WorldWideScience

Sample records for two-component composite crystal

  1. Quantum melting of two-component Rydberg crystals

    CERN Document Server

    Lan, Zhihao; Lesanovsky, Igor

    2016-01-01

    We investigate the quantum melting of one dimensional crystals that are realized in an atomic lattice in which ground state atoms are laser excited to two Rydberg states. We focus on a regime where both, intra- and inter-state density-density interactions as well as coherent exchange interactions contribute. We determine stable crystalline phases in the classical limit and explore their melting under quantum fluctuations introduced by the excitation laser as well as two-body exchange. We find that quantum fluctuations introduced by the laser give rise to a devil's staircase structure which one might associate with transitions in the classical limit. The melting through exchange interactions is shown to also proceed in a step-like fashion, in case of mesoscopic crystals, due to the proliferation of Rydberg spinwaves.

  2. Instabilities on crystal surfaces: The two-component body-centered solid-on-solid model

    NARCIS (Netherlands)

    Carlon, E.; van Beijeren, H.; Mazzeo, G.

    1996-01-01

    The free energy of crystal surfaces that can be described by the two-component body-centered solid-on-solid model has been calculated in a mean-field approximation. The system may model ionic crystals with a bcc lattice structure (for instance CsCl). Crossings between steps are energetically favored

  3. PREPARATION OF PUZZOLANA ACTIVE TWO COMPONENT COMPOSITE FOR LATENT HEAT STORAGE

    Directory of Open Access Journals (Sweden)

    Jan Fort

    2016-10-01

    Full Text Available Application of Phase Change Materials (PCMs represents promising way for an increase of energy efficiency of industrial devices, reduction of energy demands for heating and cooling, waste heat recovery, solar energy storage and smart control of buildings interior climate. In this paper, the potential of diatomite as the bearer for the shape stable PCM was studied in order to develop material applicable in the mix composition of composite materials. Considering availability, endurance and compatibility of diatomite with the cement and lime based materials, preparation of diatomite/wax composite brings pozzolana active PCM with great promises at a reasonable cost. Prepared composite was analysed in detail using laser diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. Also the pozzolanic activity was measured. The prepared two components composite exhibits high latent heat storage and particle size distribution compatible with cement and hydrated lime.

  4. Disentangling the secondary relaxations in the orientationally disordered mixed crystals: cycloheptanol + cyclooctanol two-component system

    OpenAIRE

    2010-01-01

    The dynamics of the pure compounds and mixed crystals formed between cycloheptanol (cC7-ol) and cyclooctanol (cC8-ol) has been studied by means of broadband dielectric spectroscopy at temperatures near and above the orientational glass transition temperature. Both compounds are known to display at least one orientationally disordered (OD) phase of simple cubic symmetry, and within this phase, a continuous formation of mixed crystals was demonstrated in the past (Rute, M. A. et al. J. Phys. Ch...

  5. Disentangling the secondary relaxations in the orientationally disordered mixed crystals: cycloheptanol + cyclooctanol two-component system.

    Science.gov (United States)

    Martínez-García, Julio C; Tamarit, Josep Ll; Pardo, Luis C; Barrio, María; Rzoska, Sylwester J; Droz-Rzoska, Aleksandra

    2010-05-13

    The dynamics of the pure compounds and mixed crystals formed between cycloheptanol (cC7-ol) and cyclooctanol (cC8-ol) has been studied by means of broadband dielectric spectroscopy at temperatures near and above the orientational glass transition temperature. Both compounds are known to display at least one orientationally disordered (OD) phase of simple cubic symmetry, and within this phase, a continuous formation of mixed crystals was demonstrated in the past (Rute, M. A. et al. J. Phys. Chem. B 2003, 107, 5914). The dielectric loss spectra of cC7-ol and cC8-ol show, in addition to the well-pronounced alpha-relaxation peaks with a continuous temperature shift (characteristic of the freezing of the molecular dynamics), secondary relaxations (beta and gamma for cC8-ol and gamma for cC7-ol) which are intramolecular in nature. The dynamics of several OD mixed crystals was recently studied (Singh, L. P.; Murthy, S. S. N. J. Phys. Chem. B 2008, 112, 2606), and surprisingly enough one of the secondary relaxations was not evidenced. We show here by means of a careful set of measurements for several mixed crystals and of a detailed analysis procedure the existence of the secondary relaxations for the mixed crystals. The results, moreover, doubtless reinforce the physical origin of each of the secondary relaxations.

  6. Steady-state composition of a two-component gas bubble growing in a liquid solution: self-similar approach

    CERN Document Server

    Gor, G Yu

    2009-01-01

    The paper presents an analytical description of the growth of a two-component bubble in a binary liquid-gas solution. We obtain asymptotic self-similar time dependence of the bubble radius and analytical expressions for the non-steady profiles of dissolved gases around the bubble. We show that the necessary condition for the self-similar regime of bubble growth is the constant, steady-state composition of the bubble. The equation for the steady-state composition is obtained. We reveal the dependence of the steady-state composition on the solubility laws of the bubble components. Besides, the universal, independent from the solubility laws, expressions for the steady-state composition are obtained for the case of strong supersaturations, which are typical for the homogeneous nucleation of a bubble.

  7. A highly efficient white-light-emitting diode based on a two-component polyfluorene/quantum dot composite

    Science.gov (United States)

    Dayneko, S. V.; Samokhvalov, P. S.; Lypenko, D.; Nosova, G. I.; Berezin, I. A.; Yakimanskii, A. V.; Chistyakov, A. A.; Nabiev, I.

    2017-01-01

    Organic light-emitting diodes (OLEDs) are attracting great interest of the scientific community and industry because they can be grown on flexible substrates using relatively simple and inexpensive technologies (solution processes). However, a problem in the fabrication of white OLEDs is that it is difficult to achieve a balance between the intensities of individual emission components in the blue, green, and red spectral regions. In this work, we try to solve this problem by creating a two-component light-emitting diode based on modified polyfluorene (PF-BT), which efficiently emits in the blue-green region, and CdSe/ZnS/CdS/ZnS semiconductor quantum dots emitting in the orange-red region with a fluorescence quantum yield exceeding 90%. By changing the mass ratio of components in the active light-emitting composite within 40-50%, it is possible to transform the diode emission spectrum from cold to warm white light without loss of the diode efficiency. It is very likely that optimization of the morphology of multilayer light-emitting diodes will lead to further improvement of their characteristics.

  8. Two-component spin-coated Ag/CNT composite films based on a silver heterogeneous nucleation mechanism adhesion-enhanced by mechanical interlocking and chemical grafting

    Science.gov (United States)

    Zhang, Yang; Kang, Zhixin; Bessho, Takeshi

    2017-03-01

    In this paper, a new method for the synthesis of silver carbon nanotube (Ag/CNT) composite films as conductive connection units for flexible electronic devices is presented. This method is about a two-component solution process by spin coating with an after-treatment annealing process. In this method, multi-walled carbon nanotubes (MWCNTs) act as the core of silver heterogeneous nucleation, which can be observed and analyzed by a field-emission scanning electron microscope. With the effects of mechanical interlocking, chemical grafting, and annealing, the interfacial adhesive strength between films and PET sheets was enhanced to 12 N cm-1. The tensile strength of the Ag/CNT composite films was observed to increase by 38% by adding 5 g l-1 MWCNTs. In the four-probe method, the resistivity of Ag/CNT-5 declined by 78.2% compared with pristine Ag films. The anti-fatigue performance of the Ag/CNT composite films was monitored by cyclic bending deformation and the results revealed that the growth rate of electrical resistance during the deformation was obviously retarded. As for industrial application, this method provides an efficient low-cost way to prepare Ag/CNT composite films and can be further applied to other coating systems.

  9. Quasiparticle density of states of 2H-NbSe2 single crystals revealed by low-temperature specific heat measurements according to a two-component model

    Institute of Scientific and Technical Information of China (English)

    Yan Jing; Shan Lei; Wang Yue; Xiao Zhi-Li; Wen Hai-Hu

    2008-01-01

    Low-temperature specific heat in a dichalcogenide superconductor 2H-NbSe2 is measured in various magnetic fields. It is found that the specific heat can be described very well by a simple model concerning two components corresponding to vortex normal core and ambient superconducting region, separately. For calculating the specific heat outside the vortex core region, we use the Bardeen-Cooper-Schrieffer (BCS) formalism under the assumption of a narrow distribution of the superconducting gaps. The field-dependent vortex core size in the mixed state of 2H-NbSe2, determined by using this model, can explain the nonlinear field dependence of specific heat coefficient γ(H), which is in good agreement with the previous experimental results and more formal calculations. With the high-temperature specific heat data, we can find that, in the multi-band superconductor 2H-NbSe2, the recovered density of states (or Fermi surface) below Tc under a magnetic field seems not to be gapped again by the charge density wave (CDW) gap, which suggests that the superconducting gap and the CDW gap may open on different Fermi surface sheets.

  10. From high-temperature orientationally disordered mixed crystals to low-temperature complex formation in the two-component system (CH3)3CBr + Cl3CBr.

    Science.gov (United States)

    Barrio, María; Negrier, Philippe; Tamarit, Josep Ll; Mondieig, Denise

    2011-02-24

    The phase diagram of the two-component systems (CH(3))(3)CBr + Cl(3)CBr has been experimentally determined by means of differential scanning calorimetry and X-ray powder diffraction techniques from the low-temperature ordered phases to the liquid state. Before melting, both components have the same orientationally disordered (OD) face-centered cubic (FCC) and rhombohedral (R) phases, and the two-phase equilibria [FCC + L] and [R + FCC] are accounted for by means of the existence of an isomorphic relationship between the OD phases of pure compounds. The thermodynamic assessment of such equilibria enables us to get the excess properties of the involved OD phases and to rationalize the existence of a maximum and a minimum in the [R + FCC] equilibrium on the basis of the contribution of the entropic term in the excess Gibbs energy function. At low temperature, two complexes, (CH(3))(3)CBr:Cl(3)CBr (1:1) and (CH(3))(3)CBr:2Cl(3)CBr (1:2), appear. The structures of 1:1 and 1:2 complexes have been determined to be monoclinic (P2(1)/n, c, Z = 4) and hexagonal (P6(3), Z = 6). Within both "ordered" structures, the Cl(3)CBr entities of the asymmetric unit were found to be disordered so that sites have fractional occupancies of 0.75 and 0.25 for Cl and Br atoms, in the same way that it occurs for the low-temperature monoclinic (C2/c, Z = 32) phase of Cl(3)CBr. Finally, the existence of complexes is connected with the special intermolecular interactions appearing between a methyl group and a halogen, as previously inferred by Calvet et al. [T. Calvet et al. J. Chem. Phys. 1999, 110, 4841].

  11. [Effect of cytokines and stromal cells of adipose tissue on integration of a two-component composite net imlant into biological tissues].

    Science.gov (United States)

    Dubinina, V G; Chetverikov, S G; Luk'ianchuk, O V; Rosha, L G; Sazhienko, V V; Lysenko, M A; Mikhaĭlov, A S; Chetverikov, M S

    2014-02-01

    Morphological changes in biological tissues, surrounding the composite net-like implant, owing large pores "Ultrapro", and also its combination with adipose transplant, fibrin, enriched with thrombocytes, were studied in experiment on 36 adult male rats of a Wistar line. While application of such construction the processes of creation and organization of connective tissue, neoangiogenesis as well as development of a new adipose tissue are improved. As a consequence of increase of concentration of highly active biological substances and regenerative cytokines in combination of the net implant with adipose transplant, containing multipotent stem cells, proliferative activity of all cellular elements, surrounding the net implant, is raising, what predispose its optimal integration into surrounding tissues.

  12. Semiconductor liquid crystal composition and methods for making the same

    Science.gov (United States)

    Alivisatos, A. Paul; Li, Liang-shi

    2005-04-26

    Semiconductor liquid crystal compositions and methods for making such compositions are disclosed. One embodiment of the invention is directed to a liquid crystal composition including a solvent and semiconductor particles in the solvent. The solvent and the semiconductor particles are in an effective amount in the liquid crystal composition to form a liquid crystal phase.

  13. Two component theory and electron magnetic moment

    NARCIS (Netherlands)

    Veltman, M.J.G.

    1998-01-01

    The two-component formulation of quantum electrodynamics is studied. The relation with the usual Dirac formulation is exhibited, and the Feynman rules for the two-component form of the theory are presented in terms of familiar objects. The transformation from the Dirac theory to the two-component th

  14. Two component theory and electron magnetic moment

    NARCIS (Netherlands)

    Veltman, M.J.G.

    1998-01-01

    The two-component formulation of quantum electrodynamics is studied. The relation with the usual Dirac formulation is exhibited, and the Feynman rules for the two-component form of the theory are presented in terms of familiar objects. The transformation from the Dirac theory to the two-component

  15. Two-component Duality and Strings

    CERN Document Server

    Freund, Peter G O

    2007-01-01

    A phenomenologically successful two-component hadronic duality picture led to Veneziano's amplitude, the fundamental first step to string theory. This picture is briefly recalled and its two components are identified as the open strings (mesons and baryons) and closed strings (Pomeron).

  16. Starch composites reinforced by bamboo cellulosic crystals.

    Science.gov (United States)

    Liu, Dagang; Zhong, Tuhua; Chang, Peter R; Li, Kaifu; Wu, Qinglin

    2010-04-01

    Using a method of combined HNO(3)-KClO(3) treatment and sulfuric acid hydrolysis, bamboo cellulose crystals (BCCs) were prepared and used to reinforce glycerol plasticized starch. The structure and morphology of BCCs were investigated using X-ray diffraction, electron microscopy, and solid-state (13)C NMR. Results showed that BCCs were of typical cellulose I structure, and the morphology was dependent on its concentration in the suspension. BCC of 50-100 nm were assembled into leaf nervations at low concentration (i.e. 0.1 wt.% of solids), but congregated into a micro-sized "flower" geometry at high concentration (i.e. 10.0 wt.% of solids). Tensile strength and Young's modulus of the starch/BCC composite films (SBC) were enhanced by the incorporation of the crystals due to reinforcement of BCCs and reduction of water uptake. BCCs at the optimal 8% loading level exhibited a higher reinforcing efficiency for plasticized starch plastic than any other loading level.

  17. Crystallization kinetics of poly(lactic acid)-talc composites

    OpenAIRE

    Battegazzore, Daniele; Bocchini, Sergio; Frache, Alberto

    2011-01-01

    The crystallization kinetics of Poly(lactic acid) / talc composites were determined over a range of 0 wt.% to 15 wt.% of talc. Talc was found to change the crystallization kinetics. The presence of talc increases the crystallization rate and this increase is related to talc concentration and to crystallization temperature. In order to understand the effect of talc and PLA crystallinity on mechanical properties, dynamic mechanical thermal analyses were performed on Poly(lactic acid) / talc com...

  18. Phenocryst compositional diversity as a consequence of degassing induced crystallization

    Science.gov (United States)

    Frey, H. M.; Lange, R. A.

    2006-12-01

    In volcanic arc lavas, compositional diversity in phenocryst populations has commonly been attributed to magma mingling or mixing. However, the amount of dissolved water in the magma appears to have a significant effect on composition of the phenocrysts that crystallize from the melt. Tens of plagioclase and pyroxene phenocrysts were analyzed from six crystal-poor (Tequila in western Mexico. The compositions and phase assemblages in the crystal-poor lavas are remarkably similar to that of the crystal-rich lavas (15-30 vol%) from the main edifice and flank flows of Volcán Tequila. Both lava types have plagioclase phenocrysts that span a wide compositional range, up to 45 mol% anorthite. In the crystal-rich lavas, individual phenocrysts have significant compositional variation, from oscillatory zoning of tens of mol% to relatively homogenous composition cores with a 5-10 um rim of significantly different composition. In contrast, plagioclase in the crystal-poor lavas has compositional variation within the population, but not individual phenocrysts. The plagioclase have little core to rim zoning and remarkable euhedral shapes, irrespective of composition. They are often riddled with melt inclusion channels, which broadly parallel the long axis of the crystal. These textures have been recognized in plagioclase crystallization experiments to be the result of rapid and large degrees of undercooling during crystallization. In the crystal-poor lavas, there is no textural evidence to suggest the phenocrysts were ever out of equilibrium with the host magma, so an alternative to magma mingling/mixing must be considered. The composition of plagioclase is dependent on several parameters, but varies most strongly with H2O content. Because of this relationship, a new plagioclase hygrometer (Lange and Frey, 2006) calibrated on plagioclase compositions from water-saturated experiments in the literature, can be used to determine the dissolved water content in the magma from which

  19. Inhibitors targeting two-component signal transduction.

    Science.gov (United States)

    Watanabe, Takafumi; Okada, Ario; Gotoh, Yasuhiro; Utsumi, Ryutaro

    2008-01-01

    A two-component signal transduction system (TCS) is an attractive target for antibacterial agents. In this chapter, we review the TCS inhibitors developed during the past decade and introduce novel drug discovery systems to isolate the inhibitors of the YycG/YycF system, an essential TCS for bacterial growth, in an effort to develop a new class of antibacterial agents.

  20. Crystallization behavior and glass formation of selected lunar compositions.

    Science.gov (United States)

    Scherer, G.; Hopper, R. W.; Uhlmann, D. R.

    1972-01-01

    The kinetics of crystal growth have been determined over a wide range of temperature, from 800 to 1219 C, for lunar compositions 14259 and 14310. At all temperatures for both compositions the extent of crystal growth is found to be a linear function of time. For both materials, the growth rate versus temperature relations exhibit the form generally found with glass-forming materials. At all temperatures measured, the crystal growth rate of composition 14259 is smaller than that of composition 14310. The maximum growth rate for both compositions occurs at a temperature of about 1120 C. The growth rate data are combined with viscosity data obtained on the same compositions to construct the reduced growth rate versus undercooling relations.

  1. Two-component Abelian sandpile models.

    Science.gov (United States)

    Alcaraz, F C; Pyatov, P; Rittenberg, V

    2009-04-01

    In one-component Abelian sandpile models, the toppling probabilities are independent quantities. This is not the case in multicomponent models. The condition of associativity of the underlying Abelian algebras imposes nonlinear relations among the toppling probabilities. These relations are derived for the case of two-component quadratic Abelian algebras. We show that Abelian sandpile models with two conservation laws have only trivial avalanches.

  2. Crystallization kinetics of poly(lactic acid-talc composites

    Directory of Open Access Journals (Sweden)

    2011-10-01

    Full Text Available The crystallization kinetics of poly(lactic acid / talc composites were determined over a range of 0 to 15 wt% of talc. Talc was found to change the crystallization kinetics. The presence of talc increases the crystallization rate and this increase is related to talc concentration and to crystallization temperature. In order to understand the effect of talc and PLA crystallinity on mechanical properties, dynamic mechanical thermal analyses were performed on poly(lactic acid / talc composites before and after an annealing process. It was demonstrated that the presence of crystals improves thermomechanical properties but in order to achieve good results at high temperatures the reinforcing effect of a filler such as talc is necessary.

  3. Crystallographic characterization of a multidomain histidine protein kinase from an essential two-component regulatory system

    OpenAIRE

    ZHAO, Haiyan; Tang, Liang

    2009-01-01

    The multidomain cytoplasmic portion of the histidine protein kinase from an essential two-component signal transduction system has been crystallized and X-ray data have been collected to 2.8 Å resolution.

  4. Compositional Segregation in Unidirectionally Solidified Solid Solution Crystals

    Science.gov (United States)

    Wang, J. C.

    1983-01-01

    A computer program was developed to model compositional segregation in unidrectionally solidified solid-solution-semiconducting crystals. The program takes into account the variations of the interface segregation constant and solidification rate with composition. Calculations are performed for the HgCdTe solid solution system that is compared with experimental data.

  5. Two-component model of solar plages

    Institute of Scientific and Technical Information of China (English)

    LI; Jianping(李建平); DING; Mingde(丁明德); FANG; Cheng(方成)

    2002-01-01

    By use of the 2-m Mcmath-Pierce telescope at Kitt Peak, the high-quality spectra of a plage with moderate brightness near the center of solar disk were obtained. The data include seven spectral lines, which are Hα, Hβ, CaII H and K lines and the infrared triplet. With the consideration of fine structures of solar plages, a two-component atmospheric model is constructed by keeping the cool component to be the quiet atmosphere. Three cases of the hot component are given for different filling factors where the temperature and density distribution are adjusted in order to reproduce the seven observed spectral profiles. We also briefly discuss the influence of the column density at the base of the corona, m0, and the macro-turbulent velocity on the required filling factor and computed profiles. The two-component model is compared with precious one-component semi-empirical models. The limitation of the model is pointed out and further improvement is indicated.

  6. Two Component Signal Transduction in Desulfovibrio Species

    Energy Technology Data Exchange (ETDEWEB)

    Luning, Eric; Rajeev, Lara; Ray, Jayashree; Mukhopadhyay, Aindrila

    2010-05-17

    The environmentally relevant Desulfovibrio species are sulfate-reducing bacteria that are of interest in the bioremediation of heavy metal contaminated water. Among these, the genome of D. vulgaris Hildenborough encodes a large number of two component systems consisting of 72 putative response regulators (RR) and 64 putative histidinekinases (HK), the majority of which are uncharacterized. We classified the D. vulgaris Hildenborough RRs based on their output domains and compared the distribution of RRs in other sequenced Desulfovibrio species. We have successfully purified most RRs and several HKs as His-tagged proteins. We performed phospho-transfer experiments to verify relationships between cognate pairs of HK and RR, and we have also mapped a few non-cognate HK-RR pairs. Presented here are our discoveries from the Desulfovibrio RR categorization and results from the in vitro studies using purified His tagged D. vulgaris HKs and RRs.

  7. Two-Component Description for Relativistic Fermions

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-Qi; SANG Wen-Long; YANG Lan-Fei

    2009-01-01

    We propose a two-component form to describe massive relativistic fermions in gauge theories. Relations between the Green's functions in this form and those in the conventional four-component form are derived. It is shown that the S-matrix elements in both forms are exactly the same. The description of the fermion in the new form simplifies significantly the γ-matrix algebra in the four-component form. In particular, in perturbative calculations the propagator of the fermion is a scalar function. As examples, we use this form to reproduce the relativistic spectrum of hydrodron atom, the S-matrix of e+ e-→μ+ μ- and QED one-loop vacuum polarization of photon.

  8. Single crystal piezoelectric composites for advanced NDT ultrasound

    Science.gov (United States)

    Jiang, Xiaoning; Snook, Kevin; Hackenberger, Wesley S.; Geng, Xuecang

    2007-04-01

    In this paper, the design, fabrication and characterization of PMN-PT single crystal/epoxy composites are reported for NDT ultrasound transducers. Specifically, 1-3 PMN-PT/epoxy composites with center frequencies of 5 MHz - 40 MHz were designed and fabricated using either the dice-and-fill method or a photolithography based micromachining process. The measured electromechanical coefficients for composites with frequency of 5 MHz - 15 MHz were about 0.78-0.83, and the coupling coefficients for composites with frequencies of 25 MHz- 40 MHz were about 0.71-0.72. The dielectric loss remains low (advanced NDT ultrasound applications.

  9. Budding Transition of Asymmetric Two-component Lipid Domains

    CERN Document Server

    Wolff, Jean; Andelman, David

    2016-01-01

    We propose a model that accounts for the budding transition of asymmetric two-component lipid domains, where the two monolayers (leaflets) have different average compositions controlled by independent chemical potentials. Assuming a coupling between the local curvature and local lipid composition in each of the leaflets, we discuss the morphology and thermodynamic behavior of asymmetric lipid domains. The membrane free-energy contains three contributions: the bending energy, the line tension, and a Landau free-energy for a lateral phase separation. Within a mean-field treatment, we obtain various phase diagrams containing fully budded, dimpled, and flat states as a function of the two leaflet compositions. The global phase behavior is analyzed, and depending on system parameters, the phase diagrams include one-phase, two-phase and three-phase regions. In particular, we predict various phase coexistence regions between different morphologies of domains, which may be observed in multi-component membranes or ves...

  10. Tobacco two-component gene NTHK2

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By using a previously isolated tobacco two- component gene NTHK1 as a probe, we screened a cDNA library and obtained a homologous gene designated NTHK2. Sequencing analysis revealed that NTHK2 encoded a putative ethylene receptor homolog and contained a histidine kinase domain and a receiver domain. In the histidine kinase domain, the histidine at the phosphorylation site was replaced by an asparagine. Southern analysis indicated that NTHK2 was present at low copies in tobacco genome. The expression of NTHK2 was studied using a competitive RT-PCR method. It was found that, in young flower buds, NTHK2 was expressed abundantly, while in other organs or tissues, it was expressed in a low level. When leaf was subjected to wounding (cutting) treatment, NTHK2 expression was increased. When tobacco seedlings were stressed with PEG and heat shock, NTHK2 transcription was also enhanced. Other treatments showed little effects. These results indicated that NTHK2 might be involved in the developmental processes and in plant responses to some environmental stresses.

  11. Temperature- and moisture-induced crystallization of amorphous lactose in composite particles with sodium alginate prepared by spray-drying.

    Science.gov (United States)

    Takeuchi, H; Yasuji, T; Yamamoto, H; Kawashima, Y

    2000-01-01

    The purpose of this study was to investigate the temperature- and moisture-induced crystallization of amorphous lactose in the composite particles prepared by spray-drying an aqueous solution of crystalline lactose and sodium alginate. The temperature-induced crystallization of amorphous lactose in the composite particles was suppressed by increasing the amount of sodium alginate in the particles. The stabilizing effect of sodium alginate on amorphous lactose in the composite particles was greater than that in physical mixtures having the same formulating ratios. The improved stability of amorphous lactose in the composite particles was attributed to an increase in the glass transition temperature (Tg) of the mixture. Moisture-induced crystallization of amorphous lactose was also retarded by increasing the amount of sodium alginate in composite particles. Although the Tg of the mixture was reduced by increasing the water content of the particles, the values were higher than that of 100% amorphous lactose when particles of the same water content were compared. The change in the Tg of the composite particles with increasing water content was interpreted as involving three components of the Gordon-Taylor equation. In the amorphous lactose-sodium alginate systems, the Tg values of the composite particles containing sodium alginate were higher than the theoretical line predicted by two components of the Gordon-Taylor equation. These results suggested that there was a specific interaction between the sodium alginate and lactose molecules. This specific interaction was suggested by the fact that only very little amorphous lactose was measured in the spray-dried composite particles stored under humid conditions using differential scanning calorimetry. This molecular interaction may also be partly responsible for the suppression of both the temperature- and moisture-induced crystallization of amorphous lactose in the composite particles.

  12. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    Science.gov (United States)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  13. Nanomechanics of cellulose crystals and cellulose-based polymer composites

    Science.gov (United States)

    Pakzad, Anahita

    Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: - Dispersion quality and macro-mechanical properties - Nanomechanical properties at the surface and tensile properties - CNC diameter and interphase thickness. Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on

  14. The mechanism of signal transduction by two-component systems.

    Science.gov (United States)

    Casino, Patricia; Rubio, Vicente; Marina, Alberto

    2010-12-01

    Two-component systems, composed of a homodimeric histidine kinase (HK) and a response regulator (RR), are major signal transduction devices in bacteria. Typically the signal triggers HK autophosphorylation at one His residue, followed by phosphoryl transfer from the phospho-His to an Asp residue in the RR. Signal extinction frequently involves phospho-RR dephosphorylation by a phosphatase activity of the HK. Our understanding of these reactions and of the determinants of partner specificity among HK-RR couples has been greatly increased by recent crystal structures and biochemical experiments on HK-RR complexes. Cis-autophosphorylation (one subunit phosphorylates itself) occurs in some HKs while trans-autophosphorylation takes place in others. We review and integrate this new information, discuss the mechanism of the three reactions and propose a model for transmembrane signaling by these systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. A composite hydrogels-based photonic crystal multi-sensor

    Science.gov (United States)

    Chen, Cheng; Zhu, Zhigang; Zhu, Xiangrong; Yu, Wei; Liu, Mingju; Ge, Qiaoqiao; Shih, Wei-Heng

    2015-04-01

    A facile route to prepare stimuli-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) gelated crystalline colloidal array photonic crystal material was developed. PVA was physically gelated by utilizing an ethanol-assisted method, the resulting hydrogel/crystal composite film was then functionalized with PAA to form an interpenetrating hydrogel film. This sensor film is able to efficiently diffract the visible light and rapidly respond to various environmental stimuli such as solvent, pH and strain, and the accompanying structural color shift can be repeatedly changed and easily distinguished by naked eye.

  16. Crystallization and thermal properties of Polylactide/Palygorskite composites

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2014-06-01

    Full Text Available properties, clay John Wiley & Sons, Inc. Journal of Applied Polymer Science For Peer Review 808x381mm (120 x 120 DPI) Page 1 of 34 John Wiley & Sons, Inc. Journal of Applied Polymer Science For Peer Review Table 1 Films Tg/°C Tc/°C ∆Hm.../Paly (2 wt.%) composite. This decrease in Tcc is an indication of faster crystallization of PLA under the influence of Paly nanoparticles. Sabzi et al.40 recently reported similar results on PLA/ sepiolite composites and found that sepiolite...

  17. Composite Fermion Theory for the High Field Wigner Crystal State

    Science.gov (United States)

    Narevich, Romanas; Murthy, Ganpathy; Fertig, Herbert

    2001-03-01

    The low filling fraction Quantum Hall Effect is reexamined using the hamiltonian composite fermion theory developed by Shankar and Murthy(R. Shankar and G. Murthy, Phys. Rev. Lett. 79), 4437 (1997). We address the experiment by Jiang et. al.(H. W. Jiang et. al., Phys. Rev. B 44), 8107 (1991) where the insulating phase surrounding the ν=1/5 quantum liquid was observed and its activation energies (gaps) measured. Previous studies either found gaps that were off by few orders of magnitude (Hartree-Fock calculations of the electronic Wigner crystal(D. Yoshioka and H. Fukuyama, J. Phys. Soc. Japan 47), 394 (1979)) or were unable to calculate them because of the computational complexity (Monte-Carlo studies of the correlated crystal(H. Yi and H. A. Fertig, Phys. Rev. B 58), 4019 (1998)). We use the Hartree-Fock approximation for the periodic density state of composite fermions and find gaps that have a correct order of magnitude and reproduce the experimental dependence on the filling factor. We also report the results of the shear modulus calculation relevant for the collective pinning of the crystal.

  18. Heat flow description during crystallization process of cast dispersive composites

    Directory of Open Access Journals (Sweden)

    Cholewa M.

    2007-01-01

    Full Text Available The aim of this work was to show possibilities of numerical simulation software, based on heat transfer model, commonly used in foundry industry in cast composite properties engineering. The main restriction in most of used software systems is lack of heat transfer, which may occur at composite creation. In this work the reinforcing particle morphology an size were expressed by one quantity – morphological modulus Mm and were examined for influence on heat transfer and conductivity up to the Newton’s and Fourier’s laws. The main restrictions for using Fourier’s model based software for composite engineering are shown. The way for crystallization control was presented including influence of morphology, transition zone and thermo-physical properties of components. Proposed methodology can be used for cast composite properties engineering in cases, where relative motion of components is negligible. In other cases heat transfer coefficient is justified only if the software used is based on Fourier’s model and the source code is accessible. Proposed assumptions create possibility for components selection verification in terms of technological and operating properties of cast composite. An example of such approach was shown in work [1, 23].

  19. Experimental studies of crystal-melt differentiation in planetary basalt compositions

    Science.gov (United States)

    Grove, T. L.

    1987-01-01

    An important process that controls the evolution of magmas on and within planetary bodies is crystal-melt differentiation. Experimental studies of silicate melt solidification were performed on several planetary and terrestrial melt compositions, and experiments on one of these compositions in the microgravity environment of the space station would provide an opportunity to understand the factors that control crystal growth and crystal-melt exchange processes at crystal-melt interfaces during solidification. Experimental requirements are presented.

  20. An Introductory Idea for Teaching Two-Component Phase Diagrams

    Science.gov (United States)

    Peckham, Gavin D.; McNaught, Ian J.

    2011-01-01

    The teaching of two-component phase diagrams has attracted little attention in this "Journal," and it is hoped that this article will make a useful contribution. Current physical chemistry textbooks describe two-component phase diagrams adequately, but do so in a piecemeal fashion one section at a time; first solid-liquid equilibria, then…

  1. Two-component micro injection moulding for hearing aid applications

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Marhöfer, David Maximilian

    2012-01-01

    Two-component (2k) injection moulding is an important process technique at the present state of technology, and it is growing rapidly in the field of precision micro moulding. Besides combining different material properties in the same product, two-component moulding can eliminate many assembly s...

  2. Two-component Brownian coagulation: Monte Carlo simulation and process characterization

    Institute of Scientific and Technical Information of China (English)

    Haibo Zhao; Chu guang Zheng

    2011-01-01

    The compositional distribution within aggregates of a given size is essential to the functionality of composite aggregates that are usually enlarged by rapid Brownian coagulation.There is no analytical solution for the process of such two-component systems.Monte Carlo method is an effective numerical approach for two-component coagulation.In this paper,the differentially weighted Monte Carlo method is used to investigate two-component Brownian coagulation,respectively,in the continuum regime,the freemolecular regime and the transition regime.It is found that ( 1 ) for Brownian coagulation in the continuum regime and in the free-molecular regime,the mono-variate compositional distribution,i.e.,the number density distribution function of one component amount (in the form of volume of the component in aggregates) satisfies self-preserving form the same as particle size distribution in mono-component Brownian coagulation; (2) however,for Brownian coagulation in the transition regime the mono-variate compositional distribution cannot reach self-similarity; and (3) the bivariate compositional distribution,i.e.,the combined number density distribution function of two component amounts in the three regimes satisfies a semi self-preserving form.Moreover,other new features inherent to aggregative mixing are also demonstrated; e.g.,the degree of mixing between components,which is largely controlled by the initial compositional mass fraction,improves as aggregate size increases.

  3. Feedback Control of Two-Component Regulatory Systems.

    Science.gov (United States)

    Groisman, Eduardo A

    2016-09-08

    Two-component systems are a dominant form of bacterial signal transduction. The prototypical two-component system consists of a sensor that responds to a specific input(s) by modifying the output of a cognate regulator. Because the output of a two-component system is the amount of phosphorylated regulator, feedback mechanisms may alter the amount of regulator, and/or modify the ability of a sensor or other proteins to alter the phosphorylation state of the regulator. Two-component systems may display intrinsic feedback whereby the amount of phosphorylated regulator changes under constant inducing conditions and without the participation of additional proteins. Feedback control allows a two-component system to achieve particular steady-state levels, to reach a given steady state with distinct dynamics, to express coregulated genes in a given order, and to activate a regulator to different extents, depending on the signal acting on the sensor.

  4. Some Lower Valence Vanadium Fluorides: Their Crystal Distortions, Domain Structures, Modulated Structures, Ferrimagnetism, and Composition Dependence.

    Science.gov (United States)

    Hong, Y. S.; And Others

    1980-01-01

    Describes some contemporary concepts unique to the structure of advanced solids, i.e., their crystal distortions, domain structures, modulated structures, ferrimagnetism, and composition dependence. (Author/CS)

  5. Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas.

    Science.gov (United States)

    Schneider, A S; Hughto, J; Horowitz, C J; Berry, D K

    2012-06-01

    We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase molecular dynamics simulations. We identify liquid, solid, and interface regions using a bond angle metric. To study finite-size effects, we perform 27,648- and 55,296-ion simulations. To help monitor nonequilibrium effects, we calculate diffusion constants D(i). For the carbon-oxygen system we find that D(O) for oxygen ions in the solid is much smaller than D(C) for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite-size and nonequilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominantly selenium crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably because of electron screening effects.

  6. Monte Carlo simulations of two-component drop growth by stochastic coalescence

    Science.gov (United States)

    Alfonso, L.; Raga, G. B.; Baumgardner, D.

    2009-02-01

    The evolution of two-dimensional drop distributions is simulated in this study using a Monte Carlo method. The stochastic algorithm of Gillespie (1976) for chemical reactions in the formulation proposed by Laurenzi et al. (2002) was used to simulate the kinetic behavior of the drop population. Within this framework, species are defined as droplets of specific size and aerosol composition. The performance of the algorithm was checked by a comparison with the analytical solutions found by Lushnikov (1975) and Golovin (1963) and with finite difference solutions of the two-component kinetic collection equation obtained for the Golovin (sum) and hydrodynamic kernels. Very good agreement was observed between the Monte Carlo simulations and the analytical and numerical solutions. A simulation for realistic initial conditions is presented for the hydrodynamic kernel. As expected, the aerosol mass is shifted from small to large particles due to collection process. This algorithm could be extended to incorporate various properties of clouds such several crystals habits, different types of soluble CCN, particle charging and drop breakup.

  7. Monte Carlo simulations of two-component drop growth by stochastic coalescence

    Directory of Open Access Journals (Sweden)

    L. Alfonso

    2009-02-01

    Full Text Available The evolution of two-dimensional drop distributions is simulated in this study using a Monte Carlo method. The stochastic algorithm of Gillespie (1976 for chemical reactions in the formulation proposed by Laurenzi et al. (2002 was used to simulate the kinetic behavior of the drop population. Within this framework, species are defined as droplets of specific size and aerosol composition. The performance of the algorithm was checked by a comparison with the analytical solutions found by Lushnikov (1975 and Golovin (1963 and with finite difference solutions of the two-component kinetic collection equation obtained for the Golovin (sum and hydrodynamic kernels. Very good agreement was observed between the Monte Carlo simulations and the analytical and numerical solutions. A simulation for realistic initial conditions is presented for the hydrodynamic kernel. As expected, the aerosol mass is shifted from small to large particles due to collection process. This algorithm could be extended to incorporate various properties of clouds such several crystals habits, different types of soluble CCN, particle charging and drop breakup.

  8. Compositional Effects on Nickel-Base Superalloy Single Crystal Microstructures

    Science.gov (United States)

    MacKay, Rebecca A.; Gabb, Timothy P.; Garg,Anita; Rogers, Richard B.; Nathal, Michael V.

    2012-01-01

    Fourteen nickel-base superalloy single crystals containing 0 to 5 wt% chromium (Cr), 0 to 11 wt% cobalt (Co), 6 to 12 wt% molybdenum (Mo), 0 to 4 wt% rhenium (Re), and fixed amounts of aluminum (Al) and tantalum (Ta) were examined to determine the effect of bulk composition on basic microstructural parameters, including gamma' solvus, gamma' volume fraction, volume fraction of topologically close-packed (TCP) phases, phase chemistries, and gamma - gamma'. lattice mismatch. Regression models were developed to describe the influence of bulk alloy composition on the microstructural parameters and were compared to predictions by a commercially available software tool that used computational thermodynamics. Co produced the largest change in gamma' solvus over the wide compositional range used in this study, and Mo produced the largest effect on the gamma lattice parameter and the gamma - gamma' lattice mismatch over its compositional range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had a significant impact on their concentrations in the gamma matrix and, to a smaller extent, in the gamma' phase. The gamma phase chemistries exhibited strong temperature dependencies that were influenced by the gamma and gamma' volume fractions. A computational thermodynamic modeling tool significantly underpredicted gamma' solvus temperatures and grossly overpredicted the amount of TCP phase at 982 C. Furthermore, the predictions by the software tool for the gamma - gamma' lattice mismatch were typically of the wrong sign and magnitude, but predictions could be improved if TCP formation was suspended within the software program. However, the statistical regression models provided excellent estimations of the microstructural parameters based on bulk alloy composition, thereby demonstrating their usefulness.

  9. Simultaneous refinement of two components of an exsolution intergrowth

    DEFF Research Database (Denmark)

    Topa, Dan; Petricek, Vaclav; Dusek, Michal;

    2008-01-01

    .1) and bd(64.1), respectively. The subscript indicates a percentage of the aikinite component in this bismuthinite derivative. The crystal Structure of lindstromite contains two aikinite-like ribbons Cu2Pb2Bi3S6 and eight krupkaite-like ribbons (ideally CuPbBi3S6) in a unit cell. The latter...... are oversubstituted; the ideally empty tetrahedral sites associated with them refined to the occupancy values of 0.04-0.09 Cu and 0.14-0.18 Cu, respectively, for the two above bulk compositions. The refined phase-compositions are Cu6.26Pb6.26Bi13.74S30 (bd(62.6)) associated with CuPbBi3S6 (bd(50)) for the sample 'bd......(60)' and Cu6.64Pb6.64Bi13.36S30 (bd(66.4)) associated with oversubstituted krupkaite, the composition of which could not been refined, for the sample 'bd(64)'. From stoichiometry calculations, the latter is similar to bd(60). Both latter values may be somewhat overestimated as a result of cross...

  10. Receptor domains of two-component signal transduction systems.

    Science.gov (United States)

    Perry, Julie; Koteva, Kalinka; Wright, Gerard

    2011-05-01

    Two-component signal transduction systems are found ubiquitously in prokaryotes, and in archaea, fungi, yeast and some plants, where they regulate physiologic and molecular processes at both transcriptional and post-transcriptional levels. Two-component systems sense changes in environmental conditions when a specific ligand binds to the receptor domain of the histidine kinase sensory component. The structures of many histidine kinase receptors are known, including those which sense extracellular and cytoplasmic signals. In this review, we discuss the basic architecture of two-component signalling circuits, including known system ligands, structure and function of both receptor and signalling domains, the chemistry of phosphotransfer, and cross-talk between different two-component pathways. Given the importance of these systems in regulating cellular responses, many biochemical techniques have been developed for their study and analysis. We therefore also review current methods used to study two-component signalling, including a new affinity-based proteomics approach used to study inducible resistance to the antibiotic vancomycin through the VanSR two-component signal transduction system.

  11. Non-isothermal crystallization kinetics in melt-drawn PCL/PLA microfibrillar composites

    Science.gov (United States)

    Kratochvíl, Jaroslav; Kelnar, Ivan

    2016-05-01

    The non-isothermal crystallization kinetics of the system poly(ɛ-caprolactone)/poly(lactic acid)/clay C15 and related microfibrillar composites has been studied using a simple method based on mathematical treatment of the DSC cumulative crystallization curves in their inflection point. The method provides three kinetic parameters: temperature of start of crystallization, temperature of maximum crystallization rate, and numerical value of the maximum crystallization rate. In the range of cooling rates 5 - 20°C/min, the temperatures of crystallization start and of maximum crystallization rate are determined with standard deviation of 0.3 and 0.4°C, respectively. Average standard deviation of maximum crystallization rate is 1.0 K-1 corresponding to coefficient of variation 5.8 %. Repeatability is slightly better at lower cooling rates. The modified samples show intensive nucleation effect during the non-isothermal crystallization, as demonstrated by their values of temperatures of crystallization start and of maximum crystallization rate that are significantly higher than that of neat PCL. The highest maximum crystallization rate has been found for the blend PCL/PLA 80/20. The proposed method does not refer to any crystallization model and does not require exact determination of the starting point of crystallization. On the other hand, it does not provide any information about dimensionality of crystal growth. The method is particularly useful for characterizing a series of samples derived by modification of the neat polymer.

  12. Memory effect in composites of liquid crystal and silica aerosil

    Energy Technology Data Exchange (ETDEWEB)

    Relaix, Sabrina; Leheny, Robert L.; Reven, Linda; Sutton, Mark (McGill); (JHU)

    2012-02-07

    Aerosil silica nanoparticles dispersed in a liquid crystal (LC) possess the interesting property of keeping memory of an electric- or magnetic-field-induced orientation. Two types of memory have been identified: thermally erasable memory arising from the pinning of defect lines versus a 'permanent' memory where the orientation persists even after thermal cycling the samples up to the isotropic phase. To address the source of the latter type of memory, solid-state nuclear magnetic resonance spectroscopy and conventional x-ray diffraction (XRD) were first combined to characterize the LC orientational order as a function of multiple in-field temperature cycles. Microbeam XRD was then performed on aligned gels of different concentrations to gain knowledge of the structural properties at the origin of the memory effect. No detectable anisotropy of the gel or significant breaking of silica strands with heating ruled out the formation of an anisotropic silica network as the source of the permanent memory as previously proposed. Instead, support for a role of the surface memory effect, well known for planar substrates, in stabilizing the permanent memory was deduced from 'training' of the composites, that is, optimizing the orientational order through the thermal in-field cycling. The ability to train the composites is inversely proportional to the strength of the random-field disorder. The portion of thermally erasable memory also decreases as the silica density increases. We propose that the permanent memory originates from the surface memory effect operating at points of intersection in the silica network. These areas, where the LC is strongly confined with conflicted surface interactions, are trained to achieve an optimized orientation and subsequently act as sites from which the LC orientational order regrows after zero-field thermal cycling up to the isotropic phase.

  13. Circulation Condition of Two-component Bose-Einstein Condensate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the report we point out that there exists an intrinsic difference in the internal symmetry of the two components spin-1/2 Bose condensates from that of spinor Bose condensates of the atoms with hyperfine states of nonzero integer-spins,which gives rise to a new topological constrain on the circulation for this two-component spin-1/2 Bose condensates.It is shown that the SU(2) symmetry of the spin-1/2 Bose condensate implies a

  14. Itinerant Ferromagnetism in a Polarized Two-Component Fermi Gas

    DEFF Research Database (Denmark)

    Massignan, Pietro; Yu, Zhenhua; Bruun, Georg

    2013-01-01

    We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles, the repul......We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles...

  15. Single crystal PMN-PT/epoxy 1-3 composite for energy-harvesting application.

    Science.gov (United States)

    Ren, Kailiang; Liu, Yiming; Geng, Xuecang; Hofmann, Heath F; Zhang, Qiming M

    2006-03-01

    One key parameter in using electroactive materials to harvest electric energy from mechanical sources is the energy conversion efficiency. Recently, it was shown that, in the relaxor ferroelectric PMN-PT single crystals, a very high longitudinal electromechanical coupling factor (>90%) can be obtained. This paper investigates energy harvesting using 1-3 composites of PMN-PT single crystals in a soft epoxy matrix. It is shown that 1-3 composites enable the single crystals operating in the longitudinal mode to achieve high efficiency for energy harvesting, and the soft-polymer, matrix-supported single-crystal rods maintain high mechanical integrity under different external loads. For comparison, 1-3 composites with piezoceramic PZT also are investigated in energy-harvesting applications, and the results show that the high coupling factor of single crystal PMN-PT 1-3 composites leads to much higher electric energy output for similar mechanical energy input. The harvested energy density of 1-3 composite with single crystal (22.1 mW/cm3 under a stress of 40.4 MPa) is about twice of that harvested with PZT ceramic 1-3 composite (12 mW/cm3 under a stress of 39 MPa). At a higher stress level, the harvested-energy density of 1-3 PMN-PT single crystal composite can reach 96 mW/cm3.

  16. Two component permeation through thin zeolite MFI membranes

    NARCIS (Netherlands)

    Keizer, K.; Burggraaf, A.J.; Vroon, Z.A.E.P.; Verweij, H.

    1998-01-01

    Two component permeation measurements have been performed by the Wicke-Kallenbach method on a thin (3 μm) zeolite MFI (Silicalite-1) membrane with molecules of different kinetic diameters, d(k). The membrane was supported by a flat porous α-Al2O3 substrate. The results obtained could be classified i

  17. two component permeation through thin zeolite MFI membranes

    NARCIS (Netherlands)

    Keizer, Klaas; Burggraaf, Anthonie; Burggraaf, A.J.; Vroon, Z.A.E.P.; Vroon, Z.A.E.P.; Verweij, H.

    1998-01-01

    Two component permeation measurements have been performed by the Wicke–Kallenbach method on a thin (3 μm) zeolite MFI (Silicalite-1) membrane with molecules of different kinetic diameters, dk. The membrane was supported by a flat porous -Al2O3 substrate. The results obtained could be classified in s

  18. TWO-COMPONENT JETS AND THE FANAROFF-RILEY DICHOTOMY

    NARCIS (Netherlands)

    Meliani, Z.; Keppens, R.; Sauty, C.

    2010-01-01

    Transversely stratified jets are observed in many classes of astrophysical objects, ranging from young stellar objects, mu-quasars, to active galactic nuclei and even in gamma-ray bursts. Theoretical arguments support this transverse stratification of jets with two components induced by intrinsic fe

  19. Two component injection moulding: Present and future perspectives

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard

    2009-01-01

    Two component injection moulding has widespread industrial applications. Still the technology is yet to gain its full potential in highly demanding and technically challenging applications areas. The smart use of this technology can open the doors for cost effective and convergent manufacturing...

  20. Entanglement Properties in Two-Component Bose-Einstein Condensate

    Science.gov (United States)

    Jiang, Di-You

    2016-10-01

    We investigate entanglement inseparability and bipartite entanglement of in two-component Bose-Einstein condensate in the presence of the nonlinear interatomic interaction, interspecies interaction. Entanglement inseparability and bipartite entanglement have the similar properties. More entanglement can be generated by adjusting the nonlinear interatomic interaction and control the time interval of the entanglement by adjusting interspecies interaction.

  1. Goal-Directed Aiming: Two Components but Multiple Processes

    Science.gov (United States)

    Elliott, Digby; Hansen, Steve; Grierson, Lawrence E. M.; Lyons, James; Bennett, Simon J.; Hayes, Spencer J.

    2010-01-01

    This article reviews the behavioral literature on the control of goal-directed aiming and presents a multiple-process model of limb control. The model builds on recent variants of Woodworth's (1899) two-component model of speed-accuracy relations in voluntary movement and incorporates ideas about dynamic online limb control based on prior…

  2. A small protein that mediates the activation of a two-component system by another two-component system

    OpenAIRE

    Kox, Linda F.F.; Wösten, Marc M. S. M.; Groisman, Eduardo A.

    2000-01-01

    The PmrA–PmrB two-component system of Salmonella enterica controls resistance to the peptide antibiotic polymyxin B and to several antimicrobial proteins from human neutrophils. Transcription of PmrA-activated genes is induced by high iron, but can also be promoted by growth in low magnesium in a process that requires another two-component system, PhoP–PhoQ. Here, we define the genetic basis for the interaction between the PhoP–PhoQ and PmrA–PmrB systems. We have identified pmrD as a PhoP-act...

  3. Composite single crystal silicon scan mirror substrates Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Single crystal silicon is a desirable mirror substrate for scan mirrors in space telescopes. As diameters of mirrors become larger, existing manufacturing...

  4. Local structure, composition, and crystallization mechanism of a model two-phase "composite nanoglass"

    Science.gov (United States)

    Chattopadhyay, Soma; Kelly, S. D.; Shibata, Tomohiro; Balasubramanian, M.; Srinivasan, S. G.; Du, Jincheng; Banerjee, Rajarshi; Ayyub, Pushan

    2016-02-01

    We report a detailed study of the local composition and structure of a model, bi-phasic nanoglass with nominal stoichiometry Cu55Nb45. Three dimensional atom probe data suggest a nanoscale-phase-separated glassy structure having well defined Cu-rich and Nb-rich regions with a characteristic length scale of ≈3 nm. However, extended x-ray absorption fine structure analysis indicates subtle differences in the local environments of Cu and Nb. While the Cu atoms displayed a strong tendency to cluster and negligible structural order beyond the first coordination shell, the Nb atoms had a larger fraction of unlike neighbors (higher chemical order) and a distinctly better-ordered structural environment (higher topological order). This provides the first experimental indication that metallic glass formation may occur due to frustration arising from the competition between chemical ordering and clustering. These observations are complemented by classical as well as ab initio molecular dynamics simulations. Our study indicates that these nanoscale phase-separated glasses are quite distinct from the single phase nanoglasses (studied by Gleiter and others) in the following three respects: (i) they contain at least two structurally and compositionally distinct, nanodispersed, glassy phases, (ii) these phases are separated by comparatively sharp inter-phase boundaries, and (iii) thermally induced crystallization occurs via a complex, multi-step mechanism. Such materials, therefore, appear to constitute a new class of disordered systems that may be called a composite nanoglass.

  5. Local structure, composition, and crystallization mechanism of a model two-phase “composite nanoglass”

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Soma; Shibata, Tomohiro [CSRRI-IIT, MRCAT, Sector 10, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kelly, S. D. [EXAFS Analysis, Bolingbrook, Illinois 60440 (United States); Balasubramanian, M. [Sector 20 XOR, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Srinivasan, S. G.; Du, Jincheng; Banerjee, Rajarshi [Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203-5017 (United States); Ayyub, Pushan, E-mail: pushan@tifr.res.in [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2016-02-14

    We report a detailed study of the local composition and structure of a model, bi-phasic nanoglass with nominal stoichiometry Cu{sub 55}Nb{sub 45}. Three dimensional atom probe data suggest a nanoscale-phase-separated glassy structure having well defined Cu-rich and Nb-rich regions with a characteristic length scale of ≈3 nm. However, extended x-ray absorption fine structure analysis indicates subtle differences in the local environments of Cu and Nb. While the Cu atoms displayed a strong tendency to cluster and negligible structural order beyond the first coordination shell, the Nb atoms had a larger fraction of unlike neighbors (higher chemical order) and a distinctly better-ordered structural environment (higher topological order). This provides the first experimental indication that metallic glass formation may occur due to frustration arising from the competition between chemical ordering and clustering. These observations are complemented by classical as well as ab initio molecular dynamics simulations. Our study indicates that these nanoscale phase-separated glasses are quite distinct from the single phase nanoglasses (studied by Gleiter and others) in the following three respects: (i) they contain at least two structurally and compositionally distinct, nanodispersed, glassy phases, (ii) these phases are separated by comparatively sharp inter-phase boundaries, and (iii) thermally induced crystallization occurs via a complex, multi-step mechanism. Such materials, therefore, appear to constitute a new class of disordered systems that may be called a composite nanoglass.

  6. Two-component Fermi-liquid theory - Equilibrium properties of liquid metallic hydrogen

    Science.gov (United States)

    Oliva, J.; Ashcroft, N. W.

    1981-01-01

    It is reported that the transition of condensed hydrogen from an insulating molecular crystal phase to a metallic liquid phase, at zero temperature and high pressure, appears possible. Liquid metallic hydrogen (LMH), comprising interpenetrating proton and electron fluids, would constitute a two-component Fermi liquid with both a very high component-mass ratio and long-range, species-dependent bare interactions. The low-temperature equilibrium properties of LMH are examined by means of a generalization to the case of two components of the phenomenological Landau Fermi-liquid theory, and the low-temperature specific heat, compressibility, thermal expansion coefficient and spin susceptibility are given. It is found that the specific heat and the thermal expansion coefficient are vastly greater in the liquid than in the corresponding solid, due to the presence of proton quasiparticle excitations in the liquid.

  7. Two-component Fermi-liquid theory - Equilibrium properties of liquid metallic hydrogen

    Science.gov (United States)

    Oliva, J.; Ashcroft, N. W.

    1981-01-01

    It is reported that the transition of condensed hydrogen from an insulating molecular crystal phase to a metallic liquid phase, at zero temperature and high pressure, appears possible. Liquid metallic hydrogen (LMH), comprising interpenetrating proton and electron fluids, would constitute a two-component Fermi liquid with both a very high component-mass ratio and long-range, species-dependent bare interactions. The low-temperature equilibrium properties of LMH are examined by means of a generalization to the case of two components of the phenomenological Landau Fermi-liquid theory, and the low-temperature specific heat, compressibility, thermal expansion coefficient and spin susceptibility are given. It is found that the specific heat and the thermal expansion coefficient are vastly greater in the liquid than in the corresponding solid, due to the presence of proton quasiparticle excitations in the liquid.

  8. New insight into non-isothermal crystallization of PVA-graphene composites.

    Science.gov (United States)

    Li, Chengpeng; Vongsvivut, Jitraporn; She, Xiaodong; Li, Yongzhen; She, Fenghua; Kong, Lingxue

    2014-10-28

    The melt crystallization of poly(vinyl alcohol) (PVA) and PVA composites has been a controversial subject due to inconclusive evidence and different opinions for its decomposition during crystallization. Using graphene as a model, the melt crystallization of PVA and PVA-graphene composites occurring during single-cycle and multiple-cycle non-isothermal annealing processes was systematically analyzed using different characterization techniques. The results obtained using single-cycle non-isothermal annealing indicated that the entire crystallization process took place through two main stages. The graphene in the PVA matrix regulates the nucleation and crystal growth manner of the PVA, yet resulting in retardation of the entire crystallization. The FTIR and Raman spectroscopic results particularly demonstrated that the annealing process not only improved the crystallinity but also led to clear decomposition in PVA and PVA-graphene composites, such as the elimination of hydroxyl groups and the production of C=C double bonds. The newly produced C=C double bonds were found to be responsible for the retardation of PVA macromolecule crystallization and the breaking of hydrogen bonds among the hydroxyl groups in the PVA chains. In addition, the morphological observation and multi-cycle non-isothermal crystallization further confirmed the existence of decomposition based on the surface damage as well as decreased crystallization enthalpy and crystallization peak temperature. Therefore, the non-isothermal crystallizations of the pure PVA and the PVA-graphene composites were in fact the combination of non-isothermal crystallization and non-isothermal degradation processes.

  9. Crystallization and melting behavior of multi-walled carbon nanotube-reinforced nylon-6 composites

    NARCIS (Netherlands)

    Phang, In Yee; Ma, Jianhua; Shen, Lu; Liu, Tianxi; Zhang, Wei-De

    2006-01-01

    The crystallization and melting behavior of neat nylon-6 (PA6) and multi-walled carbon nanotubes (MWNTs)/PA6 composites prepared by simple melt-compounding was comparatively studied. Differential scanning calorimetry (DSC) results show two crystallization exotherms (TCC, 1 and TCC, 2) for PA6/MWNTs

  10. Crystallization and melting behavior of multi-walled carbon nanotube-reinforced nylon-6 composites

    NARCIS (Netherlands)

    Phang, In Yee; Ma, Jianhua; Shen, Lu; Liu, Tianxi; Zhang, Wei-De

    2006-01-01

    The crystallization and melting behavior of neat nylon-6 (PA6) and multi-walled carbon nanotubes (MWNTs)/PA6 composites prepared by simple melt-compounding was comparatively studied. Differential scanning calorimetry (DSC) results show two crystallization exotherms (TCC, 1 and TCC, 2) for PA6/MWNTs

  11. A two-component NZRI metamaterial based rectangular cloak

    Science.gov (United States)

    Islam, Sikder Sunbeam; Faruque, Mohammd Rashed Iqbal; Islam, Mohammad Tariqul

    2015-10-01

    A new two-component, near zero refractive index (NZRI) metamaterial is presented for electromagnetic rectangular cloaking operation in the microwave range. In the basic design a pi-shaped, metamaterial was developed and its characteristics were investigated for the two major axes (x and z-axis) wave propagation through the material. For the z-axis wave propagation, it shows more than 2 GHz bandwidth and for the x-axis wave propagation; it exhibits more than 1 GHz bandwidth of NZRI property. The metamaterial was then utilized in designing a rectangular cloak where a metal cylinder was cloaked perfectly in the C-band area of microwave regime. The experimental result was provided for the metamaterial and the cloak and these results were compared with the simulated results. This is a novel and promising design for its two-component NZRI characteristics and rectangular cloaking operation in the electromagnetic paradigm.

  12. On a periodic two-component Hunter-Saxton equation

    CERN Document Server

    Kohlmann, Martin

    2011-01-01

    We determine the solution of the geodesic equation associated with a periodic two-component Hunter-Saxton system on a semidirect product obtained from the diffeomorphism group of the circle, modulo rigid rotations, and a space of scalar functions. In particular, we compute the time of breakdown of the geodesic flow. As a further goal, we establish a local well-posedness result for the two-component Hunter-Saxton system in the smooth category. The paper gets in line with some recent results for the generalized Hunter-Saxton equation provided by Escher, Wu and Wunsch in [J. Escher, Preprint 2010] and [H. Wu, M. Wunsch, arXiv:1009.1688v1 [math.AP

  13. Two Component Injection Moulding for Moulded Interconnect Devices

    DEFF Research Database (Denmark)

    Islam, Aminul

    The moulded interconnect devices (MIDs) contain huge possibilities for many applications in micro electro-mechanical-systems because of their potential in reducing the number of components, process steps and finally in miniaturization of the product. Among the available MID process chains, two...... component (2k) injection moulding is one of the most industrially adaptive processes. However, the use of two component injection moulding for MID fabrication, with circuit patterns in sub-millimeter range, is still a big challenge. This book searches for the technical difficulties associated...... with the process and makes attempts to overcome those challenges. In search of suitable polymer materials for MID applications, potential materials are characterized in terms of polymer-polymer bond strength, polymer-polymer interface quality and selective metallization. The experimental results find the factors...

  14. Two-component microinjection moulding for MID fabrication

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2010-01-01

    Moulded interconnect devices (MIDs) are plastic substrates with electrical infrastructure. The fabrication of MIDs is usually based on injection moulding, and different process chains may be identified from this starting point. The use of MIDs has been driven primarily by the automotive sector......, but recently, the medical sector seems more and more interested. In particular, the possibility of miniaturisation of three-dimensional components with electrical infrastructure is attractive. The present paper describes possible manufacturing routes and challenges of miniaturised MIDs based on two......-component injection moulding and subsequent metallisation. This technology promises cost effective and convergent manufacturing approaches for both macro- and microapplications. This paper presents the results of industrial MID production based on two-component injection moulding and discusses the important issues...

  15. Incorporation of tin affects crystallization, morphology, and crystal composition of Sn-Beta

    DEFF Research Database (Denmark)

    Tolborg, Søren; Katerinopoulou, A.; Falcone, D. D.;

    2014-01-01

    The crystallization of Sn-Beta in fl uoride medium is greatly in fl uenced by the amount and type of tin source present in the synthesis gel. By varying the amount of tin in the form of tin( IV ) chloride pentahydrate, the time required for crystallization was studied. It was found that tin...... not only drastically a ff ects the time required for crystallization, but also that the presence of tin changes the morphology of the formed Sn-Beta crystals. For low amounts of tin (Si/Sn ¼ 400) crystallization occurs within four days and the Sn-Beta crystals are capped bipyramidal in shape, whereas...... to the minimum time required for obtaining full crystallinity. At excessive crystallization times, the catalytic activity decreased, presumably due to Ostwald ripening...

  16. Interaction Analysis of a Two-Component System Using Nanodiscs.

    Directory of Open Access Journals (Sweden)

    Patrick Hörnschemeyer

    Full Text Available Two-component systems are the major means by which bacteria couple adaptation to environmental changes. All utilize a phosphorylation cascade from a histidine kinase to a response regulator, and some also employ an accessory protein. The system-wide signaling fidelity of two-component systems is based on preferential binding between the signaling proteins. However, information on the interaction kinetics between membrane embedded histidine kinase and its partner proteins is lacking. Here, we report the first analysis of the interactions between the full-length membrane-bound histidine kinase CpxA, which was reconstituted in nanodiscs, and its cognate response regulator CpxR and accessory protein CpxP. Using surface plasmon resonance spectroscopy in combination with interaction map analysis, the affinity of membrane-embedded CpxA for CpxR was quantified, and found to increase by tenfold in the presence of ATP, suggesting that a considerable portion of phosphorylated CpxR might be stably associated with CpxA in vivo. Using microscale thermophoresis, the affinity between CpxA in nanodiscs and CpxP was determined to be substantially lower than that between CpxA and CpxR. Taken together, the quantitative interaction data extend our understanding of the signal transduction mechanism used by two-component systems.

  17. Rewiring the specificity of two-component signal transduction systems.

    Science.gov (United States)

    Skerker, Jeffrey M; Perchuk, Barrett S; Siryaporn, Albert; Lubin, Emma A; Ashenberg, Orr; Goulian, Mark; Laub, Michael T

    2008-06-13

    Two-component signal transduction systems are the predominant means by which bacteria sense and respond to environmental stimuli. Bacteria often employ tens or hundreds of these paralogous signaling systems, comprised of histidine kinases (HKs) and their cognate response regulators (RRs). Faithful transmission of information through these signaling pathways and avoidance of detrimental crosstalk demand exquisite specificity of HK-RR interactions. To identify the determinants of two-component signaling specificity, we examined patterns of amino acid coevolution in large, multiple sequence alignments of cognate kinase-regulator pairs. Guided by these results, we demonstrate that a subset of the coevolving residues is sufficient, when mutated, to completely switch the substrate specificity of the kinase EnvZ. Our results shed light on the basis of molecular discrimination in two-component signaling pathways, provide a general approach for the rational rewiring of these pathways, and suggest that analyses of coevolution may facilitate the reprogramming of other signaling systems and protein-protein interactions.

  18. Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly(β-hydroxybutyrate) composites.

    Science.gov (United States)

    Chen, Jianxiang; Wu, Defeng; Tam, Kam C; Pan, Keren; Zheng, Zhigong

    2017-02-10

    Ring-opening polymerization of l-lactide from cellulose nanocrystal (CNC) surface yielded polylactide-grafted CNC (CNC-g-PLA). The structure and chemical composition of the CNC-g-PLA were characterized by FT-IR, (1)H NMR, XPS and XRD. The crystallization behavior and lamellar structure of poly(β-hydroxybutyrate) (PHB) in the presence of pristine CNC and CNC-g-PLA were elucidated via DSC and SAXS, and Babinet's reciprocity theory was applied. Crystallization kinetics were further analyzed using Ozawa, Mo and Kissinger models. In the presence of pristine CNC, nucleation of PHB crystals led to an increase in the crystallization temperature (Tc) of PHB; while CNC-g-PLA acted as antinucleation agent, resulting in a remarkable reduction in Tc of PHB. Accordingly, the composite with pristine CNC possessed a higher crystallization rate than neat PHB, while CNC-g-PLA displayed the lowest crystallization rate. However, the lamellar structure of PHB was not affected by the presence of pristine and modified CNCs, and almost identical crystallization activation energies as the neat PHB were observed, indicating that nucleation is dominant during PHB crystallization, instead of crystal growth. This study offers a promising approach of using pristine and modified CNCs to control the crystallization of biodegradable aliphatic polyesters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. STUDIES ON THE MECHANICAL PROPERTIES AND CRYSTALLIZATION BEHAVIOR OF POLYETHYLENE COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    ZHU Jin; OU Yuchun; FENG Yupeng

    1995-01-01

    The effects of interfacial modifier on the mechanical, dynamic mechanical properties and crystallization behavior of the polyethylene composites were investigated in the present paper.It was found that the interfacial modifer significantly improved the mechanical properties,influenced the dynamic mechanical spectra and slightly changed the crystallization behavior.The results showed that the interfacial modifier changed the dispersion state of dispersed phase of the composites, resulting in different phase structure, which was the major reason leading to different mechanical and crystallization properties.

  20. Morphological and mechanical characterization of composite calcite/SWCNT-COOH single crystals.

    Science.gov (United States)

    Calvaresi, Matteo; Falini, Giuseppe; Pasquini, Luca; Reggi, Michela; Fermani, Simona; Gazzadi, Gian Carlo; Frabboni, Stefano; Zerbetto, Francesco

    2013-08-01

    A growing number of classes of organic (macro)molecular materials have been trapped into inorganic crystalline hosts, such as calcite single crystals, without significantly disrupting their crystalline lattices. Inclusion of an organic phase plays a key role in enhancing the mechanical properties of the crystals, which are believed to share structural features with biogenic minerals. Here we report the synthesis and mechanical characterization of composite calcite/SWCNT-COOH single crystals. Once entrapped into the crystals SWCNT-COOH appeared both as aggregates of entangled bundles and nanoropes. Their observation was possible only after crystal etching, fracture or FIB (focused ion beam) cross-sectioning. SWCNT-COOHs occupied a small volume fraction and were randomly distributed into the host crystal. They did not strongly affect the crystal morphology. However, although the Young's modulus of composite calcite/SWCNT-COOH single crystals was similar to that of pure calcite their hardness increased by about 20%. Thus, SWCNT-COOHs provide an obstacle against the dislocation-mediated propagation of plastic deformation in the crystalline slip systems, in analogy with the well-known hardness increase in fiber-reinforced composites.

  1. Crystal orientation mapping applied to the Y-TZP/WC composite

    CERN Document Server

    Faryna, M; Sztwiertnia, K

    2002-01-01

    Crystal orientation measurements made by electron backscattered diffraction (EBSD) in the scanning electron microscope (SEM) and microscopic observations provided the basis for a quantitative investigation of microstructure in an yttria stabilized, tetragonal zirconia-based (Y-TZP) composite. Automatic crystal orientation mapping (ACOM) in a SEM can be preferable to transmission electron microscopy (TEM) for microstructural characterization, since no sample thinning is required, extensive crystal data is already available, and the analysis area is greatly increased. A composite with a 20 vol.% tungsten carbide (WC) content was chosen since it revealed crystal relationships between the matrix and carbide phase already established by TEM analysis. However, this composite was difficult to investigate in the EBSD/ SEM since it is non-conductive, the Y-TZP grain size is of the order of the system resolution, and the sample surface, though carefully prepared, reveals a distinctive microtopography. In this paper, so...

  2. Two-Component Multi-Parameter Time-Frequency Electromagnetics

    Institute of Scientific and Technical Information of China (English)

    HuangZhou; DongWeibin; HeTiezhi

    2003-01-01

    The two-component multi-parameter time-frequency electromagnetic method, used for the development of oilfields,makes use of both the traditional individual conductivity parameters of oil-producing layers and the dispersion information of the conductivity, i.e., the induced polarization parameter. The frequency-domain dispersion data is used to delineate the contacts between oil and water and the time domain dBz/dt component is used to estimate the depths to the un-known reservoirs so as to offer significant data in many aspects for oil exploration and detection.

  3. A polaritonic two-component Bose-Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, M J; Brandao, F G S L; Plenio, M B [Institute for Mathematical Sciences, Imperial College London, 53 Exhibition Road, SW7 2PE (United Kingdom)], E-mail: m.hartmann@imperial.ac.uk

    2008-03-15

    We demonstrate that polaritons in an array of interacting micro-cavities with strong atom-photon coupling can form a two-component Bose-Hubbard model in which both polariton species are protected against spontaneous emission as their atomic part is stored in two ground states of the atoms. The parameters of the effective model can be tuned via the driving strength of external lasers and include attractive and repulsive polariton interactions. We also describe a method to measure the number statistics in one cavity for each polariton species independently.

  4. Two component micro injection moulding for moulded interconnect devices

    DEFF Research Database (Denmark)

    Islam, Aminul

    2008-01-01

    Moulded interconnect devices (MIDs) contain huge possibilities for many applications in micro electro-mechanical-systems because of their capability of reducing the number of components, process steps and finally in miniaturization of the product. Among the available MID process chains, two...... and a reasonable adhesion between them. • Selective metallization of the two component plastic part (coating one polymer with metal and leaving the other one uncoated) To overcome these two main issues in MID fabrication for micro applications, the current Ph.D. project explores the technical difficulties...

  5. Two-component Fermi gas in a Harmonic Trap

    CERN Document Server

    Yi, X X; Cui, H T; Zhang, C M

    2002-01-01

    We consider a mixture of two-component Fermi gases at low temperature. The density profile of this degenerate Fermi gas is calculated under the semiclassical approximation. The results show that the fermion-fermion interactions make a large correction to the density profile at low temperature. The phase separation of such a mixture is also discussed for both attractive and repulsive interatomic interactions, and the numerical calculations demonstrate the exist of a stable temperature region $T_{c1}

  6. Interaction potentials and thermodynamic properties of two component semiclassical plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T. S.; Moldabekov, Zh. A.; Ismagambetova, T. N. [Al-Farabi Kazakh National University, IETP, 71 al-Farabi Av., Almaty 050040 (Kazakhstan); Gabdullin, M. T. [Al-Farabi Kazakh National University, NNLOT, 71 al-Farabi Av., Almaty 050040 (Kazakhstan)

    2014-01-15

    In this paper, the effective interaction potential in two component semiclassical plasma, taking into account the long-range screening and the quantum-mechanical diffraction effects at short distances, is obtained on the basis of dielectric response function method. The structural properties of the semiclassical plasma are considered. The thermodynamic characteristics (the internal energy and the equation of state) are calculated using two methods: the method of effective potentials and the method of micropotentials with screening effect taken into account by the Ornstein-Zernike equation in the HNC approximation.

  7. Itinerant ferromagnetism in a polarized two-component Fermi gas.

    Science.gov (United States)

    Massignan, Pietro; Yu, Zhenhua; Bruun, Georg M

    2013-06-07

    We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles, the repulsive polarons. Phase diagrams as a function of polarization, temperature, mass imbalance, and repulsive polaron energy, as well as scattering length and range parameter, are provided. We show that the lifetime of the repulsive polaron increases significantly with the interaction range and the mass of the minority atoms, raising the prospects of detecting the transition to the elusive itinerant ferromagnetic state with ultracold atoms.

  8. Two component micro injection molding for MID fabrication

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2009-01-01

    Molded Interconnect Devices (MIDs) are plastic substrates with electrical infrastructure. The fabrication of MIDs is usually based on injection molding and different process chains may be identified from this starting point. The use of MIDs has been driven primarily by the automotive sector......, but recently the medical sector seems more and more interested. In particular the possibility of miniaturization of 3D components with electrical infrastructure is attractive. The paper describes possible manufacturing routes and challenges of miniaturized MIDs based on two component micro injection molding...

  9. Effect of compatibilization and reprocessing on the isothermal crystallization kinetics of polypropylene/wood flour composites

    Directory of Open Access Journals (Sweden)

    Arieny Rodrigues

    2013-01-01

    Full Text Available Numerous studies have focused on polymer mixtures aimed at the potential applications of these materials. This work analyzed the effect of polymer reprocessing and the type and concentration of compatibilizer on the isothermal crystallization kinetics of polypropylene/wood flour composites. The composites, which were polypropylene grafted with acrylic acid (PP-g-AA and maleic anhydride (PP-g-MA, were processed in a twin screw extruder with and without compatibilizer. Reprocessed polypropylene reached complete crystallization in less time than the composites with virgin polypropylene. The addition of wood flour to the composites did not change the kinetics significantly compared to that of the pure polymers, but the compatibilizers did, particularly PP-g-AA. The nucleation exponent (n and crystallization rate (K were calculated from Avrami plots. The values of n ranged from 2 to 3, indicating instantaneous to sporadic nucleation. The crystallization half-time of reprocessed polypropylene was shorter than that of virgin polypropylene and of the compositions containing PP-g-AA compatibilizer. The activation energy of crystallization and the equilibrium melting temperature were calculated, respectively, from Arrhenius and Hoffman-Weeks plots. Both of these parameters showed lower values in the composites, particularly in the ones containing compatibilizers.

  10. Crystal origins and magmatic system beneath Ngauruhoe volcano (New Zealand) revealed by plagioclase textures and compositions

    Science.gov (United States)

    Coote, Alisha C.; Shane, Phil

    2016-09-01

    The textural variation and compositional zoning of plagioclase in pre-historic and historic basaltic andesite lava flows from Ngauruhoe volcano reveals extensive crystal recycling from a multi-level magma system. Most phenocrysts have a calcic (~ An80-90) resorbed core with diffuse or no zonation that is depleted in Fe and Mg. Some cores display patchy zonation from replacement by high An crystallization prior to resorption. The cores are mantled by oscillatory-zoned rims of lower An content (Mg. Rim zones vary in relative thickness and textural complexity, and include sieve-textured bands, and/or cyclic calcic growth following dissolution events. A subordinate crystal population display similar features, but lack a resorbed core. These latter crystals display overall rimward enrichment in An, Fe and Mg. The resorbed cores crystallized from magmas more mafic than those erupted at Ngauruhoe, and slow cooling and prolonged storage resulted in loss of An zoning patterns and depletion of Fe and Mg by diffusion. These crystals are likely to have originated from deep cumulates or intrusions, and were subsequently entrained in ascending magmas. Patchy-textured cores were produced during decompression in a water under-saturated magma and staged ascent. The diversity in crystal cores reflect different conduits and ascent histories. The crystal rims grew in a more differentiated magma reservoir, and are in equilibrium with the erupted melt. Most of the zoning patterns in the rim zone require water pressure and/or temperature changes. These changes could have been caused by convective self-mixing in a closed system and/or the intrusion of hydrous melts of similar bulk composition. Other crystals display rimward elemental enrichments consistent with mafic recharge. Previously reported rimward enrichment in 87Sr-86Sr compositions can be explained by the re-cycled origin of the crystal cores and progressive crustal assimilation at shallower depths in the magma system where

  11. Isotactic polypropylene carbon nanotube composites -- crystallization and ordering behavior

    Science.gov (United States)

    Georgiev, Georgi; Judith, Robert; Gombos, Erin; McIntyre, Michael; Schoen, Scott; Cebe, Peggy; Mattera, Michael

    2010-03-01

    The field of Polymer Nanocomposites (PNCs) is growing steadily in recent years. We use carbon nanotubes (CNTs) to affect the crystallization behavior of the polymers. Isotactic Polypropylene (iPP) is very widely used and is a good model system to understand the physics of other similar polymers. iPP/CNT PNCs form α, β, and γ crystallographic phases under a variety of crystallization conditions: non-isothermal and isothermal melt crystallization, shear, stress, fiber extrusion, etc. The crystal growth is altered from spherulitic to α-fibrillar upon the nucleation effect of CNTs. We are studying the effect of different temperature treatment schemes and different isothermal crystallization conditions. We found also that the smectic ordering in iPP is improved by the introduction of CNTs. We use Differential Scanning Calorimetry, Wide Angle X-ray scattering, Microscopic Transmission Ellipsometry and Avrami analysis. Research supported by: Assumption College Faculty Development Grant, funding for students' stipends, instrumentation and supplies, the NSF Polymers Program of the DMR, grant (DMR-0602473) and NASA grant (NAG8-1167).

  12. Graphene Oxide: A One- versus Two-Component Material.

    Science.gov (United States)

    Naumov, Anton; Grote, Fabian; Overgaard, Marc; Roth, Alexandra; Halbig, Christian E; Nørgaard, Kasper; Guldi, Dirk M; Eigler, Siegfried

    2016-09-14

    The structure of graphene oxide (GO) is a matter of discussion. While established GO models are based on functional groups attached to the carbon framework, another frequently used model claims that GO consists of two components, a slightly oxidized graphene core and highly oxidized molecular species, oxidative debris (OD), adsorbed on it. Those adsorbents are claimed to be the origin for optical properties of GO. Here, we examine this model by preparing GO with a low degree of functionalization, combining it with OD and studying the optical properties of both components and their combination in an artificial two-component system. The analyses of absorption and emission spectra as well as lifetime measurements reveal that properties of the combined system are distinctly different from those of GO. That confirms structural models of GO as a separate oxygenated hexagonal carbon framework with optical properties governed by its internal structure rather than the presence of OD. Understanding the structure of GO allows further reliable interpretation of its optical and electronic properties and enables controlled processing of GO.

  13. Evolution of two-component signal transduction systems.

    Science.gov (United States)

    Capra, Emily J; Laub, Michael T

    2012-01-01

    To exist in a wide range of environmental niches, bacteria must sense and respond to a variety of external signals. A primary means by which this occurs is through two-component signal transduction pathways, typically composed of a sensor histidine kinase that receives the input stimuli and then phosphorylates a response regulator that effects an appropriate change in cellular physiology. Histidine kinases and response regulators have an intrinsic modularity that separates signal input, phosphotransfer, and output response; this modularity has allowed bacteria to dramatically expand and diversify their signaling capabilities. Recent work has begun to reveal the molecular basis by which two-component proteins evolve. How and why do orthologous signaling proteins diverge? How do cells gain new pathways and recognize new signals? What changes are needed to insulate a new pathway from existing pathways? What constraints are there on gene duplication and lateral gene transfer? Here, we review progress made in answering these questions, highlighting how the integration of genome sequence data with experimental studies is providing major new insights.

  14. The Evolution of Two-Component Signal Transduction Systems

    Science.gov (United States)

    Capra, Emily J.; Laub, Michael T.

    2014-01-01

    To exist in a wide range of environmental niches, bacteria must sense and respond to a myriad of external signals. A primary means by which this occurs is through two-component signal transduction pathways, typically comprised of a histidine kinase that receives the input stimuli and a response regulator that effects an appropriate change in cellular physiology. Histidine kinases and response regulators have an intrinsic modularity that separates signal input, phosphotransfer, and output response; this modularity has allowed bacteria to dramatically expand and diversify their signaling capabilities. Recent work has begun to reveal the molecular basis by which two-component proteins evolve. How and why do orthologous signaling proteins diverge? How do cells gain new pathways and recognize new signals? What changes are needed to insulate a new pathway from existing pathways? What constraints are there on gene duplication and lateral gene transfer? Here, we review progress made in answering these questions, highlighting how the integration of genome sequence data with experimental studies is providing major new insights. PMID:22746333

  15. Error Propagation in Equations for Geochemical Modeling of Radiogenic Isotopes in Two-Component Mixing

    Indian Academy of Sciences (India)

    Surendra P Verma

    2000-03-01

    This paper presents error propagation equations for modeling of radiogenic isotopes during mixing of two components or end-members. These equations can be used to estimate errors on an isotopic ratio in the mixture of two components, as a function of the analytical errors or the total errors of geological field sampling and analytical errors. Two typical cases (``Small errors'' and ``Large errors'') are illustrated for mixing of Sr isotopes. Similar examples can be formulated for the other radiogenic isotopic ratios. Actual isotopic data for sediment and basalt samples from the Cocos plate are also included to further illustrate the use of these equations. The isotopic compositions of the predicted mixtures can be used to constrain the origin of magmas in the central part of the Mexican Volcanic Belt. These examples show the need of high quality experimental data for them to be useful in geochemical modeling of magmatic processes.

  16. A two-component Frenkel-Kontorowa model for surface alloy formation

    CERN Document Server

    Daruka, I

    2003-01-01

    It has been shown by recent experiments that bulk immiscible metals (e.g. Ag/Cu, Ag/Co and Au/Ni) can form binary alloys on certain surfaces where the substrate mediates the elastic misfits between the two components, thus relieving the elastic strain in the overlayer. These novel surface alloys exhibit a rich phase structure. We formulate a two-component Frenkel-Kontorova model in one dimension to study surface alloy formation. This model can naturally incorporate dislocation formation that plays a crucial role in determining the actual structure of the system. Using energy minimization calculations we provide a phase diagram in terms of average alloy composition and the energy of mixing. Monte Carlo simulations were also performed to study the structure and interaction of the emerging dislocations.

  17. Research on Mechanical Behaviors of Micro-crystal Muscovite/UHMWPE Composites to Impact Loading

    Directory of Open Access Journals (Sweden)

    Hu Huarong

    2016-01-01

    Full Text Available UHMWPE composites were prepared by hot pressing process with micro-crystal muscovite as reinforced particulates. The mechanical behaviors of composites to impact loading was evaluated by split Hopkinson bar. The results demonstrated that dynamic yield stress and failure stress of UHMWPE composites were gradually increased when the filling amount was less than 20%; when the filling content of muscovite was around 15%, the energy absorption efficiency of the composite reaches maximum value. It was also found that when strain rate within 3200/s, the dynamic yield stress, failure stress and energy absorption efficiency of UHMWPE composites increased with the increase of strain rate and display strain rate enhancement effect.

  18. Using structural information to change the phosphotransfer specificity of a two-component chemotaxis signalling complex.

    Directory of Open Access Journals (Sweden)

    Christian H Bell

    2010-02-01

    Full Text Available Two-component signal transduction pathways comprising histidine protein kinases (HPKs and their response regulators (RRs are widely used to control bacterial responses to environmental challenges. Some bacteria have over 150 different two-component pathways, and the specificity of the phosphotransfer reactions within these systems is tightly controlled to prevent unwanted crosstalk. One of the best understood two-component signalling pathways is the chemotaxis pathway. Here, we present the 1.40 A crystal structure of the histidine-containing phosphotransfer domain of the chemotaxis HPK, CheA(3, in complex with its cognate RR, CheY(6. A methionine finger on CheY(6 that nestles in a hydrophobic pocket in CheA(3 was shown to be important for the interaction and was found to only occur in the cognate RRs of CheA(3, CheY(6, and CheB(2. Site-directed mutagenesis of this methionine in combination with two adjacent residues abolished binding, as shown by surface plasmon resonance studies, and phosphotransfer from CheA(3-P to CheY(6. Introduction of this methionine and an adjacent alanine residue into a range of noncognate CheYs, dramatically changed their specificity, allowing protein interaction and rapid phosphotransfer from CheA(3-P. The structure presented here has allowed us to identify specificity determinants for the CheA-CheY interaction and subsequently to successfully reengineer phosphotransfer signalling. In summary, our results provide valuable insight into how cells mediate specificity in one of the most abundant signalling pathways in biology, two-component signal transduction.

  19. THE EFFECT OF CLAY DISPERSION ON THE CRYSTALLIZATION AND MORPHOLOGY OF POLYPROPYLENE/CLAY COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Qin Zhang; Xiao-lin Gao; Ke Wang; Qiang Fu

    2004-01-01

    PP/clay composites with different dispersions, namely, exfoliated dispersion, intercalated dispersion and agglomerates and panicle-like dispersion, were prepared by direct melt intercalation or compounding. The effect of clay dispersion on the crystallization and morphology of PP was investigated via PLM, SAXS and DSC. Experimental results show that exfoliated clay layers are much more efficient than intercalated clay and agglomerates of clay in serving as nucleation agent due to the nano-scale dispersion of clay, resulting in a dramatic decrease in crystal size (lamellar thickness and spherulites) and an increase of crystallization temperature and crystallization rate. On the other hand, a decrease of melting temperature and crystallinity was also observed in PP/clay composites with exfoliated dispersion, due to the strong interaction between PP and clay. Compared with exfoliated clay layers, the intercalated clay layers have a less important effect on the crystallization and crystal morphology. No effect is seen for samples with agglomerates and panicle-like dispersion, in regard to melting temperature, crystallization temperature, crystal thickness and crystallinity.

  20. Effects of crystallization fractions on mechanical properties of Zr-based metallic glass matrix composites

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The Zr41Ti14Cu12.5Ni10Be22.5 (at.%) bulk metallic glass composites with various crystallization fractions were prepared by pretreating the bulk metallic glassy samples with pulsing current, and then by isothermal annealing at near initial crystallization temperature for different periods of time. The precipitations and crystallization fractions were studied by X-ray diffraction (XRD) and differential scanning calorimetry (DSC), and their effects on mechanical properties of the composite were studied by microhardness, uniaxial compression test and scanning electron microscopy (SEM). The experimental results show that the primary precipitate is quasicrystalline phase and other metastable phases including Be2Zr, Zr2Cu and FCC would precipitate subsequently. In the initial crystallization process, in which the crystallization fraction increases from 0 to 8.2%, both fracture strength and plastic strain increase, with the maximum plastic strain up to 6.4%. When the crystallization fraction is larger than 8.2%, the fracture strength and the plastic strain decrease sharply. Furthermore, the alloy with low crystallization fraction is fractured by shearing, while for high crystallization fraction it is fractured by splitting and cleavage. The results show that the mechanical properties of the glassy alloy could be optimized by controlling the processing parameters.

  1. Two-component systems and toxinogenesis regulation in Clostridium botulinum.

    Science.gov (United States)

    Connan, Chloé; Popoff, Michel R

    2015-05-01

    Botulinum neurotoxins (BoNTs) are the most potent toxins ever known. They are mostly produced by Clostridium botulinum but also by other clostridia. BoNTs associate with non-toxic proteins (ANTPs) to form complexes of various sizes. Toxin production is highly regulated through complex networks of regulatory systems involving an alternative sigma factor, BotR, and at least 6 recently described two-component systems (TCSs). TCSs allow bacteria to sense environmental changes and to respond to various stimuli by regulating the expression of specific genes at a transcriptional level. Several environmental stimuli have been identified to positively or negatively regulate toxin synthesis; however, the link between environmental stimuli and TCSs is still elusive. This review aims to highlight the role of TCSs as a central point in the regulation of toxin production in C. botulinum.

  2. Exact two-component relativistic energy band theory and application

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Rundong; Zhang, Yong; Xiao, Yunlong; Liu, Wenjian, E-mail: liuwj@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871 (China)

    2016-01-28

    An exact two-component (X2C) relativistic density functional theory in terms of atom-centered basis functions is proposed for relativistic calculations of band structures and structural properties of periodic systems containing heavy elements. Due to finite radial extensions of the local basis functions, the periodic calculation is very much the same as a molecular calculation, except only for an Ewald summation for the Coulomb potential of fluctuating periodic monopoles. For comparison, the nonrelativistic and spin-free X2C counterparts are also implemented in parallel. As a first and pilot application, the band gaps, lattice constants, cohesive energies, and bulk moduli of AgX (X = Cl, Br, I) are calculated to compare with other theoretical results.

  3. Dynamics of two-component membranes surrounded by viscoelastic media.

    Science.gov (United States)

    Komura, Shigeyuki; Yasuda, Kento; Okamoto, Ryuichi

    2015-11-01

    We discuss the dynamics of two-component fluid membranes which are surrounded by viscoelastic media. We assume that membrane-embedded proteins can diffuse laterally and induce a local membrane curvature. The mean squared displacement of a tagged membrane segment is obtained as a generalized Einstein relation. When the elasticity of the surrounding media obeys a power-law behavior in frequency, an anomalous diffusion of the membrane segment is predicted. We also consider the situation where the proteins generate active non-equilibrium forces. The generalized Einstein relation is further modified by an effective temperature that depends on the force dipole energy. The obtained generalized Einstein relations are useful for membrane microrheology experiments.

  4. Two-component jet simulations: Combining analytical and numerical approaches

    CERN Document Server

    Matsakos, T; Trussoni, E; Tsinganos, K; Vlahakis, N; Sauty, C; Mignone, A

    2009-01-01

    Recent observations as well as theoretical studies of YSO jets suggest the presence of two steady components: a disk wind type outflow needed to explain the observed high mass loss rates and a stellar wind type outflow probably accounting for the observed stellar spin down. In this framework, we construct numerical two-component jet models by properly mixing an analytical disk wind solution with a complementary analytically derived stellar outflow. Their combination is controlled by both spatial and temporal parameters, in order to address different physical conditions and time variable features. We study the temporal evolution and the interaction of the two jet components on both small and large scales. The simulations reach steady state configurations close to the initial solutions. Although time variability is not found to considerably affect the dynamics, flow fluctuations generate condensations, whose large scale structures have a strong resemblance to observed YSO jet knots.

  5. Exact two-component relativistic energy band theory and application.

    Science.gov (United States)

    Zhao, Rundong; Zhang, Yong; Xiao, Yunlong; Liu, Wenjian

    2016-01-28

    An exact two-component (X2C) relativistic density functional theory in terms of atom-centered basis functions is proposed for relativistic calculations of band structures and structural properties of periodic systems containing heavy elements. Due to finite radial extensions of the local basis functions, the periodic calculation is very much the same as a molecular calculation, except only for an Ewald summation for the Coulomb potential of fluctuating periodic monopoles. For comparison, the nonrelativistic and spin-free X2C counterparts are also implemented in parallel. As a first and pilot application, the band gaps, lattice constants, cohesive energies, and bulk moduli of AgX (X = Cl, Br, I) are calculated to compare with other theoretical results.

  6. Recent advances in description of few two-component fermions

    CERN Document Server

    Kartavtsev, O I

    2012-01-01

    Overview of the recent advances in description of the few two-component fermions is presented. The zero-range interaction limit is generally considered to discuss the principal aspects of the few-body dynamics. Significant attention is paid to detailed description of two identical fermions of mass $m$ and a distinct particle of mass $m_1$; two universal $L^P = 1^-$ bound states arise for mass ratio $m/m_1$ increasing up to the critical value $\\mu_c \\approx 13.607$, beyond which the Efimov effect takes place. The topics considered include rigorous treatment of the few-fermion problem in the zero-range interaction limit, low-dimensional results, the four-body energy spectrum, crossover of the energy spectra for $m/m_1$ near the critical value $\\mu_c $, and properties of potential-dependent states. At last, enlisted are the problems, whose solution is in due course.

  7. Molecular Mechanisms of Two-Component Signal Transduction.

    Science.gov (United States)

    Zschiedrich, Christopher P; Keidel, Victoria; Szurmant, Hendrik

    2016-09-25

    Two-component systems (TCS) comprising sensor histidine kinases and response regulator proteins are among the most important players in bacterial and archaeal signal transduction and also occur in reduced numbers in some eukaryotic organisms. Given their importance to cellular survival, virulence, and cellular development, these systems are among the most scrutinized bacterial proteins. In the recent years, a flurry of bioinformatics, genetic, biochemical, and structural studies have provided detailed insights into many molecular mechanisms that underlie the detection of signals and the generation of the appropriate response by TCS. Importantly, it has become clear that there is significant diversity in the mechanisms employed by individual systems. This review discusses the current knowledge on common themes and divergences from the paradigm of TCS signaling. An emphasis is on the information gained by a flurry of recent structural and bioinformatics studies.

  8. Bond strength of two component injection moulded MID

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2006-01-01

    Most products of the future will require industrially adapted, cost effective production processes and on this issue two-component (2K) injection moulding is a potential candidate for MID manufacturing. MID based on 2k injection moulded plastic part with selectively metallised circuit tracks allows...... the integration of electrical and mechanical functionalities in a real 3D structure. If 2k injection moulding is applied with two polymers, of which one is plateable and the other is not, it will be possible to make 3D electrical structures directly on the component. To be applicable in the real engineering field...... the two different plastic materials in the MID structure require good bonding between them. This paper finds suitable combinations of materials for MIDs from both bond strength and metallisation view-point. Plastic parts were made by two-shot injection moulding and the effects of some important process...

  9. Efficient two-component relativistic method for large systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Hiromi [Department of Chemitsry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan)

    2015-12-31

    This paper reviews a series of theoretical studies to develop efficient two-component (2c) relativistic method for large systems by the author’s group. The basic theory is the infinite-order Douglas-Kroll-Hess (IODKH) method for many-electron Dirac-Coulomb Hamiltonian. The local unitary transformation (LUT) scheme can effectively produce the 2c relativistic Hamiltonian, and the divide-and-conquer (DC) method can achieve linear-scaling of Hartree-Fock and electron correlation methods. The frozen core potential (FCP) theoretically connects model potential calculations with the all-electron ones. The accompanying coordinate expansion with a transfer recurrence relation (ACE-TRR) scheme accelerates the computations of electron repulsion integrals with high angular momenta and long contractions.

  10. No electrostatic supersolitons in two-component plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Verheest, Frank, E-mail: frank.verheest@ugent.be [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B–9000 Gent (Belgium); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Lakhina, Gurbax S., E-mail: lakhina@iigm.iigs.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India); Hellberg, Manfred A., E-mail: hellberg@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa)

    2014-06-15

    The concept of acoustic supersolitons was introduced for a very specific plasma with five constituents, and discussed only for a single set of plasma parameters. Supersolitons are characterized by having subsidiary extrema on the sides of a typical bipolar electric field signature, or by association with a root beyond double layers in the fully nonlinear Sagdeev pseudopotential description. It was subsequently found that supersolitons could exist in several plasma models having three constituent species, rather than four or five. In the present paper, it is proved that standard two-component plasma models cannot generate supersolitons, by recalling and extending results already in the literature, and by establishing the necessary properties of a more recent model.

  11. Determinants of specificity in two-component signal transduction.

    Science.gov (United States)

    Podgornaia, Anna I; Laub, Michael T

    2013-04-01

    Maintaining the faithful flow of information through signal transduction pathways is critical to the survival and proliferation of organisms. This problem is particularly challenging as many signaling proteins are part of large, paralogous families that are highly similar at the sequence and structural levels, increasing the risk of unwanted cross-talk. To detect environmental signals and process information, bacteria rely heavily on two-component signaling systems comprised of sensor histidine kinases and their cognate response regulators. Although most species encode dozens of these signaling pathways, there is relatively little cross-talk, indicating that individual pathways are well insulated and highly specific. Here, we review the molecular mechanisms that enforce this specificity. Further, we highlight recent studies that have revealed how these mechanisms evolve to accommodate the introduction of new pathways by gene duplication. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Rewiring two-component signal transduction with small RNAs.

    Science.gov (United States)

    Göpel, Yvonne; Görke, Boris

    2012-04-01

    Bacterial two-component systems (TCSs) and small regulatory RNAs (sRNAs) form densely interconnected networks that integrate and transduce information from the environment into fine-tuned changes of gene expression. Many TCSs control target genes indirectly through regulation of sRNAs, which in turn regulate gene expression by base-pairing with mRNAs or targeting a protein. Conversely, sRNAs may control TCS synthesis, thereby recruiting the TCS regulon to other regulatory networks. Several TCSs control expression of multiple homologous sRNAs providing the regulatory networks with further flexibility. These sRNAs act redundantly, additively or hierarchically on targets. The regulatory speed of sRNAs and their unique features in gene regulation make them ideal players extending the flexibility, dynamic range or timing of TCS signaling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Auxiliary phosphatases in two-component signal transduction.

    Science.gov (United States)

    Silversmith, Ruth E

    2010-04-01

    Signal termination in two-component systems occurs by loss of the phosphoryl group from the response regulator protein. This review explores our current understanding of the structures, catalytic mechanisms and means of regulation of the known families of phosphatases that catalyze response regulator dephosphorylation. The CheZ and CheC/CheX/FliY families, despite different overall structures, employ identical catalytic strategies using an amide side chain to orient a water molecule for in-line attack of the aspartyl phosphate. Spo0E phosphatases contain sequence and structural features that suggest a strategy similar to the chemotaxis phosphatases but the mechanism used by the Rap phosphatases is not yet elucidated. Identification of features shared by phosphatase families may aid in the identification of currently unrecognized classes of response regulator phosphatases. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. How insects overcome two-component plant chemical defence

    DEFF Research Database (Denmark)

    Pentzold, Stefan; Zagrobelny, Mika; Rook, Frederik;

    2014-01-01

    Insect herbivory is often restricted by glucosylated plant chemical defence compounds that are activated by plant β-glucosidases to release toxic aglucones upon plant tissue damage. Such two-component plant defences are widespread in the plant kingdom and examples of these classes of compounds...... are alkaloid, benzoxazinoid, cyanogenic and iridoid glucosides as well as glucosinolates and salicinoids. Conversely, many insects have evolved a diversity of counteradaptations to overcome this type of constitutive chemical defence. Here we discuss that such counter-adaptations occur at different time points......-component chemical defence. These adaptations include host plant choice, non-disruptive feeding guilds and various physiological adaptations as well as metabolic enzymatic strategies of the insect’s digestive system. Furthermore, insect adaptations often act in combination, may exist in both generalists...

  15. Parallel TREE code for two-component ultracold plasma analysis

    Science.gov (United States)

    Jeon, Byoungseon; Kress, Joel D.; Collins, Lee A.; Grønbech-Jensen, Niels

    2008-02-01

    The TREE method has been widely used for long-range interaction N-body problems. We have developed a parallel TREE code for two-component classical plasmas with open boundary conditions and highly non-uniform charge distributions. The program efficiently handles millions of particles evolved over long relaxation times requiring millions of time steps. Appropriate domain decomposition and dynamic data management were employed, and large-scale parallel processing was achieved using an intermediate level of granularity of domain decomposition and ghost TREE communication. Even though the computational load is not fully distributed in fine grains, high parallel efficiency was achieved for ultracold plasma systems of charged particles. As an application, we performed simulations of an ultracold neutral plasma with a half million particles and a half million time steps. For the long temporal trajectories of relaxation between heavy ions and light electrons, large configurations of ultracold plasmas can now be investigated, which was not possible in past studies.

  16. Bonding quality of Yb:Y3Al5O12/Y3Al5O12 composite crystals

    Institute of Scientific and Technical Information of China (English)

    Bourdet; GILBET; J; C; CHANTELOUP

    2008-01-01

    The Yb:Y3Al5O12/Y3Al5O12 (Yb:YAG/YAG) composite crystals were prepared by thermal bonding method with different technological parameters. The bonding in-terface of the composite crystals were observed by optical microscope, scanning electron microscope, and atom force microscope. The light scattering experiments for bonding interface of the composite crystals were measured by the laser and transmission spectra. All experiments show that high-quality Yb:YAG/YAG com-posite crystals without space transition layer and light scattering on the bonding interface can be obtained by thermal bonding method under appropriate technological parameters.

  17. Composition dependence of spontaneous crystallization of phosphosilicate glass melts during cooling

    DEFF Research Database (Denmark)

    Liu, S.J.; Zhu, C.F.; Zhang, Y.F.

    2012-01-01

    and crystallization degree. It is found that adding NaF into the studied compositions slightly decreases melt fragility and improves both the glass-forming ability and melt workability. This effect is associated with the unique structural role of NaF compared to the other modifier oxides. It is also found...... that the onset viscosity of crystallization can be used as a parameter for describing both glass-forming ability and melt workability....

  18. Batch cooling crystallization and pressure filtration of sulphathiazole: the influence of solvent composition.

    Science.gov (United States)

    Häkkinen, Antti; Pöllänen, Kati; Karjalainen, Milja; Rantanen, Jukka; Louhi-Kultanen, Marjatta; Nyström, Lars

    2005-02-01

    Currently there is a great interest in new process analytical approaches to increase the process understanding of pharmaceutical unit operations. In the present study, the influence of the solvent composition on the material properties and, further, on the filtration characteristics, of different crystal suspensions obtained through an unseeded batch-cooling-crystallization process was studied. Sulphathiazole, which is an antibiotic agent with multiple polymorphic forms, was produced by performing laboratory-scale cooling crystallization experiments from five different mixtures of water and propan-1-ol (n-propanol). The size, shape and polymorphic composition of the crystals produced were characterized with a scanning electron microscope, with a novel automated image analyser and with an X-ray powder diffractometer. All of the monitored crystal properties were found to clearly differ between the samples obtained from different solvents. The crystals produced in the batch-cooling-crystallization experiments were separated from the crystallizing solvents using a batch-type pressure Nutsche filter, and the filtration characteristics of the suspensions were evaluated on the basis of average filter-cake porosities and average specific cake resistances, which were determined from the experimentally obtained filtration data. Comparison between the calculated filtration characteristics revealed that considerable differences existed between the different suspensions, and it could therefore be concluded that the pressure-filtration process was influenced by the composition of the crystallizing solvent. The filterability of all the studied sulphathiazole suspensions was considered to be rather good on the basis of the relatively low cake porosities (0.51-0.63), which were accompanied with low average specific cake resistances [(8.7 x 10(7))-(1.2 x 10(9)) m/kg].

  19. High-Density Polyethylene and Heat-Treated Bamboo Fiber Composites: Nonisothermal Crystallization Properties

    Directory of Open Access Journals (Sweden)

    Yanjun Li

    2015-01-01

    Full Text Available The effect of heat-treated bamboo fibers (BFs on nonisothermal crystallization of high-density polyethylene (HDPE was investigated using differential scanning calorimetry under nitrogen. The Avrami-Jeziorny model was used to fit the measured crystallization data of the HDPE/BF composites and to obtain the model parameters for the crystallization process. The heat flow curves of neat HDPE and HDPE/heat-treated BF composites showed similar trends. Their crystallization mostly occurred within a temperature range between 379 K and 399 K, where HDPE turned from the liquid phase into the crystalline phase. Values of the Avrami exponent (n were in the range of 2.8~3.38. Lamellae of neat HDPE and their composites grew in a three-dimensional manner, which increased with increased heat-treatment temperature and could be attributed to the improved ability of heterogeneous nucleation and crystallization completeness. The values of the modified kinetic rate constant (KJ first increased and then decreased with increased cooling rate because the supercooling was improved by the increased number of nucleating sites. Heat-treated BF and/or a coupling agent could act as a nucleator for the crystallization of HDPE.

  20. Preparation and Crystallization of Carbon Nanotube/maleic Anhydride-grafted Polypropylene Composites

    Institute of Scientific and Technical Information of China (English)

    Xiaohua CHEN; Jing HU; Lingping ZHOU; Wenhua LI; Zi YANG; Yanguo WANG

    2008-01-01

    Carbon nanotube (CNT)/maleic acid anhydride (MAH)-grafted polypropylene (PP) composites were prepared by in situ grafting method. Infrared spectroscopy showed that the CNTs were linked to PP by MAH grafting. The microstructures and calorimetry analysis indicated that the crystallization behaviors of the filled and unfilled PP were quite different. The addition of CNTs dramatically reduced the spherulite size, increased crystallization rate and improved the thermal stability of PP. These results confirmed the expected nucleant effect of CNT on the crystallization of PP. Scanning and transmission electron microscopy showed that the CNTs were dispersed homogeneously, indicating that the original CNT bundles were separated into individual tubes by the grafting.

  1. Crystallization kinetics and thermal resistance of bamboo fiber reinforced biodegradable polymer composites

    Science.gov (United States)

    Thumsorn, S.; Srisawat, N.; On, J. Wong; Pivsa-Art, S.; Hamada, H.

    2014-05-01

    Bamboo fiber reinforced biodegradable polymer composites were prepared in this study. Biodegradable poly(butylene succinate) (PBS) was blended with bamboo fiber in a twin screw extruder with varied bamboo content from 20-0wt%. PBS/bamboo fiber composites were fabricated by compression molding process. The effect of bamboo fiber contents on properties of the composites was investigated. Non-isothermal crystallization kinetic study of the composites was investigated based on Avrami equation. The kinetic parameters indicated that bamboo fiber acted as heterogeneous nucleation and enhanced crystallinity of the composites. Bamboo fiber was well dispersed on PBS matrix and good adhered with the matrix. Tensile strength of the composites slightly deceased with adding bamboo fiber. However, tensile modulus and impact strength of the composites increased when increasing bamboo fiber contents. It can be noted that bamboo fiber promoted crystallization and crystallinity of PBS in the composites. Therefore, the composites were better in impact load transferring than neat PBS, which exhibited improving on impact performance of the composites.

  2. Modelling of the crystallization front – particles interactions in ZnAl/(SiCp composites

    Directory of Open Access Journals (Sweden)

    M. Szucki

    2015-04-01

    Full Text Available The presented work focuses on solid particle interactions with the moving crystallization front during a solidification of the metal matrix composite. The current analyses were made for silicon carbide particles and ZnAl alloy with different additions of aluminium. It was found, that the chemical composition of the metal matrix influences the behaviour of SiC particles. At the same time calculations of the forces acting on a single particle near the crystallization front were performed. For each alloy type the critical conditions that determine whether particle will be absorbed or pushed, were specified.

  3. Micromachined PIN-PMN-PT Crystal Composite Transducer for High-Frequency Intravascular Ultrasound (IVUS) Imaging

    OpenAIRE

    Li, Xiang; Ma, Teng; Tian, Jian; Han, Pengdi; Zhou, Qifa; Shung, K. Kirk

    2014-01-01

    In this paper, we report the use of micromachined PbIn1/2Nb1/2O3–PbMg1/3Nb2/3O3–PbTiO3 (PIN-PMN-PT) single crystal 1–3 composite material for intravascular ultrasound (IVUS) imaging application. The effective electromechanical coupling coefficient kt(eff) of the composite was measured to be 0.75 to 0.78. Acoustic impedance was estimated to be 20 MRayl. Based on the composite, needle-type and flexible-type IVUS transducers were fabricated. The composite transducer achieved an 86% bandwidth at ...

  4. Topological phases of two-component bosons in species-dependent artificial gauge potentials

    Science.gov (United States)

    Wu, Ying-Hai; Shi, Tao

    2016-08-01

    We study bosonic atoms with two internal states in artificial gauge potentials whose strengths are different for the two components. A series of topological phases for such systems is proposed using the composite fermion theory and the parton construction. It is found in exact diagonalization that some of the proposed states may be realized for simple contact interaction between bosons. The ground states and low-energy excitations of these states are modeled using trial wave functions. The effective field theories for these states are also constructed and reveal some interesting properties.

  5. Implementation of Two Component Advective Flow Solution in XSPEC

    CERN Document Server

    Debnath, Dipak; Mondal, Santanu

    2014-01-01

    Spectral and Temporal properties of black hole candidates can be explained reasonably well using Chakrabarti-Titarchuk solution of two component advective flow (TCAF). This model requires two accretion rates, namely, the Keplerian disk accretion rate and the halo accretion rate, the latter being composed of a sub-Keplerian, low angular momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disk rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time, we made it user friendly by implementing it into XSPEC software of GSFC/NASA. This enables any user to extract physical parameters of the accretion flows, such as two accretion rates, the shock location, the shock strength etc. for any black hole candidate. We provide some examples of fitting a few cases usin...

  6. Dynamical principles of two-component genetic oscillators.

    Directory of Open Access Journals (Sweden)

    Raúl Guantes

    2006-03-01

    Full Text Available Genetic oscillators based on the interaction of a small set of molecular components have been shown to be involved in the regulation of the cell cycle, the circadian rhythms, or the response of several signaling pathways. Uncovering the functional properties of such oscillators then becomes important for the understanding of these cellular processes and for the characterization of fundamental properties of more complex clocks. Here, we show how the dynamics of a minimal two-component oscillator is drastically affected by its genetic implementation. We consider a repressor and activator element combined in a simple logical motif. While activation is always exerted at the transcriptional level, repression is alternatively operating at the transcriptional (Design I or post-translational (Design II level. These designs display differences on basic oscillatory features and on their behavior with respect to molecular noise or entrainment by periodic signals. In particular, Design I induces oscillations with large activator amplitudes and arbitrarily small frequencies, and acts as an "integrator" of external stimuli, while Design II shows emergence of oscillations with finite, and less variable, frequencies and smaller amplitudes, and detects better frequency-encoded signals ("resonator". Similar types of stimulus response are observed in neurons, and thus this work enables us to connect very different biological contexts. These dynamical principles are relevant for the characterization of the physiological roles of simple oscillator motifs, the understanding of core machineries of complex clocks, and the bio-engineering of synthetic oscillatory circuits.

  7. Hamiltonian of a homogeneous two-component plasma.

    Science.gov (United States)

    Essén, Hanno; Nordmark, A

    2004-03-01

    The Hamiltonian of one- and two-component plasmas is calculated in the negligible radiation Darwin approximation. Since the Hamiltonian is the phase space energy of the system its form indicates, according to statistical mechanics, the nature of the thermal equilibrium that plasmas strive to attain. The main issue is the length scale of the magnetic interaction energy. In the past a screening length lambda=1/square root of r(e)n], with n number density and r(e) classical electron radius, has been derived. We address the question whether the corresponding longer screening range obtained from the classical proton radius is physically relevant and the answer is affirmative. Starting from the Darwin Lagrangian it is nontrivial to find the Darwin Hamiltonian of a macroscopic system. For a homogeneous system we resolve the difficulty by temporarily approximating the particle number density by a smooth constant density. This leads to Yukawa-type screened vector potential. The nontrivial problem of finding the corresponding, divergence free, Coulomb gauge version is solved.

  8. A minimal model for two-component dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Esch, Sonja; Klasen, Michael; Yaguna, Carlos E. [Institut fuer theoretische Physik, Universitaet Muenster, Wilhelm-Klemm-Strasse 9,D-48149 Muenster (Germany)

    2015-07-01

    We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a Z{sub 2} symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatible with all present bounds and examine their direct detection prospects at planned experiments. A generic feature of this model is that both particles give rise to observable signals in 1-ton direct detection experiments. In fact, such experiments will be able to probe even a subdominant dark matter component at the percent level.

  9. A minimal model for two-component dark matter

    CERN Document Server

    Esch, Sonja; Yaguna, Carlos E

    2014-01-01

    We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a $Z_2$ symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatibl...

  10. A minimal model for two-component dark matter

    Science.gov (United States)

    Esch, Sonja; Klasen, Michael; Yaguna, Carlos E.

    2014-09-01

    We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a Z 2 symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatible with all present bounds and examine their direct detection prospects at planned experiments. A generic feature of this model is that both particles give rise to observable signals in 1-ton direct detection experiments. In fact, such experiments will be able to probe even a subdominant dark matter component at the percent level.

  11. Two-component perfect fluid in FRW universe

    CERN Document Server

    ,

    2012-01-01

    We propose the cosmological model which allows to describe on equal footing the evolution of matter in the universe on the time interval from the inflation till the domination of dark energy. The matter is considered as a two-component perfect fluid imitated by homogeneous scalar fields between which there is energy exchange. Dark energy is represented by the cosmological constant, which is supposed invariable during the whole evolution of the universe. The matter changes its equation of state with time, so that the era of radiation domination in the early universe smoothly passes into the era of a pressureless gas, which then passes into the late-time epoch, when the matter is represented by a gas of low-velocity cosmic strings. The inflationary phase is described as an analytic continuation of the energy density in the very early universe into the region of small negative values of the parameter which characterizes typical time of energy transfer from one matter component to another. The Hubble expansion ra...

  12. FORMATION MECHANISM OF TITANIUM CARBIDE CRYSTAL IN LASER SYNTHESIZED METAL-CERAMIC COMPOSITE COATING

    OpenAIRE

    BAOSHUAI DU; ZHONGWEN. ZHANG; XINHONG WANG; ZENGDA ZOU

    2011-01-01

    In situ titanium carbide reinforced iron-based composite coating was deposited on mild carbon steel using laser surface engineering (LSE) with ferrotitanium and graphite as precursor. The microstructure and phase constituents of the deposited coating were characterized. Formation mechanism of titanium carbide crystal in the composite coating was elucidated by correlating the morphology of titanium carbide and the thermal cycle experienced by the precursor during the laser treatment. It was de...

  13. Scaling effects of relaxor-PbTiO(3) crystals and composites for high frequency ultrasound.

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Shrout, Thomas R

    2010-06-15

    The dielectric and piezoelectric properties of Pb(Mg(13)Nb(23))O(3)-PbTiO(3) (PMN-PT) and Pb(In(12)Nb(12))O(3)-Pb(Mg(13)Nb(23))O(3)-PbTiO(3) (PIN-PMN-PT) ferroelectric single crystals were investigated as a function of thicknessscale in monolithic and piezoelectricpolymer 1-3 composites. For the case of PMN-PT single crystals, the dielectric (epsilon33Tepsilon0) and electromechanical properties (k(33)) were found to significantly decrease with decreasing thickness (500-40 mum), while minimal thickness dependency was observed for PIN-PMN-PT single crystals. Temperature dependent dielectric behavior of the crystals suggested that the observed thickness dependence in PMN-PT was strongly related to their relatively large domain size (>10-20 mum). As anticipated, 1-3 composite comprised of PIN-PMN-PT crystals exhibited superior properties to that of PMN-PT composite at high frequencies (>20 MHz). However, the observed couplings, being on the order of 80%, were disappointedly low when compared to their monolithic counterparts, the result of surface damage introduced during the dicing process, as evidenced by the broadened [002] peaks in the x-ray diffraction pattern.

  14. EFFECTS OF COUPLING AGENTS ON THE CRYSTALLIZATION BEHAVIOR OF PP/T-ZnOw COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The objectives of this paper are to understand the crystallization behavior of polypropylene (PP) composites with surface modified tetra-needle-shaped zinc oxide whisker (T-ZnOw). T-ZnOw was surface modified with different coupling agents, such as silane coupling agents (KH-550, KH-560) and titanate coupling agent (NDZ-105), in order to improve the compatibility between PP and T-ZnOw. DSC and POM were used to characterize the melt and crystallization behavior and the crystalline structures of the composites, respectively. The results show that the surface modified T-ZnOw acts as a nucleating agent of PP crystallization, depending on the coupling agent used for modification. KH-550 and KH-560 have more apparent role in improving the interfacial interaction than NDZ-105 and induce PP crystallization at higher temperature and with smaller spherulites size. The results also suggest that the crystallization behavior depends on not only the content of coupling agent, but also the content of the surface modified T-ZnOw used in the composites.

  15. Two component systems: physiological effect of a third component.

    Directory of Open Access Journals (Sweden)

    Baldiri Salvado

    Full Text Available Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS. These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK and by a response regulator (RR that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call "third component" on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible.

  16. Three-dimensional vector recording in polarization sensitive liquid crystal composites by using axisymmetrically polarized beam.

    Science.gov (United States)

    Sakamoto, Moritsugu; Sasaki, Tomoyuki; Noda, Kohei; Tien, Tran Minh; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2016-02-01

    Three-dimensional anisotropic structures were fabricated by a recording axisymmetrically polarized beam in azobenzene (azo)-dye doped liquid crystal polymer composites. Polarization and wavefront modulation properties of fabricated anisotropic structures are investigated by experimentally and theoretically analyzing the diffraction properties. Photo-induced anisotropic structures would be utilized to generate singular light waves, such as optical and polarization vortices.

  17. Micromachined PIN-PMN-PT crystal composite transducer for high-frequency intravascular ultrasound (IVUS) imaging.

    Science.gov (United States)

    Li, Xiang; Ma, Teng; Tian, Jian; Han, Pengdi; Zhou, Qifa; Shung, K Kirk

    2014-07-01

    In this paper, we report the use of micromachined PbIn1/2Nb1/2O3-PbMg1/3Nb2/3O3-PbTiO 3 (PIN-PMNPT) single crystal 1-3 composite material for intravascular ultrasound (IVUS) imaging application. The effective electromechanical coupling coefficient kt(eff) of the composite was measured to be 0.75 to 0.78. Acoustic impedance was estimated to be 20 MRayl. Based on the composite, needle-type and flexible-type IVUS transducers were fabricated. The composite transducer achieved an 86% bandwidth at the center frequency of 41 MHz, which resulted in a 43 μm axial resolution. Ex vivo IVUS imaging was conducted to demonstrate the improvement of axial resolution. The composite transducer was capable of identifying the three layers of a cadaver coronary artery specimen with high resolution. The PIN-PMN-PT-based composite has superior piezoelectric properties comparable to PMN-PT-based composite and its thermal stability is higher than PMN-PT. PIN-PMN-PT crystal can be an alternative approach for fabricating high-frequency composite, instead of using PMN-PT.

  18. Micromachined PIN-PMN-PT Crystal Composite Transducer for High-Frequency Intravascular Ultrasound (IVUS) Imaging

    Science.gov (United States)

    Li, Xiang; Ma, Teng; Tian, Jian; Han, Pengdi; Zhou, Qifa; Shung, K. Kirk

    2015-01-01

    In this paper, we report the use of micromachined PbIn1/2Nb1/2O3–PbMg1/3Nb2/3O3–PbTiO3 (PIN-PMN-PT) single crystal 1–3 composite material for intravascular ultrasound (IVUS) imaging application. The effective electromechanical coupling coefficient kt(eff) of the composite was measured to be 0.75 to 0.78. Acoustic impedance was estimated to be 20 MRayl. Based on the composite, needle-type and flexible-type IVUS transducers were fabricated. The composite transducer achieved an 86% bandwidth at the center frequency of 41 MHz, which resulted in a 43 μm axial resolution. Ex vivo IVUS imaging was conducted to demonstrate the improvement of axial resolution. The composite transducer was capable of identifying the three layers of a cadaver coronary artery specimen with high resolution. The PIN-PMN-PT-based composite has superior piezoelectric properties comparable to PMN-PT-based composite and its thermal stability is higher than PMN-PT. PIN-PMN-PT crystal can be an alternative approach for fabricating high-frequency composite, instead of using PMN-PT. PMID:24960706

  19. Probing the homogeneity of the isotopic composition and molar mass of the ‘Avogadro’-crystal

    Science.gov (United States)

    Pramann, Axel; Lee, Kyoung-Seok; Noordmann, Janine; Rienitz, Olaf

    2015-12-01

    Improved measurements on silicon crystal samples highly enriched in the 28Si isotope (known as ‘Si28’ or AVO28 crystal material) have been carried out at PTB to investigate local isotopic variations in the original crystal. This material was used for the determination of the Avogadro constant NA and therefore plays an important role in the upcoming redefinition of the SI units kilogram and mole, using fundamental constants. Subsamples of the original crystal have been extensively studied over the past few years at the National Research Council (NRC, Canada), the National Metrology Institute of Japan (NMIJ, Japan), the National Institute of Standards and Technology (NIST, USA), the National Institute of Metrology (NIM, People’s Republic of China), and multiple times at PTB. In this study, four to five discrete, but adjacent samples were taken from three distinct axial positions of the crystal to obtain a more systematic and comprehensive understanding of the distribution of the isotopic composition and molar mass throughout the crystal. Moreover, improved state-of-the-art techniques in the experimental measurements as well as the evaluation approach and the determination of the calibration factors were utilized. The average molar mass of the measured samples is M  =  27.976 970 12(12) g mol-1 with a relative combined uncertainty uc,rel(M)  =  4.4 ×10-9. This value is in astounding agreement with the values of single samples measured and published by NIST, NMIJ, and PTB. With respect to the associated uncertainties, no significant variations in the molar mass and the isotopic composition as a function of the sample position in the boule were observed and thus could not be traced back to an inherent property of the crystal. This means that the crystal is not only ‘homogeneous’ with respect to molar mass but also has predominantly homogeneous distribution of the three stable Si isotopes.

  20. The Fractional Virial Potential Energy in Two-Component Systems

    Directory of Open Access Journals (Sweden)

    Caimmi, R.

    2008-12-01

    Full Text Available Two-component systems are conceived as macrogases, and the related equation of state is expressed using the virial theorem for subsystems, under the restriction of homeoidally striated density profiles. Explicit calculations are performed for a useful reference case and a few cases of astrophysical interest, both with and without truncation radius. Shallower density profiles are found to yield an equation of state, $phi=phi(y,m$, characterized (for assigned values of the fractional mass, $m=M_j/ M_i$ by the occurrence of two extremum points, a minimum and a maximum, as found in an earlier attempt. Steeper density profiles produce a similar equation of state, which implies that a special value of $m$ is related to a critical curve where the above mentioned extremum points reduce to a single horizontal inflexion point, and curves below the critical one show no extremum points. The similarity of the isofractional mass curves to van der Waals' isothermal curves, suggests the possibility of a phase transition in a bell-shaped region of the $({sf O}yphi$ plane, where the fractional truncation radius along a selected direction is $y=R_j/R_i$, and the fractional virial potential energy is $phi=(E_{ji}_mathrm{vir}/(E_{ij}_mathrm{vir}$. Further investigation is devoted to mass distributions described by Hernquist (1990 density profiles, for which an additional relation can be used to represent a sample of $N=16$ elliptical galaxies (EGs on the $({sf O}yphi$ plane. Even if the evolution of elliptical galaxies and their hosting dark matter (DM haloes, in the light of the model, has been characterized by equal fractional mass, $m$, and equal scaled truncation radius, or concentration, $Xi_u=R_u/r_u^dagger$, $u=i,j$, still it cannot be considered as strictly homologous, due to different values of fractional truncation radii, $y$, or fractional scaling radii, $y^dagger=r_j^dagger/r_i^dagger$, deduced from sample objects.

  1. Polarization Raman Microscopic Study of Molecular Alignment Behavior in Liquid Crystal/Polymer Composite Films

    Science.gov (United States)

    Murashige, Takeshi; Fujikake, Hideo; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2005-12-01

    We clarified that the molecular alignment of aggregated polymers is partially synchronized with liquid crystal (LC) director reorientation in an LC/polymer composite film. The molecular alignment behavior in composite films with LC- and polymer-rich regions formed by photopolymerization-induced phase separation was investigated using polarization Raman spectral microscopy. Raman scattering intensity induced by aligned side chains of polymers in the LC-rich region changed with LC director reorientation when voltage was applied to the composite film. It was confirmed for the first time that polymers capable of movement are formed in the LC-rich region.

  2. Liquid-crystal composites with controlled photoluminescence of CdSe/ZnS semiconductor quantum rods

    Science.gov (United States)

    Danilov, V. V.; Artem'ev, M. V.; Baranov, A. V.; Orlova, A. O.; Mukhina, M. V.; Khrebtov, A. I.

    2011-06-01

    Liquid-crystal (LC) composites based on a combination of different acrylates and pentylcyanobiphenyl and containing CdSe/ZnS semiconductor quantum nanorods have been investigated. Samples of electro-optical cells with planar or homeotropic structures (depending on the acrylate type) have been obtained. The morphology of LC composite formation has been studied using luminescence techniques. It is shown that these composites are gel-like LC media, where the formation of dispersed and network structures in the cells plays a stabilizing role. The role of the electron transfer reactions during polymerization and the features of the kinetics of the Freedericksz effect (reorientation in an electric field) are discussed.

  3. Neutron scattering as a probe of liquid crystal polymer-reinforced composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, R.P.; Douglas, E.P.; Benicewicz, B.C.; Langlois, D.A.

    1995-12-31

    This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research project sought to obtain nanoscale and molecular level information on the mechanism of reinforcement in liquid crystal polymer (LCP)-reinforced composites, to realize molecular-reinforced LCP composites, and to test the validity of the concept of molecular reinforcement. Small-angle neutron scattering was used to study the structures in the ternary phase diagram of LCP with liquid crystal thermosets and solvent on length scales ranging from 1-100 nm. The goal of the scattering measurements is to understand the phase morphology and degree of segregation of the reinforcing and matrix components. This information helps elucidate the physics of self assembly in these systems. This work provides an experimental basis for a microengineering approach to composites of vastly improved properties.

  4. Crystallization behavior of three-dimensional silica fiber reinforced silicon nitride composite

    Science.gov (United States)

    Qi, Gongjin; Zhang, Changrui; Hu, Haifeng; Cao, Feng; Wang, Siqing; Jiang, Yonggang; Li, Bin

    2005-10-01

    The crystallization behavior of a new type of ceramic matrix composites, three-dimensional silica fiber reinforced silicon nitride matrix composite prepared by perhydropolysilazane infiltration and pyrolysis, was investigated by X-ray diffractometry and Fourier transform infrared spectroscopy. With the post-annealing treatment of the amorphous as-received composite at elevated tempertures of 1400 and 1600 °C in nitrogen atmosphere, there was remarkable suppression of the crystallization of polymer-derived silicon nitride ceramic matrix into α-Si 3N 4 and silica fibers into α-cristobalite, which was probably attributed to the phase of silicon oxynitrides originating from the strong fiber/matrix interfacial chemical reaction.

  5. Electrical percolation and crystallization kinetics of semi-crystalline polystyrene composites filled with graphene nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chi, E-mail: chiwang@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Chiu, Yen-Chang [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Huang, Chien-Lin [Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan (China)

    2015-08-15

    Syndiotactic polystyrene (sPS) is a semi-crystalline polymer with high melting temperature and good mechanical strength. Composites of sPS filled with different contents of graphene nanosheets (GNS) are prepared by coagulation method. Two types of GNS with different thicknesses (denoted as G1 and G10) are studied to unveil the effect of aspect ratio on electrical conductivity and crystallization kinetics of the composite. Atomic force microscopy and transmission electron microscopy (TEM) show that G1 is a wrinkled sheet with an average thickness of ∼2 nm and that G10 is a smooth flake with a thickness of ∼50 nm; both possess a similar basal dimension of ∼5 μm. The percolation thresholds for electrical conductivity (φ{sub c}) of the G1-filled and G10-filled composites are 0.46 and 3.84 vol%, respectively. At a given GNS content, the electrical conductivity of the G1-filled composites is higher than that of the G10-filled composites. Both findings are attributed to the larger GNS aspect ratio of G1 compared with G10. The deduced φ{sub c} of the G1-filled composites is significantly larger than that of GNS-filled amorphous atactic PS composites, indicating that the crystallizability of the matrix has an important influence on formation of GNS networks. Both G1 and G10 nanofillers are found to be good nucleating agents for the heterogeneous nucleation of sPS. Because of its wrinkled surface, G1 is less effective than G10 in inducing sPS crystallization. Compared with 2D sheet-like GNS, 1D CNTs are more effective in enhancing sPS crystallization through surface-induced nucleation as well as the chain-tube wrapping behavior in the sPS/CNT composites. - Graphical abstract: Display Omitted - Highlights: • Composites of sPS/GNS and aPS/GNS have been compared. • sPS/GNS composites have a higher percolation threshold for electrical conductivity. • Composites containing GNS with a larger aspect ratio have a lower percolation threshold. • To enhance s

  6. Fabrication of sisal fibers/epoxy composites with liquid crystals polymer grafted on sisal fibers

    Science.gov (United States)

    Luo, Q. Y.; Lu, S. R.; Song, L. F.; Li, Y. Q.

    2016-07-01

    In this word, microcrystalline cellulose fibers (MCFs), extracted from sisal fibers, were treated with function end-group hyperbranched liquid crystals (HLP). This work brought some insights into the successful surface modification in epoxy composite with HLP. The HLP-MCFs/epoxy composites are studied systematically. The HLP - MCFs/epoxy composites were studied by Fourier transform infrared spectroscopy (FT-IR), polarizing microscope (POM), X-ray photoelectron spectroscopy (XPS) and mechanical properties analysis. The results reveal that the reinforcement of EP composites was carried out by adding HLP-MCFs. In particular, with 1.0 wt% filler loading, the flexural strength, tensile strength, impact strength and flexural modulus of the HLP-MCFs/EP composites were increased by 60%, 69%, 130%, and 192%, respectively. It anticipates that our current work exploits more efficient methods to overcome the few nature fiber/polymer (NPC) adhesion in the interface region and provides implications for the engineering applications of the development of NPC.

  7. The crystallization of (NiCu)ZrTiAlSi glass/crystalline composite

    Energy Technology Data Exchange (ETDEWEB)

    Czeppe, T.; Sypien, A. [Institute of Metallurgy and Materials Science PAS, 25 Reymonta St, 30-059 Krakow (Poland); Ochin, P. [Centre d' Etudes de Chimie Metallurgique, UPR 2801, 15, Rue G. Urbain, 94407 Vitry-sur-Seine, Cedex (France); Anastassova, S. [University of Sofia, Faculty of Chemistry, 1, J. Bourchier Blvd., Sofia 1164 (Bulgaria)

    2007-06-15

    Alloys of composition (Ni{sub 1-x}Cu{sub x}){sub 60}Zr{sub 18}Ti{sub 13}A1{sub 5}Si{sub 4} were investigated in the form of ribbons and massive samples. The microstructure of the massive samples consists of dendritic crystals in the amorphous or nanocrystalline matrix. The amount of the amorphous phase is the lowest in the sample with the highest Cu content. The segregation in the liquid phase, leading to the local differences in density and the composition of the crystallizing dendrites in the samples crystallized in the copper mould was shown. The typical compositions of the multi-component crystals could be distinguished; one with the increased content of aluminum, the second with the high content of silicon and third, with the high content of (NiCu) and (ZrTi). The cubic phase Ni(Cu)Ti(Zr) with Cu and Zr dissolved could be identified. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  8. Crystallization and dielectric properties of lead-free glass-ceramic composites with Gd_2O_3 addition

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Lead-free glass-ceramic composites in barium sodium niobate silica system with Gd2O3 addition were synthesized through melt-casting fol-lowed by controlled crystallization technique. Crystallization and dielectric properties of the Gd2O3 adding glass-ceramic composites were investigated. With the increase in the concentration of Gd2O3, the glass transition temperature and the crystallization temperature of the pre-cursor glass shift towards the higher temperature. The crystallization behavior that occurred ...

  9. Crystal morphology and carbon/carbon composition of solid oxalate in cacti.

    Science.gov (United States)

    Rivera, E R; Smith, B N

    1979-12-01

    Morphology, crystal structure, and carbon isotopic composition of calcium oxalate from representative species from the family Cactaceae were determined using scanning electron microscopy, x-ray diffraction, and isotope ratio mass spectrometry. Crystals from one species in the Opuntieae tribe of the Cactaceae were druses with acute points composed of the monohydrate form of calcium oxalate (whewellite). Crystals from three species in the Cereeae tribe were the dihydrate form of calcium oxalate (weddellite) forming druses made up of tetragonal and isodiametric crystallites. The oxalate was relatively enriched in (13)C isotope (-7.3 to - 8.7 per thousand) compared with woody fibers (-13.3 to 14.1 per thousand) from the same plants.

  10. Crystal Morphology and 13Carbon/12Carbon Composition of Solid Oxalate in Cacti 1

    Science.gov (United States)

    Rivera, E. R.; Smith, B. N.

    1979-01-01

    Morphology, crystal structure, and carbon isotopic composition of calcium oxalate from representative species from the family Cactaceae were determined using scanning electron microscopy, x-ray diffraction, and isotope ratio mass spectrometry. Crystals from one species in the Opuntieae tribe of the Cactaceae were druses with acute points composed of the monohydrate form of calcium oxalate (whewellite). Crystals from three species in the Cereeae tribe were the dihydrate form of calcium oxalate (weddellite) forming druses made up of tetragonal and isodiametric crystallites. The oxalate was relatively enriched in 13C isotope (-7.3 to - 8.7 ‰) compared with woody fibers (-13.3 to 14.1 ‰) from the same plants. Images PMID:16661115

  11. Priority compositions of boron carbide crystals obtained by self-propagating high-temperature synthesis

    Science.gov (United States)

    Ponomarev, V. I.; Konovalikhin, S. V.; Kovalev, I. D.; Vershinnikov, V. I.

    2015-09-01

    Splitting of reflections from boron carbide has been found for the first time by an X-ray diffraction study of polycrystalline mixture of boron carbide В15- х С х , (1.5 ≤ x ≤ 3) and its magnesium derivative C4B25Mg1.42. An analysis of reflection profiles shows that this splitting is due to the presence of boron carbide phases of different compositions in the sample, which are formed during crystal growth. The composition changes from В12.9С2.1 to В12.4С2.6.

  12. Glass formation and crystallization of high lead content PbO-B2O3 compositions

    Science.gov (United States)

    Weinberg, Michael C.; Smith, Gary L.; Neilson, George F.

    1986-01-01

    The glass-forming and undercooling ability of PbO-B2O3 melts in the 2PbO.B2O3 to 4PbO.B2O3 composition range were studied. The glass formation propensities were investigated as a function of cooling rate and sample mass. A qualitative investigation of the crystallization process(es) preventing glass formation was made, and it was concluded that under normal circumstances heterogeneous nucleation was the common occurrence. Hence, it was concluded that such compositions are prime candidates for containerless experiments aboard the Space Shuttle.

  13. Comparative analysis of lipid composition and thermal, polymorphic, and crystallization behaviors of granular crystals formed in beef tallow and palm oil.

    Science.gov (United States)

    Meng, Zong; Liu, Yuan-Fa; Jin, Qing-Zhe; Huang, Jian-Hua; Song, Zhi-Hua; Wang, Feng-Yan; Wang, Xing-Guo

    2011-02-23

    Six rectangular block all beef tallow (BT)-based and all palm oil (PO)-based model shortenings prepared on a laboratory scale, respectively denoted BTMS and POMS, were stored under temperature fluctuation cycles of 5-20 °C until granular crystals were observed. The lipid composition and thermal, polymorphic, and isothermal crystallization behaviors of the granular crystals and their surrounding materials separated from BTMS and POMS, respectively, were evaluated. The changes of nanostructure including the aggregation of high-melting triacylglycerols (TAGs) and polymorphic transformation from β' form of double chain length structures to complicated crystal structures, in which the β and β' form crystals of triple and double chain length structures simultaneously coexist, had occurred in granular crystals compared with surrounding materials, whether in BTMS or in POMS. Consequently, a slower crystallization rate appeared in granular crystal parts of both model shortenings noted above, which would yield larger and fewer crystals indicated by the Avrami model analysis that would further aggregate to form large granular crystals.

  14. Cavity QED on a nanofiber using a composite photonic crystal cavity

    CERN Document Server

    Yalla, Ramachandrarao; Nayak, Kali P; Hakuta, Kohzo

    2014-01-01

    We demonstrate cavity QED conditions in the Purcell regime for single quantum emitters on the surface of an optical nanofiber. The cavity is formed by combining an optical nanofiber and a nanofabricated grating to create a composite photonic crystal cavity. Using this technique, significant enhancement of the spontaneous emission rate into the nanofiber guided modes is observed for single quantum dots. Our results pave the way for enhanced on-fiber light-matter interfaces with clear applications to quantum networks.

  15. Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity.

    Science.gov (United States)

    Yalla, Ramachandrarao; Sadgrove, Mark; Nayak, Kali P; Hakuta, Kohzo

    2014-10-01

    We demonstrate cavity QED conditions in the Purcell regime for single quantum emitters on the surface of an optical nanofiber. The cavity is formed by combining an optical nanofiber and a nanofabricated grating to create a composite photonic crystal cavity. By using this technique, significant enhancement of the spontaneous emission rate into the nanofiber guided modes is observed for single quantum dots. Our results pave the way for enhanced on-fiber light-matter interfaces with clear applications to quantum networks.

  16. Composition dependent dynamics of biexciton localization in AlxGa1-xN mixed crystals

    OpenAIRE

    2009-01-01

    We report the localization-dependent dynamics of biexcitons in AlxGa1−xN mixed crystals under exciton resonant excitation at low temperatures. After intense laser excitation, biexcitons rapidly localize into the band-tail states. The formation time of localized biexcitons becomes shorter with increasing Al composition. Both the inhomogeneous linewidth and the binding energy of biexcitons increase with the inhomogeneous linewidth of excitons. The biexciton binding energy is enhanced by the res...

  17. A comparative investigation on strain induced crystallization for graphene and carbon nanotubes filled natural rubber composites

    Directory of Open Access Journals (Sweden)

    D. H. Fu

    2015-07-01

    Full Text Available Natural rubber containing graphene and carbon nanotubes (CNTs composites were prepared by ultrasonicallyassisted latex mixing. Natural rubber filled by both graphene and CNTs show significant enhanced tensile strength, while graphene exhibits a better reinforcing effect than CNTs. Strain-induced crystallization in natural rubber composites during stretching was determined by synchrotron wide-angle X-ray diffraction. With the addition of CNTs or graphene, the crystallization for natural rubber occurs at a lower strain compared to unfilled natural rubber, and the strain amplification effects were observed. The incorporation of graphene results in a faster strain-induced crystallization rate and a higher crystallinity compared to CNTs. The entanglement-bound rubber tube model was used to analyze the chain network structure and determine the network parameters of composites. The results show that the addition of graphene or CNTs has an influence on the molecular network structure and improves the contribution of entanglement to the conformational constraint, while graphene has a more marked effect than CNTs.

  18. In-situ observation of nucleated polymer crystallization in polyoxymethylene sandwich composites

    Directory of Open Access Journals (Sweden)

    Miroslav eSlouf

    2015-03-01

    Full Text Available We introduce a dynamic sandwich method, which can be used for in-situ observation and quantification of polymer crystallization nucleated by micro/nanoparticles. The method was applied on polyoxymethylene (POM composites with three nucleating agents: talc micropowder (POM/mTalc, chalk nanopowder (POM/nChalk and titanate nanotubes (POM/TiNT. The nucleating agents were deposited between polymer films, the resulting sandwich samples were consolidated by thermal treatment, and their microtomed cross-sections were observed during isothermal crystallization by polarized light microscopy. As the intensity of polarized light was shown to be proportional to the relative crystallinity, the PLM results could be fitted to Avrami equation and the nucleating activity of all investigated particles could be quantified by means of Avrami parameters (n, k. The crystallization half-times increased reproducibly in the following order: POM/nChalk < POM/mTalc < POM/TiNT ~ POM. For strong nucleating agents (mTalc, nChalk, the crystallization kinetics corresponded to spontaneous crystallization starting from central nucleating layer, which was verified by computer simulations. The results were also confirmed by DSC. We concluded that the sandwich method is an efficient microscopic technique for detailed evaluation of nucleating activity of arbitrary micro/nanoparticles in polymer systems.

  19. Adhesion-induced phase behavior of two-component membranes and vesicles.

    Science.gov (United States)

    Rouhiparkouhi, Tahereh; Weikl, Thomas R; Discher, Dennis E; Lipowsky, Reinhard

    2013-01-22

    The interplay of adhesion and phase separation is studied theoretically for two-component membranes that can phase separate into two fluid phases such as liquid-ordered and liquid-disordered phases. Many adhesion geometries provide two different environments for these membranes and then partition the membranes into two segments that differ in their composition. Examples are provided by adhering vesicles, by hole- or pore-spanning membranes, and by membranes supported by chemically patterned surfaces. Generalizing a lattice model for binary mixtures to these adhesion geometries, we show that the phase behavior of the adhering membranes depends, apart from composition and temperature, on two additional parameters, the area fraction of one membrane segment and the affinity contrast between the two segments. For the generic case of non-vanishing affinity contrast, the adhering membranes undergo two distinct phase transitions and the phase diagrams in the composition/temperature plane have a generic topology that consists of two two-phase coexistence regions separated by an intermediate one-phase region. As a consequence, phase separation and domain formation is predicted to occur separately in each of the two membrane segments but not in both segments simultaneously. Furthermore, adhesion is also predicted to suppress the phase separation process for certain regions of the phase diagrams. These generic features of the adhesion-induced phase behavior are accessible to experiment.

  20. The impact of nanoclay on the crystal growth kinetics and morphology of biodegradable poly(ethylene succinate) composite

    CSIR Research Space (South Africa)

    Bandyopadhyay, J

    2012-07-01

    Full Text Available The impact of nanoclay on the isothermal crystal growth kinetics and morphology of biodegradable poly(ethylene succinate) (PES) is reported. A PES composite (PESNC) containing 5 wt% organically modified montmorillonite, was prepared via solvent...

  1. Crystal nucleation in binary hard-sphere mixtures: the effect of order parameter on the cluster composition

    NARCIS (Netherlands)

    Ni, R.; Smallenburg, F.; Filion, L.C.; Dijkstra, M.

    2011-01-01

    We study crystal nucleation in a binary mixture of hard spheres and investigate the composition and size of the (non)critical clusters using Monte Carlo simulations. In order to study nucleation of a crystal phase in computer simulations, a one-dimensional order parameter is usually defined to ident

  2. Composite Fermion Theory for the Fractional Quantum Hall Wigner Crystal State

    Science.gov (United States)

    Narevich, Romanas; Murthy, Ganpathy; Fertig, Herbert

    2000-03-01

    The low filling fraction Quantum Hall Effect is reexamined using the recent hamiltonian composite fermion theory developed by Shankar and Murthy [SM] (R. Shankar and G. Murthy, Phys. Rev. Lett. 79), 4437, (1997); G. Murthy and R. Shankar, Chapter 4 of "Composite Fermions", O. Heinonen, Ed. (World Scientific, Teaneck, NJ, 1998).. Previous studies have either concentrated on Wigner crystal states of electrons in the Hartree-Fock approximation (D. Yoshioka and H. Fukuyama, J. Phys. Soc. Japan 47), 394 (1979); D. Yoshioka and P. A. Lee, Phys. Rev. B 27, 4986 (1983); A. H. MacDonald, Phys. Rev. B 30, 4392 (1984); R. Cote and A. H. MacDonald, Phys. Rev. B 44, 8759 (1991). or studied correlated crystal states numerically (P. K. Lam and S. M. Girvin, Phys. Rev. B 30), 473 (1984); H. Yi and H. A. Fertig, Phys. Rev. B, 58, 4019 (1998).. Using the new SM approach we study the correlated states as Hartree-Fock states of composite fermions, which is known to work reasonably well for translationally invariant composite fermion states. We present the calculation of the gaps for the stable states that we found as well as the dispersion relations of the collective modes.

  3. Theoretical analysis and experimental research on thermal focal length of a YVO4/Nd:YVO4 composite crystal

    Institute of Scientific and Technical Information of China (English)

    Zhou Cheng

    2009-01-01

    This paper investigates the temperature field distribution and thermal focal length within a laser diode array(LDA)end-pumped YVO4/Nd:YVO4 rectangular composite crystal.A general expression of the temperature field distribution within the Nd:YVO4 rectangular crystal was obtained by analysing the characteristics of the Nd:YVO4 crystal and solving the Poisson equation with boundary conditions.The temperature field distributions in the Nd:YVO4 rectangular crystal for the YVO4/Nd:YVO4 composite crystal and the Nd:YVO4 single crystal are researched respectively.Calculating the thermal focal length within the Nd:YVO4 rectangular crystal was done by an analysis of the additional optical path differences(OPD)caused by heat,which was very identical with experimental results in this paper.Research results show that the maximum relative temperature on the rear face of the Nd:YVO4 crystal in the composite crystal is 150 K and the thermal focal length is 35.7 mm when the output power of the LDA is 22 W.In the same circumstances,the experimental value of the thermal focal length is 37.4 mm.So the relative error between the theoretical analysis and the experimental result is only 4.5%.With the same conditions,the thermal focal length of the Nd:YVO4 single crystal is 18.5 mm.So the relative rate of the thermal focal length between the YVO4/Nd:YVO4 crystal and the Nd:YVO4 crystal is 93%.So,the thermal stability of the output power and the beam quality of the YVO4/Nd:YVO4 laser is more advantageous than the laser with Nd:YVO4 single crystal.

  4. VIII. NIH Toolbox Cognition Battery (CB): composite scores of crystallized, fluid, and overall cognition.

    Science.gov (United States)

    Akshoomoff, Natacha; Beaumont, Jennifer L; Bauer, Patricia J; Dikmen, Sureyya S; Gershon, Richard C; Mungas, Dan; Slotkin, Jerry; Tulsky, David; Weintraub, Sandra; Zelazo, Philip David; Heaton, Robert K

    2013-08-01

    The NIH Toolbox Cognition Battery (CB) includes 7 tests covering 6 cognitive abilities. This chapter describes the psychometric characteristics in children ages 3-15 years of a total summary score and composite scores reflecting two major types of cognition: "crystallized" (more dependent upon past learning experiences) and "fluid" (capacity for new learning and information processing in novel situations). Both types of cognition are considered important in everyday functioning, but are thought to be differently affected by brain health status throughout life, from early childhood through older adulthood. All three Toolbox composite scores showed excellent test-retest reliability, robust developmental effects across the childhood age range considered here, and strong correlations with established measures of similar abilities. Additional preliminary evidence of validity includes significant associations between all three Toolbox composite scores and maternal reports of children's health status and school performance.

  5. Polypropylene/Graphene and Polypropylene/Carbon Fiber Conductive Composites: Mechanical, Crystallization and Electromagnetic Properties

    Directory of Open Access Journals (Sweden)

    Chien-Lin Huang

    2015-11-01

    Full Text Available This study aims to examine the properties of composites that different carbon materials with different measurements can reinforce. Using a melt compounding method, this study combines polypropylene (PP and graphene nano-sheets (GNs or carbon fiber (CF to make PP/GNs and PP/CF conductive composites, respectively. The DSC results and optical microscopic observation show that both GNs and CF enable PP to crystalize at a high temperature. The tensile modulus of PP/GNs and PP/CF conductive composites remarkably increases as a result of the increasing content of conductive fillers. The tensile strength of the PP/GNs conductive composites is inversely proportional to the loading level of GNs. Containing 20 wt% of GNs, the PP/GNs conductive composites have an optimal conductivity of 0.36 S/m and an optimal EMI SE of 13 dB. PP/CF conductive composites have an optimal conductivity of 10−6 S/m when composed of no less than 3 wt% of CF, and an optimal EMI SE of 25 dB when composed of 20 wt% of CF.

  6. Apatite- and monazite-bearing glass-crystal composites for the immobilization of low-level nuclear and hazardous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Wronkiewicz, D.J.; Wolf, S.F.; DiSanto, T.S.

    1995-12-31

    This study demonstrates that glass-crystal composite waste forms can be produced from waste streams containing high proportions of phosphorus, transition metals, and/or halides. The crystalline phases produced in crucible-scale melts include apatite, monazite, spinels, and a Zr-Si-Fe-Ti phase. These phases readily incorporated radionuclide and toxic metals into their crystal structures, while corrosion tests have demonstrated that glass-crystal composites can be up to 300-fold more durable than simulated high-level nuclear waste glasses, such as SRL 202U.

  7. Photonic band-gap properties for two-component slow light

    CERN Document Server

    Ruseckas, J; Juzeliunas, G; Unanyan, R G; Otterbach, J; Fleischhauer, M

    2011-01-01

    We consider two-component "spinor" slow light in an ensemble of atoms coherently driven by two pairs of counterpropagating control laser fields in a double tripod-type linkage scheme. We derive an equation of motion for the spinor slow light (SSL) representing an effective Dirac equation for a massive particle with the mass determined by the two-photon detuning. By changing the detuning the atomic medium acts as a photonic crystal with a controllable band gap. If the frequency of the incident probe light lies within the band gap, the light tunnels through the sample. For frequencies outside the band gap, the transmission probability oscillates with increasing length of the sample. In both cases the reflection takes place into the complementary mode of the probe field. We investigate the influence of the finite excited state lifetime on the transmission and reflection coefficients of the probe light. We discuss possible experimental implementations of the SSL using alkali atoms such as Rubidium or Sodium.

  8. Rotational properties of two-component Bose gases in the lowest Landau level

    Science.gov (United States)

    Meyer, Marius; Sreejith, Ganesh Jaya; Viefers, Susanne

    2015-03-01

    We study the rotational (yrast) spectra of dilute two-component atomic Bose gases in the low angular momentum regime, assuming equal interspecies and intraspecies interaction. Our analysis employs the composite fermion (CF) approach including a pseudospin degree of freedom. While the CF approach is not a priori expected to work well in this angular momentum regime, we show that composite fermion diagonalization gives remarkably accurate approximations to low energy states in the spectra. For angular momenta 0 = N), we find that the CF states span the full Hilbert space and provide a convenient set of basis states which, by construction, are eigenstates of the symmetries of the Hamiltonian. Within this CF basis, we identify a subset of the basis states with the lowest Λ-level kinetic energy. Diagonalization within this significally smaller subspace constitutes a major computational simplification and provides very close approximations to ground states and a number of low-lying states within each pseudospin and angular momentum channel. This work was financially supported by the Research Council of Norway and by NORDITA.

  9. Scaling effects of relaxor-PbTiO3 crystals and composites for high frequency ultrasound

    OpenAIRE

    Lee, Hyeong Jae; Zhang, Shujun; Shrout, Thomas R.

    2010-01-01

    The dielectric and piezoelectric properties of Pb(Mg1∕3Nb2∕3)O3–PbTiO3 (PMN-PT) and Pb(In1∕2Nb1∕2)O3–Pb(Mg1∕3Nb2∕3)O3–PbTiO3 (PIN-PMN-PT) ferroelectric single crystals were investigated as a function of thickness∕scale in monolithic and piezoelectric∕polymer 1–3 composites. For the case of PMN-PT single crystals, the dielectric (ε33T∕ε0) and electromechanical properties (k33) were found to significantly decrease with decreasing thickness (500–40 μm), while minimal thickness dependency was obs...

  10. Study on the crystal morphology and melting behavior of isothermally crystallized composites of short carbon fiber and poly(trimethylene terephthalate)

    Institute of Scientific and Technical Information of China (English)

    Mingtao RUN; Hongzan SONG; Yanping HAO

    2009-01-01

    The spherulites of the short carbon fibcr(SCF)/ poly (trimethylcne terephthalate) (PTT) composites forrned in limited space at designed temperatures, and their melting behaviors were studied by the polarized optical microscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM), respectively. The results suggest that SCF content, isothermal crystallization temperatures, and the film thicknesses influence the crystal morphology of the composites. The dimension of the spherulites is decreased with increasing SCF content, but whether banded or nonbandcd spherulites will form in the composites is not depondcnt on SCF content However, the crystal morphology of the composites depends strongly on the temperature. When the isothermal crystallization temperatures increase from 180℃ to 230℃, the crystal morphology of SCF/PTT composites continuously changes in the following order: nonbanded → banded → nonbanded spherulites. Disconti-nuous circle lines form in the film when the film thickness increases from 30 to 60 μm. Basing on the SEM observation, it is found that these circle lines are cracks formed due to the constriction difference of the different parts of the sphemlites. These cracks are formed when the film is cooled from the isothermal crystallization temperature to the room tempera-ture at a slow cooling rate; while they will disappear gradually at different temperatures in the heating process. The crack will appear/disappear first around the center of the spherulite when the film was cooled/heated. The nontwisted or slightly twisted lamellas will reorganize to form highly twisted lamellas inducing apparent banded texture of the sphemlites.

  11. The oligomeric assembly of the novel haem-degrading protein HbpS is essential for interaction with its cognate two-component sensor kinase

    NARCIS (Netherlands)

    Ortiz de Orué Lucana, Darío; Bogel, Gabriele; Zou, Peijian; Groves, Matthew R

    2009-01-01

    HbpS, a novel protein of previously unknown function from Streptomyces reticuli, is up-regulated in response to haemin- and peroxide-based oxidative stress and interacts with the SenS/SenR two-component signal transduction system. In this study, we report the high-resolution crystal structures (2.2

  12. The oligomeric assembly of the novel haem-degrading protein HbpS is essential for interaction with its cognate two-component sensor kinase

    NARCIS (Netherlands)

    Ortiz de Orué Lucana, Darío; Bogel, Gabriele; Zou, Peijian; Groves, Matthew R

    2009-01-01

    HbpS, a novel protein of previously unknown function from Streptomyces reticuli, is up-regulated in response to haemin- and peroxide-based oxidative stress and interacts with the SenS/SenR two-component signal transduction system. In this study, we report the high-resolution crystal structures (2.2

  13. Various intensity of Proteus mirabilis-induced crystallization resulting from the changes in the mineral composition of urine.

    Science.gov (United States)

    Torzewska, Agnieszka; Różalski, Antoni

    2015-01-01

    Infectious urolithiasis is a result of recurrent and chronic urinary tract infections caused by urease-positive bacteria, especially Proteus mirabilis. The main role in the development of this kind of stones is played by bacterial factors such as urease and extracellular polysaccharides, but urinary tract environment also contributes to this process. We used an in vitro model to establish how the changes in the basic minerals concentrations affect the intensity of crystallization which occurs in urine. In each experiment crystallization was induced by an addition of P. mirabilis to artificial urine with a precisely defined chemical composition. Crystallization intensity was determined using the spectrophotometric microdilution method and the chemical composition of formed crystals was established by atomic absorption spectroscopy and colorimetric methods. Increasing the concentration of all crystals forming ions such as Mg(2+), Ca(2+) and phosphate strongly intensified the process of crystallization, whereas reducing the amount of these components below the proper physiological concentration did not affect its intensity. The inhibitory influence of citrate on calcium and magnesium phosphate crystallization and competitive actions of calcium and oxalate ions on struvite crystals formation were not confirmed. In the case of infectious stones the chemical composition of urine plays an important role, which creates a necessity to support the treatment by developing a model of proper diet.

  14. A novel refractometric sensor based on optofluidic integration of composite core photonic crystal fibers

    Science.gov (United States)

    Liu, Xiaoqi; Gong, Tianyi; Liu, Yange; Wang, Zhi

    2017-01-01

    We propose and demonstrate a novel refractometric sensor based on optofluidic technology in photonic crystal fibers with a composite core. The composite core consisting of a ring-like fluid channel around the refractive index matching core is architected within photonic crystal fibers. A different refractive index of water-like analyte is filled into the same channel in turn to form steady microflows around the matching core, and the refractive index of analyte can be detected by observing the resonant coupling between the composite and solid-core modes. The sensitivity of water-like analyte around 1.33 is about -1.11 × 103 nm per refractive index unit. Simulations indicate that analyte refractive index sensing possesses a dynamic range of 1 to 1.4. We also analyze the matching core with different refractive indices and optimize the structure. Since this kind of refractomeric sensor can be reused with high sensitivity by controlling the refractive index of matching core at different temperatures, it is a good candidate for bio-sensing.

  15. Crystalline structures and crystallization behaviors of poly(L-lactide) in poly(L-lactide)/graphene nanosheet composites

    DEFF Research Database (Denmark)

    Li, Jingqing; Xiao, Peitao; Li, Hongfei;

    2015-01-01

    Poly(L-lactide) (PLLA)/graphene nanosheet (GNS) composites and pure PLLA were prepared by the solution blending method. Crystalline structures and crystallization behaviors of PLLA in the composite were investigated by XRD, POM, SAXS, and DSC. It was found that α′ form PLLA formation seemed...

  16. Features of electro-optical characteristics of composite liquid crystal media (a review)

    Science.gov (United States)

    Amosova, L. P.; Venediktov, V. Yu.

    2016-11-01

    Main patterns of structure formation of composite liquid crystal (LC) media and their classification according to the percentage content of liquid crystal and polymer are considered. Their properties are compared with the properties of homogeneous LC layers and the opportunities of their practical use in optical modulators are discussed. It is shown that, at small (10 wt %) monomer concentrations in the composite, its polymerization leads to formation of a thin-wall network which separates the liquid crystal into domains and provides an uniform orientation in the bulk. The polymer network increases the elasticity of the layer and decreases the relaxation time, but the devices usually work in polarized light and use the same principle as the devices filled with pure LC; i.e. the phase of the light or its polarization changes due to a change in the effective refraction index. However, the division of the LC volume into relatively autonomous domains also allows one to create a polarization-independent device based on the scattering effect. By increasing the relative content of the monomer, it is possible to ensure formation of a porous polymer matrix with inclusions of isolated from each other LC droplets. Such polymer-dispersed LC in its initial state either scatter the light of any polarization and becomes transparent state when an electric field is applied, or, with the use of special methods, the switch-off and switch-on states are swapped ("reverse mode" devices). The main advantages of the composite media are independence of polarization, mechanical strength, and small relaxation times, while the main disadvantages are increased power consumption, high polarization-independent optical losses, and significantly lower contrast. Possible ways to increase the contrast are described.

  17. Initial data problems for the two-component Camassa-Holm system

    Directory of Open Access Journals (Sweden)

    Xiaohuan Wang

    2014-06-01

    Full Text Available This article concerns the study of some properties of the two-component Camassa-Holm system. By constructing two sequences of solutions of the two-component Camassa-Holm system, we prove that the solution map of the Cauchy problem of the two-component Camassa-Holm system is not uniformly continuous in $H^s(\\mathbb{R}$, $s>5/2$.

  18. Two-frequency picosecond laser based on composite vanadate crystals with {sigma}-polarised radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sirotkin, A A; Sadovskiy, S P; Garnov, Sergei V [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2013-07-31

    A two-frequency picosecond laser based on {alpha}-cut Nd:YVO{sub 4}-YVO{sub 4} composite vanadate crystals is experimentally studied for the s-polarised radiation at the {sup 4}F{sub 3/2} - {sup 4}I{sub 11/2} transition with frequency tuning using Fabry-Perot etalons of different thickness. The difference between the radiation wavelengths was tuned within the range of 1.2-4.4 nm. In the mode-locking regime, the two-frequency radiation power was 280 mW at an absorbed pump power of 12 W. (lasers)

  19. Experimental Conditions to Obtain Photopolymerization Induced Phase Separation Process in Liquid Crystal-Photopolymer Composite Materials under Laser Exposure

    Directory of Open Access Journals (Sweden)

    Manuel Ortuño

    2014-01-01

    Full Text Available We analyze the experimental conditions necessary to obtain a photopolymerization induced phase separation process inside liquid crystal-photopolymer composite materials. Composites stored for 24 hours perform poorly in hologram recording but a good result is obtained if they are used recently prepared. We use a procedure combining heat and sonication to disarrange the liquid crystal structures formed during storage of the composite. We also propose incoherent light treatment after recording the hologram in order to evaluate if the phase separation evolved correctly during hologram recording.

  20. Analytical method for yrast line states in the interacting two-component Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    解炳昊; 景辉

    2002-01-01

    The yrast spectrum for the harmonically trapped two-component Bose-Einstein condensate (BEC), omitting thedifference between the two components, has been studied using an analytical method. The energy eigenstates andeigenvalues for L=0,1,2,3 are given. We illustrate that there are different eigenstate behaviours between the even Land odd L cases for the two-component BEC in two dimensions. Except for symmetric states, there are antisymmetricstates for the permutation of the two components, which cannot reduce to those in a single condensate case when thevalue of L is odd.

  1. Priority compositions of boron carbide crystals obtained by self-propagating high-temperature synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, V. I., E-mail: ksv17@ism.ac.ru; Konovalikhin, S. V.; Kovalev, I. D.; Vershinnikov, V. I. [Russian Academy of Sciences, Institute of Structural Macrokinetics and Materials Science (Russian Federation)

    2015-09-15

    Splitting of reflections from boron carbide has been found for the first time by an X-ray diffraction study of polycrystalline mixture of boron carbide B{sub 15–x}C{sub x}, (1.5 ≤ x ≤ 3) and its magnesium derivative C{sub 4}B{sub 25}Mg{sub 1.42}. An analysis of reflection profiles shows that this splitting is due to the presence of boron carbide phases of different compositions in the sample, which are formed during crystal growth. The composition changes from B{sub 12.9}C{sub 2.1} to B{sub 12.4}C{sub 2.6}.

  2. Thin and flexible solid-state organic ionic plastic crystal-polymer nanofibre composite electrolytes for device applications.

    Science.gov (United States)

    Howlett, Patrick C; Ponzio, Florian; Fang, Jian; Lin, Tong; Jin, Liyu; Iranipour, Nahid; Efthimiadis, Jim

    2013-09-07

    All solid-state organic ionic plastic crystal-polymer nanofibre composite electrolytes are described for the first time. The new composite materials exhibit enhanced conductivity, excellent thermal, mechanical and electrochemical stability and allow the production of optically transparent, free-standing, flexible, thin film electrolytes (10's μms thick) for application in electrochemical devices. Stable cycling of a lithium cell incorporating the new composite electrolyte is demonstrated, including cycling at lower temperatures than previously possible with the pure material.

  3. Synthesis of TiAl-Ti2AlN composites by in-situ crystallization

    Institute of Scientific and Technical Information of China (English)

    ZHU Jian-feng; GAO Ji-qiang; WANG Fen

    2006-01-01

    The amorphization process during mechanical alloying (MA) was investigated for the Ti-50%/Al (mole fraction) powder mixtures with no special protection conditions. During the milling process, with the milling time prolonging, the metallic powder Ti and Al were finely mixed, gradually, aluminum completely dissolved into titanium to form an Ti(Al) hcp supersaturated solid solution, and finally, transformed to the amorphous phase after milled for about 39 h. As a result of heat treatment in hot press sintering processing for the mechanically alloyed amorphous powders in vacuum, a submicrostructure intermetallics of TiAl/Ti2AlN composite can be produced by in-situ crystallization. Furthermore, the structure evolution, phase formation and transformation during the heat treatment were also investigated by X-ray diffractometry and differential thermal analysis. The results show that the reaction involves many transitional stages, including formation of TiAl3 and transformation into TiAl and Ti3Al. The examination show that the composite materials fabricated by this in-situ crystallization from amorphization have good mechanical properties due to fine grain size and uniform microstructure.

  4. Two-Component Super AKNS Equations and Their Finite-Dimensional Integrable Super Hamiltonian System

    OpenAIRE

    Jing Yu; Jingwei Han

    2014-01-01

    Starting from a matrix Lie superalgebra, two-component super AKNS system is constructed. By making use of monononlinearization technique of Lax pairs, we find that the obtained two-component super AKNS system is a finite-dimensional integrable super Hamiltonian system. And its Lax representation and $r$ -matrix are also given in this paper.

  5. TASI 2011 lectures notes: two-component fermion notation and supersymmetry

    OpenAIRE

    Martin, Stephen P.

    2012-01-01

    These notes, based on work with Herbi Dreiner and Howie Haber, discuss how to do practical calculations of cross sections and decay rates using two-component fermion notation, as appropriate for supersymmetry and other beyond-the-Standard-Model theories. Included are a list of two-component fermion Feynman rules for the Minimal Supersymmetric Standard Model, and some example calculations.

  6. Relativistic two-component jet evolutions in 2D and 3D

    NARCIS (Netherlands)

    Meliani, Z.; Keppens, R.

    2009-01-01

    Observations of astrophysical jets and theoretical arguments suggest a transverse stratification with two components induced by intrinsic features of the central engine (accretion disk + black hole). We study two-component jet dynamics for an inner fast low density jet, surrounded by a slower, dense

  7. Two-Component Super AKNS Equations and Their Finite-Dimensional Integrable Super Hamiltonian System

    Directory of Open Access Journals (Sweden)

    Jing Yu

    2014-01-01

    Full Text Available Starting from a matrix Lie superalgebra, two-component super AKNS system is constructed. By making use of monononlinearization technique of Lax pairs, we find that the obtained two-component super AKNS system is a finite-dimensional integrable super Hamiltonian system. And its Lax representation and r-matrix are also given in this paper.

  8. Two-component membrane material properties and domain formation from dissipative particle dynamics.

    Science.gov (United States)

    Illya, G; Lipowsky, R; Shillcock, J C

    2006-09-21

    The material parameters (area stretch modulus and bending rigidity) of two-component amphiphilic membranes are determined from dissipative particle dynamics simulations. The preferred area per molecule for each species is varied so as to produce homogeneous mixtures or nonhomogeneous mixtures that form domains. If the latter mixtures are composed of amphiphiles with the same tail length, but different preferred areas per molecule, their material parameters increase monotonically as a function of composition. By contrast, mixtures of amphiphiles that differ in both tail length and preferred area per molecule form both homogeneous and nonhomogeneous mixtures that both exhibit smaller values of their material properties compared to the corresponding pure systems. When the same nonhomogeneous mixtures of amphiphiles are assembled into planar membrane patches and vesicles, the resulting domain shapes are different when the bending rigidities of the domains are sufficiently different. Additionally, both bilayer and monolayer domains are observed in vesicles. We conclude that the evolution of the domain shapes is influenced by the high curvature of the vesicles in the simulation, a result that may be relevant for biological vesicle membranes.

  9. EFFECT OF INTERFACIAL ADHESION ON CRYSTALLIZATION AND MECHANICAL PROPERTIES OF POLY (ETHYLENE TEREPHTHALATE)/GLASS BEAD COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    OU Yuchun; YU Zhongzhen; ZHU Jin; LI Ge; ZHU Shanguang

    1996-01-01

    The interfacial adhesion between poly (ethylene terephthalate) (PET) and glass bead was investigated by scanning electron microscope and parallel-plate rheometer. Effect of interfacial adhesion on the crystallization and mechanical properties of PET/glass bead composites was also studied by differential scanning calorimeter and mechanical testers.The results obtained indicate that the glass bead has a heterogeneous nucleation effect on the PET crystallization. Although better interfacial adhesion is advantageous to the increase of the tensile strength of the composite, yet it is unfavorable to the crystallization of PET. It should be pointed out that the crystallization rate of filled PET is always higher than that of pure PET, regardless of the state of interfacial adhesion.

  10. Imidazole as a Small Molecule Analogue in Two-Component Signal Transduction.

    Science.gov (United States)

    Page, Stephani C; Silversmith, Ruth E; Collins, Edward J; Bourret, Robert B

    2015-12-15

    In two-component signal transduction systems (TCSs), responses to stimuli are mediated through phosphotransfer between protein components. Canonical TCSs use His → Asp phosphotransfer in which phosphoryl groups are transferred from a conserved His on a sensory histidine kinase (HK) to a conserved Asp on a response regulator (RR). RRs contain the catalytic core of His → Asp phosphotransfer, evidenced by the ability of RRs to autophosphorylate with small molecule analogues of phospho-His proteins. Phosphorelays are a more complex variation of TCSs that additionally utilize Asp → His phosphotransfer through the use of an additional component, the histidine-containing phosphotransfer domain (Hpt), which reacts with RRs both as phosphodonors and phosphoacceptors. Here we show that imidazole has features of a rudimentary Hpt. Imidazole acted as a nucleophile and attacked phosphorylated RRs (RR-P) to produce monophosphoimidazole (MPI) and unphosphorylated RR. Phosphotransfer from RR-P to imidazole required the intact RR active site, indicating that the RR provided the core catalytic machinery for Asp → His phosphotransfer. Imidazole functioned in an artificial phosphorelay to transfer phosphoryl groups between unrelated RRs. The X-ray crystal structure of an activated RR·imidazole complex showed imidazole oriented in the RR active site similarly to the His of an Hpt. Imidazole interacted with RR nonconserved active site residues, which influenced the relative reactivity of RR-P with imidazole versus water. Rate constants for reaction of imidazole or MPI with chimeric RRs suggested that the RR active site contributes to the kinetic preferences exhibited by the YPD1 Hpt.

  11. Novel Bi-substituted Yttrium Iron Garnet Film/Crystal Composite for Magneto-optical Applications

    Institute of Scientific and Technical Information of China (English)

    HUANG Min; XU Zhi-cheng; ZHOU Wei-zhen

    2004-01-01

    The novel Bi-substituted rare-earth iron garnet films were grown by the modified liquid phase epitaxy (LPE) technique for use as a 45° Faraday rotator in optical isolators. First, single crystals of Y3 Fe5 O12(YIG), with a lattice constant of 1. 237 8 nm, were grown by means of the Czochralski method. Using the seed crystal of YIG instead of the conventional non-magnetic garnet of Gd3Ga5O12 (GGG) as a substrate,a film of BiYbIG was grown by means of the LPE method from Bi2O3 - B2O3 fluxes. The structural, magnetic and magneto-optical properties of BiYbIG LPE film/YIG crystal composite have been investigated using directional X-ray diffraction (XRD), electron probe microanalysis (EPMA), vibrating sample magnetometer (VMS) and near-infrared transmission spectrometry. The saturation magnetization 4πMs has been estimated to be about 1.2×10 6 A/m. The Faraday rotation spectrum was measured by the method of rotating analyzer ellipsometry (RAE) with the wavelength varied from 800 nm to 1 700 nm. The resultant Bi0.37 Yb2.63 Fe5 O12LPE film/YIG crystal composite showed an increased Faraday rotation coefficient due to doping Bi3+ ions into the dodecahedral sites of the magnetic garnet without increasing absorption loss, therefore a good magnetooptic figure of merit,defined by the ratio of Faraday rotation and optical absorption loss, has been achieved of 21.5 and 30.2 (°)/dB at 1 300 and 1 550 nm wavelengths respectively and room temperature. Since Yb3+ and Y3+ ions provide the opposite contribution to the wideband and temperature characteristics of Faraday rotation,the values of Faraday rotation wavelength and temperature coefficients were reduced to 0.06 %/nm and 0.007(°)/℃ at 1 550 nm wavelength, respectively.

  12. Hydrostatic Parameters and Domain Effects in Novel 2-2 Composites Based on PZN-0.12PT Single Crystals

    Directory of Open Access Journals (Sweden)

    Vitaly Yu. Topolov

    2011-01-01

    Full Text Available A novel 0.88Pb(Zn1/3Nb2/3O3-0.12PbTiO3 crystal/polymer composite with 2-2 connectivity is studied at variable orientations of spontaneous polarisation vector of the crystal component. Orientation and volume-fraction dependences of the hydrostatic piezoelectric coefficients dh*, eh*, and gh* and hydrostatic electromechanical coupling factor kh* are related to the important role of the piezoelectric and elastic anisotropy of single-domain layers of the 2-2 composite. The record value of |eh∗|≈77 C/m2 near the absolute-minimum point and the correlation between the hydrostatic (eh* and piezoelectric (e3j* coefficients and between the hydrostatic (gh* and piezoelectric (g3j* coefficients are first established. This discovery is of value for hydrostatic and piezotechnical applications. The hydrostatic performance of the composite based on the single-domain 0.88Pb(Zn1/3Nb2/3O3-0.12PbTiO3 crystal is compared to the performance of the 2–2 composites based on either the same polydomain crystal or the related single-domain crystal.

  13. Preparation and frictional investigation of the two-components silanes deposited on alumina surface

    Energy Technology Data Exchange (ETDEWEB)

    Kośla, K.; Grobelny, J.; Cichomski, M., E-mail: mcichom@uni.lodz.pl

    2014-09-30

    Highlights: • The two-component silane films on the alumina surface were obtained by a combination of soft lithography and vapor phase deposition method. • The effectiveness of modification procedure was monitored by AFM topography images. • By using gas phase deposition method succeeded in obtaining a good reproduction of pattern. • Silane films with low surface free energy and coefficient of friction values were obtained. • The frictional performance in milli-Newton load range of one- and two-component films was investigated by microtribometry. - Abstract: Functionalization and pattering technique that permits two-component pattern-specific modification of alumina surface with silanes molecules are reported. The method relies on a two-component molecular system that simultaneously decreases coefficient of friction of the alumina surface and provides uniform chemical functionality suitable for further elaboration. Pattern/two-component modification is achieved via gas-phase deposition of the silanes using polydimethylsiloxane stamp. The frictional behaviors of the two-component films of the silane molecules with different chain length covalently absorbed on alumina surfaces, were characterized by the ball-disk (microtribometer) tester. The surfaces of the substrate modified by two-component molecular films were examined by atomic force microscopy (AFM). The measured tribological results showed that the mixing of the fluoroalkylsilane and alkylsilane enhance the lubrication and decrease the friction compared to the one-component thin films.

  14. Fabrication and Crystal Structure of Sol-Gel Deposited BST Thin Films with Compositional Gradient

    Directory of Open Access Journals (Sweden)

    Czekaj D.

    2017-06-01

    Full Text Available In the present research technology of compositionally graded barium strontium titanate Ba1-xSrxTiO3 thin films deposited on stainless steel substrates by sol-gel spin coating followed with thermal annealing at T = 650°C is reported. Results of thermal behavior of the sol-gel derived powders with compositions used for fabrication of graded structure (i.e. with Sr mole fraction x = 0.5, 0.4 and 0.3 are described. X-ray diffraction studies of the phase composition and crystal structure of such complex thin film configuration are given. It was found that gel powders exhibited a large total weight loss of about Δm ≈ 44-47%. Three stages of weight loss took place at temperature ranges: below T ≈ 300°C, at ΔT ≈ 300-500°C and between T = 600°C and T = 800°C. Phase analysis has shown that the dominating phase is Ba0.67Sr0.33TiO3 compound while the second phase is Ba0.7Sr0.3TiO3 or Ba0.5Sr0.5TiO3 for “up-graded” and “down-graded” structure, respectively.

  15. Methods of producing epoxides from alkenes using a two-component catalyst system

    Science.gov (United States)

    Kung, Mayfair C.; Kung, Harold H.; Jiang, Jian

    2013-07-09

    Methods for the epoxidation of alkenes are provided. The methods include the steps of exposing the alkene to a two-component catalyst system in an aqueous solution in the presence of carbon monoxide and molecular oxygen under conditions in which the alkene is epoxidized. The two-component catalyst system comprises a first catalyst that generates peroxides or peroxy intermediates during oxidation of CO with molecular oxygen and a second catalyst that catalyzes the epoxidation of the alkene using the peroxides or peroxy intermediates. A catalyst system composed of particles of suspended gold and titanium silicalite is one example of a suitable two-component catalyst system.

  16. Two-component generalizations of the periodic Camassa-Holm and Degasperis-Procesi equations

    CERN Document Server

    Escher, Joachim; Lenells, Jonatan

    2010-01-01

    We use geometric methods to study two natural two-component generalizations of the periodic Camassa-Holm and Degasperis-Procesi equations. We show that these generalizations can be regarded as geodesic equations on the semidirect product of the diffeomorphism group of the circle $\\Diff(S^1)$ with some space of sufficiently smooth functions on the circle. Our goals are to understand the geometric properties of these two-component systems and to prove local well-posedness in various function spaces. Furthermore, we perform some explicit curvature calculations for the two-component Camassa-Holm equation, giving explicit examples of large subspaces of positive curvature.

  17. Evolution and phyletic distribution of two-component signal transduction systems.

    Science.gov (United States)

    Wuichet, Kristin; Cantwell, Brian J; Zhulin, Igor B

    2010-04-01

    Two-component signal transduction systems are abundant in prokaryotes. They enable cells to adjust multiple cellular functions in response to changing environmental conditions. These systems are also found, although in much smaller numbers, in lower eukaryotes and plants, where they appear to control a few very specific functions. Two-component systems have evolved in Bacteria from much simpler one-component systems bringing about the benefit of extracellular versus intracellular sensing. We review reports establishing the origins of two-component systems and documenting their occurrence in major lineages of Life. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Travelling wave solutions for some two-component shallow water models

    Science.gov (United States)

    Dutykh, Denys; Ionescu-Kruse, Delia

    2016-07-01

    In the present study we perform a unified analysis of travelling wave solutions to three different two-component systems which appear in shallow water theory. Namely, we analyze the celebrated Green-Naghdi equations, the integrable two-component Camassa-Holm equations and a new two-component system of Green-Naghdi type. In particular, we are interested in solitary and cnoidal-type solutions, as two most important classes of travelling waves that we encounter in applications. We provide a complete phase-plane analysis of all possible travelling wave solutions which may arise in these models. In particular, we show the existence of new type of solutions.

  19. Two-Component Wadati-Konno-Ichikawa Equation and Its Symmetry Reductions

    Institute of Scientific and Technical Information of China (English)

    QU Chang-Zheng; YAO Ruo-Xia; LI Zhi-Bin

    2004-01-01

    @@ It is shown that two-component Wadati-Konno-Ichikawa (WKI) equation, i.e. a generalization of the well-known WKI equation, is obtained from the motion of space curves in Euclidean geometry, and it is exactly a system for the graph of the curves when the curve motion is governed by the two-component modified Korteweg-de Vries flow. Group-invariant solutions of the two-component WKI equation which corresponds to an optimal system of its Lie point symmetry groups are obtained, and its similarity reductions to systems of ordinary differential equations are also given.

  20. Crystallization behaviors of carbon fiber reinforced BN-Si{sub 3}N{sub 4} matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin; Zhang, Chang-Rui; Wang, Si-Qing; Cao, Feng [State Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073 (China)

    2007-07-15

    The crystallization behaviors of a new carbon fiber reinforced composite with a hybrid matrix comprising BN and Si{sub 3}N{sub 4} prepared by precursor infiltration and pyrolysis were investigated by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The results show that the as-received composite is almost amorphous, and its main composition is BN and Si{sub 3}N{sub 4}. When heat treated at 1600 C, the composite is crystallized and shows a much better crystal form. When heat treated at 2100 C, Si{sub 3}N{sub 4} in the matrix is decomposed, and BN exhibits a relatively complete crystallization. The existence of B{sub 4}C and SiC is detected, which indicates the interfacial chemical reactions between nitride matrices and carbon fibers. The surface morphology of carbon fibers in the composite changed significantly when heated from 1600 to 2100 C, which also proved the occurrence of interfacial chemical reactions. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Phase equilibrium modelling of granite magma petrogenesis: B. An evaluation of the magma compositions that result from fractional crystallization

    Science.gov (United States)

    Garcia-Arias, Marcos; Stevens, Gary

    2017-04-01

    Several fractional crystallization processes (flow segregation, gravitational settling, filter-pressing), as well as batch crystallization, have been investigated in this study using thermodynamic modelling (pseudosections) to test whether they are able to reproduce the compositional trends shown by S-type granites. Three starting compositions comprising a pure melt phase and variable amounts of entrained minerals (0, 20 and 40 wt.% of the total magma) have been used to study a wide range of likely S-type magma compositions. The evolution of these magmas was investigated from the segregation from their sources at 0.8 GPa until emplacement at 0.3 GPa in an adiabatic path, followed by isobaric cooling until the solidus was crossed, in a closed-system scenario. The modelled magmas and the fractionated mineral assemblages are compared to the S-type granites of the Peninsula pluton, Cape Granite Suite, South Africa, which have a composition very similar to most of the S-type granites. The adiabatic ascent of the magmas digests partially the entrained mineral assemblage of the magmas, but unless this entrained assemblage represents less than 1 wt.% of the original magma, part of the mineral fraction survives the ascent up to the chosen pressure of emplacement. At the level of emplacement, batch crystallization produces magmas that only plot within the composition of the granites of the Peninsula pluton if the bulk composition of the original magmas already matched that of the granites. Flow segregation of crystals during the ascent and gravitational settling fractional crystallization produce bodies that are generally more mafic than the most mafic granites of the pluton and the residual melts have an almost haplogranitic composition, producing a bimodal compositional distribution not observed in the granites. Consequently, these two processes are ruled out. Filter-pressing fractional crystallization produces bodies in an onion-layer structure that become more felsic

  2. An electrically tunable imaging system with separable focus and zoom functions using composite liquid crystal lenses.

    Science.gov (United States)

    Chen, Ming-Syuan; Chen, Po-Ju; Chen, Michael; Lin, Yi-Hsin

    2014-05-19

    We demonstrated an electrically tunable optical image system with separable focus function and zoom function based on three tunable focusing composite liquid crystal (LC) lenses. One LC lens in charge of the focus function helps to maintain the formed image at the same position and the other two LC lenses in charge of zoom function assist to continuously form an image at image sensor with tunable magnification of image size. The detail optical mechanism is investigated and the concept is demonstrated experimentally. The magnifications of the images can be switched continuously for the target in a range between 10 cm and 100 cm. The optical zoom ratio of this system maintains a constant~6.5:1 independent of the object distance. This study provides not only a guideline to design the image system with an electrically optical zoom, but also provide an experimental process to show how to operate the tunable focusing lenses in such an image system.

  3. Crystallization of silicon dioxide and compositional evolution of the Earth's core.

    Science.gov (United States)

    Hirose, Kei; Morard, Guillaume; Sinmyo, Ryosuke; Umemoto, Koichio; Hernlund, John; Helffrich, George; Labrosse, Stéphane

    2017-03-02

    The Earth's core is about ten per cent less dense than pure iron (Fe), suggesting that it contains light elements as well as iron. Modelling of core formation at high pressure (around 40-60 gigapascals) and high temperature (about 3,500 kelvin) in a deep magma ocean predicts that both silicon (Si) and oxygen (O) are among the impurities in the liquid outer core. However, only the binary systems Fe-Si and Fe-O have been studied in detail at high pressures, and little is known about the compositional evolution of the Fe-Si-O ternary alloy under core conditions. Here we performed melting experiments on liquid Fe-Si-O alloy at core pressures in a laser-heated diamond-anvil cell. Our results demonstrate that the liquidus field of silicon dioxide (SiO2) is unexpectedly wide at the iron-rich portion of the Fe-Si-O ternary, such that an initial Fe-Si-O core crystallizes SiO2 as it cools. If crystallization proceeds on top of the core, the buoyancy released should have been more than sufficient to power core convection and a dynamo, in spite of high thermal conductivity, from as early on as the Hadean eon. SiO2 saturation also sets limits on silicon and oxygen concentrations in the present-day outer core.

  4. Crystal Structure and Hydrogen Storage Behaviors of Mg/MoS2 Composites from Ball Milling

    Institute of Scientific and Technical Information of China (English)

    HAN Zongying; ZHOU Shixue; WANG Naifei; ZHANG Qianqian; ZHANG Tonghuan; RAN Weixian

    2016-01-01

    The Mg/MoS2 composites were prepared by ball milling under argon atmosphere, and the effect of MoS2 on the crystal structure and hydrogen storage properties of Mg was investigated. It is found that 10 wt% of MoS2 is sufifcient to prevent particle aggregation and cold welding during the milling process. The crystallite size of Mg will remain constant at slightly less than 38.8 nm with the milling process due to the size conifnement effect of MoS2. The dehydrogenation temperature of MgH2 is reduced to 390.4-429.4℃ due to the crystallite size reduction. Through iftting by Johnson-Mehl-Avrami model, it is found that Mg crystal grows by three dimension controlled by interface transformation during the process of MgH2 decomposition. MoS2 has a weak catalyst effect on the decomposition of MgH2 and activation energy of 148.9 kJ/mol is needed for the dehydrogenation process calculated by the Arrhenius equation.

  5. Influence of composition on microstructural parameters of single crystal nickel-base superalloys

    Energy Technology Data Exchange (ETDEWEB)

    MacKay, R.A., E-mail: Rebecca.A.MacKay@nasa.gov [NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States); Gabb, T.P. [NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States); Garg, A. [NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States); University of Toledo, 2801 W. Bancroft, Toledo, Ohio 43606 (United States); Rogers, R.B.; Nathal, M.V. [NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States)

    2012-08-15

    Fourteen nickel-base superalloy single crystals containing a range of chromium (Cr), cobalt (Co), molybdenum (Mo), and rhenium (Re) levels, and fixed amounts of aluminum (Al) and tantalum (Ta), were examined to determine the effect of bulk composition on basic microstructural parameters, including {gamma} Prime solvus, {gamma} Prime volume fraction, topologically close-packed (TCP) phases, {gamma} and {gamma} Prime phase chemistries, and {gamma}-{gamma} Prime lattice mismatch. Regression models describing the influence of bulk alloy composition on each of the microstructural parameters were developed and compared to predictions by a commercially-available software tool that used computational thermodynamics. Co produced the largest change in {gamma} Prime solvus over the wide compositional range explored and Mo produced the biggest effect on the {gamma} lattice parameter over its range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had an impact on their concentrations in the {gamma} matrix and to a smaller extent in the {gamma} Prime phase. The software tool under-predicted {gamma} Prime solvus temperatures and {gamma} Prime volume fractions, and over-predicted TCP phase volume fractions at 982 Degree-Sign C. However, the statistical regression models provided excellent estimations of the microstructural parameters and demonstrated the usefulness of such formulas. - Highlights: Black-Right-Pointing-Pointer Effects of Cr, Co, Mo, and Re on microstructure in new low density superalloys Black-Right-Pointing-Pointer Co produced a large change in {gamma} Prime solvus; Mo had a large effect on lattice mismatch. Black-Right-Pointing-Pointer Re exhibited very potent influence on all microstructural parameters was investigated. Black-Right-Pointing-Pointer {gamma} and {gamma} Prime phase chemistries both varied with temperature and alloy composition. Black

  6. Scale and Contour: Two Components of a Theory of Memory for Melodies.

    Science.gov (United States)

    Dowling, W. Jay

    1978-01-01

    The author concentrates on two components of memory which contribute to the reproduction and recognition of melodies, namely, melodic contour and musical scale. A new experiment is reported that shows the interdependence of both components. (Author/RK)

  7. Laser controlling chaotic region of a two-component Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    Boli Xia; Wenhua Hai

    2005-01-01

    @@ For a weakly and periodically driven two-component Bose-Einstein condensate (BEC) the Melnikov chaotic solution and boundedness conditions are derived from a direct perturbation theory that leads to the chaotic regions in the parameter space.

  8. Role of functionality in two-component signal transduction: A stochastic study

    Science.gov (United States)

    Maity, Alok Kumar; Bandyopadhyay, Arnab; Chaudhury, Pinaki; Banik, Suman K.

    2014-03-01

    We present a stochastic formalism for signal transduction processes in a bacterial two-component system. Using elementary mass action kinetics, the proposed model takes care of signal transduction in terms of a phosphotransfer mechanism between the cognate partners of a two-component system, viz., the sensor kinase and the response regulator. Based on the difference in functionality of the sensor kinase, the noisy phosphotransfer mechanism has been studied for monofunctional and bifunctional two-component systems using the formalism of the linear noise approximation. Steady-state analysis of both models quantifies different physically realizable quantities, e.g., the variance, the Fano factor (variance/mean), and mutual information. The resultant data reveal that both systems reliably transfer information of extracellular environment under low external stimulus and in a high-kinase-and-phosphatase regime. We extend our analysis further by studying the role of the two-component system in downstream gene regulation.

  9. Two component injection moulding: an interface quality and bond strength dilemma

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2008-01-01

    Two component injection moulding is a special branch of injection moulding where two different polymers are combined in to a single part to exploit the different material properties in the final product. Considering the technical and economical importance of the process, this paper investigates...... on quality parameters of the two component parts. Most engineering applications of two component injection moulding calls for high bond strength between the two polymers, on the other hand a sharp and well-defined interface between the two polymers are required for applications like selective metallization...... conditions for a sharp and well-defined interface are exactly the opposite of what is congenial for higher bond strength. So in the production of two component injection moulded parts, there is a compromise to make between the interface quality and the bond strength of the two polymers. Also the injection...

  10. Photoisomerization-induced morphology and transparency transition in an azobenzene based two-component organogel system.

    Science.gov (United States)

    Cao, Xinhua; Liu, Xue; Chen, Liming; Mao, Yueyuan; Lan, Haichuang; Yi, Tao

    2015-11-15

    A two-component gel containing long chain alkylated gallic acid (GA) and photochromic phenazopyridine (PAP) was prepared. The gel was thoroughly characterized by UV-visible and IR spectra, SEM and POM images, XRD diffraction and dynamic oscillatory measurements. The structure and transparency of the two-component gel can be reversibly changed by alternative UV light irradiation and warming in the palm of the hand. This kind of soft material has potential application in upscale surface functional materials.

  11. Competitive Adsorption of a Two-Component Gas on a Deformable Adsorbent

    OpenAIRE

    Usenko, A. S.

    2013-01-01

    We investigate the competitive adsorption of a two-component gas on the surface of an adsorbent whose adsorption properties vary in adsorption due to the adsorbent deformation. The essential difference of adsorption isotherms for a deformable adsorbent both from the classical Langmuir adsorption isotherms of a two-component gas and from the adsorption isotherms of a one-component gas taking into account variations in adsorption properties of the adsorbent in adsorption is obtained. We establi...

  12. Evolution and phyletic distribution of two-component signal transduction systems

    OpenAIRE

    Wuichet, Kristin; Cantwell, Brian J.; Zhulin, Igor B.

    2010-01-01

    Two-component signal transduction systems are abundant in prokaryotes. They enable cells to adjust multiple cellular functions in response to changing environmental conditions. These systems are also found, although in much smaller numbers, in lower eukaryotes and plants, where they appear to control a few very specific functions. Two-component systems have evolved in Bacteria from much simpler one-component systems bringing about the benefit of extracellular versus intracellular sensing. We ...

  13. Variational derivation of two-component Camassa-Holm shallow water system

    CERN Document Server

    Ionescu-Kruse, Delia

    2012-01-01

    By a variational approach in the Lagrangian formalism, we derive the nonlinear integrable two-component Camassa-Holm system (1). We show that the two-component Camassa-Holm system (1) with the plus sign arises as an approximation to the Euler equations of hydrodynamics for propagation of irrotational shallow water waves over a flat bed. The Lagrangian used in the variational derivation is not a metric.

  14. Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression

    OpenAIRE

    Puthiyaveetil, Sujith; Allen, John F.

    2009-01-01

    Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles—chloroplasts and mitochondria. Until recently, it was thought that two-component systems i...

  15. Two-component mediated peroxide sensing and signal transduction in fission yeast.

    Science.gov (United States)

    Quinn, Janet; Malakasi, Panagiota; Smith, Deborah A; Cheetham, Jill; Buck, Vicky; Millar, Jonathan B A; Morgan, Brian A

    2011-07-01

    Two-component related proteins play a major role in regulating the oxidative stress response in the fission yeast, Schizosaccharomyces pombe. For example, the peroxide-sensing Mak2 and Mak3 histidine kinases regulate H(2)O(2)-induced activation of the Sty1 stress-activated protein kinase pathway, and the Skn7-related response regulator transcription factor, Prr1, is essential for activation of the core oxidative stress response genes. Here, we investigate the mechanism by which the S. pombe two-component system senses H(2)O(2), and the potential role of two-component signaling in the regulation of Prr1. Significantly, we demonstrate that PAS and GAF domains present in the Mak2 histidine kinase are essential for redox-sensing and activation of Sty1. In addition, we find that Prr1 is required for the transcriptional response to a wide range of H(2)O(2) concentrations and, furthermore, that two-component regulation of Prr1 is specifically required for the response of cells to high levels of H(2)O(2). Significantly, this provides the first demonstration that the conserved two-component phosphorylation site on Skn7-related proteins influences resistance to oxidative stress and oxidative stress-induced gene expression. Collectively, these data provide new insights into the two-component mediated sensing and signaling mechanisms underlying the response of S. pombe to oxidative stress.

  16. Comparative analysis of wolbachia genomes reveals streamlining and divergence of minimalist two-component systems.

    Science.gov (United States)

    Christensen, Steen; Serbus, Laura Renee

    2015-03-24

    Two-component regulatory systems are commonly used by bacteria to coordinate intracellular responses with environmental cues. These systems are composed of functional protein pairs consisting of a sensor histidine kinase and cognate response regulator. In contrast to the well-studied Caulobacter crescentus system, which carries dozens of these pairs, the streamlined bacterial endosymbiont Wolbachia pipientis encodes only two pairs: CckA/CtrA and PleC/PleD. Here, we used bioinformatic tools to compare characterized two-component system relays from C. crescentus, the related Anaplasmataceae species Anaplasma phagocytophilum and Ehrlichia chaffeensis, and 12 sequenced Wolbachia strains. We found the core protein pairs and a subset of interacting partners to be highly conserved within Wolbachia and these other Anaplasmataceae. Genes involved in two-component signaling were positioned differently within the various Wolbachia genomes, whereas the local context of each gene was conserved. Unlike Anaplasma and Ehrlichia, Wolbachia two-component genes were more consistently found clustered with metabolic genes. The domain architecture and key functional residues standard for two-component system proteins were well-conserved in Wolbachia, although residues that specify cognate pairing diverged substantially from other Anaplasmataceae. These findings indicate that Wolbachia two-component signaling pairs share considerable functional overlap with other α-proteobacterial systems, whereas their divergence suggests the potential for regulatory differences and cross-talk.

  17. Effect of pimelic acid on the crystallization, morphology and mechanical properties of polypropylene/wollastonite composites

    Energy Technology Data Exchange (ETDEWEB)

    Meng Mingrui [Department of Polymer Science, College of Materials Science and Engineering, Nangjing University of Technology, Nanjing, Jiangsu Province 210009 (China)], E-mail: mmrstrom@gmail.com; Dou Qiang [Department of Polymer Science, College of Materials Science and Engineering, Nangjing University of Technology, Nanjing, Jiangsu Province 210009 (China)], E-mail: douqiang.njut@163.com

    2008-09-25

    The pimelic acid (PA) was used as a new surface modifier for wollastonite. The effects of PA treatment on the crystallization, morphology and mechanical properties of polypropylene/wollastonite composites were investigated. The Fourier transform infrared spectroscopy analysis revealed that the PA bonded to the wollastonite's surface and formed the calcium pimelate after reacting with the wollastonite. The results of wide angle X-ray diffraction, differential scanning calorimetry and polarized light microscopy proved that the PA treated wollastonite induced more {beta}-crystalline form and decreased the spherulites sizes of polypropylene. The results of scanning electron microscopy showed that the PA treatment enhanced the interfacial adhesion between the filler and the matrix, indicating the improvement of the compatibility between polypropylene and wollastonite. The toughness of the composites was improved by the more ductile {beta}-form spherulites. When 2.5 wt% of PA treated wollastonite was added, the Izod notched impact strength reached its maximum, a value of 17.33 kJ/m{sup 2}, which was 3.19 times greater than that of the blank polypropylene.

  18. Characterizing new compositions of [001]C relaxor ferroelectric single crystals using a work-energy model

    Science.gov (United States)

    Gallagher, John A.

    2016-04-01

    The desired operating range of ferroelectric materials with compositions near the morphotropic phase boundary is limited by field induced phase transformations. In [001]C cut and poled relaxor ferroelectric single crystals the mechanically driven ferroelectric rhombohedral to ferroelectric orthorhombic phase transformation is hindered by antagonistic electrical loading. Instability around the phase transformation makes the current experimental technique for characterization of the large field behavior very time consuming. Characterization requires specialized equipment and involves an extensive set of measurements under combined electrical, mechanical, and thermal loads. In this work a mechanism-based model is combined with a more limited set of experiments to obtain the same results. The model utilizes a work-energy criterion that calculates the mechanical work required to induce the transformation and the required electrical work that is removed to reverse the transformation. This is done by defining energy barriers to the transformation. The results of the combined experiment and modeling approach are compared to the fully experimental approach and error is discussed. The model shows excellent predictive capability and is used to substantially reduce the total number of experiments required for characterization. This decreases the time and resources required for characterization of new compositions.

  19. The Escherichia coli BarA-UvrY two-component system is a virulence determinant in the urinary tract

    Directory of Open Access Journals (Sweden)

    Georgellis Dimitris

    2006-03-01

    Full Text Available Abstract Background The Salmonella enterica BarA-SirA, the Erwinia carotovora ExpS-ExpA, the Vibrio cholerae BarA-VarA and the Pseudomonas spp GacS-GacA all belong to the same orthologous family of two-component systems as the Escherichia coli BarA-UvrY. In the first four species it has been demonstrated that disruption of this two-component system leads to a clear reduction in virulence of the bacteria. Our aim was to determine if the Escherichia coli BarA-UvrY two-component system is connected with virulence using a monkey cystitis model. Results Cystitis was generated in Macaque fascularis monkeys by infecting the bladder with a 1:1 mixture of the uropathogenic Escherichia coli isolate DS17 and a derivative where the uvrY gene had been disrupted with a kanamycin resistance gene. Urine was collected through bladder punctuation at subsequent time intervals and the relative amount of uvrY mutant was determined. This showed that inactivation of the UvrY response regulator leads to a reduced fitness. In similar competitions in culture flasks with Luria Broth (LB the uvrY mutant rather had a higher fitness than the wild type. When the competitions were done in flasks with human urine the uvrY mutant initially had a lower fitness. This was followed by a fluctuation in the level of mutant in the long-term culture, with a pattern that was specific for the individual urines that were tested. Addition of LB to the different urine competition cultures however clearly led to a consistently higher fitness of the uvrY mutant. Conclusion This paper demonstrates that the BarA-UvrY two-component system is a determinant for virulence in a monkey cystitis model. The observed competition profiles strengthen our previous hypothesis that disruption of the BarA-UvrY two-component system impairs the ability of the bacteria to switch between different carbon sources. The urine in the bladder contains several different carbon sources and its composition changes over

  20. Structure of the response regulator ChrA in the haem-sensing two-component system of Corynebacterium diphtheriae.

    Science.gov (United States)

    Doi, Akihiro; Nakamura, Hiro; Shiro, Yoshitsugu; Sugimoto, Hiroshi

    2015-08-01

    ChrA is a response regulator (RR) in the two-component system involved in regulating the degradation and transport of haem (Fe-porphyrin) in the pathogen Corynebacterium diphtheriae. Here, the crystal structure of full-length ChrA is described at a resolution of 1.8 Å. ChrA consists of an N-terminal regulatory domain, a long linker region and a C-terminal DNA-binding domain. A structural comparison of ChrA with other RRs revealed substantial differences in the relative orientation of the two domains and the conformation of the linker region. The structural flexibility of the linker could be an important feature in rearrangement of the domain orientation to create a dimerization interface to bind DNA during haem-sensing signal transduction.

  1. Odd-parity superconductors with two-component order parameters: Nematic and chiral, full gap, and Majorana node

    Science.gov (United States)

    Venderbos, Jörn W. F.; Kozii, Vladyslav; Fu, Liang

    2016-11-01

    Motivated by the recent experiment indicating that superconductivity in the doped topological insulator CuxBi2Se3 has an odd-parity pairing symmetry with rotational symmetry breaking, we study the general class of odd-parity superconductors with two-component order parameters in trigonal and hexagonal crystal systems. In the presence of strong spin-orbit interaction, we find two possible superconducting phases below Tc, a time-reversal-breaking (i.e., chiral) phase and an anisotropic (i.e., nematic) phase, and determine their relative energetics from the gap function in momentum space. The nematic superconductor generally has a full quasiparticle gap, whereas the chiral superconductor with a three-dimensional (3D) Fermi surface has point nodes with lifted spin degeneracy, resulting in itinerant Majorana fermions in the bulk and topological Majorana arcs on the surface.

  2. Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: Implications for the volatile content of the Pacific upper mantle

    Science.gov (United States)

    Shimizu, Kei; Saal, Alberto E.; Myers, Corinne E.; Nagle, Ashley N.; Hauri, Erik H.; Forsyth, Donald W.; Kamenetsky, Vadim S.; Niu, Yaoling

    2016-03-01

    We report major, trace, and volatile element (CO2, H2O, F, Cl, S) contents and Sr, Nd, and Pb isotopes of mid-ocean ridge basalt (MORB) glasses from the Northern East Pacific Rise (NEPR) off-axis seamounts, the Quebrada-Discovery-GoFar (QDG) transform fault system, and the Macquarie Island. The incompatible trace element (ITE) contents of the samples range from highly depleted (DMORB, Th/La ⩽ 0.035) to enriched (EMORB, Th/La ⩾ 0.07), and the isotopic composition spans the entire range observed in EPR MORB. Our data suggest that at the time of melt generation, the source that generated the EMORB was essentially peridotitic, and that the composition of NMORB might not represent melting of a single upper mantle source (DMM), but rather mixing of melts from a two-component mantle (depleted and enriched DMM or D-DMM and E-DMM, respectively). After filtering the volatile element data for secondary processes (degassing, sulfide saturation, assimilation of seawater-derived component, and fractional crystallization), we use the volatiles to ITE ratios of our samples and a two-component mantle melting-mixing model to estimate the volatile content of the D-DMM (CO2 = 22 ppm, H2O = 59 ppm, F = 8 ppm, Cl = 0.4 ppm, and S = 100 ppm) and the E-DMM (CO2 = 990 ppm, H2O = 660 ppm, F = 31 ppm, Cl = 22 ppm, and S = 165 ppm). Our two-component mantle melting-mixing model reproduces the kernel density estimates (KDE) of Th/La and 143Nd/144Nd ratios for our samples and for EPR axial MORB compiled from the literature. This model suggests that: (1) 78% of the Pacific upper mantle is highly depleted (D-DMM) while 22% is enriched (E-DMM) in volatile and refractory ITE, (2) the melts produced during variable degrees of melting of the E-DMM controls most of the MORB geochemical variation, and (3) a fraction (∼65% to 80%) of the low degree EMORB melts (produced by ∼1.3% melting) may escape melt aggregation by freezing at the base of the oceanic lithosphere, significantly enriching it in

  3. Construction of physical crosslink-based chitosan/liquid crystal composite hydrogel and evaluation on their cytocompatibility

    Science.gov (United States)

    Du, Lin; Yang, Xiaohui; Li, Wenqiang; Luo, Xuhui; Wu, Hao; Zhang, Jiaqing; Tu, Mei

    2017-01-01

    In order to provide a novel biomimetic composite substrate for tissue engineering and explore the interaction between cells and this type of material, we developed chitosan/liquid crystal (CS/LC) composite hydrogel with embedded LC phases by composing of cholesterol hydroxypropyl cellulose ester liquid crystalline material and CS. The micromorphology of CS/LC composite hydrogels exhibited ‘islands-sea’ phase separation structures similar to the ‘fluid mosaic model’ of biomembrane. In vitro cell compatibility study suggested that 3T3 is fibroblasts exhibited better initial cell adhesions and higher proliferation rates on the composite hydrogel than on the polystyrene control plate and the pure LC membrane. This novel CS/LC composite hydrogel provides more favorable interface for cell growth and proliferation and may serve as potentially active substrate for engineering interfaces to live cells. PMID:28149528

  4. Stochastic study of information transmission and population stability in a generic bacterial two-component system

    CERN Document Server

    Mapder, Tarunendu; Banik, Suman K

    2016-01-01

    Studies on the role of fluctuations in signal propagation and on gene regulation in monoclonal bacterial population have been extensively pursued based on the machinery of two-component system. The bacterial two-component system shows noise utilisation through its inherent plasticity. The fluctuations propagation takes place using the phosphotransfer module and the feedback mechanism during gene regulation. To delicately observe the noisy kinetics the generic cascade needs stochastic investigation at the mRNA and protein levels. To this end, we propose a theoretical framework to investigate the noisy signal transduction in a generic two-component system. The model shows reliability in information transmission through quantification of several statistical measures. We further extend our analysis to observe the protein distribution in a population of cells. Through numerical simulation, we identify the regime of the kinetic parameter set that generates a stability switch in the steady state distribution of prot...

  5. Two-Component Signal Transduction Systems in the Cyanobacterium Synechocystis sp. PCC 6803

    Institute of Scientific and Technical Information of China (English)

    LIU Xingguo; HUANG Wei; WU Qingyu

    2006-01-01

    Two-component systems are signal transduction systems which enable bacteria to regulate cellular functions in response to changing environmental conditions. The unicellular Synechocystis sp. PCC 6803 has become a model organism for a range of biochemical and molecular biology studies aiming at investigating environmental stress response. The publication of the complete genome sequence of the cyanobacterium Synechocystis sp. PCC 6803 provided a tremendous stimulus for research in this field, and at least 80 open reading frames were identified as members of the two-component signal transduction systems in this single species of cyanobacteria. To date, functional roles have been determined for only a limited number of such proteins. This review summarizes our current knowledge about the two-component signal transduction systems in Synechocystis sp. PCC 6803 and describes recent achievements in elucidating the functional roles of these systems.

  6. Modeling Thermal Dust Emission with Two Components: Application to the Planck High Frequency Instrument Maps

    Science.gov (United States)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2015-01-01

    We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz, and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales.

  7. How Sensitive Is the Elasticity of Hydroxyapatite-Nanoparticle-Reinforced Chitosan Composite to Changes in Particle Concentration and Crystallization Temperature?

    Directory of Open Access Journals (Sweden)

    Kean Wang

    2015-10-01

    Full Text Available Hydroxyapatite (HA nanoparticle-reinforced chitosan composites are biocompatible and biodegradable structural materials that are used as biomaterials in tissue engineering. However, in order for these materials to function effectively as intended, e.g., to provide adequate structural support for repairing damaged tissues, it is necessary to analyse and optimise the material processing parameters that affect the relevant mechanical properties. Here we are concerned with the strength, stiffness and toughness of wet-spun HA-reinforced chitosan fibres. Unlike previous studies which have addressed each of these parameters as singly applied treatments, we have carried out an experiment designed using a two-factor analysis of variance to study the main effects of two key material processing parameters, namely HA concentration and crystallization temperature, and their interactions on the respective mechanical properties of the composite fibres. The analysis reveals that significant interaction occurs between the crystallization temperature and HA concentration. Starting at a low HA concentration level, the magnitude of the respective mechanical properties decreases significantly with increasing HA concentration until a critical HA concentration is reached, at around 0.20–0.30 (HA mass fraction, beyond which the magnitude of the mechanical properties increases significantly with HA concentration. The sensitivity of the mechanical properties to crystallization temperature is masked by the interaction between the two parameters—further analysis reveals that the dependence on crystallization temperature is significant in at least some levels of HA concentration. The magnitude of the mechanical properties of the chitosan composite fibre corresponding to 40 °C is higher than that at 100 °C at low HA concentration; the reverse applies at high HA concentration. In conclusion, the elasticity of the HA nanoparticle-reinforced chitosan composite fibre is

  8. Domain Walls and Textured Vortices in a Two-Component Ginzburg-Landau Model

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Gaididei, Yu. B.; Christiansen, Peter Leth

    2005-01-01

    We look for domain wall and textured vortex solutions in a two-component Ginzburg-Landau model inspired by two-band superconductivity. The two-dimensional two-component model, with equal coherence lengths and no magnetic field, shows some interesting properties. In the absence of a Josephson type...... coupling between the two order parameters a ''textured vortex'' is found by analytical and numerical solution of the Ginzburg-Landau equations. With a Josephson type coupling between the two order parameters we find the system to split up in two domains separated by a domain wall, where the order parameter...

  9. Block algebra in two-component BKP and D type Drinfeld-Sokolov hierarchies

    Science.gov (United States)

    Li, Chuanzhong; He, Jingsong

    2013-11-01

    We construct generalized additional symmetries of a two-component BKP hierarchy defined by two pseudo-differential Lax operators. These additional symmetry flows form a Block type algebra with some modified (or additional) terms because of a B type reduction condition of this integrable hierarchy. Further we show that the D type Drinfeld-Sokolov hierarchy, which is a reduction of the two-component BKP hierarchy, possess a complete Block type additional symmetry algebra. That D type Drinfeld-Sokolov hierarchy has a similar algebraic structure as the bigraded Toda hierarchy which is a differential-discrete integrable system.

  10. Rabi Oscillations in Two-Component Bose-Einstein Condensates with a Coupling Drive

    Institute of Scientific and Technical Information of China (English)

    LI Wei-Dong; FAN Wen-Bing; ZHOU Xiao-Ji; WANG Yi-Qiu; LIANG Jiu-Qing

    2002-01-01

    The Rabi oscillations in two-component Bose-Einstein condensates with a coupling drive are studiedby means of a pair of bosonic operators. The coupling drive and initial phase difference will affect the amplitudeand the period of the Rabi oscillations. The Rabi oscillations will vanish in the evolution of the condensate densityfor some special initial phase differences (ψ = 0 or π). Our theory provides not only an analytical framework forquantitative predictions for two-component condensates, but also gives an intuitive understanding of some mysteriousfeatures observed in experiments and numerical. simulations.

  11. Targeting two-component signal transduction: a novel drug discovery system.

    Science.gov (United States)

    Okada, Ario; Gotoh, Yasuhiro; Watanabe, Takafumi; Furuta, Eiji; Yamamoto, Kaneyoshi; Utsumi, Ryutaro

    2007-01-01

    We have developed two screening systems for isolating inhibitors that target bacterial two-component signal transduction: (1) a differential growth assay using a temperature-sensitive yycF mutant (CNM2000) of Bacillus subtilis, which is supersensitive to histidine kinase inhibitors, and (2) a high-throughput genetic system for targeting the homodimerization of histidine kinases essential for the bacterial two-component signal transduction. By using these methods, we have been able to identify various types of inhibitors that block the autophosphorylation of histidine kinases with different modes of actions.

  12. Modulational instability of two-component Bose-Einstein condensates in an optical lattice

    CERN Document Server

    Jin, G R; Nahm, K; Jin, Guang-Ri; Kim, Chul Koo; Nahm, Kyun

    2004-01-01

    We study modulational instability of two-component Bose-Einstein condensates in a deep optical lattice, which is modelled as a coupled discrete nonlinear Schr\\"{o}dinger equation. The excitation spectrum and the modulational instability condition of the total system are presented analytically. In the long-wavelength limit, our results agree with the homogeneous two-component Bose-Einstein condensates case. The discreteness effects result in the appearance of the modulational instability for the condensates in miscible region. The numerical calculations confirm our analytical results and show that the interspecies coupling can transfer the instability from one component to another.

  13. Domain Walls and Textured Vortices in a Two-Component Ginzburg-Landau Model

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Gaididei, Yu. B.; Christiansen, Peter Leth

    2005-01-01

    We look for domain wall and textured vortex solutions in a two-component Ginzburg-Landau model inspired by two-band superconductivity. The two-dimensional two-component model, with equal coherence lengths and no magnetic field, shows some interesting properties. In the absence of a Josephson type...... coupling between the two order parameters a ''textured vortex'' is found by analytical and numerical solution of the Ginzburg-Landau equations. With a Josephson type coupling between the two order parameters we find the system to split up in two domains separated by a domain wall, where the order parameter...

  14. Block algebra in two-component BKP and D type Drinfeld-Sokolov hierarchies

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanzhong, E-mail: lichuanzhong@nbu.edu.cn; He, Jingsong, E-mail: hejingsong@nbu.edu.cn [Department of Mathematics, Ningbo University, Ningbo 315211 (China)

    2013-11-15

    We construct generalized additional symmetries of a two-component BKP hierarchy defined by two pseudo-differential Lax operators. These additional symmetry flows form a Block type algebra with some modified (or additional) terms because of a B type reduction condition of this integrable hierarchy. Further we show that the D type Drinfeld-Sokolov hierarchy, which is a reduction of the two-component BKP hierarchy, possess a complete Block type additional symmetry algebra. That D type Drinfeld-Sokolov hierarchy has a similar algebraic structure as the bigraded Toda hierarchy which is a differential-discrete integrable system.

  15. Localised Tuneable Composition Single Crystal Silicon-Germanium-on-Insulator for Low Cost Devices

    Directory of Open Access Journals (Sweden)

    Callum G. Littlejohns

    2016-01-01

    Full Text Available The realisation of high quality silicon-germanium-on-insulator (SGOI is a major goal for the field of silicon photonics because it has the potential to enable extremely low power active devices functioning at the communication wavelengths of 1.3 μm and 1.55 μm. In addition, SGOI has the potential to form faster electronic devices such as BiCMOS transistors and could also form the backbone of a new silicon photonics platform that extends into the mid-IR wavelengths for applications in, amongst others, sensing and telecoms. In this paper, we present a novel method of forming single crystal, defect-free SGOI using a rapid melt growth technique. We use tailored structures to form localised uniform composition SGOI strips, which are suitable for the state-of-the-art device fabrication. This technique could pave the way for the seamless integration of electronic and photonic devices using only a single, low cost Ge deposition step.

  16. Surface induced constant composition crystal growth kinetics studies. The brushite gypsum system

    Science.gov (United States)

    Hina, A.; Nancollas, G. H.; Grynpas, M.

    2001-02-01

    The possible oriented growth of one crystalline phase on the surface of another is especially important in systems containing both phosphate and sulfate salts of calcium. Whether the overgrowth results from a true epitaxial relationship is dependent on factors such as the thermodynamic driving forces and the free energies of the surfaces. Despite the fact that calcium sulfate dihydrate (CSD, gypsum) and calcium hydrogen phosphate dihydrate (DCPD, brushite) show many crystallographic and structural analogies, their surface reactions are quite different. The nucleation and growth of gypsum on brushite surfaces has been investigated in supersaturated solutions of calcium sulfate dihydrate at 25.0°C using the constant composition (CC) method. During the kinetics experiments, the harvested solid phases were examined by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDS). Induction periods, τ, preceding the initial formation of gypsum crystals at the brushite surfaces, varied markedly with relative supersaturation, σ. A thin layer wicking method was used to investigate the interfacial free energies of the growing phases, and these data were also calculated from the kinetics results. The interfacial free energy, γ, estimated from initial growth rates was 8.4 mJ m -2, while that calculated from the induction times was 8.9 mJ m -2. These values were in agreement with those determined directly using thin layer wicking.

  17. Stochastic polarity formation in molecular crystals, composite materials and natural tissues

    Directory of Open Access Journals (Sweden)

    Jürg Hulliger

    2017-07-01

    Full Text Available This topical review summarizes the theoretical and experimental findings obtained over the last 20 years on the subject of growth-induced polarity formation driven by a Markov chain process. When entering the growing surface of a molecular crystal, an inorganic–organic composite or a natural tissue, the building blocks may undergo 180° orientational disorder. Driven by configurational entropy, faulted orientations can promote the conversion of a growing non-polar seed into an object showing polar domains. Similarly, orientational disorder at the interface may change a polar seed into a two-domain state. Analytical theory and Monte Carlo simulations were used to model polarity formation. Scanning pyroelectric, piezoresponse force and phase-sensitive second-harmonic microscopies are methods for investigating the spatial distribution of polarity. Summarizing results from different types of materials, a general principle is provided for obtaining growth-induced polar domains: a non-zero difference in the probabilities for 180° orientational misalignments of building blocks, together with uni-directional growth, along with Markov chain theory, can produce objects showing polar domains.

  18. Micro-Structured Two-Component 3D Metamaterials with Negative Thermal-Expansion Coefficient from Positive Constituents

    Science.gov (United States)

    Qu, Jingyuan; Kadic, Muamer; Naber, Andreas; Wegener, Martin

    2017-01-01

    Controlling the thermal expansion of materials is of great technological importance. Uncontrolled thermal expansion can lead to failure or irreversible destruction of structures and devices. In ordinary crystals, thermal expansion is governed by the asymmetry of the microscopic binding potential, which cannot be adjusted easily. In artificial crystals called metamaterials, thermal expansion can be controlled by structure. Here, following previous theoretical work, we fabricate three-dimensional (3D) two-component polymer micro-lattices by using gray-tone laser lithography. We perform cross-correlation analysis of optical microscopy images taken at different sample temperatures. The derived displacement-vector field reveals that the thermal expansion and resulting bending of the bi-material beams leads to a rotation of the 3D chiral crosses arranged onto a 3D checkerboard pattern within one metamaterial unit cell. These rotations can compensate the expansion of the all positive constituents, leading to an effectively near-zero thermal length-expansion coefficient, or over-compensate the expansion, leading to an effectively negative thermal length-expansion coefficient. This evidences a striking level of thermal-expansion control.

  19. Three-wave interaction in two-component quadratic nonlinear lattices

    DEFF Research Database (Denmark)

    Konotop, V. V.; Cunha, M. D.; Christiansen, Peter Leth

    1999-01-01

    We investigate a two-component lattice with a quadratic nonlinearity and find with the multiple scale technique that integrable three-wave interaction takes place between plane wave solutions when these fulfill resonance conditions. We demonstrate that. energy conversion and pulse propagation kno...

  20. A novel two-component system found in Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Morth, J. P.; Gosmann, S.; Nowak, E.;

    2005-01-01

    We report the identification of a novel two-component system in Mycobacterium tuberculosis. We show that the putative histidine kinase with the genomic locus tag Rv3220c is able to self-phosphorylate in the presence of Mg2+/ATP and subsequently transfer the phosphoryl group to a novel response...

  1. Light Responsive Two-Component Supramolecular Hydrogel: A Sensitive Platform for Humidity Sensors

    KAUST Repository

    Samai, Suman

    2016-02-15

    The supramolecular assembly of anionic azobenzene dicarboxylate and cationic cetyltrimethylammonium bromide (CTAB) formed a stimuli responsive hydrogel with a critical gelation concentration (CGC) of 0.33 wt%. This self-sustainable two-component system was able to repair damage upon light irradiation. Moreover, it was successfully employed in the fabrication of highly sensitive humidity sensors for the first time.

  2. A Two-Component Generalization of Burgers' Equation with Quasi-Periodic Solution

    Science.gov (United States)

    Pan, Hongfei; Xia, Tiecheng; Chen, Dengyuan

    2014-10-01

    In this paper, we aim for the theta function representation of quasi-periodic solution and related crucial quantities for a two-component generalization of Burgers' equation. Our tools include the theory of algebraic curves, meromorphic functions, Baker-Akhiezer functions and the Dubrovin-type equations for auxiliary divisor. Eith these tools, the explicit representations for above quantities are obtained.

  3. Transport of a two-component mixture in one-dimensional channels

    NARCIS (Netherlands)

    Borman, VD; Tronin, VN; Tronin, [No Value; Troyan, [No Value

    2004-01-01

    The transport of a two-component gas mixture in subnanometer channels is investigated theoretically for an arbitrary filling of channels. Special attention is paid to consistent inclusion of density effects, which are associated both with the interaction and with a finite size of particles. The anal

  4. The Integrability of New Two-Component KdV Equation

    Directory of Open Access Journals (Sweden)

    Ziemowit Popowicz

    2010-02-01

    Full Text Available We consider the bi-Hamiltonian representation of the two-component coupled KdV equations discovered by Drinfel'd and Sokolov and rediscovered by Sakovich and Foursov. Connection of this equation with the supersymmetric Kadomtsev-Petviashvilli-Radul-Manin hierarchy is presented. For this new supersymmetric equation the Lax representation and odd Hamiltonian structure is given.

  5. The Qualitative Analysis of a Solution of a Series Maintenance System with Two Components

    Institute of Scientific and Technical Information of China (English)

    GUOWei-hua; YANGMing-zeng

    2003-01-01

    In this paper, firstly we study the series maintenance system with two components, obtain its exsistence and uniqueness of a dynamic state nonnegative solution by strongly continuous semigroups of operators theory. Then we prove that 0 is the eigenvalue of the system's host operators, and finally we study the eigenvector of the eigenvalue 0.

  6. A novel two-component system involved in secretion stress response in Streptomyces lividans.

    Directory of Open Access Journals (Sweden)

    Sonia Gullón

    Full Text Available BACKGROUND: Misfolded proteins accumulating outside the bacterial cytoplasmic membrane can interfere with the secretory machinery, hence the existence of quality factors to eliminate these misfolded proteins is of capital importance in bacteria that are efficient producers of secretory proteins. These bacteria normally use a specific two-component system to respond to the stress produced by the accumulation of the misfolded proteins, by activating the expression of HtrA-like proteases to specifically eliminate the incorrectly folded proteins. METHODOLOGY/PRINCIPAL FINDINGS: Overproduction of alpha-amylase in S. lividans causing secretion stress permitted the identification of a two-component system (SCO4156-SCO4155 that regulates three HtrA-like proteases which appear to be involved in secretion stress response. Mutants in each of the genes forming part of the two-genes operon that encodes the sensor and regulator protein components accumulated misfolded proteins outside the cell, strongly suggesting the involvement of this two-component system in the S. lividans secretion stress response. CONCLUSIONS/SIGNIFICANCE: To our knowledge this is the first time that a specific secretion stress response two-component system is found to control the expression of three HtrA-like protease genes in S. lividans, a bacterium that has been repeatedly used as a host for the synthesis of homologous and heterologous secretory proteins of industrial application.

  7. Impacts of photon bending on observational aspects of Two Component Advective Flow

    CERN Document Server

    Chatterjee, Arka

    2016-01-01

    Nature of photon trajectories in a curved spacetime around black holes are studied without constraining their motion to any plane. Impacts of photon bending are separately scrutinized for Keplerian and CENBOL components of Two Component Advective Flow (TCAF) model. Parameters like Red shift, Bolometric Flux, temperature profile and time of arrival of photons are also computed.

  8. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis

    DEFF Research Database (Denmark)

    Bisicchia, Paola; Noone, David; Lioliou, Efthimia

    2007-01-01

    Adaptation of bacteria to the prevailing environmental and nutritional conditions is often mediated by two-component signal transduction systems (TCS). The Bacillus subtilis YycFG TCS has attracted special attention as it is essential for viability and its regulon is poorly defined. Here we show...

  9. Modeling Thermal Dust Emission with Two Components: Application to the Planck HFI Maps

    CERN Document Server

    Meisner, Aaron

    2014-01-01

    We apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. This parametrization of the far-infrared dust spectrum as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody (MBB) dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We also derive full-sky 6.1' resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 micron data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.1' FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to...

  10. Global dissipative solutions for the two-component Camassa-Holm shallow water system

    Directory of Open Access Journals (Sweden)

    Yujuan Wang

    2015-01-01

    Full Text Available This article presents a continuous semigroup of globally defined weak dissipative solutions for the two-component Camassa-Holm system. Such solutions are established by using a new approach based on characteristics a set of new variables overcoming the difficulties inherent in multi-component systems.

  11. Phase separation and dynamics of two-component Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Lee, Kean Loon; Jørgensen, Nils Byg; Liu, I-Kang;

    2016-01-01

    The miscibility of two interacting quantum systems is an important testing ground for the understanding of complex quantum systems. Two-component Bose-Einstein condensates enable the investigation of this scenario in a particularly well controlled setting. In a homogeneous system, the transition...

  12. Phase of Two-Component Bose-Einstein Condensates with a Coupling Drive

    Institute of Scientific and Technical Information of China (English)

    YU Zhao-Xian; JIN Shuo; JIAO Zhi-Yong; WANG Ji-Suo

    2007-01-01

    By using the invariant theory, we study the phases of two-component Bose-Einstein condensates with a coupling drive under the case that the strength of the interatomic interaction in each condensate equals the interspecies interaction. The dynamical and geometric phases are presented respectively. The Aharonov-Anandan phase is also obtained under the cyclical evolution.

  13. The dynamics of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates

    Institute of Scientific and Technical Information of China (English)

    Lü Bin-Bin; Hao Xue; Tian Qiang

    2011-01-01

    This paper investigates the dynamical properties of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates. It gives three kinds of stationary solutions to this model and develops a general method of constructing nonstationary solutions. It obtains the unique features about general evolution and soliton evolution of nonstationary solutions in this model.

  14. Geometric Integrability of Two-Component Camassa-Holm and Hunter-Saxton Systems

    Institute of Scientific and Technical Information of China (English)

    SONG Juu-Feng; QU Chang-Zheng

    2011-01-01

    It is shown that the two-component Camassa-Holm and Hunter-Saxton systems are geometrically integrable, namely they describe pseudo-spherical surfaces. As a consequence, their infinite number o, conservation laws are directly constructed. In addition, a class of nonlocal symmetries depending on the pseudo-potentials are obtained.

  15. Transport of a two-component mixture in one-dimensional channels

    NARCIS (Netherlands)

    Borman, VD; Tronin, VN; Tronin, [No Value; Troyan, [No Value

    2004-01-01

    The transport of a two-component gas mixture in subnanometer channels is investigated theoretically for an arbitrary filling of channels. Special attention is paid to consistent inclusion of density effects, which are associated both with the interaction and with a finite size of particles. The

  16. Mineral chemical compositions of late Cretaceous volcanic rocks in the Giresun area, NE Turkey: Implications for the crystallization conditions

    Science.gov (United States)

    Oǧuz, Simge; Aydin, Faruk; Uysal, İbrahim; Şen, Cüneyt

    2016-04-01

    This contribution contains phenocryst assemblages and mineral chemical data of late Cretaceous volcanic (LCV) rocks from the south of Görele and Tirebolu areas (Giresun, NE Turkey) in order to investigate their crystallization conditions. The LCV rocks in the study area occur in two different periods (Coniasiyen-Early Santonian and Early-Middle Campanian), which generally consist of alternation of mafic-intermediate (basaltic to andesitic) and felsic rock series (dacitic and rhyolitic) within each period. The basaltic and andesitic rocks in both periods generally exhibit porphyritic to hyalo-microlitic porphyritic texture, and contain phenocrysts of plagioclase and pyroxene, whereas the dacitic and rhyolitic rocks of the volcanic sequence usually show a vitrophyric texture with predominant plagioclase, K-feldspar, quartz and lesser amphibole-biotite phenocrysts. Zoned plagioclase crystals of the mafic and felsic rocks in different volcanic periods are basically different in composition. The compositions of plagioclase in the first-stage mafic rocks range from An52 to An78 whereas those of plagioclase from the first-stage felsic rocks have lower An content varying from An38 to An50. Rim to core profile for the zoned plagioclase of the first-stage mafic rocks show quite abrupt and notable compositional variations whereas that of the first-stage felsic rocks show slight compositional variation, although some of the grains may display reverse zoning. On the other hand, although no zoned plagioclase phenocryst observed in the second-stage mafic rocks, the compositions of microlitic plagioclase show wide range of compositional variation (An45-80). The compositions of zoned plagioclase in the second-stage felsic rocks are more calcic (An65-81) than those of the first-stage felsic rocks, and their rim to core profile display considerable oscillatory zoning. The compositions of pyroxenes in the first- and second-stage mafic-intermediate rocks vary over a wide range from

  17. Hydrothermal Synthesis of Metal-Polyphenol Coordination Crystals and Their Derived Metal/N-doped Carbon Composites for Oxygen Electrocatalysis.

    Science.gov (United States)

    Wei, Jing; Liang, Yan; Hu, Yaoxin; Kong, Biao; Zhang, Jin; Gu, Qinfen; Tong, Yuping; Wang, Xianbiao; Jiang, San Ping; Wang, Huanting

    2016-09-26

    Cobalt (or iron)-polyphenol coordination polymers with crystalline frameworks are synthesized for the first time. The crystalline framework is formed by the assembly of metal ions and polyphenol followed by oxidative self-polymerization of the organic ligands (polyphenol) during hydrothermal treatment in alkaline condition. As a result, such coordination crystals are even partly stable in strong acid (such as 2 m HCl). The metal (Co or Fe)-natural abundant polyphenol (tannin) coordination crystals are a renewable source for the fabrication of metal/carbon composites as a nonprecious-metal catalyst, which show high catalytic performance for both oxygen reduction reaction and oxygen evolution reaction. Such excellent performance makes metal-polyphenol coordination crystals an efficient precursor to fabricate low-cost catalysts for the large-scale application of fuel cells and metal-air batteries.

  18. The Origin and Time Dependence of the Amount and Composition of Non-Constituent Gases Present in Crystal Growth Systems

    Science.gov (United States)

    Palosz, Witold

    1998-01-01

    Presence of different, non-constituent gases may be a critical factor in crystal growth systems. In Physical Vapor Transport processes the cras(es) can be used intentionally (to prevent excessively high, unstable growth conditions), or can evolve unintentionally during the course of the process (which may lead to undesired reduction in the -rowth rate). In melt growth, particularly under low gravity conditions (reduced hydrostatic pressure) the gas present in the system may contribute to formation of voids in the growing crystals and even to a separation of the crystal and the liquid phase [1]. On the other hand, some amount of gas may facilitate 'contactless' crystal growth particularly under reduced gravity conditions [2 - 6]. Different non-constituent gases may be present in growth ampoules, and their amount and composition may change during the crystallization process. Some gases can appear even in empty ampoules sealed originally under high vacuum: they may diffuse in from the outside, and/or desorb from the ampoule walls. Residual gases can also be generated by the source materials: even very high purity commercial elements and compounds may contain trace amounts of impurities, particularly oxides. The oxides may have low volatilities themselves but their reaction with other species, particularly carbon and hydrogen, may produce volatile compounds like water or carbon oxides. The non-constituent gases, either added initially to the system or evolved during the material processing, may diffuse out of the ampoule during the course of the experiment. Gases present outside (e.g. as a protective atmosphere or thermal conductor) may diffuse into the ampoule. In either case the growth conditions and the quality of the crystals may be affected. The problem is of a particular importance in sealed systems where the amount of the gases cannot be directly controlled. Therefore a reasonable knowledge and understanding of the origin, composition, magnitude, and change with

  19. The Origin and Time Dependence of the Amount and Composition of Non-Constituent Gases Present in Crystal Growth Systems

    Science.gov (United States)

    Palosz, Witold

    1998-01-01

    Presence of different, non-constituent gases may be a critical factor in crystal growth systems. In Physical Vapor Transport processes the cras(es) can be used intentionally (to prevent excessively high, unstable growth conditions), or can evolve unintentionally during the course of the process (which may lead to undesired reduction in the -rowth rate). In melt growth, particularly under low gravity conditions (reduced hydrostatic pressure) the gas present in the system may contribute to formation of voids in the growing crystals and even to a separation of the crystal and the liquid phase [1]. On the other hand, some amount of gas may facilitate 'contactless' crystal growth particularly under reduced gravity conditions [2 - 6]. Different non-constituent gases may be present in growth ampoules, and their amount and composition may change during the crystallization process. Some gases can appear even in empty ampoules sealed originally under high vacuum: they may diffuse in from the outside, and/or desorb from the ampoule walls. Residual gases can also be generated by the source materials: even very high purity commercial elements and compounds may contain trace amounts of impurities, particularly oxides. The oxides may have low volatilities themselves but their reaction with other species, particularly carbon and hydrogen, may produce volatile compounds like water or carbon oxides. The non-constituent gases, either added initially to the system or evolved during the material processing, may diffuse out of the ampoule during the course of the experiment. Gases present outside (e.g. as a protective atmosphere or thermal conductor) may diffuse into the ampoule. In either case the growth conditions and the quality of the crystals may be affected. The problem is of a particular importance in sealed systems where the amount of the gases cannot be directly controlled. Therefore a reasonable knowledge and understanding of the origin, composition, magnitude, and change with

  20. Composition and (in)homogeneity of carotenoid crystals in carrot cells revealed by high resolution Raman imaging

    Science.gov (United States)

    Roman, Maciej; Marzec, Katarzyna M.; Grzebelus, Ewa; Simon, Philipp W.; Baranska, Malgorzata; Baranski, Rafal

    2015-02-01

    Three categories of roots differing in both β/α-carotene ratio and in total carotenoid content were selected based on HPLC measurements: high α- and β-carotene (HαHβ), low α- and high β-carotene (LαHβ), and low α- and low β-carotene (LαLβ). Single carotenoid crystals present in the root cells were directly measured using high resolution Raman imaging technique with 532 nm and 488 nm lasers without compound extraction. Crystals of the HαHβ root had complex composition and consisted of β-carotene accompanied by α-carotene. In the LαHβ and LαLβ roots, measurements using 532 nm laser indicated the presence of β-carotene only, but measurements using 488 nm laser confirmed co-occurrence of xanthophylls, presumably lutein. Thus the results show that independently on carotenoid composition in the root, carotenoid crystals are composed of more than one compound. Individual spectra extracted from Raman maps every 0.2-1.0 μm had similar shapes in the 1500-1550 cm-1 region indicating that different carotenoid molecules were homogeneously distributed in the whole crystal volume. Additionally, amorphous carotenoids were identified and determined as composed of β-carotene molecules but they had a shifted the ν1 band probably due to the effect of bonding of other plant constituents like proteins or lipids.

  1. Electrical conductivity modeling of multiple carbon fillers in liquid crystal polymer composites for fuel cell bipolar plate applications

    Energy Technology Data Exchange (ETDEWEB)

    Barton, R.L.; Keith, J.M.; King, J.A. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering

    2008-08-15

    This study modelled the electrical conductivity of a single filler composite system using a general effective media (GEM) equation. The aim of the study was to investigate the use of synthetic graphite and carbon fiber in liquid crystal polymers for fuel cell bipolar plate applications. The polymer consisted of 73 mole per cent hydroxybenzoic acid and 27 mole per cent hydroxynaphthoic acid. Composites of various concentrations of single and multiple filler combinations were tested. A volumetric in-plane electrical conductivity test was conducted on all samples in order to measure voltage drop. A through-plane conductivity test was conducted to measure resistivity. The GEM equation was then used to model the conductivity data obtained during the tests. Results of the study showed that at 45 vol per cent, the electrical conductivity of the multiple filler composite was comparable to data obtained from single filler electrical conductivities. The electrical conductivity of the multiple filler composite at 60 per cent graphite and 10 per cent carbon fiber was comparable to the single filler carbon fiber composite, but lower than the single filler synthetic graphite composite. Results also showed that the GEM equation provided excellent agreement with results obtained during the experiments. It was concluded that the percolation threshold of the multiple filler composite was almost identical to the single carbon fiber filler, but lower than the single synthetic graphite composite. 35 refs., 3 tabs., 2 figs.

  2. MATHEMATICAL MODELLING OF HYDROTHERMAL GROWTH OF CRYSTALS AS A DOUBLE DIFFUSIVE MAGNETOCONVECTION PROBLEM IN A COMPOSITE LAYER BOUNDED BY RIGID WALLS.

    Directory of Open Access Journals (Sweden)

    R. Sumithra

    2012-02-01

    Full Text Available The Hydrothermal growth of crystals is mathematically modeled as the onset of double diffusive magnetoconvection in a two-layer system comprising an incompressible two component, electrically conducting fluid saturated porous layer over which lies a layer of the same fluid in the presence a vertical magnetic field. Both the upper boundary of the fluid layer and the lower boundary of the porous layer are rigid and insulating to both heat and mass. At the interface the velocity, shear stress, normal stress, heat, heat flux,mass and mass flux are assumed to be continuous conducive for Darcy-Brinkman model. The resulting eigenvalue problem is solved by regular perturbation technique. The critical Rayleigh number, which is thecriterion for stability of the system is obtained. The effects of different physical parameters on the onset of double diffusive magnetoconvection are investigated in detail which enables to control convection during the growth of crystals in order to obtain pure crystals.

  3. Influence of the chemical composition of rapidly quenched amorphous alloys (Ni, Fe, Cr)-B-Si on its crystallization process

    Science.gov (United States)

    Elmanov, G.; Dzhumaev, P.; Ivanitskaya, E.; Skrytnyi, V.; Ruslanov, A.

    2016-04-01

    This paper presents results of research of the structure and phase transformations during the multistage crystallization of the metallic glasses with the compositions Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 labeled as AWS BNi-2 according to American Welding Society. Differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX) were used as experimental research methods. The influence of the alloys chemical composition (boron, manganese and iron) on the temperatures and the exothermic heat effects of phase transformations, as well as on the phase composition of alloys at three stages of crystallization was analyzed. We present a thermodynamic explanation of the observed heat effects. It has been shown that manganese has the main influence on the phase transformations temperatures and heat effects in these two alloys. It is also assumed that at the final crystallization stage simultaneously with the formation of phases Ni3B and β1-Ni3Si should occur the nucleation of borides of CrB type with high Cr and low Si content.

  4. Localized rejuvenation of a crystal mush recorded in zircon temporal and compositional variation at the Lassen Volcanic Center, northern California

    Science.gov (United States)

    Klemetti, Erik W.; Clynne, Michael A.

    2014-01-01

    Zircon ages and trace element compositions from recent silicic eruptions in the Lassen Volcanic Center (LVC) allow for an evaluation of the timing and conditions of rejuvenation (reheating and mobilization of crystals) within the LVC magmatic system. The LVC is the southernmost active Cascade volcano and, prior to the 1980 eruption of Mount St. Helens, was the site of the only eruption in the Cascade arc during the last century. The three most recent silicic eruptions from the LVC were very small to moderate-sized lava flows and domes of dacite (1915 and 27 ka eruptions of Lassen Peak) and rhyodacite (1.1 ka eruption of Chaos Crags). These eruptions produced mixed and mingled lavas that contain a diverse crystal cargo, including zircon. 238U-230Th model ages from interior and surface analyses of zircon reveal ages from ~17 ka to secular equilibrium (>350 ka), with most zircon crystallizing during a period between ~60–200 ka. These data support a model for localized rejuvenation of crystal mush beneath the LVC. This crystal mush evidently is the remnant of magmatism that ended ~190 ka. Most zircon are thought to have been captured from “cold storage” in the crystal mush (670–725°C, Hf >10,000 ppm, Eu/Eu* 0.25–0.4) locally remobilized by intrusion of mafic magma. A smaller population of zircon (>730°C, Hf 0.4) grew in, and are captured from, rejuvenation zones. These data suggest the dominant method to produce eruptible melt within the LVC is small-scale, local rejuvenation of the crystal mush accompanied by magma mixing and mingling. Based on zircon stability, the time required to heat, erupt and then cool to background conditions is relatively short, lasting a maximum of 10 s–1000 s years. Rejuvenation events in the LVC are ephemeral and permit eruption within an otherwise waning and cooling magmatic body.

  5. Localized rejuvenation of a crystal mush recorded in zircon temporal and compositional variation at the Lassen Volcanic Center, northern California.

    Directory of Open Access Journals (Sweden)

    Erik W Klemetti

    Full Text Available Zircon ages and trace element compositions from recent silicic eruptions in the Lassen Volcanic Center (LVC allow for an evaluation of the timing and conditions of rejuvenation (reheating and mobilization of crystals within the LVC magmatic system. The LVC is the southernmost active Cascade volcano and, prior to the 1980 eruption of Mount St. Helens, was the site of the only eruption in the Cascade arc during the last century. The three most recent silicic eruptions from the LVC were very small to moderate-sized lava flows and domes of dacite (1915 and 27 ka eruptions of Lassen Peak and rhyodacite (1.1 ka eruption of Chaos Crags. These eruptions produced mixed and mingled lavas that contain a diverse crystal cargo, including zircon. 238U-230Th model ages from interior and surface analyses of zircon reveal ages from ∼17 ka to secular equilibrium (>350 ka, with most zircon crystallizing during a period between ∼60-200 ka. These data support a model for localized rejuvenation of crystal mush beneath the LVC. This crystal mush evidently is the remnant of magmatism that ended ∼190 ka. Most zircon are thought to have been captured from "cold storage" in the crystal mush (670-725°C, Hf >10,000 ppm, Eu/Eu* 0.25-0.4 locally remobilized by intrusion of mafic magma. A smaller population of zircon (>730°C, Hf 0.4 grew in, and are captured from, rejuvenation zones. These data suggest the dominant method to produce eruptible melt within the LVC is small-scale, local rejuvenation of the crystal mush accompanied by magma mixing and mingling. Based on zircon stability, the time required to heat, erupt and then cool to background conditions is relatively short, lasting a maximum of 10 s-1000 s years. Rejuvenation events in the LVC are ephemeral and permit eruption within an otherwise waning and cooling magmatic body.

  6. Expansion of lower-frequency locally resonant band gaps using a double-sided stubbed composite phononic crystals plate with composite stubs

    Energy Technology Data Exchange (ETDEWEB)

    Li, Suobin; Chen, Tianning [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Wang, Xiaopeng, E-mail: xpwang@mail.xjtu.edu.cn [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Li, Yinggang [Key Laboratory of High Performance Ship Technology of Ministry of Education, Wuhan University of Technology, Wuhan, 430070 (China); Chen, Weihua [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2016-06-03

    We studied the expansion of locally resonant complete band gaps in two-dimensional phononic crystals (PCs) using a double-sided stubbed composite PC plate with composite stubs. Results show that the introduction of the proposed structure gives rise to a significant expansion of the relative bandwidth by a factor of 1.5 and decreases the opening location of the first complete band gap by a factor of 3 compared to the classic double-sided stubbed PC plate with composite stubs. Furthermore, more band gaps appear in the lower-frequency range (0.006). These phenomena can be attributed to the strong coupling between the “analogous rigid mode” of the stub and the anti-symmetric Lamb modes of the plate. The “analogous rigid mode” of the stub is produced by strengthening the localized resonance effect of the composite plates through the double-sided stubs, and is further strengthened through the introduction of composite stubs. The “analogous rigid mode” of the stubs expands the out-of-plane band gap, which overlaps with in-plane band gap in the lower-frequency range. As a result, the complete band gap is expanded and more complete band gaps appear. - Highlights: • Expansion of lower-frequency locally resonant BGs using novel composite phononic crystals plates. • The proposed structure expands the relative bandwidth 1.5 times compared to classic doubled-sided stubbed PC plates. • The opening location of the first complete BG decreases 3 times compared to the classic doubled-sided stubbed PC plates. • The concept “analogous rigid mode” is put forward to explain the expansion of lower-frequency BGs.

  7. Formation and growth mechanism of TiC crystal in TiCp/Ti composites

    Institute of Scientific and Technical Information of China (English)

    金云学; 王宏伟; 曾松岩; 张二林

    2002-01-01

    Ti-C and Ti-Al-C alloys were prepared using gravity and directional solidification processes. Morphologies of TiC crystal were investigated by using SEM, XRD and EDX. Also, the formation and growth mechanism of TiC crystal have been analyzed on the basis of coordination polyhedron growth unit theory. During solidification of titanium alloys, the coordination polyhedron growth unit is TiC6. TiC6 growth units stack in a linking mode of edge to edge and form octahedral TiC crystal with {111} planes as present faces. Although the growing geometry of TiC crystal is decided by its lattice structure, the final morphology of TiC crystal depends on the effects of its growth environment. In solute concentration distribution, the super-saturation of C or TiC6 at the corners of octahedral TiC crystal is much higher than that of edges and faces of octahedral TiC crystal. At these corners the driving force for crystal growth is greater and the interface is instable which contribute to quick stacking rate of growth units at these corners and result in secondary dendrite arms along TiC crystallographic 〈100〉 directions. TiC crystal finally grows to be dendrites.

  8. Geotail observations of temperature anisotropy of the two-component protons in the dusk plasma sheet

    Directory of Open Access Journals (Sweden)

    M. N. Nishino

    2007-03-01

    Full Text Available In search for clues towards the understanding of the cold plasma sheet formation under northward IMF, we study the temperature anisotropy of the two-component protons in the plasma sheet near the dusk low-latitude boundary observed by the Geotail spacecraft. The two-component protons result from mixing of the cold component from the solar wind and the hot component of the magnetospheric origin, and may be the most eloquent evidence for the transport process across the magnetopause. The cold component occasionally has a strong anisotropy in the dusk flank, and the sense of the anisotropy depends on the observed locations: the parallel temperature is enhanced in the tail flank while the perpendicular temperature is enhanced on the dayside. The hot component is nearly isotropic in the tail while the perpendicular temperature is enhanced on the dayside. We discuss possible mechanism that can lead to the observed temperature anisotropies.

  9. Trapping of two-component matter-wave solitons by mismatched optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.; Law, K.J.H. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Kevrekidis, P.G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States)], E-mail: kevrekid@gmail.com; Malomed, B.A. [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)

    2008-05-26

    We consider a one-dimensional model of a two-component Bose-Einstein condensate in the presence of periodic external potentials of opposite signs, acting on the two species. The interaction between the species is attractive, while intra-species interactions may be attractive too [the system of the bright-bright (BB) type], or of opposite signs in the two components [the gap-bright (GB) type]. We identify the existence and stability domains for soliton complexes of the BB and GB types. The evolution of unstable solitons leads to the establishment of oscillatory states. The increase of the strength of the nonlinear attraction between the species results in symbiotic stabilization of the complexes, despite the fact that one component is centered around a local maximum of the respective periodic potential.

  10. An efficient implementation of two-component relativistic exact-decoupling methods for large molecules

    CERN Document Server

    Peng, Daoling; Weigend, Florian; Reiher, Markus

    2013-01-01

    We present an efficient algorithm for one- and two-component relativistic exact-decoupling calculations. The spin-orbit coupling was taken into account for the evaluation of relativistically transformed Hamiltonian. The relativistic decoupling transformation has to be evaluated with primitive functions so that the construction of the relativistic one-electron Hamiltonian becomes the bottleneck of the whole calculation for large molecules. We apply our recently developed local DLU scheme [J. Chem. Phys. 136 (2012) 244108] to accelerate this step. With our new implementation two-component relativistic density functional calculations can be performed invoking the resolution-of-identity density-fitting approximation and (Abelian as well as non-Abelian) point group symmetries to accelerate both the exact-decoupling and the two-electron part. The capability of our implementation is illustrated at the example of silver clusters with up to 309 atoms, for which the cohesive energy is calculated and extrapolated to the...

  11. Use of two-component signal transduction systems in the construction of synthetic genetic networks.

    Science.gov (United States)

    Ninfa, Alexander J

    2010-04-01

    Two-component signal transduction systems are a common type of signaling system in prokaryotes; the typical cell has dozens of systems regulating aspects of physiology and controlling responses to environmental conditions. In this review, I consider how these systems may be useful for engineering novel cell functions. Examples of successful incorporation of two-component systems into engineered systems are noted, and features of the systems that favor or hinder potential future use of these signaling systems for synthetic biology applications are discussed. The focus will be on the engineering of novel couplings of sensory functions to signaling outputs. Recent successes in this area are noted, such as the development of light-sensitive transmitter proteins and chemotactic receptors responsive to nitrate. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Two-component signal transduction system SaeRS positively regulates Staphylococcus epidermidis glucose metabolism.

    Science.gov (United States)

    Lou, Qiang; Qi, Yijun; Ma, Yuanfang; Qu, Di

    2014-01-01

    Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, we performed a proteomic analysis of differences in expression between the S. epidermidis 1457 wild-type and saeRS mutant to identify candidates regulated by saeRS using two-dimensional gel electrophoresis (2-DE) combined with matrix-assisted laser desorption/lonization mass spectrometry (MALDI-TOF-MS). Of 55 identified proteins that significantly differed in expression between the two strains, 15 were upregulated and 40 were downregulated. The downregulated proteins included enzymes related to glycolysis and TCA cycle, suggesting that glucose is not properly utilized in S. epidermidis when saeRS was deleted. The study will be helpful for treatment of S. epidermidis infection from the viewpoint of metabolic modulation dependent on two-component signal transduction system SaeRS.

  13. Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction.

    Science.gov (United States)

    Casino, Patricia; Rubio, Vicente; Marina, Alberto

    2009-10-16

    The chief mechanism used by bacteria for sensing their environment is based on two conserved proteins: a sensor histidine kinase (HK) and an effector response regulator (RR). The signal transduction process involves highly conserved domains of both proteins that mediate autokinase, phosphotransfer, and phosphatase activities whose output is a finely tuned RR phosphorylation level. Here, we report the structure of the complex between the entire cytoplasmic portion of Thermotoga maritima class I HK853 and its cognate, RR468, as well as the structure of the isolated RR468, both free and BeF(3)(-) bound. Our results provide insight into partner specificity in two-component systems, recognition of the phosphorylation state of each partner, and the catalytic mechanism of the phosphatase reaction. Biochemical analysis shows that the HK853-catalyzed autokinase reaction proceeds by a cis autophosphorylation mechanism within the HK subunit. The results suggest a model for the signal transduction mechanism in two-component systems.

  14. A hydrodynamic scheme for two-component winds from hot stars

    CERN Document Server

    Votruba, V; Kubát, J; Rätzel, D

    2007-01-01

    We have developed a time-dependent two-component hydrodynamics code to simulate radiatively-driven stellar winds from hot stars. We use a time-explicit van Leer scheme to solve the hydrodynamic equations of a two-component stellar wind. Dynamical friction due to Coulomb collisions between the passive bulk plasma and the line-scattering ions is treated by a time-implicit, semi-analytic method using a polynomial fit to the Chandrasekhar function. This gives stable results despite the stiffness of the problem. This method was applied to model stars with winds that are both poorly and well-coupled. While for the former case we reproduce the mCAK solution, for the latter case our solution leads to wind decoupling.

  15. Atomic Tunneling Effect in Two-Component Bose-Einstein Condensates with a Coupling Drive

    Institute of Scientific and Technical Information of China (English)

    JIAOZhi-Yong; YUZhao-Xian; YANGXin-Jian

    2004-01-01

    In this paper, we have studied the atomic population difference and the atomic tunneling current of two-component Bose-Einstein condensates with a coupling drive. It is found that when the two-component Bose Einstein condensates are initially in the coherent states, the atomic population difference may exhibit the step structure, in which the numbers of the step increase with the decrease of the Rabi frequency and with the increment of the initial phase difference. The atomic population difference may exhibit collapses, and revivals, in which their periods are affected dramatically by the Rabi frequency and the initial phase difference. The atomic tunneling current may exhibit damping oscillation behaviors, and exist the step structure for the time range of 10-10 ~ 10-9 second.

  16. Engineering bacterial two-component system PmrA/PmrB to sense lanthanide ions.

    Science.gov (United States)

    Liang, Haihua; Deng, Xin; Bosscher, Mike; Ji, Quanjiang; Jensen, Mark P; He, Chuan

    2013-02-13

    The Salmonella PmrA/PmrB two-component system uses an iron(III)-binding motif on the cell surface to sense the environmental or host ferric level and regulate PmrA-controlled gene expression. We replaced the iron(III)-binding motif with a lanthanide-binding peptide sequence that is known to selectively recognize trivalent lanthanide ions. The newly engineered two-component system (PmrA/PmrB) can effectively sense lanthanide ion and regulate gene expression in E. coli . This work not only provides the first known lanthanide-based sensing and response in live cells but also demonstrates that the PmrA/PmrB system is a suitable template for future synthetic biology efforts to construct bacteria that can sense and respond to other metal ions in remediation or sequestration.

  17. A hybrid two-component Bose–Einstein condensate interferometer for measuring magnetic field gradients

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fei [Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China); Huang, Jiahao, E-mail: hjiahao@mail2.sysu.edu.cn [TianQin Research Center & School of Physics and Astronomy, Sun Yat-Sen University, SYSU Zhuhai Campus, Zhuhai 519082 (China); Liu, Quan [Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China)

    2017-03-03

    Highlights: • A scheme for detecting magnetic field gradients via a double-well two-component Bose–Einstein condensate interferometer. • The magnetic field gradient can be extracted by either the spin population or the external state. • Our proposal is potentially sensitive to weak magnetic field inhomogeneity due to its small sensor size. - Abstract: We have proposed a scheme to detect magnetic field gradients via an interferometer based on a double-well two-component Bose–Einstein condensate (BEC). Utilizing a sequence of quantum control operations on both external and internal degree of the BEC, one can extract the magnetic field gradients by measuring either the population in one component or the fidelity between the final external state and the initial ground state. Our scheme can be implemented by current experimental techniques of manipulating ultracold atoms.

  18. Kinetics and mechanism of the oxidation process of two-component Fe-Al alloys

    Science.gov (United States)

    Przewlocka, H.; Siedlecka, J.

    1982-01-01

    The oxidation process of two-component Fe-Al alloys containing up to 7.2% Al and from 18 to 30% Al was studied. Kinetic measurements were conducted using the isothermal gravimetric method in the range of 1073-1223 K and 1073-1373 K for 50 hours. The methods used in studies of the mechanism of oxidation included: X-ray microanalysis, X-ray structural analysis, metallographic analysis and marker tests.

  19. In vivo study of the two-component signaling network in Escherichia coli

    OpenAIRE

    Sommer, Erik

    2012-01-01

    Microorganisms commonly use ‘two-component’ signaling systems for sensing environmental conditions, with members being present in nearly all bacterial and archaeal genomes in different numbers. Prototypical two-component systems are comprised of a sensory histidine kinase and a response regulator protein that is phosphorylated by the kinase. The regulator typically acts as a transcription factor regulating gene expression. Due to their prevalence in microorganisms, a basic understanding of th...

  20. Two-component model of the interaction of an interstellar cloud with surrounding hot plasma

    OpenAIRE

    Provornikova, E. A.; Izmodenov, V. V.; Lallement, R.

    2011-01-01

    We present a two-component gasdynamic model of an interstellar cloud embedded in a hot plasma. It is assumed that the cloud consists of atomic hydrogen gas, interstellar plasma is quasineutral. Hydrogen atoms and plasma protons interact through a charge exchange process. Magnetic felds and radiative processes are ignored in the model. The influence of heat conduction within plasma on the interaction between a cloud and plasma is studied. We consider the extreme case and assume that hot plasma...

  1. General aspects of two-component regulatory circuits in bacteria: Domains, signals and roles.

    Science.gov (United States)

    Padilla-Vaca, Felipe; Mondragón-Jaimes, Verónica; Franco, Bernardo

    2016-08-09

    All living organisms are subject to changing environments, which must be sensed in order to respond swiftly and efficiently. Two-component systems (TCS) are signal transduction regulatory circuits based typically on a membrane bound sensor kinase and a cytoplasmic response regulator, that is activated through a histidine to aspartate phosphorelay reactions. Activated response regulator acts usually as a transcription factor. The best known examples were identified in bacteria, but they are also found in fungi, algae and plants. Thus far, they are not found in mammals. Regulatory circuits coupled to two-component systems exhibit a myriad of responses to environmental stimuli such as: redox potential, pH, specific metabolites, pressure, light and more recently to specific antimicrobial peptides that activate a sensor kinase responsible for expressing virulence factors through the active response regulator. In this review we explore general aspects on two-component systems that ultimately can play a role on virulence regulation, also the intriguing domain properties of the sensor kinases that can be a potential target for antimicrobial compounds. Only a handful of sensor kinases are extensively characterized, the vast majority belong to what we call 'the dark matter of bacterial signal transduction' since no known signal, structure and biochemical properties are available. Regulatory circuits from vertebrate pathogenic organisms can explain virulence in terms of either response to environmental factors or specific niche occupancy. Hopefully, knowledge on these signal transduction systems can lead to identify novel molecules that target two-component systems, since the increase of drug resistant microorganisms is worrisome.

  2. Histidine Phosphotransfer Proteins in Fungal Two-Component Signal Transduction Pathways

    OpenAIRE

    2013-01-01

    The histidine phosphotransfer (HPt) protein Ypd1 is an important participant in the Saccharomyces cerevisiae multistep two-component signal transduction pathway and, unlike the expanded histidine kinase gene family, is encoded by a single gene in nearly all model and pathogenic fungi. Ypd1 is essential for viability in both S. cerevisiae and in Cryptococcus neoformans. These and other aspects of Ypd1 biology, combined with the availability of structural and mutational data in S. cerevisiae, s...

  3. Stability properties of vector solitons in two-component Bose-Einstein condensates with tunable interactions

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiao-Fei; Zhang Pei; He Wan-Quan; Liu Xun-Xu

    2011-01-01

    By using a unified theory of the formation of various types of vector-solitons in two-component Bose-Einstein condensates with tunable interactions, we obtain a family of exact vector-soliton solutions for the coupled nonlinear Schr(o)dinger equations. Moreover, the Bogoliubov equation shows that there exists stable dark soliton in specific situations. Our results open up new ways in considerable experimental interest for the quantum control of multi-component Bose-Einstein condensates.

  4. Bloch Oscillations of Two-Component Bose-Einstein Condensates in Optical Lattices

    Institute of Scientific and Technical Information of China (English)

    GU Huai-Qiang; WANG Zhi-Cheng; JIN Kang; TAN Lei

    2006-01-01

    @@ We study the Bloch oscillations of two-component Bose-Einstein condensates trapped in spin-dependent optical lattices. The influence of the intercomponent atom interaction on the system is discussed in detail Accelerated breakdown of the Bloch oscillations and revival phenomena are found respectively for the repulsive and attractive case. For both the cases, the system will finally be set in a quantum self-trapping state due to dynamical instability.

  5. The CpxRA two-component system is essential for Citrobacter rodentium virulence.

    Science.gov (United States)

    Thomassin, Jenny-Lee; Giannakopoulou, Natalia; Zhu, Lei; Gross, Jeremy; Salmon, Kristiana; Leclerc, Jean-Mathieu; Daigle, France; Le Moual, Hervé; Gruenheid, Samantha

    2015-05-01

    Citrobacter rodentium is a murine intestinal pathogen used as a model for the foodborne human pathogens enterohemorrhagic Escherichia coli and enteropathogenic E. coli. During infection, these pathogens use two-component signal transduction systems to detect and adapt to changing environmental conditions. In E. coli, the CpxRA two-component signal transduction system responds to envelope stress by modulating the expression of a myriad of genes. Quantitative real-time PCR showed that cpxRA was expressed in the colon of C57BL/6J mice infected with C. rodentium. To determine whether CpxRA plays a role during C. rodentium infection, a cpxRA deletion strain was generated and found to have a colonization defect during infection. This defect was independent of an altered growth rate or a defective type III secretion system, and single-copy chromosomal complementation of cpxRA restored virulence. The C. rodentium strains were then tested in C3H/HeJ mice, a lethal intestinal infection model. Mice infected with the ΔcpxRA strain survived infection, whereas mice infected with the wild-type or complemented strains succumbed to infection. Furthermore, we found that the cpxRA expression level was higher during early infection than at a later time point. Taken together, these data demonstrate that the CpxRA two-component signal transduction system is essential for the in vivo virulence of C. rodentium. In addition, these data suggest that fine-tuned cpxRA expression is important for infection. This is the first study that identifies a C. rodentium two-component transduction system required for pathogenesis. This study further indicates that CpxRA is an interesting target for therapeutics against enteric pathogens.

  6. A Possible Two-Component Structure of the Non-Perturbative Pomeron

    CERN Document Server

    Gauron, P; Gauron, Pierre; Nicolescu, Basarab

    2000-01-01

    We propose a QCD-inspired two-component Pomeron form which gives an excellent description of the proton-proton, pi-proton, kaon-proton, gamma-proton and gamma-gamma total cross sections. Our fit has a better CHI2/dof for a smaller number of parameters as compared with the PDG fit. Our 2-Pomeron form is fully compatible with weak Regge exchange-degeneracy, universality, Regge factorization and the generalized vector dominance model.

  7. Different electronic charges in two-component superconductor by coherent state

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xuguang, E-mail: shixg@bjfu.edu.cn

    2015-07-17

    Recently, the different electronic charges, which are related to the different coupling constants with magnetic field, in the two-component superconductor have been studied in the frame of Ginzburg–Landau theory. In order to study the electronic charges in detail we suggest the wave function in the two-component superconductor to be in the coherent state. We find the different electronic charges exist not only in the coherent state but also in the incoherent state. But the ratio of the different charges in the coherent state is different from the ratio in the incoherence. The expressions of the coupling constants are given directly based on the coherence effects. We also discuss the winding number in such a system. - Highlights: • Suggest the wave function in two-component superconductor is coherent. • Interpret the existence of different electric charges by the coherent states. • Derive a new expression for the supercurrent. • Reveal the relation between different electric charges and winding number.

  8. Sub classification and targeted characterization of prophage-encoded two-component cell lysis cassette

    Indian Academy of Sciences (India)

    K V Srividhya; S Krishnaswamy

    2007-08-01

    Bacteriophage induced lysis of host bacterial cell is mediated by a two component cell lysis cassette comprised of holin and lysozyme. Prophages are integrated forms of bacteriophages in bacterial genomes providing a repertoire for bacterial evolution. Analysis using the prophage database (http://bicmku.in:8082) constructed by us showed 47 prophages were associated with putative two component cell lysis genes. These proteins cluster into four different subgroups. In this process, a putative holin (essd) and endolysin (ybcS), encoded by the defective lambdoid prophage DLP12 was found to be similar to two component cell lysis genes in functional bacteriophages like p21 and P1. The holin essd was found to have a characteristic dual start motif with two transmembrane regions and C-terminal charged residues as in class II holins. Expression of a fusion construct of essd in Escherichia coli showed slow growth. However, under appropriate conditions, this protein could be over expressed and purified for structure function studies. The second component of the cell lysis cassette, ybcS, was found to have an N-terminal SAR (Signal Arrest Release) transmembrane domain. The construct of ybcS has been over expressed in E. coli and the purified protein was functional, exhibiting lytic activity against E. coli and Salmonella typhi cell wall substrate. Such targeted sequence-structure-function characterization of proteins encoded by cryptic prophages will help understand the contribution of prophage proteins to bacterial evolution.

  9. Design of Novel Mixer and Applicator for Two-Component Surgical Adhesives

    Science.gov (United States)

    Go, Kevin; Kim, Yeong; Lee, Andy H.; Staricha, Kelly; Messersmith, Phillip; Glucksberg, Matthew

    2015-01-01

    Current mixer and applicator devices on the market are not able to properly and efficiently mix two-component surgical adhesives in small volumes necessary to achieve economic viability. Furthermore, in these devices a significant amount of adhesive is wasted during the application process, as material within the dead space of the mixing chamber must be discarded. We have designed and demonstrated a new active mixer and applicator system capable of rapidly and efficiently mixing two components of an adhesive and applying it to the surgical site. Recently, Messersmith et al. have developed a tissue adhesive inspired by the mussel byssus and have shown that it is effective as a surgical sealant, and is especially suited for wet environments such as in fetal surgery. Like some other tissue sealants, this one requires that two components of differing viscosities be thoroughly mixed within a specified and short time period. Through a combination of compression and shear testing, we demonstrated that our device could effectively mix the adhesive developed by Messersmith et al. and improve its shear strength to significantly higher values than what has been reported for vortex mixing. Overall, our mixer and applicator system not only has potential applications in mixing and applying various adhesives in multiple surgical fields but also makes this particular adhesive viable for clinical use. PMID:26421090

  10. Real time propagation of the exact two component time-dependent density functional theory

    Science.gov (United States)

    Goings, Joshua J.; Kasper, Joseph M.; Egidi, Franco; Sun, Shichao; Li, Xiaosong

    2016-09-01

    We report the development of a real time propagation method for solving the time-dependent relativistic exact two-component density functional theory equations (RT-X2C-TDDFT). The method is fundamentally non-perturbative and may be employed to study nonlinear responses for heavy elements which require a relativistic Hamiltonian. We apply the method to several group 12 atoms as well as heavy-element hydrides, comparing with the extensive theoretical and experimental studies on this system, which demonstrates the correctness of our approach. Because the exact two-component Hamiltonian contains spin-orbit operators, the method is able to describe the non-zero transition moment of otherwise spin-forbidden processes in non-relativistic theory. Furthermore, the two-component approach is more cost effective than the full four-component approach, with similar accuracy. The RT-X2C-TDDFT will be useful in future studies of systems containing heavy elements interacting with strong external fields.

  11. Bioinformatics analysis of two-component regulatory systems in Staphylococcus epidermidis

    Institute of Scientific and Technical Information of China (English)

    QIN Zhiqiang; ZHONG Yang; ZHANG Jian; HE Youyu; WU Yang; JIANG Juan; CHEN Jiemin; LUO Xiaomin; QU Di

    2004-01-01

    Sixteen pairs of two-component regulatory systems are identified in the genome of Staphylococcus epidermidis ATCC12228 strain, which is newly sequenced by our laboratory for Medical Molecular Virology and Chinese National Human Genome Center at Shanghai, by using bioinformatics analysis. Comparative analysis of the twocomponent regulatory systems in S. epidermidis and that of S.aureus and Bacillus subtilis shows that these systems may regulate some important biological functions, e.g. growth,biofilm formation, and expression of virulence factors in S.epidermidis. Two conserved domains, i.e. HATPase_c and REC domains, are found in all 16 pairs of two-component proteins.Homologous modelling analysis indicates that there are 4similar HATPase_c domain structures of histidine kinases and 13 similar REC domain structures of response regulators,and there is one AMP-PNP binding pocket in the HATPase_c domain and three active aspartate residues in the REC domain. Preliminary experiment reveals that the bioinformatics analysis of the conserved domain structures in the two-component regulatory systems in S. epidermidis may provide useful information for discovery of potential drug target.

  12. Composition dependence of spontaneous crystallization of phosphosilicate glass melts during cooling

    DEFF Research Database (Denmark)

    Liu, S.J.; Zhu, C.F.; Zhang, Y.F.

    2012-01-01

    Crystallization behavior of alumino-phospho-silicate melts during cooling is studied by means of the differential scanning calorimetry, X-ray diffractometry and viscometry. The results show a pronounced impact of alkaline earth oxide, alkali oxide and fluoride on the crystal type...

  13. Evaluation of secondary crystallization effect in poly hydroxybutyrate and silanized coir dust composites; Avaliacao do efeito da cristalizacao secundaria em compositos de polihidroxibutirato e po de coco silanizado

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Carolina C. de; Costa, Marysilvia F. da; Thire, Rossana M.S.M., E-mail: ccmello@metalmat.ufrj.br [Programa de Engenharia Metalurgica e de Materiais/Universidade Federal do Rio de Janeiro - UFRJ - Centro de Tecnologia, Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Polyhydroxybutyrate is a natural and biodegradable polyester, susceptible to secondary crystallization when it is stored at environment temperature. Coir dust is an agroindustrial waste which has good prospects for use as filler in composites. In this context, PHB-coir dust composites were produced. The compatibilization was made by coir dust silanization. The secondary crystallization evolution on materials was evaluated by x-ray diffraction. Its effect was verified by tension tests which presented that elastic modulus increases when crystallinity increases. (author)

  14. Diversity of two-component systems: insights into the signal transduction mechanism by the  Staphylococcus aureus two-component system GraSR.

    Science.gov (United States)

    Muzamal, Uzma; Gomez, Daniel; Kapadia, Fenika; Golemi-Kotra, Dasantila

    2014-01-01

    The response to cationic antimicrobial peptides (CAMPs) in Staphylococcus aureus relies on a two-component system (TCS), GraSR, an auxiliary protein GraX and an ATP-binding cassette (ABC) transporter, VraF/G. To understand the signal transduction mechanism by GraSR, we investigated the kinase activity of the cytoplasmic domain of histidine kinase GraS and the interaction with its cognate response regulator GraR. We also investigated interactions among the auxiliary protein GraX, GraS/R and the ATPase protein of the ABC transporter, VraF. We found that GraS lacks autophosphorylation activity, unlike a similar histidine kinase, BceS, of Bacillus subtilis. In addition, the interaction between GraS and GraR is very weak in comparison to the stronger interaction observed between BceS and its conjugated response regulator, BceR, suggesting that CAMP signaling may not flow directly from GraS to GraR. We found that the auxiliary protein GraX interacts with VraF and GraR, and requires the histidine phosphotransfer and dimerization domain of GraS to interact with this protein. Further, VraF requires the GraS region that connects the membrane-bound domain with the cytoplasmic domain of this protein for interaction with GraS. The interactions of GraX with GraS/R and VraF indicate that GraX may serve as a scaffold to bring these proteins in close proximity to GraS, plausibly to facilitate activation of GraS to ultimately transduce the signal to GraR.

  15. Superior environment resistance of quartz crystal microbalance with anatase TiO{sub 2}/ZnO nanorod composite films

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Wei, E-mail: weiqiang.tju@163.com [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin (China); Wei, Li; Shaodan, Wang [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin (China); Yu, Bai [Beijing Institute of Spacecrafts Environment Engineering, Beijing 100094 (China)

    2015-08-30

    Graphical abstract: ZnO nanorod array being prepared by an in situ method on the QCM coated with Au film via hydrothermal process and surface modification with coated TiO{sub 2} by sol–gel methods to form a superhydrophobic TiO{sub 2}/ZnO composite film the anatase TiO{sub 2}/ZnO nanorod composite film with a sharp, pencil-like structure exhibiting excellent superhydrophobicity (water contact angle of 155°), non-sticking water properties, and an autonomous cleaning property under UV irradiation. The anatase TiO{sub 2}/ZnO nanorod composite film facilitates the precise measurement and extended lifetime of the QCM for the detection of organic gas molecules. - Highlights: • This work combines, for the first time, the advantage of the TiO{sub 2}/ZnO composite film on photocatalysis and reversible super-hydrophobic and super-hydrophilic transition, and puts forward a solution to satisfy weatherability of quartz crystal microbalance in long-term application. • The anatase TiO{sub 2}/ZnO nanorod composite film with pencil structure exhibit excellent super-hydrophobicity (water contact angle can reach 155°), no-sticking water properties and self-cleaning property under UV irradiation. • The photocatalysis and reversible super-hydrophobic and super-hydrophilic transition of the TiO{sub 2}/ZnO nanorod composite film is stable in long-term application. - Abstract: The precise measurement of quartz crystal microbalance (QCM) in the detection and weighing of organic gas molecules is achieved due to excellent superhydrophobicity of a deposited film composite. Photocatalysis is utilized as a method for the self-cleaning of organic molecules on the QCM for extended long-term stability in the precision of the instrument. In this paper, ZnO nanorod array is prepared via in situ methods on the QCM coated with Au film via hydrothermal process. Subsequently, a TiO{sub 2}/ZnO composite film is synthesized by surface modification with TiO{sub 2} via sol–gel methods. Results

  16. Effect of melt composition and crystal content on flow morphology along the Alarcón Rise, Mexico

    Science.gov (United States)

    Martin, J. F.; Lieberg-Clark, P.; Clague, D. A.; Caress, D. W.; Portner, R. A.; Paduan, J. B.; Dreyer, B. M.

    2012-12-01

    Differences in submarine lava flow morphology have been related to differences in eruption rate; low eruption rates form pillow-flow morphologies whereas high eruption rates form sheet-flow morphologies. Eruption rate is likely controlled by dike intrusion width, exsolved bubble content of the magma, viscosity of the magma, or some combination these three properties. Samples and observations from a 2012 expedition to the Alarcón Rise, Mexico, are used to evaluate the potential control of viscosity due to melt composition and crystal content on observed flow morphologies and associated eruption rates. A 1-m resolution multibeam survey, covering the entire 50 km length of the neovolcanic zone, was completed using the MBARI Mapping AUV. Based on the high-resolution bathymetry, two basic flow morphologies could be distinguished: pillow flows, comprising ~ 40 % of the rise, and sheet flows, comprising the remaining ~ 60 %. A series of dives using the ROVs Doc Ricketts in 2012 and Tiburon in 2003 visually confirmed pillow flows, lobate flows, sheet flows, and jumbled sheet flows at the sampled sites. Over 150 lava samples collected during the dives, spanning the entire length of the rise were analyzed for major-element chemistry, crystal content, and corresponding flow morphology. Lavas selected for this analysis ranged from basalt to basaltic-andesite (100 pa s, only pillow lavas are generated. The majority (> 80 %) of sampled pillow lavas are plagioclase-phyric to ultraphyric whereas the majority of lobate and sheet flow lavas are aphyric. Crystal fractions in the pillow lavas are as high as 30-40%, resulting in magma viscosities ~ 5-15 times the melt viscosities. The majority of pillow lavas (~77%) have magma viscosities > 100 pa s. Only ~ 25 % of lobate and sheet flow lavas have magma viscosities > 100 pa s. Many of the phyric lobate and sheet flow samples show evidence of strong flow segregation of crystals to the outer surface of the flow, resulting in samples

  17. Fabrication and characterization of novel composite membranes composed of photonic crystals and TiO2 nanotube array films

    Science.gov (United States)

    Tang, Junjie; Zhu, Huili; Wang, Aijun; Chen, Sheng-Li; Yuan, Yao

    2016-05-01

    Novel composite membranes composed of photonic crystals (PCs) and TiO2 nanotube array (TNA) films have been fabricated by combining the room temperature floating self-assembly (RTFSA) method, recently developed by our research group, and the liquid-phase deposition technique. By applying this combined procedure, polystyrene (PS) opal PC/TNA and TiO2 inverse opal PC/TNA composite membranes were prepared. Scanning electron microscopy and ultraviolet/visible spectroscopy analyses showed that the membrane samples possessed very high crystalline quality. Notably, the ordered packing of the PS microspheres from the top to the bottom of the opal PC film was not affected by the surface roughness of the porous TNA substrate. This is attributed to the self-assembly mechanism of the colloidal particles, which produces a three-dimensional ordered structure in the RTFSA method. Herein, the crystallization of the colloidal particles occurred at the surface of the colloidal suspension, and the crystal growth proceeded downward from the surface of the suspension to the substrate.

  18. Experimental valence-band study of Ti(NiCu) alloys with different compositions and crystal structures

    Science.gov (United States)

    Senkovskiy, B. V.; Usachev, D. Yu.; Fedorov, A. V.; Shelyakov, A. V.; Adamchuk, V. K.

    2012-08-01

    The density of valence-band electronic states of Ti(NiCu) alloys with different crystal structures and elemental compositions has been studied by X-ray photoelectron spectroscopy. It has been established that the change in the crystal state initiated by a martensitic transformation or a transition from the amorphous state to the crystal state does not affect the valence-band electronic state density distribution of the Ti50Ni50 and Ti50Ni25Cu25 alloys. It has been shown that a change in the elemental composition leads to a noticeable redistribution of the electronic density in alloys of the Ti50Ni50 - x Cu x system ( x = 0, 10, 15, 25, 30, 38, 50 at. %). As the copper concentration in the Ti(NiCu) alloys increases, the contribution of the Ni d states in the vicinity of the Fermi level decreases, with the d band of nickel shifting toward higher binding energies, and that of copper, toward lower binding energies.

  19. Crystallization Kinetics of Barium and Strontium Aluminosilicate Glasses of Feldspar Composition

    Science.gov (United States)

    Hyatt, Mark J.; Bansal, Narottam P.

    1994-01-01

    Crystallization kinetics of BaO.Al2O3.2SiO2 (BAS) and SrO.Al2O3.2SiO2 (SAS) glasses in bulk and powder forms have been studied by non-isothermal differential scanning calorimetry (DSC). The crystal growth activation energies were evaluated to be 473 and 451 kJ/mol for bulk samples and 560 and 534 kJ/mol for powder specimens in BAS and SAS glasses, respectively. Development of crystalline phases on thermal treatments of glasses at various temperatures has been followed by powder x-ray diffraction. Powder samples crystallized at lower temperatures than the bulk and the crystallization temperature was lower for SAS glass than BAS. Crystallization in both glasses appeared to be surface nucleated. The high temperature phase hexacelsian, MAl2Si2O8 (M = Ba or Sr), crystallized first by nucleating preferentially on the glass surface. Also, monoclinic celsian does not nucleate directly in the glass, but is formed at higher temperatures from the transformation of the metastable hexagonal phase. In SAS the transformation to monoclinic celsian occurred rapidly after 1 h at 1100 C. In contrast, in BAS this transformation is sluggish and difficult and did not go to completion even after 10 h heat treatment at 1400 C. The crystal growth morphologies in the glasses have been observed by optical microscopy. Some of the physical properties of the two glasses are also reported.

  20. Crystal structure, thermal and compositional deformations of {beta}-CsB{sub 5}O{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Bubnova, R. [Institute of the Silicate Chemistry Russian Academy of Sciences, Ul. Odoevskogo, 24/2, 199155, St Petersburg (Russian Federation); Dinnebier, R.E. [Max-Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Filatov, S.; Anderson, J. [Saint Petersburg State University, University Emb., 7/9, 199034, St. Petersburg (Russian Federation)

    2007-02-15

    The crystal structure of {beta}-CsB{sub 5}O{sub 8} has been determined from X-ray powder diffraction data using synchrotron radiation: Pbca, a = 7.8131(3) Aa, b=12.0652(4) Aa, c=14.9582(4) Aa, Z=8, {rho}{sub calc}=2.967 g/cm{sup 3}, R-p=0.076, R-wp=0.094. {beta}-CsB{sub 5}O{sub 8} was found to be isostructural with {beta}-KB{sub 5}O{sub 8} and {beta}-RbB{sub 5}O{sub 8}. The crystal structure consists of a double interlocking framework built up from B-O pentaborate groups. The crystal structure exhibits a highly anisotropic thermal expansion: {alpha}{sub a}=53, {alpha}{sub b}=16, {alpha}{sub c}=14 .10{sup -6}/K; the anisotropy may be caused by partial straightening of the screw chains of the pentaborate groups. The similarity of the thermal and compositional (Cs-Rb-K substitution) deformations of CsB{sub 5}O{sub 8} is revealed: increasing the radius of the metal by 0.01 Aa leads to the same deformations of the crystal structure as increasing the temperature by 35 C. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Inhibition of calcium carbonate crystal growth by organic additives using the constant composition method in conditions of recirculating cooling circuits

    Science.gov (United States)

    Chhim, Norinda; Kharbachi, Chams; Neveux, Thibaut; Bouteleux, Céline; Teychené, Sébastien; Biscans, Béatrice

    2017-08-01

    The cooling circuits used in power plants are subject to mineral crystallization which can cause scaling on the surfaces of equipment and construction materials reducing their heat exchange efficiency. Precipitated calcium carbonate is the predominant mineral scale commonly observed in cooling systems. Supersaturation is the key parameter controlling the nucleation and growth of calcite in these systems. The present work focuses on the precipitation of calcite using the constant composition method at constant supersaturation, through controlled addition of reactants to a semi-batch crystallizer, in order to maintain constant solution pH. The determination of the thermodynamic driving force (supersaturation) was based on the relevant chemical equilibria, total alkalinity and calculation of the activity coefficients. Calcite crystallization rates were derived from the experiments performed at supersaturation levels similar to those found in industrial station cooling circuits. Several types of seeds particles were added into the aqueous solution to mimic natural river water conditions in terms of suspended particulate matters content, typically: calcite, silica or illite particles. The effect of citric and copolycarboxylic additive inhibitors added to the aqueous solution was studied. The calcium carbonate growth rate was reduced by 38.6% in the presence of the citric additive and a reduction of 92.7% was observed when the copolycarboxylic additive was used under identical experimental conditions. These results are explained by the location of the adsorbed inhibitor at the crystal surface and by the degree of chemical bonding to the surface.

  2. Structural dynamics of the two-component response regulator RstA in recognition of promoter DNA element

    Science.gov (United States)

    Li, Yi-Chuan; Chang, Chung-ke; Chang, Chi-Fon; Cheng, Ya-Hsin; Fang, Pei-Ju; Yu, Tsunai; Chen, Sheng-Chia; Li, Yi-Ching; Hsiao, Chwan-Deng; Huang, Tai-huang

    2014-01-01

    The RstA/RstB system is a bacterial two-component regulatory system consisting of the membrane sensor, RstB and its cognate response regulator (RR) RstA. The RstA of Klebsiella pneumoniae (kpRstA) consists of an N-terminal receiver domain (RD, residues 1–119) and a C-terminal DNA-binding domain (DBD, residues 130–236). Phosphorylation of kpRstA induces dimerization, which allows two kpRstA DBDs to bind to a tandem repeat, called the RstA box, and regulate the expression of downstream genes. Here we report the solution and crystal structures of the free kpRstA RD, DBD and DBD/RstA box DNA complex. The structure of the kpRstA DBD/RstA box complex suggests that the two protomers interact with the RstA box in an asymmetric fashion. Equilibrium binding studies further reveal that the two protomers within the kpRstA dimer bind to the RstA box in a sequential manner. Taken together, our results suggest a binding model where dimerization of the kpRstA RDs provides the platform to allow the first kpRstA DBD protomer to anchor protein–DNA interaction, whereas the second protomer plays a key role in ensuring correct recognition of the RstA box. PMID:24990372

  3. Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus.

    Science.gov (United States)

    Ji, Quanjiang; Chen, Peter J; Qin, Guangrong; Deng, Xin; Hao, Ziyang; Wawrzak, Zdzislaw; Yeo, Won-Sik; Quang, Jenny Winjing; Cho, Hoonsik; Luo, Guan-Zheng; Weng, Xiaocheng; You, Qiancheng; Luan, Chi-Hao; Yang, Xiaojing; Bae, Taeok; Yu, Kunqian; Jiang, Hualiang; He, Chuan

    2016-03-18

    Most low GC Gram-positive bacteria possess an essential walKR two-component system (TCS) for signal transduction involved in regulating cell wall homoeostasis. Despite the well-established intracellular regulatory mechanism, the role of this TCS in extracellular signal recognition and factors that modulate the activity of this TCS remain largely unknown. Here we identify the extracellular receptor of the kinase 'WalK' (erWalK) as a key hub for bridging extracellular signal input and intracellular kinase activity modulation in Staphylococcus aureus. Characterization of the crystal structure of erWalK revealed a canonical Per-Arnt-Sim (PAS) domain for signal sensing. Single amino-acid mutation of potential signal-transduction residues resulted in severely impaired function of WalKR. A small molecule derived from structure-based virtual screening against erWalK is capable of selectively activating the walKR TCS. The molecular level characterization of erWalK will not only facilitate exploration of natural signal(s) but also provide a template for rational design of erWalK inhibitors.

  4. A Two-Component Regulatory System Impacts Extracellular Membrane-Derived Vesicle Production in Group A Streptococcus

    Directory of Open Access Journals (Sweden)

    Ulrike Resch

    2016-11-01

    Full Text Available Export of macromolecules via extracellular membrane-derived vesicles (MVs plays an important role in the biology of Gram-negative bacteria. Gram-positive bacteria have also recently been reported to produce MVs; however, the composition and mechanisms governing vesiculogenesis in Gram-positive bacteria remain undefined. Here, we describe MV production in the Gram-positive human pathogen group A streptococcus (GAS, the etiological agent of necrotizing fasciitis and streptococcal toxic shock syndrome. M1 serotype GAS isolates in culture exhibit MV structures both on the cell wall surface and in the near vicinity of bacterial cells. A comprehensive analysis of MV proteins identified both virulence-associated protein substrates of the general secretory pathway in addition to “anchorless surface proteins.” Characteristic differences in the contents, distributions, and fatty acid compositions of specific lipids between MVs and GAS cell membrane were also observed. Furthermore, deep RNA sequencing of vesicular RNAs revealed that GAS MVs contained differentially abundant RNA species relative to bacterial cellular RNA. MV production by GAS strains varied in a manner dependent on an intact two-component system, CovRS, with MV production negatively regulated by the system. Modulation of MV production through CovRS was found to be independent of both GAS cysteine protease SpeB and capsule biosynthesis. Our data provide an explanation for GAS secretion of macromolecules, including RNAs, lipids, and proteins, and illustrate a regulatory mechanism coordinating this secretory response.

  5. Predictions of Phase Distribution in Liquid-Liquid Two-Component Flow

    Science.gov (United States)

    Wang, Xia; Sun, Xiaodong; Duval, Walter M.

    2011-06-01

    Ground-based liquid-liquid two-component flow can be used to study reduced-gravity gas-liquid two-phase flows provided that the two liquids are immiscible with similar densities. In this paper, we present a numerical study of phase distribution in liquid-liquid two-component flows using the Eulerian two-fluid model in FLUENT, together with a one-group interfacial area transport equation (IATE) that takes into account fluid particle interactions, such as coalescence and disintegration. This modeling approach is expected to dynamically capture changes in the interfacial structure. We apply the FLUENT-IATE model to a water-Therminol 59® two-component vertical flow in a 25-mm inner diameter pipe, where the two liquids are immiscible with similar densities (3% difference at 20°C). This study covers bubbly (drop) flow and bubbly-to-slug flow transition regimes with area-averaged void (drop) fractions from 3 to 30%. Comparisons of the numerical results with the experimental data indicate that for bubbly flows, the predictions of the lateral phase distributions using the FLUENT-IATE model are generally more accurate than those using the model without the IATE. In addition, we demonstrate that the coalescence of fluid particles is dominated by wake entrainment and enhanced by increasing either the continuous or dispersed phase velocity. However, the predictions show disagreement with experimental data in some flow conditions for larger void fraction conditions, which fall into the bubbly-to-slug flow transition regime. We conjecture that additional fluid particle interaction mechanisms due to the change of flow regimes are possibly involved.

  6. Specificity residues determine binding affinity for two-component signal transduction systems.

    Science.gov (United States)

    Willett, Jonathan W; Tiwari, Nitija; Müller, Susanne; Hummels, Katherine R; Houtman, Jon C D; Fuentes, Ernesto J; Kirby, John R

    2013-11-05

    Two-component systems (TCS) comprise histidine kinases and their cognate response regulators and allow bacteria to sense and respond to a wide variety of signals. Histidine kinases (HKs) phosphorylate and dephosphorylate their cognate response regulators (RRs) in response to stimuli. In general, these reactions appear to be highly specific and require an appropriate association between the HK and RR proteins. The Myxococcus xanthus genome encodes one of the largest repertoires of signaling proteins in bacteria (685 open reading frames [ORFs]), including at least 127 HKs and at least 143 RRs. Of these, 27 are bona fide NtrC-family response regulators, 21 of which are encoded adjacent to their predicted cognate kinases. Using system-wide profiling methods, we determined that the HK-NtrC RR pairs display a kinetic preference during both phosphotransfer and phosphatase functions, thereby defining cognate signaling systems in M. xanthus. Isothermal titration calorimetry measurements indicated that cognate HK-RR pairs interact with dissociation constants (Kd) of approximately 1 µM, while noncognate pairs had no measurable binding. Lastly, a chimera generated between the histidine kinase, CrdS, and HK1190 revealed that residues conferring phosphotransfer and phosphatase specificity dictate binding affinity, thereby establishing discrete protein-protein interactions which prevent cross talk. The data indicate that binding affinity is a critical parameter governing system-wide signaling fidelity for bacterial signal transduction proteins. Using in vitro phosphotransfer and phosphatase profiling assays and isothermal titration calorimetry, we have taken a system-wide approach to demonstrate specificity for a family of two-component signaling proteins in Myxococcus xanthus. Our results demonstrate that previously identified specificity residues dictate binding affinity and that phosphatase specificity follows phosphotransfer specificity for cognate HK-RR pairs. The data

  7. A novel two-component system involved in the transition to secondary metabolism in Streptomyces coelicolor.

    Directory of Open Access Journals (Sweden)

    Daniel Rozas

    Full Text Available BACKGROUND: Bacterial two-component signal transduction regulatory systems are the major set of signalling proteins frequently mediating responses to changes in the environment. They typically consist of a sensor, a membrane-associated histidine kinase and a cytoplasmic response regulator. The membrane-associated sensor detects the environmental signal or stress, whereas the cytoplasmic regulatory protein controls the cellular response usually by gene transcription modulation. METHODOLOGY/PRINCIPALFINDINGS: The Streptomyces coelicolor two genes operon SCO5784-SCO5785 encodes a two-component system, where SCO5784 encodes a histidine-kinase sensor and SCO5785 encodes a response regulator protein. When the expression level of the regulator gene decreases, the antibiotic synthesis and sporulation is delayed temporarily in addition to some ribosomal genes became up regulated, whereas the propagation of the regulatory gene in high copy number results in the earlier synthesis of antibiotics and sporulation, as well as the down regulation of some ribosomal genes and, moreover, in the overproduction of several extracellular proteins. Therefore, this two-component system in S. coelicolor seems to influence various processes characterised by the transition from primary to secondary metabolism, as determined by proteomic and transcriptomic analyses. CONCLUSIONS/SIGNIFICANCE: Propagation of SCO5785 in multicopy enhances the production of antibiotics as well as secretory proteins. In particular, the increase in the expression level of secretory protein encoding genes, either as an artefactual or real effect of the regulator, could be of potential usefulness when using Streptomyces strains as hosts for homologous or heterologous extracellular protein production.

  8. Analytical solution and meaning of feasible regions in two-component three-way arrays.

    Science.gov (United States)

    Omidikia, Nematollah; Abdollahi, Hamid; Kompany-Zareh, Mohsen; Rajkó, Róbert

    2016-10-01

    Although many efforts have been directed to the development of approximation methods for determining the extent of feasible regions in two- and three-way data sets; analytical determination (i.e. using only finite-step direct calculation(s) instead of the less exact numerical ones) of feasible regions in three-way arrays has remained unexplored. In this contribution, an analytical solution of trilinear decomposition is introduced which can be considered as a new direct method for the resolution of three-way two-component systems. The proposed analytical calculation method is applied to the full rank three-way data array and arrays with rank overlap (a type of rank deficiency) loadings in a mode. Close inspections of the analytically calculated feasible regions of rank deficient cases help us to make clearer the information gathered from multi-way problems frequently emerged in physics, chemistry, biology, agricultural, environmental and clinical sciences, etc. These examinations can also help to answer, e.g., the following practical question: "Is two-component three-way data with proportional loading in a mode actually a three-way data array?" By the aid of the additional information resulted from the investigated feasible regions of two-component three-way data arrays with proportional profile in a mode, reasons for the inadequacy of the seemingly trilinear data treatment methods published in the literature (e.g., U-PLS/RBL-LD that was used for extraction of quantitative and qualitative information reported by Olivieri et al. (Anal. Chem. 82 (2010) 4510-4519)) could be completely understood.

  9. Design principles in two component systems and his-asp phosphorelays

    OpenAIRE

    Salvadó López, Baldiri

    2016-01-01

    L’objectiu d’aquesta tesi és trobar principis generals que permetin relacionar l’estructura i les propietats funcionals dels circuits moleculars de transducció de senyals two-component systems (TCS) i his-asp phosphorelays (PR). La tesi s’inicia revisant els mètodes usats per a l’estudi de principis de disseny en sistemes moleculars i alguns dels resultats obtinguts fins ara, i discutint la importància de l’estudi dels principis de disseny. A continuació, explorem els proteomes seqüenc...

  10. On the inspection policy of a two-component parallel system with failure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Zequeira, Romulo I. [ISTIT, Equipe Modelisation et Surete des Systemes, Universite de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: romulo.zequeira@utt.fr; Berenguer, Christophe [ISTIT, Equipe Modelisation et Surete des Systemes, Universite de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: christophe.berenguer@utt.fr

    2005-04-01

    In this paper we study a two-component standby system which can successfully operate upon a demand if at least one component is not failed. We assume that failures can be detected only by periodic inspections. We consider that the failure of one component can modify the (conditional) failure probability of the component still alive with probability p and do not interact with probability 1-p. For that failure interaction scheme we obtain the system reliability function for the case of staggered inspections. We compare staggered and non-staggered inspections through numerical examples considering constant hazard rates.

  11. Optimization and control of two-component radially self-accelerating beams

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, Christian; Eichelkraut, Toni; Ornigotti, Marco; Szameit, Alexander [Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Str. 15, 07745 Jena (Germany)

    2015-11-23

    We report on the properties of radially self-accelerating intensity distributions consisting of two components in the angular frequency domain. We show how this subset of solutions, in literature also known as helicon beams, possesses peculiar characteristics that enable a better control over its properties. In this work, we present a step-by-step optimization procedure to achieve the best possible intensity contrast, a distinct rotation rate and long propagation lengths. All points are discussed on a theoretical basis and are experimentally verified.

  12. Modulational instability for a self-attractive two-component Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    Li Sheng-Chang; Duan Wen-Shan

    2009-01-01

    By means of the multiple-scale expansion method, the coupled nonlinear Schr(o)dinger equations without an explicit external potential are obtained in two-dimensional geometry for a self-attractive Bose-Einstein condensate composed of different hyperfine states. The modulational instability of two-component condensate is investigated by using a simple technique. Based on the discussion about two typical cases, the explicit expression of the growth rate for a purely growing modulational instability and the optimum stable conditions are given and analysed analytically. The results show that the modulational instability of this two-dimensional system is quite different from that in a one-dimensional system.

  13. Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model

    DEFF Research Database (Denmark)

    Özen, C.; Zinner, Nikolaj Thomas

    2014-01-01

    The physics of a two-component cold fermi gas is now frequently addressed in laboratories. Usually this is done for large samples of tens to hundreds of thousands of particles. However, it is now possible to produce few-body systems (1-100 particles) in very tight traps where the shell structure...... of the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of a two...

  14. A hybrid two-component Bose-Einstein condensate interferometer for measuring magnetic field gradients

    Science.gov (United States)

    Xu, Fei; Huang, Jiahao; Liu, Quan

    2017-03-01

    We have proposed a scheme to detect magnetic field gradients via an interferometer based on a double-well two-component Bose-Einstein condensate (BEC). Utilizing a sequence of quantum control operations on both external and internal degree of the BEC, one can extract the magnetic field gradients by measuring either the population in one component or the fidelity between the final external state and the initial ground state. Our scheme can be implemented by current experimental techniques of manipulating ultracold atoms.

  15. Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model

    DEFF Research Database (Denmark)

    Özen, C.; Zinner, Nikolaj Thomas

    2014-01-01

    of the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of a two......-component atomic fermi gas in a tight external trap can be mapped to the nuclear shell model so that readily available many-body techniques in nuclear physics, such as the Shell Model Monte Carlo (SMMC) method, can be directly applied to the study of these systems. We demonstrate an application of the SMMC method...

  16. Numerical simulation of two-component flow fluid - fluid in the microchannel T- type

    Directory of Open Access Journals (Sweden)

    Shebeleva A.A.

    2015-01-01

    Full Text Available Results of testing methodology for calculating two-phase flows based on the method of fluid in the cells (VOF method, and the procedure for CSF accounting of surface tension forces in the microchannel are considered in the work. Mathematical modeling of two-component flow fluid -fluid in the T- microchannel conducted using this methodology. The following flow regimes studied slug flow, rivulet flow, parallel flow, dispersed (droplet flow, plug flow. Comparison of numerical results with experimental data done. Satisfactory agreement between the calculated values with the experimental data obtained.

  17. Two-component systems and their co-option for eukaryotic signal transduction.

    Science.gov (United States)

    Schaller, G Eric; Shiu, Shin-Han; Armitage, Judith P

    2011-05-10

    Two-component signaling pathways involve histidine kinases, response regulators, and sometimes histidine-containing phosphotransfer proteins. Prevalent in prokaryotes, these signaling elements have also been co-opted to meet the needs of signal transduction in eukaryotes such as fungi and plants. Here we consider the evolution of such regulatory systems, with a particular emphasis on the roles they play in signaling by the plant hormones cytokinin and ethylene, in phytochrome-mediated perception of light, and as integral components of the circadian clock. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Periodic and Solitary Wave Solutions of Two Component Zakharov-Yajima-Oikawa System, Using Madelung's Approach

    Directory of Open Access Journals (Sweden)

    Anca Visinescu

    2011-04-01

    Full Text Available Using the multiple scales method, the interaction between two bright and one dark solitons is studied. Provided that a long wave-short wave resonance condition is satisfied, the two-component Zakharov-Yajima-Oikawa (ZYO completely integrable system is obtained. By using a Madelung fluid description, the one-soliton solutions of the corresponding ZYO system are determined. Furthermore, a discussion on the interaction between one bright and two dark solitons is presented. In particular, this problem is reduced to solve a one-component ZYO system in the resonance conditions.

  19. Two-component colour dipole emission in the central region of onium-onium scattering

    CERN Document Server

    Peschanski, R

    1995-01-01

    The initial-state radiation of soft colour dipoles produced in the central region of onium-onium scattering via single QCD Pomeron exchange (BFKL) is calculated in the framework of Mueller's dipole approach. The resulting dipole production has a two-component structure. One is constant with energy while the other grows and possesses a power-law tail at appreciably large transverse distances from the collision axis. It may be related to the growth of the gluon distribution at small Bjorken-x.

  20. Dynamics of bubbles in a two-component Bose-Einstein condensate

    Science.gov (United States)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki

    2011-03-01

    The dynamics of a phase-separated two-component Bose-Einstein condensate are investigated, in which a bubble of one component moves through the other component. Numerical simulations of the Gross-Pitaevskii equation reveal a variety of dynamics associated with the creation of quantized vortices. In two dimensions, a circular bubble deforms into an ellipse and splits into fragments with vortices, which undergo the Magnus effect. The Bénard-von Kármán vortex street is also generated. In three dimensions, a spherical bubble deforms into toruses with vortex rings. When two rings are formed, they exhibit leapfrogging dynamics.

  1. Two-component model of strong Langmuir turbulence - Scalings, spectra, and statistics of Langmuir waves

    Science.gov (United States)

    Robinson, P. A.; Newman, D. L.

    1990-01-01

    A simple two-component model of strong turbulence that makes clear predictions for the scalings, spectra, and statistics of Langmuir waves is developed. Scalings of quantities such as energy density, power input, dissipation power wave collapse, and number density of collapsing objects are investigated in detail and found to agree well with model predictions. The nucleation model of wave-packet formation is strongly supported by the results. Nucleation proceeds with energy flowing from background to localized states even in the absence of a driver. Modulational instabilities play little or no role in maintaining the turbulent state when significant density nonuniformities are present.

  2. The Two-Component Virial Theorem and the Physical Properties of Stellar Systems.

    Science.gov (United States)

    Dantas; Ribeiro; Capelato; de Carvalho RR

    2000-01-01

    Motivated by present indirect evidence that galaxies are surrounded by dark matter halos, we investigate whether their physical properties can be described by a formulation of the virial theorem that explicitly takes into account the gravitational potential term representing the interaction of the dark halo with the baryonic or luminous component. Our analysis shows that the application of such a "two-component virial theorem" not only accounts for the scaling relations displayed by, in particular, elliptical galaxies, but also for the observed properties of all virialized stellar systems, ranging from globular clusters to galaxy clusters.

  3. Anisotropic pair superfluidity of trapped two-component Bose gases in an optical lattice

    Science.gov (United States)

    Li, Yongqiang; He, Liang; Hofstetter, Walter

    2013-09-01

    We theoretically investigate the pair-superfluid phase of two-component ultracold gases with attractive inter-species interactions in an optical lattice. We establish the phase diagram for filling n = 1 at zero and finite temperatures, by applying bosonic dynamical mean-field theory, and observe stable pair-superfluid and charge-density wave quantum phases for asymmetric hopping of the two species. While the pair superfluid is found to be robust in the presence of a harmonic trap, we observe that it is destroyed already by a small population imbalance of the two species.

  4. Two-component Fermions in Optical Lattice with Spatially Alternating Interactions

    Science.gov (United States)

    Hoang, Anh-Tuan; Nguyen, Thi-Hai-Yen; Tran, Thi-Thu-Trang; Le, Duc-Anh

    2016-10-01

    We investigate two-component mass-imbalanced fermions in an optical lattice with spatially modulated interactions by using two-site dynamical mean field theory. At half-filling and zero temperature, the phase diagram of the system is analytically obtained, in which the metallic region is reduced with increasing the mass imbalance. The ground-state properties of the fermionic system are discussed from the behaviors of both the spin-dependent quasi-particle weight at the Fermi level and the double occupancy for each sublattice as functions of the local interaction strengths for various values of the mass imbalance.

  5. Comparing numerical and analytical approaches to strongly interacting two-component mixtures in one dimensional traps

    DEFF Research Database (Denmark)

    Bellotti, Filipe Furlan; Salami Dehkharghani, Amin; Zinner, Nikolaj Thomas

    2017-01-01

    We investigate one-dimensional harmonically trapped two-component systems for repulsive interaction strengths ranging from the non-interacting to the strongly interacting regime for Fermi-Fermi mixtures. A new and powerful mapping between the interaction strength parameters from a continuous......) and exact diagonalization) and analytically. Since DMRG results do not converge as the interaction strength is increased, analytical solutions are used as a benchmark to identify the point where these calculations become unstable. We use the proposed mapping to set a quantitative limit on the interaction...

  6. Classical and quantum Coulomb crystals

    CERN Document Server

    Bonitz, M; Baumgartner, H; Henning, C; Filinov, A; Block, D; Arp, O; Piel, A; Kading, S; Ivanov, Y; Melzer, A; Fehske, H; Filinov, V

    2008-01-01

    Strong correlation effects in classical and quantum plasmas are discussed. In particular, Coulomb (Wigner) crystallization phenomena are reviewed focusing on one-component non-neutral plasmas in traps and on macroscopic two-component neutral plasmas. The conditions for crystal formation in terms of critical values of the coupling parameters and the distance fluctuations and the phase diagram of Coulomb crystals are discussed.

  7. A plastic-composite-plastic structure high performance flexible energy harvester based on PIN-PMN-PT single crystal/epoxy 2-2 composite

    Science.gov (United States)

    Zeng, Zhou; Gai, Linlin; Wang, Xian; Lin, Di; Wang, Sheng; Luo, Haosu; Wang, Dong

    2017-03-01

    We present a high performance flexible piezoelectric energy harvester constituted by a Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystal/epoxy 2-2 composite flake, a polyethylene terephthalate (PET) substrate, and a PET cover, which is capable of harvesting energy from biomechanical movements. Electrical properties of the device under different epoxy volume fractions, load resistances, and strains are studied systematically. Both theoretical and experimental results show that the plastic-composite-plastic structure contributes to the flexibility of the device, and a high performance bulk PIN-PMN-PT single crystal (a thickness of 50 μm) results in its high electrical output. At a low excitation frequency of 4.2 Hz, the optimal flexible energy harvester (with ve = 21%) can generate a peak voltage of 12.9 V and a maximum power density of 0.28 mW/cm3 under a bending radius of 10.5 mm, and maintain its performance after 40 000 bending-unbending cycles. High flexibility and excellent electrical output at low operational frequency demonstrate the promise of the device in biomechanical motion energy harvesting for wireless and portable low-power electronics.

  8. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis

    National Research Council Canada - National Science Library

    Skerker, Jeffrey M; Prasol, Melanie S; Perchuk, Barrett S; Biondi, Emanuele G; Laub, Michael T

    2005-01-01

    Two-component signal transduction systems, comprised of histidine kinases and their response regulator substrates, are the predominant means by which bacteria sense and respond to extracellular signals...

  9. Effects of Saponification Rate on Electrooptical Properties and Morphology of Poly(vinyl alcohol)/Liquid Crystal Composite Films

    Science.gov (United States)

    Ono, Hiroshi; Kawatsuki, Nobuhiro

    1995-03-01

    The relationship between the saponification rate of poly(vinyl alcohol) (PVA), and the electrooptical properties and morphology of the PVA/liquid crystal (LC) composite films was investigated. Light transmission clazing and the LC droplet size were varied by changing the saponification rate or the blend ratio of two kinds of PVA with different saponification rates because the refractive index and surface tension could be controlled by the saponification rate of PVA. The threshold voltage decreased with increasing saponification rate though the extrapolation length was decreased. It was suggested that the electrooptical properties were strongly dependent on the droplet size.

  10. Power scaling of directly dual-end-pumped Nd:GdVO4 laser using grown-together composite crystal.

    Science.gov (United States)

    Li, XuDong; Yu, Xin; Chen, Fei; Yan, RenPeng; Luo, Ming; Yu, JunHua; Chen, DeYing

    2010-03-29

    Power scaling of end-pumped Nd:GdVO(4) laser was realized by direct pumping, grown-together composite crystal and dual-end-pumping. A maximum CW output power of 46.0W with M(2)switch operation, peak power of 304.1kW, 58.6kW and 23.8kW, pulse width of 7.2ns, 11.3ns and 16.2ns were obtained at the repetition rates of 10kHz, 50kHz and 100kHz, respectively.

  11. Two-component jet simulations: I. Topological stability of analytical MHD outflow solutions

    CERN Document Server

    Matsakos, T; Vlahakis, N; Massaglia, S; Mignone, A; Trussoni, E

    2007-01-01

    Observations of collimated outflows in young stellar objects indicate that several features of the jets can be understood by adopting the picture of a two-component outflow, wherein a central stellar component around the jet axis is surrounded by an extended disk-wind. The precise contribution of each component may depend on the intrinsic physical properties of the YSO-disk system as well as its evolutionary stage. In this context, the present article starts a systematic investigation of two-component jet models via time-dependent simulations of two prototypical and complementary analytical solutions, each closely related to the properties of stellar-outflows and disk-winds. These models describe a meridionally and a radially self-similar exact solution of the steady-state, ideal hydromagnetic equations, respectively. By using the PLUTO code to carry out the simulations, the study focuses on the topological stability of each of the two analytical solutions, which are successfully extended to all space by remo...

  12. Arabidopsis ethylene-response gene ETR1: Similiarity of product to two-component regulators

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.; Kwok, S.F.; Bleecker, A.B.; Meyerowitz, E.M. (California Institute of Technology, Pasadena, CA (United States))

    1993-10-22

    Ethylene behaves as a hormone in plants, regulating such aspects of growth and development as fruit ripening, flower senescence, and abscission. Ethylene insensitivity is conferred by dominant mutations in the ETR1 gene early in the ethylene signal transduction pathway of Arabidopsis thaliana. The ETR1 gene was cloned by the method of chromosome walking. Each of the four known etr1 mutant alleles contains a missense mutation near the amino terminus of the predicted protein. Although the sequence of the amino-terminal half of the deduced ETR1 protein appears to be novel, the carboxyl-terminal half is similar in sequence to both components of the prokaryotic family of signal transducers known as the two-component systems. Thus, an early step in ethylene signal transduction in plants may involve transfer of phosphate as in prokaryotic two-component systems. The dominant etr1-1 mutant gene conferred ethylene insensitivity to wild-type Arabidopsis plants when introduced by transformation.

  13. Two-Component Signal Transduction System SaeRS Positively Regulates Staphylococcus epidermidis Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Qiang Lou

    2014-01-01

    Full Text Available Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, we performed a proteomic analysis of differences in expression between the S. epidermidis 1457 wild-type and saeRS mutant to identify candidates regulated by saeRS using two-dimensional gel electrophoresis (2-DE combined with matrix-assisted laser desorption/lonization mass spectrometry (MALDI-TOF-MS. Of 55 identified proteins that significantly differed in expression between the two strains, 15 were upregulated and 40 were downregulated. The downregulated proteins included enzymes related to glycolysis and TCA cycle, suggesting that glucose is not properly utilized in S. epidermidis when saeRS was deleted. The study will be helpful for treatment of S. epidermidis infection from the viewpoint of metabolic modulation dependent on two-component signal transduction system SaeRS.

  14. Two-component model of the interaction of an interstellar cloud with surrounding hot plasma

    CERN Document Server

    Provornikova, E A; Lallement, R

    2011-01-01

    We present a two-component gasdynamic model of an interstellar cloud embedded in a hot plasma. It is assumed that the cloud consists of atomic hydrogen gas, interstellar plasma is quasineutral. Hydrogen atoms and plasma protons interact through a charge exchange process. Magnetic felds and radiative processes are ignored in the model. The influence of heat conduction within plasma on the interaction between a cloud and plasma is studied. We consider the extreme case and assume that hot plasma electrons instantly heat the plasma in the interaction region and that plasma flow can be described as isothermal. Using the two-component model of the interaction of cold neutral cloud and hot plasma, we estimate the lifetime of interstellar clouds. We focus on the clouds typical for the cluster of local interstellar clouds embedded in the hot Local Bubble and give an estimate of the lifetime of the Local interstellar cloud where the Sun currently travels. The charge transfer between highly charged plasma ions and neutr...

  15. Patient Autonomy for the Management of Chronic Conditions: A Two-Component Re-conceptualization

    Science.gov (United States)

    Naik, Aanand D.; Dyer, Carmel B.; Kunik, Mark E.; McCullough, Laurence B.

    2010-01-01

    The clinical application of the concept of patient autonomy has centered on the ability to deliberate and make treatment decisions (decisional autonomy) to the virtual exclusion of the capacity to execute the treatment plan (executive autonomy). However, the one-component concept of autonomy is problematic in the context of multiple chronic conditions. Adherence to complex treatments commonly breaks down when patients have functional, educational, and cognitive barriers that impair their capacity to plan, sequence, and carry out tasks associated with chronic care. The purpose of this article is to call for a two-component re-conceptualization of autonomy and to argue that the clinical assessment of capacity for patients with chronic conditions should be expanded to include both autonomous decision making and autonomous execution of the agreed-upon treatment plan. We explain how the concept of autonomy should be expanded to include both decisional and executive autonomy, describe the biopsychosocial correlates of the two-component concept of autonomy, and recommend diagnostic and treatment strategies to support patients with deficits in executive autonomy. PMID:19180389

  16. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media

    KAUST Repository

    Saad, Bilal Mohammed

    2013-09-01

    We propose and analyze a finite volume scheme to simulate a non equilibrium two components (water and hydrogen) two phase flow (liquid and gas) model. In this model, the assumption of local mass non equilibrium is ensured and thus the velocity of the mass exchange between dissolved hydrogen and hydrogen in the gas phase is supposed finite. The proposed finite volume scheme is fully implicit in time together with a phase-by-phase upwind approach in space and it is discretize the equations in their general form with gravity and capillary terms We show that the proposed scheme satisfies the maximum principle for the saturation and the concentration of the dissolved hydrogen. We establish stability results on the velocity of each phase and on the discrete gradient of the concentration. We show the convergence of a subsequence to a weak solution of the continuous equations as the size of the discretization tends to zero. At our knowledge, this is the first convergence result of finite volume scheme in the case of two component two phase compressible flow in several space dimensions.

  17. Implications of Two-component Dark Matter Induced by Forbidden Channels and Thermal Freeze-out

    CERN Document Server

    Aoki, Mayumi

    2016-01-01

    We consider a model of two-component dark matter based on a hidden $U(1)_D$ symmetry, in which relic densities of the dark matter are determined by forbidden channels and thermal freeze-out. The hidden $U(1)_D$ symmetry is spontaneously broken to a residual $\\mathbb{Z}_4$ symmetry, and the lightest $\\mathbb{Z}_4$ charged particle can be a dark matter candidate. Moreover, depending on the mass hierarchy in the dark sector, we have two-component dark matter. We show that the relic density of the lighter dark matter component can be determined by forbidden annihilation channels which require larger couplings compared to the normal freeze-out mechanism. As a result, a large self-interaction of the lighter dark matter component can be induced, which may solve small scale problems of $\\Lambda$CDM model. On the other hand, the heavier dark matter component is produced by normal freeze-out mechanism. We find that interesting implications emerge between the two dark matter components in this framework. We explore dete...

  18. Negative control in two-component signal transduction by transmitter phosphatase activity.

    Science.gov (United States)

    Huynh, TuAnh Ngoc; Stewart, Valley

    2011-10-01

    Bifunctional sensor transmitter modules of two-component systems exert both positive and negative control on the receiver domain of the cognate response regulator. In negative control, the transmitter module accelerates the rate of phospho-receiver dephosphorylation. This transmitter phosphatase reaction serves the important physiological functions of resetting response regulator phosphorylation level and suppressing cross-talk. Although the biochemical reactions underlying positive control are reasonably well understood, the mechanism for transmitter phosphatase activity has been unknown. A recent hypothesis is that the transmitter phosphatase reaction is catalysed by a conserved Gln, Asn or Thr residue, via a hydrogen bond between the amide or hydroxyl group and the nucleophilic water molecule in acyl-phosphate hydrolysis. This hypothetical mechanism closely resembles the established mechanisms of auxiliary phosphatases such as CheZ and CheX, and may be widely conserved in two-component signal transduction. In addition to the proposed catalytic residues, transmitter phosphatase activity also requires the correct transmitter conformation and appropriate interactions with the receiver. Evidence suggests that the phosphatase-competent and autokinase-competent states are mutually exclusive, and the corresponding negative and positive activities are likely to be reciprocally regulated through dynamic control of transmitter conformations. © 2011 Blackwell Publishing Ltd.

  19. Positive autoregulation shapes response timing and intensity in two-component signal transduction systems.

    Science.gov (United States)

    Mitrophanov, Alexander Y; Hadley, Tricia J; Groisman, Eduardo A

    2010-08-27

    Positive feedback loops are regulatory elements that can modulate expression output, kinetics and noise in genetic circuits. Transcriptional regulators participating in such loops are often expressed from two promoters, one constitutive and one autoregulated. Here, we investigate the interplay of promoter strengths and the intensity of the stimulus activating the transcriptional regulator in defining the output of a positively autoregulated genetic circuit. Using a mathematical model of two-component regulatory systems, which are present in all domains of life, we establish that positive feedback strongly affects the steady-state output levels at both low and high levels of stimulus if the constitutive promoter of the regulator is weak. By contrast, the effect of positive feedback is negligible when the constitutive promoter is sufficiently strong, unless the stimulus intensity is very high. Furthermore, we determine that positive feedback can affect both transient and steady state output levels even in the simplest genetic regulatory systems. We tested our modeling predictions by abolishing the positive feedback loop in the two-component regulatory system PhoP/PhoQ of Salmonella enterica, which resulted in diminished induction of PhoP-activated genes. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Two-component vector solitons in defocusing Kerr-type media with spatially modulated nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A and M University at Qatar, P.O. Box 23874 Doha (Qatar); Belić, Milivoj [Texas A and M University at Qatar, P.O. Box 23874 Doha (Qatar); Institute of Physics, University of Belgrade, P.O. Box 57, 11001 Belgrade (Serbia)

    2014-12-15

    We present a class of exact solutions to the coupled (2+1)-dimensional nonlinear Schrödinger equation with spatially modulated nonlinearity and a special external potential, which describe the evolution of two-component vector solitons in defocusing Kerr-type media. We find a robust soliton solution, constructed with the help of Whittaker functions. For specific choices of the topological charge, the radial mode number and the modulation depth, the solitons may exist in various forms, such as the half-moon, necklace-ring, and sawtooth vortex-ring patterns. Our results show that the profile of such solitons can be effectively controlled by the topological charge, the radial mode number, and the modulation depth. - Highlights: • Two-component vector soliton clusters in defocusing Kerr-type media are reported. • These soliton clusters are constructed with the help of Whittaker functions. • The half-moon, necklace-ring and vortex-ring patterns are found. • The profile of these solitons can be effectively controlled by three soliton parameters.

  1. Modeling and Simulation of Two-Phase Two-Component Flow with Disappearing Nonwetting Phase

    CERN Document Server

    Neumann, Rebecca; Ippisch, Olaf

    2012-01-01

    Carbon Capture and Storage (CCS) is a recently discussed new technology, aimed at allowing an ongoing use of fossil fuels while preventing the produced CO2 to be released to the atmosphere. CSS can be modeled with two components (water and CO2) in two phases (liquid and CO2). To simulate the process, a multiphase flow equation with equilibrium phase exchange is used. One of the big problems arising in two-phase two-component flow simulations is the disappearance of the nonwetting phase, which leads to a degeneration of the equations satisfied by the saturation. A standard choice of primary variables, which is the pressure of one phase and the saturation of the other phase, cannot be applied here. We developed a new approach using the pressure of the nonwetting phase and the capillary pressure as primary variables. One important advantage of this approach is the fact that we have only one set of primary variables that can be used for the biphasic as well as the monophasic case. We implemented this new choice o...

  2. Features of protein-protein interactions in two-component signaling deduced from genomic libraries.

    Science.gov (United States)

    White, Robert A; Szurmant, Hendrik; Hoch, James A; Hwa, Terence

    2007-01-01

    As more and more sequence data become available, new approaches for extracting information from these data become feasible. This chapter reports on one such method that has been applied to elucidate protein-protein interactions in bacterial two-component signaling pathways. The method identifies residues involved in the interaction through an analysis of over 2500 functionally coupled proteins and a precise determination of the substitutional constraints placed on one protein by its signaling mate. Once identified, a simple log-likelihood scoring procedure is applied to these residues to build a predictive tool for assigning signaling mates. The ability to apply this method is based on a proliferation of related domains within multiple organisms. Paralogous evolution through gene duplication and divergence of two-component systems has commonly resulted in tens of closely related interacting pairs within one organism with a roughly one-to-one correspondence between signal and response. This provides us with roughly an order of magnitude more protein pairs than there are unique, fully sequenced bacterial species. Consequently, this chapter serves as both a detailed exposition of the method that has provided more depth to our knowledge of bacterial signaling and a look ahead to what would be possible on a more widespread scale, that is, to protein-protein interactions that have only one example per genome, as the number of genomes increases by a factor of 10.

  3. A theory of scintillation for two-component power law irregularity spectra: Overview and numerical results

    Science.gov (United States)

    Carrano, Charles S.; Rino, Charles L.

    2016-06-01

    We extend the power law phase screen theory for ionospheric scintillation to account for the case where the refractive index irregularities follow a two-component inverse power law spectrum. The two-component model includes, as special cases, an unmodified power law and a modified power law with spectral break that may assume the role of an outer scale, intermediate break scale, or inner scale. As such, it provides a framework for investigating the effects of a spectral break on the scintillation statistics. Using this spectral model, we solve the fourth moment equation governing intensity variations following propagation through two-dimensional field-aligned irregularities in the ionosphere. A specific normalization is invoked that exploits self-similar properties of the structure to achieve a universal scaling, such that different combinations of perturbation strength, propagation distance, and frequency produce the same results. The numerical algorithm is validated using new theoretical predictions for the behavior of the scintillation index and intensity correlation length under strong scatter conditions. A series of numerical experiments are conducted to investigate the morphologies of the intensity spectrum, scintillation index, and intensity correlation length as functions of the spectral indices and strength of scatter; retrieve phase screen parameters from intensity scintillation observations; explore the relative contributions to the scintillation due to large- and small-scale ionospheric structures; and quantify the conditions under which a general spectral break will influence the scintillation statistics.

  4. Investigation of the Effect of Yttrium Oxide Nanoparticles Doped with Cerium and Neodymium on Electro-Optics of Liquid Crystal Polymer Composites

    Science.gov (United States)

    Zharkova, G. M.; Osipov, V. V.; Platonov, V. V.; Podkin, A. V.; Strel'tsov, S. A.

    2016-12-01

    Morphology and properties of liquid crystal polymer composites doped with inorganic nanoparticles are described. These composites comprised nematic liquid crystal 5CB, polyvinyl acetate, and nanoparticles of oxides (Y2O3, CeO2:Y2O3, and Nd2O3:Y2O3). Nanopowders were synthesized by the laser method of vaporization of a solid target under CO2-laser or fiber ytterbium laser irradiation. The effect of oxides on the electro-optical properties of the composites and times of response to an electrical pulse is investigated. It is shown that incorporation of CeO2:Y2O3 nanopowder in liquid crystal polymer composites affects the decrease of the control field and the increase of light transmission in an electric field stronger than incorporation of Nd2O3:Y2O3 nanoparticles.

  5. Suitability of Semiconductor Heterostructure over SiO2-Air Composition for One-Dimensional Photonic Crystal based Bandpass Filter

    Directory of Open Access Journals (Sweden)

    Arka Karmakar

    2013-05-01

    Full Text Available Bandpass filter characteristics is numerically computed for semiconductor heterostructure based onedimensional photonic crystal at different optical wavelengths by varying the structural parameters taking GaAs/AlxGa1-xAs as a suitable composition subject to normal incidence of electromagnetic wave. Transfer matrix technique is used for numerical analysis. Results are compared with conventionally used SiO2-air material system and significance improvements are observed at few desired spectra. Heterostructure provides larger passbandwidth with almost negligible ripple than conventional material system at 1330 nm or 1550 nm, which is required for present day optical communication network. Efficient tuning can be achieved by varying different layer dimensions for the preferred material composition which effectively changes the filter bandwidth in either side of the central wavelength, but it cost generation of ripples for the conventional system.

  6. Dispersive Stabilization of Liquid Crystal-in-Water with Acrylamide Copolymer/Surfactant Mixture: Nematic Curvilinear Aligned Phase Composite Film.

    Science.gov (United States)

    Park; Lee

    1999-11-01

    The effect of nonionic surfactant, (H(OCH(2)-CH(2))(8)-OC(6)H(4)-C(9)H(19)), on the dispersion stabilization of liquid crystal (LC)-in-water with acrylamide copolymer containing the related nonylphenyl groups was studied. It was observed that the addition of nonionic surfactant increases the stability of LC dispersions and improves the electrooptical properties of the nematic curvilinear aligned phase (NCAP) composite film. On the basis of the surface tension, reduced viscosity, cloud point, and coalescence time measurements, it was proposed that formation of an integrated structure induced by interactions between hydrophobic groups in the polymer chains is probably important to fabrication of a polymer composite film made of LC and polymer matrix. Copyright 1999 Academic Press.

  7. Morphology, crystallization and dynamic mechanical properties of PA66/nano-SiO2 composites

    Indian Academy of Sciences (India)

    Huimin Lu; Xiangmin Xu; Xiaohong Li; Zhijun Zhang

    2006-10-01

    This article addresses the effect of nano-SiO2 on the morphology, crystallization and dynamic mechanical properties of polyamide 66. The influence of nano-SiO2 on the tensile fracture morphology of the nanocomposites was studied by scanning electron microscopy (SEM), which suggested that the nanocomposites revealed an extensive plastic stretch of the matrix polymer. The crystallization behaviour of polyamide 66 and its nanocomposites were studied by differential scanning calorimetry (DSC). DSC nonisothermal curves showed an increase in the crystallization temperature along with increasing degree of crystallinity. Dynamic mechanical properties (DMA) indicated significant improvement in the storage modulus and loss modulus compared with neat polyamide 66. The tan ä peak signifying the glass-transition temperature of nanocomposites shifted to higher temperature.

  8. Iron-based composition for magnetocaloric effect (MCE) applications and method of making a single crystal

    Science.gov (United States)

    Evans, III, Boyd Mccutchen; Kisner, Roger A.; Ludtka, Gail Mackiewicz; Ludtka, Gerard Michael; Melin, Alexander M.; Nicholson, Donald M.; Parish; , Chad M.; Rios, Orlando; Sefat, Athena S.; West, David L.; Wilgen, John B.

    2016-02-09

    A method of making a single crystal comprises heating a material comprising magnetic anisotropy to a temperature T sufficient to form a melt of the material. A magnetic field of at least about 1 Tesla is applied to the melt at the temperature T, where a magnetic free energy difference .DELTA.G.sub.m between different crystallographic axes is greater than a thermal energy kT. While applying the magnetic field, the melt is cooled at a rate of about 30.degree. C./min or higher, and the melt solidifies to form a single crystal of the material.

  9. Refractive indices and birefringence of hybrid liquid crystal - nanoparticles composite materials in the terahertz region

    Directory of Open Access Journals (Sweden)

    E. Mavrona

    2015-07-01

    Full Text Available We show that a hybrid LC-ferroelectric nanoparticle suspension of liquid crystal E7 doped with BaTiO3 nanoparticles leads to 10% increase in birefringence in the THz region of spectrum as compared to pure E7. Doped liquid crystals can be used to increase performance of THz modulators and waveplates. BaTiO3 nanoparticles used in the mixture were synthesised with the sol gel technique, and their refractive index has been measured in THz in powder form and in solution.

  10. Iron-based composition for magnetocaloric effect (MCE) applications and method of making a single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Evans, III, Boyd Mccutchen; Kisner, Roger A.; Ludtka, Gail Mackiewicz; Ludtka, Gerard Michael; Melin, Alexander M.; Nicholson, Donald M.; Parish; , Chad M.; Rios, Orlando; Sefat, Athena S.; West, David L.; Wilgen, John B.

    2016-02-09

    A method of making a single crystal comprises heating a material comprising magnetic anisotropy to a temperature T sufficient to form a melt of the material. A magnetic field of at least about 1 Tesla is applied to the melt at the temperature T, where a magnetic free energy difference .DELTA.G.sub.m between different crystallographic axes is greater than a thermal energy kT. While applying the magnetic field, the melt is cooled at a rate of about 30.degree. C./min or higher, and the melt solidifies to form a single crystal of the material.

  11. Silk fibroin membranes from solvent-crystallized silk fibroin/gelatin blends: Effects of blend and solvent composition

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Eun S. [Fiber and Polymer Science Program, North Carolina State University, Raleigh, NC 27695 (United States); Frankowski, David J. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Hudson, Samuel M. [Fiber and Polymer Science Program, North Carolina State University, Raleigh, NC 27695 (United States); Spontak, Richard J. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 (United States) and Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States)]. E-mail: Rich_Spontak@ncsu.edu

    2007-04-15

    Protein membranes have been prepared by mixing gelatin (G) with Bombyx mori silk fibroin (SF) and using aqueous methanol (MeOH) to induce SF crystallization. Amorphous blends of these polymers appear quasi-homogeneous, as discerned from visual observation, electron microscopy and Fourier-transform infrared (FTIR) spectroscopy. Upon subsequent exposure to aqueous MeOH, SF undergoes a conformational change from random-coil to {beta}-sheet. This transformation occurs in pure SF, as well as in each of the G/SF blends, as discerned from FTIR spectroscopy and thermal calorimetry. The influence of MeOH-induced SF crystallization on structure and property development has been measured as functions of blend and solvent composition. By preserving a support scaffold above the G helix-to-coil transition temperature, the formation of crystalline SF networks in G/SF blends can be used to stabilize G-based hydrogels or generate SF membranes for biomaterial, pharmaceutical and gas-separation purposes. The present study not only examines the properties of G/SF blends before and after SF crystallization, but also establishes the foundation for future research into thermally-responsive G/SF bioconjugates.

  12. Synthesis of 1,4-Bis(phenylethynylbenzenes and Their Application as Blue Phase Liquid Crystal Composition

    Directory of Open Access Journals (Sweden)

    Ning Li

    2013-11-01

    Full Text Available A number of 1,4-bis(phenylethynylbenzene derivatives (BPEBs and their analogues with different numbers of side-substitute fluorine atoms on benzene rings, and alkyl chains, ethoxyl groups, fluorine atoms and trifluoromethyl groups as the end groups have been synthesized. The effects of the different substituents on their properties such as thermal behavior of melting point and clearing point, the temperature of nematic phase, optical anisotropy and dielectric anisotropy have been well investigated, and it has been found that some BPEBs have a wide range of the nematic phase temperature with high optical anisotropy (Δn and acceptable dielectric anisotropy (Δε, which have been applied as the crucial compositions to constitute a liquid crystal mixture having the properties of Δε = 29.0 and Δn = 0.283 at 25 °C. With the addition of the chiral dopant to the obtained liquid crystal mixture, blue phase liquid crystal with a blue phase temperature range of 8 °C has been achieved.

  13. Effects of fractional crystallization and cumulus processes on mineral composition trends of some lunar and terrestrial rock series

    Science.gov (United States)

    Longhi, J.

    1982-01-01

    A plot of Mg of mafic minerals versus An of plagioclase in cumulate rocks from various lunar and terrestrial rock series shows each series to have a distinct curvilinear trend. The slopes of these trends vary from nearly vertical in the case of lunar anorthosites and Mg-norites to nearly horizontal in the case of gabbros from the mid-Atlantic ridge. Calculations based upon known major element partitioning between mafic minerals, plagioclase and subalkaline basaltic liquids indicate that fractional crystallization coupled with cotectic accumulation of mafic minerals and plagioclase will produce mineral composition trends on the Mg versus An diagram with slopes greater than 1 for cases where An is approximately greater than Mg. Furthermore, fractional crystallization of basaltic magmas with alkali concentrations approaching zero will produce near vertical Mg versus An trends. Therefore, the steep slopes of the lunar rock series are consistent with relatively simple fractionation processes. The relatively flat slope of mineral compositions from gabbros collected from the mid-Atlantic ridge at 26 deg N is inconsistent with simple fractionation processes, and calculations show that periodic refilling of a fractionating magma chamber with picritic magma cannot simply explain this flat slope either.

  14. The crystal structure and morphology of NiO-YSZ composite that prepared from local zircon concentrate of Bangka Island

    Energy Technology Data Exchange (ETDEWEB)

    Rahmawati, F., E-mail: fitria@mipa.uns.ac.id; Apriyani, K.; Heraldy, E. [Research Group of Solid State Chemistry & Catalysis, Department of Chemistry, Sebelas Maret University, Jl. Ir. Sutami 36A Kentingan Surakarta (Indonesia); Soepriyanto, S. [Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132 (Indonesia)

    2016-03-29

    In order to increase the economic value of local zircon concentrate from Bangka Island, NiO-YSZ was synthesized from Zirconia, ZrO{sub 2} that was prepared from local zircon concentrate. The NiO-YSZ composite was synthesized by solid state reaction method. XRD analysis equipped with Le Bail refinement was carried out to analyze the crystal structure and cell parameters of the prepared materials. The result showed that zirconia was crystallized in tetragonal structure with a space group of P42/NMC. Yttria-Stabilized-Zirconia (YSZ) was prepared by doping 8% mol yttrium oxide into zirconia and then sintered at 1250°C for 3 hours. Doping of 8% mol Yttria allowed phase transformation of zirconia from tetragonal into the cubic structure. Meanwhile, the composite of NiO-YSZ consists of two crystalline phases, i.e. the NiO with cubic structure and the YSZ with cubic structure. SEM analysis of the prepared materials shows that the addition of NiO into YSZ allows the morphology to become more roughness with larger grain size.

  15. Atom-Thin SnS2-xSex with Adjustable Compositions by Direct Liquid Exfoliation from Single Crystals.

    Science.gov (United States)

    Yang, Zhanhai; Liang, Hui; Wang, Xusheng; Ma, Xinlei; Zhang, Tao; Yang, Yanlian; Xie, Liming; Chen, Dong; Long, Yujia; Chen, Jitao; Chang, Yunjie; Yan, Chunhua; Zhang, Xinxiang; Zhang, Xueji; Ge, Binghui; Ren, Zhian; Xue, Mianqi; Chen, Genfu

    2016-01-26

    Two-dimensional (2D) chalcogenide materials are fundamentally and technologically fascinating for their suitable band gap energy and carrier type relevant to their adjustable composition, structure, and dimensionality. Here, we demonstrate the exfoliation of single-crystal SnS2-xSex (SSS) with S/Se vacancies into an atom-thin layer by simple sonication in ethanol without additive. The introduction of vacancies at the S/Se site, the conflicting atomic radius of sulfur in selenium layers, and easy incorporation with an ethanol molecule lead to high ion accessibility; therefore, atom-thin SSS flakes can be effectively prepared by exfoliating the single crystal via sonication. The in situ pyrolysis of such materials can further adjust their compositions, representing tunable activation energy, band gap, and also tunable response to analytes of such materials. As the most basic and crucial step of the 2D material field, the successful synthesis of an uncontaminated and atom-thin sample will further push ahead the large-scale applications of 2D materials, including, but not limited to, electronics, sensing, catalysis, and energy storage fields.

  16. Remarkable Electromechanical Coupling in the 2–2 Composite Based on Single-domain PMN–0.33PT Crystal

    Directory of Open Access Journals (Sweden)

    Vitaly Yu. TOPOLOV

    2009-10-01

    Full Text Available A novel parallel-connected 2–2 single-domain 0.67Pb(Mg1/3Nb2/3O3 – 0.33PbTiO3 crystal / polymer composite with various orientations of polarization vectors of the components is proposed to analyze behavior of electromechanical coupling factors k*3j and k*k where j = 1, 2 and 3. It is shown that the combination of the highly piezo-active relaxor-ferroelectric single-domain component and the piezoelectric polymer provides considerable values of k*k (min k*k » –0.8 and max k*k» 0.7 and |k*33| (about 0.9. The active role of the polarization orientation effect and the composite structure in attaining the high performance is emphasized in this work. A strong correlation between k*k and the hydrostatic piezoelectric coefficient is first revealed near min k*k and max k*k of the 2–2 composite. Some advantages concerned with the presence of the single-domain component in the 2–2 composite are discussed in connection with the large values of k*3j and k*k as well as with the considerable anisotropy of k*3j.

  17. Bacillus subtilis Two-Component System Sensory Kinase DegS Is Regulated by Serine Phosphorylation in Its Input Domain

    DEFF Research Database (Denmark)

    Jers, Carsten; Kobir, Ahasanul; Søndergaard, Elsebeth Oline;

    2011-01-01

    Bacillus subtilis two-component system DegS/U is well known for the complexity of its regulation. The cytosolic sensory kinase DegS does not receive a single predominant input signal like most two-component kinases, instead it integrates a wide array of metabolic inputs that modulate its activity...

  18. SO(3,2) Structure and Distributions of Two-Component Bose-Einstein Condensates with Lower Excitations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-Biao

    2003-01-01

    The eigenstates describing two-component Bose-Einstein condensates (BEC) with weakly excitations have been found, by using the SO(3,2) algebraic mean-field approximation. We show that the two-component modified BEC (see Eq (26)) possesses uniquely super-Poissonian distribution in a fixcd magnetic ficld along z direction. The distribution will be uncertain, if B = 0.

  19. Atomic Tunneling Effect in Two-Component Bose-Einstein Condensates with a Coupling Drive

    Institute of Scientific and Technical Information of China (English)

    JIAO Zhi-Yong; YU Zhao-Xian; YANG Xin-Jian

    2004-01-01

    In this paper, we have studied the atomic population difference and the atomic tunneling current of twocomponent Bose-Einstein condensates with a coupling drive. It is found that when the two-component Bose-Einstein condensates are initially in the coherent states, the atomic population difference may exhibit the step structure, in which the numbers of the step increase with the decrease of the Rabi frequency and with the increment of the initial phase difference. The atomic population difference may exhibit collapses, and revivals, in which their periods are affected dramatically by the Rabi frequency and the initial phase difference. The atomic tunneling current may exhibit damping oscillation behaviors, and exist the step structure for the time range of 10-10 ~ 10-9 second.

  20. Global solutions for the two-component Camassa-Holm system

    CERN Document Server

    Grunert, K; Raynaud, X

    2011-01-01

    We prove existence of a global conservative solution of the Cauchy problem for the two-component Camassa-Holm (2CH) system on the line, allowing for nonvanishing and distinct asymptotics at plus and minus infinity. The solution is proven to be smooth as long as the density is bounded away from zero. Furthermore, we show that by taking the limit of vanishing density in the 2CH system, we obtain the global conservative solution of the (scalar) Camassa-Holm equation, which provides a novel way to define and obtain these solutions. Finally, it is shown that while solutions of the 2CH system have infinite speed of propagation, singularities travel with finite speed.

  1. The sae locus of Staphylococcus aureus encodes a two-component regulatory system.

    Science.gov (United States)

    Giraudo, A T; Calzolari, A; Cataldi, A A; Bogni, C; Nagel, R

    1999-08-01

    Sae is a regulatory locus that activates the production of several exoproteins in Staphylococcus aureus. A 3.4-kb fragment of a S. aureus genomic library, screened with a probe adjacent to the transposon insertion of a sae::Tn551 mutant, was cloned into a bifunctional vector. This fragment was shown to carry the sae locus by restoration of exoprotein production in sae mutants. The sae locus was mapped to the SmaI-D fragment of the staphylococcal chromosome by pulse-field electrophoresis. Sequence analysis of the cloned fragment revealed the presence of two genes, designated saeR and saeS, encoding a response regulator and a histidine protein kinase, respectively, with high homology to other bacterial two-component regulatory systems.

  2. The curvature of semidirect product groups associated with two-component Hunter-Saxton systems

    Science.gov (United States)

    Kohlmann, Martin

    2011-06-01

    In this paper, we study two-component versions of the periodic Hunter-Saxton equation and its μ-variant. Considering both equations as a geodesic flow on the semidirect product of the circle diffeomorphism group Diff( S) with a space of scalar functions on S we show that both equations are locally well posed. The main result of this paper is that the sectional curvature associated with the 2HS is constant and positive and that 2µHS allows for a large subspace of positive sectional curvature. The issues of this paper are related to some of the results for 2CH and 2DP presented in Escher et al (2011 J. Geom. Phys. 61 436-52).

  3. Feshbach P -Q partitioning technique and the two-component Dirac equation

    Science.gov (United States)

    Luo, Da-Wei; Pyshkin, P. V.; Yu, Ting; Lin, Hai-Qing; You, J. Q.; Wu, Lian-Ao

    2016-09-01

    We provide an alternative approach to relativistic dynamics based on the Feshbach projection technique. Instead of directly studying the Dirac equation, we derive a two-component equation for the upper spinor. This approach allows one to investigate the underlying physics in a different perspective. For particles with small mass such as the neutrino, the leading-order equation has a Hermitian effective Hamiltonian, implying there is no leakage between the upper and lower spinors. In the weak relativistic regime, the leading order corresponds to a non-Hermitian correction to the Pauli equation, which takes into account the nonzero possibility of finding the lower-spinor state and offers a more precise description.

  4. Energy Spectrum of Two-Component Bose-Einstein Condensates in Optical Lattices

    Institute of Scientific and Technical Information of China (English)

    HAN Jiu-Rong; LIU Jin-Ming; JING Hui; WANG Yu-Zhu

    2005-01-01

    With the method of Green's function, we investigate the energy spectra of two-component ultracold bosonic atoms in optical lattices. We find that there are two energy bands for each component. The critical condition of the superfluid-Mott insulator phase transition is determined by the energy band structure. We also find that the nearest neighboring and on-site interactions fail to change the structure of energy bands, but shift the energy bands only.According to the conditions of the phase transitions, three stable superfluid and Mott insulating phases can be found by adjusting the experiment parameters. We also discuss the possibility of observing these new phases and their transitions in further experiments.

  5. The SaeRS Two-Component System of Staphylococcus aureus

    Science.gov (United States)

    Liu, Qian; Yeo, Won-Sik; Bae, Taeok

    2016-01-01

    In the Gram-positive pathogenic bacterium Staphylococcus aureus, the SaeRS two-component system (TCS) plays a major role in controlling the production of over 20 virulence factors including hemolysins, leukocidins, superantigens, surface proteins, and proteases. The SaeRS TCS is composed of the sensor histidine kinase SaeS, response regulator SaeR, and two auxiliary proteins SaeP and SaeQ. Since its discovery in 1994, the sae locus has been studied extensively, and its contributions to staphylococcal virulence and pathogenesis have been well documented and understood; however, the molecular mechanism by which the SaeRS TCS receives and processes cognate signals is not. In this article, therefore, we review the literature focusing on the signaling mechanism and its interaction with other global regulators. PMID:27706107

  6. Two-component system YvqEC-dependent bacterial resistance against vancomycin in Bacillus thuringiensis.

    Science.gov (United States)

    Zhang, Shumeng; Hu, Yimin; Fan, Qingyun; Wang, Xun; He, Jin

    2015-08-01

    YvqEC is one of the two-component signal transduction systems that may respond to cell envelope stress and enable cells to adjust multiple cellular functions. It consists of a histidine kinase YvqE and a response regulator YvqC. In this study, we separately constructed a single gene mutant ΔyvqE and a double gene mutant ΔyvqEC in Bacillus thuringiensis BMB171 through a homing endonucleases I-SceI mediated markerless gene deletion method. We found that the deletion of either yvqE or yvqEC weakened the resistance of B. thuringiensis against vancomycin. We also identified nine operons that may be involved in the cellular metabolism regulated by YvqC. This study not only enriches our understanding of bacterial resistance mechanisms against vancomycin, but also helps investigate the functions of YvqEC.

  7. Phase Separation and Dynamics of two-component Bose-Einstein condensates

    CERN Document Server

    Lee, Kean Loon; Liu, I-Kang; Wacker, Lars; Arlt, Jan J; Proukakis, Nick P

    2016-01-01

    The miscibility of two interacting quantum systems is an important testing ground for the understanding of complex quantum systems. Two-component Bose-Einstein condensates enable the investigation of this scenario in a particularly well controlled setting. In a homogeneous system, the transition between mixed and separated phases is fully characterised by a `miscibility parameter', based on the ratio of intra- to inter-species interaction strengths. Here we show, however, that this parameter is no longer the optimal one for trapped gases, for which the location of the phase boundary depends critically on atom numbers. We demonstrate how monitoring of damping rates and frequencies of dipole oscillations enables the experimental mapping of the phase diagram by numerical implementation of a fully self-consistent finite-temperature kinetic theory for binary condensates. The change in damping rate is explained in terms of surface oscillation in the immiscible regime, and counterflow instability in the miscible reg...

  8. Addition Formulae of Discrete KP, q-KP and Two-Component BKP Systems

    Science.gov (United States)

    Gao, Xu; Li, Chuan-Zhong; He, Jing-Song

    2016-04-01

    In this paper, we construct the addition formulae for several integrable hierarchies, including the discrete KP, the q-deformed KP, the two-component BKP and the D type Drinfeld-Sokolov hierarchies. With the help of the Hirota bilinear equations and τ functions of different kinds of KP hierarchies, we prove that these addition formulae are equivalent to these hierarchies. These studies show that the addition formula in the research of the integrable systems has good universality. Supported by the Zhejiang Provincial Natural Science Foundation under Grant No. LY15A010004, the National Natural Science Foundation of China under Grant Nos. 11201251, 11571192 and the Natural Science Foundation of Ningbo under Grant No. 2015A610157. Jingsong He is supported by the National Natural Science Foundation of China under Grant No. 11271210, K.C. Wong Magna Fund in Ningbo University

  9. Preparation of two component Fibrin Glue and its clinical evaluation in skin grafts and flaps

    Directory of Open Access Journals (Sweden)

    Jain P

    2003-01-01

    Full Text Available Tissue adhesive is one of the alternative to conventional suturing and has some added advantages. Fibrin glue has been used in obtaining haemostasis following trauma to spleen and liver. It has also been used in repair of dural tear and bronchial fistula. Fibrin glue is a biological tissue adhesive based on the final stage of coagulation wherein. Thrombin acting on fibrinogen converts it into fibrin. Thus, it has two components, one is fibrinogen and another is thrombin. We have prepared both components of fibrin glue. Fibrinogen was obtained from patient's own blood and thrombin from fresh frozen plasma of screened healthy donor. The glue was used in 20 cases requiring skin graft or flap. The results were compared with conventional suturing method. Use of the fibrin glue is simple, safe, cost effective, and rapid technique to fix the skin grafts and flaps with avoidance of peroperative bleeding and postoperative collection. It also has better overall results.

  10. Dynamic form factor of two-component plasmas beyond the static local field approximation

    CERN Document Server

    Daligault, J

    2003-01-01

    The spectrum of ion density fluctuations in a strongly coupled plasma is described both within the static G(k, 0) and high-frequency G(k, infinity) local field approximation. By a direct comparison with molecular dynamics data, we find that for large coupling, G(k, 0) is inadequate. Based on this result, we employ the Zwanzig-Mori memory function approach to model the Thomson scattering cross section, i.e. the electron dynamic form factor S sub e sub e (k, omega) of a dense two-component plasma. We show the sensitivity of S sub e sub e (k, omega) to three approximations for G(k, omega).

  11. WalRK two component system of Bacillus anthracis responds to temperature and antibiotic stress.

    Science.gov (United States)

    Dhiman, Alisha; Gopalani, Monisha; Bhatnagar, Rakesh

    2015-04-17

    WalRK Two Component System (TCS) of Bacillus anthracis forms a functional TCS. This report elaborates upon the WalRK genomic architecture, promoter structure, promoter activity and expression under various stress conditions in B. anthracis. 5' RACE located the WalRK functional promoter within 317 bp region upstream of WalR. Reporter gene assays demonstrated maximal promoter activity during early growth phases indicating utility in exponential stages of growth. qRT-PCR showed upregulation of WalRK transcripts during temperature and antibiotic stress. However, WalR overexpression did not affect the tested antibiotic MIC values in B. anthracis. Collectively, these results confirm that WalRK responds to cell envelope stress in B. anthracis.

  12. Output Rate of Atomic Four-Wave Mixing in Two-Component Bose-Einstein Condensate

    Institute of Scientific and Technical Information of China (English)

    LI Jia-Hua; LI Wei-Bing; PENG Ju-Cun

    2004-01-01

    In this letter, following the proposal of Heurich et al. [Phys. Rev. A63 (2001) 033605], we analyze and discuss output rate of atomic four-wave mixing in the two-component Bose-Einstein condensate under the condition of the steady state. The results show that the magnitude of the signal beam increases with the increase of the intensity of the probe beam, up to a saturated value, then it decreases as the probe beam increases. The influence of the interaction range on the signal beam is also predicted. In particular, it is worth while pointing out that in contrast to the previous solutions, our obtained analytical solutions are of very simple and explicit forms, which open the door for further investigating the related physical mechanisms.

  13. Genomic analysis of two-component signal transduction proteins in basidiomycetes.

    Science.gov (United States)

    Lavín, José L; Ramírez, Lucía; Ussery, David W; Pisabarro, Antonio G; Oguiza, José A

    2010-01-01

    Two-component system (TCS) proteins are components of complex signal transduction pathways in fungi, and play essential roles in the regulation of several cellular functions and responses. Species of basidiomycetes have a marked variation in their specific physiological traits, morphological complexity and lifestyles. In this study, we have used the available complete genomes of basidiomycetes to carry out a thorough identification and an extensive comparative analysis of the TCS proteins in this fungal phylum. In comparison with ascomycetes, basidiomycetes exhibit an intermediate number of TCS proteins. Several TCS proteins are highly conserved among all the basidiomycetes, and other TCS proteins appear to be specific to particular species of basidiomycetes. Moreover, some species appear to have developed a unique histidine kinase group with unusual domain architecture, the Dual-histidine kinases. The presence of differential sets of TCS proteins between basidiomycete species might reflect their adaptation to diverse environmental niches.

  14. A two-component system regulates hemin acquisition in Porphyromonas gingivalis.

    Directory of Open Access Journals (Sweden)

    Jodie C Scott

    Full Text Available Porphyromonas gingivalis is a Gram-negative oral anaerobe associated with infection of the periodontia. The organism has a small number of two-component signal transduction systems, and after comparing genome sequences of strains W83 and ATCC 33277 we discovered that the latter was mutant in histidine kinase (PGN_0752, while the cognate response regulator (PGN_0753 remained intact. Microarray-based transcriptional profiling and ChIP-seq assays were carried out with an ATCC 33277 transconjugant containing the functional histidine kinase from strain W83 (PG0719. The data showed that the regulon of this signal transduction system contained genes that were involved in hemin acquisition, including gingipains, at least three transport systems, as well as being self-regulated. Direct regulation by the response regulator was confirmed by electrophoretic mobility shift assays. In addition, the system appears to be activated by hemin and the regulator acts as both an activator and repressor.

  15. Histidine phosphotransfer proteins in fungal two-component signal transduction pathways.

    Science.gov (United States)

    Fassler, Jan S; West, Ann H

    2013-08-01

    The histidine phosphotransfer (HPt) protein Ypd1 is an important participant in the Saccharomyces cerevisiae multistep two-component signal transduction pathway and, unlike the expanded histidine kinase gene family, is encoded by a single gene in nearly all model and pathogenic fungi. Ypd1 is essential for viability in both S. cerevisiae and in Cryptococcus neoformans. These and other aspects of Ypd1 biology, combined with the availability of structural and mutational data in S. cerevisiae, suggest that the essential interactions between Ypd1 and response regulator domains would be a good target for antifungal drug development. The goal of this minireview is to summarize the wealth of data on S. cerevisiae Ypd1 and to consider the potential benefits of conducting related studies in pathogenic fungi.

  16. An intimate link: two-component signal transduction systems and metal transport systems in bacteria.

    Science.gov (United States)

    Singh, Kamna; Senadheera, Dilani B; Cvitkovitch, Dennis G

    2014-01-01

    Bacteria have evolved various strategies to contend with high concentrations of environmental heavy metal ions for rapid, adaptive responses to maintain cell viability. Evidence gathered in the past two decades suggests that bacterial two-component signal transduction systems (TCSTSs) are intimately involved in monitoring cation accumulation, and can regulate the expression of related metabolic and virulence genes to elicit adaptive responses to changes in the concentration of these ions. Using examples garnered from recent studies, we summarize the cross-regulatory relationships between metal ions and TCSTSs. We present evidence of how bacterial TCSTSs modulate metal ion homeostasis and also how metal ions, in turn, function to control the activities of these signaling systems linked with bacterial survival and virulence.

  17. Two-component signal transduction as potential drug targets in pathogenic bacteria.

    Science.gov (United States)

    Gotoh, Yasuhiro; Eguchi, Yoko; Watanabe, Takafumi; Okamoto, Sho; Doi, Akihiro; Utsumi, Ryutaro

    2010-04-01

    Gene clusters contributing to processes such as cell growth and pathogenicity are often controlled by two-component signal transduction systems (TCSs). Specific inhibitors against TCS systems work differently from conventional antibiotics, and developing them into new drugs that are effective against various drug-resistant bacteria may be possible. Furthermore, inhibitors of TCSs that control virulence factors may reduce virulence without killing the pathogenic bacteria. Previous TCS inhibitors targeting the kinase domain of the histidine kinase sensor suffered from poor selectivity. Recent TCS inhibitors, however, target the sensory domains of the sensors blocking the quorum sensing system, or target the essential response regulator. These new targets are introduced, together with several specific TCSs that have the potential to serve as effective drug targets. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Cross-talk and specificity in two-component signal transduction pathways.

    Science.gov (United States)

    Agrawal, Ruchi; Sahoo, Bikash Kumar; Saini, Deepak Kumar

    2016-05-01

    Two-component signaling systems (TCSs) are composed of two proteins, sensor kinases and response regulators, which can cross-talk and integrate information between them by virtue of high-sequence conservation and modular nature, to generate concerted and diversified responses. However, TCSs have been shown to be insulated, to facilitate linear signal transmission and response generation. Here, we discuss various mechanisms that confer specificity or cross-talk among TCSs. The presented models are supported with evidence that indicate the physiological significance of the observed TCS signaling architecture. Overall, we propose that the signaling topology of any TCSs cannot be predicted using obvious sequence or structural rules, as TCS signaling is regulated by multiple factors, including spatial and temporal distribution of the participating proteins.

  19. Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation

    Energy Technology Data Exchange (ETDEWEB)

    Kühn, Michael [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Weigend, Florian, E-mail: florian.weigend@kit.edu [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany)

    2015-01-21

    We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy){sub 3} (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its “spin-forbidden” triplet-singlet transition.

  20. Images and Spectral Properties of Two Component Advective Flows Around Black Holes: Effects of Photon Bending

    CERN Document Server

    Chatterjee, Arka; Ghosh, Himadri

    2016-01-01

    Two component advective flow (TCAF) successfully explains spectral and timing properties of black hole candidates. We study the nature of photon trajectories in the vicinity of a Schwarzschild black hole and incorporate this in predicting images of TCAF with a black hole at the Centre. We also compute the emitted spectra. We employ a Monte-Carlo simulation technique to achieve our goal. For accurate prediction of the image and the spectra, null trajectories are generated without constraining the motion to any specific plane. Red shift, bolometric flux and corresponding temperature have been calculated with appropriate relativistic consideration. The centrifugal barrier dominated boundary layer or CENBOL near the inner region of the disk which acts as the Compton cloud is appropriately modelled as a thick accretion disk in Schwarzschild geometry for the purpose of imaging and computing spectra. The variations of spectra and image with physical parameters such as the accretion rate ($\\dot{m}_d$) and inclination...

  1. Comparing numerical and analytical approaches to strongly interacting two-component mixtures in one dimensional traps

    Science.gov (United States)

    Bellotti, Filipe F.; Dehkharghani, Amin S.; Zinner, Nikolaj T.

    2017-02-01

    We investigate one-dimensional harmonically trapped two-component systems for repulsive interaction strengths ranging from the non-interacting to the strongly interacting regime for Fermi-Fermi mixtures. A new and powerful mapping between the interaction strength parameters from a continuous Hamiltonian and a discrete lattice Hamiltonian is derived. As an example, we show that this mapping does not depend neither on the state of the system nor on the number of particles. Energies, density profiles and correlation functions are obtained both numerically (density matrix renormalization group (DMRG) and exact diagonalization) and analytically. Since DMRG results do not converge as the interaction strength is increased, analytical solutions are used as a benchmark to identify the point where these calculations become unstable. We use the proposed mapping to set a quantitative limit on the interaction parameter of a discrete lattice Hamiltonian above which DMRG gives unrealistic results.

  2. Correlations of the upper branch of 1D harmonically trapped two-component fermi gases.

    Science.gov (United States)

    Gharashi, Seyed Ebrahim; Blume, D

    2013-07-26

    We present highly accurate energy spectra and eigenfunctions of small 1D harmonically trapped two-component Fermi gases with interspecies δ-function interactions, and analyze the correlations of the so-called upper branch (i.e., the branch that describes a repulsive Fermi gas consisting of atoms but no molecules) for positive and negative coupling constants. Changes of the two-body correlations as a function of the interspecies coupling strength reflect the competition of the interspecies interaction and the effective repulsion due to the Pauli exclusion principle, and are interpreted as a few-body analog of a transition from a nonmagnetic to a magnetic phase. Moreover, we show that the eigenstate ψadia of the infinitely strongly interacting system with |n1+n2|>2 and |n1-n2|Fermi-Fermi mapping function to the eigenfunction of the noninteracting single-component Fermi gas.

  3. Level shift two-components autoregressive conditional heteroscedasticity modelling for WTI crude oil market

    Science.gov (United States)

    Sin, Kuek Jia; Cheong, Chin Wen; Hooi, Tan Siow

    2017-04-01

    This study aims to investigate the crude oil volatility using a two components autoregressive conditional heteroscedasticity (ARCH) model with the inclusion of abrupt jump feature. The model is able to capture abrupt jumps, news impact, clustering volatility, long persistence volatility and heavy-tailed distributed error which are commonly observed in the crude oil time series. For the empirical study, we have selected the WTI crude oil index from year 2000 to 2016. The results found that by including the multiple-abrupt jumps in ARCH model, there are significant improvements of estimation evaluations as compared with the standard ARCH models. The outcomes of this study can provide useful information for risk management and portfolio analysis in the crude oil markets.

  4. Universal properties of a trapped two-component fermi gas at unitarity.

    Science.gov (United States)

    Blume, D; von Stecher, J; Greene, Chris H

    2007-12-01

    We treat the trapped two-component Fermi system, in which unlike fermions interact through a two-body short-range potential having no bound state but an infinite scattering length. By accurately solving the Schrödinger equation for up to N=6 fermions, we show that no many-body bound states exist other than those bound by the trapping potential, and we demonstrate unique universal properties of the system: Certain excitation frequencies are separated by 2variant Planck's over 2piomega, the wave functions agree with analytical predictions and a virial theorem is fulfilled. Further calculations up to N=30 determine the excitation gap, an experimentally accessible universal quantity, and it agrees with recent predictions based on a density functional approach.

  5. The curvature of semidirect product groups associated with two-component Hunter-Saxton systems

    Energy Technology Data Exchange (ETDEWEB)

    Kohlmann, Martin, E-mail: kohlmann@ifam.uni-hannover.de [Institute for Applied Mathematics, University of Hannover, D-30167 Hannover (Germany)

    2011-06-03

    In this paper, we study two-component versions of the periodic Hunter-Saxton equation and its {mu}-variant. Considering both equations as a geodesic flow on the semidirect product of the circle diffeomorphism group Diff(S) with a space of scalar functions on S we show that both equations are locally well posed. The main result of this paper is that the sectional curvature associated with the 2HS is constant and positive and that 2{mu}HS allows for a large subspace of positive sectional curvature. The issues of this paper are related to some of the results for 2CH and 2DP presented in Escher et al (2011 J. Geom. Phys. 61 436-52).

  6. Phase diagram of two-component bosons on an optical lattice

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Ehud; Hofstetter, Walter; Demler, Eugene; Lukin, Mikhail D [Department of Physics, Harvard University, Cambridge, MA 02138 (United States)

    2003-09-01

    We present a theoretical analysis of the phase diagram of two-component bosons on an optical lattice. A new formalism is developed which treats the effective spin interactions in the Mott and superfluid phases on the same footing. Using this new approach we chart the phase boundaries of the broken spin symmetry states up to the Mott to superfluid transition and beyond. Near the transition point, the magnitude of spin exchange can be very large, which facilitates the experimental realization of spin-ordered states. We find that spin and quantum fluctuations have a dramatic effect on the transition, making it first order in extended regions of the phase diagram. When each species is at integer filling, an additional phase transition may occur, from a spin-ordered insulator to a Mott insulator with no broken symmetries. We determine the phase boundaries in this regime and show that this is essentially a Mott transition in the spin sector.

  7. Two-component mixture model: Application to palm oil and exchange rate

    Science.gov (United States)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad

    2014-12-01

    Palm oil is a seed crop which is widely adopt for food and non-food products such as cookie, vegetable oil, cosmetics, household products and others. Palm oil is majority growth in Malaysia and Indonesia. However, the demand for palm oil is getting growth and rapidly running out over the years. This phenomenal cause illegal logging of trees and destroy the natural habitat. Hence, the present paper investigates the relationship between exchange rate and palm oil price in Malaysia by using Maximum Likelihood Estimation via Newton-Raphson algorithm to fit a two components mixture model. Besides, this paper proposes a mixture of normal distribution to accommodate with asymmetry characteristics and platykurtic time series data.

  8. Special relativistic magnetohydrodynamic simulation of two-component outflow powered by magnetic explosion on compact stars

    Science.gov (United States)

    Matsumoto, Jin; Masada, Youhei; Asano, Eiji; Shibata, Kazunari

    2011-06-01

    The nonlinear dynamics of the outflow driven by magnetic explosion on the surface of compact object is investigated through special relativistic magnetohydrodynamic simulations. We adopt, as an initial equilibrium state, a spherical stellar object embedded in the hydrostatic plasma which has a density ρ(r) ~ r-α and is threaded by a dipole magnetic field. The injection of magnetic energy at the surface of compact star breaks the dynamical equilibrium and triggers two-component outflow. At the early evolutionary stage, the magnetic pressure increases rapidly in time around the stellar surface, initiating a magnetically driven outflow. Then it excites a strong forward shock, shock driven outflow. The expansion velocity of the magnetically driven outflow is characterized by the Alfvén velocity on the stellar surface, and follows a simple scaling relation υmag ~ υA1/2. When the initial density profile declines steeply with radius, the strong shock is accelerated self-similarly to relativistic velocity ahead of the magnetically driven component. We find that the evolution of the strong forward shock can be described by a self-similar relation Γsh ~ rsh, where Γsh is the Lorentz factor of the plasma measured at the shock surface rsh. It should be stressed that the pure hydrodynamic process is responsible for the acceleration of the shock driven outflow. Our two-component outflow model, which is the natural outcome of the magnetic explosion, would deepen the understanding of the magnetic active phenomena on various magnetized stellar objects.

  9. Phosphate sink containing two-component signaling systems as tunable threshold devices.

    Directory of Open Access Journals (Sweden)

    Munia Amin

    2014-10-01

    Full Text Available Synthetic biology aims to design de novo biological systems and reengineer existing ones. These efforts have mostly focused on transcriptional circuits, with reengineering of signaling circuits hampered by limited understanding of their systems dynamics and experimental challenges. Bacterial two-component signaling systems offer a rich diversity of sensory systems that are built around a core phosphotransfer reaction between histidine kinases and their output response regulator proteins, and thus are a good target for reengineering through synthetic biology. Here, we explore the signal-response relationship arising from a specific motif found in two-component signaling. In this motif, a single histidine kinase (HK phosphotransfers reversibly to two separate output response regulator (RR proteins. We show that, under the experimentally observed parameters from bacteria and yeast, this motif not only allows rapid signal termination, whereby one of the RRs acts as a phosphate sink towards the other RR (i.e. the output RR, but also implements a sigmoidal signal-response relationship. We identify two mathematical conditions on system parameters that are necessary for sigmoidal signal-response relationships and define key parameters that control threshold levels and sensitivity of the signal-response curve. We confirm these findings experimentally, by in vitro reconstitution of the one HK-two RR motif found in the Sinorhizobium meliloti chemotaxis pathway and measuring the resulting signal-response curve. We find that the level of sigmoidality in this system can be experimentally controlled by the presence of the sink RR, and also through an auxiliary protein that is shown to bind to the HK (yielding Hill coefficients of above 7. These findings show that the one HK-two RR motif allows bacteria and yeast to implement tunable switch-like signal processing and provides an ideal basis for developing threshold devices for synthetic biology applications.

  10. A new pair of hard-soft plastic combination for precision manufacturing of two component plastic parts

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Marhöfer, David Maximilian

    2011-01-01

    Two component (2k) injection moulding is growing rapidly even in the field of precision micro moulding. Besides combining different material properties in the same product, two component moulding can eliminate many assembly steps in manufacturing process chain. One of the biggest technical...... challenges associated with 2k moulding is the unavailability of suitable two component material combinations which can meet the diverse requirement from product and process point of view. This paper presents a new pair of commercial polymer materials (BASF Ultramid A3EG10 and Kraiburg TPE Thermolast K TC5PCZ......-of-the-art two component micro moulding machine named Formica Plast from Desma Tec. The tests performed on the demonstrator showed potential for the material pair to be used in high precision two component moulding applications. The adhesion between the two materials, replication quality of the 2k part, sealing...

  11. Method of construction of composite one-dimensional photonic crystal with extended photonic band gaps.

    Science.gov (United States)

    Tolmachev, V; Perova, T; Moore, R

    2005-10-17

    A method of photonic band gap extension using mixing of periodic structures with two or more consecutively placed photonic crystals with different lattice constants is proposed. For the design of the structures with maximal photonic band gap extension the gap map imposition method is utilised. Optimal structures have been established and the gap map of photonic band gaps has been calculated at normal incidence of light for both small and large optical contrast and at oblique incidence of light for small optical contrast.

  12. Non-linear composition dependence of the conductivity parameters in alkali halides mixed crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zardas, Georgios E., E-mail: gzardas@phys.uoa.g [Department of Solid State Physics, Faculty of Physics, University of Athens, Panepistimiopolis, 157 84 Zografos (Greece)

    2009-06-01

    Since mixed alkali halides were found to have applications in optical, optoelectronic and electronic devices, a strong interest has recently expressed for the study of their physical properties. Here, we discuss the experimental finding that a maximum conductivity enhancement with respect to pure constituents is obtained at a certain composition. We show that this composition can be predicted from the bulk properties of the end members.

  13. Identification of a Secondary Crystallized Phase formed during Nuclear Glasses Leaching - Effect of the Leached Glass Composition

    Science.gov (United States)

    Thien, Bruno; Godon, Nicole; Frugier, Pierre; Gin, Stéphane; Ayral, André

    2010-05-01

    Silicate glass leaching in a unrenewed aqueous solution leads to gel formation at the glass water interface. This amorphous hydrated layer sometimes behaves like a diffusion barrier: the glass alteration rate decreases according to an inverse square root of time equation. In the case of Mg-containing glasses, the alteration rate usually remains quasi constant and seems to be controlled by the growth of secondary crystallized phases. These phases consume elements from solution. They can sustain gel dissolution inducing a decrease of its passivating properties. Long-term behaviour modelling of Mg-containing glasses designed for the confinement of fission products (AVM glasses, Atelier de vitrification de Marcoule, France) first requires a precise identification of these Mg-rich phases. Experimental investigations were performed on several glass samples using X-ray diffraction (XRD), 27Al and 29Si MAS NMR and elemental chemical analysis. Aluminous hectorite Na0.45(Mg2.28Li0.11Al0.39Fe0.06M0.16)(Si3.21Al0.79)O10(OH)2, with M being a divalent cation, was identified. 25 glasses were required for a full representation in term variations of AVM glasses composition range. Their residual alteration rates were proved to significantly depend on glass composition since a one order of magnitude difference was measured between the less and the most altered glasses. Nevertheless, the same crystallized phase was evidenced whatever the glass composition and whatever the initial composition of the solution (pure water or Mg-rich groundwater). Only a shift of the (060) peak between 1.521 and 1.530 Å was evidenced. It can be attributed to slight composition variations. Relations between the glass magnesium fraction, the amount of precipitated hectorite, the residual rate, and the measured pH are not obvious. However, hectorite precipitation was proved to depend on pH, being favoured between pH50°C 9 and 9.5. Moreover, the higher the amount of precipitated hectorite, the lower the

  14. Stenotrophomonas maltophilia PhoP, a Two-Component Response Regulator, Involved in Antimicrobial Susceptibilities.

    Directory of Open Access Journals (Sweden)

    Ming-Che Liu

    Full Text Available Stenotrophomonas maltophilia, a gram-negative bacterium, has increasingly emerged as an important nosocomial pathogen. It is well-known for resistance to a variety of antimicrobial agents including cationic antimicrobial polypeptides (CAPs. Resistance to polymyxin B, a kind of CAPs, is known to be controlled by the two-component system PhoPQ. To unravel the role of PhoPQ in polymyxin B resistance of S. maltophilia, a phoP mutant was constructed. We found MICs of polymyxin B, chloramphenicol, ampicillin, gentamicin, kanamycin, streptomycin and spectinomycin decreased 2-64 fold in the phoP mutant. Complementation of the phoP mutant by the wild-type phoP gene restored all of the MICs to the wild type levels. Expression of PhoP was shown to be autoregulated and responsive to Mg2+ levels. The polymyxin B and gentamicin killing tests indicated that pretreatment of low Mg2+ can protect the wild-type S. maltophilia from killing but not phoP mutant. Interestingly, we found phoP mutant had a decrease in expression of SmeZ, an efflux transporter protein for aminoglycosides in S. maltophilia. Moreover, phoP mutant showed increased permeability in the cell membrane relative to the wild-type. In summary, we demonstrated the two-component regulator PhoP of S. maltophilia is involved in antimicrobial susceptibilities and low Mg2+ serves as a signal for triggering the pathway. Both the alteration in membrane permeability and downregulation of SmeZ efflux transporter in the phoP mutant contributed to the increased drug susceptibilities of S. maltophilia, in particular for aminoglycosides. This is the first report to describe the role of the Mg2+-sensing PhoP signaling pathway of S. maltophilia in regulation of the SmeZ efflux transporter and in antimicrobial susceptibilities. This study suggests PhoPQ TCS may serve as a target for development of antimicrobial agents against multidrug-resistant S. maltophilia.

  15. The Two-Component Signal Transduction System VxrAB Positively Regulates Vibrio cholerae Biofilm Formation.

    Science.gov (United States)

    Teschler, Jennifer K; Cheng, Andrew T; Yildiz, Fitnat H

    2017-09-15

    Two-component signal transduction systems (TCSs), typically composed of a sensor histidine kinase (HK) and a response regulator (RR), are the primary mechanism by which pathogenic bacteria sense and respond to extracellular signals. The pathogenic bacterium Vibrio cholerae is no exception and harbors 52 RR genes. Using in-frame deletion mutants of each RR gene, we performed a systematic analysis of their role in V. cholerae biofilm formation. We determined that 7 RRs impacted the expression of an essential biofilm gene and found that the recently characterized RR, VxrB, regulates the expression of key structural and regulatory biofilm genes in V. choleraevxrB is part of a 5-gene operon, which contains the cognate HK vxrA and three genes of unknown function. Strains carrying ΔvxrA and ΔvxrB mutations are deficient in biofilm formation, while the ΔvxrC mutation enhances biofilm formation. The overexpression of VxrB led to a decrease in motility. We also observed a small but reproducible effect of the absence of VxrB on the levels of cyclic di-GMP (c-di-GMP). Our work reveals a new function for the Vxr TCS as a regulator of biofilm formation and suggests that this regulation may act through key biofilm regulators and the modulation of cellular c-di-GMP levels.IMPORTANCE Biofilms play an important role in the Vibrio cholerae life cycle, providing protection from environmental stresses and contributing to the transmission of V. cholerae to the human host. V. cholerae can utilize two-component systems (TCS), composed of a histidine kinase (HK) and a response regulator (RR), to regulate biofilm formation in response to external cues. We performed a systematic analysis of V. cholerae RRs and identified a new regulator of biofilm formation, VxrB. We demonstrated that the VxrAB TCS is essential for robust biofilm formation and that this system may regulate biofilm formation via its regulation of key biofilm regulators and cyclic di-GMP levels. This research furthers our

  16. Compositing orbital angular momentum beams in Bi4Ge3O12 crystal for magnetic field sensing

    Science.gov (United States)

    Yu, Shuangfeng; Pang, Fufei; Liu, Huanhuan; Li, Xianjin; Yang, Junfeng; Wang, Tingyun

    2017-08-01

    The polarization states and orbital angular momentum (OAM) properties of light are of considerable importance for several aspects of high-precision optical measurements. In this work, we have investigated the properties of composited OAM beams propagating in a Bi4Ge3O12 crystal under an applied magnetic field and have demonstrated a magnetic field sensing method based on compositing of OAM beams using a Sagnac configuration. The polarization rotation can be projected into petal-like patterns by the rotation of the OAM beams. However, the accurate measurement of the rotation angles of the petal-like patterns of OAM beams remains challenging. Therefore, an image processing technique based on the Radon transform is explored to enable the accurate calculation of the rotation angle of the petal-like patterns of composite OAM beams under different magnetic fields. The rotation angle of these petal-like patterns is found to have a linear dependence on the magnetic field intensity, which means that the proposed system is appropriate for magnetic field sensing applications. Using this method, a magnetic field sensitivity of 28°/T has been achieved experimentally with a measurement error of 0.0123 T in a high-intensity magnetic field ranging from 191 to 3322 G for OAM beams with topological charge (TC) l =±1 .

  17. Melt inclusions are not reliable proxies for magmatic liquid composition: evidence from crystal-poor andesites and dacites in the Tequila volcanic field, Mexico

    Science.gov (United States)

    Frey, H. M.; Lange, R. A.

    2009-12-01

    A compositional study of >200 melt inclusions in plagioclase and orthopyroxene phenocrysts from six crystal-poor (2-5 vol%) andesite and dacite lavas (60-68 wt% SiO2) from the Tequila volcanic field in the Mexico arc is used to evaluate whether melt inclusions in phenocrysts accurately record magmatic liquid compositions. The crystal-poor andesites and dacites were erupted contemporaneously with crystal-poor rhyolites, and there is a continuum in the SiO2 concentration of the erupted magmas. The liquid line of descent defined by the whole-rock compositions ranges from andesite to rhyolite (60-77 wt% SiO2), as illustrated on Harker diagrams. The crystal-poor andesites and dacites are multiply saturated with five to seven mineral phases (plagioclase + orthopyroxene + titanomagnetite + ilmenite + apatite ± augite ± hornblende), most of which crystallized via degassing during magma ascent (Frey and Lange, 2009). By comparison with phase equilibrium experiments from the literature, it is shown that the vast majority of crystals are phenocrysts and not xenocrysts. Textural evidence of rapid crystal growth includes skeletal, hopper, and swallow-tail morphologies and abundant melt inclusions. The inclusions range in size from a few microns to > 50 μm and occur as isolated pockets and extensive channels that mimic the crystal morphology. Inclusions are typically brown glass, with occasional microphenocrysts of titanomagnetite and/or apatite within or adjacent to the melt inclusions. The compositions of the melt inclusions in the plagioclase and orthopyroxene phenocrysts, when plotted on Harker diagrams, vary systematically from one another and from the liquid line of descent defined by the whole rock compositions of erupted magmas. For example, melt inclusions in plagioclase are systematically depleted in Al2O3 relative to the whole rock samples, whereas those in coexisting orthopyroxenes are systematically enriched in Al2O3. The opposite trend is found for FeO, where it

  18. Disorder in the composite crystal structure of the manganese `disilicide' MnSi1.73 from powder X-ray diffraction data.

    Science.gov (United States)

    Akselrud, L; Cardoso Gil, R; Wagner-Reetz, M; Grin, Yu

    2015-12-01

    The crystal structure of the higher manganese silicide MnSi1.7 (known in the literature as HMS) is investigated in samples with different compositions obtained by different techniques at temperatures not higher than 1273 K. Powder X-ray diffraction was applied. The crystal structure is described as incommensurate composite. In addition to the ordered model already known in the literature, the partial disorder in the silicon substructure was detected and described introducing an additional atomic site with a different modulation function.

  19. Pressure Dependence of Crystal Structure and Ionic Conductivity on Composite Glass (AgI)0.7(AgPO3)0.3

    OpenAIRE

    S. Suminta; E. Kartini; Mardiyanto; W.A. Adi

    2005-01-01

    The superionic composite glass, (AgI)0.7(AgPO3)0.3 has been succesfully synthesized by melt quenching method. The crystall structure of coin type composite glass at various pressure of 100, 300 and 700 kg/cm2 have been measured by using an X-ray Difractometer at PTBIN-BATAN. The X-ray difraction pattern shows some Bragg peaks correspond to the crystaline γ-AgI. The increasing of pressure result the peaks become broaden and shift to the lower angle. This indicates that the crystal size is ...

  20. Two-component coupled KdV equations and its connection with the generalized Harry Dym equations

    Energy Technology Data Exchange (ETDEWEB)

    Popowicz, Ziemowit, E-mail: ziemek@ift.uni.wroc.pl [Institute of Theoretical Physics, University of Wrocław, Wrocław pl. M. Borna 9, 50-205 Wrocław (Poland)

    2014-01-15

    It is shown that three different Lax operators in the Dym hierarchy produce three generalized coupled Harry Dym equations. These equations transform, via the reciprocal link, to the coupled two-component Korteweg de Vries (KdV) system. The first equation gives us known integrable two-component KdV system, while the second reduces to the known symmetrical two-component KdV equation. The last one reduces to the Drienfeld-Sokolov equation. This approach gives us new Lax representation for these equations.

  1. Two-component coupled KdV equations and its connection with the generalized Harry Dym equations

    Science.gov (United States)

    Popowicz, Ziemowit

    2014-01-01

    It is shown that three different Lax operators in the Dym hierarchy produce three generalized coupled Harry Dym equations. These equations transform, via the reciprocal link, to the coupled two-component Korteweg de Vries (KdV) system. The first equation gives us known integrable two-component KdV system, while the second reduces to the known symmetrical two-component KdV equation. The last one reduces to the Drienfeld-Sokolov equation. This approach gives us new Lax representation for these equations.

  2. Phylogenetic Classification Of Bartonella Species By Comparing The Two-Component System Response Regulator Feup Sequences

    Directory of Open Access Journals (Sweden)

    Mhamad Abou-Hamdan

    2015-08-01

    Full Text Available Abstract The bacterial genus Bartonella is classified in the alpha-2 Proteobacteria on the basis of 16S rDNA sequence comparison. The Bartonella two-component system feuPQ is found in nearly all bacterial species. We investigated the usefulness of the response regulator feuP gene sequence in the classification of 18 well characterized Bartonella species. Phylogenetic relationships were inferred using parsimony neighbour-joining and maximum-likelihood methods. Reliable classifications of most of the studied species were obtained. Bartonella were divided into two supported clades containing two supported clusters each. These results were similar to our previous data obtained with groEL ftsZ and ribC genes sequences. The wide range of feuP DNA sequence similarity 78.6 to 96.5 among Bartonella species makes it a promising candidate for multi-locus sequence typing MLST of clinical isolates. This is the first report proving the usefulness of feuP sequences in bartonellae classification at the species level.

  3. Comparative Analysis of Two-component Signal Transduction System in Two Streptomycete Genomes

    Institute of Scientific and Technical Information of China (English)

    Wu WEI; Yixue LI; Weihua WANG; Zhiwei CAO; Hong YU; Xiaojing WANG; Jing ZHAO; Hao TAN; Hao XU; Weihong JIANG

    2007-01-01

    Species of the genus Streptomyces are major bacteria responsible for producing most natural antibiotics. Streptomyces coelicolor A3(2) and Streptomyces avermitilis were sequenced in 2002 and 2003,respectively. Two-component signal transduction systems (TCSs), consisting of a histidine sensor kinase (SK) and a cognate response regulator (RR), form the most common mechanism of transmembrane signal transduction in prokaryotes. TCSs in S. coelicolor A3(2) have been analyzed in detail. Here, we identify and classify the SK and RR of S. avermitilis and compare the TCSs with those of S. coelicolor A3(2) by computational approaches. Phylogenetic analysis of the cognate SK-RR pairs of the two species indicated that the cognate SK-RR pairs fall into four classes according to the distribution of their orthologs in other organisms. In addition to the cognate SK-RR pairs, some potential partners of non-cognate SK-RR were found, including those of unpaired SK and orphan RR and the cross-talk between different components in either strain. Our study provides new clues for further exploration of the molecular regulation mechanism of streptomycetes with industrial importance.

  4. A feasibility study of using two-component polyurethane adhesive in constructing wooden structures

    Institute of Scientific and Technical Information of China (English)

    Mohammad Derikvand; Ghanbar Ebrahimi; Mehdi Tajvidi

    2014-01-01

    This investigation was conducted to determine the feasibility of using a two-component polyurethane (PUR) adhesive, with special waterproof properties, in constructing wooden structures. We designed and conducted tests to compare the shear strength and adhesion per-formance of PUR with polyvinyl acetate (PVAc) adhesive on block-shear specimens constructed of oriental beech (Fagus orientalis L.), fir (Abies alba Mill.), poplar (Populus deltoides Bartr.), white oak (Quercus alba L.), sycamore (Platanus orientalis L.) and white walnut (Juglans cinerea L.). The values of the percentage of wood failure were also determined in specimens constructed with each adhesive. The highest shear strength values of both adhesives were obtained in specimens constructed of beech, while the lowest shear strength values were obtained in fir and poplar specimens. Average shear strength of the PUR adhesive was 16.5%higher than that of the PVAc adhesive. Specimens constructed of fir, poplar and sycamore were characterised by the highest percentages of wood failure, whereas the lowest average percentages of wood failure were obtained in beech and oak specimens. With the exception of oak specimens, there was no statistically significant difference between per-centage of wood failure among the PUR and PVAc adhesives. Generally, the PUR adhesive showed an acceptable adhesion performance on wood materials used in our study.

  5. The Evolution of Two-Component Systems in Bacteria RevealsDifferent Strategies for Niche Adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Eric; Huang, Katherine; Arkin, Adam

    2006-09-13

    Two-component systems including histidine protein kinasesrepresent the primary signal transduction paradigm in prokaryoticorganisms. To understand how these systems adapt to allow organisms todetect niche-specific signals, we analyzed the phylogenetic distributionof nearly 5000 histidine protein kinases from 207 sequenced prokaryoticgenomes. We found that many genomes carry a large repertoire of recentlyevolved signaling genes, which may reflect selective pressure to adapt tonew environmental conditions. Both lineage-specific gene family expansionand horizontal gene transfer play major roles in the introduction of newhistidine kinases into genomes; however, there are differences in howthese two evolutionary forces act. Genes imported via horizontal transferare more likely to retain their original functionality as inferred from asimilar complement of signaling domains, while gene family expansionaccompanied by domain shuffling appears to be a major source of novelgenetic diversity. Family expansion is the dominantsource of newhistidine kinase genes in the genomes most enriched in signalingproteins, and detailed analysis reveals that divergence in domainstructure and changes in expression patterns are hallmarks of recentexpansions. Finally, while these two modes of gene acquisition arewidespread across bacterial taxa, there are clear species-specificpreferences for which mode is used.

  6. Transcriptional and proteomic analyses of two-component response regulators in multidrug-resistant Mycobacterium tuberculosis.

    Science.gov (United States)

    Zhou, Lei; Yang, Liu; Zeng, Xianfei; Danzheng, Jiacuo; Zheng, Qing; Liu, Jiayun; Liu, Feng; Xin, Yijuan; Cheng, Xiaodong; Su, Mingquan; Ma, Yueyun; Hao, Xiaoke

    2015-07-01

    Two-component systems (TCSs) have been reported to exhibit a sensing and responding role under drug stress that induces drug resistance in several bacterial species. However, the relationship between TCSs and multidrug resistance in Mycobacterium tuberculosis has not been comprehensively analysed to date. In this study, 90 M. tuberculosis clinical isolates were analysed using 15-loci mycobacterial interspersed repetitive unit (MIRU)-variable number tandem repeat (VNTR) typing and repetitive extragenic palindromic (rep)-PCR-based DNA fingerprinting. The results showed that all of the isolates were of the Beijing lineage, and strains with a drug-susceptible phenotype had not diverged into similar genotype clusters. Expression analysis of 13 response regulators of TCSs using real-time PCR and tandem mass spectrometry (MS/MS) proteomic analysis demonstrated that four response regulator genes (devR, mtrA, regX3 and Rv3143) were significantly upregulated in multidrug-resistant (MDR) strains compared with the laboratory strain H37Rv as well as drug-susceptible and isoniazid-monoresistant strains (PMycobacterium bovis BCG did not alter its sensitivity to the four antitubercular drugs. This suggests that upregulation of devR, which is common in MDR-TB strains, might be induced by drug stress and hypoxic adaptation following the acquisition of multidrug resistance.

  7. Singular solutions of a modified two-component Camassa-Holm equation.

    Science.gov (United States)

    Holm, Darryl D; O Náraigh, Lennon; Tronci, Cesare

    2009-01-01

    The Camassa-Holm (CH) equation is a well-known integrable equation describing the velocity dynamics of shallow water waves. This equation exhibits spontaneous emergence of singular solutions (peakons) from smooth initial conditions. The CH equation has been recently extended to a two-component integrable system (CH2), which includes both velocity and density variables in the dynamics. Although possessing peakon solutions in the velocity, the CH2 equation does not admit singular solutions in the density profile. We modify the CH2 system to allow a dependence on the average density as well as the pointwise density. The modified CH2 system (MCH2) does admit peakon solutions in the velocity and average density. We analytically identify the steepening mechanism that allows the singular solutions to emerge from smooth spatially confined initial data. Numerical results for the MCH2 system are given and compared with the pure CH2 case. These numerics show that the modification in the MCH2 system to introduce the average density has little short-time effect on the emergent dynamical properties. However, an analytical and numerical study of pairwise peakon interactions for the MCH2 system shows a different asymptotic feature. Namely, besides the expected soliton scattering behavior seen in overtaking and head-on peakon collisions, the MCH2 system also allows the phase shift of the peakon collision to diverge in certain parameter regimes.

  8. ACOUSTIC WAVES EMISSION IN THE TWO-COMPONENT HEREDITARY-ELASTIC MEDIUM

    Directory of Open Access Journals (Sweden)

    V. S. Polenov

    2014-01-01

    Full Text Available Summary. On the dynamics of two-component media a number of papers, which address the elastic waves in a homogeneous, unbounded fluid-saturated porous medium. In other studies address issues of dissipative processes in harmonic deformation hereditary elastic medium. In the article the dissipative processes of the viscoelastic porous medium, which hereditary properties are described by the core relaxation fractional exponential function U.N. Rabotnova integro-differential Boltzmann-Volterr ratio, harmonic deformation by the straining saturated incompressible liquid are investigated. Speed of wave propagation, absorption coefficient, mechanical loss tangent, logarithmic decrement, depending on fractional parameter γ, determining formulas received. The frequency logarithm and temperature graph dependences with the goal fractional parameter are constructed. Shows the dependences velocity and attenuation coefficient of the tangent of the phase angle of the logarithm of the temperature, and the dependence of the attenuation coefficient of the logarithm of the frequency. Dependencies the speed and the tangent of the phase angle of the frequency identical function of the logarithm of temperature.

  9. A two component system is involved in acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus.

    Science.gov (United States)

    Cui, Yanhua; Liu, Wei; Qu, Xiaojun; Chen, Zhangting; Zhang, Xu; Liu, Tong; Zhang, Lanwei

    2012-05-20

    The Gram-positive bacterium Lactobacillus delbrueckii subsp. bulgaricus is of vital importance to the food industry, especially to the dairy industry. Two component systems (TCSs) are one of the most important mechanisms for environmental sensing and signal transduction in the majority of Gram-positive and Gram-negative bacteria. A typical TCS consists of a histidine protein kinase (HPK) and a cytoplasmic response regulator (RR). To investigate the functions of TCSs during acid adaptation in L. bulgaricus, we used quantitative PCR to reveal how TCSs expression changes during acid adaptation. Two TCSs (JN675228/JN675229 and JN675230/JN675231) and two HPKs (JN675236 and JN675240) were induced during acid adaptation. These TCSs were speculated to be related with the acid adaptation ability of L. bulgaricus. The mutants of JN675228/JN675229 were constructed in order to investigate the functions of JN675228/JN675229. The mutants showed reduced acid adaptation compared to that of wild type, and the complemented strains were similar to the wild-type strain. These observations suggested that JN675228 and JN675229 were involved in acid adaptation in L. bulgaricus. The interaction between JN675228 and JN675229 was identified by means of yeast two-hybrid system. The results indicated there is interaction between JN675228 and JN675229.

  10. Freshwater DOM quantity and quality from a two-component model of UV absorbance

    Science.gov (United States)

    Carter, Heather T.; Tipping, Edward; Koprivnjak, Jean-Francois; Miller, Matthew P.; Cookson, Brenda; Hamilton-Taylor, John

    2012-01-01

    We present a model that considers UV-absorbing dissolved organic matter (DOM) to consist of two components (A and B), each with a distinct and constant spectrum. Component A absorbs UV light strongly, and is therefore presumed to possess aromatic chromophores and hydrophobic character, whereas B absorbs weakly and can be assumed hydrophilic. We parameterised the model with dissolved organic carbon concentrations [DOC] and corresponding UV spectra for c. 1700 filtered surface water samples from North America and the United Kingdom, by optimising extinction coefficients for A and B, together with a small constant concentration of non-absorbing DOM (0.80 mg DOC L-1). Good unbiased predictions of [DOC] from absorbance data at 270 and 350 nm were obtained (r2 = 0.98), the sum of squared residuals in [DOC] being reduced by 66% compared to a regression model fitted to absorbance at 270 nm alone. The parameterised model can use measured optical absorbance values at any pair of suitable wavelengths to calculate both [DOC] and the relative amounts of A and B in a water sample, i.e. measures of quantity and quality. Blind prediction of [DOC] was satisfactory for 9 of 11 independent data sets (181 of 213 individual samples).

  11. Thermoset nanocomposites from two-component waterborne polyurethanes and cellulose whiskers.

    Science.gov (United States)

    Wu, Guo-min; Chen, Jian; Huo, Shu-ping; Liu, Gui-feng; Kong, Zhen-wu

    2014-05-25

    We prepared thermoset nancomposites from biomass-based two-component waterborne polyurethane (2K-WPU) and cellulose namowhiskers (CNWs). Due to the formation of hydrogen bonds, the viscosity of 2K-WPU dispersion was found to be increased with the addition of CNWs. SEM images showed "sea-island structure" corresponding to the microphase separation between CNWs nano-filler and the 2K-WPU matrix. The α-relaxation temperature (Tα) and glass transition temperature (Tg) increased with the increase of CNWs content, which was due to the formation of a rigid CNWs nano-phase acting as crosslinking points in the 2K-WPU matrix. Mechanical properties from tensile test showed Young's modulus and tensile strength of 2K-WPU/CNWs nanocomposites were reinforced by the addition of CNWs. Thermo-stability of 2K-WPU/CNWs nanocomposites decreased slightly with the increase of CNWs content, which could be attributed to the increased thermal conductivity of the material after adding CNWs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The two-component model of memory development, and its potential implications for educational settings.

    Science.gov (United States)

    Sander, Myriam C; Werkle-Bergner, Markus; Gerjets, Peter; Shing, Yee Lee; Lindenberger, Ulman

    2012-02-15

    We recently introduced a two-component model of the mechanisms underlying age differences in memory functioning across the lifespan. According to this model, memory performance is based on associative and strategic components. The associative component is relatively mature by middle childhood, whereas the strategic component shows a maturational lag and continues to develop until young adulthood. Focusing on work from our own lab, we review studies from the domains of episodic and working memory informed by this model, and discuss their potential implications for educational settings. The episodic memory studies uncover the latent potential of the associative component in childhood by documenting children's ability to greatly improve their memory performance following mnemonic instruction and training. The studies on working memory also point to an immature strategic component in children whose operation is enhanced under supportive conditions. Educational settings may aim at fostering the interplay between associative and strategic components. We explore possible routes towards this goal by linking our findings to recent trends in research on instructional design. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models

    Science.gov (United States)

    Hapuarachchige, Sudath; Kato, Yoshinori; Artemov, Dmitri

    2016-04-01

    The HER2 receptor is overexpressed in approximately 20% of breast cancers and is associated with tumorigenesis, metastasis, and a poor prognosis. Trastuzumab is a first-line targeted drug used against HER2(+) breast cancers; however, at least 50% of HER2(+) tumors develop resistance to trastuzumab. To treat these patients, trastuzumab-based antibody-drug conjugates (ACDs) have been developed and are currently used in the clinic. Despite their high efficacy, the long circulation half-life and non-specific binding of cytotoxic ADCs can result in systemic toxicity. In addition, standard ADCs do not provide an image-guided mode of administration. Here, we have developed a two-component, two-step, pre-targeting drug delivery system integrated with image guidance to circumvent these issues. In this strategy, HER2 receptors are pre-labeled with a functionalized trastuzumab antibody followed by the delivery of drug-loaded nanocarriers. Both components are cross-linked by multiple bioorthogonal click reactions in situ on the surface of the target cell and internalized as nanoclusters. We have explored the efficacy of this delivery strategy in HER2(+) human breast cancer models. Our therapeutic study confirms the high therapeutic efficacy of the new delivery system, with no significant toxicity.

  14. Vortices with scalar condensates in two-component Ginzburg-Landau systems

    CERN Document Server

    Forgacs, Peter

    2016-01-01

    In a class of two-component Ginzburg-Landau models (TCGL) with a U(1)$\\times$U(1) symmetric potential, vortices with a condensate at their core may have significantly lower energies than the Abrikosov-Nielsen-Olesen (ANO) ones. On the example of liquid metallic hydrogen (LMH) above the critical temperature for protons we show that the ANO vortices become unstable against core-condensation, while condensate-core (CC) vortices are stable. For LMH the ratio of the masses of the two types of condensates, $M=m_2/m_1$ is large, and then as a consequence the energy per flux quantum of the vortices, $E_n/n$ becomes a non-monotonous function of the number of flux quanta, $n$. This leads to yet another manifestation of neither type 1 nor type 2, (type 1.5) superconductivity: superconducting and normal domains coexist while various "giant" vortices form. We note that LMH provides a particularly clean example of type 1.5 state as the interband coupling between electronic and protonic Cooper-pairs is forbidden.

  15. Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Angus, G.W.; Gentile, G. [Department of Physics and Astrophysics, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050 Belgium (Belgium); Diaferio, A. [Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, Torino, I-10125 Italy (Italy); Famaey, B. [Observatoire astronomique de Strasbourg, CNRS UMR 7550, Université de Strasbourg, 11 rue de l' Université, Strasbourg, F-67000 France (France); Heyden, K.J. van der, E-mail: garry.angus@vub.ac.be, E-mail: diaferio@ph.unito.it, E-mail: benoit.famaey@astro.unistra.fr, E-mail: gianfranco.gentile@ugent.be, E-mail: heyden@ast.uct.ac.za [Astrophysics, Cosmology and Gravity Centre, Dept. of Astronomy, University of Cape Town, Private Bag X3, Rondebosch, 7701 South Africa (South Africa)

    2014-10-01

    In this article we continue to test cosmological models centred on Modified Newtonian Dynamics (MOND) with light sterile neutrinos, which could in principle be a way to solve the fine-tuning problems of the standard model on galaxy scales while preserving successful predictions on larger scales. Due to previous failures of the simple MOND cosmological model, here we test a speculative model where the modified gravitational field is produced only by the baryons and the sterile neutrinos produce a purely Newtonian field (hence Modified Baryonic Dynamics). We use two-component cosmological simulations to separate the baryonic N-body particles from the sterile neutrino ones. The premise is to attenuate the over-production of massive galaxy cluster halos which were prevalent in the original MOND plus light sterile neutrinos scenario. Theoretical issues with such a formulation notwithstanding, the Modified Baryonic Dynamics model fails to produce the correct amplitude for the galaxy cluster mass function for any reasonable value of the primordial power spectrum normalisation.

  16. Modelling elliptical galaxies phase-space constraints on two-component (gamma1,gamma2) models

    CERN Document Server

    Ciotti, L

    1999-01-01

    In the context of the study of the properties of the mutual mass distribution of the bright and dark matter in elliptical galaxies, present a family of two-component, spherical, self-consistent galaxy models, where one density distribution follows a gamma_1 profile, and the other a gamma_2 profile [(gamma_1,gamma_2) models], with different total masses and ``core'' radii. A variable amount of Osipkov-Merritt (radial) orbital anisotropy is allowed in both components. For these models, I derive analytically the necessary and sufficient conditions that the model parameters must satisfy in order to correspond to a physical system. Moreover, the possibility of adding a black hole at the center of radially anisotropic gamma models is discussed, determining analytically a lower limit of the anisotropy radius as a function of gamma. The analytical phase-space distribution function for (1,0) models is presented, together with the solution of the Jeans equations and the quantities entering the scalar virial theorem. It...

  17. P2CS: a two-component system resource for prokaryotic signal transduction research

    Directory of Open Access Journals (Sweden)

    Méjean Vincent

    2009-07-01

    Full Text Available Abstract Background With the escalation of high throughput prokaryotic genome sequencing, there is an ever-increasing need for databases that characterise, catalogue and present data relating to particular gene sets and genomes/metagenomes. Two-component system (TCS signal transduction pathways are the dominant mechanisms by which micro-organisms sense and respond to external as well as internal environmental changes. These systems respond to a wide range of stimuli by triggering diverse physiological adjustments, including alterations in gene expression, enzymatic reactions, or protein-protein interactions. Description We present P2CS (Prokaryotic 2-Component Systems, an integrated and comprehensive database of TCS signal transduction proteins, which contains a compilation of the TCS genes within 755 completely sequenced prokaryotic genomes and 39 metagenomes. P2CS provides detailed annotation of each TCS gene including family classification, sequence features, functional domains, as well as genomic context visualization. To bypass the generic problem of gene underestimation during genome annotation, we also constituted and searched an ORFeome, which improves the recovery of TCS proteins compared to searches on the equivalent proteomes. Conclusion P2CS has been developed for computational analysis of the modular TCSs of prokaryotic genomes and metagenomes. It provides a complete overview of information on TCSs, including predicted candidate proteins and probable proteins, which need further curation/validation. The database can be browsed and queried with a user-friendly web interface at http://www.p2cs.org/.

  18. Physiological Role of Two-Component Signal Transduction Systems in Food-Associated Lactic Acid Bacteria.

    Science.gov (United States)

    Monedero, Vicente; Revilla-Guarinos, Ainhoa; Zúñiga, Manuel

    2017-01-01

    Two-component systems (TCSs) are widespread signal transduction pathways mainly found in bacteria where they play a major role in adaptation to changing environmental conditions. TCSs generally consist of sensor histidine kinases that autophosphorylate in response to a specific stimulus and subsequently transfer the phosphate group to their cognate response regulators thus modulating their activity, usually as transcriptional regulators. In this review we present the current knowledge on the physiological role of TCSs in species of the families Lactobacillaceae and Leuconostocaceae of the group of lactic acid bacteria (LAB). LAB are microorganisms of great relevance for health and food production as the group spans from starter organisms to pathogens. Whereas the role of TCSs in pathogenic LAB (most of them belonging to the family Streptococcaceae) has focused the attention, the roles of TCSs in commensal LAB, such as most species of Lactobacillaceae and Leuconostocaceae, have been somewhat neglected. However, evidence available indicates that TCSs are key players in the regulation of the physiology of these bacteria. The first studies in food-associated LAB showed the involvement of some TCSs in quorum sensing and production of bacteriocins, but subsequent studies have shown that TCSs participate in other physiological processes, such as stress response, regulation of nitrogen metabolism, regulation of malate metabolism, and resistance to antimicrobial peptides, among others. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The Role of Two-Component Signal Transduction Systems in Staphylococcus aureus Virulence Regulation.

    Science.gov (United States)

    Haag, Andreas F; Bagnoli, Fabio

    2016-01-05

    Staphylococcus aureus is a versatile, opportunistic human pathogen that can asymptomatically colonize a human host but can also cause a variety of cutaneous and systemic infections. The ability of S. aureus to adapt to such diverse environments is reflected in the presence of complex regulatory networks fine-tuning metabolic and virulence gene expression. One of the most widely distributed mechanisms is the two-component signal transduction system (TCS) which allows a pathogen to alter its gene expression profile in response to environmental stimuli. The simpler TCSs consist of only a transmembrane histidine kinase (HK) and a cytosolic response regulator. S. aureus encodes a total of 16 conserved pairs of TCSs that are involved in diverse signalling cascades ranging from global virulence gene regulation (e.g. quorum sensing by the Agr system), the bacterial response to antimicrobial agents, cell wall metabolism, respiration and nutrient sensing. These regulatory circuits are often interconnected and affect each other's expression, thus fine-tuning staphylococcal gene regulation. This manuscript gives an overview of the current knowledge of staphylococcal environmental sensing by TCS and its influence on virulence gene expression and virulence itself. Understanding bacterial gene regulation by TCS can give major insights into staphylococcal pathogenicity and has important implications for knowledge-based drug design and vaccine formulation.

  20. Functional characterization of WalRK: A two-component signal transduction system from Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Alisha Dhiman

    2014-01-01

    Full Text Available Two-component signal transduction systems (TCS, consisting of a sensor histidine protein kinase and its cognate response regulator, are an important mode of environmental sensing in bacteria. Additionally, they have been found to regulate virulence determinants in several pathogens. Bacillus anthracis, the causative agent of anthrax and a bioterrorism agent, harbours 41 pairs of TCS. However, their role in its pathogenicity has remained largely unexplored. Here, we show that WalRK of B. anthracis forms a functional TCS which exhibits some species-specific functions. Biochemical studies showed that domain variants of WalK, the histidine kinase, exhibit classical properties of autophosphorylation and phosphotransfer to its cognate response regulator WalR. Interestingly, these domain variants also show phosphatase activity towards phosphorylated WalR, thereby making WalK a bifunctional histidine kinase/phosphatase. An in silico regulon determination approach, using a consensus binding sequence from Bacillus subtilis, provided a list of 30 genes that could form a putative WalR regulon in B. anthracis. Further, electrophoretic mobility shift assay was used to show direct binding of purified WalR to the upstream regions of three putative regulon candidates, an S-layer protein EA1, a cell division ABC transporter FtsE and a sporulation histidine kinase KinB3. Our work lends insight into the species-specific functions and mode of action of B. anthracis WalRK.

  1. The evolution of two-component systems in bacteria reveals different strategies for niche adaptation.

    Directory of Open Access Journals (Sweden)

    Eric Alm

    2006-11-01

    Full Text Available Two-component systems including histidine protein kinases represent the primary signal transduction paradigm in prokaryotic organisms. To understand how these systems adapt to allow organisms to detect niche-specific signals, we analyzed the phylogenetic distribution of nearly 5,000 histidine protein kinases from 207 sequenced prokaryotic genomes. We found that many genomes carry a large repertoire of recently evolved signaling genes, which may reflect selective pressure to adapt to new environmental conditions. Both lineage-specific gene family expansion and horizontal gene transfer play major roles in the introduction of new histidine kinases into genomes; however, there are differences in how these two evolutionary forces act. Genes imported via horizontal transfer are more likely to retain their original functionality as inferred from a similar complement of signaling domains, while gene family expansion accompanied by domain shuffling appears to be a major source of novel genetic diversity. Family expansion is the dominant source of new histidine kinase genes in the genomes most enriched in signaling proteins, and detailed analysis reveals that divergence in domain structure and changes in expression patterns are hallmarks of recent expansions. Finally, while these two modes of gene acquisition are widespread across bacterial taxa, there are clear species-specific preferences for which mode is used.

  2. Functional characterization of WalRK: A two-component signal transduction system from Bacillus anthracis.

    Science.gov (United States)

    Dhiman, Alisha; Bhatnagar, Sonika; Kulshreshtha, Parul; Bhatnagar, Rakesh

    2014-01-01

    Two-component signal transduction systems (TCS), consisting of a sensor histidine protein kinase and its cognate response regulator, are an important mode of environmental sensing in bacteria. Additionally, they have been found to regulate virulence determinants in several pathogens. Bacillus anthracis, the causative agent of anthrax and a bioterrorism agent, harbours 41 pairs of TCS. However, their role in its pathogenicity has remained largely unexplored. Here, we show that WalRK of B. anthracis forms a functional TCS which exhibits some species-specific functions. Biochemical studies showed that domain variants of WalK, the histidine kinase, exhibit classical properties of autophosphorylation and phosphotransfer to its cognate response regulator WalR. Interestingly, these domain variants also show phosphatase activity towards phosphorylated WalR, thereby making WalK a bifunctional histidine kinase/phosphatase. An in silico regulon determination approach, using a consensus binding sequence from Bacillus subtilis, provided a list of 30 genes that could form a putative WalR regulon in B. anthracis. Further, electrophoretic mobility shift assay was used to show direct binding of purified WalR to the upstream regions of three putative regulon candidates, an S-layer protein EA1, a cell division ABC transporter FtsE and a sporulation histidine kinase KinB3. Our work lends insight into the species-specific functions and mode of action of B. anthracis WalRK.

  3. [Two-component signal transduction as attractive drug targets in pathogenic bacteria].

    Science.gov (United States)

    Utsumi, Ryutaro; Igarashi, Masayuki

    2012-01-01

    Gene clusters contributing to processes such as cell growth and pathogenicity are often controlled by two-component signal transduction systems (TCSs). TCS consists of a histidine kinase (HK) and a response regulator (RR). TCSs are attractive as drug targets for antimicrobials because many HK and RR genes are coded on the bacterial genome though few are found in lower eukaryotes. The HK/RR signal transduction system is distinct from serine/threonine and tyrosine phosphorylation in higher eukaryotes. Specific inhibitors against TCS systems work differently from conventional antibiotics, and developing them into new drugs that are effective against various drug-resistant bacteria may be possible. Furthermore, inhibitors of TCSs that control virulence factors may reduce virulence without killing the pathogenic bacteria. Previous TCS inhibitors targeting the kinase domain of the histidine kinase sensor suffered from poor selectivity. Recent TCS inhibitors, however, target the sensory domains of the sensors blocking the quorum sensing system, or target the essential response regulator. These new targets are introduced, together with several specific TCSs that have the potential to serve as effective drug targets.

  4. P2CS: a two-component system resource for prokaryotic signal transduction research.

    Science.gov (United States)

    Barakat, Mohamed; Ortet, Philippe; Jourlin-Castelli, Cécile; Ansaldi, Mireille; Méjean, Vincent; Whitworth, David E

    2009-07-15

    With the escalation of high throughput prokaryotic genome sequencing, there is an ever-increasing need for databases that characterise, catalogue and present data relating to particular gene sets and genomes/metagenomes. Two-component system (TCS) signal transduction pathways are the dominant mechanisms by which micro-organisms sense and respond to external as well as internal environmental changes. These systems respond to a wide range of stimuli by triggering diverse physiological adjustments, including alterations in gene expression, enzymatic reactions, or protein-protein interactions. We present P2CS (Prokaryotic 2-Component Systems), an integrated and comprehensive database of TCS signal transduction proteins, which contains a compilation of the TCS genes within 755 completely sequenced prokaryotic genomes and 39 metagenomes. P2CS provides detailed annotation of each TCS gene including family classification, sequence features, functional domains, as well as genomic context visualization. To bypass the generic problem of gene underestimation during genome annotation, we also constituted and searched an ORFeome, which improves the recovery of TCS proteins compared to searches on the equivalent proteomes. P2CS has been developed for computational analysis of the modular TCSs of prokaryotic genomes and metagenomes. It provides a complete overview of information on TCSs, including predicted candidate proteins and probable proteins, which need further curation/validation. The database can be browsed and queried with a user-friendly web interface at http://www.p2cs.org/.

  5. Comparative Genomic Analysis of Two-Component Signal Transduction Systems in Probiotic Lactobacillus casei.

    Science.gov (United States)

    Yu, Shuijing; Peng, Yanping; Chen, Wanyi; Deng, Yangwu; Guo, Yanhua

    2014-09-01

    Lactobacillus casei has traditionally been recognized as a probiotic, thus needing to survive the industrial production processes and transit through the gastrointestinal tract before providing benefit to human health. The two-component signal transduction system (TCS) plays important roles in sensing and reacting to environmental changes, which consists of a histidine kinase (HK) and a response regulator (RR). In this study we identified HKs and RRs of six sequenced L. casei strains. Ortholog analysis revealed 15 TCS clusters (HK-RR pairs), one orphan HKs and three orphan RRs, of which 12 TCS clusters were common to all six strains, three were absent in one strain. Further classification of the predicted HKs and RRs revealed interesting aspects of their putative functions. Some TCS clusters are involved with the response under the stress of the bile salts, acid, or oxidative, which contribute to survive the difficult journey through the human gastrointestinal tract. Computational predictions of 15 TCSs were verified by PCR experiments. This genomic level study of TCSs should provide valuable insights into the conservation and divergence of TCS proteins in the L. casei strains.

  6. Identification of a two-component signal transduction system that regulates maltose genes in Clostridium perfringens.

    Science.gov (United States)

    Hiscox, Thomas J; Ohtani, Kaori; Shimizu, Tohru; Cheung, Jackie K; Rood, Julian I

    2014-12-01

    Clostridium perfringens is a Gram-positive rod that is widely distributed in nature and is the etiological agent of several human and animal diseases. The complete genome sequence of C. perfringens strain 13 has been determined and multiple two-component signal transduction systems identified. One of these systems, designated here as the MalNO system, was analyzed in this study. Microarray analysis was used to carry out functional analysis of a malO mutant. The results, which were confirmed by quantitative reverse-transcriptase PCR, indicated that genes putatively involved in the uptake and metabolism of maltose were up-regulated in the malO mutant. These effects were reversed by complementation with the wild-type malO gene. Growth of these isogenic strains in medium with and without maltose showed that the malO mutant recovered more quickly from maltose deprivation when compared to the wild-type and complemented strains, leading to the conclusion that the MalNO system regulates maltose utilization in C. perfringens. It is postulated that this regulatory network may allow this soil bacterium and opportunistic pathogen to respond to environmental conditions where there are higher concentrations of maltose or maltodextrins, such as in the presence of decaying plant material in rich soil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Adaptation to environmental stimuli within the host: two-component signal transduction systems of Mycobacterium tuberculosis.

    Science.gov (United States)

    Bretl, Daniel J; Demetriadou, Chrystalla; Zahrt, Thomas C

    2011-12-01

    Pathogenic microorganisms encounter a variety of environmental stresses following infection of their respective hosts. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is an unusual bacterial pathogen in that it is able to establish lifelong infections in individuals within granulomatous lesions that are formed following a productive immune response. Adaptation to this highly dynamic environment is thought to be mediated primarily through transcriptional reprogramming initiated in response to recognition of stimuli, including low-oxygen tension, nutrient depletion, reactive oxygen and nitrogen species, altered pH, toxic lipid moieties, cell wall/cell membrane-perturbing agents, and other environmental cues. To survive continued exposure to these potentially adverse factors, M. tuberculosis encodes a variety of regulatory factors, including 11 complete two-component signal transduction systems (TCSSs) and several orphaned response regulators (RRs) and sensor kinases (SKs). This report reviews our current knowledge of the TCSSs present in M. tuberculosis. In particular, we discuss the biochemical and functional characteristics of individual RRs and SKs, the environmental stimuli regulating their activation, the regulons controlled by the various TCSSs, and the known or postulated role(s) of individual TCSSs in the context of M. tuberculosis physiology and/or pathogenesis.

  8. Osmotic Second Virial Coefficients of Aqueous Solutions from Two-Component Equations of State.

    Science.gov (United States)

    Cerdeiriña, Claudio A; Widom, B

    2016-12-29

    Osmotic second virial coefficients in dilute aqueous solutions of small nonpolar solutes are calculated from three different two-component equations of state. The solutes are five noble gases, four diatomics, and six hydrocarbons in the range C1-C4. The equations of state are modified versions of the van der Waals, Redlich-Kwong, and Peng-Robinson equations, with an added hydrogen-bonding term for the solvent water. The parameters in the resulting equations of state are assigned so as to reproduce the experimental values and temperature dependence of the density, vapor pressure, and compressibility of the solvent, the gas-phase second virial coefficient of the pure solute, the solubility and partial molecular volume of the solute, and earlier estimates of the solutes' molecular radii. For all 15 solutes, the calculations are done for 298.15 K, whereas for CH4, C2H6, and C3H8 in particular, they are also done as functions of temperature over the full range 278.15-348.15 K. The calculated osmotic virial coefficients are compared with earlier calculations of these coefficients for these solutes and also with the results derived from earlier computer simulations of model aqueous solutions of methane. They are also compared with the experimental gas-phase second virial coefficients of the pure gaseous solutes to determine the effect the mediation of the solvent has on the resulting solute-solute interactions in the solution.

  9. The Formation of Bulges, Discs and Two Component Galaxies in the CANDELS Survey at z < 3

    CERN Document Server

    Margalef-Bentabol, Berta; Mortlock, Alice; Hartley, Will; Duncan, Kenneth; Ferguson, Harry C; Koekemoer, Anton M; Dekel, Avishai; Primack, Joel R

    2016-01-01

    We examine a sample of 1495 galaxies in the CANDELS fields to determine the evolution of two component galaxies, including bulges and discs, within massive galaxies at the epoch 1 < z < 3 when the Hubble sequence forms. We fit all of our galaxies' light profiles with a single S\\'ersic fit, as well as with a combination of exponential and S\\'ersic profiles. The latter is done in order to describe a galaxy with an inner and an outer component, or bulge and disc component. We develop and use three classification methods (visual, F-test and the RFF) to separate our sample into 1-component galaxies (disc/spheroids-like galaxies) and 2-component galaxies (galaxies formed by an 'inner part' or bulge and an 'outer part' or disc). We then compare the results from using these three different ways to classify our galaxies. We find that the fraction of galaxies selected as 2-component galaxies increases on average 50 per cent from the lowest mass bin to the most massive galaxies, and decreases with redshift by a fa...

  10. Packing characteristics of two-component bilayers composed of ester- and ether-linked phospholipids.

    Science.gov (United States)

    Batenjany, M M; O'Leary, T J; Levin, I W; Mason, J T

    1997-01-01

    The miscibility properties of ether- and ester-linked phospholipids in two-component, fully hydrated bilayers have been studied by differential scanning calorimetry (DSC) and Raman spectroscopy. Mixtures of 1,2-di-O-hexadecyl-rac-glycero-3-phosphocholine (DHPC) with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DHPE) and of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with 1,2-di-O-hexadecyl-sn-glycero-3-phosphoethanolamine (DHPE) have been investigated. The phase diagram for the DPPC/DHPE mixtures indicates that these two phospholipids are miscible in all proportions in the nonrippled bilayer gel phase. In contrast, the DHPC/DPPE mixtures display two regions of gel phase immiscibility between 10 and 30 mol% DPPE. Raman spectroscopic measurements of DHPC/DPPE mixtures in the C-H stretching mode region suggest that this immiscibility arises from the formation of DHPC-rich interdigitated gel phase domains with strong lateral chain packing interactions at temperatures below 27 degrees C. However, in the absence of interdigitation, our findings, and those of others, lead to the conclusion that the miscibility properties of mixtures of ether- and ester-linked phospholipids are determined by the nature of the phospholipid headgroups and are independent of the character of the hydrocarbon chain linkages. Thus it seems unlikely that the ether linkage has any significant effect on the miscibility properties of phospholipids in biological membranes. PMID:9083673

  11. Vapour-mediated sensing and motility in two-component droplets

    Science.gov (United States)

    Cira, N. J.; Benusiglio, A.; Prakash, M.

    2015-03-01

    Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings and lubrication. Liquid behaviour on a surface can range from complete spreading, as in the `tears of wine' effect, to minimal wetting as observed on a superhydrophobic lotus leaf. Controlling droplet movement is important in microfluidic liquid handling, on self-cleaning surfaces and in heat transfer. Droplet motion can be achieved by gradients of surface energy. However, existing techniques require either a large gradient or a carefully prepared surface to overcome the effects of contact line pinning, which usually limit droplet motion. Here we show that two-component droplets of well-chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials.

  12. Impact of backmixing of the aqueous phase on two-component rare earth separation process

    Institute of Scientific and Technical Information of China (English)

    WU Sheng; CHENG Fuxiang; LIAO Chunsheng; YAN Chunhua

    2013-01-01

    Solvent extraction based on mixer-settler is the major industrial method of rare earth (RE) separation.In the mixer-settler extraction process,due to the insufficient settling time in normal circumstances,backmixing of the aqueous phase could have significant impact on the process of RE extraction separation.Therefore on the basis of the extraction equilibrium and mass balance of the mixer-settler extraction process,here we developed a mathematic expression of the aqueous phase backmixing in a two-component separation process,and obtained a quantitative analysis of the backmixing effect on the purification process by the approximations according to certain hypotheses.Two extraction systems of La/Ce and Pr/Nd separation were chosen as the examples to analyze the backmixing effect,and the results showed that the aqueous backmixing had greater influence in the scrubbing segment than in the extraction segment,especially in the system with a high separation factor such as La/Ce separation.Therefore it was suggested that the aqueous backmixing effect should be well attended in the design and application of RE extraction separation.

  13. A hybrid two-component system protein from Azospirillum brasilense Sp7 was involved in chemotaxis.

    Science.gov (United States)

    Cui, Yanhua; Tu, Ran; Wu, Lixian; Hong, Yuanyuan; Chen, Sanfeng

    2011-09-20

    We here report the sequence and functional analysis of org35 of Azospirillum brasilense Sp7, which was originally identified to be able to interact with NifA in yeast-two-hybrid system. The org35 encodes a hybrid two-component system protein, including N-terminal PAS domains, a histidine kinase (HPK) domain and a response regulator (RR) domain in C-terminal. To determine the function of the Org35, a deletion-insertion mutant in PAS domain [named Sp7353] and a complemental strain Sp7353C were constructed. The mutant had reduced chemotaxis ability compared to that of wild-type, and the complemental strain was similar to the wild-type strain. These data suggested that the A. brasilense org35 played a key role in chemotaxis. Variants containing different domains of the org35 were expressed, and the functions of these domains were studied in vitro. Phosphorylation assays in vitro demonstrated that the HPK domain of Org35 possessed the autokinase activity and that the phosphorylated HPK was able to transfer phosphate groups to the RR domain. The result indicated Org35 was a phosphorylation-communicating protein.

  14. Crystallization of Fe78Si9B13 Bulk Crystaline/Amorphous (c/a) Composite

    Institute of Scientific and Technical Information of China (English)

    JIN Shifeng; WANG Weimin; NIU Yuchao; ZHANG Jiteng; LI Guihua; BIAN Xiufang

    2008-01-01

    A metallic crystalline/amorphous (c/a) bulk composite was prepared by the slow cooling method after remelting the amorphous Fe78Si9B13 ribbon. By X-ray diffraction (XRD),differential scanning calorimetry (DSC) and scanning electron microscope (SEM), the composite consists of the primary dendrite a-Fe (without Si) as well as the amorphous matrix. After being anneal at 800 K, the uniform spheroid particles are formed in the c/a composite, which does not form in the amorphous ribbon under the various annealing process. Energy dispersive analysis of X-rays (EDAX), SEM and XRD were applied to give more detailed information. The formation and evolution of the particle may stimulate the possible application of the Fe-matrix amorphous alloy.

  15. Influence of melt structure on the crystallization behavior and polymorphic composition of polypropylene random copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin [State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Ecole Normale Supérieure, CNRS-ENS-UPMC UMR 8640, 24 Rue Lhomond, Paris 75005 (France); Chen, Zhengfang [State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Kang, Jian, E-mail: jiankang@scu.edu.cn [State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Yang, Feng; Chen, Jinyao; Cao, Ya; Xiang, Ming [State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China)

    2015-03-20

    Highlights: • We prepared β-PPR and studied its crystallization behavior with different melt structures. • We observed surprising synergetic effect between β-NA and the ordered structures. • We explored the nature of ordered structures by calculating the equilibrium temperature. - Abstract: Polypropylene random copolymer (PPR) is one of important polypropylene types for the application fields. However, due to the random copolymer chain configuration, it is difficult to obtain high proportion of β-phase even under the influence of β-nucleating agent (β-NA). In this study, the melt structure (namely, the content of ordered structures in the melt) of β-nucleated ethylene-copolymerized PPR (β-PPR) was controlled by tuning the fusion temperature (T{sub f}), and its impact on the crystallization and polymorphic behavior of β-PPR was investigated by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), polarized optical microscopy (PLM) and scanning electronic microscopy (SEM). The result revealed that compared with the β-nucleated iPP homo-polymer, it is more difficult for β-PPR to form β-crystals; interestingly, when T{sub f} is in the temperature range of 162–173 °C, the ordered structures survived in melt exhibit high β-nucleation efficiency under the influence of β-NA, resulting in significant increase of β-phase proportion and evident variation of crystalline morphology, which is called the Ordered Structure Effect (OSE). Moreover, through investigating the self-nucleation behavior and equilibrium melting temperature of pure PPR (non-nucleated PPR), the physical nature of the lower and upper limiting T{sub f} temperatures for the occurrence of OSE in β-PPR was explored; the role of ethylene co-monomer in the occurrence of OSE was discussed.

  16. Facile synthesis of Graphene Oxide/Double-stranded DNA composite liquid crystals and Hydrogels

    Indian Academy of Sciences (India)

    Rajendra Kurapati; Ashok M Raichur; U Venkateswara Reddy; N Suryaprakash

    2016-03-01

    Investigation of the interactions between graphene oxide (GO) and biomolecules is very crucialfor the development of biomedical applications based on GO. This study reports the first observation of thespontaneous formation of self-assembled liquid crystals and three-dimensional hydrogels of graphene oxidewith double-stranded DNA by simple mixing in an aqueous buffer media without unwinding double-strandedDNA to single-stranded DNA. The GO/dsDNA hydrogels have shown controlled porosity by changing the concentration of the components. The strong binding between dsDNA and graphene is proved by Ramanspectroscopy

  17. A biosensor of high-density lipoprotein of human serum on a liquid crystal and polymer composite film

    Science.gov (United States)

    Lin, Yi-Hsin; Chang, Kai-Han; Chu, Wei-Lin; Tsou, Yu-Shih; Wu, Li-Ching; Li, Chien-Feng

    2013-10-01

    A biosensor for the concentration of high-density lipoprotein (HDL) in human serum on a liquid crystal and polymer composite film (LCPCF) is demonstrated. The sensing mechanism is based on a polar-polar interaction between orientation of LC directors and HDL in human serum. The concentration of polar HDL in human serum affects the orientations of LC directors at the interface between LCPCF and the human serum. In addition, the surface free energy of LCPCF changes with the applied voltage due to the electrically tunable orientations of LC directors anchored among the polymer grains of LCPCF. As a result, the droplet motion of human serum on LCPCF under applied voltages can sense the concentration of HDL in human serum.

  18. Effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst

    Science.gov (United States)

    Zhang, Jinjun; Wang, Xiaoyan; Wang, Jimei; Wang, Jing; Ji, Zhijiang

    2016-01-01

    TiO2 nanoparticles were immobilized on diatomite by hydrolysis-deposition method using titanium tetrachloride as precursor. The effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst was characterized by TG-DSC, XRD, BET surface area, SEM, FT-IR spectroscopy, XPS and UV-vis diffuse reflectance spectra. The results indicate that addition of a small amount of sulfate ions promotes the formation of anatase phase and inhibits the transformation from anatase to rutile. On the other hand, sulfate ions immobilized on the surface of TiO2/diatomite have strong affinity for electrons, capturing the photo-generated electrons, which hinders the recombination of electrons and holes.

  19. Effects of crystal boundary gliding and dislocation on superplastic deformation of SiCw/6061 Al composite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    SiCw/6061Al composite was fabricated with squeeze casting method, hot extruded and superplastically tensile tested. At the temperature of 570  ℃and the strain rate of 2.0×10-3 s-1, an elongation of 280% was obtained. The change of grain shape, dislocation density and distribution was observed by TEM. The results show that during the superplastic deformation grain shape on the whole is unchanged, but the dislocation density and distribution vary quite a lot with the tensile action. Under the optimal straining conditions, dislocation mainly distributes along the grain boundary, which has an important effect on cooperative strain especially. When the strain magnitude is big enough, there appears stacking faults and twin crystals, which also has some effect on the cooperative strain.

  20. Crystal structure and composition of BAlN thin films: Effect of boron concentration in the gas flow

    Science.gov (United States)

    Wang, Shuo; Li, Xiaohang; Fischer, Alec M.; Detchprohm, Theeradetch; Dupuis, Russell D.; Ponce, Fernando A.

    2017-10-01

    We have investigated the microstructure of BxAl1-xN films grown by flow-modulated epitaxy at 1010 °C, with B/(B + Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09. On the other hand, boron content deduced from the aluminum signal in the Rutherford backscattering spectra (RBS) ranges from x = 0.06 to 0.16, closely following the gas-flow ratios. Transmission electron microscopy indicates the sole presence of a wurtzite crystal structure in the BAlN films, and a tendency towards columnar growth for B/(B + Al) gas-flow ratios below 0.12. For higher ratios, the BAlN films exhibit a tendency towards twin formation and finer microstructure. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films. The RBS data suggest that the incorporation of B is highly efficient for our growth method, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%, for the range of B/(B + Al) gas-flow ratios that we have studied, which is significantly higher than previously thought.

  1. Crystal structure and composition of BAlN thin films: Effect of boron concentration in the gas flow

    KAUST Repository

    Wang, Shuo

    2017-07-20

    We have investigated the microstructure of BxAl1-xN films grown by flow-modulated epitaxy at 1010 oC, with B/(B+Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09. On the other hand, boron content deduced from the aluminum signal in the Rutherford backscattering spectra (RBS) ranges x = 0.06 to 0.16, closely following gas-flow ratios. Transmission electron microscopy indicates the sole presence of wurtzite crystal structure in the BAlN films, and a tendency towards columnar growth for B/(B+Al) gas-flow ratios below 0.12. For higher ratios, the BAlN films exhibit a tendency towards twin formation and finer microstructure. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films.The RBS data suggest that the incorporation of B is highly efficient for our growth method, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%, for the range of B/(B+Al) gas-flow ratios that we used, which is significantly higher than previously thought.

  2. Optimization of composition and crystal structure for processing route of PZT system

    Energy Technology Data Exchange (ETDEWEB)

    Kakimoto, K.; Kakemoto, H.; Fujita, S.; Masuda, Y. [Hachinohe Inst. of Tech., Aomori (Japan). JSPS Research Project

    2002-07-01

    An evaluation procedure that employs by calibrated X-ray fluorescence (XRF) analysis of the chemical composition of PZT bulk ceramics and thin films deposited on Si-based substrate by the pulsed laser deposition (PLD) technique has been established. The plots of cation fraction and XRF intensity for Pb, Zr and Ti atoms were curve-fitted using the results obtained by XRF measurement of normalized PZT samples whose compositions were selected from those near the morphotropic phase boundary (MPB) of PZT(Zr/Ti=53/47). While the Pb curve was almost linear, Zr and Ti yielded parabolic curves due to the effect of matrix Pb. In the case of thin-film analysis, the substrate beneath the thin film exerted a matrix effect on the quantitative analysis of the thin film. Both the coexisting element effect and the substrate effect were calibrated to prepare an excellent XRF table for the precise quantitative analysis of PZT thin films. The present XRF table quantitatively revealed a variation in PZT composition during the high-temperature sintering process of bulk and even its thin-film prepared by PLD. The combination of X-ray diffraction (XRD) with model calculation also supported quantitative XRF analysis of the compositional difference from Pb stoichiometry. (orig.)

  3. Crystal Structure and Chemical Composition of a Presolar Silicate from the Queen Elizabeth Range 99177 Meteorite

    Science.gov (United States)

    Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S.

    2013-01-01

    Mineral characterization of presolar silicate grains, the most abundant stardust phase, has provided valuable information about the formation conditions in circumstellar environments and in super-nova (SN) outflows. Spectroscopic observations of dust around evolved stars suggest a majority of amor-phous, Mg-rich olivine grains, but crystalline silicates, most of which are pyroxene, have also been observed [1]. The chemical compositions of hundreds of presolar silicates have been determined by Auger spectroscopy and reveal high Fe contents and nonstoichiometric compositions intermediate to olivine and pyroxene [2-6]. The unexpectedly high Fe contents can partly be attributed to secondary alteration on the meteorite parent bodies, as some grains have Fe isotopic anomalies from their parent stellar source [7]. Only about 35 presolar silicates have been studied for their mineral structures and chemical compositions by transmission electron microscopy (TEM). These grains display a wide range of compositions and structures, including crystalline forsterite, crystalline pyroxene, nanocrystalline grains, and a majority of amorphous nonstoichiometric grains. Most of these grains were identified in the primitive Acfer 094 meteorite. Presolar silicates from this meteorite show a wide range of Fe-contents, suggestive of secondary processing on the meteorite parent body. The CR chondrite QUE 99177 has not suffered as much alteration [8] and displays the highest presolar silicate abundance to date among carbonaceous chondrites [3, 6]. However, no mineralogical studies of presolar silicates from this meteorite have been performed. Here we examine the mineralogy of a presolar silicate from QUE 99177.

  4. The preparation of dental glass-ceramic composites with controlled fraction of leucite crystals

    Directory of Open Access Journals (Sweden)

    Martina Mrázová

    2008-06-01

    Full Text Available This work is dealing with synthesis of leucite powder, which can be used for the preparation of dental glassceramic composites by subsequent thermal treatment. Newly developed procedure is based on preparation of dental raw material as a mixture of two separate compounds: the crystalline leucite powder prepared at relatively low temperature and a commercial matrix powder.Hydrothermal synthesis of tetragonal leucite particles (KAlSi2O6 with the average size of about 3 μm was developed in our laboratory. The leucite dental raw material was prepared by mixing of 20 wt.% of synthetic tetragonal leucite with commercial matrix. Dental composites were prepared from the dental raw material by uniaxial pressing and firing up to 960°C. Dilatometric measurements confirmed that the coefficient of thermal expansion increased by 32% when 20 wt.% of the tetragonal leucite was added into the basic matrix. In addition, it was showed that the synthesized leucite powder was suitable for the preparation of leucite composites with controlled coefficient of thermal expansion. High value of the thermal expansion coefficient enables application of prepared composite in metal-ceramics restorations.

  5. UV durable colour pigment doped SmA liquid crystal composites for outdoor trans-reflective bi-stable displays

    Science.gov (United States)

    Xu, H.; Davey, A. B.; Crossland, W. A.; Chu, D. P.

    2012-10-01

    High brightness trans-reflective bi-stable displays based on smectic A (SmA) liquid crystals (LCs) can have nearly perfect transparency in the clear state and very high reflection in the scattered state. Because the LC material in use is stable under UV radiation, this kind of displays can stand for strong day-light and therefore be ideal for outdoor applications from e-books to public signage and advertisement. However, the colour application has been limited because the traditional colourants in use are conventional dyes which are lack of UV stability and that their colours are easily photo bleached. Here we present a colour SmA display demonstrator using pigments as colourant. Mixing pigments with SmA LCs and maintain the desirable optical switching performance is not straightforward. We show here how it can be done, including how to obtain fine sized pigment nano-particles, the effects of particle size and size distribution on the display performance. Our optimized pigments/SmA compositions can be driven by a low frequency waveform (~101Hz) to a scattered state to exhibit colour while by a high frequency waveform (~103Hz) to a cleared state showing no colour. Finally, we will present its excellent UV life-time (at least dye composition (~2.4 years). The complex interaction of pigment nano-particles with LC molecules and the resulting effects on the LC electro-optical performances are still to be fully understood. We hope this work will not only demonstrate a new and practical approach for outdoor reflective colour displays but also provide a new material system for fundamental liquid crystal colloid research work.

  6. Effects of external magnetic trap on two dark solitons of a two-component Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    Hong Li; D. N. Wang

    2008-01-01

    Two dark solitons are considered in a two-component Bose-Einstein condensate with an external magnetic trap, and effects of the trap potential on their dynamics are investigated by the numerical simulation. The results show that the dark solitons attract, collide and repel periodically in two components as time changes, the time period depends strictly on the initial condition and the potential, and there are obvious self-trapping effects on the two dark solitons.

  7. Distribution, structure and diversity of “bacterial” genes encoding two-component proteins in the Euryarchaeota

    Directory of Open Access Journals (Sweden)

    Mark K. Ashby

    2006-01-01

    Full Text Available The publicly available annotated archaeal genome sequences (23 complete and three partial annotations, October 2005 were searched for the presence of potential two-component open reading frames (ORFs using gene category lists and BLASTP. A total of 489 potential two-component genes were identified from the gene category lists and BLASTP. Two-component genes were found in 14 of the 21 Euryarchaeal sequences (October 2005 and in neither the Crenarchaeota nor the Nanoarchaeota. A total of 20 predicted protein domains were identified in the putative two-component ORFs that, in addition to the histidine kinase and receiver domains, also includes sensor and signalling domains. The detailed structure of these putative proteins is shown, as is the distribution of each class of two-component genes in each species. Potential members of orthologous groups have been identified, as have any potential operons containing two or more two-component genes. The number of two-component genes in those Euryarchaeal species which have them seems to be linked more to lifestyle and habitat than to genome complexity, with most examples being found in Methanospirillum hungatei, Haloarcula marismortui, Methanococcoides burtonii and the mesophilic Methanosarcinales group. The large numbers of two-component genes in these species may reflect a greater requirement for internal regulation. Phylogenetic analysis of orthologous groups of five different protein classes, three probably involved in regulating taxis, suggests that most of these ORFs have been inherited vertically from an ancestral Euryarchaeal species and point to a limited number of key horizontal gene transfer events.

  8. A two-component generalization of the reduced Ostrovsky equation and its integrable semi-discrete analogue

    Science.gov (United States)

    Feng, Bao-Feng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2017-02-01

    In the present paper, we propose a two-component generalization of the reduced Ostrovsky (Vakhnenko) equation, whose differential form can be viewed as the short-wave limit of a two-component Degasperis-Procesi (DP) equation. They are integrable due to the existence of Lax pairs. Moreover, we have shown that the two-component reduced Ostrovsky equation can be reduced from an extended BKP hierarchy with negative flow through a pseudo 3-reduction and a hodograph (reciprocal) transform. As a by-product, its bilinear form and N-soliton solution in terms of pfaffians are presented. One- and two-soliton solutions are provided and analyzed. In the second part of the paper, we start with a modified BKP hierarchy, which is a Bäcklund transformation of the above extended BKP hierarchy, an integrable semi-discrete analogue of the two-component reduced Ostrovsky equation is constructed by defining an appropriate discrete hodograph transform and dependent variable transformations. In particular, the backward difference form of above semi-discrete two-component reduced Ostrovsky equation gives rise to the integrable semi-discretization of the short wave limit of a two-component DP equation. Their N-soliton solutions in terms of pffafians are also provided.

  9. Extrusion foaming of thermoplastic cellulose acetate from renewable resources using a two-component physical blowing agent system

    Science.gov (United States)

    Hopmann, Ch.; Windeck, C.; Hendriks, S.; Zepnik, S.; Wodke, T.

    2014-05-01

    Thermoplastic cellulose acetate (CA) is a bio-based polymer with optical, mechanical and thermal properties comparable to those of polystyrene (PS). The substitution of the predominant petrol-based PS in applications like foamed food trays can lead to a more sustainable economic practice. However, CA is also suitable for more durable applications as the biodegradability rate can be controlled by adjusting the degree of substitutions. The extrusion foaming of CA still has to overcome certain challenges. CA is highly hydrophilic and can suffer from hydrolytic degradation if not dried properly. Therefore, the influence of residual moisture on the melt viscosity is rather high. Beyond, the surface quality of foam CA sheets is below those of PS due to the particular foaming behaviour. This paper presents results of a recent study on extrusion foamed CA, using a two-component physical blowing agent system compromising HFO 1234ze as blowing agent and organic solvents as co-propellant. Samples with different co-propellants are processed on a laboratory single screw extruder at IKV. Morphology and surface topography are investigated with respect to the blowing agent composition and the die pressure. In addition, relationships between foam density, foam morphology and the propellants are analysed. The choice of the co-propellant has a significant influence on melt-strength, foaming behaviour and the possible blow-up ratio of the sheet. Furthermore, a positive influence of the co-propellant on the surface quality can be observed. In addition, the focus is laid on the effect of external contact cooling of the foamed sheets after the die exit.

  10. Quantitative Kinetic Analyses of Shutting Off a Two-Component System

    Directory of Open Access Journals (Sweden)

    Rong Gao

    2017-05-01

    Full Text Available Cells rely on accurate control of signaling systems to adapt to environmental perturbations. System deactivation upon stimulus removal is as important as activation of signaling pathways. The two-component system (TCS is one of the major bacterial signaling schemes. In many TCSs, phosphatase activity of the histidine kinase (HK is believed to play an essential role in shutting off the pathway and resetting the system to the prestimulus state. Two basic challenges are to understand the dynamic behavior of system deactivation and to quantitatively evaluate the role of phosphatase activity under natural cellular conditions. Here we report a kinetic analysis of the response to shutting off the archetype Escherichia coli PhoR-PhoB TCS pathway using both transcription reporter assays and in vivo phosphorylation analyses. Upon removal of the stimulus, the pathway is shut off by rapid dephosphorylation of the PhoB response regulator (RR while PhoB-regulated gene products gradually reset to prestimulus levels through growth dilution. We developed an approach combining experimentation and modeling to assess in vivo kinetic parameters of the phosphatase activity with kinetic data from multiple phosphatase-diminished mutants. This enabled an estimation of the PhoR phosphatase activity in vivo, which is much stronger than the phosphatase activity of PhoR cytoplasmic domains analyzed in vitro. We quantitatively modeled how strong the phosphatase activity needs to be to suppress nonspecific phosphorylation in TCSs and discovered that strong phosphatase activity of PhoR is required for cross-phosphorylation suppression.

  11. Transcriptome analysis of the Brucella abortus BvrR/BvrS two-component regulatory system.

    Directory of Open Access Journals (Sweden)

    Cristina Viadas

    Full Text Available BACKGROUND: The two-component BvrR/BvrS system is essential for Brucella abortus virulence. It was shown previously that its dysfunction alters the expression of some major outer membrane proteins and the pattern of lipid A acylation. To determine the genes regulated by BvrR/BvrS, we performed a whole-genome microarray analysis using B. abortus RNA obtained from wild type and bvrR mutant cells grown in the same conditions. METHODOLOGY/PRINCIPAL FINDINGS: A total of 127 differentially expressed genes were found: 83 were over expressed and 44 were less expressed in the bvrR mutant. Two operons, the phosphotransferase system and the maltose transport system, were down-regulated. Several genes involved in cell envelope or outer membrane biogenesis were differentially expressed: genes for outer membrane proteins (omp25a, omp25d, lipoproteins, LPS and fatty acid biosynthesis, stress response proteins, chaperones, flagellar genes, and twelve genes encoding ABC transport systems. Ten genes related with carbon metabolism (pckA and fumB among others were up-regulated in the bvrR mutant, and denitrification genes (nirK, norC and nosZ were also regulated. Notably, seven transcriptional regulators were affected, including VjbR, ExoR and OmpR that were less expressed in the bvrR mutant. Finally, the expression of eleven genes which have been previously related with Brucella virulence was also altered. CONCLUSIONS/SIGNIFICANCE: All these data corroborate the impact of BvrR/BvrS on cell envelope modulation, confirm that this system controls the carbon and nitrogen metabolism, and suggest a cross-talk among some regulators to adjust the Brucella physiology to the shift expected to occur during the transit from the extracellular to the intracellular niche.

  12. Structural studies of the activation of the two component receiver domain NTRC by multidimensional heteronuclear NMR

    Energy Technology Data Exchange (ETDEWEB)

    Nohaile, M J [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    Multidimensional heteronuclear NMR spectroscopy was used to investigate the N-terminal domain of the transcriptional enhancer NTRC (NiTrogen Regulatory protein C). This domain belongs to the family of receiver domains of two-component regulatory systems involved in signal transduction. Phosphorylation of NTRC at D54 leads to an activated form of the molecule which stimulates transcription of genes involved in nitrogen regulation. Three and four dimensional NMR techniques were used to determine an intermediate resolution structure of the unphosphorylated, inactive form of the N-terminal domain of NTRC. The structure is comprised of five {alpha}-helices and a five-stranded {beta}-sheet in a ({beta}/{alpha}){sub 5} topology. Analysis of the backbone dynamics of NTRC indicate that helix 4 and strand 5 are significantly more flexible than the rest of the secondary structure of the protein and that the loops making up the active site are flexible. The short lifetime of phospho-NTRC hampers the study of this form. However, conditions for determining the resonance assignments and, possibly, the three dimensional structure of phosphorylated NTRC have been obtained. Tentative assignments of the phosphorylated form indicate that the majority of the changes that NTRC experiences upon phosphorylation occur in helix 3, strand 4, helix 4, strand 5, and the loop between strand 5 and helix 5 (the 3445 face of NTRC) as well as near the site of phosphorylation. In order to examine a stable, activated form of the protein, constitutively active mutants of NTRC were investigated.

  13. Low temperatures shear viscosity of a two-component dipolar Fermi gas with unequal population

    Science.gov (United States)

    Darsheshdar, E.; Yavari, H.; Zangeneh, Z.

    2016-07-01

    By using the Green's functions method and linear response theory we calculate the shear viscosity of a two-component dipolar Fermi gas with population imbalance (spin polarized) in the low temperatures limit. In the strong-coupling Bose-Einstein condensation (BEC) region where a Feshbach resonance gives rise to tightly bound dimer molecules, a spin-polarized Fermi superfluid reduces to a simple Bose-Fermi mixture of Bose-condensed dimers and the leftover unpaired fermions (atoms). The interactions between dimer-atom, dimer-dimer, and atom-atom take into account to the viscous relaxation time (τη) . By evaluating the self-energies in the ladder approximation we determine the relaxation times due to dimer-atom (τDA) , dimer-dimer (τcDD ,τdDD) , and atom-atom (τAA) interactions. We will show that relaxation rates due to these interactions τDA-1 ,τcDD-1, τdDD-1, and τAA-1 have T2, T4, e - E /kB T (E is the spectrum of the dimer atoms), and T 3 / 2 behavior respectively in the low temperature limit (T → 0) and consequently, the atom-atom interaction plays the dominant role in the shear viscosity in this rang of temperatures. For small polarization (τDA ,τAA ≫τcDD ,τdDD), the low temperatures shear viscosity is determined by contact interaction between dimers and the shear viscosity varies as T-5 which has the same behavior as the viscosity of other superfluid systems such as superfluid neutron stars, and liquid helium.

  14. Gene Regulation by the LiaSR Two-Component System in Streptococcus mutans.

    Directory of Open Access Journals (Sweden)

    Manoharan Shankar

    Full Text Available The LiaSR two-component signal transduction system regulates cellular responses to several environmental stresses, including those that induce cell envelope damages. Downstream regulons of the LiaSR system have been implicated in tolerance to acid, antibiotics and detergents. In the dental pathogen Streptococcus mutans, the LiaSR system is necessary for tolerance against acid, antibiotics, and cell wall damaging stresses during growth in the oral cavity. To understand the molecular mechanisms by which LiaSR regulates gene expression, we created a mutant LiaR in which the conserved aspartic acid residue (the phosphorylation site, was changed to alanine residue (D58A. As expected, the LiaR-D58A variant was unable to acquire the phosphate group and bind to target promoters. We also noted that the predicted LiaR-binding motif upstream of the lia operon does not appear to be well conserved. Consistent with this observation, we found that LiaR was unable to bind to the promoter region of lia; however, we showed that LiaR was able to bind to the promoters of SMU.753, SMU.2084 and SMU.1727. Based on sequence analysis and DNA binding studies we proposed a new 25-bp conserved motif essential for LiaR binding. Introducing alterations at fully conserved positions in the 25-bp motif affected LiaR binding, and the binding was dependent on the combination of positions that were altered. By scanning the S. mutans genome for the occurrence of the newly defined LiaR binding motif, we identified the promoter of hrcA (encoding a key regulator of the heat shock response that contains a LiaR binding motif, and we showed that hrcA is negatively regulated by the LiaSR system. Taken together our results suggest a putative role of the LiaSR system in heat shock responses of S. mutans.

  15. Regulation of acid resistance by connectors of two-component signal transduction systems in Escherichia coli.

    Science.gov (United States)

    Eguchi, Yoko; Ishii, Eiji; Hata, Kensuke; Utsumi, Ryutaro

    2011-03-01

    Two-component signal transduction systems (TCSs), utilized extensively by bacteria and archaea, are involved in the rapid adaptation of the organisms to fluctuating environments. A typical TCS transduces the signal by a phosphorelay between the sensor histidine kinase and its cognate response regulator. Recently, small-sized proteins that link TCSs have been reported and are called "connectors." Their physiological roles, however, have remained elusive. SafA (sensor associating factor A) (formerly B1500), a small (65-amino-acid [65-aa]) membrane protein, is among such connectors and links Escherichia coli TCSs EvgS/EvgA and PhoQ/PhoP. Since the activation of the EvgS/EvgA system induces acid resistance, we examined whether the SafA-activated PhoQ/PhoP system is also involved in the acid resistance induced by EvgS/EvgA. Using a constitutively active evgS1 mutant for the activation of EvgS/EvgA, we found that SafA, PhoQ, and PhoP all contributed to the acid resistance phenotype. Moreover, EvgS/EvgA activation resulted in the accumulation of cellular RpoS in the exponential-phase cells in a SafA-, PhoQ-, and PhoP-dependent manner. This RpoS accumulation was caused by another connector, IraM, expression of which was induced by the activation of the PhoQ/PhoP system, thus preventing RpoS degradation by trapping response regulator RssB. Acid resistance assays demonstrated that IraM also participated in the EvgS/EvgA-induced acid resistance. Therefore, we propose a model of a signal transduction cascade proceeding from EvgS/EvgA to PhoQ/PhoP and then to RssB (connected by SafA and IraM) and discuss its contribution to the acid resistance phenotype.

  16. Signal integration by the two-component signal transduction response regulator CpxR.

    Science.gov (United States)

    Wolfe, Alan J; Parikh, Niyati; Lima, Bruno P; Zemaitaitis, Bozena

    2008-04-01

    The CpxAR two-component signal transduction system in Escherichia coli and other pathogens senses diverse envelope stresses and promotes the transcription of a variety of genes that remedy these stresses. An important member of the CpxAR regulon is cpxP. The CpxA-dependent transcription of cpxP has been linked to stresses such as misfolded proteins and alkaline pH. It also has been proposed that acetyl phosphate, the intermediate of the phosphotransacetylase (Pta)-acetate kinase (AckA) pathway, can activate the transcription of cpxP in a CpxA-independent manner by donating its phosphoryl group to CpxR. We tested this hypothesis by measuring the transcription of cpxP using mutants with mutations in the CpxAR pathway, mutants with mutations in the Pta-AckA pathway, and mutants with a combination of both types of mutations. From this epistasis analysis, we learned that CpxR integrates diverse stimuli. The stimuli that originate in the envelope depend on CpxA, while those associated with growth and central metabolism depend on the Pta-AckA pathway. While CpxR could receive a phosphoryl group from acetyl phosphate, this global signal was not the primary trigger for CpxR activation associated with the Pta-AckA pathway. On the strength of these results, we contend that the interactions between central metabolism and signal transduction can be quite complex and that successful investigations of such interactions must include a complete epistatic analysis.

  17. Conformational transition of response regulator RR468 in a two-component system signal transduction process.

    Science.gov (United States)

    Banerjee, Rahul; Yan, Honggao; Cukier, Robert I

    2014-05-08

    Signal transduction can be accomplished via a two-component system (TCS) consisting of a histidine kinase (HK) and a response regulator (RR). In this work, we simulate the response regulator RR468 from Thermotoga maritima, in which phosphorylation and dephosphorylation of a conserved aspartate residue acts as a switch via a large conformational change concentrated in three proximal loops. A detailed view of the conformational transition is obscured by the lack of stability of the intermediate states, which are difficult to detect using common structural biology techniques. Molecular dynamics (MD) trajectories of the inactive and active conformations were run, and show that the inactive (or active) trajectories do not exhibit sampling of the active (or inactive) conformations on this time scale. Targeted MD (TMD) was used to generate trajectories that span the inactive and active conformations and provide a view of how a localized event like phosphorylation can lead to conformational changes elsewhere in the protein, especially in the three proximal loops. The TMD trajectories are clustered to identify stages along the transition path. Residue interaction networks are identified that point to key residues having to rearrange in the process of transition. These are identified using both hydrogen bond analysis and residue interaction strength measurements. Potentials of mean force are generated for key residue rearrangements to ascertain their free energy barriers. We introduce methods that attempt to extrapolate from one conformation to the other and find that the most fluctuating proximal loop can transit part way from one to the other, suggesting that this conformational information is embedded in the sequence.

  18. Temporal Variability from the Two-Component Advective Flow Solution and Its Observational Evidence

    Science.gov (United States)

    Dutta, Broja G.; Chakrabarti, Sandip K.

    2016-09-01

    In the propagating oscillatory shock model, the oscillation of the post-shock region, i.e., the Compton cloud, causes the observed low-frequency quasi-periodic oscillations (QPOs). The evolution of QPO frequency is explained by the systematic variation of the Compton cloud size, i.e., the steady radial movement of the shock front, which is triggered by the cooling of the post-shock region. Thus, analysis of the energy-dependent temporal properties in different variability timescales can diagnose the dynamics and geometry of accretion flows around black holes. We study these properties for the high-inclination black hole source XTE J1550-564 during its 1998 outburst and the low-inclination black hole source GX 339-4 during its 2006-07 outburst using RXTE/PCA data, and we find that they can satisfactorily explain the time lags associated with the QPOs from these systems. We find a smooth decrease of the time lag as a function of time in the rising phase of both sources. In the declining phase, the time lag increases with time. We find a systematic evolution of QPO frequency and hard lags in these outbursts. In XTE J1550-564, the lag changes from hard to soft (i.e., from a positive to a negative value) at a crossing frequency (ν c) of ˜3.4 Hz. We present possible mechanisms to explain the lag behavior of high and low-inclination sources within the framework of a single two-component advective flow model.

  19. Large-scale Models Reveal the Two-component Mechanics of Striated Muscle

    Directory of Open Access Journals (Sweden)

    Robert Jarosch

    2008-12-01

    Full Text Available This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and α-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical “two-component model” of active muscle differentiated a “contractile component” which stretches the “series elastic component” during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit. Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation. Since each thin filament is anchored by four elastic α-actinin Z-filaments (provided with forceregulating sites for Ca2+ binding, the thin filament rotations change the torsional twist of the four Z-filaments as the “series elastic components”. Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments.

  20. Structural studies of the activation of the two component receiver domain NTRC by multidimensional heteronuclear NMR

    Energy Technology Data Exchange (ETDEWEB)

    Nohaile, Michael James [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    Multidimensional heteronuclear NMR spectroscopy was used to investigate the N-terminal domain of the transcriptional enhancer NTRC (NiTrogen Regulatory protein C). This domain belongs to the family of receiver domains of two-component regulatory systems involved in signal transduction. Phosphorylation of NTRC at D54 leads to an activated form of the molecule which stimulates transcription of genes involved in nitrogen regulation. Three and four dimensional NMR techniques were used to determine an intermediate resolution structure of the unphosphorylated, inactive form of the N-terminal domain of NTRC. The structure is comprised of five α-helices and a five-stranded β-sheet in a (β/α)5 topology. Analysis of the backbone dynamics of NTRC indicate that helix 4 and strand 5 are significantly more flexible than the rest of the secondary structure of the protein and that the loops making up the active site are flexible. The short lifetime of phospho-NTRC hampers the study of this form. However, conditions for determining the resonance assignments and, possibly, the three dimensional structure of phosphorylated NTRC have been obtained. Tentative assignments of the phosphorylated form indicate that the majority of the changes that NTRC experiences upon phosphorylation occur in helix 3, strand 4, helix 4, strand 5, and the loop between strand 5 and helix 5 (the 3445 face of NTRC) as well as near the site of phosphorylation. In order to examine a stable, activated form of the protein, constitutively active mutants of NTRC were investigated.

  1. A second order anti-diffusive Lagrange-remap scheme for two-component flows

    Directory of Open Access Journals (Sweden)

    Lagoutière Frédéric

    2011-11-01

    Full Text Available We build a non-dissipative second order algorithm for the approximate resolution of the one-dimensional Euler system of compressible gas dynamics with two components. The considered model was proposed in [1]. The algorithm is based on [8] which deals with a non-dissipative first order resolution in Lagrange-remap formalism. In the present paper we describe, in the same framework, an algorithm that is second order accurate in time and space, and that preserves sharp interfaces. Numerical results reported at the end of the paper are very encouraging, showing the interest of the second order accuracy for genuinely non-linear waves. Nous construisons un algorithme d’ordre deux et non dissipatif pour la résolution approchée des équations d’Euler de la dynamique des gaz compressibles à deux constituants en dimension un. Le modèle que nous considérons est celui à cinq équations proposé et analysé dans [1]. L’algorithme est basé sur [8] qui proposait une résolution approchée à l’ordre un et non dissipative au moyen d’un splitting de type Lagrange-projection. Dans le présent article, nous décrivons, dans le même formalisme, un algorithme d’ordre deux en temps et en espace, qui préserve des interfaces « parfaites » entre les constituants. Les résultats numériques rapportés à la fin de l’article sont très encourageants ; ils montrent clairement les avantages d’un schéma d’ordre deux pour les ondes vraiment non linéaires.

  2. Perturbative treatment of spin-orbit coupling within spin-free exact two-component theory

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lan, E-mail: chenglanster@gmail.com [Institute for Theoretical Chemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Gauss, Jürgen, E-mail: gauss@uni-mainz.de [Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz (Germany)

    2014-10-28

    This work deals with the perturbative treatment of spin-orbit-coupling (SOC) effects within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e). We investigate two schemes for constructing the SFX2C-1e SOC matrix: the SFX2C-1e+SOC [der] scheme defines the SOC matrix elements based on SFX2C-1e analytic-derivative theory, hereby treating the SOC integrals as the perturbation; the SFX2C-1e+SOC [fd] scheme takes the difference between the X2C-1e and SFX2C-1e Hamiltonian matrices as the SOC perturbation. Furthermore, a mean-field approach in the SFX2C-1e framework is formulated and implemented to efficiently include two-electron SOC effects. Systematic approximations to the two-electron SOC integrals are also proposed and carefully assessed. Based on benchmark calculations of the second-order SOC corrections to the energies and electrical properties for a set of diatomic molecules, we show that the SFX2C-1e+SOC [der] scheme performs very well in the computation of perturbative SOC corrections and that the “2eSL” scheme, which neglects the (SS|SS)-type two-electron SOC integrals, is both efficient and accurate. In contrast, the SFX2C-1e+SOC [fd] scheme turns out to be incompatible with a perturbative treatment of SOC effects. Finally, as a first chemical application, we report high-accuracy calculations of the {sup 201}Hg quadrupole-coupling parameters of the recently characterized ethylmercury hydride (HHgCH{sub 2}CH{sub 3}) molecule based on SFX2C-1e coupled-cluster calculations augmented with second-order SOC corrections obtained at the Hartree-Fock level using the SFX2C-1e+SOC [der]/2eSL scheme.

  3. Non-Isothermal Crystallization of PP/HGB Composites%PP/空心玻璃微珠复合材料非等温结晶研究

    Institute of Scientific and Technical Information of China (English)

    李军伟; 赵巍; 李勇

    2012-01-01

    采用熔融共混挤出的方法,制备了聚丙烯(PP)/空心玻璃微珠(HGB)复合材料,用差示扫描量热法研究了PP和PP/HGB复合材料的非等温结晶过程,并通过Jeziorny和莫志深方程研究了非等温结晶动力学.结果表明,随降温速率的增大,PP和PP/HGB复合材料的结晶峰温和结晶度降低,结晶速率增大;HGB的加入降低了PP的结晶速率.%The polypropylene/hollow glass beads (PP/HGB) composites were prepared by a melt-extrusion method, and the non-isothermal crystallization behavior of pure PP and PP/ HGB composites was characterized via a differential scanning calorimetry (DSC). The non-isothermal crystallization kinetics of the samples were discussed by Jeziorny and Mo equations, respectively. The results show that with increasing of the cooling rate, the crystallization temperature and crystallinity of PP and PP/HGB composites decrease, while the crystallization rate increases. However, HGB reduces the crystallization rate of PP.

  4. Emissivity and electrooptical properties of semiconducting quantum dots/rods and liquid crystal composites: a review

    Science.gov (United States)

    Singh, Gautam; Fisch, Michael; Kumar, Satyendra

    2016-05-01

    Investigations of the mixtures of semiconducting quantum scale particles in anisotropic liquid crystal (LC) medium have become a vibrant area of research primarily due to their very interesting phenomenology. The results of these investigations fall into four groups: (i) Photoluminescent emissive properties of the quantum particles ordinarily depend on the size, shape, and chemical nature of the particles. These undergo important changes in their spectrum, polarization, and isotropy of emission when dissolved in an anisotropic LC phase. Moreover, their response to external stimuli such as mechanical, optical, or electric fields is altered in important ways; (ii) physical properties of LCs such as viscosity, dielectric relaxation, etc are modified by the addition of quantum particles. Their presence in ferroelectric smectic LC is known to give rise to an antiferro- to ferri-electric phase transition and suppresses the paraelectric phase; (iii) switching characteristics of LC devices are altered in important ways by the addition of quantum particles. Their threshold voltage is usually lowered, contrast ratio, and switching speed of nematic, ferroelectric, and cholesteric devices may increase or decrease depending on the concentration, applied field, and particle anisotropy; and (iv) controlled aggregation of quantum particles at the interface between isotropic and LC domains, near added polystyrene beads, and in the vicinity of point defects gives rise to interesting photonic structures, enables studies of photon antibunching and single photon sources. Clearly, there is a need to understand the basic and applied aspects of these systems and find routes to their technological applications including sensors, electrooptical devices, and solar energy harvesting. This review provides an overview of recent work involving liquid crystals and a variety of quantum particles.

  5. Emissivity and electrooptical properties of semiconducting quantum dots/rods and liquid crystal composites: a review.

    Science.gov (United States)

    Singh, Gautam; Fisch, Michael; Kumar, Satyendra

    2016-05-01

    Investigations of the mixtures of semiconducting quantum scale particles in anisotropic liquid crystal (LC) medium have become a vibrant area of research primarily due to their very interesting phenomenology. The results of these investigations fall into four groups: (i) Photoluminescent emissive properties of the quantum particles ordinarily depend on the size, shape, and chemical nature of the particles. These undergo important changes in their spectrum, polarization, and isotropy of emission when dissolved in an anisotropic LC phase. Moreover, their response to external stimuli such as mechanical, optical, or electric fields is altered in important ways; (ii) physical properties of LCs such as viscosity, dielectric relaxation, etc are modified by the addition of quantum particles. Their presence in ferroelectric smectic LC is known to give rise to an antiferro- to ferri-electric phase transition and suppresses the paraelectric phase; (iii) switching characteristics of LC devices are altered in important ways by the addition of quantum particles. Their threshold voltage is usually lowered, contrast ratio, and switching speed of nematic, ferroelectric, and cholesteric devices may increase or decrease depending on the concentration, applied field, and particle anisotropy; and (iv) controlled aggregation of quantum particles at the interface between isotropic and LC domains, near added polystyrene beads, and in the vicinity of point defects gives rise to interesting photonic structures, enables studies of photon antibunching and single photon sources. Clearly, there is a need to understand the basic and applied aspects of these systems and find routes to their technological applications including sensors, electrooptical devices, and solar energy harvesting. This review provides an overview of recent work involving liquid crystals and a variety of quantum particles.

  6. Ultrawide low frequency band gap of phononic crystal in nacreous composite material

    Energy Technology Data Exchange (ETDEWEB)

    Yin, J.; Huang, J.; Zhang, S., E-mail: zhangs@dlut.edu.cn; Zhang, H.W.; Chen, B.S.

    2014-06-27

    The band structure of a nacreous composite material is studied by two proposed models, where an ultrawide low frequency band gap is observed. The first model (tension-shear chain model) with two phases including brick and mortar is investigated to describe the wave propagation in the nacreous composite material, and the dispersion relation is calculated by transfer matrix method and Bloch theorem. The results show that the frequency ranges of the pass bands are quite narrow, because a special tension-shear chain motion in the nacreous composite material is formed by some very slow modes. Furthermore, the second model (two-dimensional finite element model) is presented to investigate its band gap by a multi-level substructure scheme. Our findings will be of great value to the design and synthesis of vibration isolation materials in a wide and low frequency range. Finally, the transmission characteristics are calculated to verify the results. - Highlights: • A Brick-and-Mortar structure is used to discuss wave propagation through nacreous materials. • A 1D Bloch wave solution of nacreous materials with a tension-shear chain model is obtained. • The band structure and transmission characteristics of nacreous materials with the FE model are examined. • An ultrawide low frequency band gap is found in nacreous materials with both theory and FE model.

  7. PA11/HGB复合材料的等温结晶动力学研究%Study on Isothermal Crystallization Kinetics of Nylon 11/HGB Composites

    Institute of Scientific and Technical Information of China (English)

    雷青娟; 王志强; 刘春艳

    2016-01-01

    利用差示扫描量热仪,Avrami方程和Hoffman-Weeks理论,研究了不同结晶温度下,尼龙11/空心玻璃微珠(PA11/HGB)复合材料的等温结晶和其熔融行为。结果表明,Avrami方程能够较好地描述复合材料PA11/HGB的等温结晶动力学;且材料随温度的升高,结晶速率呈逐渐降低趋势,HGB在复合材料起到成核剂的作用。%The isothermal crystallization and melting behavior of Nylon 11/hollow glass bead (PA11/HGB) composite at different crystallization temperature was studied by using Avrami equation and Hoffman-Weeks theory and differential scanning calorimetry. The results show that the isothermal crystallization kinetics of PA11/HGB composite can be well described with Avrami equation. The isothermal crystallization rate of PA11/HGB composite show a trend of gradually reduce with the temperature increase. HGB play a role of nucleating agent in PA11/HGB composite.

  8. Thermal Regulation of Membrane Lipid Fluidity by a Two-Component System in "Bacillus Subtilis"

    Science.gov (United States)

    Bredeston, L. M.; Marciano, D.; Albanesi, D.; De Mendoza, D.; Delfino, J. M.

    2011-01-01

    This article describes a simple and robust laboratory exercise on the regulation of membrane unsaturated fatty acid composition in bacteria by a decrease in growth temperature. We take advantage of the well characterized Des pathway of "Bacillus subtilis", composed of a [delta]5-desaturase (encoded by the "des" gene) and the canonical…

  9. High compositional homogeneity of CdTexSe1−x crystals grown by the Bridgman method

    Directory of Open Access Journals (Sweden)

    U. N. Roy

    2015-02-01

    Full Text Available We obtained high-quality CdTexSe1−x (CdTeSe crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL’s National Synchrotron Light Source X27A beam line. The compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ∼1.0. This high uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing higher efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional CdxZn1−xTe (CdZnTe or CZT.

  10. Composition and ultrastructure of the suberized cell wall of isolated crystal idioblasts from Agave americana L. leaves.

    Science.gov (United States)

    Espelie, K E; Wattendorff, J; Kolattukudy, P E

    1982-07-01

    Styloid-calcium-oxalate-crystal-containing idioblasts possess an interior cell-wall layer which has a lamellar ultrastructure. Idioblasts were isolated by centrifugation of an Agave americana leaf homogenate through 2M sucrose. The aliphatic monomers of the polymeric material from an idioblast fraction were primarily ω-hydroxy acids (32%) and dicarboxylic acids (35%), with C18:1 dicarboxylic acid being the most dominant monomer (25%). Nitrobenzene oxidation of the idioblasts yielded syringaldehyde and vanillin in a ratio of 0.46:1. The major class of wax associated with the idioblasts was free fatty acids (34%). A major homologue of both the fatty acid and fatty alcohol fractions of this wax was C22. The hydrocarbon fraction of the wax had a broad chainlength distribution with a large amount of even-numbered (47%) and shorter-chain homologues. The ultrastructure, the composition of the aliphatic and aromatic components of the polymeric material as well as the composition of the wax show that the idioblast cell wall is suberized. The wax and cutin polymer of the epidermis of A. americana leaves were chemically characterized for comparative purposes.

  11. A high-resolution study of surfactant partitioning and kinetic limitations for two-component internally mixed aerosols

    Science.gov (United States)

    Suda, S. R.; Petters, M. D.

    2013-12-01

    Atmospheric aerosols serve as cloud condensation nuclei (CCN), altering cloud properties and ultimately affecting climate through their effect on the radiative balance. Aerosol CCN activity depends in part on aerosol composition and surfactant compounds are of particular interest because surfactants are enriched at the water/air interface, resulting in a radial concentration gradient within the aqueous droplet. Accurate treatment of the surfactant concentration gradient complicates the otherwise straightforward predictions of CCN activity for aerosols of known composition. To accurately evaluate predictions made by theory, laboratory studies investigating the relationship between critical supersaturation and dry diameter of particles that include surfactants require significant reduction in measurement uncertainty for both water-uptake and CCN measurements. Furthermore, uncertainties remain regarding kinetic limitations to surfactant partitioning that could result in deviation from predictions based on equilibrium thermodynamics. This study attempts to address some of these issues through high-resolution analysis of CCN activity of two-component mixed surfactant/non-surfactant aerosols at different internal mixing ratios performed with and without a water-uptake time delay to ascertain whether or not the observed effects are kinetically limited. We present new data for the aerosols consisting of 1) the ionic surfactant sodium dodecyl sulfate (SDS) with ammonium sulfate, 2) SDS with sodium chloride and 3) the strong non-ionic fluorosurfactant Zonyl with an organic proxy glucose. As a point of reference we also evaluated the mixture of ammonium sulfate with glucose. Aerosol activation diameters were determined using CCN analysis in conjunction with scanning mobility size classification and high sheath-to-aerosol flow ratios. This resulted in CCN-derived kappa values that could be determined within +/-5% relative error. To test whether dynamic surfactant partitioning

  12. Characterization of an archaeal two-component system that regulates methanogenesis in Methanosaeta harundinacea.

    Directory of Open Access Journals (Sweden)

    Jie Li

    Full Text Available Two-component signal transduction systems (TCSs are a major mechanism used by bacteria in response to environmental changes. Although many sequenced archaeal genomes encode TCSs, they remain poorly understood. Previously, we reported that a methanogenic archaeon, Methanosaeta harundinacea, encodes FilI, which synthesizes carboxyl-acyl homoserine lactones, to regulate transitions of cellular morphology and carbon metabolic fluxes. Here, we report that filI, the cotranscribed filR2, and the adjacent filR1 constitute an archaeal TCS. FilI possesses a cytoplasmic kinase domain (histidine kinase A and histidine kinase-like ATPase and its cognate response regulator. FilR1 carries a receiver (REC domain coupled with an ArsR-related domain with potential DNA-binding ability, while FilR2 carries only a REC domain. In a phosphorelay assay, FilI was autophosphorylated and specifically transferred the phosphoryl group to FilR1 and FilR2, confirming that the three formed a cognate TCS. Through chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR using an anti-FilR1 antibody, FilR1 was shown to form in vivo associations with its own promoter and the promoter of the filI-filR2 operon, demonstrating a regulatory pattern common among TCSs. ChIP-qPCR also detected FilR1 associations with key genes involved in acetoclastic methanogenesis, acs4 and acs1. Electrophoretic mobility shift assays confirmed the in vitro tight binding of FilR1 to its own promoter and those of filI-filR2, acs4, and mtrABC. This also proves the DNA-binding ability of the ArsR-related domain, which is found primarily in Archaea. The archaeal promoters of acs4, filI, acs1, and mtrABC also initiated FilR1-modulated expression in an Escherichia coli lux reporter system, suggesting that FilR1 can up-regulate both archaeal and bacterial transcription. In conclusion, this work identifies an archaeal FilI/FilRs TCS that regulates the methanogenesis of M. harundinacea.

  13. The two-component giant radio halo in the galaxy cluster Abell 2142

    Science.gov (United States)

    Venturi, T.; Rossetti, M.; Brunetti, G.; Farnsworth, D.; Gastaldello, F.; Giacintucci, S.; Lal, D. V.; Rudnick, L.; Shimwell, T. W.; Eckert, D.; Molendi, S.; Owers, M.

    2017-07-01

    Aims: We report on a spectral study at radio frequencies of the giant radio halo in A 2142 (z = 0.0909), which we performed to explore its nature and origin. The optical and X-ray properties of the cluster suggest that A 2142 is not a major merger and the presence of a giant radio halo is somewhat surprising. Methods: We performed deep radio observations of A 2142 with the Giant Metrewave Radio Telescope (GMRT) at 608 MHz, 322 MHz, and 234 MHz and with the Very Large Array (VLA) in the 1-2 GHz band. We obtained high-quality images at all frequencies in a wide range of resolutions, from the galaxy scale, i.e. 5'', up to 60'' to image the diffuse cluster-scale emission. The radio halo is well detected at all frequencies and extends out to the most distant cold front in A 2142, about 1 Mpc away from the cluster centre. We studied the spectral index in two regions: the central part of the halo, where the X-ray emission peaks and the two brightest dominant galaxies are located; and a second region, known as the ridge (in the direction of the most distant south-eastern cold front), selected to follow the bright part of the halo and X-ray emission. We complemented our deep observations with a preliminary LOw Frequency ARray (LOFAR) image at 118 MHz and with the re-analysis of archival VLA data at 1.4 GHz. Results: The two components of the radio halo show different observational properties. The central brightest part has higher surface brightess and a spectrum whose steepness is similar to those of the known radio halos, i.e. α1.78 GHz118 MHz = 1.33 ± 0.08 . The ridge, which fades into the larger scale emission, is broader in size and has considerably lower surface brightess and a moderately steeper spectrum, i.e. α1.78 GHz118 MHz 1.5. We propose that the brightest part of the radio halo is powered by the central sloshing in A 2142, in a process similar to what has been suggested for mini-halos, or by secondary electrons generated by hadronic collisions in the ICM. On

  14. Evolutionary tuning of protein expression levels of a positively autoregulated two-component system.

    Directory of Open Access Journals (Sweden)

    Rong Gao

    2013-10-01

    Full Text Available Cellular adaptation relies on the development of proper regulatory schemes for accurate control of gene expression levels in response to environmental cues. Over- or under-expression can lead to diminished cell fitness due to increased costs or insufficient benefits. Positive autoregulation is a common regulatory scheme that controls protein expression levels and gives rise to essential features in diverse signaling systems, yet its roles in cell fitness are less understood. It remains largely unknown how much protein expression is 'appropriate' for optimal cell fitness under specific extracellular conditions and how the dynamic environment shapes the regulatory scheme to reach appropriate expression levels. Here, we investigate the correlation of cell fitness and output response with protein expression levels of the E. coli PhoB/PhoR two-component system (TCS. In response to phosphate (Pi-depletion, the PhoB/PhoR system activates genes involved in phosphorus assimilation as well as genes encoding themselves, similarly to many other positively autoregulated TCSs. We developed a bacteria competition assay in continuous cultures and discovered that different Pi conditions have conflicting requirements of protein expression levels for optimal cell fitness. Pi-replete conditions favored cells with low levels of PhoB/PhoR while Pi-deplete conditions selected for cells with high levels of PhoB/PhoR. These two levels matched PhoB/PhoR concentrations achieved via positive autoregulation in wild-type cells under Pi-replete and -deplete conditions, respectively. The fitness optimum correlates with the wild-type expression level, above which the phosphorylation output saturates, thus further increase in expression presumably provides no additional benefits. Laboratory evolution experiments further indicate that cells with non-ideal protein levels can evolve toward the optimal levels with diverse mutational strategies. Our results suggest that the natural

  15. Compositional analysis of electrodeposited bismuth telluride thermoelectric thin films using combined electrochemical quartz crystal microgravimetry--stripping voltammetry.

    Science.gov (United States)

    Ham, Sunyoung; Jeon, Soyeon; Lee, Ungki; Park, Minsoon; Paeng, Ki-Jung; Myung, Noseung; Rajeshwar, Krishnan

    2008-09-01

    Bismuth telluride (Bi 2Te 3 ) is a benchmark material for thermoelectric power generation and cooling applications. Electrodeposition is a versatile technique for preparing thin films of this material; however, it affords films of variable composition depending on the preparation history. A simple and rapid assay of electrodeposited films, therefore, has both fundamental and practical importance. In this study, a new protocol for the electroanalysis of Bi 2Te 3 thin films is presented by combining the two powerful and complementary techniques of electrochemical quartz crystal microgravimetry (EQCM) and stripping voltammetry. First, any free (and excess) tellurium in the electrodeposited film was reduced to soluble Te ( 2- ) species by scanning to negative potentials in a 0.1 M Na 2SO 4 electrolyte, and the accompanying frequency increase (mass loss) was used to determine the content of free tellurium. The film was again subjected to cathodic stripping in the same medium (to generate Bi (0) and soluble Te (2-) from the Bi 2 Te 3 film component of interest), and the EQCM frequency change was used to determine the content of chemically bound Te in the Bi 2Te 3 thin film and thereby the compound stoichiometry. Finally, the EQCM frequency change during Bi oxidation to Bi (3+) and the difference between total Bi and Bi in Bi 2Te 3 resulted in the assay of free (excess) Bi in the electrodeposited film. Problems associated with the chemical/electrochemical stability of the free Bi species were circumvented by a flow electroanalysis approach. Data are also presented on the sensitivity of electrodeposited Bi 2Te 3 film composition to the electrodeposition potential. This newly developed method can be used for the compositional analysis of other thermoelectric thin-film material candidates in general.

  16. Evaluation of a method for heat transfer measurements and thermal visualization using a composite of a heater element and liquid crystals

    Science.gov (United States)

    Hippensteele, S. A.; Russell, L. M.; Stepka, F. S.

    1981-01-01

    Commercially available elements of a composite consisting of a plastic sheet coated with liquid crystal, another sheet with a thin layer of a conducting material (gold or carbon), and copper bus bar strips were evaluated and found to provide a simple, convenient, accurate, and low-cost measuring device for use in heat transfer research. The particular feature of the composite is its ability to obtain local heat transfer coefficients and isotherm patterns that provide visual evaluation of the thermal performances of turbine blade cooling configurations. Examples of the use of the composite are presented.

  17. Evaluation of a method for heat transfer measurements and thermal visualization using a composite of a heater element and liquid crystals. [thermal performance of turbine blade cooling configurations

    Science.gov (United States)

    Hippensteele, S. A.; Russell, L. M.; Stepka, F. S.

    1981-01-01

    Commercially available elements of a composite consisting of a plastic sheet coated with liquid crystal, another sheet with a thin layer of a conducting material (gold or carbon), and copper bus bar strips were evaluated and found to provide a simple, convenient, accurate, and low-cost measuring device for use in heat transfer research. The particular feature of the composite is its ability to obtain local heat transfer coefficients and isotherm patterns that provide visual evaluation of the thermal performances of turbine blade cooling configurations. Examples of the use of the composite are presented.

  18. Rapid crystal recycling at Krafla Volcano, Iceland, inferred from oxygen-isotope and trace- element compositions and U-Th-Ra disequilibria in plagioclase

    Science.gov (United States)

    Cooper, K. M.; Sims, K. W.; Eiler, J. M.; Banerjee, N. R.

    2008-12-01

    The Icelandic central volcano of Krafla exhibits increasing assimilation of hydrothermally-altered crust with increasing differentiation of magmas, as evidenced by decreasing δ18O with decreasing MgO (Nicholson et al., 1991, J Pet 32, p.1005). The Krafla Fires eruption (1975-84) produced two different magma compositions simultaneously: quartz tholeiites near the center of the volcano, and olivine tholeiites north of the central volcano (Gronvold et al., 2008, Goldschmidt abstract). Examination of crystals in these magmas has the potential to provide information about the nature and timescales of mixing of distinct magmas and assimilation of crustal material at Krafla. We present oxygen-isotope compositions, trace-element compositions, and 238U-230Th-226Ra disequilibria measured in plagioclase crystals from samples of lavas erupted during two phases of the Krafla Fires eruption (ol tholeiite erupted Jan-Feb 1981, and qz tholeiite erupted Nov 1981). Oxygen-isotope data for multiple size fractions of plagioclase show a decrease in δ18O with increasing crystal size for the ol tholeiite (from ~4.1 permil to 3.5 permil), whereas there is no clear relationship between plagioclase size and oxygen-isotope composition in the qtz tholeiite (all size fractions average 4.1-4.3 permil). Furthermore, all measured plagioclase have δ18O lower than would be in equilibrium with the whole rock measurements (by up to 1.5 permil). These data imply that (1) few or none of the measured crystals precipitated from the host liquids, and (2) the crystals were entrained in the host magmas shortly prior to eruption, allowing them to maintain oxygen isotopic disequilibrium and heterogeneity within the crystal populations. These inferences are corroborated by trace element compositions measured in plagioclase by laser-ablation ICPMS, as the majority of analyzed points have Ba and Sr concentrations inconsistent with equilibrium partitioning between crystals and liquid. Furthermore, in the case

  19. Optical sensor platform based on cellulose nanocrystals (CNC) - 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films.

    Science.gov (United States)

    Santos, Moliria V; Tercjak, Agnieszka; Gutierrez, Junkal; Barud, Hernane S; Napoli, Mariana; Nalin, Marcelo; Ribeiro, Sidney J L

    2017-07-15

    The preparation of composite materials has gained tremendous attention due to the potential synergy of the combined materials. Here we fabricate novel thermal/electrical responsive photonic composite films combining cellulose nanocrystals (CNC) with a low molecular weight nematic liquid crystal (NLC), 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC). The obtained composite material combines both intense structural coloration of photonic cellulose and thermal and conductive properties of NLC. Scanning electron microscopy (SEM) results confirmed that liquid crystals coated CNC films maintain chiral nematic structure characteristic of CNC film and simultaneously, transversal cross-section scanning electron microscopy images indicated penetration of liquid crystals through the CNC layers. Investigated composite film maintain NLC optical properties being switchable as a function of temperature during heating/cooling cycles. The relationship between the morphology and thermoresponsive in the micro/nanostructured materials was investigated by using transmission optical microscopy (TOM). Conductive response of the composite films was proved by Electrostatic force microscopy (EFM) measurement. Designed thermo- and electro-responsive materials open novel simple pathway of fabrication of CNC-based materials with tunable properties. Copyright © 2017. Published by Elsevier Ltd.

  20. High-temperature superfluidity of the two-component Bose gas in a transition metal dichalcogenide bilayer

    Science.gov (United States)

    Berman, Oleg L.; Kezerashvili, Roman Ya.

    2016-06-01

    The high-temperature superfluidity of two-dimensional dipolar excitons in two parallel transition metal dichalcogenide (TMDC) layers is predicted. We study Bose-Einstein condensation in the two-component system of dipolar A and B excitons. The effective mass, energy spectrum of the collective excitations, the sound velocity, and critical temperature are obtained for different TMDC materials. It is shown that in the Bogoliubov approximation, the sound velocity in the two-component dilute exciton Bose gas is always larger than in any one-component exciton system. The difference between the sound velocities for two-component and one-component dilute gases is caused by the fact that the sound velocity for a two-component system depends on the reduced mass of A and B excitons, which is always smaller than the individual mass of A or B exciton. Due to this fact, the critical temperature Tc for superfluidity for the two-component exciton system in a TMDC bilayer is about one order of magnitude higher than Tc in any one-component exciton system. We propose to observe the superfluidity of two-dimensional dipolar excitons in two parallel TMDC layers, which causes two opposite superconducting currents in each TMDC layer.

  1. A generalized energy model for the behavior of single-crystal magneto-electric composites

    Science.gov (United States)

    Atulasimha, Jayasimha; Akhras, George; Flatau, Alison B.

    2007-04-01

    This paper explores a unified energy-based approach to model the non-linear behavior of both magnetostrictive and piezoelectric materials. While the energy-approach developed by Armstrong has been shown to capture the magnetostrictive behavior of materials such as Terfenol-D1 and Iron-Gallium2 along different crystallographic directions, extending this approach to piezoelectric materials presents a considerable challenge. Some piezo-electric materials such as PMN-PT and BaTiO 3 may undergo phase changes under applied electric fields and stress in addition to polarization switching. A modeling approach is developed in this paper to capture these effects. Finally, it is shown that the constitutive behavior for the piezo-electric/magnetostrictive layers, coupled by a simple blocked-force approach, is likely to model the behavior of magneto-electric composites.

  2. Modulation of calcium oxalate dihydrate growth by selective crystal-face binding of phosphorylated osteopontin and polyaspartate peptide showing occlusion by sectoral (compositional) zoning.

    Science.gov (United States)

    Chien, Yung-Ching; Masica, David L; Gray, Jeffrey J; Nguyen, Sarah; Vali, Hojatollah; McKee, Marc D

    2009-08-28

    Calcium oxalate dihydrate (COD) mineral and the urinary protein osteopontin/uropontin (OPN) are commonly found in kidney stones. To investigate the effects of OPN on COD growth, COD crystals were grown with phosphorylated OPN or a polyaspartic acid-rich peptide of OPN (DDLDDDDD, poly-Asp(86-93)). Crystals grown with OPN showed increased dimensions of the {110} prismatic faces attributable to selective inhibition at this crystallographic face. At high concentrations of OPN, elongated crystals with dominant {110} faces were produced, often with intergrown, interpenetrating twin crystals. Poly-Asp(86-93) dose-dependently elongated crystal morphology along the {110} faces in a manner similar to OPN. In crystal growth studies using fluorescently tagged poly-Asp(86-93) followed by imaging of crystal interiors using confocal microscopy, sectoral (compositional) zoning in COD was observed resulting from selective binding and incorporation (occlusion) of peptide exclusively into {110} crystal sectors. Computational modeling of poly-Asp(86-93) adsorption to COD {110} and {101} surfaces also suggests increased stabilization of the COD {110} surface and negligible change to the natively stable {101} surface. Ultrastructural, colloidal-gold immunolocalization of OPN by transmission electron microscopy in human stones confirmed an intracrystalline distribution of OPN. In summary, OPN and its poly-Asp(86-93) sequence similarly affect COD mineral growth; the {110} crystallographic faces become enhanced and dominant attributable to {110} face inhibition by the protein/peptide, and peptides can incorporate into the mineral phase. We, thus, conclude that the poly-Asp(86-93) domain is central to the OPN ability to interact with the {110} faces of COD, where it binds to inhibit crystal growth with subsequent intracrystalline incorporation (occlusion).

  3. Inferring the effects of compositional boundary layers on crystal nucleation, growth textures, and mineral chemistry in natural volcanic tephras through submicron-resolution imaging

    Directory of Open Access Journals (Sweden)

    Georg F. Zellmer

    2016-09-01

    Full Text Available Crystal nucleation and growth are first order processes captured in volcanic rocks and record important information about the rates of magmatic processes and chemical evolution of magmas during their ascent and eruption. We have studied glass-rich andesitic tephras from the Central Plateau of the Southern Taupo Volcanic Zone by electron- and ion-microbeam imaging techniques to investigate down to sub-micrometre scale the potential effects of compositional boundary layers (CBLs of melt around crystals on the nucleation and growth of mineral phases and the chemistry of crystal growth zones. We find that CBLs may influence the types of mineral phases nucleating and growing, and growth textures such as the development of swallowtails. The chemistry of the CBLs also has the capacity to trigger intermittent overgrowths of nanometre-scale bands of different phases in rapidly growing crystals, resulting in what we refer to as cryptic phase zoning. The existence of cryptic phase zoning has implications for the interpretation of microprobe compositional data, and the resulting inferences made on the conditions of magmatic evolution. Identification of cryptic phase zoning may in future lead to more accurate thermobarometric estimates and thus geospeedometric constraints. In future, a more quantitative characterization of CBL formation and its effects on crystal nucleation and growth may contribute to a better understanding of melt rheology and magma ascent processes at the onset of explosive volcanic eruptions, and will likely be of benefit to hazard mitigation efforts.

  4. Preparation of Calcined Zirconia-Carbon Composite from Metal Organic Frameworks and Its Application to Adsorption of Crystal Violet and Salicylic Acid

    Directory of Open Access Journals (Sweden)

    Zubair Hasan

    2016-03-01

    Full Text Available Zirconia-carbon (ZC composites were prepared via calcination of Zr-based metal organic frameworks, UiO-66 and amino-functionalized UiO-66, under N2 atmosphere. The prepared composites were characterized using a series of instrumental analyses. The surface area of the ZC composites increased with the increase of calcination temperature, with the formation of a graphite oxide phase observed at 900 °C. The composites were used for adsorptive removal of a dye (crystal violet, CV and a pharmaceutical and personal care product (salicylic acid, SA. The increase of the calcination temperature resulted in enhanced adsorption capability of the composites toward CV. The composite calcined at 900 °C exhibited a maximum uptake of 243 mg·g−1, which was much greater than that by a commercial activated carbon. The composite was also effective in SA adsorption (102 mg·g−1, and N-functionalization of the composite further enhanced its adsorption capability (109 mg·g−1. CV adsorption was weakly influenced by solution pH, but was more dependent on the surface area and pore volume of the ZC composite. Meanwhile, SA adsorption showed strong pH dependence, which implies an active role of electrostatic interactions in the adsorption process. Base-base repulsion and hydrogen bonding are also suggested to influence the adsorption of CV and SA, especially for the N-functionalized composite.

  5. Two-component systems in microbial communities: approaches and resources for generating and analyzing metagenomic data sets.

    Science.gov (United States)

    Podar, Mircea

    2007-01-01

    Two-component signal transduction represents the main mechanism by which bacterial cells interact with their environment. The functional diversity of two-component systems and their relative importance in the different taxonomic groups and ecotypes of bacteria has become evident with the availability of several hundred genomic sequences. The vast majority of bacteria, including many high rank taxonomic units, while being components of complex microbial communities remain uncultured (i.e., have not been isolated or grown in the laboratory). Environmental genomic data from such communities are becoming available, and in addition to its profound impact on microbial ecology it will propel molecular biological disciplines beyond the traditional model organisms. This chapter describes the general approaches used in generating environmental genomic data and how that data can be used to advance the study of two component-systems and signal transduction in general.

  6. Experimental investigation of the factors influencing the polymer-polymer bond strength during two component injection moulding

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2007-01-01

    . A thorough understanding of the factors that influence the bond strength of polymers is necessary for multi component polymer processing. This paper investigates the effects of the process and material parameters on the bond strength of two component polymer parts and identifies the factors which can......Two component injection moulding is a commercially important manufacturing process and a key technology for Moulded Interconnect Devices (MIDs). Many fascinating applications of two component or multi component polymer parts are restricted due to the weak interfacial adhesion of the polymers...... effectively control the adhesion between two polymers. The effects of environmental conditions on the bond strength after moulding are also investigated. The material selections and environmental conditions were chosen based on the suitability of MID production, but the results and discussion presented...

  7. ELECTRICAL RESISTIVITY, CRYSTALLIZATION AND MECHANICAL PROPERTIES OF POLYPROPYLENE/MULTI-WALLED CARBON NANOTUBE/CALCIUM CARBONATE COMPOSITES PREPARED BY MELT MIXING

    Institute of Scientific and Technical Information of China (English)

    Ha-da Bao; Zhao-xia Guo; Jian Yu

    2009-01-01

    Polypropylene (PP)/multi-walled carbon nanotube (MWCNT)/calcium carbonate (CaCO3) composites are prepared by melt mixing using two types of CaCO3 of different sizes. The electrical resistivities of the composites with the two types of CaCO3 are all lower than those of the corresponding PP/MWCNT composites at various MWCNT loadings (1 wt%-5 wt%). The morphology of the composites is investigated by field emission scanning electron microscopy (FESEM). The crystallization behavior of PP in the composites is characterized by differential scanning calorimetry (DSC). The storage modulus, as measured by dynamic mechanical analysis (DMA), increases significantly by the presence of CaCO3.

  8. Phase equilibria in DOPC/DPPC: Conversion from gel to subgel in two component mixtures.

    Science.gov (United States)

    Schmidt, Miranda L; Ziani, Latifa; Boudreau, Michelle; Davis, James H

    2009-11-07

    Biological membranes contain a mixture of phospholipids with varying degrees of hydrocarbon chain unsaturation. Mixtures of long chain saturated and unsaturated lipids with cholesterol have attracted a lot of attention because of the formation of two coexisting fluid bilayer phases in such systems over a broad range of temperature and composition. Interpretation of the phase behavior of such ternary mixtures must be based on a thorough understanding of the phase behavior of the binary mixtures formed with the same components. This article describes the phase behavior of mixtures of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with 1,2-di-d(31)-palmitoyl-sn-glycero-3-phosphocholine (DPPC) between -20 and 50 degrees C. Particular attention has been paid to the phase coexistence below about 16 degrees C where the subgel phase appears. The changes in the shape of the spectrum (and its spectral moments) during the slow transformation process leads to the conclusion that below 16 degrees C the gel phase is metastable and the gel component of the two-phase mixture slowly transforms to the subgel phase with a slightly different composition. This results in a line of three-phase coexistence near 16 degrees C. Analysis of the transformation of the metastable gel domains into the subgel phase using the nucleation and growth model shows that the subgel domain growth is a two dimensional process.

  9. A Two-Component Regulatory System Integrates Redox State and Population Density Sensing in Pseudomonas putida▿ †

    OpenAIRE

    Fernández-Piñar, Regina; Ramos, Juan Luis; Rodríguez-Herva, José Juan; Espinosa-Urgel, Manuel

    2008-01-01

    A two-component system formed by a sensor histidine kinase and a response regulator has been identified as an element participating in cell density signal transduction in Pseudomonas putida KT2440. It is a homolog of the Pseudomonas aeruginosa RoxS/RoxR system, which in turn belongs to the RegA/RegB family, described in photosynthetic bacteria as a key regulatory element. In KT2440, the two components are encoded by PP_0887 (roxS) and PP_0888 (roxR), which are transcribed in a single unit. Ch...

  10. Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor

    OpenAIRE

    Kato, Akinori; Groisman, Eduardo A.

    2004-01-01

    A fundamental question in signal transduction is how an organism integrates multiple signals into a cellular response. Here we report the mechanism by which the Salmonella PmrA/PmrB two-component system responds to the signal controlling the PhoP/PhoQ two-component system. We establish that the PhoP-activated PmrD protein binds to the phosphorylated form of the response regulator PmrA, preventing both its intrinsic dephosphorylation and that promoted by its cognate sensor kinase PmrB. This re...

  11. Complex trace element effects of source mixing-fractional crystallization composite processes in Kalaan granodiorite pluton along Wulungu tectonic belt,northern Xinjiang

    Institute of Scientific and Technical Information of China (English)

    刘伟; A.Masuda

    1995-01-01

    Mixing-fractional crystallization composite processes generate 6 complex patterns,which aresynthesized into 3 models,on C21/C31-C11/C31 ratio correlation plots of trace eleroents E1,E2,E3 according totheir relative incompatibility.Three of the six effects are clearly displayed on ratio-ratio correlation plots oftrace elements in the Kalaan granodiorite pluton,indicative of a source mixing-fractional crystallization compositeprocess.The overlying lithospheric mantle was modified by the subduction of oceanic plate during Palaeozoic.The incompatibility order of the 7 concerned trace elements is DTa

  12. A Principle of Corresponding States for Two-Component, Self-Gravitating Fluids

    Directory of Open Access Journals (Sweden)

    Caimmi, R.

    2010-06-01

    Full Text Available Macrogases are defined as two-component,large-scale celestial objects where the subsystems interact only via gravitation.The macrogas equation of state is formulated and compared to the van der Waals (VDWequation of state for ordinary gases.By analogy, it is assumed that real macroisothermal curves in macrogases occur as real isothermal curves in ordinary gases, where a phase transition(vapour-liquid observed in ordinary gases and gas-stars assumed in macrogases takesplace along a horizontal linein the macrovolume-macropressure{small $({sf O}sX_mathrm{V}sX_mathrm{p}$} plane.The intersections between real and theoretical(deduced from the equation of state macro isothermalcurves, make two regions of equal surface as for ordinary gases obeying the VDW equation of state.A numerical algorithm is developed for determining the following points of a selected theoretical macroisothermal curve on the {small $({sf O}sX_mathrm{V}sX_mathrm{p}$} plane:the three intersections with the related real macroisothermal curve,and the two extremum points (one maximum and one minimum. Different kinds of macrogases are studied in detail: UU, where U density profiles are flat, to be conceived as a simple guidance case; HH, where H density profiles obey the Hernquist (1990 law, which satisfactorily fits the observed spheroidal components of galaxies; HN/NH, where N density profiles obey the Navarro-Frenk-White (1995,1996, 1997 law, which satisfactorily fits the simulated nonbaryonic dark matter haloes.A different trend is shown by theoretical macroisothermal curves on the{small $({sf O}sX_mathrm{V}sX_mathrm{p}$} plane,according to whether density profiles are sufficiently mild (UU or sufficiently steep (HH, HN/NH.In the former alternative, no critical macroisothermal curve exists, below or above which the trend is monotonous. In the latter alternative, a critical macroisothermal curve exists, as shown by VDW gases, where the critical point may be defined as the horizontal

  13. Microstructural investigation of Si-ion-irradiated single crystal 3C-SiC and SA-Tyrannohex SiC fiber-bonded composite at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Chun-Yu [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Tsai, Shuo-Cheng [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Lin, Hua-Tay [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Chen, Fu-Rong [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Kai, Ji-Jung, E-mail: ceer0001@gmail.com [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China)

    2013-11-15

    Silicon carbides (SiCs) are considered as one of the promising candidates for structural and core materials used in fusion reactor and high temperature gas-cooled reactor (HTGR) due to its high thermal stability, and good resistance to irradiation and chemical attack. Single crystal 3C-SiC with less intrinsic defects was used to precisely characterize the radiation-induced defects in 3C-SiC. In addition, there are limited discussions related to radiation effect of SA-Tyrannohex fiber-bonded composite at high temperatures. Therefore, in this study, single crystal 3C-SiC thin film and SA-Tyrannohex SiC fiber-bonded composite were irradiated at 1000–1350 °C with 7 MeV Si{sup 3+} ion to simulate the neutron irradiation in reactors. The microstructure of the irradiated SiC was examined by using high resolution transmission electron microscope (HRTEM). In irradiated single crystal 3C-SiC, high resolution images showed that the planar defects were extrinsic stacking faulted loop with changing atomic sequences and intrinsic stacking faulted loop, i.e. vacancy loop. In addition, dislocation loops, voids, and edge dislocations in SA-Tyrannohex SiC fiber-bonded composite after irradiation were investigated. Besides, larger voids (with diameter 10–40 nm) formed in alumina with preferred orientation after irradiation perhaps resulting in degradation of strength of the SA-Tyrannohex SiC fiber-bonded composite.

  14. Gold nanoparticle self-assembly in two-component lipid Langmuir monolayers.

    Science.gov (United States)

    Mogilevsky, Alina; Jelinek, Raz

    2011-02-15

    Self-assembly processes are considered to be fundamental factors in supramolecular chemistry. Langmuir monolayers of surfactants or lipids have been shown to constitute effective 2D "templates" for self-assembled nanoparticles and colloids. Here we show that alkyl-coated gold nanoparticles (Au NPs) adopt distinct configurations when incorporated within Langmuir monolayers comprising two lipid components at different mole ratios. Thermodynamic and microscopy analyses reveal that the organization of the Au NP aggregates is governed by both lipid components. In particular, we show that the configurations of the NP assemblies were significantly affected by the extent of molecular interactions between the two lipid components within the monolayer and the monolayer phases formed by each individual lipid. This study demonstrates that multicomponent Langmuir monolayers significantly modulate the self-assembly properties of embedded Au NPs and that parameters such as the monolayer composition, surface pressure, and temperature significantly affect the 2D nanoparticle organization.

  15. The Campylobacter jejuni CprRS two-component regulatory system regulates aspects of the cell envelope

    Science.gov (United States)

    As a leading cause of foodborne bacterial gastroenteritis, Campylobacter jejuni is a significant human pathogen. C. jejuni lives commensally in the gastrointestinal tract of animals, but tolerates variable environments during transit to a susceptible host. A two-component regulatory system, CprRS, w...

  16. Cloning of a two-component signal transduction system of Xanthomonas campestris pv. phaseoli var. fuscans strain BXPF65

    DEFF Research Database (Denmark)

    Chan, JWYF; Maynard, Scott; Goodwin, PH

    1998-01-01

    A putative two-component signal transduction system was amplified and cloned from the plant pathogenic bacterium Xanthomonas campestris pv. phaseoli var. fuscans isolate BXPF65. The 620 bp amplified fragment was sequenced and analyzed with the BLAST Enhanced Alignment Utility (BEAUTY). BEAUTY ana...

  17. Comparative analysis of two-component signal transduction systems of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis

    NARCIS (Netherlands)

    Been, de M.W.H.J.; Francke, C.; Moezelaar, R.; Abee, T.; Siezen, R.J.

    2006-01-01

    Members of the Bacillus cereus group are ubiquitously present in the environment and can adapt to a wide range of environmental fluctuations. In bacteria, these adaptive responses are generally mediated by two-component signal transduction systems (TCSs), which consist of a histidine kinase (HK) and

  18. The YvfTU Two-component System is involved in plcR expression in Bacillus cereus

    NARCIS (Netherlands)

    Brillard, Julien; Susanna, Kim; Michaud, Caroline; Dargaignaratz, Claire; Gohar, Michel; Nielsen-Leroux, Christina; Ramarao, Nalini; Kolsto, Anne-Brit; Nguyen-The, Christophe; Lereclus, Didier; Broussolle, Veronique

    2008-01-01

    Background: Most extracellular virulence factors produced by Bacillus cereus are regulated by the pleiotropic transcriptional activator PlcR. Among strains belonging to the B. cereus group, the plcR gene is always located in the vicinity of genes encoding the YvfTU two-component system. The putative

  19. A Conserved Two-Component Signal Transduction System Controls the Response to Phosphate Starvation in Bifidobacterium breve UCC2003.

    NARCIS (Netherlands)

    Alvarez-Martin, P.; Fernandez, M.; O'Connell-Motherway, M.; O'Connell, K.J.; Sauvageot, N.; Fitzgerald, G.F.; Macsharry, J.; Zomer, A.L.; Sinderen, D. van

    2012-01-01

    This work reports on the identification and molecular characterization of the two-component regulatory system (2CRS) PhoRP, which controls the response to inorganic phosphate (P(i)) starvation in Bifidobacterium breve UCC2003. The response regulator PhoP was shown to bind to the promoter region of

  20. Experimental investigation of the factors influencing the polymer-polymer bond strength during two-component injection moulding

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Bondo, Martin

    2010-01-01

    Two-component injection moulding is a commercially important manufacturing process and a key technology for combining different material properties in a single plastic product. It is also one of most industrially adaptive process chain for manufacturing so-called moulded interconnect devices (MID...