader with knowledge in mathematical finance (in particular interest rate theory) and elementary stochastic analysis, such as provided by Revuz and Yor (Continuous Martingales and Brownian Motion, Springer 1991). It gives a short introduction both to interest rate theory and to stochastic equations in infinite dimension. The main topic is the Heath-Jarrow-Morton (HJM) methodology for the modelling of interest rates. Experts in SDE in infinite dimension with interest in applications will find here the rigorous derivation of the popular "Musiela equation" (referred to in the book as HJMM equation). The convenient interpretation of the classical HJM set-up (with all the no-arbitrage considerations) within the semigroup framework of Da Prato and Zabczyk (Stochastic Equations in Infinite Dimensions) is provided. One of the principal objectives of the author is the characterization of finite-dimensional invariant manifolds, an issue that turns out to be vital for applications. Finally, ge...

  1. Implementation of Two Component Advective Flow Solution in XSPEC

    CERN Document Server

    Debnath, Dipak; Mondal, Santanu

    2014-01-01

    Spectral and Temporal properties of black hole candidates can be explained reasonably well using Chakrabarti-Titarchuk solution of two component advective flow (TCAF). This model requires two accretion rates, namely, the Keplerian disk accretion rate and the halo accretion rate, the latter being composed of a sub-Keplerian, low angular momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disk rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time, we made it user friendly by implementing it into XSPEC software of GSFC/NASA. This enables any user to extract physical parameters of the accretion flows, such as two accretion rates, the shock location, the shock strength etc. for any black hole candidate. We provide some examples of fitting a few cases usin...

  2. Role of functionality in two-component signal transduction: A stochastic study

    Science.gov (United States)

    Maity, Alok Kumar; Bandyopadhyay, Arnab; Chaudhury, Pinaki; Banik, Suman K.

    2014-03-01

    We present a stochastic formalism for signal transduction processes in a bacterial two-component system. Using elementary mass action kinetics, the proposed model takes care of signal transduction in terms of a phosphotransfer mechanism between the cognate partners of a two-component system, viz., the sensor kinase and the response regulator. Based on the difference in functionality of the sensor kinase, the noisy phosphotransfer mechanism has been studied for monofunctional and bifunctional two-component systems using the formalism of the linear noise approximation. Steady-state analysis of both models quantifies different physically realizable quantities, e.g., the variance, the Fano factor (variance/mean), and mutual information. The resultant data reveal that both systems reliably transfer information of extracellular environment under low external stimulus and in a high-kinase-and-phosphatase regime. We extend our analysis further by studying the role of the two-component system in downstream gene regulation.

  3. Aggregated wind power plant models consisting of IEC wind turbine models

    DEFF Research Database (Denmark)

    Altin, Müfit; Göksu, Ömer; Hansen, Anca Daniela

    2015-01-01

    turbines, parameters and models to represent each individual wind turbine in detail makes it necessary to develop aggregated wind power plant models considering the simulation time for power system stability studies. In this paper, aggregated wind power plant models consisting of the IEC 61400-27 variable...

  4. Receptor domains of two-component signal transduction systems.

    Science.gov (United States)

    Perry, Julie; Koteva, Kalinka; Wright, Gerard

    2011-05-01

    Two-component signal transduction systems are found ubiquitously in prokaryotes, and in archaea, fungi, yeast and some plants, where they regulate physiologic and molecular processes at both transcriptional and post-transcriptional levels. Two-component systems sense changes in environmental conditions when a specific ligand binds to the receptor domain of the histidine kinase sensory component. The structures of many histidine kinase receptors are known, including those which sense extracellular and cytoplasmic signals. In this review, we discuss the basic architecture of two-component signalling circuits, including known system ligands, structure and function of both receptor and signalling domains, the chemistry of phosphotransfer, and cross-talk between different two-component pathways. Given the importance of these systems in regulating cellular responses, many biochemical techniques have been developed for their study and analysis. We therefore also review current methods used to study two-component signalling, including a new affinity-based proteomics approach used to study inducible resistance to the antibiotic vancomycin through the VanSR two-component signal transduction system.

  5. Two-component perfect fluid in FRW universe

    CERN Document Server

    ,

    2012-01-01

    We propose the cosmological model which allows to describe on equal footing the evolution of matter in the universe on the time interval from the inflation till the domination of dark energy. The matter is considered as a two-component perfect fluid imitated by homogeneous scalar fields between which there is energy exchange. Dark energy is represented by the cosmological constant, which is supposed invariable during the whole evolution of the universe. The matter changes its equation of state with time, so that the era of radiation domination in the early universe smoothly passes into the era of a pressureless gas, which then passes into the late-time epoch, when the matter is represented by a gas of low-velocity cosmic strings. The inflationary phase is described as an analytic continuation of the energy density in the very early universe into the region of small negative values of the parameter which characterizes typical time of energy transfer from one matter component to another. The Hubble expansion ra...

  6. Conversion of syngas to liquid hydrocarbons over a two-component (Cr{sub 2}O{sub 3}-ZnO and ZSM-5 zeolite) catalyst: kinetic modelling and catalyst deactivation

    Energy Technology Data Exchange (ETDEWEB)

    Erena, J.; Arandes, J.M.; Bilbao, J.; Gayubo, A.G. [Universidad del Pais Vasco, Bilbao (Spain). Dept. de Ingeneria Quimica; De Lasa, H.I. [University of Western Ontario, London, ONT (Canada). Chemical Reactor Engineering Centre

    2000-05-01

    The present study describes the kinetics of syngas transformation into liquid hydrocarbons (boiling point in the gasoline range) using as catalyst a mixture of a metallic component, Cr{sub 2}O{sub 3}-ZnO, and of an acidic component, ZSM-5 zeolite. Experimental results were obtained in an isothermal fixed-bed integral reactor. The validity of several kinetic models, available for methanol synthesis, is analysed and modifications are proposed. These changes involve a rate equation with a CO{sub 2} concentration-dependent term. Catalyst deactivation is also evaluated and the effect of the operating conditions on coke deposition is established. Moreover, the rate of CO conversion and the change of catalytic activity with time-on-stream were described using a kinetic model showing a weak influence of temperature. (Author)

  7. Consistency in Estimation and Model Selection of Dynamic Panel Data Models with Fixed Effects

    Directory of Open Access Journals (Sweden)

    Guangjie Li

    2015-07-01

    Full Text Available We examine the relationship between consistent parameter estimation and model selection for autoregressive panel data models with fixed effects. We find that the transformation of fixed effects proposed by Lancaster (2002 does not necessarily lead to consistent estimation of common parameters when some true exogenous regressors are excluded. We propose a data dependent way to specify the prior of the autoregressive coefficient and argue for comparing different model specifications before parameter estimation. Model selection properties of Bayes factors and Bayesian information criterion (BIC are investigated. When model uncertainty is substantial, we recommend the use of Bayesian Model Averaging to obtain point estimators with lower root mean squared errors (RMSE. We also study the implications of different levels of inclusion probabilities by simulations.

  8. Two component systems: physiological effect of a third component.

    Directory of Open Access Journals (Sweden)

    Baldiri Salvado

    Full Text Available Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS. These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK and by a response regulator (RR that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call "third component" on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible.

  9. Circulation Condition of Two-component Bose-Einstein Condensate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the report we point out that there exists an intrinsic difference in the internal symmetry of the two components spin-1/2 Bose condensates from that of spinor Bose condensates of the atoms with hyperfine states of nonzero integer-spins,which gives rise to a new topological constrain on the circulation for this two-component spin-1/2 Bose condensates.It is shown that the SU(2) symmetry of the spin-1/2 Bose condensate implies a

  10. Itinerant Ferromagnetism in a Polarized Two-Component Fermi Gas

    DEFF Research Database (Denmark)

    Massignan, Pietro; Yu, Zhenhua; Bruun, Georg

    2013-01-01

    We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles, the repul......We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles...

  11. Transport of a two-component mixture in one-dimensional channels

    NARCIS (Netherlands)

    Borman, VD; Tronin, VN; Tronin, [No Value; Troyan, [No Value

    2004-01-01

    The transport of a two-component gas mixture in subnanometer channels is investigated theoretically for an arbitrary filling of channels. Special attention is paid to consistent inclusion of density effects, which are associated both with the interaction and with a finite size of particles. The anal

  12. Transport of a two-component mixture in one-dimensional channels

    NARCIS (Netherlands)

    Borman, VD; Tronin, VN; Tronin, [No Value; Troyan, [No Value

    2004-01-01

    The transport of a two-component gas mixture in subnanometer channels is investigated theoretically for an arbitrary filling of channels. Special attention is paid to consistent inclusion of density effects, which are associated both with the interaction and with a finite size of particles. The

  13. Two component permeation through thin zeolite MFI membranes

    NARCIS (Netherlands)

    Keizer, K.; Burggraaf, A.J.; Vroon, Z.A.E.P.; Verweij, H.

    1998-01-01

    Two component permeation measurements have been performed by the Wicke-Kallenbach method on a thin (3 μm) zeolite MFI (Silicalite-1) membrane with molecules of different kinetic diameters, d(k). The membrane was supported by a flat porous α-Al2O3 substrate. The results obtained could be classified i

  14. two component permeation through thin zeolite MFI membranes

    NARCIS (Netherlands)

    Keizer, Klaas; Burggraaf, Anthonie; Burggraaf, A.J.; Vroon, Z.A.E.P.; Vroon, Z.A.E.P.; Verweij, H.

    1998-01-01

    Two component permeation measurements have been performed by the Wicke–Kallenbach method on a thin (3 μm) zeolite MFI (Silicalite-1) membrane with molecules of different kinetic diameters, dk. The membrane was supported by a flat porous -Al2O3 substrate. The results obtained could be classified in s

  15. TWO-COMPONENT JETS AND THE FANAROFF-RILEY DICHOTOMY

    NARCIS (Netherlands)

    Meliani, Z.; Keppens, R.; Sauty, C.

    2010-01-01

    Transversely stratified jets are observed in many classes of astrophysical objects, ranging from young stellar objects, mu-quasars, to active galactic nuclei and even in gamma-ray bursts. Theoretical arguments support this transverse stratification of jets with two components induced by intrinsic fe

  16. Two component injection moulding: Present and future perspectives

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard

    2009-01-01

    Two component injection moulding has widespread industrial applications. Still the technology is yet to gain its full potential in highly demanding and technically challenging applications areas. The smart use of this technology can open the doors for cost effective and convergent manufacturing...

  17. Entanglement Properties in Two-Component Bose-Einstein Condensate

    Science.gov (United States)

    Jiang, Di-You

    2016-10-01

    We investigate entanglement inseparability and bipartite entanglement of in two-component Bose-Einstein condensate in the presence of the nonlinear interatomic interaction, interspecies interaction. Entanglement inseparability and bipartite entanglement have the similar properties. More entanglement can be generated by adjusting the nonlinear interatomic interaction and control the time interval of the entanglement by adjusting interspecies interaction.

  18. A small protein that mediates the activation of a two-component system by another two-component system

    OpenAIRE

    Kox, Linda F.F.; Wösten, Marc M. S. M.; Groisman, Eduardo A.

    2000-01-01

    The PmrA–PmrB two-component system of Salmonella enterica controls resistance to the peptide antibiotic polymyxin B and to several antimicrobial proteins from human neutrophils. Transcription of PmrA-activated genes is induced by high iron, but can also be promoted by growth in low magnesium in a process that requires another two-component system, PhoP–PhoQ. Here, we define the genetic basis for the interaction between the PhoP–PhoQ and PmrA–PmrB systems. We have identified pmrD as a PhoP-act...

  19. Consistent model reduction of polymer chains in solution in dissipative particle dynamics: Model description

    KAUST Repository

    Moreno Chaparro, Nicolas

    2015-06-30

    We introduce a framework for model reduction of polymer chain models for dissipative particle dynamics (DPD) simulations, where the properties governing the phase equilibria such as the characteristic size of the chain, compressibility, density, and temperature are preserved. The proposed methodology reduces the number of degrees of freedom required in traditional DPD representations to model equilibrium properties of systems with complex molecules (e.g., linear polymers). Based on geometrical considerations we explicitly account for the correlation between beads in fine-grained DPD models and consistently represent the effect of these correlations in a reduced model, in a practical and simple fashion via power laws and the consistent scaling of the simulation parameters. In order to satisfy the geometrical constraints in the reduced model we introduce bond-angle potentials that account for the changes in the chain free energy after the model reduction. Following this coarse-graining process we represent high molecular weight DPD chains (i.e., ≥200≥200 beads per chain) with a significant reduction in the number of particles required (i.e., ≥20≥20 times the original system). We show that our methodology has potential applications modeling systems of high molecular weight molecules at large scales, such as diblock copolymer and DNA.

  20. A new k-epsilon model consistent with Monin-Obukhov similarity theory

    DEFF Research Database (Denmark)

    van der Laan, Paul; Kelly, Mark C.; Sørensen, Niels N.

    2016-01-01

    A new k-" model is introduced that is consistent with Monin–Obukhov similarity theory (MOST). The proposed k-" model is compared with another k-" model that was developed in an attempt to maintain inlet profiles compatible with MOST. It is shown that the previous k-" model is not consistent with ...

  1. The dynamics of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates

    Institute of Scientific and Technical Information of China (English)

    Lü Bin-Bin; Hao Xue; Tian Qiang

    2011-01-01

    This paper investigates the dynamical properties of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates. It gives three kinds of stationary solutions to this model and develops a general method of constructing nonstationary solutions. It obtains the unique features about general evolution and soliton evolution of nonstationary solutions in this model.

  2. A simplified stock-flow consistent post-Keynesian growth model

    OpenAIRE

    dos Santos, Claudio H.; Zezza, Gennaro

    2005-01-01

    A Simplified Stock-Flow Consistent Post-Keynesian Growth Model Claudio H. Dos Santos* and Gennaro Zezza** Abstract: Despite being arguably the most rigorous form of structuralist/post-Keynesian macroeconomics, stock-flow consistent models are quite often complex and difficult to deal with. This paper presents a model that, despite retaining the methodological advantages of the stock-flow consistent method, is intuitive enough to be taught at an undergraduate level. Moreover, the model can eas...

  3. A two-component NZRI metamaterial based rectangular cloak

    Science.gov (United States)

    Islam, Sikder Sunbeam; Faruque, Mohammd Rashed Iqbal; Islam, Mohammad Tariqul

    2015-10-01

    A new two-component, near zero refractive index (NZRI) metamaterial is presented for electromagnetic rectangular cloaking operation in the microwave range. In the basic design a pi-shaped, metamaterial was developed and its characteristics were investigated for the two major axes (x and z-axis) wave propagation through the material. For the z-axis wave propagation, it shows more than 2 GHz bandwidth and for the x-axis wave propagation; it exhibits more than 1 GHz bandwidth of NZRI property. The metamaterial was then utilized in designing a rectangular cloak where a metal cylinder was cloaked perfectly in the C-band area of microwave regime. The experimental result was provided for the metamaterial and the cloak and these results were compared with the simulated results. This is a novel and promising design for its two-component NZRI characteristics and rectangular cloaking operation in the electromagnetic paradigm.

  4. On a periodic two-component Hunter-Saxton equation

    CERN Document Server

    Kohlmann, Martin

    2011-01-01

    We determine the solution of the geodesic equation associated with a periodic two-component Hunter-Saxton system on a semidirect product obtained from the diffeomorphism group of the circle, modulo rigid rotations, and a space of scalar functions. In particular, we compute the time of breakdown of the geodesic flow. As a further goal, we establish a local well-posedness result for the two-component Hunter-Saxton system in the smooth category. The paper gets in line with some recent results for the generalized Hunter-Saxton equation provided by Escher, Wu and Wunsch in [J. Escher, Preprint 2010] and [H. Wu, M. Wunsch, arXiv:1009.1688v1 [math.AP

  5. Two Component Injection Moulding for Moulded Interconnect Devices

    DEFF Research Database (Denmark)

    Islam, Aminul

    The moulded interconnect devices (MIDs) contain huge possibilities for many applications in micro electro-mechanical-systems because of their potential in reducing the number of components, process steps and finally in miniaturization of the product. Among the available MID process chains, two...... component (2k) injection moulding is one of the most industrially adaptive processes. However, the use of two component injection moulding for MID fabrication, with circuit patterns in sub-millimeter range, is still a big challenge. This book searches for the technical difficulties associated...... with the process and makes attempts to overcome those challenges. In search of suitable polymer materials for MID applications, potential materials are characterized in terms of polymer-polymer bond strength, polymer-polymer interface quality and selective metallization. The experimental results find the factors...

  6. Two-component microinjection moulding for MID fabrication

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2010-01-01

    Moulded interconnect devices (MIDs) are plastic substrates with electrical infrastructure. The fabrication of MIDs is usually based on injection moulding, and different process chains may be identified from this starting point. The use of MIDs has been driven primarily by the automotive sector......, but recently, the medical sector seems more and more interested. In particular, the possibility of miniaturisation of three-dimensional components with electrical infrastructure is attractive. The present paper describes possible manufacturing routes and challenges of miniaturised MIDs based on two......-component injection moulding and subsequent metallisation. This technology promises cost effective and convergent manufacturing approaches for both macro- and microapplications. This paper presents the results of industrial MID production based on two-component injection moulding and discusses the important issues...

  7. The Fractional Virial Potential Energy in Two-Component Systems

    Directory of Open Access Journals (Sweden)

    Caimmi, R.

    2008-12-01

    Full Text Available Two-component systems are conceived as macrogases, and the related equation of state is expressed using the virial theorem for subsystems, under the restriction of homeoidally striated density profiles. Explicit calculations are performed for a useful reference case and a few cases of astrophysical interest, both with and without truncation radius. Shallower density profiles are found to yield an equation of state, $phi=phi(y,m$, characterized (for assigned values of the fractional mass, $m=M_j/ M_i$ by the occurrence of two extremum points, a minimum and a maximum, as found in an earlier attempt. Steeper density profiles produce a similar equation of state, which implies that a special value of $m$ is related to a critical curve where the above mentioned extremum points reduce to a single horizontal inflexion point, and curves below the critical one show no extremum points. The similarity of the isofractional mass curves to van der Waals' isothermal curves, suggests the possibility of a phase transition in a bell-shaped region of the $({sf O}yphi$ plane, where the fractional truncation radius along a selected direction is $y=R_j/R_i$, and the fractional virial potential energy is $phi=(E_{ji}_mathrm{vir}/(E_{ij}_mathrm{vir}$. Further investigation is devoted to mass distributions described by Hernquist (1990 density profiles, for which an additional relation can be used to represent a sample of $N=16$ elliptical galaxies (EGs on the $({sf O}yphi$ plane. Even if the evolution of elliptical galaxies and their hosting dark matter (DM haloes, in the light of the model, has been characterized by equal fractional mass, $m$, and equal scaled truncation radius, or concentration, $Xi_u=R_u/r_u^dagger$, $u=i,j$, still it cannot be considered as strictly homologous, due to different values of fractional truncation radii, $y$, or fractional scaling radii, $y^dagger=r_j^dagger/r_i^dagger$, deduced from sample objects.

  8. Consistency and bicharacteristic analysis of integral porosity shallow water models. Explaining model oversensitivity to mesh design

    Science.gov (United States)

    Guinot, Vincent

    2017-09-01

    The Integral Porosity and Dual Integral Porosity two-dimensional shallow water models have been proposed recently as efficient upscaled models for urban floods. Very little is known so far about their consistency and wave propagation properties. Simple numerical experiments show that both models are unusually sensitive to the computational grid. In the present paper, a two-dimensional consistency and characteristic analysis is carried out for these two models. The following results are obtained: (i) the models are almost insensitive to grid design when the porosity is isotropic, (ii) anisotropic porosity fields induce an artificial polarization of the mass/momentum fluxes along preferential directions when triangular meshes are used and (iii) extra first-order derivatives appear in the governing equations when regular, quadrangular cells are used. The hyperbolic system is thus mesh-dependent, and with it the wave propagation properties of the model solutions. Criteria are derived to make the solution less mesh-dependent, but it is not certain that these criteria can be satisfied at all computational points when real-world situations are dealt with.

  9. Interaction Analysis of a Two-Component System Using Nanodiscs.

    Directory of Open Access Journals (Sweden)

    Patrick Hörnschemeyer

    Full Text Available Two-component systems are the major means by which bacteria couple adaptation to environmental changes. All utilize a phosphorylation cascade from a histidine kinase to a response regulator, and some also employ an accessory protein. The system-wide signaling fidelity of two-component systems is based on preferential binding between the signaling proteins. However, information on the interaction kinetics between membrane embedded histidine kinase and its partner proteins is lacking. Here, we report the first analysis of the interactions between the full-length membrane-bound histidine kinase CpxA, which was reconstituted in nanodiscs, and its cognate response regulator CpxR and accessory protein CpxP. Using surface plasmon resonance spectroscopy in combination with interaction map analysis, the affinity of membrane-embedded CpxA for CpxR was quantified, and found to increase by tenfold in the presence of ATP, suggesting that a considerable portion of phosphorylated CpxR might be stably associated with CpxA in vivo. Using microscale thermophoresis, the affinity between CpxA in nanodiscs and CpxP was determined to be substantially lower than that between CpxA and CpxR. Taken together, the quantitative interaction data extend our understanding of the signal transduction mechanism used by two-component systems.

  10. Rewiring the specificity of two-component signal transduction systems.

    Science.gov (United States)

    Skerker, Jeffrey M; Perchuk, Barrett S; Siryaporn, Albert; Lubin, Emma A; Ashenberg, Orr; Goulian, Mark; Laub, Michael T

    2008-06-13

    Two-component signal transduction systems are the predominant means by which bacteria sense and respond to environmental stimuli. Bacteria often employ tens or hundreds of these paralogous signaling systems, comprised of histidine kinases (HKs) and their cognate response regulators (RRs). Faithful transmission of information through these signaling pathways and avoidance of detrimental crosstalk demand exquisite specificity of HK-RR interactions. To identify the determinants of two-component signaling specificity, we examined patterns of amino acid coevolution in large, multiple sequence alignments of cognate kinase-regulator pairs. Guided by these results, we demonstrate that a subset of the coevolving residues is sufficient, when mutated, to completely switch the substrate specificity of the kinase EnvZ. Our results shed light on the basis of molecular discrimination in two-component signaling pathways, provide a general approach for the rational rewiring of these pathways, and suggest that analyses of coevolution may facilitate the reprogramming of other signaling systems and protein-protein interactions.

  11. The Escherichia coli BarA-UvrY two-component system is a virulence determinant in the urinary tract

    Directory of Open Access Journals (Sweden)

    Georgellis Dimitris

    2006-03-01

    Full Text Available Abstract Background The Salmonella enterica BarA-SirA, the Erwinia carotovora ExpS-ExpA, the Vibrio cholerae BarA-VarA and the Pseudomonas spp GacS-GacA all belong to the same orthologous family of two-component systems as the Escherichia coli BarA-UvrY. In the first four species it has been demonstrated that disruption of this two-component system leads to a clear reduction in virulence of the bacteria. Our aim was to determine if the Escherichia coli BarA-UvrY two-component system is connected with virulence using a monkey cystitis model. Results Cystitis was generated in Macaque fascularis monkeys by infecting the bladder with a 1:1 mixture of the uropathogenic Escherichia coli isolate DS17 and a derivative where the uvrY gene had been disrupted with a kanamycin resistance gene. Urine was collected through bladder punctuation at subsequent time intervals and the relative amount of uvrY mutant was determined. This showed that inactivation of the UvrY response regulator leads to a reduced fitness. In similar competitions in culture flasks with Luria Broth (LB the uvrY mutant rather had a higher fitness than the wild type. When the competitions were done in flasks with human urine the uvrY mutant initially had a lower fitness. This was followed by a fluctuation in the level of mutant in the long-term culture, with a pattern that was specific for the individual urines that were tested. Addition of LB to the different urine competition cultures however clearly led to a consistently higher fitness of the uvrY mutant. Conclusion This paper demonstrates that the BarA-UvrY two-component system is a determinant for virulence in a monkey cystitis model. The observed competition profiles strengthen our previous hypothesis that disruption of the BarA-UvrY two-component system impairs the ability of the bacteria to switch between different carbon sources. The urine in the bladder contains several different carbon sources and its composition changes over

  12. PHASE TRANSITION PROPERTIES OF A TWO COMPONENT FINITE MAGNETIC SUPERLATTICE

    Institute of Scientific and Technical Information of China (English)

    WANG XIAO-GUANG; LIU NING-NING; PAN SHAO-HUA; YANG GUO-ZHEN

    2000-01-01

    We study an (l, n) finite superlattice, which consists of two alternative magnetic materials(components) of l and n atomic layers, respectively. Based on the Ising model, we examine the phase transition properties of the magnetic superlattice. By transfer matrix method we derive the equation for Curie temperature of the superlattice. Numerical results are obtained for the dependence of Curie temperature on the thickness and exchange constants of the superlattice.

  13. Modulational instability of two-component Bose-Einstein condensates in an optical lattice

    CERN Document Server

    Jin, G R; Nahm, K; Jin, Guang-Ri; Kim, Chul Koo; Nahm, Kyun

    2004-01-01

    We study modulational instability of two-component Bose-Einstein condensates in a deep optical lattice, which is modelled as a coupled discrete nonlinear Schr\\"{o}dinger equation. The excitation spectrum and the modulational instability condition of the total system are presented analytically. In the long-wavelength limit, our results agree with the homogeneous two-component Bose-Einstein condensates case. The discreteness effects result in the appearance of the modulational instability for the condensates in miscible region. The numerical calculations confirm our analytical results and show that the interspecies coupling can transfer the instability from one component to another.

  14. Stochastic study of information transmission and population stability in a generic bacterial two-component system

    CERN Document Server

    Mapder, Tarunendu; Banik, Suman K

    2016-01-01

    Studies on the role of fluctuations in signal propagation and on gene regulation in monoclonal bacterial population have been extensively pursued based on the machinery of two-component system. The bacterial two-component system shows noise utilisation through its inherent plasticity. The fluctuations propagation takes place using the phosphotransfer module and the feedback mechanism during gene regulation. To delicately observe the noisy kinetics the generic cascade needs stochastic investigation at the mRNA and protein levels. To this end, we propose a theoretical framework to investigate the noisy signal transduction in a generic two-component system. The model shows reliability in information transmission through quantification of several statistical measures. We further extend our analysis to observe the protein distribution in a population of cells. Through numerical simulation, we identify the regime of the kinetic parameter set that generates a stability switch in the steady state distribution of prot...

  15. Two-Component Signal Transduction Systems in the Cyanobacterium Synechocystis sp. PCC 6803

    Institute of Scientific and Technical Information of China (English)

    LIU Xingguo; HUANG Wei; WU Qingyu

    2006-01-01

    Two-component systems are signal transduction systems which enable bacteria to regulate cellular functions in response to changing environmental conditions. The unicellular Synechocystis sp. PCC 6803 has become a model organism for a range of biochemical and molecular biology studies aiming at investigating environmental stress response. The publication of the complete genome sequence of the cyanobacterium Synechocystis sp. PCC 6803 provided a tremendous stimulus for research in this field, and at least 80 open reading frames were identified as members of the two-component signal transduction systems in this single species of cyanobacteria. To date, functional roles have been determined for only a limited number of such proteins. This review summarizes our current knowledge about the two-component signal transduction systems in Synechocystis sp. PCC 6803 and describes recent achievements in elucidating the functional roles of these systems.

  16. Consistent adjacency-spectral partitioning for the stochastic block model when the model parameters are unknown

    CERN Document Server

    Fishkind, Donniell E; Tang, Minh; Vogelstein, Joshua T; Priebe, Carey E

    2012-01-01

    A stochastic block model consists of a random partition of n vertices into blocks 1,2,...,K for which, conditioned on the partition, every pair of vertices has probability of adjacency entirely determined by the block membership of the two vertices. (The model parameters are K, the distribution of the random partition, and a communication probability matrix M in [0,1]^(K x K) listing the adjacency probabilities associated with all pairs of blocks.) Suppose a realization of the n x n vertex adjacency matrix is observed, but the underlying partition of the vertices into blocks is not observed; the main inferential task is to correctly partition the vertices into the blocks with only a negligible number of vertices misassigned. For this inferential task, Rohe et al. (2011) prove the consistency of spectral partitioning applied to the normalized Laplacian, and Sussman et al. (2011) extend this to prove consistency of spectral partitioning directly on the adjacency matrix; both procedures assume that K and rankM a...

  17. Impacts of photon bending on observational aspects of Two Component Advective Flow

    CERN Document Server

    Chatterjee, Arka

    2016-01-01

    Nature of photon trajectories in a curved spacetime around black holes are studied without constraining their motion to any plane. Impacts of photon bending are separately scrutinized for Keplerian and CENBOL components of Two Component Advective Flow (TCAF) model. Parameters like Red shift, Bolometric Flux, temperature profile and time of arrival of photons are also computed.

  18. Two-Component Multi-Parameter Time-Frequency Electromagnetics

    Institute of Scientific and Technical Information of China (English)

    HuangZhou; DongWeibin; HeTiezhi

    2003-01-01

    The two-component multi-parameter time-frequency electromagnetic method, used for the development of oilfields,makes use of both the traditional individual conductivity parameters of oil-producing layers and the dispersion information of the conductivity, i.e., the induced polarization parameter. The frequency-domain dispersion data is used to delineate the contacts between oil and water and the time domain dBz/dt component is used to estimate the depths to the un-known reservoirs so as to offer significant data in many aspects for oil exploration and detection.

  19. Two component micro injection moulding for moulded interconnect devices

    DEFF Research Database (Denmark)

    Islam, Aminul

    2008-01-01

    Moulded interconnect devices (MIDs) contain huge possibilities for many applications in micro electro-mechanical-systems because of their capability of reducing the number of components, process steps and finally in miniaturization of the product. Among the available MID process chains, two...... and a reasonable adhesion between them. • Selective metallization of the two component plastic part (coating one polymer with metal and leaving the other one uncoated) To overcome these two main issues in MID fabrication for micro applications, the current Ph.D. project explores the technical difficulties...

  20. Two-component Fermi gas in a Harmonic Trap

    CERN Document Server

    Yi, X X; Cui, H T; Zhang, C M

    2002-01-01

    We consider a mixture of two-component Fermi gases at low temperature. The density profile of this degenerate Fermi gas is calculated under the semiclassical approximation. The results show that the fermion-fermion interactions make a large correction to the density profile at low temperature. The phase separation of such a mixture is also discussed for both attractive and repulsive interatomic interactions, and the numerical calculations demonstrate the exist of a stable temperature region $T_{c1}

  1. Interaction potentials and thermodynamic properties of two component semiclassical plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T. S.; Moldabekov, Zh. A.; Ismagambetova, T. N. [Al-Farabi Kazakh National University, IETP, 71 al-Farabi Av., Almaty 050040 (Kazakhstan); Gabdullin, M. T. [Al-Farabi Kazakh National University, NNLOT, 71 al-Farabi Av., Almaty 050040 (Kazakhstan)

    2014-01-15

    In this paper, the effective interaction potential in two component semiclassical plasma, taking into account the long-range screening and the quantum-mechanical diffraction effects at short distances, is obtained on the basis of dielectric response function method. The structural properties of the semiclassical plasma are considered. The thermodynamic characteristics (the internal energy and the equation of state) are calculated using two methods: the method of effective potentials and the method of micropotentials with screening effect taken into account by the Ornstein-Zernike equation in the HNC approximation.

  2. Itinerant ferromagnetism in a polarized two-component Fermi gas.

    Science.gov (United States)

    Massignan, Pietro; Yu, Zhenhua; Bruun, Georg M

    2013-06-07

    We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles, the repulsive polarons. Phase diagrams as a function of polarization, temperature, mass imbalance, and repulsive polaron energy, as well as scattering length and range parameter, are provided. We show that the lifetime of the repulsive polaron increases significantly with the interaction range and the mass of the minority atoms, raising the prospects of detecting the transition to the elusive itinerant ferromagnetic state with ultracold atoms.

  3. Two component micro injection molding for MID fabrication

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2009-01-01

    Molded Interconnect Devices (MIDs) are plastic substrates with electrical infrastructure. The fabrication of MIDs is usually based on injection molding and different process chains may be identified from this starting point. The use of MIDs has been driven primarily by the automotive sector......, but recently the medical sector seems more and more interested. In particular the possibility of miniaturization of 3D components with electrical infrastructure is attractive. The paper describes possible manufacturing routes and challenges of miniaturized MIDs based on two component micro injection molding...

  4. Consistent and Conservative Model Selection with the Adaptive LASSO in Stationary and Nonstationary Autoregressions

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl

    2015-01-01

    the tuning parameter by Bayesian Information Criterion (BIC) results in consistent model selection. However, it is also shown that the adaptive Lasso has no power against shrinking alternatives of the form c/T if it is tuned to perform consistent model selection. We show that if the adaptive Lasso is tuned...

  5. Towards a consistent model of the Galaxy; 2, Derivation of the model

    CERN Document Server

    Méra, D; Schäffer, R

    1998-01-01

    We use the calculations derived in a previous paper (Méra, Chabrier and Schaeffer, 1997), based on observational constraints arising from star counts, microlensing experiments and kinematic properties, to determine the amount of dark matter under the form of stellar and sub-stellar objects in the different parts of the Galaxy. This yields the derivation of different mass-models for the Galaxy. In the light of all the afore-mentioned constraints, we discuss two models that correspond to different conclusions about the nature and the location of the Galactic dark matter. In the first model there is a small amount of dark matter in the disk, and a large fraction of the dark matter in the halo is still undetected and likely to be non-baryonic. The second, less conventional model is consistent with entirely, or at least predominantly baryonic dark matter, under the form of brown dwarfs in the disk and white dwarfs in the dark halo. We derive observational predictions for these two models which should be verifiabl...

  6. Evolution of two-component signal transduction systems.

    Science.gov (United States)

    Capra, Emily J; Laub, Michael T

    2012-01-01

    To exist in a wide range of environmental niches, bacteria must sense and respond to a variety of external signals. A primary means by which this occurs is through two-component signal transduction pathways, typically composed of a sensor histidine kinase that receives the input stimuli and then phosphorylates a response regulator that effects an appropriate change in cellular physiology. Histidine kinases and response regulators have an intrinsic modularity that separates signal input, phosphotransfer, and output response; this modularity has allowed bacteria to dramatically expand and diversify their signaling capabilities. Recent work has begun to reveal the molecular basis by which two-component proteins evolve. How and why do orthologous signaling proteins diverge? How do cells gain new pathways and recognize new signals? What changes are needed to insulate a new pathway from existing pathways? What constraints are there on gene duplication and lateral gene transfer? Here, we review progress made in answering these questions, highlighting how the integration of genome sequence data with experimental studies is providing major new insights.

  7. The Evolution of Two-Component Signal Transduction Systems

    Science.gov (United States)

    Capra, Emily J.; Laub, Michael T.

    2014-01-01

    To exist in a wide range of environmental niches, bacteria must sense and respond to a myriad of external signals. A primary means by which this occurs is through two-component signal transduction pathways, typically comprised of a histidine kinase that receives the input stimuli and a response regulator that effects an appropriate change in cellular physiology. Histidine kinases and response regulators have an intrinsic modularity that separates signal input, phosphotransfer, and output response; this modularity has allowed bacteria to dramatically expand and diversify their signaling capabilities. Recent work has begun to reveal the molecular basis by which two-component proteins evolve. How and why do orthologous signaling proteins diverge? How do cells gain new pathways and recognize new signals? What changes are needed to insulate a new pathway from existing pathways? What constraints are there on gene duplication and lateral gene transfer? Here, we review progress made in answering these questions, highlighting how the integration of genome sequence data with experimental studies is providing major new insights. PMID:22746333

  8. Self-consistent modeling of DEMOs with 1.5D BALDUR integrated predictive modeling code

    Science.gov (United States)

    Wisitsorasak, A.; Somjinda, B.; Promping, J.; Onjun, T.

    2017-02-01

    Self-consistent simulations of four DEMO designs proposed by teams from China, Europe, India, and Korea are carried out using the BALDUR integrated predictive modeling code in which theory-based models are used, for both core transport and boundary conditions. In these simulations, a combination of the NCLASS neoclassical transport and multimode (MMM95) anomalous transport model is used to compute a core transport. The boundary is taken to be at the top of the pedestal, where the pedestal values are described using a pedestal temperature model based on a combination of magnetic and flow shear stabilization, pedestal width scaling and an infinite- n ballooning pressure gradient model and a pedestal density model based on a line average density. Even though an optimistic scenario is considered, the simulation results suggest that, with the exclusion of ELMs, the fusion gain Q obtained for these reactors is pessimistic compared to their original designs, i.e. 52% for the Chinese design, 63% for the European design, 22% for the Korean design, and 26% for the Indian design. In addition, the predicted bootstrap current fractions are also found to be lower than their original designs, as fractions of their original designs, i.e. 0.49 (China), 0.66 (Europe), and 0.58 (India). Furthermore, in relation to sensitivity, it is found that increasing values of the auxiliary heating power and the electron line average density from their design values yield an enhancement of fusion performance. In addition, inclusion of sawtooth oscillation effects demonstrate positive impacts on the plasma and fusion performance in European, Indian and Korean DEMOs, but degrade the performance in the Chinese DEMO.

  9. Adhesion-induced phase behavior of two-component membranes and vesicles.

    Science.gov (United States)

    Rouhiparkouhi, Tahereh; Weikl, Thomas R; Discher, Dennis E; Lipowsky, Reinhard

    2013-01-22

    The interplay of adhesion and phase separation is studied theoretically for two-component membranes that can phase separate into two fluid phases such as liquid-ordered and liquid-disordered phases. Many adhesion geometries provide two different environments for these membranes and then partition the membranes into two segments that differ in their composition. Examples are provided by adhering vesicles, by hole- or pore-spanning membranes, and by membranes supported by chemically patterned surfaces. Generalizing a lattice model for binary mixtures to these adhesion geometries, we show that the phase behavior of the adhering membranes depends, apart from composition and temperature, on two additional parameters, the area fraction of one membrane segment and the affinity contrast between the two segments. For the generic case of non-vanishing affinity contrast, the adhering membranes undergo two distinct phase transitions and the phase diagrams in the composition/temperature plane have a generic topology that consists of two two-phase coexistence regions separated by an intermediate one-phase region. As a consequence, phase separation and domain formation is predicted to occur separately in each of the two membrane segments but not in both segments simultaneously. Furthermore, adhesion is also predicted to suppress the phase separation process for certain regions of the phase diagrams. These generic features of the adhesion-induced phase behavior are accessible to experiment.

  10. Two-component systems and toxinogenesis regulation in Clostridium botulinum.

    Science.gov (United States)

    Connan, Chloé; Popoff, Michel R

    2015-05-01

    Botulinum neurotoxins (BoNTs) are the most potent toxins ever known. They are mostly produced by Clostridium botulinum but also by other clostridia. BoNTs associate with non-toxic proteins (ANTPs) to form complexes of various sizes. Toxin production is highly regulated through complex networks of regulatory systems involving an alternative sigma factor, BotR, and at least 6 recently described two-component systems (TCSs). TCSs allow bacteria to sense environmental changes and to respond to various stimuli by regulating the expression of specific genes at a transcriptional level. Several environmental stimuli have been identified to positively or negatively regulate toxin synthesis; however, the link between environmental stimuli and TCSs is still elusive. This review aims to highlight the role of TCSs as a central point in the regulation of toxin production in C. botulinum.

  11. Exact two-component relativistic energy band theory and application

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Rundong; Zhang, Yong; Xiao, Yunlong; Liu, Wenjian, E-mail: liuwj@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871 (China)

    2016-01-28

    An exact two-component (X2C) relativistic density functional theory in terms of atom-centered basis functions is proposed for relativistic calculations of band structures and structural properties of periodic systems containing heavy elements. Due to finite radial extensions of the local basis functions, the periodic calculation is very much the same as a molecular calculation, except only for an Ewald summation for the Coulomb potential of fluctuating periodic monopoles. For comparison, the nonrelativistic and spin-free X2C counterparts are also implemented in parallel. As a first and pilot application, the band gaps, lattice constants, cohesive energies, and bulk moduli of AgX (X = Cl, Br, I) are calculated to compare with other theoretical results.

  12. Dynamics of two-component membranes surrounded by viscoelastic media.

    Science.gov (United States)

    Komura, Shigeyuki; Yasuda, Kento; Okamoto, Ryuichi

    2015-11-01

    We discuss the dynamics of two-component fluid membranes which are surrounded by viscoelastic media. We assume that membrane-embedded proteins can diffuse laterally and induce a local membrane curvature. The mean squared displacement of a tagged membrane segment is obtained as a generalized Einstein relation. When the elasticity of the surrounding media obeys a power-law behavior in frequency, an anomalous diffusion of the membrane segment is predicted. We also consider the situation where the proteins generate active non-equilibrium forces. The generalized Einstein relation is further modified by an effective temperature that depends on the force dipole energy. The obtained generalized Einstein relations are useful for membrane microrheology experiments.

  13. Exact two-component relativistic energy band theory and application.

    Science.gov (United States)

    Zhao, Rundong; Zhang, Yong; Xiao, Yunlong; Liu, Wenjian

    2016-01-28

    An exact two-component (X2C) relativistic density functional theory in terms of atom-centered basis functions is proposed for relativistic calculations of band structures and structural properties of periodic systems containing heavy elements. Due to finite radial extensions of the local basis functions, the periodic calculation is very much the same as a molecular calculation, except only for an Ewald summation for the Coulomb potential of fluctuating periodic monopoles. For comparison, the nonrelativistic and spin-free X2C counterparts are also implemented in parallel. As a first and pilot application, the band gaps, lattice constants, cohesive energies, and bulk moduli of AgX (X = Cl, Br, I) are calculated to compare with other theoretical results.

  14. Recent advances in description of few two-component fermions

    CERN Document Server

    Kartavtsev, O I

    2012-01-01

    Overview of the recent advances in description of the few two-component fermions is presented. The zero-range interaction limit is generally considered to discuss the principal aspects of the few-body dynamics. Significant attention is paid to detailed description of two identical fermions of mass $m$ and a distinct particle of mass $m_1$; two universal $L^P = 1^-$ bound states arise for mass ratio $m/m_1$ increasing up to the critical value $\\mu_c \\approx 13.607$, beyond which the Efimov effect takes place. The topics considered include rigorous treatment of the few-fermion problem in the zero-range interaction limit, low-dimensional results, the four-body energy spectrum, crossover of the energy spectra for $m/m_1$ near the critical value $\\mu_c $, and properties of potential-dependent states. At last, enlisted are the problems, whose solution is in due course.

  15. Molecular Mechanisms of Two-Component Signal Transduction.

    Science.gov (United States)

    Zschiedrich, Christopher P; Keidel, Victoria; Szurmant, Hendrik

    2016-09-25

    Two-component systems (TCS) comprising sensor histidine kinases and response regulator proteins are among the most important players in bacterial and archaeal signal transduction and also occur in reduced numbers in some eukaryotic organisms. Given their importance to cellular survival, virulence, and cellular development, these systems are among the most scrutinized bacterial proteins. In the recent years, a flurry of bioinformatics, genetic, biochemical, and structural studies have provided detailed insights into many molecular mechanisms that underlie the detection of signals and the generation of the appropriate response by TCS. Importantly, it has become clear that there is significant diversity in the mechanisms employed by individual systems. This review discusses the current knowledge on common themes and divergences from the paradigm of TCS signaling. An emphasis is on the information gained by a flurry of recent structural and bioinformatics studies.

  16. Bond strength of two component injection moulded MID

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2006-01-01

    Most products of the future will require industrially adapted, cost effective production processes and on this issue two-component (2K) injection moulding is a potential candidate for MID manufacturing. MID based on 2k injection moulded plastic part with selectively metallised circuit tracks allows...... the integration of electrical and mechanical functionalities in a real 3D structure. If 2k injection moulding is applied with two polymers, of which one is plateable and the other is not, it will be possible to make 3D electrical structures directly on the component. To be applicable in the real engineering field...... the two different plastic materials in the MID structure require good bonding between them. This paper finds suitable combinations of materials for MIDs from both bond strength and metallisation view-point. Plastic parts were made by two-shot injection moulding and the effects of some important process...

  17. Determinants of specificity in two-component signal transduction.

    Science.gov (United States)

    Podgornaia, Anna I; Laub, Michael T

    2013-04-01

    Maintaining the faithful flow of information through signal transduction pathways is critical to the survival and proliferation of organisms. This problem is particularly challenging as many signaling proteins are part of large, paralogous families that are highly similar at the sequence and structural levels, increasing the risk of unwanted cross-talk. To detect environmental signals and process information, bacteria rely heavily on two-component signaling systems comprised of sensor histidine kinases and their cognate response regulators. Although most species encode dozens of these signaling pathways, there is relatively little cross-talk, indicating that individual pathways are well insulated and highly specific. Here, we review the molecular mechanisms that enforce this specificity. Further, we highlight recent studies that have revealed how these mechanisms evolve to accommodate the introduction of new pathways by gene duplication. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Rewiring two-component signal transduction with small RNAs.

    Science.gov (United States)

    Göpel, Yvonne; Görke, Boris

    2012-04-01

    Bacterial two-component systems (TCSs) and small regulatory RNAs (sRNAs) form densely interconnected networks that integrate and transduce information from the environment into fine-tuned changes of gene expression. Many TCSs control target genes indirectly through regulation of sRNAs, which in turn regulate gene expression by base-pairing with mRNAs or targeting a protein. Conversely, sRNAs may control TCS synthesis, thereby recruiting the TCS regulon to other regulatory networks. Several TCSs control expression of multiple homologous sRNAs providing the regulatory networks with further flexibility. These sRNAs act redundantly, additively or hierarchically on targets. The regulatory speed of sRNAs and their unique features in gene regulation make them ideal players extending the flexibility, dynamic range or timing of TCS signaling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Auxiliary phosphatases in two-component signal transduction.

    Science.gov (United States)

    Silversmith, Ruth E

    2010-04-01

    Signal termination in two-component systems occurs by loss of the phosphoryl group from the response regulator protein. This review explores our current understanding of the structures, catalytic mechanisms and means of regulation of the known families of phosphatases that catalyze response regulator dephosphorylation. The CheZ and CheC/CheX/FliY families, despite different overall structures, employ identical catalytic strategies using an amide side chain to orient a water molecule for in-line attack of the aspartyl phosphate. Spo0E phosphatases contain sequence and structural features that suggest a strategy similar to the chemotaxis phosphatases but the mechanism used by the Rap phosphatases is not yet elucidated. Identification of features shared by phosphatase families may aid in the identification of currently unrecognized classes of response regulator phosphatases. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. How insects overcome two-component plant chemical defence

    DEFF Research Database (Denmark)

    Pentzold, Stefan; Zagrobelny, Mika; Rook, Frederik;

    2014-01-01

    Insect herbivory is often restricted by glucosylated plant chemical defence compounds that are activated by plant β-glucosidases to release toxic aglucones upon plant tissue damage. Such two-component plant defences are widespread in the plant kingdom and examples of these classes of compounds...... are alkaloid, benzoxazinoid, cyanogenic and iridoid glucosides as well as glucosinolates and salicinoids. Conversely, many insects have evolved a diversity of counteradaptations to overcome this type of constitutive chemical defence. Here we discuss that such counter-adaptations occur at different time points......-component chemical defence. These adaptations include host plant choice, non-disruptive feeding guilds and various physiological adaptations as well as metabolic enzymatic strategies of the insect’s digestive system. Furthermore, insect adaptations often act in combination, may exist in both generalists...

  1. Parallel TREE code for two-component ultracold plasma analysis

    Science.gov (United States)

    Jeon, Byoungseon; Kress, Joel D.; Collins, Lee A.; Grønbech-Jensen, Niels

    2008-02-01

    The TREE method has been widely used for long-range interaction N-body problems. We have developed a parallel TREE code for two-component classical plasmas with open boundary conditions and highly non-uniform charge distributions. The program efficiently handles millions of particles evolved over long relaxation times requiring millions of time steps. Appropriate domain decomposition and dynamic data management were employed, and large-scale parallel processing was achieved using an intermediate level of granularity of domain decomposition and ghost TREE communication. Even though the computational load is not fully distributed in fine grains, high parallel efficiency was achieved for ultracold plasma systems of charged particles. As an application, we performed simulations of an ultracold neutral plasma with a half million particles and a half million time steps. For the long temporal trajectories of relaxation between heavy ions and light electrons, large configurations of ultracold plasmas can now be investigated, which was not possible in past studies.

  2. A consistent model for \\pi N transition distribution amplitudes and backward pion electroproduction

    CERN Document Server

    Lansberg, J P; Semenov-Tian-Shansky, K; Szymanowski, L

    2011-01-01

    The extension of the concept of generalized parton distributions leads to the introduction of baryon to meson transition distribution amplitudes (TDAs), non-diagonal matrix elements of the nonlocal three quark operator between a nucleon and a meson state. We present a general framework for modelling nucleon to pion ($\\pi N$) TDAs. Our main tool is the spectral representation for \\pi N TDAs in terms of quadruple distributions. We propose a factorized Ansatz for quadruple distributions with input from the soft-pion theorem for \\pi N TDAs. The spectral representation is complemented with a D-term like contribution from the nucleon exchange in the cross channel. We then study backward pion electroproduction in the QCD collinear factorization approach in which the non-perturbative part of the amplitude involves \\pi N TDAs. Within our two component model for \\pi N TDAs we update previous leading-twist estimates of the unpolarized cross section. Finally, we compute the transverse target single spin asymmetry as a fu...

  3. A Symplectic Multi-Particle Tracking Model for Self-Consistent Space-Charge Simulation

    CERN Document Server

    Qiang, Ji

    2016-01-01

    Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multi-particle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.

  4. A CVAR scenario for a standard monetary model using theory-consistent expectations

    DEFF Research Database (Denmark)

    Juselius, Katarina

    2017-01-01

    A theory-consistent CVAR scenario describes a set of testable regularities capturing basic assumptions of the theoretical model. Using this concept, the paper considers a standard model for exchange rate determination and shows that all assumptions about the model's shock structure and steady...

  5. Development of a Kohn-Sham like potential in the Self-Consistent Atomic Deformation Model

    CERN Document Server

    Mehl, M J; Stokes, H T

    1996-01-01

    This is a brief description of how to derive the local ``atomic'' potentials from the Self-Consistent Atomic Deformation (SCAD) model density function. Particular attention is paid to the spherically averaged case.

  6. Development of a Kohn-Sham like potential in the Self-Consistent Atomic Deformation Model

    OpenAIRE

    Mehl, M. J.; Boyer, L. L.; Stokes, H. T.

    1996-01-01

    This is a brief description of how to derive the local ``atomic'' potentials from the Self-Consistent Atomic Deformation (SCAD) model density function. Particular attention is paid to the spherically averaged case.

  7. Bayesian nonparametric estimation and consistency of mixed multinomial logit choice models

    CERN Document Server

    De Blasi, Pierpaolo; Lau, John W; 10.3150/09-BEJ233

    2011-01-01

    This paper develops nonparametric estimation for discrete choice models based on the mixed multinomial logit (MMNL) model. It has been shown that MMNL models encompass all discrete choice models derived under the assumption of random utility maximization, subject to the identification of an unknown distribution $G$. Noting the mixture model description of the MMNL, we employ a Bayesian nonparametric approach, using nonparametric priors on the unknown mixing distribution $G$, to estimate choice probabilities. We provide an important theoretical support for the use of the proposed methodology by investigating consistency of the posterior distribution for a general nonparametric prior on the mixing distribution. Consistency is defined according to an $L_1$-type distance on the space of choice probabilities and is achieved by extending to a regression model framework a recent approach to strong consistency based on the summability of square roots of prior probabilities. Moving to estimation, slightly different te...

  8. Thermodynamically consistent mesoscopic fluid particle models for a van der Waals fluid

    OpenAIRE

    Serrano, Mar; Español, Pep

    2000-01-01

    The GENERIC structure allows for a unified treatment of different discrete models of hydrodynamics. We first propose a finite volume Lagrangian discretization of the continuum equations of hydrodynamics through the Voronoi tessellation. We then show that a slight modification of these discrete equations has the GENERIC structure. The GENERIC structure ensures thermodynamic consistency and allows for the introduction of correct thermal noise. In this way, we obtain a consistent discrete model ...

  9. Adjoint-consistent formulations of slip models for coupled electroosmotic flow systems

    KAUST Repository

    Garg, Vikram V

    2014-09-27

    Background Models based on the Helmholtz `slip\\' approximation are often used for the simulation of electroosmotic flows. The objectives of this paper are to construct adjoint-consistent formulations of such models, and to develop adjoint-based numerical tools for adaptive mesh refinement and parameter sensitivity analysis. Methods We show that the direct formulation of the `slip\\' model is adjoint inconsistent, and leads to an ill-posed adjoint problem. We propose a modified formulation of the coupled `slip\\' model, which is shown to be well-posed, and therefore automatically adjoint-consistent. Results Numerical examples are presented to illustrate the computation and use of the adjoint solution in two-dimensional microfluidics problems. Conclusions An adjoint-consistent formulation for Helmholtz `slip\\' models of electroosmotic flows has been proposed. This formulation provides adjoint solutions that can be reliably used for mesh refinement and sensitivity analysis.

  10. Dynamical principles of two-component genetic oscillators.

    Directory of Open Access Journals (Sweden)

    Raúl Guantes

    2006-03-01

    Full Text Available Genetic oscillators based on the interaction of a small set of molecular components have been shown to be involved in the regulation of the cell cycle, the circadian rhythms, or the response of several signaling pathways. Uncovering the functional properties of such oscillators then becomes important for the understanding of these cellular processes and for the characterization of fundamental properties of more complex clocks. Here, we show how the dynamics of a minimal two-component oscillator is drastically affected by its genetic implementation. We consider a repressor and activator element combined in a simple logical motif. While activation is always exerted at the transcriptional level, repression is alternatively operating at the transcriptional (Design I or post-translational (Design II level. These designs display differences on basic oscillatory features and on their behavior with respect to molecular noise or entrainment by periodic signals. In particular, Design I induces oscillations with large activator amplitudes and arbitrarily small frequencies, and acts as an "integrator" of external stimuli, while Design II shows emergence of oscillations with finite, and less variable, frequencies and smaller amplitudes, and detects better frequency-encoded signals ("resonator". Similar types of stimulus response are observed in neurons, and thus this work enables us to connect very different biological contexts. These dynamical principles are relevant for the characterization of the physiological roles of simple oscillator motifs, the understanding of core machineries of complex clocks, and the bio-engineering of synthetic oscillatory circuits.

  11. Hamiltonian of a homogeneous two-component plasma.

    Science.gov (United States)

    Essén, Hanno; Nordmark, A

    2004-03-01

    The Hamiltonian of one- and two-component plasmas is calculated in the negligible radiation Darwin approximation. Since the Hamiltonian is the phase space energy of the system its form indicates, according to statistical mechanics, the nature of the thermal equilibrium that plasmas strive to attain. The main issue is the length scale of the magnetic interaction energy. In the past a screening length lambda=1/square root of r(e)n], with n number density and r(e) classical electron radius, has been derived. We address the question whether the corresponding longer screening range obtained from the classical proton radius is physically relevant and the answer is affirmative. Starting from the Darwin Lagrangian it is nontrivial to find the Darwin Hamiltonian of a macroscopic system. For a homogeneous system we resolve the difficulty by temporarily approximating the particle number density by a smooth constant density. This leads to Yukawa-type screened vector potential. The nontrivial problem of finding the corresponding, divergence free, Coulomb gauge version is solved.

  12. The multi-step phosphorelay mechanism of unorthodox two-component systems in E. coli realizes ultrasensitivity to stimuli while maintaining robustness to noises.

    Science.gov (United States)

    Kim, Jeong-Rae; Cho, Kwang-Hyun

    2006-12-01

    E. coli has two-component systems composed of histidine kinase proteins and response regulator proteins. For a given extracellular stimulus, a histidine kinase senses the stimulus, autophosphorylates and then passes the phosphates to the cognate response regulators. The histidine kinase in an orthodox two-component system has only one histidine domain where the autophosphorylation occurs, but a histidine kinase in some unusual two-component systems (unorthodox two-component systems) has two histidine domains and one aspartate domain. So, the unorthodox two-component systems have more complex phosphorelay mechanisms than orthodox two-component systems. In general, the two-component systems are required to promptly respond to external stimuli for survival of E. coli. In this respect, the complex multi-step phosphorelay mechanism seems to be disadvantageous, but there are several unorthodox two-component systems in E. coli. In this paper, we investigate the reason why such unorthodox two-component systems are present in E. coli. For this purpose, we have developed simplified mathematical models of both orthodox and unorthodox two-component systems and analyzed their dynamical characteristics through extensive computer simulations. We have finally revealed that the unorthodox two-component systems realize ultrasensitive responses to external stimuli and also more robust responses to noises than the orthodox two-component systems.

  13. Assessing the consistency between short-term global temperature trends in observations and climate model projections

    CERN Document Server

    Michaels, Patrick J; Christy, John R; Herman, Chad S; Liljegren, Lucia M; Annan, James D

    2013-01-01

    Assessing the consistency between short-term global temperature trends in observations and climate model projections is a challenging problem. While climate models capture many processes governing short-term climate fluctuations, they are not expected to simulate the specific timing of these somewhat random phenomena - the occurrence of which may impact the realized trend. Therefore, to assess model performance, we develop distributions of projected temperature trends from a collection of climate models running the IPCC A1B emissions scenario. We evaluate where observed trends of length 5 to 15 years fall within the distribution of model trends of the same length. We find that current trends lie near the lower limits of the model distributions, with cumulative probability-of-occurrence values typically between 5 percent and 20 percent, and probabilities below 5 percent not uncommon. Our results indicate cause for concern regarding the consistency between climate model projections and observed climate behavior...

  14. Histidine Phosphotransfer Proteins in Fungal Two-Component Signal Transduction Pathways

    OpenAIRE

    2013-01-01

    The histidine phosphotransfer (HPt) protein Ypd1 is an important participant in the Saccharomyces cerevisiae multistep two-component signal transduction pathway and, unlike the expanded histidine kinase gene family, is encoded by a single gene in nearly all model and pathogenic fungi. Ypd1 is essential for viability in both S. cerevisiae and in Cryptococcus neoformans. These and other aspects of Ypd1 biology, combined with the availability of structural and mutational data in S. cerevisiae, s...

  15. A Possible Two-Component Structure of the Non-Perturbative Pomeron

    CERN Document Server

    Gauron, P; Gauron, Pierre; Nicolescu, Basarab

    2000-01-01

    We propose a QCD-inspired two-component Pomeron form which gives an excellent description of the proton-proton, pi-proton, kaon-proton, gamma-proton and gamma-gamma total cross sections. Our fit has a better CHI2/dof for a smaller number of parameters as compared with the PDG fit. Our 2-Pomeron form is fully compatible with weak Regge exchange-degeneracy, universality, Regge factorization and the generalized vector dominance model.

  16. Origin and evolution of two-component debris discs and an application to the q$^1$ Eridani system

    CERN Document Server

    Schüppler, Christian; Löhne, Torsten; Booth, Mark; Kirchschlager, Florian; Wolf, Sebastian

    2016-01-01

    Many debris discs reveal a two-component structure, with an outer Kuiper-belt analogue and a warm inner component whose origin is still a matter of debate. One possibility is that warm emission stems from an "asteroid belt" closer in to the star. We consider a scenario in which a set of giant planets is formed in an initially extended planetesimal disc. These planets carve a broad gap around their orbits, splitting up the disc into the outer and the inner belts. After the gas dispersal, both belts undergo collisional evolution in a steady-state regime. This scenario is explored with detailed collisional simulations involving realistic physics to describe a long-term collisional depletion of the two-component disc. We find that the inner disc may be able to retain larger amounts of material at older ages than thought before on the basis of simplified analytic models. We show that the proposed scenario is consistent with a suite of thermal emission and scattered light observational data for a bright two-tempera...

  17. Prioritization of a plant polysaccharide over a mucus carbohydrate is enforced by a Bacteroides hybrid two-component system.

    Science.gov (United States)

    Lynch, Jonathan B; Sonnenburg, Justin L

    2012-08-01

    Bacteroides is a dominant genus within the intestinal microbiota of healthy humans. Key adaptations of the Bacteroides to the dynamic intestinal ecosystem include a diverse repertoire of genes involved in sensing and processing numerous diet- and host-derived polysaccharides. One such adaptation is the carbohydrate-sensing hybrid two-component system (HTCS) family of signalling sensors, which has been widely expanded within the Bacteroides. Using Bacteroides thetaiotaomicron as a model, we have created a chimeric HTCS consisting of the well-characterized sensing domain of one HTCS, BT1754, and the regulatory domain of another HTCS, BT0366, to explore the regulatory capabilities of these molecules. We found that the BT0366 regulatory region directly binds to and mediates induction of the adjacent polysaccharide utilization locus (PUL) using whole-genome transcriptional profiling after inducing signalling through our chimeric protein. We also found that BT0366 activation simultaneously leads to repression of distal PULs involved in mucus carbohydrate consumption. These results suggest a novel mechanism by which an HTCS enforces a nutrient hierarchy within the Bacteroides via induction and repression of multiple PULs. Thus, hybrid two-component systems provide a mechanism for prioritizing consumption of carbohydrates through simultaneous binding and regulation of multiple polysaccharide utilization loci. © 2012 Blackwell Publishing Ltd.

  18. STRONGLY CONSISTENT ESTIMATION FOR A MULTIVARIATE LINEAR RELATIONSHIP MODEL WITH ESTIMATED COVARIANCES MATRIX

    Institute of Scientific and Technical Information of China (English)

    Yee LEUNG; WU Kefa; DONG Tianxin

    2001-01-01

    In this paper, a multivariate linear functional relationship model, where the covariance matrix of the observational errors is not restricted, is considered. The parameter estimation of this model is discussed. The estimators are shown to be a strongly consistent estimation under some mild conditions on the incidental parameters.

  19. Physically-consistent subgrid-scale models for large-eddy simulation of incompressible turbulent flows

    CERN Document Server

    Silvis, Maurits H

    2015-01-01

    Assuming a general constitutive relation for the turbulent stresses in terms of the local large-scale velocity gradient, we constructed a class of subgrid-scale models for large-eddy simulation that are consistent with important physical and mathematical properties. In particular, they preserve symmetries of the Navier-Stokes equations and exhibit the proper near-wall scaling. They furthermore show desirable dissipation behavior and are capable of describing nondissipative effects. We provided examples of such physically-consistent models and showed that existing subgrid-scale models do not all satisfy the desired properties.

  20. Dynamic properties of the energy loss of multi-MeV charged particles traveling in two-component warm dense plasmas

    Science.gov (United States)

    Fu, Zhen-Guo; Wang, Zhigang; Li, Meng-Lei; Li, Da-Fang; Kang, Wei; Zhang, Ping

    2016-12-01

    The energy loss of multi-MeV charged particles moving in two-component warm dense plasmas (WDPs) is studied theoretically beyond the random-phase approximation. The short-range correlations between particles are taken into account via dynamic local field corrections (DLFC) in a Mermin dielectric function for two-component plasmas. The mean ionization states are obtained by employing the detailed configuration accounting model. The Yukawa-type effective potential is used to derive the DLFC. Numerically, the DLFC are obtained via self-consistent iterative operations. We find that the DLFC are significant around the maximum of the stopping power. Furthermore, by using the two-component extended Mermin dielectric function model including the DLFC, the energy loss of a proton with an initial energy of ˜15 MeV passing through a WDP of beryllium with an electronic density around the solid value ne≈3 ×1023cm-3 and with temperature around ˜40 eV is estimated numerically. The numerical result is reasonably consistent with the experimental observations [A. B. Zylsta et al., Phys. Rev. Lett. 111, 215002 (2013), 10.1103/PhysRevLett.111.215002]. Our results show that the partial ionization and the dynamic properties should be of importance for the stopping of charged particles moving in the WDP.

  1. New geometric design consistency model based on operating speed profiles for road safety evaluation.

    Science.gov (United States)

    Camacho-Torregrosa, Francisco J; Pérez-Zuriaga, Ana M; Campoy-Ungría, J Manuel; García-García, Alfredo

    2013-12-01

    To assist in the on-going effort to reduce road fatalities as much as possible, this paper presents a new methodology to evaluate road safety in both the design and redesign stages of two-lane rural highways. This methodology is based on the analysis of road geometric design consistency, a value which will be a surrogate measure of the safety level of the two-lane rural road segment. The consistency model presented in this paper is based on the consideration of continuous operating speed profiles. The models used for their construction were obtained by using an innovative GPS-data collection method that is based on continuous operating speed profiles recorded from individual drivers. This new methodology allowed the researchers to observe the actual behavior of drivers and to develop more accurate operating speed models than was previously possible with spot-speed data collection, thereby enabling a more accurate approximation to the real phenomenon and thus a better consistency measurement. Operating speed profiles were built for 33 Spanish two-lane rural road segments, and several consistency measurements based on the global and local operating speed were checked. The final consistency model takes into account not only the global dispersion of the operating speed, but also some indexes that consider both local speed decelerations and speeds over posted speeds as well. For the development of the consistency model, the crash frequency for each study site was considered, which allowed estimating the number of crashes on a road segment by means of the calculation of its geometric design consistency. Consequently, the presented consistency evaluation method is a promising innovative tool that can be used as a surrogate measure to estimate the safety of a road segment.

  2. The fundamental solution for a consistent complex model of the shallow shell equations

    OpenAIRE

    Matthew P. Coleman

    1999-01-01

    The calculation of the Fourier transforms of the fundamental solution in shallow shell theory ostensibly was accomplished by J. L. Sanders [J. Appl. Mech. 37 (1970), 361-366]. However, as is shown in detail in this paper, the complex model used by Sanders is, in fact, inconsistent. This paper provides a consistent version of Sanders's complex model, along with the Fourier transforms of the fundamental solution for this corrected model. The inverse Fourier transforms are then calculated for th...

  3. Consistent Fundamental Matrix Estimation in a Quadratic Measurement Error Model Arising in Motion Analysis

    OpenAIRE

    Kukush, A.; Markovsky, I.; Van Huffel, S.

    2002-01-01

    Consistent estimators of the rank-deficient fundamental matrix yielding information on the relative orientation of two images in two-view motion analysis are derived. The estimators are derived by minimizing a corrected contrast function in a quadratic measurement error model. In addition, a consistent estimator for the measurement error variance is obtained. Simulation results show the improved accuracy of the newly proposed estimator compared to the ordinary total least-squares estimator.

  4. Trapping of two-component matter-wave solitons by mismatched optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.; Law, K.J.H. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Kevrekidis, P.G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States)], E-mail: kevrekid@gmail.com; Malomed, B.A. [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)

    2008-05-26

    We consider a one-dimensional model of a two-component Bose-Einstein condensate in the presence of periodic external potentials of opposite signs, acting on the two species. The interaction between the species is attractive, while intra-species interactions may be attractive too [the system of the bright-bright (BB) type], or of opposite signs in the two components [the gap-bright (GB) type]. We identify the existence and stability domains for soliton complexes of the BB and GB types. The evolution of unstable solitons leads to the establishment of oscillatory states. The increase of the strength of the nonlinear attraction between the species results in symbiotic stabilization of the complexes, despite the fact that one component is centered around a local maximum of the respective periodic potential.

  5. Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction.

    Science.gov (United States)

    Casino, Patricia; Rubio, Vicente; Marina, Alberto

    2009-10-16

    The chief mechanism used by bacteria for sensing their environment is based on two conserved proteins: a sensor histidine kinase (HK) and an effector response regulator (RR). The signal transduction process involves highly conserved domains of both proteins that mediate autokinase, phosphotransfer, and phosphatase activities whose output is a finely tuned RR phosphorylation level. Here, we report the structure of the complex between the entire cytoplasmic portion of Thermotoga maritima class I HK853 and its cognate, RR468, as well as the structure of the isolated RR468, both free and BeF(3)(-) bound. Our results provide insight into partner specificity in two-component systems, recognition of the phosphorylation state of each partner, and the catalytic mechanism of the phosphatase reaction. Biochemical analysis shows that the HK853-catalyzed autokinase reaction proceeds by a cis autophosphorylation mechanism within the HK subunit. The results suggest a model for the signal transduction mechanism in two-component systems.

  6. A hydrodynamic scheme for two-component winds from hot stars

    CERN Document Server

    Votruba, V; Kubát, J; Rätzel, D

    2007-01-01

    We have developed a time-dependent two-component hydrodynamics code to simulate radiatively-driven stellar winds from hot stars. We use a time-explicit van Leer scheme to solve the hydrodynamic equations of a two-component stellar wind. Dynamical friction due to Coulomb collisions between the passive bulk plasma and the line-scattering ions is treated by a time-implicit, semi-analytic method using a polynomial fit to the Chandrasekhar function. This gives stable results despite the stiffness of the problem. This method was applied to model stars with winds that are both poorly and well-coupled. While for the former case we reproduce the mCAK solution, for the latter case our solution leads to wind decoupling.

  7. Self-consistent models of quasi-relaxed rotating stellar systems

    CERN Document Server

    Varri, A L

    2012-01-01

    Two new families of self-consistent axisymmetric truncated equilibrium models for the description of quasi-relaxed rotating stellar systems are presented. The first extends the spherical King models to the case of solid-body rotation. The second is characterized by differential rotation, designed to be rigid in the central regions and to vanish in the outer parts, where the energy truncation becomes effective. The models are constructed by solving the nonlinear Poisson equation for the self-consistent mean-field potential. For rigidly rotating configurations, the solutions are obtained by an asymptotic expansion on the rotation strength parameter. The differentially rotating models are constructed by means of an iterative approach based on a Legendre series expansion of the density and the potential. The two classes of models exhibit complementary properties. The rigidly rotating configurations are flattened toward the equatorial plane, with deviations from spherical symmetry that increase with the distance f...

  8. The CpxRA two-component system is essential for Citrobacter rodentium virulence.

    Science.gov (United States)

    Thomassin, Jenny-Lee; Giannakopoulou, Natalia; Zhu, Lei; Gross, Jeremy; Salmon, Kristiana; Leclerc, Jean-Mathieu; Daigle, France; Le Moual, Hervé; Gruenheid, Samantha

    2015-05-01

    Citrobacter rodentium is a murine intestinal pathogen used as a model for the foodborne human pathogens enterohemorrhagic Escherichia coli and enteropathogenic E. coli. During infection, these pathogens use two-component signal transduction systems to detect and adapt to changing environmental conditions. In E. coli, the CpxRA two-component signal transduction system responds to envelope stress by modulating the expression of a myriad of genes. Quantitative real-time PCR showed that cpxRA was expressed in the colon of C57BL/6J mice infected with C. rodentium. To determine whether CpxRA plays a role during C. rodentium infection, a cpxRA deletion strain was generated and found to have a colonization defect during infection. This defect was independent of an altered growth rate or a defective type III secretion system, and single-copy chromosomal complementation of cpxRA restored virulence. The C. rodentium strains were then tested in C3H/HeJ mice, a lethal intestinal infection model. Mice infected with the ΔcpxRA strain survived infection, whereas mice infected with the wild-type or complemented strains succumbed to infection. Furthermore, we found that the cpxRA expression level was higher during early infection than at a later time point. Taken together, these data demonstrate that the CpxRA two-component signal transduction system is essential for the in vivo virulence of C. rodentium. In addition, these data suggest that fine-tuned cpxRA expression is important for infection. This is the first study that identifies a C. rodentium two-component transduction system required for pathogenesis. This study further indicates that CpxRA is an interesting target for therapeutics against enteric pathogens.

  9. Self-consistent core-pedestal transport simulations with neural network accelerated models

    Science.gov (United States)

    Meneghini, O.; Smith, S. P.; Snyder, P. B.; Staebler, G. M.; Candy, J.; Belli, E.; Lao, L.; Kostuk, M.; Luce, T.; Luda, T.; Park, J. M.; Poli, F.

    2017-08-01

    Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflow that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. The NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.

  10. Optimization and control of two-component radially self-accelerating beams

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, Christian; Eichelkraut, Toni; Ornigotti, Marco; Szameit, Alexander [Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Str. 15, 07745 Jena (Germany)

    2015-11-23

    We report on the properties of radially self-accelerating intensity distributions consisting of two components in the angular frequency domain. We show how this subset of solutions, in literature also known as helicon beams, possesses peculiar characteristics that enable a better control over its properties. In this work, we present a step-by-step optimization procedure to achieve the best possible intensity contrast, a distinct rotation rate and long propagation lengths. All points are discussed on a theoretical basis and are experimentally verified.

  11. The Spectrum of the Baryon Masses in a Self-consistent SU(3) Quantum Skyrme Model

    CERN Document Server

    Jurciukonis, Darius; Regelskis, Vidas

    2012-01-01

    The semiclassical SU(3) Skyrme model is traditionally considered as describing a rigid quantum rotator with the profile function being fixed by the classical solution of the corresponding SU(2) Skyrme model. In contrast, we go beyond the classical profile function by quantizing the SU(3) Skyrme model canonically. The quantization of the model is performed in terms of the collective coordinate formalism and leads to the establishment of purely quantum corrections of the model. These new corrections are of fundamental importance. They are crucial in obtaining stable quantum solitons of the quantum SU(3) Skyrme model, thus making the model self-consistent and not dependent on the classical solution of the SU(2) case. We show that such a treatment of the model leads to a family of stable quantum solitons that describe the baryon octet and decuplet and reproduce the experimental values of their masses.

  12. A consistency assessment of coupled cohesive zone models for mixed-mode debonding problems

    Directory of Open Access Journals (Sweden)

    R. Dimitri

    2014-07-01

    Full Text Available Due to their simplicity, cohesive zone models (CZMs are very attractive to describe mixed-mode failure and debonding processes of materials and interfaces. Although a large number of coupled CZMs have been proposed, and despite the extensive related literature, little attention has been devoted to ensuring the consistency of these models for mixed-mode conditions, primarily in a thermodynamical sense. A lack of consistency may affect the local or global response of a mechanical system. This contribution deals with the consistency check for some widely used exponential and bilinear mixed-mode CZMs. The coupling effect on stresses and energy dissipation is first investigated and the path-dependance of the mixed-mode debonding work of separation is analitically evaluated. Analytical predictions are also compared with results from numerical implementations, where the interface is described with zero-thickness contact elements. A node-to-segment strategy is here adopted, which incorporates decohesion and contact within a unified framework. A new thermodynamically consistent mixed-mode CZ model based on a reformulation of the Xu-Needleman model as modified by van den Bosch et al. is finally proposed and derived by applying the Coleman and Noll procedure in accordance with the second law of thermodynamics. The model holds monolithically for loading and unloading processes, as well as for decohesion and contact, and its performance is demonstrated through suitable examples.

  13. A consistent modelling methodology for secondary settling tanks in wastewater treatment.

    Science.gov (United States)

    Bürger, Raimund; Diehl, Stefan; Nopens, Ingmar

    2011-03-01

    The aim of this contribution is partly to build consensus on a consistent modelling methodology (CMM) of complex real processes in wastewater treatment by combining classical concepts with results from applied mathematics, and partly to apply it to the clarification-thickening process in the secondary settling tank. In the CMM, the real process should be approximated by a mathematical model (process model; ordinary or partial differential equation (ODE or PDE)), which in turn is approximated by a simulation model (numerical method) implemented on a computer. These steps have often not been carried out in a correct way. The secondary settling tank was chosen as a case since this is one of the most complex processes in a wastewater treatment plant and simulation models developed decades ago have no guarantee of satisfying fundamental mathematical and physical properties. Nevertheless, such methods are still used in commercial tools to date. This particularly becomes of interest as the state-of-the-art practice is moving towards plant-wide modelling. Then all submodels interact and errors propagate through the model and severely hamper any calibration effort and, hence, the predictive purpose of the model. The CMM is described by applying it first to a simple conversion process in the biological reactor yielding an ODE solver, and then to the solid-liquid separation in the secondary settling tank, yielding a PDE solver. Time has come to incorporate established mathematical techniques into environmental engineering, and wastewater treatment modelling in particular, and to use proven reliable and consistent simulation models.

  14. Towards an Information Model of Consistency Maintenance in Distributed Interactive Applications

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2008-01-01

    Full Text Available A novel framework to model and explore predictive contract mechanisms in distributed interactive applications (DIAs using information theory is proposed. In our model, the entity state update scheme is modelled as an information generation, encoding, and reconstruction process. Such a perspective facilitates a quantitative measurement of state fidelity loss as a result of the distribution protocol. Results from an experimental study on a first-person shooter game are used to illustrate the utility of this measurement process. We contend that our proposed model is a starting point to reframe and analyse consistency maintenance in DIAs as a problem in distributed interactive media compression.

  15. Analytical model for effect of temperature variation on PSF consistency in wavefront coding infrared imaging system

    Science.gov (United States)

    Feng, Bin; Shi, Zelin; Zhang, Chengshuo; Xu, Baoshu; Zhang, Xiaodong

    2016-05-01

    The point spread function (PSF) inconsistency caused by temperature variation leads to artifacts in decoded images of a wavefront coding infrared imaging system. Therefore, this paper proposes an analytical model for the effect of temperature variation on the PSF consistency. In the proposed model, a formula for the thermal deformation of an optical phase mask is derived. This formula indicates that a cubic optical phase mask (CPM) is still cubic after thermal deformation. A proposed equivalent cubic phase mask (E-CPM) is a virtual and room-temperature lens which characterizes the optical effect of temperature variation on the CPM. Additionally, a calculating method for PSF consistency after temperature variation is presented. Numerical simulation illustrates the validity of the proposed model and some significant conclusions are drawn. Given the form parameter, the PSF consistency achieved by a Ge-material CPM is better than the PSF consistency by a ZnSe-material CPM. The effect of the optical phase mask on PSF inconsistency is much slighter than that of the auxiliary lens group. A large form parameter of the CPM will introduce large defocus-insensitive aberrations, which improves the PSF consistency but degrades the room-temperature MTF.

  16. Precommitted Investment Strategy versus Time-Consistent Investment Strategy for a Dual Risk Model

    Directory of Open Access Journals (Sweden)

    Lidong Zhang

    2014-01-01

    Full Text Available We are concerned with optimal investment strategy for a dual risk model. We assume that the company can invest into a risk-free asset and a risky asset. Short-selling and borrowing money are allowed. Due to lack of iterated-expectation property, the Bellman Optimization Principle does not hold. Thus we investigate the precommitted strategy and time-consistent strategy, respectively. We take three steps to derive the precommitted investment strategy. Furthermore, the time-consistent investment strategy is also obtained by solving the extended Hamilton-Jacobi-Bellman equations. We compare the precommitted strategy with time-consistent strategy and find that these different strategies have different advantages: the former can make value function maximized at the original time t=0 and the latter strategy is time-consistent for the whole time horizon. Finally, numerical analysis is presented for our results.

  17. A thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects

    CERN Document Server

    Guo, Zhenlin

    2014-01-01

    In this paper, we develop a phase-field model for binary incompressible fluid with thermocapillary effects, which allows the different properties (densities, viscosities and heat conductivities) for each component and meanwhile maintains the thermodynamic consistency. The governing equations of the model including the Navier-Stokes equations, Cahn-Hilliard equations and energy balance equation are derived together within a thermodynamic framework based on the entropy generation, which guarantees the thermodynamic consistency. The sharp-interface limit analysis is carried out to show that the interfacial conditions of the classical sharp-interface models can be recovered from our phase-field model. Moreover, some numerical examples including thermocapillary migration of a bubble and thermocapillary convections in a two- layer fluid system are computed by using a continuous finite element method. The results are compared to the existing analytical solutions and theoretical predictions as validations for our mod...

  18. Nonparametric test of consistency between cosmological models and multiband CMB measurements

    CERN Document Server

    Aghamousa, Amir

    2015-01-01

    We present a novel approach to test the consistency of the cosmological models with multiband CMB data using a nonparametric approach. In our analysis we calibrate the REACT (Risk Estimation and Adaptation after Coordinate Transformation) confidence levels associated with distances in function space (confidence distances) based on the Monte Carlo simulations in order to test the consistency of an assumed cosmological model with observation. To show the applicability of our algorithm, we confront Planck 2013 temperature data with concordance model of cosmology considering two different Planck spectra combination. In order to have an accurate quantitative statistical measure to compare between the data and the theoretical expectations, we calibrate REACT confidence distances and perform a bias control using many realizations of the data. Our results in this work using Planck 2013 temperature data put the best fit $\\Lambda$CDM model at $95\\% (\\sim 2\\sigma)$ confidence distance from the center of the nonparametri...

  19. A simplified benchmark” Stock-Flow Consistent (SFC) post-Keynesian growth model

    OpenAIRE

    Cláudio H. dos Santos; Zezza, Gennaro

    2007-01-01

    Despite being arguably one of the most active areas of research in heterodox macroeconomics, the study of the dynamic properties of stock-flow consistent (SFC) growth models of financially sophisticated economies is still in its early stages. This paper attempts to offer a contribution to this line of research by presenting a simplified Post-Keynesian SFC growth model with well-defined dynamic properties, and using it to shed light on the merits and limitations of the current heterodox SFC li...

  20. A Consistent Direct Method for Estimating Parameters in Ordinary Differential Equations Models

    OpenAIRE

    Holte, Sarah E.

    2016-01-01

    Ordinary differential equations provide an attractive framework for modeling temporal dynamics in a variety of scientific settings. We show how consistent estimation for parameters in ODE models can be obtained by modifying a direct (non-iterative) least squares method similar to the direct methods originally developed by Himmelbau, Jones and Bischoff. Our method is called the bias-corrected least squares (BCLS) method since it is a modification of least squares methods known to be biased. Co...

  1. Bioinformatics analysis of two-component regulatory systems in Staphylococcus epidermidis

    Institute of Scientific and Technical Information of China (English)

    QIN Zhiqiang; ZHONG Yang; ZHANG Jian; HE Youyu; WU Yang; JIANG Juan; CHEN Jiemin; LUO Xiaomin; QU Di

    2004-01-01

    Sixteen pairs of two-component regulatory systems are identified in the genome of Staphylococcus epidermidis ATCC12228 strain, which is newly sequenced by our laboratory for Medical Molecular Virology and Chinese National Human Genome Center at Shanghai, by using bioinformatics analysis. Comparative analysis of the twocomponent regulatory systems in S. epidermidis and that of S.aureus and Bacillus subtilis shows that these systems may regulate some important biological functions, e.g. growth,biofilm formation, and expression of virulence factors in S.epidermidis. Two conserved domains, i.e. HATPase_c and REC domains, are found in all 16 pairs of two-component proteins.Homologous modelling analysis indicates that there are 4similar HATPase_c domain structures of histidine kinases and 13 similar REC domain structures of response regulators,and there is one AMP-PNP binding pocket in the HATPase_c domain and three active aspartate residues in the REC domain. Preliminary experiment reveals that the bioinformatics analysis of the conserved domain structures in the two-component regulatory systems in S. epidermidis may provide useful information for discovery of potential drug target.

  2. Comment on Self-Consistent Model of Black Hole Formation and Evaporation

    CERN Document Server

    Ho, Pei-Ming

    2015-01-01

    In an earlier work, Kawai et al proposed a model of black-hole formation and evaporation, in which the geometry of a collapsing shell of null dust is studied, including consistently the back reaction of its Hawking radiation. In this note, we illuminate the implications of their work, focusing on the resolution of the information loss paradox and the problem of the firewall.

  3. Consistent phase-change modeling for CO2-based heat mining operation

    DEFF Research Database (Denmark)

    Singh, Ashok Kumar; Veje, Christian

    2017-01-01

    –gas phase transition with more accuracy and consistency. Calculation of fluid properties and saturation state were based on the volume translated Peng–Robinson equation of state and results verified. The present model has been applied to a scenario to simulate a CO2-based heat mining process. In this paper...

  4. Comment on self-consistent model of black hole formation and evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Pei-Ming [Department of Physics and Center for Theoretical Sciences, Center for Advanced Study in Theoretical Sciences,National Taiwan University, Taipei 106, Taiwan, R.O.C. (China)

    2015-08-18

    In an earlier work, Kawai et al. proposed a model of black-hole formation and evaporation, in which the geometry of a collapsing shell of null dust is studied, including consistently the back reaction of its Hawking radiation. In this note, we illuminate the implications of their work, focusing on the resolution of the information loss paradox and the problem of the firewall.

  5. Spatial coincidence modelling, automated database updating and data consistency in vector GIS.

    NARCIS (Netherlands)

    Kufoniyi, O.

    1995-01-01

    This thesis presents formal approaches for automated database updating and consistency control in vector- structured spatial databases. To serve as a framework, a conceptual data model is formalized for the representation of geo-data from multiple map layers in which a map layer denotes a set of ter

  6. A General Pressure Gradient Formulation for Ocean Models - Part II: Energy, Momentum, and Bottom Torque Consistency

    Science.gov (United States)

    Song, Y.; Wright, D.

    1998-01-01

    A formulation of the pressure gradient force for use in models with topography-following coordinates is proposed and diagnostically analyzed by Song. We investigate numerical consistency with respect to global energy conservation, depth-integrated momentum changes, and the represent of the bottom pressure torque.

  7. Subjective Confidence in Perceptual Judgments: A Test of the Self-Consistency Model

    Science.gov (United States)

    Koriat, Asher

    2011-01-01

    Two questions about subjective confidence in perceptual judgments are examined: the bases for these judgments and the reasons for their accuracy. Confidence in perceptual judgments has been claimed to rest on qualitatively different processes than confidence in memory tasks. However, predictions from a self-consistency model (SCM), which had been…

  8. Subjective Confidence in Perceptual Judgments: A Test of the Self-Consistency Model

    Science.gov (United States)

    Koriat, Asher

    2011-01-01

    Two questions about subjective confidence in perceptual judgments are examined: the bases for these judgments and the reasons for their accuracy. Confidence in perceptual judgments has been claimed to rest on qualitatively different processes than confidence in memory tasks. However, predictions from a self-consistency model (SCM), which had been…

  9. STRONG CONSISTENCY OF M ESTIMATOR IN LINEAR MODEL FOR NEGATIVELY ASSOCIATED SAMPLES

    Institute of Scientific and Technical Information of China (English)

    Qunying WU

    2006-01-01

    This paper discusses the strong consistency of M estimator of regression parameter in linear model for negatively associated samples. As a result, the author extends Theorem 1 and Theorem 2 of Shanchao YANG (2002) to the NA errors without necessarily imposing any extra condition.

  10. Building self-consistent, short-term earthquake probability (STEP models: improved strategies and calibration procedures

    Directory of Open Access Journals (Sweden)

    Damiano Monelli

    2010-11-01

    Full Text Available We present here two self-consistent implementations of a short-term earthquake probability (STEP model that produces daily seismicity forecasts for the area of the Italian national seismic network. Both implementations combine a time-varying and a time-invariant contribution, for which we assume that the instrumental Italian earthquake catalog provides the best information. For the time-invariant contribution, the catalog is declustered using the clustering technique of the STEP model; the smoothed seismicity model is generated from the declustered catalog. The time-varying contribution is what distinguishes the two implementations: 1 for one implementation (STEP-LG, the original model parameterization and estimation is used; 2 for the other (STEP-NG, the mean abundance method is used to estimate aftershock productivity. In the STEP-NG implementation, earthquakes with magnitude up to ML= 6.2 are expected to be less productive compared to the STEP-LG implementation, whereas larger earthquakes are expected to be more productive. We have retrospectively tested the performance of these two implementations and applied likelihood tests to evaluate their consistencies with observed earthquakes. Both of these implementations were consistent with the observed earthquake data in space: STEP-NG performed better than STEP-LG in terms of forecast rates. More generally, we found that testing earthquake forecasts issued at regular intervals does not test the full power of clustering models, and future experiments should allow for more frequent forecasts starting at the times of triggering events.

  11. Viscoelasticity behavior for finite deformations, using a consistent hypoelastic model based on Rivlin materials

    Science.gov (United States)

    Altmeyer, Guillaume; Panicaud, Benoit; Rouhaud, Emmanuelle; Wang, Mingchuan; Roos, Arjen; Kerner, Richard

    2016-11-01

    When constructing viscoelastic models, rate-form relations appear naturally to relate strain and stress tensors. One has to ensure that these tensors and their rates are indifferent with respect to the change of observers and to the superposition with rigid body motions. Objective transports are commonly accepted to ensure this invariance. However, the large number of transport operators developed makes the choice often difficult for the user and may lead to physically inconsistent formulation of hypoelasticity. In this paper, a methodology based on the use of the Lie derivative is proposed to model consistent hypoelasticity as an equivalent incremental formulation of hyperelasticity. Both models are shown to be reversible and completely equivalent. Extension to viscoelasticity is then proposed from this consistent model by associating consistent hypoelastic models with viscous behavior. As an illustration, Mooney-Rivlin nonlinear elasticity is coupled with Newton viscosity and a Maxwell-like material is investigated. Numerical solutions are then presented to illustrate a viscoelastic material subjected to finite deformations for a large range of strain rates.

  12. Modeling lung motion using consistent image registration in four-dimensional computed tomography for radiation therapy

    Science.gov (United States)

    Lu, Wei; Song, Joo Hyun; Christensen, Gary E.; Parikh, Parag J.; Bradley, Jeffrey D.; Low, Daniel A.

    2006-03-01

    Respiratory motion is a significant source of error in conformal radiation therapy for the thorax and upper abdomen. Four-dimensional computed tomography (4D CT) has been proposed to reduce the uncertainty caused by internal respiratory organ motion. A 4D CT dataset is retrospectively reconstructed at various stages of a respiratory cycle. An important tool for 4D treatment planning is deformable image registration. An inverse consistent image registration is used to model lung motion from one respiratory stage to another during a breathing cycle. This diffeomorphic registration jointly estimates the forward and reverse transformations providing more accurate correspondence between two images. Registration results and modeled motions in the lung are shown for three example respiratory stages. The results demonstrate that the consistent image registration satisfactorily models the large motions in the lung, providing a useful tool for 4D planning and delivering.

  13. Consistent interpretation of molecular simulation kinetics using Markov state models biased with external information

    CERN Document Server

    Rudzinski, Joseph F; Bereau, Tristan

    2016-01-01

    Molecular simulations can provide microscopic insight into the physical and chemical driving forces of complex molecular processes. Despite continued advancement of simulation methodology, model errors may lead to inconsistencies between simulated and reference (e.g., from experiments or higher-level simulations) observables. To bound the microscopic information generated by computer simulations within reference measurements, we propose a method that reweights the microscopic transitions of the system to improve consistency with a set of coarse kinetic observables. The method employs the well-developed Markov state modeling framework to efficiently link microscopic dynamics with long-time scale constraints, thereby consistently addressing a wide range of time scales. To emphasize the robustness of the method, we consider two distinct coarse-grained models with significant kinetic inconsistencies. When applied to the simulated conformational dynamics of small peptides, the reweighting procedure systematically ...

  14. Consistency and consensus models for group decision-making with uncertain 2-tuple linguistic preference relations

    Science.gov (United States)

    Zhang, Zhen; Guo, Chonghui

    2016-08-01

    Due to the uncertainty of the decision environment and the lack of knowledge, decision-makers may use uncertain linguistic preference relations to express their preferences over alternatives and criteria. For group decision-making problems with preference relations, it is important to consider the individual consistency and the group consensus before aggregating the preference information. In this paper, consistency and consensus models for group decision-making with uncertain 2-tuple linguistic preference relations (U2TLPRs) are investigated. First of all, a formula which can construct a consistent U2TLPR from the original preference relation is presented. Based on the consistent preference relation, the individual consistency index for a U2TLPR is defined. An iterative algorithm is then developed to improve the individual consistency of a U2TLPR. To help decision-makers reach consensus in group decision-making under uncertain linguistic environment, the individual consensus and group consensus indices for group decision-making with U2TLPRs are defined. Based on the two indices, an algorithm for consensus reaching in group decision-making with U2TLPRs is also developed. Finally, two examples are provided to illustrate the effectiveness of the proposed algorithms.

  15. Predictions of Phase Distribution in Liquid-Liquid Two-Component Flow

    Science.gov (United States)

    Wang, Xia; Sun, Xiaodong; Duval, Walter M.

    2011-06-01

    Ground-based liquid-liquid two-component flow can be used to study reduced-gravity gas-liquid two-phase flows provided that the two liquids are immiscible with similar densities. In this paper, we present a numerical study of phase distribution in liquid-liquid two-component flows using the Eulerian two-fluid model in FLUENT, together with a one-group interfacial area transport equation (IATE) that takes into account fluid particle interactions, such as coalescence and disintegration. This modeling approach is expected to dynamically capture changes in the interfacial structure. We apply the FLUENT-IATE model to a water-Therminol 59® two-component vertical flow in a 25-mm inner diameter pipe, where the two liquids are immiscible with similar densities (3% difference at 20°C). This study covers bubbly (drop) flow and bubbly-to-slug flow transition regimes with area-averaged void (drop) fractions from 3 to 30%. Comparisons of the numerical results with the experimental data indicate that for bubbly flows, the predictions of the lateral phase distributions using the FLUENT-IATE model are generally more accurate than those using the model without the IATE. In addition, we demonstrate that the coalescence of fluid particles is dominated by wake entrainment and enhanced by increasing either the continuous or dispersed phase velocity. However, the predictions show disagreement with experimental data in some flow conditions for larger void fraction conditions, which fall into the bubbly-to-slug flow transition regime. We conjecture that additional fluid particle interaction mechanisms due to the change of flow regimes are possibly involved.

  16. The fundamental solution for a consistent complex model of the shallow shell equations

    Directory of Open Access Journals (Sweden)

    Matthew P. Coleman

    1999-09-01

    Full Text Available The calculation of the Fourier transforms of the fundamental solution in shallow shell theory ostensibly was accomplished by J. L. Sanders [J. Appl. Mech. 37 (1970, 361-366]. However, as is shown in detail in this paper, the complex model used by Sanders is, in fact, inconsistent. This paper provides a consistent version of Sanders's complex model, along with the Fourier transforms of the fundamental solution for this corrected model. The inverse Fourier transforms are then calculated for the particular cases of the shallow spherical and circular cylindrical shells, and the results of the latter are seen to be in agreement with results appearing elsewhere in the literature.

  17. Tests and applications of self-consistent cranking in the interacting boson model

    CERN Document Server

    Kuyucak, S; Kuyucak, Serdar; Sugita, Michiaki

    1999-01-01

    The self-consistent cranking method is tested by comparing the cranking calculations in the interacting boson model with the exact results obtained from the SU(3) and O(6) dynamical symmetries and from numerical diagonalization. The method is used to study the spin dependence of shape variables in the $sd$ and $sdg$ boson models. When realistic sets of parameters are used, both models lead to similar results: axial shape is retained with increasing cranking frequency while fluctuations in the shape variable $\\gamma$ are slightly reduced.

  18. Consistency maintenance for constraint in role-based access control model

    Institute of Scientific and Technical Information of China (English)

    韩伟力; 陈刚; 尹建伟; 董金祥

    2002-01-01

    Constraint is an important aspect of role-based access control and is sometimes argued to be the principal motivation for role-based access control (RBAC). But so far'few authors have discussed consistency maintenance for constraint in RBAC model. Based on researches of constraints among roles and types of inconsistency among constraints, this paper introduces correaponding formal rules, rulebased reasoning and corresponding methods to detect, avoid and resolve these inconsistencies. Finally,the paper introduces briefly the application of consistency maintenance in ZD-PDM, an enterprise-ori-ented product data management (PDM) system.

  19. Consistency maintenance for constraint in role-based access control model

    Institute of Scientific and Technical Information of China (English)

    韩伟力; 陈刚; 尹建伟; 董金祥

    2002-01-01

    Constraint is an important aspect of role-based access control and is sometimes argued to be the principal motivation for role-based access control (RBAC). But so far few authors have discussed consistency maintenance for constraint in RBAC model. Based on researches of constraints among roles and types of inconsistency among constraints, this paper introduces corresponding formal rules, rule-based reasoning and corresponding methods to detect, avoid and resolve these inconsistencies. Finally, the paper introduces briefly the application of consistency maintenance in ZD-PDM, an enterprise-oriented product data management (PDM) system.

  20. A New Hierarchy of Phylogenetic Models Consistent with Heterogeneous Substitution Rates.

    Science.gov (United States)

    Woodhams, Michael D; Fernández-Sánchez, Jesús; Sumner, Jeremy G

    2015-07-01

    When the process underlying DNA substitutions varies across evolutionary history, some standard Markov models underlying phylogenetic methods are mathematically inconsistent. The most prominent example is the general time-reversible model (GTR) together with some, but not all, of its submodels. To rectify this deficiency, nonhomogeneous Lie Markov models have been identified as the class of models that are consistent in the face of a changing process of DNA substitutions regardless of taxon sampling. Some well-known models in popular use are within this class, but are either overly simplistic (e.g., the Kimura two-parameter model) or overly complex (the general Markov model). On a diverse set of biological data sets, we test a hierarchy of Lie Markov models spanning the full range of parameter richness. Compared against the benchmark of the ever-popular GTR model, we find that as a whole the Lie Markov models perform well, with the best performing models having 8-10 parameters and the ability to recognize the distinction between purines and pyrimidines. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society of Systematic Biologists.

  1. Self-consistent chaotic transport in a high-dimensional mean-field Hamiltonian map model

    CERN Document Server

    Martínez-del-Río, D; Olvera, A; Calleja, R

    2016-01-01

    Self-consistent chaotic transport is studied in a Hamiltonian mean-field model. The model provides a simplified description of transport in marginally stable systems including vorticity mixing in strong shear flows and electron dynamics in plasmas. Self-consistency is incorporated through a mean-field that couples all the degrees-of-freedom. The model is formulated as a large set of $N$ coupled standard-like area-preserving twist maps in which the amplitude and phase of the perturbation, rather than being constant like in the standard map, are dynamical variables. Of particular interest is the study of the impact of periodic orbits on the chaotic transport and coherent structures. Numerical simulations show that self-consistency leads to the formation of a coherent macro-particle trapped around the elliptic fixed point of the system that appears together with an asymptotic periodic behavior of the mean field. To model this asymptotic state, we introduced a non-autonomous map that allows a detailed study of th...

  2. Comparative analysis of two-component signal transduction systems of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis

    NARCIS (Netherlands)

    Been, de M.W.H.J.; Francke, C.; Moezelaar, R.; Abee, T.; Siezen, R.J.

    2006-01-01

    Members of the Bacillus cereus group are ubiquitously present in the environment and can adapt to a wide range of environmental fluctuations. In bacteria, these adaptive responses are generally mediated by two-component signal transduction systems (TCSs), which consist of a histidine kinase (HK) and

  3. Comparative analysis of two-component signal transduction systems of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis

    NARCIS (Netherlands)

    Been, M.W.H.J. de; Francke, C.; Moezelaar, R.; Abee, T.; Siezen, R.J.

    2006-01-01

    Members of the Bacillus cereus group are ubiquitously present in the environment and can adapt to a wide range of environmental fluctuations. In bacteria, these adaptive responses are generally mediated by two-component signal transduction systems (TCSs), which consist of a histidine kinase (HK) and

  4. Consistency and asymptotic normality of profilekernel and backfitting estimators in semiparametric reproductive dispersion nonlinear models

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Semiparametric reproductive dispersion nonlinear model (SRDNM) is an extension of nonlinear reproductive dispersion models and semiparametric nonlinear regression models, and includes semiparametric nonlinear model and semiparametric generalized linear model as its special cases. Based on the local kernel estimate of nonparametric component, profile-kernel and backfitting estimators of parameters of interest are proposed in SRDNM, and theoretical comparison of both estimators is also investigated in this paper. Under some regularity conditions, strong consistency and asymptotic normality of two estimators are proved. It is shown that the backfitting method produces a larger asymptotic variance than that for the profile-kernel method. A simulation study and a real example are used to illustrate the proposed methodologies.

  5. Detecting consistent patterns of directional adaptation using differential selection codon models.

    Science.gov (United States)

    Parto, Sahar; Lartillot, Nicolas

    2017-06-23

    Phylogenetic codon models are often used to characterize the selective regimes acting on protein-coding sequences. Recent methodological developments have led to models explicitly accounting for the interplay between mutation and selection, by modeling the amino acid fitness landscape along the sequence. However, thus far, most of these models have assumed that the fitness landscape is constant over time. Fluctuations of the fitness landscape may often be random or depend on complex and unknown factors. However, some organisms may be subject to systematic changes in selective pressure, resulting in reproducible molecular adaptations across independent lineages subject to similar conditions. Here, we introduce a codon-based differential selection model, which aims to detect and quantify the fine-grained consistent patterns of adaptation at the protein-coding level, as a function of external conditions experienced by the organism under investigation. The model parameterizes the global mutational pressure, as well as the site- and condition-specific amino acid selective preferences. This phylogenetic model is implemented in a Bayesian MCMC framework. After validation with simulations, we applied our method to a dataset of HIV sequences from patients with known HLA genetic background. Our differential selection model detects and characterizes differentially selected coding positions specifically associated with two different HLA alleles. Our differential selection model is able to identify consistent molecular adaptations as a function of repeated changes in the environment of the organism. These models can be applied to many other problems, ranging from viral adaptation to evolution of life-history strategies in plants or animals.

  6. A thermodynamically consistent model for granular-fluid mixtures considering pore pressure evolution and hypoplastic behavior

    Science.gov (United States)

    Hess, Julian; Wang, Yongqi

    2016-11-01

    A new mixture model for granular-fluid flows, which is thermodynamically consistent with the entropy principle, is presented. The extra pore pressure described by a pressure diffusion equation and the hypoplastic material behavior obeying a transport equation are taken into account. The model is applied to granular-fluid flows, using a closing assumption in conjunction with the dynamic fluid pressure to describe the pressure-like residual unknowns, hereby overcoming previous uncertainties in the modeling process. Besides the thermodynamically consistent modeling, numerical simulations are carried out and demonstrate physically reasonable results, including simple shear flow in order to investigate the vertical distribution of the physical quantities, and a mixture flow down an inclined plane by means of the depth-integrated model. Results presented give insight in the ability of the deduced model to capture the key characteristics of granular-fluid flows. We acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG) for this work within the Project Number WA 2610/3-1.

  7. A control-oriented self-consistent model of an inductively-coupled plasma

    Science.gov (United States)

    Keville, Bernard; Turner, Miles

    2009-10-01

    An essential first step in the design of real time control algorithms for plasma processes is to determine dynamical relationships between actuator quantities such as gas flow rate set points and plasma states such electron density. An ideal first principles-based, control-oriented model should exhibit the simplicity and computational requirements of an empirical model and, in addition, despite sacrificing first principles detail, capture enough of the essential physics and chemistry of the process in order to provide reasonably accurate qualitative predictions. This presentation describes a control-oriented model of a cylindrical low pressure planar inductive discharge with a stove top antenna. The model consists of equivalent circuit coupled to a global model of the plasma chemistry to produce a self-consistent zero-dimensional model of the discharge. The non-local plasma conductivity and the fields in the plasma are determined from the wave equation and the two-term solution of the Boltzmann equation. Expressions for the antenna impedance and the parameters of the transformer equivalent circuit in terms of the isotropic electron distribution and the geometry of the chamber are presented.

  8. Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models

    Directory of Open Access Journals (Sweden)

    A. Menon

    2013-01-01

    Full Text Available The possibility of an impact of global warming on the Indian monsoon is of critical importance for the large population of this region. Future projections within the Coupled Model Intercomparison Project Phase 3 (CMIP-3 showed a wide range of trends with varying magnitude and sign across models. Here the Indian summer monsoon rainfall is evaluated in 20 CMIP-5 models for the period 1850 to 2100. In the new generation of climate models a consistent increase in seasonal mean rainfall during the summer monsoon periods arises. All models simulate stronger seasonal mean rainfall in the future compared to the historic period under the strongest warming scenario RCP-8.5. Increase in seasonal mean rainfall is the largest for the RCP-8.5 scenario compared to other RCPs. The interannual variability of the Indian monsoon rainfall also shows a consistent positive trend under unabated global warming. Since both the long-term increase in monsoon rainfall as well as the increase in interannual variability in the future is robust across a wide range of models, some confidence can be attributed to these projected trends.

  9. Entanglement dynamics in two-component Bose-Einstein condensates

    Institute of Scientific and Technical Information of China (English)

    Hao Ya-Jiang; Liang Jiu-Qing

    2006-01-01

    Based on the exact solution of the time-dependent Schrodinger equation for two-species Bose-Einstein condensates(BECs) consisting of two hyperfine states of the atoms coupled by a tuned adiabatic and time-varying Raman coupling,we obtain analytically the entanglement dynamics of the system with various initial states, particularly the SU(2)coherent state, for both of cases with and without the nonlinear interactions. It is shown that the effect of nonlinear interaction on the entanglement appears only in a longer time period depending on the BEC parameters.

  10. Non-Perturbative Self-Consistent Model in SU(N Gauge Field Theory

    Directory of Open Access Journals (Sweden)

    Koshelkin A.V.

    2012-06-01

    Full Text Available Non-perturbative quasi-classical model in a gauge theory with the Yang-Mills (YM field is developed. The self-consistent solutions of the Dirac equation in the SU(N gauge field, which is in the eikonal approximation, and the Yang-Mills (YM equations containing the external fermion current are solved. It shown that the developed model has the self-consistent solutions of the Dirac and Yang-Mills equations at N ≥ 3. In this way, the solutions take place provided that the fermion and gauge fields exist simultaneously, so that the fermion current completely compensates the current generated by the gauge field due to self-interaction of it.

  11. Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows

    Science.gov (United States)

    Silvis, Maurits H.; Remmerswaal, Ronald A.; Verstappen, Roel

    2017-01-01

    We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In particular, we aim to consolidate a systematic approach of constructing subgrid-scale models, based on the idea that it is desirable that subgrid-scale models are consistent with the mathematical and physical properties of the Navier-Stokes equations and the turbulent stresses. To that end, we first discuss in detail the symmetries of the Navier-Stokes equations, and the near-wall scaling behavior, realizability and dissipation properties of the turbulent stresses. We furthermore summarize the requirements that subgrid-scale models have to satisfy in order to preserve these important mathematical and physical properties. In this fashion, a framework of model constraints arises that we apply to analyze the behavior of a number of existing subgrid-scale models that are based on the local velocity gradient. We show that these subgrid-scale models do not satisfy all the desired properties, after which we explain that this is partly due to incompatibilities between model constraints and limitations of velocity-gradient-based subgrid-scale models. However, we also reason that the current framework shows that there is room for improvement in the properties and, hence, the behavior of existing subgrid-scale models. We furthermore show how compatible model constraints can be combined to construct new subgrid-scale models that have desirable properties built into them. We provide a few examples of such new models, of which a new model of eddy viscosity type, that is based on the vortex stretching magnitude, is successfully tested in large-eddy simulations of decaying homogeneous isotropic turbulence and turbulent plane-channel flow.

  12. Consistent constitutive modeling of metallic target penetration using empirical, analytical, and numerical penetration models

    Institute of Scientific and Technical Information of China (English)

    John Jack P. RIEGEL III; David DAVISON

    2016-01-01

    Historically, there has been little correlation between the material properties used in (1) empirical formulae, (2) analytical formulations, and (3) numerical models. The various regressions and models may each provide excellent agreement for the depth of penetration into semi-infinite targets. But the input parameters for the empirically based procedures may have little in common with either the analytical model or the numerical model. This paper builds on previous work by Riegel and Anderson (2014) to show how the Effective Flow Stress (EFS) strength model, based on empirical data, can be used as the average flow stress in the analytical Walker–Anderson Penetration model (WAPEN) (Anderson and Walker, 1991) and how the same value may be utilized as an effective von Mises yield strength in numerical hydrocode simulations to predict the depth of penetration for eroding projectiles at impact velocities in the mechanical response regime of the materials. The method has the benefit of allowing the three techniques (empirical, analytical, and numerical) to work in tandem. The empirical method can be used for many shot line calculations, but more advanced analytical or numerical models can be employed when necessary to address specific geometries such as edge effects or layering that are not treated by the simpler methods. Developing complete constitutive relationships for a material can be costly. If the only concern is depth of penetration, such a level of detail may not be required. The effective flow stress can be determined from a small set of depth of penetration experiments in many cases, especially for long penetrators such as the L/D=10 ones considered here, making it a very practical approach. In the process of performing this effort, the authors considered numerical simulations by other researchers based on the same set of experimental data that the authors used for their empirical and analytical assessment. The goals were to establish a baseline with a full

  13. Consistent constitutive modeling of metallic target penetration using empirical, analytical, and numerical penetration models

    Directory of Open Access Journals (Sweden)

    John (Jack P. Riegel III

    2016-04-01

    Full Text Available Historically, there has been little correlation between the material properties used in (1 empirical formulae, (2 analytical formulations, and (3 numerical models. The various regressions and models may each provide excellent agreement for the depth of penetration into semi-infinite targets. But the input parameters for the empirically based procedures may have little in common with either the analytical model or the numerical model. This paper builds on previous work by Riegel and Anderson (2014 to show how the Effective Flow Stress (EFS strength model, based on empirical data, can be used as the average flow stress in the analytical Walker–Anderson Penetration model (WAPEN (Anderson and Walker, 1991 and how the same value may be utilized as an effective von Mises yield strength in numerical hydrocode simulations to predict the depth of penetration for eroding projectiles at impact velocities in the mechanical response regime of the materials. The method has the benefit of allowing the three techniques (empirical, analytical, and numerical to work in tandem. The empirical method can be used for many shot line calculations, but more advanced analytical or numerical models can be employed when necessary to address specific geometries such as edge effects or layering that are not treated by the simpler methods. Developing complete constitutive relationships for a material can be costly. If the only concern is depth of penetration, such a level of detail may not be required. The effective flow stress can be determined from a small set of depth of penetration experiments in many cases, especially for long penetrators such as the L/D = 10 ones considered here, making it a very practical approach. In the process of performing this effort, the authors considered numerical simulations by other researchers based on the same set of experimental data that the authors used for their empirical and analytical assessment. The goals were to establish a

  14. Asymptotic normality and strong consistency of maximum quasi-likelihood estimates in generalized linear models

    Institute of Scientific and Technical Information of China (English)

    YIN; Changming; ZHAO; Lincheng; WEI; Chengdong

    2006-01-01

    In a generalized linear model with q × 1 responses, the bounded and fixed (or adaptive) p × q regressors Zi and the general link function, under the most general assumption on the minimum eigenvalue of ∑ni=1 ZiZ'i, the moment condition on responses as weak as possible and the other mild regular conditions, we prove that the maximum quasi-likelihood estimates for the regression parameter vector are asymptotically normal and strongly consistent.

  15. A thermodynamically consistent model of the post-translational Kai circadian clock

    Science.gov (United States)

    Lubensky, David K.; ten Wolde, Pieter Rein

    2017-01-01

    The principal pacemaker of the circadian clock of the cyanobacterium S. elongatus is a protein phosphorylation cycle consisting of three proteins, KaiA, KaiB and KaiC. KaiC forms a homohexamer, with each monomer consisting of two domains, CI and CII. Both domains can bind and hydrolyze ATP, but only the CII domain can be phosphorylated, at two residues, in a well-defined sequence. While this system has been studied extensively, how the clock is driven thermodynamically has remained elusive. Inspired by recent experimental observations and building on ideas from previous mathematical models, we present a new, thermodynamically consistent, statistical-mechanical model of the clock. At its heart are two main ideas: i) ATP hydrolysis in the CI domain provides the thermodynamic driving force for the clock, switching KaiC between an active conformational state in which its phosphorylation level tends to rise and an inactive one in which it tends to fall; ii) phosphorylation of the CII domain provides the timer for the hydrolysis in the CI domain. The model also naturally explains how KaiA, by acting as a nucleotide exchange factor, can stimulate phosphorylation of KaiC, and how the differential affinity of KaiA for the different KaiC phosphoforms generates the characteristic temporal order of KaiC phosphorylation. As the phosphorylation level in the CII domain rises, the release of ADP from CI slows down, making the inactive conformational state of KaiC more stable. In the inactive state, KaiC binds KaiB, which not only stabilizes this state further, but also leads to the sequestration of KaiA, and hence to KaiC dephosphorylation. Using a dedicated kinetic Monte Carlo algorithm, which makes it possible to efficiently simulate this system consisting of more than a billion reactions, we show that the model can describe a wealth of experimental data. PMID:28296888

  16. ICFD modeling of final settlers - developing consistent and effective simulation model structures

    DEFF Research Database (Denmark)

    Plósz, Benedek G.; Guyonvarch, Estelle; Ramin, Elham

    analysis exercises is kept to a minimum (4). Consequently, detailed information related to, for instance, design boundaries, may be ignored, and their effects may only be accounted for through calibration of model parameters used as catchalls, and by arbitrary amendments of structural uncertainty...... of (6). Further details are shown in (5). Results and discussions Factor screening. Factor screening is carried out by imposing statistically designed moderate (under-loaded) and extreme (under-, critical and overloaded) operational boundary conditions on the 2-D CFD SST model (8). Results obtained...

  17. A novel two-component system involved in the transition to secondary metabolism in Streptomyces coelicolor.

    Directory of Open Access Journals (Sweden)

    Daniel Rozas

    Full Text Available BACKGROUND: Bacterial two-component signal transduction regulatory systems are the major set of signalling proteins frequently mediating responses to changes in the environment. They typically consist of a sensor, a membrane-associated histidine kinase and a cytoplasmic response regulator. The membrane-associated sensor detects the environmental signal or stress, whereas the cytoplasmic regulatory protein controls the cellular response usually by gene transcription modulation. METHODOLOGY/PRINCIPALFINDINGS: The Streptomyces coelicolor two genes operon SCO5784-SCO5785 encodes a two-component system, where SCO5784 encodes a histidine-kinase sensor and SCO5785 encodes a response regulator protein. When the expression level of the regulator gene decreases, the antibiotic synthesis and sporulation is delayed temporarily in addition to some ribosomal genes became up regulated, whereas the propagation of the regulatory gene in high copy number results in the earlier synthesis of antibiotics and sporulation, as well as the down regulation of some ribosomal genes and, moreover, in the overproduction of several extracellular proteins. Therefore, this two-component system in S. coelicolor seems to influence various processes characterised by the transition from primary to secondary metabolism, as determined by proteomic and transcriptomic analyses. CONCLUSIONS/SIGNIFICANCE: Propagation of SCO5785 in multicopy enhances the production of antibiotics as well as secretory proteins. In particular, the increase in the expression level of secretory protein encoding genes, either as an artefactual or real effect of the regulator, could be of potential usefulness when using Streptomyces strains as hosts for homologous or heterologous extracellular protein production.

  18. Self-consistent Dark Matter simplified models with an s-channel scalar mediator

    Science.gov (United States)

    Bell, Nicole F.; Busoni, Giorgio; Sanderson, Isaac W.

    2017-03-01

    We examine Simplified Models in which fermionic DM interacts with Standard Model (SM) fermions via the exchange of an s-channel scalar mediator. The single-mediator version of this model is not gauge invariant, and instead we must consider models with two scalar mediators which mix and interfere. The minimal gauge invariant scenario involves the mixing of a new singlet scalar with the Standard Model Higgs boson, and is tightly constrained. We construct two Higgs doublet model (2HDM) extensions of this scenario, where the singlet mixes with the 2nd Higgs doublet. Compared with the one doublet model, this provides greater freedom for the masses and mixing angle of the scalar mediators, and their coupling to SM fermions. We outline constraints on these models, and discuss Yukawa structures that allow enhanced couplings, yet keep potentially dangerous flavour violating processes under control. We examine the direct detection phenomenology of these models, accounting for interference of the scalar mediators, and interference of different quarks in the nucleus. Regions of parameter space consistent with direct detection measurements are determined.

  19. Self-Consistent Ring Current/Electromagnetic Ion Cyclotron Waves Modeling

    Science.gov (United States)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.

    2006-01-01

    The self-consistent treatment of the RC ion dynamics and EMIC waves, which are thought to exert important influences on the ion dynamical evolution, is an important missing element in our understanding of the storm-and recovery-time ring current evolution. For example, the EMlC waves cause the RC decay on a time scale of about one hour or less during the main phase of storms. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt by EMIC wave scattering during a magnetic storm. That is why the modeling of EMIC waves is critical and timely issue in magnetospheric physics. This study will generalize the self-consistent theoretical description of RC ions and EMIC waves that has been developed by Khazanov et al. [2002, 2003] and include the heavy ions and propagation effects of EMIC waves in the global dynamic of self-consistent RC - EMIC waves coupling. The results of our newly developed model that will be presented at the meeting, focusing mainly on the dynamic of EMIC waves and comparison of these results with the previous global RC modeling studies devoted to EMIC waves formation. We also discuss RC ion precipitations and wave induced thermal electron fluxes into the ionosphere.

  20. Quantal self-consistent cranking model for monopole excitations in even-even light nuclei

    CERN Document Server

    Gulshani, P

    2014-01-01

    In this article, we derive a quantal self-consistent time-reversal invariant cranking model for isoscalar monopole excitation coupled to intrinsic motion in even-even light nuclei. The model uses a wavefunction that is a product of monopole and intrinsic wavefunctions and a constrained variational method to derive, from a many-particle Schrodinger equation, a pair of coupled self-consistent cranking-type Schrodinger equations for the monopole and intrinsic systems. The monopole and intrinsic wavefunctions are coupled to each other by the two cranking equations and their associated parameters and by two constraints imposed on the intrinsic system. For an isotropic Nilsson shell model and an effective residual two-body interaction, the two coupled cranking equations are solved in the Tamm Dancoff approximation. The strength of the interaction is determined from a Hartree-Fock self-consistency argument. The excitation energy of the first excited state is determined and found to agree closely with those observed ...

  1. Predicting giant magnetoresistance using a self-consistent micromagnetic diffusion model

    CERN Document Server

    Abert, Claas; Bruckner, Florian; Vogler, Christoph; Praetorius, Dirk; Suess, Dieter

    2015-01-01

    We propose a self-consistent micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. Potential calculations for a magnetic multilayer structure with perpendicular current flow confirm experimental findings of a non-sinosoidal dependence of the resistivity on the tilting angle of the magnetization in the different layers. While the sinosoidal dependency is observed for certain material parameter limits, a realistic choice of these parameters leads to a notably narrower distribution.

  2. Self-consistent tight-binding atomic-relaxation model of titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Schelling, P.K.; Yu, N.; Halley, J.W. [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    1998-07-01

    We report a self-consistent tight-binding atomic-relaxation model for titanium dioxide. We fit the parameters of the model to first-principles electronic structure calculations of the band structure and energy as a function of lattice parameters in bulk rutile. We report the method and results for the surface structures and energies of relaxed (110), (100), and (001) surfaces of rutile TiO{sub 2} as well as work functions for these surfaces. Good agreement with first-principles calculations and experiments, where available, is found for these surfaces. We find significant charge transfer (increased covalency) at the surfaces. {copyright} {ital 1998} {ital The American Physical Society}

  3. A Self-Consistent Model for Thermal Oxidation of Silicon at Low Oxide Thickness

    Directory of Open Access Journals (Sweden)

    Gerald Gerlach

    2016-01-01

    Full Text Available Thermal oxidation of silicon belongs to the most decisive steps in microelectronic fabrication because it allows creating electrically insulating areas which enclose electrically conductive devices and device areas, respectively. Deal and Grove developed the first model (DG-model for the thermal oxidation of silicon describing the oxide thickness versus oxidation time relationship with very good agreement for oxide thicknesses of more than 23 nm. Their approach named as general relationship is the basis of many similar investigations. However, measurement results show that the DG-model does not apply to very thin oxides in the range of a few nm. Additionally, it is inherently not self-consistent. The aim of this paper is to develop a self-consistent model that is based on the continuity equation instead of Fick’s law as the DG-model is. As literature data show, the relationship between silicon oxide thickness and oxidation time is governed—down to oxide thicknesses of just a few nm—by a power-of-time law. Given by the time-independent surface concentration of oxidants at the oxide surface, Fickian diffusion seems to be neglectable for oxidant migration. The oxidant flux has been revealed to be carried by non-Fickian flux processes depending on sites being able to lodge dopants (oxidants, the so-called DOCC-sites, as well as on the dopant jump rate.

  4. A consistent modelling methodology for secondary settling tanks: a reliable numerical method.

    Science.gov (United States)

    Bürger, Raimund; Diehl, Stefan; Farås, Sebastian; Nopens, Ingmar; Torfs, Elena

    2013-01-01

    The consistent modelling methodology for secondary settling tanks (SSTs) leads to a partial differential equation (PDE) of nonlinear convection-diffusion type as a one-dimensional model for the solids concentration as a function of depth and time. This PDE includes a flux that depends discontinuously on spatial position modelling hindered settling and bulk flows, a singular source term describing the feed mechanism, a degenerating term accounting for sediment compressibility, and a dispersion term for turbulence. In addition, the solution itself is discontinuous. A consistent, reliable and robust numerical method that properly handles these difficulties is presented. Many constitutive relations for hindered settling, compression and dispersion can be used within the model, allowing the user to switch on and off effects of interest depending on the modelling goal as well as investigate the suitability of certain constitutive expressions. Simulations show the effect of the dispersion term on effluent suspended solids and total sludge mass in the SST. The focus is on correct implementation whereas calibration and validation are not pursued.

  5. Topological phases of two-component bosons in species-dependent artificial gauge potentials

    Science.gov (United States)

    Wu, Ying-Hai; Shi, Tao

    2016-08-01

    We study bosonic atoms with two internal states in artificial gauge potentials whose strengths are different for the two components. A series of topological phases for such systems is proposed using the composite fermion theory and the parton construction. It is found in exact diagonalization that some of the proposed states may be realized for simple contact interaction between bosons. The ground states and low-energy excitations of these states are modeled using trial wave functions. The effective field theories for these states are also constructed and reveal some interesting properties.

  6. Numerical simulation of two-component flow fluid - fluid in the microchannel T- type

    Directory of Open Access Journals (Sweden)

    Shebeleva A.A.

    2015-01-01

    Full Text Available Results of testing methodology for calculating two-phase flows based on the method of fluid in the cells (VOF method, and the procedure for CSF accounting of surface tension forces in the microchannel are considered in the work. Mathematical modeling of two-component flow fluid -fluid in the T- microchannel conducted using this methodology. The following flow regimes studied slug flow, rivulet flow, parallel flow, dispersed (droplet flow, plug flow. Comparison of numerical results with experimental data done. Satisfactory agreement between the calculated values with the experimental data obtained.

  7. Towards a self-consistent halo model for the nonlinear large-scale structure

    CERN Document Server

    Schmidt, Fabian

    2015-01-01

    The halo model is a theoretically and empirically well-motivated framework for predicting the statistics of the nonlinear matter distribution in the Universe. However, current incarnations of the halo model suffer from two major deficiencies: $(i)$ they do not enforce the stress-energy conservation of matter; $(ii)$ they are not guaranteed to recover exact perturbation theory results on large scales. Here, we provide a formulation of the halo model ("EHM") that remedies both drawbacks in a consistent way, while attempting to maintain the predictivity of the approach. In the formulation presented here, mass and momentum conservation are guaranteed, and results of perturbation theory and the effective field theory can in principle be matched to any desired order on large scales. We find that a key ingredient in the halo model power spectrum is the halo stochasticity covariance, which has been studied to a much lesser extent than other ingredients such as mass function, bias, and profiles of halos. As written he...

  8. A technique for generating consistent ice sheet initial conditions for coupled ice-sheet/climate models

    Directory of Open Access Journals (Sweden)

    J. G. Fyke

    2013-04-01

    Full Text Available A new technique for generating ice sheet preindustrial 1850 initial conditions for coupled ice-sheet/climate models is developed and demonstrated over the Greenland Ice Sheet using the Community Earth System Model (CESM. Paleoclimate end-member simulations and ice core data are used to derive continuous surface mass balance fields which are used to force a long transient ice sheet model simulation. The procedure accounts for the evolution of climate through the last glacial period and converges to a simulated preindustrial 1850 ice sheet that is geometrically and thermodynamically consistent with the 1850 preindustrial simulated CESM state, yet contains a transient memory of past climate that compares well to observations and independent model studies. This allows future coupled ice-sheet/climate projections of climate change that include ice sheets to integrate the effect of past climate conditions on the state of the Greenland Ice Sheet, while maintaining system-wide continuity between past and future climate simulations.

  9. Inflation Model (with doublet scalar field) consistent with Lambda CDM and WMAP cosmological observations

    CERN Document Server

    Amruth, B R; R., Amruth B.; Patwardhan, Ajay

    2006-01-01

    Cosmological inflation models with modifications to include recent cosmological observations has been an active area of research after WMAP 3 results, which have given us information about the composition of dark matter, normal matter and dark energy and the anisotropy at the 300,000 years horizon with high precision. We work on inflation models of Guth and Linde and modify them by introducing a doublet scalar field to give normal matter particles and their supersymmetric partners which result in normal and dark matter of our universe. We include the cosmological constant term as the vaccuum expectation value of the stress energy tensor, as the dark energy. We callibrate the parameters of our model using recent observations of density fluctuations. We develop a model which consistently fits with the recent observations.

  10. SALT Spectropolarimetry and Self-Consistent SED and Polarization Modeling of Blazars

    Science.gov (United States)

    Böttcher, Markus; van Soelen, Brian; Britto, Richard; Buckley, David; Marais, Johannes; Schutte, Hester

    2017-09-01

    We report on recent results from a target-of-opportunity program to obtain spectropolarimetry observations with the Southern African Large Telescope (SALT) on flaring gamma-ray blazars. SALT spectropolarimetry and contemporaneous multi-wavelength spectral energy distribution (SED) data are being modelled self-consistently with a leptonic single-zone model. Such modeling provides an accurate estimate of the degree of order of the magnetic field in the emission region and the thermal contributions (from the host galaxy and the accretion disk) to the SED, thus putting strong constraints on the physical parameters of the gamma-ray emitting region. For the specific case of the $\\gamma$-ray blazar 4C+01.02, we demonstrate that the combined SED and spectropolarimetry modeling constrains the mass of the central black hole in this blazar to $M_{\\rm BH} \\sim 10^9 \\, M_{\\odot}$.

  11. A consistent picture of the hydroclimatic response to global warming from multiple indices: Models and observations

    Science.gov (United States)

    Giorgi, F.; Coppola, E.; Raffaele, F.

    2014-10-01

    We analyze trends of six daily precipitation-based and physically interconnected hydroclimatic indices in an ensemble of historical and 21st century climate projections under forcing from increasing greenhouse gas (GHG) concentrations (Representative Concentration Pathways (RCP)8.5), along with gridded (land only) observations for the late decades of the twentieth century. The indices include metrics of intensity (SDII) and extremes (R95) of precipitation, dry (DSL), and wet spell length, the hydroclimatic intensity index (HY-INT), and a newly introduced index of precipitation area (PA). All the indices in both the 21st century and historical simulations provide a consistent picture of a predominant shift toward a hydroclimatic regime of more intense, shorter, less frequent, and less widespread precipitation events in response to GHG-induced global warming. The trends are larger and more spatially consistent over tropical than extratropical regions, pointing to the importance of tropical convection in regulating this response, and show substantial regional spatial variability. Observed trends in the indices analyzed are qualitatively and consistently in line with the simulated ones, at least at the global and full tropical scale, further supporting the robustness of the identified prevailing hydroclimatic responses. The HY-INT, PA, and R95 indices show the most consistent response to global warming, and thus offer the most promising tools for formal hydroclimatic model validation and detection/attribution studies. The physical mechanism underlying this response and some of the applications of our results are also discussed.

  12. Numerical experiments on consistent horizontal and vertical resolution for atmospheric models and observing systems

    Science.gov (United States)

    Fox-Rabinovitz, Michael S.; Lindzen, Richard S.

    1993-01-01

    Simple numerical experiments are performed in order to determine the effects of inconsistent combinations of horizontal and vertical resolution in both atmospheric models and observing systems. In both cases, we find that inconsistent spatial resolution is associated with enhanced noise generation. A rather fine horizontal resolution in a satellite-data observing system seems to be excessive when combined with the usually available relatively coarse vertical resolution. Using horizontal filters of different strengths, adjusted in such a way as to render the effective horizontal resolution more consistent with vertical resolution for the observing system, may result in improvement of the analysis accuracy. The increase of vertical resolution for a satellite data observing system with better vertically resolved data, the results are different in that little or no horizontal filtering is needed to make spatial resolution more consistent for the system. The obtained experimental estimates of consistent vertical and effective horizontal resolution are in a general agreement with consistent resolution estimates previously derived theoretically by the authors.

  13. Relativistic Consistent Angular-Momentum Projected Shell-Model:Relativistic Mean Field

    Institute of Scientific and Technical Information of China (English)

    LI Yan-Song; LONG Gui-Lu

    2004-01-01

    We develop a relativistic nuclear structure model, relativistic consistent angular-momentum projected shellmodel (RECAPS), which combines the relativistic mean-field theory with the angular-momentum projection method.In this new model, nuclear ground-state properties are first calculated consistently using relativistic mean-field (RMF)theory. Then angular momentum projection method is used to project out states with good angular momentum from a few important configurations. By diagonalizing the hamiltonian, the energy levels and wave functions are obtained.This model is a new attempt for the understanding of nuclear structure of normal nuclei and for the prediction of nuclear properties of nuclei far from stability. In this paper, we will describe the treatment of the relativistic mean field. A computer code, RECAPS-RMF, is developed. It solves the relativistic mean field with axial-symmetric deformation in the spherical harmonic oscillator basis. Comparisons between our calculations and existing relativistic mean-field calculations are made to test the model. These include the ground-state properties of spherical nuclei 16O and 208Pb,the deformed nucleus 20Ne. Good agreement is obtained.

  14. Communication: Consistent interpretation of molecular simulation kinetics using Markov state models biased with external information

    Science.gov (United States)

    Rudzinski, Joseph F.; Kremer, Kurt; Bereau, Tristan

    2016-02-01

    Molecular simulations can provide microscopic insight into the physical and chemical driving forces of complex molecular processes. Despite continued advancement of simulation methodology, model errors may lead to inconsistencies between simulated and reference (e.g., from experiments or higher-level simulations) observables. To bound the microscopic information generated by computer simulations within reference measurements, we propose a method that reweights the microscopic transitions of the system to improve consistency with a set of coarse kinetic observables. The method employs the well-developed Markov state modeling framework to efficiently link microscopic dynamics with long-time scale constraints, thereby consistently addressing a wide range of time scales. To emphasize the robustness of the method, we consider two distinct coarse-grained models with significant kinetic inconsistencies. When applied to the simulated conformational dynamics of small peptides, the reweighting procedure systematically improves the time scale separation of the slowest processes. Additionally, constraining the forward and backward rates between metastable states leads to slight improvement of their relative stabilities and, thus, refined equilibrium properties of the resulting model. Finally, we find that difficulties in simultaneously describing both the simulated data and the provided constraints can help identify specific limitations of the underlying simulation approach.

  15. Ring current Atmosphere interactions Model with Self-Consistent Magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-09

    The Ring current Atmosphere interactions Model with Self-Consistent magnetic field (B) is a unique code that combines a kinetic model of ring current plasma with a three dimensional force-balanced model of the terrestrial magnetic field. The kinetic portion, RAM, solves the kinetic equation to yield the bounce-averaged distribution function as a function of azimuth, radial distance, energy and pitch angle for three ion species (H+, He+, and O+) and, optionally, electrons. The domain is a circle in the Solar-Magnetic (SM) equatorial plane with a radial span of 2 to 6.5 RE. It has an energy range of approximately 100 eV to 500 KeV. The 3-D force balanced magnetic field model, SCB, balances the JxB force with the divergence of the general pressure tensor to calculate the magnetic field configuration within its domain. The domain ranges from near the Earth’s surface, where the field is assumed dipolar, to the shell created by field lines passing through the SM equatorial plane at a radial distance of 6.5 RE. The two codes work in tandem, with RAM providing anisotropic pressure to SCB and SCB returning the self-consistent magnetic field through which RAM plasma is advected.

  16. Reversal of atherosis and sclerosis. The two components of atherosclerosis.

    Science.gov (United States)

    Blankenhorn, D H; Kramsch, D M

    1989-01-01

    In 1904, Marchand recognized the consistent association of fatty degeneration and vessel stiffening and introduced the term "atherosclerosis" to indicate this combination. Current research is focused principally on the lipid component, but there is evidence that both aspects are reversible. Atheromatous lipids add significantly to the volume of lesions and thus contribute to vascular obstruction and end-organ damage. Reversal of atherosis has been observed in all the major species used in atherosclerosis research; rabbits, swine, dogs, chicks, pigeons, and subhuman primates. Direct evidence for reversal in humans is based on angiographic trials and is less extensive. One femoral artery and one coronary artery trial indicate that the lesions can be stabilized. CLAS, the largest angiographic trial to date, indicates that coronary lesion reversal is possible. Clinical effects of sclerosis are more subtle, and there is little evidence that sclerosis alone leads to end-organ damage. However, it should be noted that atherosclerotic lesions producing end-organ damage invariably have a major fibrous component. Sclerotic vessels have reduced systolic expansion and abnormally rapid pulse wave propagation, which can be measured noninvasively. Primate studies indicate that sclerosis is induced by hypercholesterolemic diets and is reversible when these diets are withdrawn. Changes in sclerosis may be another useful indicator of the formation and reversal of lesions and may involve changes in EDRF. Future studies of atherosclerosis reversal should use a combination of measures to evaluate both atherosis and sclerosis.

  17. Multiple Servers - Queue Model for Agent Based Technology in Cache Consistence Maintenance of Mobile Environment

    Directory of Open Access Journals (Sweden)

    G.Shanmugarathinam

    2013-01-01

    Full Text Available Caching is one of the important techniques in mobile computing. In caching, frequently accessed data is stored in mobile clients to avoid network traffic and improve the performance in mobile computing. In a mobile computing environment, the number of mobile users increases and requests the server for any updation, but most of the time the server is busy and the client has to wait for a long time. The cache consistency maintenance is difficult for both client and the server. This paper is proposes a technique using a queuing system consisting of one or more servers that provide services of some sort to arrive mobile hosts using agent based technology. This services mechanism of a queuing system is specified by the number of servers each server having its own queue, Agent based technology will maintain the cache consistency between the client and the server .This model saves wireless bandwidth, reduces network traffic and reduces the workload on the server. The simulation result was analyzed with previous technique and the proposed model shows significantly better performance than the earlier approach.

  18. Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows

    CERN Document Server

    Silvis, Maurits H; Verstappen, Roel

    2016-01-01

    We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In particular, we aim to consolidate a systematic approach of constructing subgrid-scale models, based on the idea that it is desirable that subgrid-scale models are consistent with the properties of the Navier-Stokes equations and the turbulent stresses. To that end, we first discuss in detail the symmetries of the Navier-Stokes equations, and the near-wall scaling behavior, realizability and dissipation properties of the turbulent stresses. We furthermore summarize the requirements that subgrid-scale models have to satisfy in order to preserve these important mathematical and physical properties. In this fashion, a framework of model constraints arises that we apply to analyze the behavior of a number of existing subgrid-scale models that are based on the local velocity gradient. We show that these subgrid-scale models do not satisfy all the desired properties, after which we explain that this is p...

  19. RNA secondary structure modeling at consistent high accuracy using differential SHAPE.

    Science.gov (United States)

    Rice, Greggory M; Leonard, Christopher W; Weeks, Kevin M

    2014-06-01

    RNA secondary structure modeling is a challenging problem, and recent successes have raised the standards for accuracy, consistency, and tractability. Large increases in accuracy have been achieved by including data on reactivity toward chemical probes: Incorporation of 1M7 SHAPE reactivity data into an mfold-class algorithm results in median accuracies for base pair prediction that exceed 90%. However, a few RNA structures are modeled with significantly lower accuracy. Here, we show that incorporating differential reactivities from the NMIA and 1M6 reagents--which detect noncanonical and tertiary interactions--into prediction algorithms results in highly accurate secondary structure models for RNAs that were previously shown to be difficult to model. For these RNAs, 93% of accepted canonical base pairs were recovered in SHAPE-directed models. Discrepancies between accepted and modeled structures were small and appear to reflect genuine structural differences. Three-reagent SHAPE-directed modeling scales concisely to structurally complex RNAs to resolve the in-solution secondary structure analysis problem for many classes of RNA.

  20. Gas cooling in semi-analytic models and SPH simulations: are results consistent?

    CERN Document Server

    Saro, A; Borgani, S; Dolag, K

    2010-01-01

    We present a detailed comparison between the galaxy populations within a massive cluster, as predicted by hydrodynamical SPH simulations and by a semi-analytic model (SAM) of galaxy formation. Both models include gas cooling and a simple prescription of star formation, which consists in transforming instantaneously any cold gas available into stars, while neglecting any source of energy feedback. We find that, in general, galaxy populations from SAMs and SPH have similar statistical properties, in agreement with previous studies. However, when comparing galaxies on an object-by-object basis, we find a number of interesting differences: a) the star formation histories of the brightest cluster galaxies (BCGs) from SAM and SPH models differ significantly, with the SPH BCG exhibiting a lower level of star formation activity at low redshift, and a more intense and shorter initial burst of star formation with respect to its SAM counterpart; b) while all stars associated with the BCG were formed in its progenitors i...

  1. A Fully Nonlinear, Dynamically Consistent Numerical Model for Ship Maneuvering in a Seaway

    Directory of Open Access Journals (Sweden)

    Ray-Qing Lin

    2011-01-01

    Full Text Available This is the continuation of our research on development of a fully nonlinear, dynamically consistent, numerical ship motion model (DiSSEL. In this paper we report our results on modeling ship maneuvering in arbitrary seaway that is one of the most challenging and important problems in seakeeping. In our modeling, we developed an adaptive algorithm to maintain dynamical balances numerically as the encounter frequencies (the wave frequencies as measured on the ship varying with the ship maneuvering state. The key of this new algorithm is to evaluate the encounter frequency variation differently in the physical domain and in the frequency domain, thus effectively eliminating possible numerical dynamical imbalances. We have tested this algorithm with several well-documented maneuvering experiments, and our results agree very well with experimental data. In particular, the numerical time series of roll and pitch motions and the numerical ship tracks (i.e., surge, sway, and yaw are nearly identical to those of experiments.

  2. On Multiscale Modeling: Preserving Energy Dissipation Across the Scales with Consistent Handshaking Methods

    Science.gov (United States)

    Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.; Waas, Anthony M.

    2013-01-01

    A mesh objective crack band model was implemented within the generalized method of cells micromechanics theory. This model was linked to a macroscale finite element model to predict post-peak strain softening in composite materials. Although a mesh objective theory was implemented at the microscale, it does not preclude pathological mesh dependence at the macroscale. To ensure mesh objectivity at both scales, the energy density and the energy release rate must be preserved identically across the two scales. This requires a consistent characteristic length or localization limiter. The effects of scaling (or not scaling) the dimensions of the microscale repeating unit cell (RUC), according to the macroscale element size, in a multiscale analysis was investigated using two examples. Additionally, the ramifications of the macroscale element shape, compared to the RUC, was studied.

  3. Consistent neutron star models with magnetic field dependent equations of state

    CERN Document Server

    Chatterjee, Debarati; Novak, Jerome; Oertel, Micaela

    2014-01-01

    We present a self-consistent model for the study of the structure of a neutron star in strong magnetic fields. Starting from a microscopic Lagrangian, this model includes the effect of the magnetic field on the equation of state, the interaction of the electromagnetic field with matter (magnetisation), and anisotropies in the energy-momentum tensor, as well as general relativistic aspects. We build numerical axisymmetric stationary models and show the applicability of the approach with one example quark matter equation of state (EoS) often employed in the recent literature for studies of strongly magnetised neutron stars. For this EoS, the effect of inclusion of magnetic field dependence or the magnetisation do not increase the maximum mass significantly in contrast to what has been claimed by previous studies.

  4. A self consistent chemically stratified atmosphere model for the roAp star 10 Aquilae

    CERN Document Server

    Nesvacil, Nicole; Ryabchikova, Tanya A; Kochukhov, Oleg; Akberov, Artur; Weiss, Werner W

    2012-01-01

    Context: Chemically peculiar A type (Ap) stars are a subgroup of the CP2 stars which exhibit anomalous overabundances of numerous elements, e.g. Fe, Cr, Sr and rare earth elements. The pulsating subgroup of the Ap stars, the roAp stars, present ideal laboratories to observe and model pulsational signatures as well as the interplay of the pulsations with strong magnetic fields and vertical abundance gradients. Aims: Based on high resolution spectroscopic observations and observed stellar energy distributions we construct a self consistent model atmosphere, that accounts for modulations of the temperature-pressure structure caused by vertical abundance gradients, for the roAp star 10 Aquilae (HD 176232). We demonstrate that such an analysis can be used to determine precisely the fundamental atmospheric parameters required for pulsation modelling. Methods: Average abundances were derived for 56 species. For Mg, Si, Ca, Cr, Fe, Co, Sr, Pr, and Nd vertical stratification profiles were empirically derived using the...

  5. A self-consistent model for a longitudinal discharge excited He-Sr recombination laser

    Energy Technology Data Exchange (ETDEWEB)

    Carman, R.J. (Centre for Lasers and Applications, Macquarie University, Sydney NSW 2109 (AU))

    1990-09-01

    A computer model has been developed to simulate the plasma kinetics in a high-repetition frequency, discharge excited He-Sr recombination laser. A detailed rate equation analysis, incorporating about 80 collisional and radiative processes, is used to determine the temporal and spatial (radial) behavior of the discharge parameters and the intracavity laser field during the current pulse, recombination phase, and afterglow periods. The set of coupled first-order ordinary differential equations used to describe the plasma and external electrical circuit are integrated over multiple discharge cycles to yield fully self-consistent results. The computer model has been used to simulate the behavior of the laser for a set of standard conditions corresponding to typical operating conditions. The species population densities predicted by the model are compared with radial and time-dependent Hook measurements determined experimentally for the same set of standard conditions.

  6. A heterogeneous traffic flow model consisting of two types of vehicles with different sensitivities

    Science.gov (United States)

    Li, Zhipeng; Xu, Xun; Xu, Shangzhi; Qian, Yeqing

    2017-01-01

    A heterogeneous car following model is constructed for traffic flow consisting of low- and high-sensitivity vehicles. The stability criterion of new model is obtained by using the linear stability theory. We derive the neutral stability diagram for the proposed model with five distinct regions. We conclude the effect of the percentage of low-sensitivity vehicle on the traffic stability in each region. In addition, we further consider a special case that the number of the low-sensitivity vehicles is equal to that of the high-sensitivity ones. We explore the dependence of traffic stability on the average value and the standard deviation of two sensitivities characterizing two vehicle types. The direct numerical simulation results verify the conclusion of theoretical analysis.

  7. Absolutely stable solitons in two-component active systems

    CERN Document Server

    Malomed, B A; Malomed, Boris; Winful, Herbert

    1995-01-01

    As is known, a solitary pulse in the complex cubic Ginzburg-Landau (GL) equation is unstable. We demonstrate that a system of two linearly coupled GL equations with gain and dissipation in one subsystem and pure dissipation in another produces absolutely stable solitons and their bound states. The problem is solved in a fully analytical form by means of the perturbation theory. The soliton coexists with a stable trivial state; there is also an unstable soliton with a smaller amplitude, which is a separatrix between the two stable states. This model has a direct application in nonlinear fiber optics, describing an Erbium-doped laser based on a dual-core fiber.

  8. nIFTy cosmology: the clustering consistency of galaxy formation models

    Science.gov (United States)

    Pujol, Arnau; Skibba, Ramin A.; Gaztañaga, Enrique; Benson, Andrew; Blaizot, Jeremy; Bower, Richard; Carretero, Jorge; Castander, Francisco J.; Cattaneo, Andrea; Cora, Sofia A.; Croton, Darren J.; Cui, Weiguang; Cunnama, Daniel; De Lucia, Gabriella; Devriendt, Julien E.; Elahi, Pascal J.; Font, Andreea; Fontanot, Fabio; Garcia-Bellido, Juan; Gargiulo, Ignacio D.; Gonzalez-Perez, Violeta; Helly, John; Henriques, Bruno M. B.; Hirschmann, Michaela; Knebe, Alexander; Lee, Jaehyun; Mamon, Gary A.; Monaco, Pierluigi; Onions, Julian; Padilla, Nelson D.; Pearce, Frazer R.; Power, Chris; Somerville, Rachel S.; Srisawat, Chaichalit; Thomas, Peter A.; Tollet, Edouard; Vega-Martínez, Cristian A.; Yi, Sukyoung K.

    2017-07-01

    We present a clustering comparison of 12 galaxy formation models [including semi-analytic models (SAMs) and halo occupation distribution (HOD) models] all run on halo catalogues and merger trees extracted from a single Λ cold dark matter N-body simulation. We compare the results of the measurements of the mean halo occupation numbers, the radial distribution of galaxies in haloes and the two-point correlation functions (2PCF). We also study the implications of the different treatments of orphan (galaxies not assigned to any dark matter subhalo) and non-orphan galaxies in these measurements. Our main result is that the galaxy formation models generally agree in their clustering predictions but they disagree significantly between HOD and SAMs for the orphan satellites. Although there is a very good agreement between the models on the 2PCF of central galaxies, the scatter between the models when orphan satellites are included can be larger than a factor of 2 for scales smaller than 1 h-1 Mpc. We also show that galaxy formation models that do not include orphan satellite galaxies have a significantly lower 2PCF on small scales, consistent with previous studies. Finally, we show that the 2PCF of orphan satellites is remarkably different between SAMs and HOD models. Orphan satellites in SAMs present a higher clustering than in HOD models because they tend to occupy more massive haloes. We conclude that orphan satellites have an important role on galaxy clustering and they are the main cause of the differences in the clustering between HOD models and SAMs.

  9. Instabilities in relativistic two-component (super)fluids

    CERN Document Server

    Haber, Alexander; Stetina, Stephan

    2016-01-01

    We study two-fluid systems with nonzero fluid velocities and compute their sound modes, which indicate various instabilities. For the case of two zero-temperature superfluids we employ a microscopic field-theoretical model of two coupled bosonic fields, including an entrainment coupling and a non-entrainment coupling. We analyse the onset of the various instabilities systematically and point out that the dynamical two-stream instability can only occur beyond Landau's critical velocity, i.e., in an already energetically unstable regime. A qualitative difference is found for the case of two normal fluids, where certain transverse modes suffer a two-stream instability in an energetically stable regime if there is entrainment between the fluids. Since we work in a fully relativistic setup, our results are very general and of potential relevance for (super)fluids in neutron stars and, in the non-relativistic limit of our results, in the laboratory.

  10. Reproduction of consistent pulse-waveform changes using a computational model of the cerebral circulatory system.

    Science.gov (United States)

    Connolly, Mark; He, Xing; Gonzalez, Nestor; Vespa, Paul; DiStefano, Joe; Hu, Xiao

    2014-03-01

    Due to the inaccessibility of the cranial vault, it is difficult to study cerebral blood flow dynamics directly. A mathematical model can be useful to study these dynamics. The model presented here is a novel combination of a one-dimensional fluid flow model representing the major vessels of the circle of Willis (CoW), with six individually parameterized auto-regulatory models of the distal vascular beds. This model has the unique ability to simulate high temporal resolution flow and velocity waveforms, amenable to pulse-waveform analysis, as well as sophisticated phenomena such as auto-regulation. Previous work with human patients has shown that vasodilation induced by CO2 inhalation causes 12 consistent pulse-waveform changes as measured by the morphological clustering and analysis of intracranial pressure algorithm. To validate this model, we simulated vasodilation and successfully reproduced 9 out of the 12 pulse-waveform changes. A subsequent sensitivity analysis found that these 12 pulse-waveform changes were most affected by the parameters associated with the shape of the smooth muscle tension response and vessel elasticity, providing insight into the physiological mechanisms responsible for observed changes in the pulse-waveform shape.

  11. Consistent multi-internal-temperature models for vibrational and electronic nonequilibrium in hypersonic nitrogen plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Guy, Aurélien, E-mail: aurelien.guy@onera.fr; Bourdon, Anne, E-mail: anne.bourdon@lpp.polytechnique.fr; Perrin, Marie-Yvonne, E-mail: marie-yvonne.perrin@ecp.fr [CNRS, UPR 288, Laboratoire d' Énergétique Moléculaire et Macroscopique, Combustion (EM2C), Grande Voie des Vignes, 92295 Châtenay-Malabry (France); Ecole Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry (France)

    2015-04-15

    In this work, a state-to-state vibrational and electronic collisional model is developed to investigate nonequilibrium phenomena behind a shock wave in an ionized nitrogen flow. In the ionization dynamics behind the shock wave, the electron energy budget is of key importance and it is found that the main depletion term corresponds to the electronic excitation of N atoms, and conversely the major creation terms are the electron-vibration term at the beginning, then replaced by the electron ions elastic exchange term. Based on these results, a macroscopic multi-internal-temperature model for the vibration of N{sub 2} and the electronic levels of N atoms is derived with several groups of vibrational levels of N{sub 2} and electronic levels of N with their own internal temperatures to model the shape of the vibrational distribution of N{sub 2} and of the electronic excitation of N, respectively. In this model, energy and chemistry source terms are calculated self-consistently from the rate coefficients of the state-to-state database. For the shock wave condition studied, a good agreement is observed on the ionization dynamics as well as on the atomic bound-bound radiation between the state-to-state model and the macroscopic multi-internal temperature model with only one group of vibrational levels of N{sub 2} and two groups of electronic levels of N.

  12. Validity test and its consistency in the construction of patient loyalty model

    Science.gov (United States)

    Yanuar, Ferra

    2016-04-01

    The main objective of this present study is to demonstrate the estimation of validity values and its consistency based on structural equation model. The method of estimation was then implemented to an empirical data in case of the construction the patient loyalty model. In the hypothesis model, service quality, patient satisfaction and patient loyalty were determined simultaneously, each factor were measured by any indicator variables. The respondents involved in this study were the patients who ever got healthcare at Puskesmas in Padang, West Sumatera. All 394 respondents who had complete information were included in the analysis. This study found that each construct; service quality, patient satisfaction and patient loyalty were valid. It means that all hypothesized indicator variables were significant to measure their corresponding latent variable. Service quality is the most measured by tangible, patient satisfaction is the most mesured by satisfied on service and patient loyalty is the most measured by good service quality. Meanwhile in structural equation, this study found that patient loyalty was affected by patient satisfaction positively and directly. Service quality affected patient loyalty indirectly with patient satisfaction as mediator variable between both latent variables. Both structural equations were also valid. This study also proved that validity values which obtained here were also consistence based on simulation study using bootstrap approach.

  13. No consistent bioenergetic defects in presynaptic nerve terminals isolated from mouse models of Alzheimer's disease.

    Science.gov (United States)

    Choi, Sung W; Gerencser, Akos A; Ng, Ryan; Flynn, James M; Melov, Simon; Danielson, Steven R; Gibson, Bradford W; Nicholls, David G; Bredesen, Dale E; Brand, Martin D

    2012-11-21

    Depressed cortical energy supply and impaired synaptic function are predominant associations of Alzheimer's disease (AD). To test the hypothesis that presynaptic bioenergetic deficits are associated with the progression of AD pathogenesis, we compared bioenergetic variables of cortical and hippocampal presynaptic nerve terminals (synaptosomes) from commonly used mouse models with AD-like phenotypes (J20 age 6 months, Tg2576 age 16 months, and APP/PS age 9 and 14 months) to age-matched controls. No consistent bioenergetic deficiencies were detected in synaptosomes from the three models; only APP/PS cortical synaptosomes from 14-month-old mice showed an increase in respiration associated with proton leak. J20 mice were chosen for a highly stringent investigation of mitochondrial function and content. There were no significant differences in the quality of the synaptosomal preparations or the mitochondrial volume fraction. Furthermore, respiratory variables, calcium handling, and membrane potentials of synaptosomes from symptomatic J20 mice under calcium-imposed stress were not consistently impaired. The recovery of marker proteins during synaptosome preparation was the same, ruling out the possibility that the lack of functional bioenergetic defects in synaptosomes from J20 mice was due to the selective loss of damaged synaptosomes during sample preparation. Our results support the conclusion that the intrinsic bioenergetic capacities of presynaptic nerve terminals are maintained in these symptomatic AD mouse models.

  14. Consistently modeling the same movement strategy is more important than model skill level in observational learning contexts.

    Science.gov (United States)

    Buchanan, John J; Dean, Noah

    2014-02-01

    The experiment undertaken was designed to elucidate the impact of model skill level on observational learning processes. The task was bimanual circle tracing with a 90° relative phase lead of one hand over the other hand. Observer groups watched videos of either an instruction model, a discovery model, or a skilled model. The instruction and skilled model always performed the task with the same movement strategy, the right-arm traced clockwise and the left-arm counterclockwise around circle templates with the right-arm leading. The discovery model used several movement strategies (tracing-direction/hand-lead) during practice. Observation of the instruction and skilled model provided a significant benefit compared to the discovery model when performing the 90° relative phase pattern in a post-observation test. The observers of the discovery model had significant room for improvement and benefited from post-observation practice of the 90° pattern. The benefit of a model is found in the consistency with which that model uses the same movement strategy, and not within the skill level of the model. It is the consistency in strategy modeled that allows observers to develop an abstract perceptual representation of the task that can be implemented into a coordinated action. Theoretically, the results show that movement strategy information (relative motion direction, hand lead) and relative phase information can be detected through visual perception processes and be successfully mapped to outgoing motor commands within an observational learning context.

  15. A Globally Consistent Methodology for an Exposure Model for Natural Catastrophe Risk Assessment

    Science.gov (United States)

    Gunasekera, Rashmin; Ishizawa, Oscar; Pandey, Bishwa; Saito, Keiko

    2013-04-01

    There is a high demand for the development of a globally consistent and robust exposure data model employing a top down approach, to be used in national level catastrophic risk profiling for the public sector liability. To this effect, there are currently several initiatives such as UN-ISDR Global Assessment Report (GAR) and Global Exposure Database for Global Earthquake Model (GED4GEM). However, the consistency and granularity differs from region to region, a problem that is overcome in this proposed approach using national datasets for example in Latin America and the Caribbean Region (LCR). The methodology proposed in this paper aim to produce a global open exposure dataset based upon population, country specific building type distribution and other global/economic indicators such as World Bank indices that are suitable for natural catastrophe risk modelling purposes. The output would be a GIS raster grid at approximately 1 km spatial resolution which would highlight urbaness (building typology distribution, occupancy and use) for each cell at sub national level and compatible with other global initiatives and datasets. It would make use of datasets on population, census, demographic, building data and land use/land cover which are largely available in the public domain. The resultant exposure dataset could be used in conjunction with hazard and vulnerability components to create views of risk for multiple hazards that include earthquake, flood and windstorms. The model we hope would also assist in steps towards future initiatives for open, interchangeable and compatible databases for catastrophe risk modelling. The findings, interpretations, and conclusions expressed in this paper are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

  16. Two-component jet simulations: I. Topological stability of analytical MHD outflow solutions

    CERN Document Server

    Matsakos, T; Vlahakis, N; Massaglia, S; Mignone, A; Trussoni, E

    2007-01-01

    Observations of collimated outflows in young stellar objects indicate that several features of the jets can be understood by adopting the picture of a two-component outflow, wherein a central stellar component around the jet axis is surrounded by an extended disk-wind. The precise contribution of each component may depend on the intrinsic physical properties of the YSO-disk system as well as its evolutionary stage. In this context, the present article starts a systematic investigation of two-component jet models via time-dependent simulations of two prototypical and complementary analytical solutions, each closely related to the properties of stellar-outflows and disk-winds. These models describe a meridionally and a radially self-similar exact solution of the steady-state, ideal hydromagnetic equations, respectively. By using the PLUTO code to carry out the simulations, the study focuses on the topological stability of each of the two analytical solutions, which are successfully extended to all space by remo...

  17. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media

    KAUST Repository

    Saad, Bilal Mohammed

    2013-09-01

    We propose and analyze a finite volume scheme to simulate a non equilibrium two components (water and hydrogen) two phase flow (liquid and gas) model. In this model, the assumption of local mass non equilibrium is ensured and thus the velocity of the mass exchange between dissolved hydrogen and hydrogen in the gas phase is supposed finite. The proposed finite volume scheme is fully implicit in time together with a phase-by-phase upwind approach in space and it is discretize the equations in their general form with gravity and capillary terms We show that the proposed scheme satisfies the maximum principle for the saturation and the concentration of the dissolved hydrogen. We establish stability results on the velocity of each phase and on the discrete gradient of the concentration. We show the convergence of a subsequence to a weak solution of the continuous equations as the size of the discretization tends to zero. At our knowledge, this is the first convergence result of finite volume scheme in the case of two component two phase compressible flow in several space dimensions.

  18. Implications of Two-component Dark Matter Induced by Forbidden Channels and Thermal Freeze-out

    CERN Document Server

    Aoki, Mayumi

    2016-01-01

    We consider a model of two-component dark matter based on a hidden $U(1)_D$ symmetry, in which relic densities of the dark matter are determined by forbidden channels and thermal freeze-out. The hidden $U(1)_D$ symmetry is spontaneously broken to a residual $\\mathbb{Z}_4$ symmetry, and the lightest $\\mathbb{Z}_4$ charged particle can be a dark matter candidate. Moreover, depending on the mass hierarchy in the dark sector, we have two-component dark matter. We show that the relic density of the lighter dark matter component can be determined by forbidden annihilation channels which require larger couplings compared to the normal freeze-out mechanism. As a result, a large self-interaction of the lighter dark matter component can be induced, which may solve small scale problems of $\\Lambda$CDM model. On the other hand, the heavier dark matter component is produced by normal freeze-out mechanism. We find that interesting implications emerge between the two dark matter components in this framework. We explore dete...

  19. Positive autoregulation shapes response timing and intensity in two-component signal transduction systems.

    Science.gov (United States)

    Mitrophanov, Alexander Y; Hadley, Tricia J; Groisman, Eduardo A

    2010-08-27

    Positive feedback loops are regulatory elements that can modulate expression output, kinetics and noise in genetic circuits. Transcriptional regulators participating in such loops are often expressed from two promoters, one constitutive and one autoregulated. Here, we investigate the interplay of promoter strengths and the intensity of the stimulus activating the transcriptional regulator in defining the output of a positively autoregulated genetic circuit. Using a mathematical model of two-component regulatory systems, which are present in all domains of life, we establish that positive feedback strongly affects the steady-state output levels at both low and high levels of stimulus if the constitutive promoter of the regulator is weak. By contrast, the effect of positive feedback is negligible when the constitutive promoter is sufficiently strong, unless the stimulus intensity is very high. Furthermore, we determine that positive feedback can affect both transient and steady state output levels even in the simplest genetic regulatory systems. We tested our modeling predictions by abolishing the positive feedback loop in the two-component regulatory system PhoP/PhoQ of Salmonella enterica, which resulted in diminished induction of PhoP-activated genes. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. A theory of scintillation for two-component power law irregularity spectra: Overview and numerical results

    Science.gov (United States)

    Carrano, Charles S.; Rino, Charles L.

    2016-06-01

    We extend the power law phase screen theory for ionospheric scintillation to account for the case where the refractive index irregularities follow a two-component inverse power law spectrum. The two-component model includes, as special cases, an unmodified power law and a modified power law with spectral break that may assume the role of an outer scale, intermediate break scale, or inner scale. As such, it provides a framework for investigating the effects of a spectral break on the scintillation statistics. Using this spectral model, we solve the fourth moment equation governing intensity variations following propagation through two-dimensional field-aligned irregularities in the ionosphere. A specific normalization is invoked that exploits self-similar properties of the structure to achieve a universal scaling, such that different combinations of perturbation strength, propagation distance, and frequency produce the same results. The numerical algorithm is validated using new theoretical predictions for the behavior of the scintillation index and intensity correlation length under strong scatter conditions. A series of numerical experiments are conducted to investigate the morphologies of the intensity spectrum, scintillation index, and intensity correlation length as functions of the spectral indices and strength of scatter; retrieve phase screen parameters from intensity scintillation observations; explore the relative contributions to the scintillation due to large- and small-scale ionospheric structures; and quantify the conditions under which a general spectral break will influence the scintillation statistics.

  1. Self-consistent Spectral Functions in the $O(N)$ Model from the FRG

    CERN Document Server

    Strodthoff, Nils

    2016-01-01

    We present the first self-consistent direct calculation of a spectral function in the framework of the Functional Renormalization Group. The study is carried out in the relativistic $O(N)$ model, where the full momentum dependence of the propagators in the complex plane as well as momentum-dependent vertices are considered. The analysis is supplemented by a comparative study of the Euclidean momentum dependence and of the complex momentum dependence on the level of spectral functions. This work lays the groundwork for the computation of full spectral functions in more complex systems.

  2. Self-consistent description of $\\Lambda$ hypernuclei in the quark-meson coupling model

    CERN Document Server

    Tsushima, K; Thomas, A W

    1997-01-01

    The quark-meson coupling model, which has been successfully used to describe the properties of both finite nuclei and infinite nuclear matter, is applied to a study of $\\Lambda$ hypernuclei. With the assumption that the (self-consistent) exchanged scalar, and vector, mesons couple only to the u and d quarks, a very weak spin-orbit force in the $\\Lambda$-nucleus interaction is achieved automatically. This can be interpreted as a direct consequence of the quark structure of the $\\Lambda$ hyperon. Possible implications and extensions of the present investigation are also discussed.

  3. Premixed Combustion Simulations with a Self-Consistent Plasma Model for Initiation

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, Hariswaran; Grout, Ray

    2016-01-08

    Combustion simulations of H2-O2 ignition are presented here, with a self-consistent plasma fluid model for ignition initiation. The plasma fluid equations for a nanosecond pulsed discharge are solved and coupled with the governing equations of combustion. The discharge operates with the propagation of cathode directed streamer, with radical species produced at streamer heads. These radical species play an important role in the ignition process. The streamer propagation speeds and radical production rates were found to be sensitive to gas temperature and fuel-oxidizer equivalence ratio. The oxygen radical production rates strongly depend on equivalence ratio and subsequently results in faster ignition of leaner mixtures.

  4. Supporting Consistency in Linked Specialized Engineering Models Through Bindings and Updating

    Institute of Scientific and Technical Information of China (English)

    Albertus H. Olivier; Gert C. van Rooyen; Berthold Firmenich; Karl E. Beucke

    2008-01-01

    Currently, some commercial software applications support users to work in an integrated environ-ment. However, this is limited to the suite of models provided by the software vendor and consequently it forces all the parties to use the same software. In contrast, the research described in this paper investigates ways of using standard software applications, which may be specialized for different professional domains.These are linked for effective transfer of information and a binding mechanism is provided to support consis-tency. The proposed solution was implemented using a CAD application and an independent finite element application in order to verify the theoretical aspects of this work.

  5. A “Minsky crisis” in a Stock-Flow Consistent model

    OpenAIRE

    Mouakil, Tarik

    2014-01-01

    This study uses the Stock-Flow Consistent modelling approach to assess the relevance of Minsky’s demonstration of his financial instability hypothesis. We show that this demonstration, based on the assumption of a pro-cyclical leverage ratio, is incompatible with the Kaleckian analysis of profits endorsed by Minsky. Therefore we suggest replacing the assumption of a pro-cyclical leverage ratio with one of a pro-cyclical short-term borrowing, which also appears in Minsky’s work. Cet article...

  6. Stochastic modelling of spatially and temporally consistent daily precipitation time-series over complex topography

    Science.gov (United States)

    Keller, D. E.; Fischer, A. M.; Frei, C.; Liniger, M. A.; Appenzeller, C.; Knutti, R.

    2014-07-01

    Many climate impact assessments over topographically complex terrain require high-resolution precipitation time-series that have a spatio-temporal correlation structure consistent with observations. This consistency is essential for spatially distributed modelling of processes with non-linear responses to precipitation input (e.g. soil water and river runoff modelling). In this regard, weather generators (WGs) designed and calibrated for multiple sites are an appealing technique to stochastically simulate time-series that approximate the observed temporal and spatial dependencies. In this study, we present a stochastic multi-site precipitation generator and validate it over the hydrological catchment Thur in the Swiss Alps. The model consists of several Richardson-type WGs that are run with correlated random number streams reflecting the observed correlation structure among all possible station pairs. A first-order two-state Markov process simulates intermittence of daily precipitation, while precipitation amounts are simulated from a mixture model of two exponential distributions. The model is calibrated separately for each month over the time-period 1961-2011. The WG is skilful at individual sites in representing the annual cycle of the precipitation statistics, such as mean wet day frequency and intensity as well as monthly precipitation sums. It reproduces realistically the multi-day statistics such as the frequencies of dry and wet spell lengths and precipitation sums over consecutive wet days. Substantial added value is demonstrated in simulating daily areal precipitation sums in comparison to multiple WGs that lack the spatial dependency in the stochastic process: the multi-site WG is capable to capture about 95% of the observed variability in daily area sums, while the summed time-series from multiple single-site WGs only explains about 13%. Limitation of the WG have been detected in reproducing observed variability from year to year, a component that has

  7. Consistency of QSAR models: Correct split of training and test sets, ranking of models and performance parameters.

    Science.gov (United States)

    Rácz, A; Bajusz, D; Héberger, K

    2015-01-01

    Recent implementations of QSAR modelling software provide the user with numerous models and a wealth of information. In this work, we provide some guidance on how one should interpret the results of QSAR modelling, compare and assess the resulting models, and select the best and most consistent ones. Two QSAR datasets are applied as case studies for the comparison of model performance parameters and model selection methods. We demonstrate the capabilities of sum of ranking differences (SRD) in model selection and ranking, and identify the best performance indicators and models. While the exchange of the original training and (external) test sets does not affect the ranking of performance parameters, it provides improved models in certain cases (despite the lower number of molecules in the training set). Performance parameters for external validation are substantially separated from the other merits in SRD analyses, highlighting their value in data fusion.

  8. Tides, Rotation Or Anisotropy? Self-consistent Nonspherical Models For Globular Clusters

    Science.gov (United States)

    Varri, Anna L.; Bertin, G.

    2011-01-01

    Spherical models of quasi-relaxed stellar systems provide a successful zeroth-order description of globular clusters. Yet, the great progress made in recent years in the acquisition of detailed information of the structure of these stellar systems calls for a renewed effort on the side of modeling. In particular, more general analytical models would allow to address the long-standing issue of the physical origin of the deviations from spherical symmetry of the globular clusters, that now can be properly measured. In fact, it remains to be established which is the cause of the observed flattening, among external tides, internal rotation, and pressure anisotropy. In this paper we focus on the first two physical ingredients. We start by briefly describing a recently studied family of triaxial models that incorporate in a self-consistent way the tidal effects of the host galaxy, as a collisionless analogue of the Roche problem (Varri & Bertin ApJ 2009). We then present two new families of axisymmetric models in which the deviations from spherical symmetry are induced by the presence of internal rotation. The first one is an extension of the well-known family of King models to the case of axisymmetric equilibria flattened by solid-body rotation. The second family is characterized by differential rotation, designed to be rigid in the center and to vanish in the outer parts, where the imposed truncation in phase space becomes effective. For possible application to globular clusters, models of interest should be those, in both families, characterized by low values of the rotation strength parameter and quasi-spherical shape. For general interest in stellar dynamics, we show that, for high values of that parameter, the differentially rotating models may exhibit unexpected morphologies, even with a toroidal core.

  9. A new self-consistent hybrid chemistry model for Mars and cometary environments

    Science.gov (United States)

    Wedlund, Cyril Simon; Kallio, Esa; Jarvinen, Riku; Dyadechkin, Sergey; Alho, Markku

    2014-05-01

    Over the last 15 years, a 3-D hybrid-PIC planetary plasma interaction modelling platform, named HYB, has been developed, which was applied to several planetary environment such as those of Mars, Venus, Mercury, and more recently, the Moon. We present here another evolution of HYB including a fully consistent ionospheric-chemistry package designed to reproduce the main ions in the lower boundary of the model. This evolution, also permitted by the increase in computing power and the switch to spherical coordinates for higher spatial resolution (Dyadechkin et al., 2013), is motivated by the imminent arrival of the Rosetta spacecraft in the vicinity of comet 67P/Churyumov-Gerasimenko. In this presentation we show the application of the new HYB-ionosphere model to 1D and 2D hybrid simulations at Mars above 100 km altitude and demonstrate that with a limited number of chemical reactions, good agreement with 1D kinetic models may be found. This is a first validation step before applying the model to the 67P/CG comet environment, which, like Mars, is expected be rich in carbon oxide compounds.

  10. [THE MODEL OF NEUROVASCULAR UNIT IN VITRO CONSISTING OF THREE CELLS TYPES].

    Science.gov (United States)

    Khilazheva, E D; Boytsova, E B; Pozhilenkova, E A; Solonchuk, Yu R; Salmina, A B

    2015-01-01

    There are many ways to model blood brain barrier and neurovascular unit in vitro. All existing models have their disadvantages, advantages and some peculiarities of preparation and usage. We obtained the three-cells neurovascular unit model in vitro using progenitor cells isolated from the rat embryos brain (Wistar, 14-16 d). After withdrawal of the progenitor cells the neurospheres were cultured with subsequent differentiation into astrocytes and neurons. Endothelial cells were isolated from embryonic brain too. During the differentiation of progenitor cells the astrocytes monolayer formation occurs after 7-9 d, neurons monolayer--after 10-14 d, endothelial cells monolayer--after 7 d. Our protocol for simultaneous isolation and cultivation of neurons, astrocytes and endothelial cells reduces the time needed to obtain neurovascular unit model in vitro, consisting of three cells types and reduce the number of animals used. It is also important to note the cerebral origin of all cell types, which is also an advantage of our model in vitro.

  11. Application of a Multigrid Method to a Mass-Consistent Diagnostic Wind Model.

    Science.gov (United States)

    Wang, Yansen; Williamson, Chatt; Garvey, Dennis; Chang, Sam; Cogan, James

    2005-07-01

    A multigrid numerical method has been applied to a three-dimensional, high-resolution diagnostic model for flow over complex terrain using a mass-consistent approach. The theoretical background for the model is based on a variational analysis using mass conservation as a constraint. The model was designed for diagnostic wind simulation at the microscale in complex terrain and in urban areas. The numerical implementation takes advantage of a multigrid method that greatly improves the computation speed. Three preliminary test cases for the model's numerical efficiency and its accuracy are given. The model results are compared with an analytical solution for flow over a hemisphere. Flow over a bell-shaped hill is computed to demonstrate that the numerical method is applicable in the case of parameterized lee vortices. A simulation of the mean wind field in an urban domain has also been carried out and compared with observational data. The comparison indicated that the multigrid method takes only 3%-5% of the time that is required by the traditional Gauss-Seidel method.

  12. Self-Consistent Model for Pulsed Direct-Current N2 Glow Discharge

    Institute of Scientific and Technical Information of China (English)

    Liu Chengsen; Wang Dezhen

    2005-01-01

    A self-consistent analysis of a pulsed direct-current (DC) N2 glow discharge is presented. The model is based on a numerical solution of the continuity equations for electron and ions coupled with Poisson's equation. The spatial-temporal variations of ionic and electronic densities and electric field are obtained. The electric field structure exhibits all the characteristic regions of a typical glow discharge (the cathode fall, the negative glow, and the positive column).Current-voltage characteristics of the discharge can be obtained from the model. The calculated current-voltage results using a constant secondary electron emission coefficient for the gas pressure 133.32 Pa are in reasonable agreement with experiment.

  13. Consistency in Regularizations of the Gauged NJL Model at One Loop Level

    CERN Document Server

    Battistel, O A

    1999-01-01

    In this work we revisit questions recently raised in the literature associated to relevant but divergent amplitudes in the gauged NJL model. The questions raised involve ambiguities and symmetry violations which concern the model's predictive power at one loop level. Our study shows by means of an alternative prescription to handle divergent amplitudes, that it is possible to obtain unambiguous and symmetry preserving amplitudes. The procedure adopted makes use solely of {\\it general} properties of an eventual regulator, thus avoiding an explicit form. We find, after a thorough analysis of the problem that there are well established conditions to be fulfiled by any consistent regularization prescription in order to avoid the problems of concern at one loop level.

  14. Macro-particle FEL model with self-consistent spontaneous radiation

    CERN Document Server

    Litvinenko, Vladimir N

    2015-01-01

    Spontaneous radiation plays an important role in SASE FELs and storage ring FELs operating in giant pulse mode. It defines the correlation function of the FEL radiation as well as its many spectral features. Simulations of these systems using randomly distributed macro-particles with charge much higher that of a single electron create the problem of anomalously strong spontaneous radiation, limiting the capabilities of many FEL codes. In this paper we present a self-consistent macro-particle model which provided statistically exact simulation of multi-mode, multi-harmonic and multi-frequency short-wavelength 3-D FELs including the high power and saturation effects. The use of macro-particle clones allows both spontaneous and induced radiation to be treated in the same fashion. Simulations using this model do not require a seed and provide complete temporal and spatial structure of the FEL optical field.

  15. Scale-consistent two-way coupling of land-surface and atmospheric models

    Science.gov (United States)

    Schomburg, A.; Venema, V.; Ament, F.; Simmer, C.

    2009-04-01

    Processes at the land surface and in the atmosphere act on different spatial scales. While in the atmosphere small-scale heterogeneity is smoothed out quickly by turbulent mixing, this is not the case at the land surface where small-scale variability of orography, land cover, soil texture, soil moisture etc. varies only slowly in time. For the modelling of the fluxes between the land-surface and the atmosphere it is consequently more scale consistent to model the surface processes at a higher spatial resolution than the atmospheric processes. The mosaic approach is one way to deal with this problem. Using this technique the Soil Vegetation Atmosphere Transfer (SVAT) scheme is solved on a higher resolution than the atmosphere, which is possible since a SVAT module generally demands considerably less computation time than the atmospheric part. The upscaling of the turbulent fluxes of sensible and latent heat at the interface to the atmosphere is realized by averaging, due to the nonlinearities involved this is a more sensible approach than averaging the soil properties and computing the fluxes in a second step. The atmospheric quantities are usually assumed to be homogeneous for all soil-subpixels pertaining to one coarse atmospheric grid box. In this work, the aim is to develop a downscaling approach in which the atmospheric quantities at the lowest model layer are disaggregated before they enter the SVAT module at the higher mosaic resolution. The overall aim is a better simulation of the heat fluxes which play an important role for the energy and moisture budgets at the surface. The disaggregation rules for the atmospheric variables will depend on high-resolution surface properties and the current atmospheric conditions. To reduce biases due to nonlinearities we will add small-scale variability according to such rules as well as noise for the variability we can not explain. The model used in this work is the COSMO-model, the weather forecast model (and regional

  16. Two-component system YvqEC-dependent bacterial resistance against vancomycin in Bacillus thuringiensis.

    Science.gov (United States)

    Zhang, Shumeng; Hu, Yimin; Fan, Qingyun; Wang, Xun; He, Jin

    2015-08-01

    YvqEC is one of the two-component signal transduction systems that may respond to cell envelope stress and enable cells to adjust multiple cellular functions. It consists of a histidine kinase YvqE and a response regulator YvqC. In this study, we separately constructed a single gene mutant ΔyvqE and a double gene mutant ΔyvqEC in Bacillus thuringiensis BMB171 through a homing endonucleases I-SceI mediated markerless gene deletion method. We found that the deletion of either yvqE or yvqEC weakened the resistance of B. thuringiensis against vancomycin. We also identified nine operons that may be involved in the cellular metabolism regulated by YvqC. This study not only enriches our understanding of bacterial resistance mechanisms against vancomycin, but also helps investigate the functions of YvqEC.

  17. Phase Separation and Dynamics of two-component Bose-Einstein condensates

    CERN Document Server

    Lee, Kean Loon; Liu, I-Kang; Wacker, Lars; Arlt, Jan J; Proukakis, Nick P

    2016-01-01

    The miscibility of two interacting quantum systems is an important testing ground for the understanding of complex quantum systems. Two-component Bose-Einstein condensates enable the investigation of this scenario in a particularly well controlled setting. In a homogeneous system, the transition between mixed and separated phases is fully characterised by a `miscibility parameter', based on the ratio of intra- to inter-species interaction strengths. Here we show, however, that this parameter is no longer the optimal one for trapped gases, for which the location of the phase boundary depends critically on atom numbers. We demonstrate how monitoring of damping rates and frequencies of dipole oscillations enables the experimental mapping of the phase diagram by numerical implementation of a fully self-consistent finite-temperature kinetic theory for binary condensates. The change in damping rate is explained in terms of surface oscillation in the immiscible regime, and counterflow instability in the miscible reg...

  18. Correlations of the upper branch of 1D harmonically trapped two-component fermi gases.

    Science.gov (United States)

    Gharashi, Seyed Ebrahim; Blume, D

    2013-07-26

    We present highly accurate energy spectra and eigenfunctions of small 1D harmonically trapped two-component Fermi gases with interspecies δ-function interactions, and analyze the correlations of the so-called upper branch (i.e., the branch that describes a repulsive Fermi gas consisting of atoms but no molecules) for positive and negative coupling constants. Changes of the two-body correlations as a function of the interspecies coupling strength reflect the competition of the interspecies interaction and the effective repulsion due to the Pauli exclusion principle, and are interpreted as a few-body analog of a transition from a nonmagnetic to a magnetic phase. Moreover, we show that the eigenstate ψadia of the infinitely strongly interacting system with |n1+n2|>2 and |n1-n2|Fermi-Fermi mapping function to the eigenfunction of the noninteracting single-component Fermi gas.

  19. Microwave air plasmas in capillaries at low pressure I. Self-consistent modeling

    Science.gov (United States)

    Coche, P.; Guerra, V.; Alves, L. L.

    2016-06-01

    This work presents the self-consistent modeling of micro-plasmas generated in dry air using microwaves (2.45 GHz excitation frequency), within capillaries (model couples the system of rate balance equations for the most relevant neutral and charged species of the plasma to the homogeneous electron Boltzmann equation. The maintenance electric field is self-consistently calculated adopting a transport theory for low to intermediate pressures, taking into account the presence of O- ions in addition to several positive ions, the dominant species being O{}2+ , NO+ and O+ . The low-pressure small-radius conditions considered yield very-intense reduced electric fields (˜600-1500 Td), coherent with species losses controlled by transport and wall recombination, and kinetic mechanisms strongly dependent on electron-impact collisions. The charged-particle transport losses are strongly influenced by the presence of the negative ion, despite its low-density (˜10% of the electron density). For electron densities in the range (1-≤ft. 4\\right)× {{10}12} cm-3, the system exhibits high dissociation degrees for O2 (˜20-70%, depending on the working conditions, in contrast with the  ˜0.1% dissociation obtained for N2), a high concentration of O2(a) (˜1014 cm-3) and NO(X) (5× {{10}14} cm-3) and low ozone production (<{{10}-3}% ).

  20. On some problems of weak consistency of quasi-maximum likelihood estimates in generalized linear models

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper,we explore some weakly consistent properties of quasi-maximum likelihood estimates(QMLE) concerning the quasi-likelihood equation in=1 Xi(yi-μ(Xiβ)) = 0 for univariate generalized linear model E(y |X) = μ(X’β).Given uncorrelated residuals {ei = Yi-μ(Xiβ0),1 i n} and other conditions,we prove that βn-β0 = Op(λn-1/2) holds,where βn is a root of the above equation,β0 is the true value of parameter β and λn denotes the smallest eigenvalue of the matrix Sn = ni=1 XiXi.We also show that the convergence rate above is sharp,provided independent non-asymptotically degenerate residual sequence and other conditions.Moreover,paralleling to the elegant result of Drygas(1976) for classical linear regression models,we point out that the necessary condition guaranteeing the weak consistency of QMLE is Sn-1→ 0,as the sample size n →∞.

  1. On some problems of weak consistency of quasi-maximum likelihood estimates in generalized linear models

    Institute of Scientific and Technical Information of China (English)

    ZHANG SanGuo; LIAO Yuan

    2008-01-01

    In this paper, we explore some weakly consistent properties of quasi-maximum likelihood estimates(QMLE)concerning the quasi-likelihood equation ∑ni=1 Xi(yi-μ(X1iβ)) =0 for univariate generalized linear model E(y|X) =μ(X1β). Given uncorrelated residuals{ei=Yi-μ(X1iβ0), 1≤i≤n}and other conditions, we prove that (β)n-β0=Op(λ--1/2n)holds, where (β)n is a root of the above equation,β0 is the true value of parameter β and λ-n denotes the smallest eigenvalue of the matrix Sn=Σni=1 XiX1i. We also show that the convergence rate above is sharp, provided independent nonasymptotically degenerate residual sequence and other conditions. Moreover, paralleling to the elegant result of Drygas(1976)for classical linear regression models,we point out that the necessary condition guaranteeing the weak consistency of QMLE is S-1n→0, as the sample size n→∞.

  2. SELF-CONSISTENT FIELD MODEL OF BRUSHES FORMED BY ROOT-TETHERED DENDRONS

    Directory of Open Access Journals (Sweden)

    E. B. Zhulina

    2015-05-01

    Full Text Available We present an analytical self-consistent field (scf theory that describes planar brushes formed by regularly branched root-tethered dendrons of the second and third generations. The developed approach gives the possibility for calculation of the scf molecular potential acting at monomers of the tethered chains. In the linear elasticity regime for stretched polymers, the molecular potential has a parabolic shape with the parameter k depending on architectural parameters of tethered macromolecules: polymerization degrees of spacers, branching functionalities, and number of generations. For dendrons of the second generation, we formulate a general equation for parameter k and analyze how variations in the architectural parameters of these dendrons affect the molecular potential. For dendrons of the third generation, an analytical expression for parameter k is available only for symmetric macromolecules with equal lengths of all spacers and equal branching functionalities in all generations. We analyze how the thickness of dendron brush in a good solvent is affected by variations in the chain architecture. Results of the developed scf theory are compared with predictions of boxlike scaling model. We demonstrate that in the limit of high branching functionalities, the results of both approaches become consistent if the value of exponent bin boxlike model is put to unity.In conclusion, we briefly discuss the systems to which the developed scf theory is applicable. These are: planar and concave spherical and cylindrical brushes under various solvent conditions (including solvent-free melted brushes and brush-like layers of ionic (polyelectrolyte dendrons.

  3. Multipseudopotential interaction: A consistent study of cubic equations of state in lattice Boltzmann models.

    Science.gov (United States)

    Khajepor, Sorush; Chen, Baixin

    2016-01-01

    A method is developed to analytically and consistently implement cubic equations of state into the recently proposed multipseudopotential interaction (MPI) scheme in the class of two-phase lattice Boltzmann (LB) models [S. Khajepor, J. Wen, and B. Chen, Phys. Rev. E 91, 023301 (2015)]10.1103/PhysRevE.91.023301. An MPI forcing term is applied to reduce the constraints on the mathematical shape of the thermodynamically consistent pseudopotentials; this allows the parameters of the MPI forces to be determined analytically without the need of curve fitting or trial and error methods. Attraction and repulsion parts of equations of state (EOSs), representing underlying molecular interactions, are modeled by individual pseudopotentials. Four EOSs, van der Waals, Carnahan-Starling, Peng-Robinson, and Soave-Redlich-Kwong, are investigated and the results show that the developed MPI-LB system can satisfactorily recover the thermodynamic states of interest. The phase interface is predicted analytically and controlled via EOS parameters independently and its effect on the vapor-liquid equilibrium system is studied. The scheme is highly stable to very high density ratios and the accuracy of the results can be enhanced by increasing the interface resolution. The MPI drop is evaluated with regard to surface tension, spurious velocities, isotropy, dynamic behavior, and the stability dependence on the relaxation time.

  4. Towards self-consistent modelling of the Sgr A* accretion flow: linking theory and observation

    Science.gov (United States)

    Roberts, Shawn R.; Jiang, Yan-Fei; Wang, Q. Daniel; Ostriker, Jeremiah P.

    2017-04-01

    The interplay between supermassive black holes (SMBHs) and their environments is believed to command an essential role in galaxy evolution. The majority of these SMBHs are in the radiative inefficient accretion phase where this interplay remains elusive, but suggestively important, due to few observational constraints. To remedy this, we directly fit 2D hydrodynamic simulations to Chandra observations of Sgr A* with Markov chain Monte Carlo sampling, self-consistently modelling the 2D inflow-outflow solution for the first time. We find the temperature and density at flow onset are consistent with the origin of the gas in the stellar winds of massive stars in the vicinity of Sgr A*. We place the first observational constraints on the angular momentum of the gas and estimate the centrifugal radius, rc ≈ 0.056 rb ≈ 8 × 10-3 pc, where rb is the Bondi radius. Less than 1 per cent of the inflowing gas accretes on to the SMBH, the remainder being ejected in a polar outflow. We decouple the quiescent point-like emission from the spatially extended flow. We find this point-like emission, accounting for ˜4 per cent of the quiescent flux, is spectrally too steep to be explained by unresolved flares, nor bremsstrahlung, but is likely a combination of a relatively steep synchrotron power law and the high-energy tail of inverse-Compton emission. With this self-consistent model of the accretion flow structure, we make predictions for the flow dynamics and discuss how future X-ray spectroscopic observations can further our understanding of the Sgr A* accretion flow.

  5. Structural dynamics of the two-component response regulator RstA in recognition of promoter DNA element

    Science.gov (United States)

    Li, Yi-Chuan; Chang, Chung-ke; Chang, Chi-Fon; Cheng, Ya-Hsin; Fang, Pei-Ju; Yu, Tsunai; Chen, Sheng-Chia; Li, Yi-Ching; Hsiao, Chwan-Deng; Huang, Tai-huang

    2014-01-01

    The RstA/RstB system is a bacterial two-component regulatory system consisting of the membrane sensor, RstB and its cognate response regulator (RR) RstA. The RstA of Klebsiella pneumoniae (kpRstA) consists of an N-terminal receiver domain (RD, residues 1–119) and a C-terminal DNA-binding domain (DBD, residues 130–236). Phosphorylation of kpRstA induces dimerization, which allows two kpRstA DBDs to bind to a tandem repeat, called the RstA box, and regulate the expression of downstream genes. Here we report the solution and crystal structures of the free kpRstA RD, DBD and DBD/RstA box DNA complex. The structure of the kpRstA DBD/RstA box complex suggests that the two protomers interact with the RstA box in an asymmetric fashion. Equilibrium binding studies further reveal that the two protomers within the kpRstA dimer bind to the RstA box in a sequential manner. Taken together, our results suggest a binding model where dimerization of the kpRstA RDs provides the platform to allow the first kpRstA DBD protomer to anchor protein–DNA interaction, whereas the second protomer plays a key role in ensuring correct recognition of the RstA box. PMID:24990372

  6. Thermodynamically Consistent Algorithms for the Solution of Phase-Field Models

    KAUST Repository

    Vignal, Philippe

    2016-02-11

    Phase-field models are emerging as a promising strategy to simulate interfacial phenomena. Rather than tracking interfaces explicitly as done in sharp interface descriptions, these models use a diffuse order parameter to monitor interfaces implicitly. This implicit description, as well as solid physical and mathematical footings, allow phase-field models to overcome problems found by predecessors. Nonetheless, the method has significant drawbacks. The phase-field framework relies on the solution of high-order, nonlinear partial differential equations. Solving these equations entails a considerable computational cost, so finding efficient strategies to handle them is important. Also, standard discretization strategies can many times lead to incorrect solutions. This happens because, for numerical solutions to phase-field equations to be valid, physical conditions such as mass conservation and free energy monotonicity need to be guaranteed. In this work, we focus on the development of thermodynamically consistent algorithms for time integration of phase-field models. The first part of this thesis focuses on an energy-stable numerical strategy developed for the phase-field crystal equation. This model was put forward to model microstructure evolution. The algorithm developed conserves, guarantees energy stability and is second order accurate in time. The second part of the thesis presents two numerical schemes that generalize literature regarding energy-stable methods for conserved and non-conserved phase-field models. The time discretization strategies can conserve mass if needed, are energy-stable, and second order accurate in time. We also develop an adaptive time-stepping strategy, which can be applied to any second-order accurate scheme. This time-adaptive strategy relies on a backward approximation to give an accurate error estimator. The spatial discretization, in both parts, relies on a mixed finite element formulation and isogeometric analysis. The codes are

  7. Stochastic simulation of prokaryotic two-component signalling indicates stochasticity-induced active-state locking and growth-rate dependent bistability

    NARCIS (Netherlands)

    K. Wei (Katy); M. Moinat (Maxim); T.R. Maarleveld (Timo); F.J. Bruggeman (Frank)

    2014-01-01

    htmlabstractSignal transduction by prokaryotes almost exclusively relies on two-component systems for sensing and responding to (extracellular) signals. Here, we use stochastic models of two-component systems to better understand the impact of stochasticity on the fidelity and robustness of signal

  8. Self-consistent mean-field model for palmitoyloleoylphosphatidylcholine-palmitoyl sphingomyelin-cholesterol lipid bilayers

    Science.gov (United States)

    Tumaneng, Paul W.; Pandit, Sagar A.; Zhao, Guijun; Scott, H. L.

    2011-03-01

    The connection between membrane inhomogeneity and the structural basis of lipid rafts has sparked interest in the lateral organization of model lipid bilayers of two and three components. In an effort to investigate anisotropic lipid distribution in mixed bilayers, a self-consistent mean-field theoretical model is applied to palmitoyloleoylphosphatidylcholine (POPC)-palmitoyl sphingomyelin (PSM)-cholesterol mixtures. The compositional dependence of lateral organization in these mixtures is mapped onto a ternary plot. The model utilizes molecular dynamics simulations to estimate interaction parameters and to construct chain conformation libraries. We find that at some concentration ratios the bilayers separate spatially into regions of higher and lower chain order coinciding with areas enriched with PSM and POPC, respectively. To examine the effect of the asymmetric chain structure of POPC on bilayer lateral inhomogeneity, we consider POPC-lipid interactions with and without angular dependence. Results are compared with experimental data and with results from a similar model for mixtures of dioleoylphosphatidylcholine, steroyl sphingomyelin, and cholesterol.

  9. A parameter study of self-consistent disk models around Herbig AeBe stars

    CERN Document Server

    Meijer, J; De Koter, A; Dullemond, C P; Van Boekel, R; Waters, L B F M

    2008-01-01

    We present a parameter study of self-consistent models of protoplanetary disks around Herbig AeBe stars. We use the code developed by Dullemond and Dominik, which solves the 2D radiative transfer problem including an iteration for the vertical hydrostatic structure of the disk. This grid of models will be used for several studies on disk emission and mineralogy in followup papers. In this paper we take a first look on the new models, compare them with previous modeling attempts and focus on the effects of various parameters on the overall structure of the SED that leads to the classification of Herbig AeBe stars into two groups, with a flaring (group I) or self-shadowed (group II) SED. We find that the parameter of overriding importance to the SED is the total mass in grains smaller than 25um, confirming the earlier results by Dullemond and Dominik. All other parameters studied have only minor influences, and will alter the SED type only in borderline cases. We find that there is no natural dichotomy between ...

  10. A Time-Dependent Λ and G Cosmological Model Consistent with Cosmological Constraints

    Directory of Open Access Journals (Sweden)

    L. Kantha

    2016-01-01

    Full Text Available The prevailing constant Λ-G cosmological model agrees with observational evidence including the observed red shift, Big Bang Nucleosynthesis (BBN, and the current rate of acceleration. It assumes that matter contributes 27% to the current density of the universe, with the rest (73% coming from dark energy represented by the Einstein cosmological parameter Λ in the governing Friedmann-Robertson-Walker equations, derived from Einstein’s equations of general relativity. However, the principal problem is the extremely small value of the cosmological parameter (~10−52 m2. Moreover, the dark energy density represented by Λ is presumed to have remained unchanged as the universe expanded by 26 orders of magnitude. Attempts to overcome this deficiency often invoke a variable Λ-G model. Cosmic constraints from action principles require that either both G and Λ remain time-invariant or both vary in time. Here, we propose a variable Λ-G cosmological model consistent with the latest red shift data, the current acceleration rate, and BBN, provided the split between matter and dark energy is 18% and 82%. Λ decreases (Λ~τ-2, where τ is the normalized cosmic time and G increases (G~τn with cosmic time. The model results depend only on the chosen value of Λ at present and in the far future and not directly on G.

  11. Self-consistent modeling of terahertz waveguide and cavity with frequency-dependent conductivity

    Science.gov (United States)

    Huang, Y. J.; Chu, K. R.; Thumm, M.

    2015-01-01

    The surface resistance of metals, and hence the Ohmic dissipation per unit area, scales with the square root of the frequency of an incident electromagnetic wave. As is well recognized, this can lead to excessive wall losses at terahertz (THz) frequencies. On the other hand, high-frequency oscillatory motion of conduction electrons tends to mitigate the collisional damping. As a result, the classical theory predicts that metals behave more like a transparent medium at frequencies above the ultraviolet. Such a behavior difference is inherent in the AC conductivity, a frequency-dependent complex quantity commonly used to treat electromagnetics of metals at optical frequencies. The THz region falls in the gap between microwave and optical frequencies. However, metals are still commonly modeled by the DC conductivity in currently active vacuum electronics research aimed at the development of high-power THz sources (notably the gyrotron), although a small reduction of the DC conductivity due to surface roughness is sometimes included. In this study, we present a self-consistent modeling of the gyrotron interaction structures (a metallic waveguide or cavity) with the AC conductivity. The resulting waveguide attenuation constants and cavity quality factors are compared with those of the DC-conductivity model. The reduction in Ohmic losses under the AC-conductivity model is shown to be increasingly significant as the frequency reaches deeper into the THz region. Such effects are of considerable importance to THz gyrotrons for which the minimization of Ohmic losses constitutes a major design consideration.

  12. Rate of strong consistency of quasi maximum likelihood estimate in generalized linear models

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    [1]McCullagh, P., Nelder, J. A., Generalized Linear Models, New York: Chapman and Hall, 1989.[2]Wedderbum, R. W. M., Quasi-likelihood functions, generalized linear models and Gauss-Newton method,Biometrika, 1974, 61:439-447.[3]Fahrmeir, L., Maximum likelihood estimation in misspecified generalized linear models, Statistics, 1990, 21:487-502.[4]Fahrmeir, L., Kaufmann, H., Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models, Ann. Statist., 1985, 13: 342-368.[5]Melder, J. A., Pregibon, D., An extended quasi-likelihood function, Biometrika, 1987, 74: 221-232.[6]Bennet, G., Probability inequalities for the sum of independent random variables, JASA, 1962, 57: 33-45.[7]Stout, W. F., Almost Sure Convergence, New York:Academic Press, 1974.[8]Petrov, V, V., Sums of Independent Random Variables, Berlin, New York: Springer-Verlag, 1975.

  13. Consistent post-reaction vibrational energy redistribution in DSMC simulations using TCE model

    Science.gov (United States)

    Borges Sebastião, Israel; Alexeenko, Alina

    2016-10-01

    The direct simulation Monte Carlo (DSMC) method has been widely applied to study shockwaves, hypersonic reentry flows, and other nonequilibrium flow phenomena. Although there is currently active research on high-fidelity models based on ab initio data, the total collision energy (TCE) and Larsen-Borgnakke (LB) models remain the most often used chemistry and relaxation models in DSMC simulations, respectively. The conventional implementation of the discrete LB model, however, may not satisfy detailed balance when recombination and exchange reactions play an important role in the flow energy balance. This issue can become even more critical in reacting mixtures involving polyatomic molecules, such as in combustion. In this work, this important shortcoming is addressed and an empirical approach to consistently specify the post-reaction vibrational states close to thermochemical equilibrium conditions is proposed within the TCE framework. Following Bird's quantum-kinetic (QK) methodology for populating post-reaction states, the new TCE-based approach involves two main steps. The state-specific TCE reaction probabilities for a forward reaction are first pre-computed from equilibrium 0-D simulations. These probabilities are then employed to populate the post-reaction vibrational states of the corresponding reverse reaction. The new approach is illustrated by application to exchange and recombination reactions relevant to H2-O2 combustion processes.

  14. Thermocline Storage Filled with Structured Ceramics. Numerical Consistency of the Developed Numerical Model and First Observations

    Science.gov (United States)

    Motte, Fabrice; Bugler-Lamb, Samuel L.; Falcoz, Quentin

    2015-07-01

    The attraction of solar energy is greatly enhanced by the possibility of it being used during times of reduced or non-existent solar flux, such as weather induced intermittences or the darkness of the night. Therefore optimizing thermal storage for use in solar energy plants is crucial for the success of this sustainable energy source. Here we present a study of a structured bed filler dedicated to Thermocline type thermal storage, believed to outweigh the financial and thermal benefits of other systems currently in use such as packed bed Thermocline tanks. Several criterions such as Thermocline thickness and Thermocline centering are defined with the purpose of facilitating the assessment of the efficiency of the tank to complement the standard concepts of power output. A numerical model is developed that reduces to two dimensions the modeling of such a tank. The structure within the tank is designed to be built using simple bricks harboring rectangular channels through which the solar heat transfer and storage fluid will flow. The model is scrutinized and tested for physical robustness, and the results are presented in this paper. The consistency of the model is achieved within particular ranges for each physical variable.

  15. Two-component systems in microbial communities: approaches and resources for generating and analyzing metagenomic data sets.

    Science.gov (United States)

    Podar, Mircea

    2007-01-01

    Two-component signal transduction represents the main mechanism by which bacterial cells interact with their environment. The functional diversity of two-component systems and their relative importance in the different taxonomic groups and ecotypes of bacteria has become evident with the availability of several hundred genomic sequences. The vast majority of bacteria, including many high rank taxonomic units, while being components of complex microbial communities remain uncultured (i.e., have not been isolated or grown in the laboratory). Environmental genomic data from such communities are becoming available, and in addition to its profound impact on microbial ecology it will propel molecular biological disciplines beyond the traditional model organisms. This chapter describes the general approaches used in generating environmental genomic data and how that data can be used to advance the study of two component-systems and signal transduction in general.

  16. Modeling Extreme Solar Energetic Particle Acceleration with Self-Consistent Wave Generation

    Science.gov (United States)

    Arthur, A. D.; le Roux, J. A.

    2015-12-01

    Observations of extreme solar energetic particle (SEP) events associated with coronal mass ejection driven shocks have detected particle energies up to a few GeV at 1 AU within the first ~10 minutes to 1 hour of shock acceleration. Whether or not acceleration by a single shock is sufficient in these events or if some combination of multiple shocks or solar flares is required is currently not well understood. Furthermore, the observed onset times of the extreme SEP events place the shock in the corona when the particles escape upstream. We have updated our focused transport theory model that has successfully been applied to the termination shock and traveling interplanetary shocks in the past to investigate extreme SEP acceleration in the solar corona. This model solves the time-dependent Focused Transport Equation including particle preheating due to the cross shock electric field and the divergence, adiabatic compression, and acceleration of the solar wind flow. Diffusive shock acceleration of SEPs is included via the first-order Fermi mechanism for parallel shocks. To investigate the effects of the solar corona on the acceleration of SEPs, we have included an empirical model for the plasma number density, temperature, and velocity. The shock acceleration process becomes highly time-dependent due to the rapid variation of these coronal properties with heliocentric distance. Additionally, particle interaction with MHD wave turbulence is modeled in terms of gyroresonant interactions with parallel propagating Alfven waves. However, previous modeling efforts suggest that the background amplitude of the solar wind turbulence is not sufficient to accelerate SEPs to extreme energies over the short time scales observed. To account for this, we have included the transport and self-consistent amplification of MHD waves by the SEPs through wave-particle gyroresonance. We will present the results of this extended model for a single fast quasi-parallel CME driven shock in the

  17. Bibliographic Relationships in MARC and Consistent with FRBR Model According to RDA Rules

    Directory of Open Access Journals (Sweden)

    Mahsa Fardehoseiny

    2013-03-01

    Full Text Available This study was conducted to investigate the bibliographic relationships in the MARC and it’s consistency with the FRBR model. With establishing the necessary relations between bibliographic records, users will retrieve their necessary information faster and more easily. It is important to make a good communication in existing bibliographic records to help users to find what they need. This study’s purpose was to define the relationships between bibliographic records in the National Library's OPAC database and the study’s method was descriptive content analysis approach. In this study, the online catalog (OPAC National Library of Iran has been used to collect information. All records with the mentioned criteria listed in the final report of the IFLA bibliographic relations about the first group entities in FRBR model and RDA rules has been implemented and analyzed. According to this study, if software has been developed in which the data transferring was based on the conceptual model and the MARC’s data that already exists in the National Library's bibliographic database, these relationships will not be transferable. Withal, in this study the relationships on consistent FRBR and MARC concluded with an intelligent mind and the machine is unable to detect them. The results of this study showed that the relations which conveyed from MARC to FRBR, was about 47/70 percent of the MARC fields, in other hand by FRBR to MARC with the use of all intelligent efforts, and diagnosis of MARC relationships, only 31/38 percent of the relations can be covered through the MARC. But based on real data and usable fields in Boostan-e-Saadi with MARC pattern, records on the National Library of Iran showed that the results reduced to 16/95 percent..

  18. Formulation of a self-consistent model for quantum well pin solar cells

    Science.gov (United States)

    Ramey, S.; Khoie, R.

    1997-04-01

    A self-consistent numerical simulation model for a pin single-cell solar cell is formulated. The solar cell device consists of a p-AlGaAs region, an intrinsic i-AlGaAs/GaAs region with several quantum wells, and a n-AlGaAs region. Our simulator solves a field-dependent Schrödinger equation self-consistently with Poisson and Drift-Diffusion equations. The emphasis is given to the study of the capture of electrons by the quantum wells, the escape of electrons from the quantum wells, and the absorption and recombination within the quantum wells. We believe this would be the first such comprehensive model ever reported. The field-dependent Schrödinger equation is solved using the transfer matrix method. The eigenfunctions and eigenenergies obtained are used to calculate the escape rate of electrons from the quantum wells, and the non-radiative recombination rates of electrons at the boundaries of the quantum wells. These rates together with the capture rates of electrons by the quantum wells are then used in a self-consistent numerical Poisson-Drift-Diffusion solver. The resulting field profiles are then used in the field-dependent Schrödinger solver, and the iteration process is repeated until convergence is reached. In a p-AlGaAs i-AlGaAs/GaAs n-AlGaAs cell with aluminum mole fraction of 0.3, with one 100 Å-wide 284 meV-deep quantum well, the eigenenergies with zero field are 36meV, 136meV, and 267meV, for the first, second and third subbands, respectively. With an electric field of 50 kV/cm, the eigenenergies are shifted to 58meV, 160meV, and 282meV, respectively. With these eigenenergies, the thermionic escape time of electrons from the GaAs Γ-valley, varies from 220 pS to 90 pS for electric fields ranging from 10 to 50 kV/cm. These preliminary results are in good agreement with those reported by other researchers.

  19. Alterations in Striatal Synaptic Transmission are Consistent across Genetic Mouse Models of Huntington's Disease

    Directory of Open Access Journals (Sweden)

    Damian M Cummings

    2010-05-01

    Full Text Available Since the identification of the gene responsible for HD (Huntington's disease, many genetic mouse models have been generated. Each employs a unique approach for delivery of the mutated gene and has a different CAG repeat length and background strain. The resultant diversity in the genetic context and phenotypes of these models has led to extensive debate regarding the relevance of each model to the human disorder. Here, we compare and contrast the striatal synaptic phenotypes of two models of HD, namely the YAC128 mouse, which carries the full-length huntingtin gene on a yeast artificial chromosome, and the CAG140 KI*** (knock-in mouse, which carries a human/mouse chimaeric gene that is expressed in the context of the mouse genome, with our previously published data obtained from the R6/2 mouse, which is transgenic for exon 1 mutant huntingtin. We show that striatal MSNs (medium-sized spiny neurons in YAC128 and CAG140 KI mice have similar electrophysiological phenotypes to that of the R6/2 mouse. These include a progressive increase in membrane input resistance, a reduction in membrane capacitance, a lower frequency of spontaneous excitatory postsynaptic currents and a greater frequency of spontaneous inhibitory postsynaptic currents in a subpopulation of striatal neurons. Thus, despite differences in the context of the inserted gene between these three models of HD, the primary electrophysiological changes observed in striatal MSNs are consistent. The outcomes suggest that the changes are due to the expression of mutant huntingtin and such alterations can be extended to the human condition.

  20. Alterations in striatal synaptic transmission are consistent across genetic mouse models of Huntington's disease

    Directory of Open Access Journals (Sweden)

    Damian M Cummings

    2010-06-01

    Full Text Available Since the identification of the gene responsible for HD (Huntington's disease, many genetic mouse models have been generated. Each employs a unique approach for delivery of the mutated gene and has a different CAG repeat length and background strain. The resultant diversity in the genetic context and phenotypes of these models has led to extensive debate regarding the relevance of each model to the human disorder. Here, we compare and contrast the striatal synaptic phenotypes of two models of HD, namely the YAC128 mouse, which carries the full-length huntingtin gene on a yeast artificial chromosome, and the CAG140 KI (knock-in mouse, which carries a human/mouse chimaeric gene that is expressed in the context of the mouse genome, with our previously published data obtained from the R6/2 mouse, which is transgenic for exon 1 mutant huntingtin. We show that striatal MSNs (medium-sized spiny neurons in YAC128 and CAG140 KI mice have similar electrophysiological phenotypes to that of the R6/2 mouse. These include a progressive increase in membrane input resistance, a reduction in membrane capacitance, a lower frequency of spontaneous excitatory postsynaptic currents and a greater frequency of spontaneous inhibitory postsynaptic currents in a subpopulation of striatal neurons. Thus, despite differences in the context of the inserted gene between these three models of HD, the primary electrophysiological changes observed in striatal MSNs are consistent. The outcomes suggest that the changes are due to the expression of mutant huntingtin and such alterations can be extended to the human condition.

  1. Effective rates from thermodynamically consistent coarse-graining of models for molecular motors with probe particles.

    Science.gov (United States)

    Zimmermann, Eva; Seifert, Udo

    2015-02-01

    Many single-molecule experiments for molecular motors comprise not only the motor but also large probe particles coupled to it. The theoretical analysis of these assays, however, often takes into account only the degrees of freedom representing the motor. We present a coarse-graining method that maps a model comprising two coupled degrees of freedom which represent motor and probe particle to such an effective one-particle model by eliminating the dynamics of the probe particle in a thermodynamically and dynamically consistent way. The coarse-grained rates obey a local detailed balance condition and reproduce the net currents. Moreover, the average entropy production as well as the thermodynamic efficiency is invariant under this coarse-graining procedure. Our analysis reveals that only by assuming unrealistically fast probe particles, the coarse-grained transition rates coincide with the transition rates of the traditionally used one-particle motor models. Additionally, we find that for multicyclic motors the stall force can depend on the probe size. We apply this coarse-graining method to specific case studies of the F(1)-ATPase and the kinesin motor.

  2. Providing comprehensive and consistent access to astronomical observatory archive data: the NASA archive model

    Science.gov (United States)

    McGlynn, Thomas; Fabbiano, Giuseppina; Accomazzi, Alberto; Smale, Alan; White, Richard L.; Donaldson, Thomas; Aloisi, Alessandra; Dower, Theresa; Mazzerella, Joseph M.; Ebert, Rick; Pevunova, Olga; Imel, David; Berriman, Graham B.; Teplitz, Harry I.; Groom, Steve L.; Desai, Vandana R.; Landry, Walter

    2016-07-01

    Since the turn of the millennium a constant concern of astronomical archives have begun providing data to the public through standardized protocols unifying data from disparate physical sources and wavebands across the electromagnetic spectrum into an astronomical virtual observatory (VO). In October 2014, NASA began support for the NASA Astronomical Virtual Observatories (NAVO) program to coordinate the efforts of NASA astronomy archives in providing data to users through implementation of protocols agreed within the International Virtual Observatory Alliance (IVOA). A major goal of the NAVO collaboration has been to step back from a piecemeal implementation of IVOA standards and define what the appropriate presence for the US and NASA astronomy archives in the VO should be. This includes evaluating what optional capabilities in the standards need to be supported, the specific versions of standards that should be used, and returning feedback to the IVOA, to support modifications as needed. We discuss a standard archive model developed by the NAVO for data archive presence in the virtual observatory built upon a consistent framework of standards defined by the IVOA. Our standard model provides for discovery of resources through the VO registries, access to observation and object data, downloads of image and spectral data and general access to archival datasets. It defines specific protocol versions, minimum capabilities, and all dependencies. The model will evolve as the capabilities of the virtual observatory and needs of the community change.

  3. A three-dimensional PEM fuel cell model with consistent treatment of water transport in MEA

    Science.gov (United States)

    Meng, Hua

    In this paper, a three-dimensional PEM fuel cell model with a consistent water transport treatment in the membrane electrode assembly (MEA) has been developed. In this new PEM fuel cell model, the conservation equation of the water concentration is solved in the gas channels, gas diffusion layers, and catalyst layers while a conservation equation of the water content is established in the membrane. These two equations are connected using a set of internal boundary conditions based on the thermodynamic phase equilibrium and flux equality at the interface of the membrane and the catalyst layer. The existing fictitious water concentration treatment, which assumes thermodynamic phase equilibrium between the water content in the membrane phase and the water concentration, is applied in the two catalyst layers to consider water transport in the membrane phase. Since all the other conservation equations are still developed and solved in the single-domain framework without resort to interfacial boundary conditions, the present new PEM fuel cell model is termed as a mixed-domain method. Results from this mixed-domain approach have been compared extensively with those from the single-domain method, showing good accuracy in terms of not only cell performances and current distributions but also water content variations in the membrane.

  4. Consistency of non-flat $\\Lambda$CDM model with the new result from BOSS

    CERN Document Server

    Kumar, Suresh

    2015-01-01

    Using 137,562 quasars in the redshift range $2.1\\leq z\\leq3.5$ from the Data Release 11 (DR11) of the Baryon Oscillation Spectroscopic Survey (BOSS) of Sloan Digital Sky Survey (SDSS)-III, the BOSS-SDSS collaboration estimated the expansion rate $H(z=2.34)=222\\pm7$ km/s/Mpc of Universe, and reported that this value is in tension with the predictions of flat $\\Lambda$CDM model at around 2.5$\\sigma$ level. In this letter, we briefly describe some attempts made in the literature to relieve the tension, and show that the tension can naturally be alleviated in non-flat $\\Lambda$CDM model with positive curvature. However, this idea confronts with the inflation paradigm which predicts almost a spatially flat Universe. Nevertheless, the theoretical consistency of the non-flat $\\Lambda$CDM model with the new result from BOSS deserves attention of the community.

  5. Cepheid models based on self-consistent stellar evolution and pulsation calculations the right answer?

    CERN Document Server

    Baraffe, I; Méra, D; Chabrier, G; Beaulieu, J P

    1998-01-01

    We have computed stellar evolutionary models for stars in a mass range characteristic of Cepheid variables ($3consistent mass-period-luminosity relations. The period - luminosity relation as a function of metallicity is analysed and compared to the recent EROS observations in the Magellanic Clouds. The models reproduce the observed width of the instability strips for the SMC and LMC. We determine a statistical P-L relationship, taking into account the evolutionary timescales and a mass distribution given by a Salpeter mass function. Excellent agreement is found with the SMC PL relationship determined by Sasselov et al. (1997). The models reproduce the change of slope in the P-L relationship near $P\\sim 2.5$ days discovered recently by the EROS collaboration (Bauer 1997; Bauer et al. 1998) and ...

  6. Methodology and consistency of slant and vertical assessments for ionospheric electron content models

    Science.gov (United States)

    Hernández-Pajares, Manuel; Roma-Dollase, David; Krankowski, Andrzej; García-Rigo, Alberto; Orús-Pérez, Raül

    2017-05-01

    A summary of the main concepts on global ionospheric map(s) [hereinafter GIM(s)] of vertical total electron content (VTEC), with special emphasis on their assessment, is presented in this paper. It is based on the experience accumulated during almost two decades of collaborative work in the context of the international global navigation satellite systems (GNSS) service (IGS) ionosphere working group. A representative comparison of the two main assessments of ionospheric electron content models (VTEC-altimeter and difference of Slant TEC, based on independent global positioning system data GPS, dSTEC-GPS) is performed. It is based on 26 GPS receivers worldwide distributed and mostly placed on islands, from the last quarter of 2010 to the end of 2016. The consistency between dSTEC-GPS and VTEC-altimeter assessments for one of the most accurate IGS GIMs (the tomographic-kriging GIM `UQRG' computed by UPC) is shown. Typical error RMS values of 2 TECU for VTEC-altimeter and 0.5 TECU for dSTEC-GPS assessments are found. And, as expected by following a simple random model, there is a significant correlation between both RMS and specially relative errors, mainly evident when large enough number of observations per pass is considered. The authors expect that this manuscript will be useful for new analysis contributor centres and in general for the scientific and technical community interested in simple and truly external ways of validating electron content models of the ionosphere.

  7. Towards Self-Consistent Modelling of the Sgr A* Accretion Flow: Linking Theory and Observation

    CERN Document Server

    Roberts, Shawn R; Jiang, Yan-Fei; Ostriker, Jeremiah P

    2016-01-01

    The interplay between supermassive black holes (SMBHs) and their environments is believed to command an essential role in galaxy evolution. The majority of these SMBHs are in the radiative inefficient accretion phase where this interplay remains elusive, but suggestively important, due to few observational constraints. To remedy this, we directly fit 2-D hydrodynamic simulations to Chandra observations of Sgr A* with Markov Chain Monte Carlo sampling, self-consistently modelling the 2-D inflow-outflow solution for the first time. We find the temperature and density at flow onset are consistent with the origin of the gas in the stellar winds of massive stars in the vicinity of Sgr A*. We place the first observational constraints on the angular momentum of the gas and estimate the centrifugal radius, r$_c$ $\\approx$ 0.056 r$_b$ $\\approx8\\times10^{-3}$ pc, where r$_b$ is the Bondi radius. Less than 1\\% of the inflowing gas accretes onto the SMBH, the remainder being ejected in a polar outflow. For the first time...

  8. A self-consistent linear-mode model of stellar convection

    Science.gov (United States)

    Macauslan, J.

    1985-01-01

    A normal-mode expansion of the linearized fluid equations in terms of small subset of spherical harmonics can provide a foundation for a physically motivated, self-consistent description of a solar-type convection zone. In the absence of dissipation, a second-order differential equation governs the radial dependence of the modes, so that interpretation of the effects on convection quantities of the normal-form 'potential well' is straightforward. The philosophy is quite different from the more recent work of Narasimha and Antia (1982): all envelopes presented here differ substantially from MLT envelopes, and therefore, from theirs, which are constructed to be consistent with MLT. The amplitude of all modes is set by a Kelvin-Helmholtz-('shear'-) instability argument unrelated to solar observations, with the result that the convection description may be considered to arise from 'first-hueristic-principles'. The thermodynamics modelled vaguely resemble the sun's, and more vigorously convective envelopes show some phenomena qualitatively like solar observations (e.g., atmospheric velocity spectra).

  9. The self-consistent field model for Fermi systems with account of three-body interactions

    Directory of Open Access Journals (Sweden)

    Yu.M. Poluektov

    2015-12-01

    Full Text Available On the basis of a microscopic model of self-consistent field, the thermodynamics of the many-particle Fermi system at finite temperatures with account of three-body interactions is built and the quasiparticle equations of motion are obtained. It is shown that the delta-like three-body interaction gives no contribution into the self-consistent field, and the description of three-body forces requires their nonlocality to be taken into account. The spatially uniform system is considered in detail, and on the basis of the developed microscopic approach general formulas are derived for the fermion's effective mass and the system's equation of state with account of contribution from three-body forces. The effective mass and pressure are numerically calculated for the potential of "semi-transparent sphere" type at zero temperature. Expansions of the effective mass and pressure in powers of density are obtained. It is shown that, with account of only pair forces, the interaction of repulsive character reduces the quasiparticle effective mass relative to the mass of a free particle, and the attractive interaction raises the effective mass. The question of thermodynamic stability of the Fermi system is considered and the three-body repulsive interaction is shown to extend the region of stability of the system with the interparticle pair attraction. The quasiparticle energy spectrum is calculated with account of three-body forces.

  10. Self-consistent 2-phase AGN torus models: SED library for observers

    CERN Document Server

    Siebenmorgen, Ralf; Efstathiou, Andreas

    2015-01-01

    We assume that dust near active galactic nuclei (AGN) is distributed in a torus-like geometry, which may be described by a clumpy medium or a homogeneous disk or as a combination of the two (i.e. a 2-phase medium). The dust particles considered are fluffy and have higher submillimeter emissivities than grains in the diffuse ISM. The dust-photon interaction is treated in a fully self-consistent three dimensional radiative transfer code. We provide an AGN library of spectral energy distributions (SEDs). Its purpose is to quickly obtain estimates of the basic parameters of the AGN, such as the intrinsic luminosity of the central source, the viewing angle, the inner radius, the volume filling factor and optical depth of the clouds, and the optical depth of the disk midplane, and to predict the flux at yet unobserved wavelengths. The procedure is simple and consists of finding an element in the library that matches the observations. We discuss the general properties of the models and in particular the 10mic. silic...

  11. Height-Diameter Models for Mixed-Species Forests Consisting of Spruce, Fir, and Beech

    Directory of Open Access Journals (Sweden)

    Petráš Rudolf

    2014-06-01

    Full Text Available Height-diameter models define the general relationship between the tree height and diameter at each growth stage of the forest stand. This paper presents generalized height-diameter models for mixed-species forest stands consisting of Norway spruce (Picea abies Karst., Silver fir (Abies alba L., and European beech (Fagus sylvatica L. from Slovakia. The models were derived using two growth functions from the exponential family: the two-parameter Michailoff and three-parameter Korf functions. Generalized height-diameter functions must normally be constrained to pass through the mean stand diameter and height, and then the final growth model has only one or two parameters to be estimated. These “free” parameters are then expressed over the quadratic mean diameter, height and stand age and the final mathematical form of the model is obtained. The study material included 50 long-term experimental plots located in the Western Carpathians. The plots were established 40-50 years ago and have been repeatedly measured at 5 to 10-year intervals. The dataset includes 7,950 height measurements of spruce, 21,661 of fir and 5,794 of beech. As many as 9 regression models were derived for each species. Although the “goodness of fit” of all models showed that they were generally well suited for the data, the best results were obtained for silver fir. The coefficient of determination ranged from 0.946 to 0.948, RMSE (m was in the interval 1.94-1.97 and the bias (m was -0.031 to 0.063. Although slightly imprecise parameter estimation was established for spruce, the estimations of the regression parameters obtained for beech were quite less precise. The coefficient of determination for beech was 0.854-0.860, RMSE (m 2.67-2.72, and the bias (m ranged from -0.144 to -0.056. The majority of models using Korf’s formula produced slightly better estimations than Michailoff’s, and it proved immaterial which estimated parameter was fixed and which parameters

  12. Motion of the Philippine Sea plate consistent with the NUVEL-1A model

    Science.gov (United States)

    Zang, Shao Xian; Chen, Qi Yong; Ning, Jie Yuan; Shen, Zheng Kang; Liu, Yong Gang

    2002-09-01

    We determine Euler vectors for 12 plates, including the Philippine Sea plate (PH), relative to the fixed Pacific plate (PA) by inverting the earthquake slip vectors along the boundaries of the Philippine Sea plate, GPS observed velocities, and 1122 data from the NUVEL-1 and the NUVEL-1A global plate motion model, respectively. This analysis thus also yields Euler vectors for the Philippine Sea plate relative to adjacent plates. Our results are consistent with observed data and can satisfy the geological and geophysical constraints along the Caroline (CR)-PH and PA-CR boundaries. The results also give insight into internal deformation of the Philippine Sea plate. The area enclosed by the Ryukyu Trench-Nankai Trough, Izu-Bonin Trench and GPS stations S102, S063 and Okino Torishima moves uniformly as a rigid plate, but the areas near the Philippine Trench, Mariana Trough and Yap-Palau Trench have obvious deformation.

  13. Plasma Processes : A self-consistent kinetic modeling of a 1-D, bounded, plasma in equilibrium

    Indian Academy of Sciences (India)

    Monojoy Goswami; H Ramachandran

    2000-11-01

    A self-consistent kinetic treatment is presented here, where the Boltzmann equation is solved for a particle conserving Krook collision operator. The resulting equations have been implemented numerically. The treatment solves for the entire quasineutral column, making no assumptions about mfp/, where mfp is the ion-neutral collision mean free path and the size of the device. Coulomb collisions are neglected in favour of collisions with neutrals, and the particle source is modeled as a uniform Maxwellian. Electrons are treated as an inertialess but collisional fluid. The ion distribution function for the trapped and the transiting orbits is obtained. Interesting findings include the anomalous heating of ions as they approach the presheath, the development of strongly non-Maxwellian features near the last mfp, and strong modifications of the sheath criterion.

  14. Self-consistent seismic cycle simulation in a three-dimensional continuum model: methodology and examples.

    Science.gov (United States)

    Pranger, C. C.; Le Pourhiet, L.; May, D.; van Dinther, Y.; Gerya, T.

    2016-12-01

    Subduction zones evolve over millions of years. The state of stress, the distribution of materials, and the strength and structure of the interface between the two plates is intricately tied to a host of time-dependent physical processes, such as damage, friction, (nonlinear) viscous relaxation, and fluid migration. In addition, the subduction interface has a complex three-dimensional geometry that evolves with time and can adjust in response to a changing stress environment or in response to impinging topographical features, and can even branch off as a splay fault. All in all, the behaviour of (large) earthquakes at the millisecond to minute timescale is heavily dependent on the pattern of stress accumulation during the 100 year inter-seismic period, the events occurring on or near the interface in the past thousands of years, as well as the extended geological history of the region. We address the aforementioned modeling requirements by developing a self-consistent 3D staggered grid finite difference continuum description of motion, thermal advection-diffusion, and poro-visco-elastic two-phase flow. Faults are modelled as plastic shear bands that can develop and evolve in response to a changing stress environment without having a prescribed geometry. They obey a Mohr-Coulomb or Drucker-Prager yield criterion and a rate-and-state friction law. For a sound treatment of plasticity, we borrow elements from mechanical engineering, and extend these with high-quality nonlinear iteration schemes and adaptive time-stepping to resolve the rupture process at all time scales. We will present these techniques together with proof-of-concept examples of self-consistently developing seismic cycles in 2D and 3D, including phases of stress accumulation, fault nucleation, dynamic rupture, and healing.

  15. The Consistent Kinetics Porosity (CKP) Model: A Theory for the Mechanical Behavior of Moderately Porous Solids

    Energy Technology Data Exchange (ETDEWEB)

    BRANNON,REBECCA M.

    2000-11-01

    A theory is developed for the response of moderately porous solids (no more than {approximately}20% void space) to high-strain-rate deformations. The model is consistent because each feature is incorporated in a manner that is mathematically compatible with the other features. Unlike simple p-{alpha} models, the onset of pore collapse depends on the amount of shear present. The user-specifiable yield function depends on pressure, effective shear stress, and porosity. The elastic part of the strain rate is linearly related to the stress rate, with nonlinear corrections from changes in the elastic moduli due to pore collapse. Plastically incompressible flow of the matrix material allows pore collapse and an associated macroscopic plastic volume change. The plastic strain rate due to pore collapse/growth is taken normal to the yield surface. If phase transformation and/or pore nucleation are simultaneously occurring, the inelastic strain rate will be non-normal to the yield surface. To permit hardening, the yield stress of matrix material is treated as an internal state variable. Changes in porosity and matrix yield stress naturally cause the yield surface to evolve. The stress, porosity, and all other state variables vary in a consistent manner so that the stress remains on the yield surface throughout any quasistatic interval of plastic deformation. Dynamic loading allows the stress to exceed the yield surface via an overstress ordinary differential equation that is solved in closed form for better numerical accuracy. The part of the stress rate that causes no plastic work (i.e-, the part that has a zero inner product with the stress deviator and the identity tensor) is given by the projection of the elastic stressrate orthogonal to the span of the stress deviator and the identity tensor.The model, which has been numerically implemented in MIG format, has been exercised under a wide array of extremal loading and unloading paths. As will be discussed in a companion

  16. A Self-consistent and Spatially Dependent Model of the Multiband Emission of Pulsar Wind Nebulae

    Science.gov (United States)

    Lu, Fang-Wu; Gao, Quan-Gui; Zhang, Li

    2017-01-01

    A self-consistent and spatially dependent model is presented to investigate the multiband emission of pulsar wind nebulae (PWNe). In this model, a spherically symmetric system is assumed and the dynamical evolution of the PWN is included. The processes of convection, diffusion, adiabatic loss, radiative loss, and photon–photon pair production are taken into account in the electron’s evolution equation, and the processes of synchrotron radiation, inverse Compton scattering, synchrotron self-absorption, and pair production are included for the photon’s evolution equation. Both coupled equations are simultaneously solved. The model is applied to explain observed results of the PWN in MSH 15–52. Our results show that the spectral energy distributions (SEDs) of both electrons and photons are all a function of distance. The observed photon SED of MSH 15–52 can be well reproduced in this model. With the parameters obtained by fitting the observed SED, the spatial variations of photon index and surface brightness observed in the X-ray band can also be well reproduced. Moreover, it can be derived that the present-day diffusion coefficient of MSH 15–52 at the termination shock is {κ }0=6.6× {10}24 {{cm}}2 {{{s}}}-1, the spatial average has a value of \\bar{κ }=1.4× {10}25 {{cm}}2 {{{s}}}-1, and the present-day magnetic field at the termination shock has a value of {B}0=26.6 μ {{G}} and the spatial averaged magnetic field is \\bar{B}=14.9 μ {{G}}. The spatial changes of the spectral index and surface brightness at different bands are predicted.

  17. Subgrid-scale physical parameterization in atmospheric modeling: How can we make it consistent?

    Science.gov (United States)

    Yano, Jun-Ichi

    2016-07-01

    Approaches to subgrid-scale physical parameterization in atmospheric modeling are reviewed by taking turbulent combustion flow research as a point of reference. Three major general approaches are considered for its consistent development: moment, distribution density function (DDF), and mode decomposition. The moment expansion is a standard method for describing the subgrid-scale turbulent flows both in geophysics and engineering. The DDF (commonly called PDF) approach is intuitively appealing as it deals with a distribution of variables in subgrid scale in a more direct manner. Mode decomposition was originally applied by Aubry et al (1988 J. Fluid Mech. 192 115-73) in the context of wall boundary-layer turbulence. It is specifically designed to represent coherencies in compact manner by a low-dimensional dynamical system. Their original proposal adopts the proper orthogonal decomposition (empirical orthogonal functions) as their mode-decomposition basis. However, the methodology can easily be generalized into any decomposition basis. Among those, wavelet is a particularly attractive alternative. The mass-flux formulation that is currently adopted in the majority of atmospheric models for parameterizing convection can also be considered a special case of mode decomposition, adopting segmentally constant modes for the expansion basis. This perspective further identifies a very basic but also general geometrical constraint imposed on the massflux formulation: the segmentally-constant approximation. Mode decomposition can, furthermore, be understood by analogy with a Galerkin method in numerically modeling. This analogy suggests that the subgrid parameterization may be re-interpreted as a type of mesh-refinement in numerical modeling. A link between the subgrid parameterization and downscaling problems is also pointed out.

  18. Model Performance Evaluation and Scenario Analysis (MPESA) Tutorial

    Science.gov (United States)

    This tool consists of two parts: model performance evaluation and scenario analysis (MPESA). The model performance evaluation consists of two components: model performance evaluation metrics and model diagnostics. These metrics provides modelers with statistical goodness-of-fit m...

  19. Initial data problems for the two-component Camassa-Holm system

    Directory of Open Access Journals (Sweden)

    Xiaohuan Wang

    2014-06-01

    Full Text Available This article concerns the study of some properties of the two-component Camassa-Holm system. By constructing two sequences of solutions of the two-component Camassa-Holm system, we prove that the solution map of the Cauchy problem of the two-component Camassa-Holm system is not uniformly continuous in $H^s(\\mathbb{R}$, $s>5/2$.

  20. Analytical method for yrast line states in the interacting two-component Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    解炳昊; 景辉

    2002-01-01

    The yrast spectrum for the harmonically trapped two-component Bose-Einstein condensate (BEC), omitting thedifference between the two components, has been studied using an analytical method. The energy eigenstates andeigenvalues for L=0,1,2,3 are given. We illustrate that there are different eigenstate behaviours between the even Land odd L cases for the two-component BEC in two dimensions. Except for symmetric states, there are antisymmetricstates for the permutation of the two components, which cannot reduce to those in a single condensate case when thevalue of L is odd.

  1. Self-consistent modeling of CFETR baseline scenarios for steady-state operation

    Science.gov (United States)

    Chen, Jiale; Jian, Xiang; Chan, Vincent S.; Li, Zeyu; Deng, Zhao; Li, Guoqiang; Guo, Wenfeng; Shi, Nan; Chen, Xi; CFETR Physics Team

    2017-07-01

    Integrated modeling for core plasma is performed to increase confidence in the proposed baseline scenario in the 0D analysis for the China Fusion Engineering Test Reactor (CFETR). The steady-state scenarios are obtained through the consistent iterative calculation of equilibrium, transport, auxiliary heating and current drives (H&CD). Three combinations of H&CD schemes (NB + EC, NB + EC + LH, and EC + LH) are used to sustain the scenarios with q min > 2 and fusion power of ˜70-150 MW. The predicted power is within the target range for CFETR Phase I, although the confinement based on physics models is lower than that assumed in 0D analysis. Ideal MHD stability analysis shows that the scenarios are stable against n = 1-10 ideal modes, where n is the toroidal mode number. Optimization of RF current drive for the RF-only scenario is also presented. The simulation workflow for core plasma in this work provides a solid basis for a more extensive research and development effort for the physics design of CFETR.

  2. Toward A Self Consistent MHD Model of Chromospheres and Winds From Late Type Evolved Stars

    Science.gov (United States)

    Airapetian, V. S.; Leake, J. E.; Carpenter, Kenneth G.

    2015-01-01

    We present the first magnetohydrodynamic model of the stellar chromospheric heating and acceleration of the outer atmospheres of cool evolved stars, using α Tau as a case study. We used a 1.5D MHD code with a generalized Ohm's law that accounts for the effects of partial ionization in the stellar atmosphere to study Alfvén wave dissipation and wave reflection. We have demonstrated that due to inclusion of the effects of ion-neutral collisions in magnetized weakly ionized chromospheric plasma on resistivity and the appropriate grid resolution, the numerical resistivity becomes 1-2 orders of magnitude smaller than the physical resistivity. The motions introduced by non-linear transverse Alfvé waves can explain non-thermally broadened and non-Gaussian profiles of optically thin UV lines forming in the stellar chromosphere of α Tau and other late-type giant and supergiant stars. The calculated heating rates in the stellar chromosphere due to resistive (Joule) dissipation of electric currents, induced by upward propagating non-linear Alfvé waves, are consistent with observational constraints on the net radiative losses in UV lines and the continuum from α Tau. At the top of the chromosphere, Alfvé waves experience significant reflection, producing downward propagating transverse waves that interact with upward propagating waves and produce velocity shear in the chromosphere. Our simulations also suggest that momentum deposition by non-linear Alfvé waves becomes significant in the outer chromosphere at 1 stellar radius from the photosphere. The calculated terminal velocity and the mass loss rate are consistent with the observationally derived wind properties in α Tau.

  3. Dynamic form factor of two-component plasmas beyond the static local field approximation

    CERN Document Server

    Daligault, J

    2003-01-01

    The spectrum of ion density fluctuations in a strongly coupled plasma is described both within the static G(k, 0) and high-frequency G(k, infinity) local field approximation. By a direct comparison with molecular dynamics data, we find that for large coupling, G(k, 0) is inadequate. Based on this result, we employ the Zwanzig-Mori memory function approach to model the Thomson scattering cross section, i.e. the electron dynamic form factor S sub e sub e (k, omega) of a dense two-component plasma. We show the sensitivity of S sub e sub e (k, omega) to three approximations for G(k, omega).

  4. Histidine phosphotransfer proteins in fungal two-component signal transduction pathways.

    Science.gov (United States)

    Fassler, Jan S; West, Ann H

    2013-08-01

    The histidine phosphotransfer (HPt) protein Ypd1 is an important participant in the Saccharomyces cerevisiae multistep two-component signal transduction pathway and, unlike the expanded histidine kinase gene family, is encoded by a single gene in nearly all model and pathogenic fungi. Ypd1 is essential for viability in both S. cerevisiae and in Cryptococcus neoformans. These and other aspects of Ypd1 biology, combined with the availability of structural and mutational data in S. cerevisiae, suggest that the essential interactions between Ypd1 and response regulator domains would be a good target for antifungal drug development. The goal of this minireview is to summarize the wealth of data on S. cerevisiae Ypd1 and to consider the potential benefits of conducting related studies in pathogenic fungi.

  5. Cross-talk and specificity in two-component signal transduction pathways.

    Science.gov (United States)

    Agrawal, Ruchi; Sahoo, Bikash Kumar; Saini, Deepak Kumar

    2016-05-01

    Two-component signaling systems (TCSs) are composed of two proteins, sensor kinases and response regulators, which can cross-talk and integrate information between them by virtue of high-sequence conservation and modular nature, to generate concerted and diversified responses. However, TCSs have been shown to be insulated, to facilitate linear signal transmission and response generation. Here, we discuss various mechanisms that confer specificity or cross-talk among TCSs. The presented models are supported with evidence that indicate the physiological significance of the observed TCS signaling architecture. Overall, we propose that the signaling topology of any TCSs cannot be predicted using obvious sequence or structural rules, as TCS signaling is regulated by multiple factors, including spatial and temporal distribution of the participating proteins.

  6. Images and Spectral Properties of Two Component Advective Flows Around Black Holes: Effects of Photon Bending

    CERN Document Server

    Chatterjee, Arka; Ghosh, Himadri

    2016-01-01

    Two component advective flow (TCAF) successfully explains spectral and timing properties of black hole candidates. We study the nature of photon trajectories in the vicinity of a Schwarzschild black hole and incorporate this in predicting images of TCAF with a black hole at the Centre. We also compute the emitted spectra. We employ a Monte-Carlo simulation technique to achieve our goal. For accurate prediction of the image and the spectra, null trajectories are generated without constraining the motion to any specific plane. Red shift, bolometric flux and corresponding temperature have been calculated with appropriate relativistic consideration. The centrifugal barrier dominated boundary layer or CENBOL near the inner region of the disk which acts as the Compton cloud is appropriately modelled as a thick accretion disk in Schwarzschild geometry for the purpose of imaging and computing spectra. The variations of spectra and image with physical parameters such as the accretion rate ($\\dot{m}_d$) and inclination...

  7. Hazard-consistent ground motions generated with a stochastic fault-rupture model

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Akemi, E-mail: nishida.akemi@jaea.go.jp [Center for Computational Science and e-Systems, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871 (Japan); Igarashi, Sayaka, E-mail: igrsyk00@pub.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Sakamoto, Shigehiro, E-mail: shigehiro.sakamoto@sakura.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Uchiyama, Yasuo, E-mail: yasuo.uchiyama@sakura.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Yamamoto, Yu, E-mail: ymmyu-00@pub.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Muramatsu, Ken, E-mail: kmuramat@tcu.ac.jp [Department of Nuclear Safety Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557 (Japan); Takada, Tsuyoshi, E-mail: takada@load.arch.t.u-tokyo.ac.jp [Department of Architecture, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-12-15

    Conventional seismic probabilistic risk assessments (PRAs) of nuclear power plants consist of probabilistic seismic hazard and fragility curves. Even when earthquake ground-motion time histories are required, they are generated to fit specified response spectra, such as uniform hazard spectra at a specified exceedance probability. These ground motions, however, are not directly linked with seismic-source characteristics. In this context, the authors propose a method based on Monte Carlo simulations to generate a set of input ground-motion time histories to develop an advanced PRA scheme that can explain exceedance probability and the sequence of safety-functional loss in a nuclear power plant. These generated ground motions are consistent with seismic hazard at a reference site, and their seismic-source characteristics can be identified in detail. Ground-motion generation is conducted for a reference site, Oarai in Japan, the location of a hypothetical nuclear power plant. A total of 200 ground motions are generated, ranging from 700 to 1100 cm/s{sup 2} peak acceleration, which corresponds to a 10{sup −4} to 10{sup −5} annual exceedance frequency. In the ground-motion generation, seismic sources are selected according to their hazard contribution at the site, and Monte Carlo simulations with stochastic parameters for the seismic-source characteristics are then conducted until ground motions with the target peak acceleration are obtained. These ground motions are selected so that they are consistent with the hazard. Approximately 110,000 simulations were required to generate 200 ground motions with these peak accelerations. Deviations of peak ground motion acceleration generated for 1000–1100 cm/s{sup 2} range from 1.5 to 3.0, where the deviation is evaluated with peak ground motion accelerations generated from the same seismic source. Deviations of 1.0 to 3.0 for stress drops, one of the stochastic parameters of seismic-source characteristics, are required to

  8. Towards three-dimensional continuum models of self-consistent along-strike megathrust segmentation

    Science.gov (United States)

    Pranger, Casper; van Dinther, Ylona; May, Dave; Le Pourhiet, Laetitia; Gerya, Taras

    2016-04-01

    into one algorithm. We are working towards presenting the first benchmarked 3D dynamic rupture models as an important step towards seismic cycle modelling of megathrust segmentation in a three-dimensional subduction setting with slow tectonic loading, self consistent fault development, and spontaneous seismicity.

  9. Gas cooling in semi-analytic models and smoothed particle hydrodynamics simulations: are results consistent?

    Science.gov (United States)

    Saro, A.; De Lucia, G.; Borgani, S.; Dolag, K.

    2010-08-01

    We present a detailed comparison between the galaxy populations within a massive cluster, as predicted by hydrodynamical smoothed particle hydrodynamics (SPH) simulations and by a semi-analytic model (SAM) of galaxy formation. Both models include gas cooling and a simple prescription of star formation, which consists in transforming instantaneously any cold gas available into stars, while neglecting any source of energy feedback. This simplified comparison is thus not meant to be compared with observational data, but is aimed at understanding the level of agreement, at the stripped-down level considered, between two techniques that are widely used to model galaxy formation in a cosmological framework and which present complementary advantages and disadvantages. We find that, in general, galaxy populations from SAMs and SPH have similar statistical properties, in agreement with previous studies. However, when comparing galaxies on an object-by-object basis, we find a number of interesting differences: (i) the star formation histories of the brightest cluster galaxies (BCGs) from SAM and SPH models differ significantly, with the SPH BCG exhibiting a lower level of star formation activity at low redshift, and a more intense and shorter initial burst of star formation with respect to its SAM counterpart; (ii) while all stars associated with the BCG were formed in its progenitors in the SAM used here, this holds true only for half of the final BCG stellar mass in the SPH simulation, the remaining half being contributed by tidal stripping of stars from the diffuse stellar component associated with galaxies accreted on the cluster halo; (iii) SPH satellites can lose up to 90 per cent of their stellar mass at the time of accretion, due to tidal stripping, a process not included in the SAM used in this paper; (iv) in the SPH simulation, significant cooling occurs on the most massive satellite galaxies and this lasts for up to 1 Gyr after accretion. This physical process is

  10. Phenotype MicroArray Analysis of Escherichia coli K-12 Mutants with Deletions of All Two-Component Systems

    Science.gov (United States)

    Zhou, Lu; Lei, Xiang-He; Bochner, Barry R.; Wanner, Barry L.

    2003-01-01

    Two-component systems are the most common mechanism of transmembrane signal transduction in bacteria. A typical system consists of a histidine kinase and a partner response regulator. The histidine kinase senses an environmental signal, which it transmits to its partner response regulator via a series of autophosphorylation, phosphotransfer, and dephosphorylation reactions. Much work has been done on particular systems, including several systems with regulatory roles in cellular physiology, communication, development, and, in the case of bacterial pathogens, the expression of genes important for virulence. We used two methods to investigate two-component regulatory systems in Escherichia coli K-12. First, we systematically constructed mutants with deletions of all two-component systems by using a now-standard technique of gene disruption (K. A. Datsenko and B. L. Wanner, Proc. Natl. Acad. Sci. USA 97:6640-6645, 2000). We then analyzed these deletion mutants with a new technology called Phenotype MicroArrays, which permits assays of nearly 2,000 growth phenotypes simultaneously. In this study we tested 100 mutants, including mutants with individual deletions of all two-component systems and several related genes, including creBC-regulated genes (cbrA and cbrBC), phoBR-regulated genes (phoA, phoH, phnCDEFGHIJKLMNOP, psiE, and ugpBAECQ), csgD, luxS, and rpoS. The results of this battery of nearly 200,000 tests provided a wealth of new information concerning many of these systems. Of 37 different two-component mutants, 22 showed altered phenotypes. Many phenotypes were expected, and several new phenotypes were also revealed. The results are discussed in terms of the biological roles and other information concerning these systems, including DNA microarray data for a large number of the same mutants. Other mutational effects are also discussed. PMID:12897016

  11. Self-consistent modeling of radio-frequency plasma generation in stellarators

    Science.gov (United States)

    Moiseenko, V. E.; Stadnik, Yu. S.; Lysoivan, A. I.; Korovin, V. B.

    2013-11-01

    A self-consistent model of radio-frequency (RF) plasma generation in stellarators in the ion cyclotron frequency range is described. The model includes equations for the particle and energy balance and boundary conditions for Maxwell's equations. The equation of charged particle balance takes into account the influx of particles due to ionization and their loss via diffusion and convection. The equation of electron energy balance takes into account the RF heating power source, as well as energy losses due to the excitation and electron-impact ionization of gas atoms, energy exchange via Coulomb collisions, and plasma heat conduction. The deposited RF power is calculated by solving the boundary problem for Maxwell's equations. When describing the dissipation of the energy of the RF field, collisional absorption and Landau damping are taken into account. At each time step, Maxwell's equations are solved for the current profiles of the plasma density and plasma temperature. The calculations are performed for a cylindrical plasma. The plasma is assumed to be axisymmetric and homogeneous along the plasma column. The system of balance equations is solved using the Crank-Nicholson scheme. Maxwell's equations are solved in a one-dimensional approximation by using the Fourier transformation along the azimuthal and longitudinal coordinates. Results of simulations of RF plasma generation in the Uragan-2M stellarator by using a frame antenna operating at frequencies lower than the ion cyclotron frequency are presented. The calculations show that the slow wave generated by the antenna is efficiently absorbed at the periphery of the plasma column, due to which only a small fraction of the input power reaches the confinement region. As a result, the temperature on the axis of the plasma column remains low, whereas at the periphery it is substantially higher. This leads to strong absorption of the RF field at the periphery via the Landau mechanism.

  12. Toward self-consistent tectono-magmatic numerical model of rift-to-ridge transition

    Science.gov (United States)

    Gerya, Taras; Bercovici, David; Liao, Jie

    2017-04-01

    Natural data from modern and ancient lithospheric extension systems suggest three-dimensional (3D) character of deformation and complex relationship between magmatism and tectonics during the entire rift-to-ridge transition. Therefore, self-consistent high-resolution 3D magmatic-thermomechanical numerical approaches stand as a minimum complexity requirement for modeling and understanding of this transition. Here we present results from our new high-resolution 3D finite-difference marker-in-cell rift-to-ridge models, which account for magmatic accretion of the crust and use non-linear strain-weakened visco-plastic rheology of rocks that couples brittle/plastic failure and ductile damage caused by grain size reduction. Numerical experiments suggest that nucleation of rifting and ridge-transform patterns are decoupled in both space and time. At intermediate stages, two patterns can coexist and interact, which triggers development of detachment faults, failed rift arms, hyper-extended margins and oblique proto-transforms. En echelon rift patterns typically develop in the brittle upper-middle crust whereas proto-ridge and proto-transform structures nucleate in the lithospheric mantle. These deep proto-structures propagate upward, inter-connect and rotate toward a mature orthogonal ridge-transform patterns on the timescale of millions years during incipient thermal-magmatic accretion of the new oceanic-like lithosphere. Ductile damage of the extending lithospheric mantle caused by grain size reduction assisted by Zenner pinning plays critical role in rift-to-ridge transition by stabilizing detachment faults and transform structures. Numerical results compare well with observations from incipient spreading regions and passive continental margins.

  13. A self-consistent first-principle based approach to model carrier mobility in organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Meded, Velimir; Friederich, Pascal; Symalla, Franz; Neumann, Tobias; Danilov, Denis; Wenzel, Wolfgang [Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2015-12-31

    Transport through thin organic amorphous films, utilized in OLEDs and OPVs, has been a challenge to model by using ab-initio methods. Charge carrier mobility depends strongly on the disorder strength and reorganization energy, both of which are significantly affected by the details in environment of each molecule. Here we present a multi-scale approach to describe carrier mobility in which the materials morphology is generated using DEPOSIT, a Monte Carlo based atomistic simulation approach, or, alternatively by molecular dynamics calculations performed with GROMACS. From this morphology we extract the material specific hopping rates, as well as the on-site energies using a fully self-consistent embedding approach to compute the electronic structure parameters, which are then used in an analytic expression for the carrier mobility. We apply this strategy to compute the carrier mobility for a set of widely studied molecules and obtain good agreement between experiment and theory varying over several orders of magnitude in the mobility without any freely adjustable parameters. The work focuses on the quantum mechanical step of the multi-scale workflow, explains the concept along with the recently published workflow optimization, which combines density functional with semi-empirical tight binding approaches. This is followed by discussion on the analytic formula and its agreement with established percolation fits as well as kinetic Monte Carlo numerical approaches. Finally, we skatch an unified multi-disciplinary approach that integrates materials science simulation and high performance computing, developed within EU project MMM@HPC.

  14. Self-consistent Keldysh approach to quenches in the weakly interacting Bose-Hubbard model

    Science.gov (United States)

    Lo Gullo, N.; Dell'Anna, L.

    2016-11-01

    We present a nonequilibrium Green's-functional approach to study the dynamics following a quench in weakly interacting Bose-Hubbard model (BHM). The technique is based on the self-consistent solution of a set of equations which represents a particular case of the most general set of Hedin's equations for the interacting single-particle Green's function. We use the ladder approximation as a skeleton diagram for the two-particle scattering amplitude useful, through the self-energy in the Dyson equation, for finding the interacting single-particle Green's function. This scheme is then implemented numerically by a parallelized code. We exploit this approach to study the correlation propagation after a quench in the interaction parameter, for one and two dimensions. In particular, we show how our approach is able to recover the crossover from the ballistic to the diffusive regime by increasing the boson-boson interaction. Finally we also discuss the role of a thermal initial state on the dynamics both for one- and two-dimensional BHMs, finding that, surprisingly, at high temperature a ballistic evolution is restored.

  15. Self-consistent model of a solid for the description of lattice and magnetic properties

    Science.gov (United States)

    Balcerzak, T.; Szałowski, K.; Jaščur, M.

    2017-03-01

    In the paper a self-consistent theoretical description of the lattice and magnetic properties of a model system with magnetoelastic interaction is presented. The dependence of magnetic exchange integrals on the distance between interacting spins is assumed, which couples the magnetic and the lattice subsystem. The framework is based on summation of the Gibbs free energies for the lattice subsystem and magnetic subsystem. On the basis of minimization principle for the Gibbs energy, a set of equations of state for the system is derived. These equations of state combine the parameters describing the elastic properties (relative volume deformation) and the magnetic properties (magnetization changes). The formalism is extensively illustrated with the numerical calculations performed for a system of ferromagnetically coupled spins S=1/2 localized at the sites of simple cubic lattice. In particular, the significant influence of the magnetic subsystem on the elastic properties is demonstrated. It manifests itself in significant modification of such quantities as the relative volume deformation, thermal expansion coefficient or isothermal compressibility, in particular, in the vicinity of the magnetic phase transition. On the other hand, the influence of lattice subsystem on the magnetic one is also evident. It takes, for example, the form of dependence of the critical (Curie) temperature and magnetization itself on the external pressure, which is thoroughly investigated.

  16. How consistent is cloudiness over Canada from satellite observations and modeling data?

    Science.gov (United States)

    Trishchenko, A. P.; Khlopenkov, K.; Latifovic, R.

    2004-05-01

    Being one of the major modulators of radiation budget and hydrological cycle, clouds are still significant challenge for modeling and satellite retrievals. For example, our analysis shows that for Western Canada the systematic difference in total cloud amounts between NCAR/NCEP Reanalysis-2 and ISCCP reaches 20-30 per cent. Especially difficult are satellite retrievals for Northern climate regions over snow-covered surface and during night-time. To understand better these differences and their influence on earth radiation budget in Northern latitudes, we are attempting to undertake the re-analysis of satellite AVHRR data over Canada using improved data processing and cloud detection algorithms. Details of cloud detection algorithm for day-time and night-time conditions over snow-free and snow-covered surfaces are discussed. Selected results of satellite retrievals for typical summer and winter conditions over Canada are compared to previous analyses, such as ISCCP and Pathfinder projects. Consistency between our cloud retrievals using AVHRR data and those available from MODIS will be also considered.

  17. Two-Component Super AKNS Equations and Their Finite-Dimensional Integrable Super Hamiltonian System

    OpenAIRE

    Jing Yu; Jingwei Han

    2014-01-01

    Starting from a matrix Lie superalgebra, two-component super AKNS system is constructed. By making use of monononlinearization technique of Lax pairs, we find that the obtained two-component super AKNS system is a finite-dimensional integrable super Hamiltonian system. And its Lax representation and $r$ -matrix are also given in this paper.

  18. Relativistic two-component jet evolutions in 2D and 3D

    NARCIS (Netherlands)

    Meliani, Z.; Keppens, R.

    2009-01-01

    Observations of astrophysical jets and theoretical arguments suggest a transverse stratification with two components induced by intrinsic features of the central engine (accretion disk + black hole). We study two-component jet dynamics for an inner fast low density jet, surrounded by a slower, dense

  19. Two-Component Super AKNS Equations and Their Finite-Dimensional Integrable Super Hamiltonian System

    Directory of Open Access Journals (Sweden)

    Jing Yu

    2014-01-01

    Full Text Available Starting from a matrix Lie superalgebra, two-component super AKNS system is constructed. By making use of monononlinearization technique of Lax pairs, we find that the obtained two-component super AKNS system is a finite-dimensional integrable super Hamiltonian system. And its Lax representation and r-matrix are also given in this paper.

  20. An internally consistent inverse model to calculate ridge-axis hydrothermal fluxes

    Science.gov (United States)

    Coogan, L. A.; Dosso, S.

    2010-12-01

    Fluid and chemical fluxes from high-temperature, on-axis, hydrothermal systems at mid-ocean ridges have been estimated in a number of ways. These generally use simple mass balances based on either vent fluid compositions or the compositions of altered sheeted dikes. Here we combine these approaches in an internally consistent model. Seawater is assumed to enter the crust and react with the sheeted dike complex at high temperatures. Major element fluxes for both the rock and fluid are calculated from balanced stoichiometric reactions. These reactions include end-member components of the minerals plagioclase, pyroxene, amphibole, chlorite and epidote along with pure anhydrite, quartz, pyrite, pyrrhotite, titanite, magnetite, ilmenite and ulvospinel and the fluid species H2O, Mg2+, Ca2+, Fe2+, Na+, Si4+, H2S, H+ and H2. Trace element abundances (Li, B, K, Rb, Cs, Sr, Ba, U, Tl, Mn, Cu, Zn, Co, Ni, Pb and Os) and isotopic ratios (Li, B, O, Sr, Tl, Os) are calculated from simple mass balance of a fluid-rock reaction. A fraction of the Cu, Zn, Pb, Co, Ni, Os and Mn in the fluid after fluid-rock reaction is allowed to precipitate during discharge before the fluid reaches the seafloor. S-isotopes are tied to mineralogical reactions involving S-bearing phases. The free parameters in the model are the amounts of each mineralogical reaction that occurs, the amounts of the metals precipitated during discharge, and the water-to-rock ratio. These model parameters, and their uncertainties, are constrained by: (i) mineral abundances and mineral major element compositions in altered dikes from ODP Hole 504B and the Pito and Hess Deep tectonic windows (EPR crust); (ii) changes in dike bulk-rock trace element and isotopic compositions from these locations relative to fresh MORB glass compositions; and (iii) published vent fluid compositions from basalt-hosted high-temperature ridge axis hydrothermal systems. Using a numerical inversion algorithm, the probability density of different

  1. Functional connectivity modeling of consistent cortico-striatal degeneration in Huntington's disease

    Directory of Open Access Journals (Sweden)

    Imis Dogan

    2015-01-01

    Full Text Available Huntington's disease (HD is a progressive neurodegenerative disorder characterized by a complex neuropsychiatric phenotype. In a recent meta-analysis we identified core regions of consistent neurodegeneration in premanifest HD in the striatum and middle occipital gyrus (MOG. For early manifest HD convergent evidence of atrophy was most prominent in the striatum, motor cortex (M1 and inferior frontal junction (IFJ. The aim of the present study was to functionally characterize this topography of brain atrophy and to investigate differential connectivity patterns formed by consistent cortico-striatal atrophy regions in HD. Using areas of striatal and cortical atrophy at different disease stages as seeds, we performed task-free resting-state and task-based meta-analytic connectivity modeling (MACM. MACM utilizes the large data source of the BrainMap database and identifies significant areas of above-chance co-activation with the seed-region via the activation-likelihood-estimation approach. In order to delineate functional networks formed by cortical as well as striatal atrophy regions we computed the conjunction between the co-activation profiles of striatal and cortical seeds in the premanifest and manifest stages of HD, respectively. Functional characterization of the seeds was obtained using the behavioral meta-data of BrainMap. Cortico-striatal atrophy seeds of the premanifest stage of HD showed common co-activation with a rather cognitive network including the striatum, anterior insula, lateral prefrontal, premotor, supplementary motor and parietal regions. A similar but more pronounced co-activation pattern, additionally including the medial prefrontal cortex and thalamic nuclei was found with striatal and IFJ seeds at the manifest HD stage. The striatum and M1 were functionally connected mainly to premotor and sensorimotor areas, posterior insula, putamen and thalamus. Behavioral characterization of the seeds confirmed that experiments

  2. Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Angus, G.W.; Gentile, G. [Department of Physics and Astrophysics, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050 Belgium (Belgium); Diaferio, A. [Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, Torino, I-10125 Italy (Italy); Famaey, B. [Observatoire astronomique de Strasbourg, CNRS UMR 7550, Université de Strasbourg, 11 rue de l' Université, Strasbourg, F-67000 France (France); Heyden, K.J. van der, E-mail: garry.angus@vub.ac.be, E-mail: diaferio@ph.unito.it, E-mail: benoit.famaey@astro.unistra.fr, E-mail: gianfranco.gentile@ugent.be, E-mail: heyden@ast.uct.ac.za [Astrophysics, Cosmology and Gravity Centre, Dept. of Astronomy, University of Cape Town, Private Bag X3, Rondebosch, 7701 South Africa (South Africa)

    2014-10-01

    In this article we continue to test cosmological models centred on Modified Newtonian Dynamics (MOND) with light sterile neutrinos, which could in principle be a way to solve the fine-tuning problems of the standard model on galaxy scales while preserving successful predictions on larger scales. Due to previous failures of the simple MOND cosmological model, here we test a speculative model where the modified gravitational field is produced only by the baryons and the sterile neutrinos produce a purely Newtonian field (hence Modified Baryonic Dynamics). We use two-component cosmological simulations to separate the baryonic N-body particles from the sterile neutrino ones. The premise is to attenuate the over-production of massive galaxy cluster halos which were prevalent in the original MOND plus light sterile neutrinos scenario. Theoretical issues with such a formulation notwithstanding, the Modified Baryonic Dynamics model fails to produce the correct amplitude for the galaxy cluster mass function for any reasonable value of the primordial power spectrum normalisation.

  3. Special relativistic magnetohydrodynamic simulation of two-component outflow powered by magnetic explosion on compact stars

    Science.gov (United States)

    Matsumoto, Jin; Masada, Youhei; Asano, Eiji; Shibata, Kazunari

    2011-06-01

    The nonlinear dynamics of the outflow driven by magnetic explosion on the surface of compact object is investigated through special relativistic magnetohydrodynamic simulations. We adopt, as an initial equilibrium state, a spherical stellar object embedded in the hydrostatic plasma which has a density ρ(r) ~ r-α and is threaded by a dipole magnetic field. The injection of magnetic energy at the surface of compact star breaks the dynamical equilibrium and triggers two-component outflow. At the early evolutionary stage, the magnetic pressure increases rapidly in time around the stellar surface, initiating a magnetically driven outflow. Then it excites a strong forward shock, shock driven outflow. The expansion velocity of the magnetically driven outflow is characterized by the Alfvén velocity on the stellar surface, and follows a simple scaling relation υmag ~ υA1/2. When the initial density profile declines steeply with radius, the strong shock is accelerated self-similarly to relativistic velocity ahead of the magnetically driven component. We find that the evolution of the strong forward shock can be described by a self-similar relation Γsh ~ rsh, where Γsh is the Lorentz factor of the plasma measured at the shock surface rsh. It should be stressed that the pure hydrodynamic process is responsible for the acceleration of the shock driven outflow. Our two-component outflow model, which is the natural outcome of the magnetic explosion, would deepen the understanding of the magnetic active phenomena on various magnetized stellar objects.

  4. Consistent Two-Equation Closure Modelling for Atmospheric Research: Buoyancy and Vegetation Implementations

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Kelly, Mark C.; Leclerc, Monique Y.

    2012-01-01

    A self-consistent two-equation closure treating buoyancy and plant drag effects has been developed, through consideration of the behaviour of the supplementary equation for the length-scale-determining variable in homogeneous turbulent flow. Being consistent with the canonical flow regimes of gri...

  5. A Consistent Fuzzy Preference Relations Based ANP Model for R&D Project Selection

    Directory of Open Access Journals (Sweden)

    Chia-Hua Cheng

    2017-08-01

    Full Text Available In today’s rapidly changing economy, technology companies have to make decisions on research and development (R&D projects investment on a routine bases with such decisions having a direct impact on that company’s profitability, sustainability and future growth. Companies seeking profitable opportunities for investment and project selection must consider many factors such as resource limitations and differences in assessment, with consideration of both qualitative and quantitative criteria. Often, differences in perception by the various stakeholders hinder the attainment of a consensus of opinion and coordination efforts. Thus, in this study, a hybrid model is developed for the consideration of the complex criteria taking into account the different opinions of the various stakeholders who often come from different departments within the company and have different opinions about which direction to take. The decision-making trial and evaluation laboratory (DEMATEL approach is used to convert the cause and effect relations representing the criteria into a visual network structure. A consistent fuzzy preference relations based analytic network process (CFPR-ANP method is developed to calculate the preference-weights of the criteria based on the derived network structure. The CFPR-ANP is an improvement over the original analytic network process (ANP method in that it reduces the problem of inconsistency as well as the number of pairwise comparisons. The combined complex proportional assessment (COPRAS-G method is applied with fuzzy grey relations to resolve conflicts arising from differences in information and opinions provided by the different stakeholders about the selection of the most suitable R&D projects. This novel combination approach is then used to assist an international brand-name company to prioritize projects and make project decisions that will maximize returns and ensure sustainability for the company.

  6. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    Science.gov (United States)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-08-01

    We present a powerful computational approach to simulate the threshold behavior of photonic-crystal quantum-dot (QD) lasers. Using a finite-difference time-domain (FDTD) technique, Maxwell-Bloch equations representing a system of thousands of statistically independent and randomly positioned two-level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within the model. These Maxwell-Bloch equations are implemented by using Lumerical's flexible material plug-in tool, which allows a user to define additional equations of motion for the nonlinear polarization. We implement the gain ensemble within triangular-lattice photonic-crystal cavities of various length N (where N refers to the number of missing holes), and investigate the cavity mode characteristics and the threshold regime as a function of cavity length. We develop effective two-dimensional model simulations which are derived after studying the full three-dimensional passive material structures by matching the cavity quality factors and resonance properties. We also demonstrate how to obtain the correct point-dipole radiative decay rate from Fermi's golden rule, which is captured naturally by the FDTD method. Our numerical simulations predict that the pump threshold plateaus around cavity lengths greater than N =9 , which we identify as a consequence of the complex spatial dynamics and gain coupling from the inhomogeneous QD ensemble. This behavior is not expected from simple rate-equation analysis commonly adopted in the literature, but is in qualitative agreement with recent experiments. Single-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also

  7. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling

    Energy Technology Data Exchange (ETDEWEB)

    Pera, H.; Kleijn, J. M.; Leermakers, F. A. M., E-mail: Frans.leermakers@wur.nl [Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6307 HB Wageningen (Netherlands)

    2014-02-14

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus k{sub c} and k{sup ¯} and the preferred monolayer curvature J{sub 0}{sup m}, and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of k{sub c} and the area compression modulus k{sub A} are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k{sup ¯} and J{sub 0}{sup m} can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k{sup ¯} and J{sub 0}{sup m} change sign with relevant parameter changes. Although typically k{sup ¯}<0, membranes can form stable cubic phases when the Gaussian bending modulus becomes positive, which occurs with membranes composed of PC lipids with long tails. Similarly, negative monolayer curvatures appear when a small head group such as PE is combined with long lipid tails, which hints towards the stability of inverse hexagonal phases at the cost of the bilayer topology. To prevent the destabilisation of bilayers, PG lipids can be mixed into these PC or PE lipid membranes. Progressive loading of bilayers with PG lipids lead to highly charged membranes, resulting in J{sub 0}{sup m}≫0, especially at low ionic

  8. Preparation and frictional investigation of the two-components silanes deposited on alumina surface

    Energy Technology Data Exchange (ETDEWEB)

    Kośla, K.; Grobelny, J.; Cichomski, M., E-mail: mcichom@uni.lodz.pl

    2014-09-30

    Highlights: • The two-component silane films on the alumina surface were obtained by a combination of soft lithography and vapor phase deposition method. • The effectiveness of modification procedure was monitored by AFM topography images. • By using gas phase deposition method succeeded in obtaining a good reproduction of pattern. • Silane films with low surface free energy and coefficient of friction values were obtained. • The frictional performance in milli-Newton load range of one- and two-component films was investigated by microtribometry. - Abstract: Functionalization and pattering technique that permits two-component pattern-specific modification of alumina surface with silanes molecules are reported. The method relies on a two-component molecular system that simultaneously decreases coefficient of friction of the alumina surface and provides uniform chemical functionality suitable for further elaboration. Pattern/two-component modification is achieved via gas-phase deposition of the silanes using polydimethylsiloxane stamp. The frictional behaviors of the two-component films of the silane molecules with different chain length covalently absorbed on alumina surfaces, were characterized by the ball-disk (microtribometer) tester. The surfaces of the substrate modified by two-component molecular films were examined by atomic force microscopy (AFM). The measured tribological results showed that the mixing of the fluoroalkylsilane and alkylsilane enhance the lubrication and decrease the friction compared to the one-component thin films.

  9. Self-Consistent Approach to Global Charge Neutrality in Electrokinetics: A Surface Potential Trap Model

    Science.gov (United States)

    Wan, Li; Xu, Shixin; Liao, Maijia; Liu, Chun; Sheng, Ping

    2014-01-01

    In this work, we treat the Poisson-Nernst-Planck (PNP) equations as the basis for a consistent framework of the electrokinetic effects. The static limit of the PNP equations is shown to be the charge-conserving Poisson-Boltzmann (CCPB) equation, with guaranteed charge neutrality within the computational domain. We propose a surface potential trap model that attributes an energy cost to the interfacial charge dissociation. In conjunction with the CCPB, the surface potential trap can cause a surface-specific adsorbed charge layer σ. By defining a chemical potential μ that arises from the charge neutrality constraint, a reformulated CCPB can be reduced to the form of the Poisson-Boltzmann equation, whose prediction of the Debye screening layer profile is in excellent agreement with that of the Poisson-Boltzmann equation when the channel width is much larger than the Debye length. However, important differences emerge when the channel width is small, so the Debye screening layers from the opposite sides of the channel overlap with each other. In particular, the theory automatically yields a variation of σ that is generally known as the "charge regulation" behavior, attendant with predictions of force variation as a function of nanoscale separation between two charged surfaces that are in good agreement with the experiments, with no adjustable or additional parameters. We give a generalized definition of the ζ potential that reflects the strength of the electrokinetic effect; its variations with the concentration of surface-specific and surface-nonspecific salt ions are shown to be in good agreement with the experiments. To delineate the behavior of the electro-osmotic (EO) effect, the coupled PNP and Navier-Stokes equations are solved numerically under an applied electric field tangential to the fluid-solid interface. The EO effect is shown to exhibit an intrinsic time dependence that is noninertial in its origin. Under a step-function applied electric field, a

  10. Comparative Analysis of Two-component Signal Transduction System in Two Streptomycete Genomes

    Institute of Scientific and Technical Information of China (English)

    Wu WEI; Yixue LI; Weihua WANG; Zhiwei CAO; Hong YU; Xiaojing WANG; Jing ZHAO; Hao TAN; Hao XU; Weihong JIANG

    2007-01-01

    Species of the genus Streptomyces are major bacteria responsible for producing most natural antibiotics. Streptomyces coelicolor A3(2) and Streptomyces avermitilis were sequenced in 2002 and 2003,respectively. Two-component signal transduction systems (TCSs), consisting of a histidine sensor kinase (SK) and a cognate response regulator (RR), form the most common mechanism of transmembrane signal transduction in prokaryotes. TCSs in S. coelicolor A3(2) have been analyzed in detail. Here, we identify and classify the SK and RR of S. avermitilis and compare the TCSs with those of S. coelicolor A3(2) by computational approaches. Phylogenetic analysis of the cognate SK-RR pairs of the two species indicated that the cognate SK-RR pairs fall into four classes according to the distribution of their orthologs in other organisms. In addition to the cognate SK-RR pairs, some potential partners of non-cognate SK-RR were found, including those of unpaired SK and orphan RR and the cross-talk between different components in either strain. Our study provides new clues for further exploration of the molecular regulation mechanism of streptomycetes with industrial importance.

  11. A two component system is involved in acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus.

    Science.gov (United States)

    Cui, Yanhua; Liu, Wei; Qu, Xiaojun; Chen, Zhangting; Zhang, Xu; Liu, Tong; Zhang, Lanwei

    2012-05-20

    The Gram-positive bacterium Lactobacillus delbrueckii subsp. bulgaricus is of vital importance to the food industry, especially to the dairy industry. Two component systems (TCSs) are one of the most important mechanisms for environmental sensing and signal transduction in the majority of Gram-positive and Gram-negative bacteria. A typical TCS consists of a histidine protein kinase (HPK) and a cytoplasmic response regulator (RR). To investigate the functions of TCSs during acid adaptation in L. bulgaricus, we used quantitative PCR to reveal how TCSs expression changes during acid adaptation. Two TCSs (JN675228/JN675229 and JN675230/JN675231) and two HPKs (JN675236 and JN675240) were induced during acid adaptation. These TCSs were speculated to be related with the acid adaptation ability of L. bulgaricus. The mutants of JN675228/JN675229 were constructed in order to investigate the functions of JN675228/JN675229. The mutants showed reduced acid adaptation compared to that of wild type, and the complemented strains were similar to the wild-type strain. These observations suggested that JN675228 and JN675229 were involved in acid adaptation in L. bulgaricus. The interaction between JN675228 and JN675229 was identified by means of yeast two-hybrid system. The results indicated there is interaction between JN675228 and JN675229.

  12. Physiological Role of Two-Component Signal Transduction Systems in Food-Associated Lactic Acid Bacteria.

    Science.gov (United States)

    Monedero, Vicente; Revilla-Guarinos, Ainhoa; Zúñiga, Manuel

    2017-01-01

    Two-component systems (TCSs) are widespread signal transduction pathways mainly found in bacteria where they play a major role in adaptation to changing environmental conditions. TCSs generally consist of sensor histidine kinases that autophosphorylate in response to a specific stimulus and subsequently transfer the phosphate group to their cognate response regulators thus modulating their activity, usually as transcriptional regulators. In this review we present the current knowledge on the physiological role of TCSs in species of the families Lactobacillaceae and Leuconostocaceae of the group of lactic acid bacteria (LAB). LAB are microorganisms of great relevance for health and food production as the group spans from starter organisms to pathogens. Whereas the role of TCSs in pathogenic LAB (most of them belonging to the family Streptococcaceae) has focused the attention, the roles of TCSs in commensal LAB, such as most species of Lactobacillaceae and Leuconostocaceae, have been somewhat neglected. However, evidence available indicates that TCSs are key players in the regulation of the physiology of these bacteria. The first studies in food-associated LAB showed the involvement of some TCSs in quorum sensing and production of bacteriocins, but subsequent studies have shown that TCSs participate in other physiological processes, such as stress response, regulation of nitrogen metabolism, regulation of malate metabolism, and resistance to antimicrobial peptides, among others. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The Role of Two-Component Signal Transduction Systems in Staphylococcus aureus Virulence Regulation.

    Science.gov (United States)

    Haag, Andreas F; Bagnoli, Fabio

    2016-01-05

    Staphylococcus aureus is a versatile, opportunistic human pathogen that can asymptomatically colonize a human host but can also cause a variety of cutaneous and systemic infections. The ability of S. aureus to adapt to such diverse environments is reflected in the presence of complex regulatory networks fine-tuning metabolic and virulence gene expression. One of the most widely distributed mechanisms is the two-component signal transduction system (TCS) which allows a pathogen to alter its gene expression profile in response to environmental stimuli. The simpler TCSs consist of only a transmembrane histidine kinase (HK) and a cytosolic response regulator. S. aureus encodes a total of 16 conserved pairs of TCSs that are involved in diverse signalling cascades ranging from global virulence gene regulation (e.g. quorum sensing by the Agr system), the bacterial response to antimicrobial agents, cell wall metabolism, respiration and nutrient sensing. These regulatory circuits are often interconnected and affect each other's expression, thus fine-tuning staphylococcal gene regulation. This manuscript gives an overview of the current knowledge of staphylococcal environmental sensing by TCS and its influence on virulence gene expression and virulence itself. Understanding bacterial gene regulation by TCS can give major insights into staphylococcal pathogenicity and has important implications for knowledge-based drug design and vaccine formulation.

  14. Functional characterization of WalRK: A two-component signal transduction system from Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Alisha Dhiman

    2014-01-01

    Full Text Available Two-component signal transduction systems (TCS, consisting of a sensor histidine protein kinase and its cognate response regulator, are an important mode of environmental sensing in bacteria. Additionally, they have been found to regulate virulence determinants in several pathogens. Bacillus anthracis, the causative agent of anthrax and a bioterrorism agent, harbours 41 pairs of TCS. However, their role in its pathogenicity has remained largely unexplored. Here, we show that WalRK of B. anthracis forms a functional TCS which exhibits some species-specific functions. Biochemical studies showed that domain variants of WalK, the histidine kinase, exhibit classical properties of autophosphorylation and phosphotransfer to its cognate response regulator WalR. Interestingly, these domain variants also show phosphatase activity towards phosphorylated WalR, thereby making WalK a bifunctional histidine kinase/phosphatase. An in silico regulon determination approach, using a consensus binding sequence from Bacillus subtilis, provided a list of 30 genes that could form a putative WalR regulon in B. anthracis. Further, electrophoretic mobility shift assay was used to show direct binding of purified WalR to the upstream regions of three putative regulon candidates, an S-layer protein EA1, a cell division ABC transporter FtsE and a sporulation histidine kinase KinB3. Our work lends insight into the species-specific functions and mode of action of B. anthracis WalRK.

  15. Functional characterization of WalRK: A two-component signal transduction system from Bacillus anthracis.

    Science.gov (United States)

    Dhiman, Alisha; Bhatnagar, Sonika; Kulshreshtha, Parul; Bhatnagar, Rakesh

    2014-01-01

    Two-component signal transduction systems (TCS), consisting of a sensor histidine protein kinase and its cognate response regulator, are an important mode of environmental sensing in bacteria. Additionally, they have been found to regulate virulence determinants in several pathogens. Bacillus anthracis, the causative agent of anthrax and a bioterrorism agent, harbours 41 pairs of TCS. However, their role in its pathogenicity has remained largely unexplored. Here, we show that WalRK of B. anthracis forms a functional TCS which exhibits some species-specific functions. Biochemical studies showed that domain variants of WalK, the histidine kinase, exhibit classical properties of autophosphorylation and phosphotransfer to its cognate response regulator WalR. Interestingly, these domain variants also show phosphatase activity towards phosphorylated WalR, thereby making WalK a bifunctional histidine kinase/phosphatase. An in silico regulon determination approach, using a consensus binding sequence from Bacillus subtilis, provided a list of 30 genes that could form a putative WalR regulon in B. anthracis. Further, electrophoretic mobility shift assay was used to show direct binding of purified WalR to the upstream regions of three putative regulon candidates, an S-layer protein EA1, a cell division ABC transporter FtsE and a sporulation histidine kinase KinB3. Our work lends insight into the species-specific functions and mode of action of B. anthracis WalRK.

  16. [Two-component signal transduction as attractive drug targets in pathogenic bacteria].

    Science.gov (United States)

    Utsumi, Ryutaro; Igarashi, Masayuki

    2012-01-01

    Gene clusters contributing to processes such as cell growth and pathogenicity are often controlled by two-component signal transduction systems (TCSs). TCS consists of a histidine kinase (HK) and a response regulator (RR). TCSs are attractive as drug targets for antimicrobials because many HK and RR genes are coded on the bacterial genome though few are found in lower eukaryotes. The HK/RR signal transduction system is distinct from serine/threonine and tyrosine phosphorylation in higher eukaryotes. Specific inhibitors against TCS systems work differently from conventional antibiotics, and developing them into new drugs that are effective against various drug-resistant bacteria may be possible. Furthermore, inhibitors of TCSs that control virulence factors may reduce virulence without killing the pathogenic bacteria. Previous TCS inhibitors targeting the kinase domain of the histidine kinase sensor suffered from poor selectivity. Recent TCS inhibitors, however, target the sensory domains of the sensors blocking the quorum sensing system, or target the essential response regulator. These new targets are introduced, together with several specific TCSs that have the potential to serve as effective drug targets.

  17. Comparative Genomic Analysis of Two-Component Signal Transduction Systems in Probiotic Lactobacillus casei.

    Science.gov (United States)

    Yu, Shuijing; Peng, Yanping; Chen, Wanyi; Deng, Yangwu; Guo, Yanhua

    2014-09-01

    Lactobacillus casei has traditionally been recognized as a probiotic, thus needing to survive the industrial production processes and transit through the gastrointestinal tract before providing benefit to human health. The two-component signal transduction system (TCS) plays important roles in sensing and reacting to environmental changes, which consists of a histidine kinase (HK) and a response regulator (RR). In this study we identified HKs and RRs of six sequenced L. casei strains. Ortholog analysis revealed 15 TCS clusters (HK-RR pairs), one orphan HKs and three orphan RRs, of which 12 TCS clusters were common to all six strains, three were absent in one strain. Further classification of the predicted HKs and RRs revealed interesting aspects of their putative functions. Some TCS clusters are involved with the response under the stress of the bile salts, acid, or oxidative, which contribute to survive the difficult journey through the human gastrointestinal tract. Computational predictions of 15 TCSs were verified by PCR experiments. This genomic level study of TCSs should provide valuable insights into the conservation and divergence of TCS proteins in the L. casei strains.

  18. Methods of producing epoxides from alkenes using a two-component catalyst system

    Science.gov (United States)

    Kung, Mayfair C.; Kung, Harold H.; Jiang, Jian

    2013-07-09

    Methods for the epoxidation of alkenes are provided. The methods include the steps of exposing the alkene to a two-component catalyst system in an aqueous solution in the presence of carbon monoxide and molecular oxygen under conditions in which the alkene is epoxidized. The two-component catalyst system comprises a first catalyst that generates peroxides or peroxy intermediates during oxidation of CO with molecular oxygen and a second catalyst that catalyzes the epoxidation of the alkene using the peroxides or peroxy intermediates. A catalyst system composed of particles of suspended gold and titanium silicalite is one example of a suitable two-component catalyst system.

  19. Two-component generalizations of the periodic Camassa-Holm and Degasperis-Procesi equations

    CERN Document Server

    Escher, Joachim; Lenells, Jonatan

    2010-01-01

    We use geometric methods to study two natural two-component generalizations of the periodic Camassa-Holm and Degasperis-Procesi equations. We show that these generalizations can be regarded as geodesic equations on the semidirect product of the diffeomorphism group of the circle $\\Diff(S^1)$ with some space of sufficiently smooth functions on the circle. Our goals are to understand the geometric properties of these two-component systems and to prove local well-posedness in various function spaces. Furthermore, we perform some explicit curvature calculations for the two-component Camassa-Holm equation, giving explicit examples of large subspaces of positive curvature.

  20. Evolution and phyletic distribution of two-component signal transduction systems.

    Science.gov (United States)

    Wuichet, Kristin; Cantwell, Brian J; Zhulin, Igor B

    2010-04-01

    Two-component signal transduction systems are abundant in prokaryotes. They enable cells to adjust multiple cellular functions in response to changing environmental conditions. These systems are also found, although in much smaller numbers, in lower eukaryotes and plants, where they appear to control a few very specific functions. Two-component systems have evolved in Bacteria from much simpler one-component systems bringing about the benefit of extracellular versus intracellular sensing. We review reports establishing the origins of two-component systems and documenting their occurrence in major lineages of Life. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Two-Component Wadati-Konno-Ichikawa Equation and Its Symmetry Reductions

    Institute of Scientific and Technical Information of China (English)

    QU Chang-Zheng; YAO Ruo-Xia; LI Zhi-Bin

    2004-01-01

    @@ It is shown that two-component Wadati-Konno-Ichikawa (WKI) equation, i.e. a generalization of the well-known WKI equation, is obtained from the motion of space curves in Euclidean geometry, and it is exactly a system for the graph of the curves when the curve motion is governed by the two-component modified Korteweg-de Vries flow. Group-invariant solutions of the two-component WKI equation which corresponds to an optimal system of its Lie point symmetry groups are obtained, and its similarity reductions to systems of ordinary differential equations are also given.

  2. Dose- and time-dependent changes of micronucleus frequency and gene expression in the progeny of irradiated cells: Two components in radiation-induced genomic instability?

    Energy Technology Data Exchange (ETDEWEB)

    Huumonen, Katriina [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland); Korkalainen, Merja [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, 70701 Kuopio (Finland); Boman, Eeva; Heikkilä, Janne [Kuopio University Hospital, Cancer Center, P.O. Box 1777, 70211 Kuopio (Finland); Höytö, Anne [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland); Lahtinen, Tapani [Kuopio University Hospital, Cancer Center, P.O. Box 1777, 70211 Kuopio (Finland); Luukkonen, Jukka [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland); Viluksela, Matti [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, 70701 Kuopio (Finland); Naarala, Jonne [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland); Juutilainen, Jukka, E-mail: jukka.juutilainen@uef.fi [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland)

    2014-07-15

    Highlights: • Development with time of radiation-induced genomic instability (RIGI) was studied. • Dose–response of micronuclei showed marked time-dependent changes. • A new model assuming two components in RIGI was found to fit with the data. • The persisting component of RIGI seems to be independent of dose above a threshold. • Increasing heterogeneity was characteristic to delayed gene expression changes. - Abstract: Murine embryonic C3H/10T½ fibroblasts were exposed to X-rays at doses of 0.2, 0.5, 1, 2 or 5 Gy. To follow the development of radiation-induced genomic instability (RIGI), the frequency of micronuclei was measured with flow cytometry at 2 days after exposure and in the progeny of the irradiated cells at 8 and 15 days after exposure. Gene expression was measured at the same points in time by PCR arrays profiling the expression of 84 cancer-relevant genes. The micronucleus results showed a gradual decrease in the slope of the dose–response curve between days 2 and 15. The data were consistent with a model assuming two components in RIGI. The first component is characterized by dose-dependent increase in micronuclei. It may persist more than ten cell generations depending on dose, but eventually disappears. The second component is more persistent and independent of dose above a threshold higher than 0.2 Gy. Gene expression analysis 2 days after irradiation at 5 Gy showed consistent changes in genes that typically respond to DNA damage. However, the consistency of changes decreased with time, suggesting that non-specificity and increased heterogeneity of gene expression are characteristic to the second, more persistent component of RIGI.

  3. Hydrologic consistency as a basis for assessing complexity of monthly water balance models for the continental United States

    Science.gov (United States)

    Martinez, Guillermo F.; Gupta, Hoshin V.

    2011-12-01

    Methods to select parsimonious and hydrologically consistent model structures are useful for evaluating dominance of hydrologic processes and representativeness of data. While information criteria (appropriately constrained to obey underlying statistical assumptions) can provide a basis for evaluating appropriate model complexity, it is not sufficient to rely upon the principle of maximum likelihood (ML) alone. We suggest that one must also call upon a "principle of hydrologic consistency," meaning that selected ML structures and parameter estimates must be constrained (as well as possible) to reproduce desired hydrological characteristics of the processes under investigation. This argument is demonstrated in the context of evaluating the suitability of candidate model structures for lumped water balance modeling across the continental United States, using data from 307 snow-free catchments. The models are constrained to satisfy several tests of hydrologic consistency, a flow space transformation is used to ensure better consistency with underlying statistical assumptions, and information criteria are used to evaluate model complexity relative to the data. The results clearly demonstrate that the principle of consistency provides a sensible basis for guiding selection of model structures and indicate strong spatial persistence of certain model structures across the continental United States. Further work to untangle reasons for model structure predominance can help to relate conceptual model structures to physical characteristics of the catchments, facilitating the task of prediction in ungaged basins.

  4. Modeling aerosol-cloud interactions with a self-consistent cloud scheme in a general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Y; Ramaswamy, V; Donner, L J; Phillips, V T; Klein, S A; Ginoux, P A; Horowitz, L H

    2005-05-02

    This paper describes a self-consistent prognostic cloud scheme that is able to predict cloud liquid water, amount and droplet number (N{sub d}) from the same updraft velocity field, and is suitable for modeling aerosol-cloud interactions in general circulation models (GCMs). In the scheme, the evolution of droplets fully interacts with the model meteorology. An explicit treatment of cloud condensation nuclei (CCN) activation allows the scheme to take into account the contributions to N{sub d} of multiple types of aerosol (i.e., sulfate, organic and sea-salt aerosols) and kinetic limitations of the activation process. An implementation of the prognostic scheme in the Geophysical Fluid Dynamics Laboratory (GFDL) AM2 GCM yields a vertical distribution of N{sub d} characteristic of maxima in the lower troposphere differing from that obtained through diagnosing N{sub d} empirically from sulfate mass concentrations. As a result, the agreement of model-predicted present-day cloud parameters with satellite measurements is improved compared to using diagnosed N{sub d}. The simulations with pre-industrial and present-day aerosols show that the combined first and second indirect effects of anthropogenic sulfate and organic aerosols give rise to a global annual mean flux change of -1.8 W m{sup -2} consisting of -2.0 W m{sup -2} in shortwave and 0.2 W m{sup -2} in longwave, as model response alters cloud field, and subsequently longwave radiation. Liquid water path (LWP) and total cloud amount increase by 19% and 0.6%, respectively. Largely owing to high sulfate concentrations from fossil fuel burning, the Northern Hemisphere mid-latitude land and oceans experience strong cooling. So does the tropical land which is dominated by biomass burning organic aerosol. The Northern/Southern Hemisphere and land/ocean ratios are 3.1 and 1.4, respectively. The calculated annual zonal mean flux changes are determined to be statistically significant, exceeding the model's natural

  5. Requirements for UML and OWL Integration Tool for User Data Consistency Modeling and Testing

    DEFF Research Database (Denmark)

    Nytun, J. P.; Jensen, Christian Søndergaard; Oleshchuk, V. A.

    2003-01-01

    . In this paper we analyze requirements for a tool that support integration of UML models and ontologies written in languages like the W3C Web Ontology Language (OWL). The tool can be used in the following way: after loading two legacy models into the tool, the tool user connects them by inserting modeling...

  6. Using open sidewalls for modelling self-consistent lithosphere subduction dynamics

    NARCIS (Netherlands)

    Chertova, M.V.; Geenen, T.; van den Berg, A.; Spakman, W.

    2012-01-01

    Subduction modelling in regional model domains, in 2-D or 3-D, is commonly performed using closed (impermeable) vertical boundaries. Here we investigate the merits of using open boundaries for 2-D modelling of lithosphere subduction. Our experiments are focused on using open and closed (free

  7. Scale and Contour: Two Components of a Theory of Memory for Melodies.

    Science.gov (United States)

    Dowling, W. Jay

    1978-01-01

    The author concentrates on two components of memory which contribute to the reproduction and recognition of melodies, namely, melodic contour and musical scale. A new experiment is reported that shows the interdependence of both components. (Author/RK)

  8. Laser controlling chaotic region of a two-component Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    Boli Xia; Wenhua Hai

    2005-01-01

    @@ For a weakly and periodically driven two-component Bose-Einstein condensate (BEC) the Melnikov chaotic solution and boundedness conditions are derived from a direct perturbation theory that leads to the chaotic regions in the parameter space.

  9. Two component injection moulding: an interface quality and bond strength dilemma

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2008-01-01

    Two component injection moulding is a special branch of injection moulding where two different polymers are combined in to a single part to exploit the different material properties in the final product. Considering the technical and economical importance of the process, this paper investigates...... on quality parameters of the two component parts. Most engineering applications of two component injection moulding calls for high bond strength between the two polymers, on the other hand a sharp and well-defined interface between the two polymers are required for applications like selective metallization...... conditions for a sharp and well-defined interface are exactly the opposite of what is congenial for higher bond strength. So in the production of two component injection moulded parts, there is a compromise to make between the interface quality and the bond strength of the two polymers. Also the injection...

  10. Crystallographic characterization of a multidomain histidine protein kinase from an essential two-component regulatory system

    OpenAIRE

    ZHAO, Haiyan; Tang, Liang

    2009-01-01

    The multidomain cytoplasmic portion of the histidine protein kinase from an essential two-component signal transduction system has been crystallized and X-ray data have been collected to 2.8 Å resolution.

  11. Pedagogical Approaches Used by Faculty in Holland's Model Environments: The Role of Environmental Consistency

    Science.gov (United States)

    Smart, John C.; Ethington, Corinna A.; Umbach, Paul D.

    2009-01-01

    This study examines the extent to which faculty members in the disparate academic environments of Holland's theory devote different amounts of time in their classes to alternative pedagogical approaches and whether such differences are comparable for those in "consistent" and "inconsistent" environments. The findings show wide variations in the…

  12. Self-consistent tight-binding model of B and N doping in graphene

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Pedersen, Jesper Goor

    2013-01-01

    Boron and nitrogen substitutional impurities in graphene are analyzed using a self-consistent tight-binding approach. An analytical result for the impurity Green's function is derived taking broken electron-hole symmetry into account and validated by comparison to numerical diagonalization...

  13. Pedagogical Approaches Used by Faculty in Holland's Model Environments: The Role of Environmental Consistency

    Science.gov (United States)

    Smart, John C.; Ethington, Corinna A.; Umbach, Paul D.

    2009-01-01

    This study examines the extent to which faculty members in the disparate academic environments of Holland's theory devote different amounts of time in their classes to alternative pedagogical approaches and whether such differences are comparable for those in "consistent" and "inconsistent" environments. The findings show wide variations in the…

  14. Achieving consistent multiple daily low-dose Bacillus anthracis spore inhalation exposures in the rabbit model

    Directory of Open Access Journals (Sweden)

    Roy E Barnewall

    2012-06-01

    Full Text Available Repeated low-level exposures to Bacillus anthracis could occur before or after the remediation of an environmental release. This is especially true for persistent agents such as Bacillus anthracis spores, the causative agent of anthrax. Studies were conducted to examine aerosol methods needed for consistent daily low aerosol concentrations to deliver a low-dose (less than 106 colony forming units (CFU of B. anthracis spores and included a pilot feasibility characterization study, acute exposure study, and a multiple fifteen day exposure study. This manuscript focuses on the state-of-the-science aerosol methodologies used to generate and aerosolize consistent daily low aerosol concentrations and resultant low inhalation doses. The pilot feasibility characterization study determined that the aerosol system was consistent and capable of producing very low aerosol concentrations. In the acute, single day exposure experiment, targeted inhaled doses of 1 x 102, 1 x 103, 1 x 104, and 1 x 105 CFU were used. In the multiple daily exposure experiment, rabbits were exposed multiple days to targeted inhaled doses of 1 x 102, 1 x 103, and 1 x 104 CFU. In all studies, targeted inhaled doses remained fairly consistent from rabbit to rabbit and day to day. The aerosol system produced aerosolized spores within the optimal mass median aerodynamic diameter particle size range to reach deep lung alveoli. Consistency of the inhaled dose was aided by monitoring and recording respiratory parameters during the exposure with real-time plethysmography. Overall, the presented results show that the animal aerosol system was stable and highly reproducible between different studies and multiple exposure days.

  15. Photoisomerization-induced morphology and transparency transition in an azobenzene based two-component organogel system.

    Science.gov (United States)

    Cao, Xinhua; Liu, Xue; Chen, Liming; Mao, Yueyuan; Lan, Haichuang; Yi, Tao

    2015-11-15

    A two-component gel containing long chain alkylated gallic acid (GA) and photochromic phenazopyridine (PAP) was prepared. The gel was thoroughly characterized by UV-visible and IR spectra, SEM and POM images, XRD diffraction and dynamic oscillatory measurements. The structure and transparency of the two-component gel can be reversibly changed by alternative UV light irradiation and warming in the palm of the hand. This kind of soft material has potential application in upscale surface functional materials.

  16. Competitive Adsorption of a Two-Component Gas on a Deformable Adsorbent

    OpenAIRE

    Usenko, A. S.

    2013-01-01

    We investigate the competitive adsorption of a two-component gas on the surface of an adsorbent whose adsorption properties vary in adsorption due to the adsorbent deformation. The essential difference of adsorption isotherms for a deformable adsorbent both from the classical Langmuir adsorption isotherms of a two-component gas and from the adsorption isotherms of a one-component gas taking into account variations in adsorption properties of the adsorbent in adsorption is obtained. We establi...

  17. Evolution and phyletic distribution of two-component signal transduction systems

    OpenAIRE

    Wuichet, Kristin; Cantwell, Brian J.; Zhulin, Igor B.

    2010-01-01

    Two-component signal transduction systems are abundant in prokaryotes. They enable cells to adjust multiple cellular functions in response to changing environmental conditions. These systems are also found, although in much smaller numbers, in lower eukaryotes and plants, where they appear to control a few very specific functions. Two-component systems have evolved in Bacteria from much simpler one-component systems bringing about the benefit of extracellular versus intracellular sensing. We ...

  18. Variational derivation of two-component Camassa-Holm shallow water system

    CERN Document Server

    Ionescu-Kruse, Delia

    2012-01-01

    By a variational approach in the Lagrangian formalism, we derive the nonlinear integrable two-component Camassa-Holm system (1). We show that the two-component Camassa-Holm system (1) with the plus sign arises as an approximation to the Euler equations of hydrodynamics for propagation of irrotational shallow water waves over a flat bed. The Lagrangian used in the variational derivation is not a metric.

  19. Two-component mediated peroxide sensing and signal transduction in fission yeast.

    Science.gov (United States)

    Quinn, Janet; Malakasi, Panagiota; Smith, Deborah A; Cheetham, Jill; Buck, Vicky; Millar, Jonathan B A; Morgan, Brian A

    2011-07-01

    Two-component related proteins play a major role in regulating the oxidative stress response in the fission yeast, Schizosaccharomyces pombe. For example, the peroxide-sensing Mak2 and Mak3 histidine kinases regulate H(2)O(2)-induced activation of the Sty1 stress-activated protein kinase pathway, and the Skn7-related response regulator transcription factor, Prr1, is essential for activation of the core oxidative stress response genes. Here, we investigate the mechanism by which the S. pombe two-component system senses H(2)O(2), and the potential role of two-component signaling in the regulation of Prr1. Significantly, we demonstrate that PAS and GAF domains present in the Mak2 histidine kinase are essential for redox-sensing and activation of Sty1. In addition, we find that Prr1 is required for the transcriptional response to a wide range of H(2)O(2) concentrations and, furthermore, that two-component regulation of Prr1 is specifically required for the response of cells to high levels of H(2)O(2). Significantly, this provides the first demonstration that the conserved two-component phosphorylation site on Skn7-related proteins influences resistance to oxidative stress and oxidative stress-induced gene expression. Collectively, these data provide new insights into the two-component mediated sensing and signaling mechanisms underlying the response of S. pombe to oxidative stress.

  20. A Delay Model of Multiple-Valued Logic Circuits Consisting of Min, Max, and Literal Operations

    Science.gov (United States)

    Takagi, Noboru

    Delay models for binary logic circuits have been proposed and clarified their mathematical properties. Kleene's ternary logic is one of the simplest delay models to express transient behavior of binary logic circuits. Goto first applied Kleene's ternary logic to hazard detection of binary logic circuits in 1948. Besides Kleene's ternary logic, there are many delay models of binary logic circuits, Lewis's 5-valued logic etc. On the other hand, multiple-valued logic circuits recently play an important role for realizing digital circuits. This is because, for example, they can reduce the size of a chip dramatically. Though multiple-valued logic circuits become more important, there are few discussions on delay models of multiple-valued logic circuits. Then, in this paper, we introduce a delay model of multiple-valued logic circuits, which are constructed by Min, Max, and Literal operations. We then show some of the mathematical properties of our delay model.

  1. Physically-consistent wall boundary conditions for the k-ω turbulence model

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Dixen, Martin; Jacobsen, Niels Gjøl

    2010-01-01

    A model solving Reynolds-averaged Navier–Stokes equations, coupled with k-v turbulence closure, is used to simulate steady channel flow on both hydraulically smooth and rough beds. Novel experimental data are used as model validation, with k measured directly from all three components of the fluc......A model solving Reynolds-averaged Navier–Stokes equations, coupled with k-v turbulence closure, is used to simulate steady channel flow on both hydraulically smooth and rough beds. Novel experimental data are used as model validation, with k measured directly from all three components...

  2. Extending the entry consistency model to enable efficient visualization for code-coupling grid applications

    OpenAIRE

    Antoniu, Gabriel; Cudennec, Loïc; Monnet, Sébastien

    2006-01-01

    This paper addresses the problem of efficient visualization of shared data within code coupling grid applications. These applications are structured as a set of distributed, autonomous, weakly-coupled codes. We focus on the case where the codes are able to interact using the abstraction of a shared data space. We propose an efficient visualization scheme by adapting the mechanisms used to maintain the data consistency. We introduce a new operation called relaxed read, as an extension to the e...

  3. Consistent dust and gas models for protoplanetary disks. I. Disk shape, dust settling, opacities, and PAHs

    NARCIS (Netherlands)

    Woitke, P.; Min, M.; Pinte, C.; Thi, W. -F; Kamp, I.; Rab, C.; Anthonioz, F.; Antonellini, S.; Baldovin-Saavedra, C.; Carmona, A.; Dominik, C.; Dionatos, O.; Greaves, J.; Güdel, M.; Ilee, J. D.; Liebhart, A.; Ménard, F.; Rigon, L.; Waters, L. B. F. M.; Aresu, G.; Meijerink, R.; Spaans, M.

    2016-01-01

    We propose a set of standard assumptions for the modelling of Class II and III protoplanetary disks, which includes detailed continuum radiative transfer, thermo-chemical modelling of gas and ice, and line radiative transfer from optical to cm wavelengths. The first paper of this series focuses on

  4. Hydrological hysteresis and its value for assessing process consistency in catchment conceptual models

    Science.gov (United States)

    O. Fovet; L. Ruiz; M. Hrachowitz; M. Faucheux; C. Gascuel-Odoux

    2015-01-01

    While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system-internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is...

  5. Vertical Equating: An Empirical Study of the Consistency of Thurstone and Rasch Model Approaches.

    Science.gov (United States)

    Schratz, Mary K.

    To explore the appropriateness of the Rasch model for the vertical equating of a multi-level, multi-form achievement test series, both the Rasch model and the traditional Thurstone procedures were applied to the Listening Comprehension subtest scores of the Stanford Achievement Test. Two adjacent levels of these tests were administered in 1981 to…

  6. Consistent dust and gas models for protoplanetary disks. I. Disk shape, dust settling, opacities, and PAHs

    NARCIS (Netherlands)

    Woitke, P.; Min, M.; Pinte, C.; Thi, W. -F; Kamp, I.; Rab, C.; Anthonioz, F.; Antonellini, S.; Baldovin-Saavedra, C.; Carmona, A.; Dominik, C.; Dionatos, O.; Greaves, J.; Güdel, M.; Ilee, J. D.; Liebhart, A.; Ménard, F.; Rigon, L.; Waters, L. B. F. M.; Aresu, G.; Meijerink, R.; Spaans, M.

    2016-01-01

    We propose a set of standard assumptions for the modelling of Class II and III protoplanetary disks, which includes detailed continuum radiative transfer, thermo-chemical modelling of gas and ice, and line radiative transfer from optical to cm wavelengths. The first paper of this series focuses on t

  7. Self-consistent modelling of hot plasmas within non-extensive Tsallis' thermostatistics

    CERN Document Server

    Pain, Jean-Christophe; Gilleron, Franck

    2011-01-01

    A study of the effects of non-extensivity on the modelling of atomic physics in hot dense plasmas is proposed within Tsallis' statistics. The electronic structure of the plasma is calculated through an average-atom model based on the minimization of the non-extensive free energy.

  8. CONSISTENT USE OF THE KALMAN FILTER IN CHEMICAL TRANSPORT MODELS (CTMS) FOR DEDUCING EMISSIONS

    Science.gov (United States)

    Past research has shown that emissions can be deduced using observed concentrations of a chemical, a Chemical Transport Model (CTM), and the Kalman filter in an inverse modeling application. An expression was derived for the relationship between the "observable" (i.e., the con...

  9. A consistent turbulence formulation for the dynamic wake meandering model in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; Veldkamp, Dick; Wedel-Heinen, Jens Jakob

    This thesis describes the further development and validation of the dynamic meandering wake model for simulating the flow field and power production of wind farms operating in the atmospheric boundary layer (ABL). The overall objective of the conducted research is to improve the modelling capabil...... intensity. This power drop is comparable to measurements from the North Hoyle and OWEZ wind farms....

  10. Five new Fast Radio Bursts from the HTRU high latitude survey: first evidence for two-component bursts

    CERN Document Server

    Champion, D J; Kramer, M; Keith, M J; Bailes, M; Barr, E D; Bates, S D; Bhat, N D R; Burgay, M; Burke-Spolaor, S; Flynn, C M L; Jameson, A; Johnston, S; Ng, C; Levin, L; Possenti, A; Stappers, B W; van Straten, W; Tiburzi, C; Lyne, A G

    2015-01-01

    The detection of five new fast radio bursts (FRBs) found in the High Time Resolution Universe high latitude survey is presented. The rate implied is 6$^{+4}_{-3}\\times~10^3$ (95%) FRBs sky$^{-1}$ day$^{-1}$ above a fluence of between 0.13 and 5.9 Jy ms for FRBs between 0.128 and 262 ms in duration. One of these FRBs has a clear two-component profile, each component is similar to the known population of single component FRBs and are separated by 2.4(4) ms. All the FRB components appear to be unresolved following deconvolution with a scattering tail and accounting for intra-channel smearing. The two-component FRB also has the highest dispersion measure (1629 pc cm$^{-3}$) of any FRB to-date. Many of the proposed models to explain FRBs use a single high energy event involving compact objects (such as neutron star mergers) and therefore cannot easily explain a two-component FRB. Models that are based on extreme versions of flaring, pulsing or orbital events however could produce multiple component profiles. The c...

  11. Consistent approach to edge detection using multiscale fuzzy modeling analysis in the human retina

    Directory of Open Access Journals (Sweden)

    Mehdi Salimian

    2012-06-01

    Full Text Available Today, many widely used image processing algorithms based on human visual system have been developed. In this paper a smart edge detection based on modeling the performance of simple and complex cells and also modeling and multi-scale image processing in the primary visual cortex is presented. A way to adjust the parameters of Gabor filters (mathematical models of simple cells And the proposed non-linear threshold response are presented in order to Modeling of simple and complex cells. Also, due to multi-scale modeling analysis conducted in the human retina, in the proposed algorithm, all edges of the small and large structures with high precision are detected and localized. Comparing the results of the proposed method for a reliable database with conventional methods shows the higher Performance (about 4-13% and reliability of the proposed method in the detection and localization of edge.

  12. An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models.

    Science.gov (United States)

    Chindelevitch, Leonid; Trigg, Jason; Regev, Aviv; Berger, Bonnie

    2014-10-07

    Constraint-based models are currently the only methodology that allows the study of metabolism at the whole-genome scale. Flux balance analysis is commonly used to analyse constraint-based models. Curiously, the results of this analysis vary with the software being run, a situation that we show can be remedied by using exact rather than floating-point arithmetic. Here we introduce MONGOOSE, a toolbox for analysing the structure of constraint-based metabolic models in exact arithmetic. We apply MONGOOSE to the analysis of 98 existing metabolic network models and find that the biomass reaction is surprisingly blocked (unable to sustain non-zero flux) in nearly half of them. We propose a principled approach for unblocking these reactions and extend it to the problems of identifying essential and synthetic lethal reactions and minimal media. Our structural insights enable a systematic study of constraint-based metabolic models, yielding a deeper understanding of their possibilities and limitations.

  13. Inclusion of a Direct and Inverse Energy-Consistent Hysteresis Model in Dual Magnetostatic Finite Element Formulations

    OpenAIRE

    Jacques, Kevin; Sabariego, Ruth,; Geuzaine, Christophe; GYSELINCK Johan

    2015-01-01

    This paper deals with the implementation of an energy-consistent ferromagnetic hysteresis model in 2D finite element computations. This vector hysteresis model relies on a strong thermodynamic foundation and ensures the closure of minor hysteresis loops. The model accuracy can be increased by controlling the number of intrinsic cell components while parameters can be easily fitted on common material measurements. Here, the native h-based material model is inverted using the Newton-Raphson met...

  14. Towards Automatic Validation and Healing of Citygml Models for Geometric and Semantic Consistency

    Science.gov (United States)

    Alam, N.; Wagner, D.; Wewetzer, M.; von Falkenhausen, J.; Coors, V.; Pries, M.

    2013-09-01

    A steadily growing number of application fields for large 3D city models have emerged in recent years. Like in many other domains, data quality is recognized as a key factor for successful business. Quality management is mandatory in the production chain nowadays. Automated domain-specific tools are widely used for validation of business-critical data but still common standards defining correct geometric modeling are not precise enough to define a sound base for data validation of 3D city models. Although the workflow for 3D city models is well-established from data acquisition to processing, analysis and visualization, quality management is not yet a standard during this workflow. Processing data sets with unclear specification leads to erroneous results and application defects. We show that this problem persists even if data are standard compliant. Validation results of real-world city models are presented to demonstrate the potential of the approach. A tool to repair the errors detected during the validation process is under development; first results are presented and discussed. The goal is to heal defects of the models automatically and export a corrected CityGML model.

  15. Self-Consistent Model of Magnetospheric Electric Field, Ring Current, Plasmasphere, and Electromagnetic Ion Cyclotron Waves: Initial Results

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.; Ridley, A. J.

    2009-01-01

    Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.

  16. Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas.

    Science.gov (United States)

    Schneider, A S; Hughto, J; Horowitz, C J; Berry, D K

    2012-06-01

    We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase molecular dynamics simulations. We identify liquid, solid, and interface regions using a bond angle metric. To study finite-size effects, we perform 27,648- and 55,296-ion simulations. To help monitor nonequilibrium effects, we calculate diffusion constants D(i). For the carbon-oxygen system we find that D(O) for oxygen ions in the solid is much smaller than D(C) for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite-size and nonequilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominantly selenium crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably because of electron screening effects.

  17. Vortices with scalar condensates in two-component Ginzburg-Landau systems

    CERN Document Server

    Forgacs, Peter

    2016-01-01

    In a class of two-component Ginzburg-Landau models (TCGL) with a U(1)$\\times$U(1) symmetric potential, vortices with a condensate at their core may have significantly lower energies than the Abrikosov-Nielsen-Olesen (ANO) ones. On the example of liquid metallic hydrogen (LMH) above the critical temperature for protons we show that the ANO vortices become unstable against core-condensation, while condensate-core (CC) vortices are stable. For LMH the ratio of the masses of the two types of condensates, $M=m_2/m_1$ is large, and then as a consequence the energy per flux quantum of the vortices, $E_n/n$ becomes a non-monotonous function of the number of flux quanta, $n$. This leads to yet another manifestation of neither type 1 nor type 2, (type 1.5) superconductivity: superconducting and normal domains coexist while various "giant" vortices form. We note that LMH provides a particularly clean example of type 1.5 state as the interband coupling between electronic and protonic Cooper-pairs is forbidden.

  18. Osmotic Second Virial Coefficients of Aqueous Solutions from Two-Component Equations of State.

    Science.gov (United States)

    Cerdeiriña, Claudio A; Widom, B

    2016-12-29

    Osmotic second virial coefficients in dilute aqueous solutions of small nonpolar solutes are calculated from three different two-component equations of state. The solutes are five noble gases, four diatomics, and six hydrocarbons in the range C1-C4. The equations of state are modified versions of the van der Waals, Redlich-Kwong, and Peng-Robinson equations, with an added hydrogen-bonding term for the solvent water. The parameters in the resulting equations of state are assigned so as to reproduce the experimental values and temperature dependence of the density, vapor pressure, and compressibility of the solvent, the gas-phase second virial coefficient of the pure solute, the solubility and partial molecular volume of the solute, and earlier estimates of the solutes' molecular radii. For all 15 solutes, the calculations are done for 298.15 K, whereas for CH4, C2H6, and C3H8 in particular, they are also done as functions of temperature over the full range 278.15-348.15 K. The calculated osmotic virial coefficients are compared with earlier calculations of these coefficients for these solutes and also with the results derived from earlier computer simulations of model aqueous solutions of methane. They are also compared with the experimental gas-phase second virial coefficients of the pure gaseous solutes to determine the effect the mediation of the solvent has on the resulting solute-solute interactions in the solution.

  19. A consistent turbulence formulation for the dynamic wake meandering model in the atmospheric boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Keck, R.-E.

    2013-07-15

    This thesis describes the further development and validation of the dynamic meandering wake model for simulating the flow field and power production of wind farms operating in the atmospheric boundary layer (ABL). The overall objective of the conducted research is to improve the modelling capability of the dynamics wake meandering model to a level where it is sufficiently mature to be applied in industrial applications and for an augmentation of the IEC-standard for wind turbine wake modelling. Based on a comparison of capabilities of the dynamic wake meandering model to the requirement of the wind industry, four areas were identified as high prioritizations for further research: 1. the turbulence distribution in a single wake. 2. multiple wake deficits and build-up of turbulence over a row of turbines. 3. the effect of the atmospheric boundary layer on wake turbulence and wake deficit evolution. 4. atmospheric stability effects on wake deficit evolution and meandering. The conducted research is to a large extent based on detailed wake investigations and reference data generated through computational fluid dynamics simulations, where the wind turbine rotor has been represented by an actuator line model. As a consequence, part of the research also targets the performance of the actuator line model when generating wind turbine wakes in the atmospheric boundary layer. Highlights of the conducted research: 1. A description is given for using the dynamic wake meandering model as a standalone flow-solver for the velocity and turbulence distribution, and power production in a wind farm. The performance of the standalone implementation is validated against field data, higher-order computational fluid dynamics models, as well as the most common engineering wake models in the wind industry. 2. The EllipSys3D actuator line model, including the synthetic methods used to model atmospheric boundary layer shear and turbulence, is verified for modelling the evolution of wind

  20. The Twente lower extremity model : consistent dynamic simulation of the human locomotor apparatus

    OpenAIRE

    Klein Horsman, Martijn Dirk

    2007-01-01

    Orthopedic interventions such as tendon transfers have shown to be successful in the treatment of gait disorders. Still, in many cases dysfunctions remained or worsened. To assist clinicians, an interactive tool will be useful that allows evaluation of if-then scenarios with respect to treatment methods. Comprehensive musculoskeletal models have shown a high potential to serve as such a tool. By varying anatomical model parameters, alterations in anatomy due to surgery can be implemented. Inv...