Optimal preparation of graph states
Cabello, Adan; Lopez-Tarrida, Antonio J; Portillo, Jose R
2010-01-01
We show how to prepare any graph state of up to 12 qubits with: (a) the minimum number of controlled-Z gates, and (b) the minimum preparation depth. We assume only one-qubit and controlled-Z gates. The method exploits the fact that any graph state belongs to an equivalence class under local Clifford operations. We extend up to 12 qubits the classification of graph states according to their entanglement properties, and identify each class using only a reduced set of invariants. For any state, we provide a circuit with both properties (a) and (b), if it does exist, or, if it does not, one circuit with property (a) and one with property (b), including the explicit one-qubit gates needed.
Generalized graph states based on Hadamard matrices
Energy Technology Data Exchange (ETDEWEB)
Cui, Shawn X. [Department of Mathematics, University of California, Santa Barbara, California 93106 (United States); Yu, Nengkun [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); UTS-AMSS Joint Research Laboratory for Quantum Computation and Quantum Information Processing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China); Zeng, Bei [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8 (Canada)
2015-07-15
Graph states are widely used in quantum information theory, including entanglement theory, quantum error correction, and one-way quantum computing. Graph states have a nice structure related to a certain graph, which is given by either a stabilizer group or an encoding circuit, both can be directly given by the graph. To generalize graph states, whose stabilizer groups are abelian subgroups of the Pauli group, one approach taken is to study non-abelian stabilizers. In this work, we propose to generalize graph states based on the encoding circuit, which is completely determined by the graph and a Hadamard matrix. We study the entanglement structures of these generalized graph states and show that they are all maximally mixed locally. We also explore the relationship between the equivalence of Hadamard matrices and local equivalence of the corresponding generalized graph states. This leads to a natural generalization of the Pauli (X, Z) pairs, which characterizes the local symmetries of these generalized graph states. Our approach is also naturally generalized to construct graph quantum codes which are beyond stabilizer codes.
Oseki, Yosuke; Fujitsuka, Mamoru; Sakamoto, Masanori; Majima, Tetsuro
2007-10-01
We studied the energy transfer processes in the molecular array consisting of pyrene (Py), biphenyl (Ph2), and bisphthalimidethiophene (ImT), (Py-Ph2)2-ImT, during two-color two-laser flash photolysis (2-LFP). The first laser irradiation predominantly generates ImT in the lowest triplet excited state (ImT(T1)) because of the efficient singlet energy transfer from Py in the lowest singlet excited state to ImT and, then, intersystem crossing of ImT. ImT(T1) was excited to the higher triplet excited state (Tn) with the second laser irradiation. Then, the triplet energy was rapidly transferred to Py via a two-step triplet energy transfer (TET) process through Ph2. The efficient generation of Py(T1) was suggested from the nanosecond-picosecond 2-LFP. The back-TET from Py(T1) to ImT was observed for several tens of microseconds after the second laser irradiation. The estimated intramolecular TET rate from Py(T1) to ImT was as slow as 3.1 x 104 s-1. Hence, long-lived Py(T1) was selectively and efficiently produced during the 2-LFP.
Quantum discord of states arising from graphs
Dutta, Supriyo; Adhikari, Bibhas; Banerjee, Subhashish
2017-08-01
Quantum discord refers to an important aspect of quantum correlations for bipartite quantum systems. In our earlier works, we have shown that corresponding to every graph (combinatorial) there are quantum states whose properties are reflected in the structure of the corresponding graph. Here, we attempt to develop a graph theoretic study of quantum discord that corresponds to a necessary and sufficient condition of zero quantum discord states which says that the blocks of density matrix corresponding to a zero quantum discord state are normal and commute with each other. These blocks have a one-to-one correspondence with some specific subgraphs of the graph which represents the quantum state. We obtain a number of graph theoretic properties representing normality and commutativity of a set of matrices which are indeed arising from the given graph. Utilizing these properties, we define graph theoretic measures for normality and commutativity that results in a formulation of graph theoretic quantum discord. We identify classes of quantum states with zero discord using the developed formulation.
Improved frequency standard via weighted graph states
Institute of Scientific and Technical Information of China (English)
Xue Peng
2012-01-01
We study the spin squeezing property of weighted graph states,which can be used to improve sensitivity in interferometry.We study the time evolution of spin squeezing under local decoherence acting independently on each qubit.Based on the analysis,the spin squeezing of the weighted graph states is somehow robust in the presence of decoherence and the decoherence limit in the improvement of the interferometric sensitivity is still achievable.Furthermore,one can obtain the optimal improvement of sensitivity by tuning the weighted of each edges of the weighted graph state.
GraphState - a tool for graph identification and labelling
Batkovich, D; Kompaniets, M; Novikov, S
2014-01-01
We present python libraries for Feynman graphs manipulation. The key feature of these libraries is usage of generalization of graph representation offered by B. G. Nickel et al. In this approach graph is represented in some unique 'canonical' form that depends only on its combinatorial type. The uniqueness of graph representation gives an efficient way for isomorphism finding, searching for subgraphs and other graph manipulation tasks. Though offered libraries were originally designed for Feynman graphs, they might be useful for more general graph problems.
Graph Subsumption in Abstract State Space Exploration
Zambon, Eduardo; Rensink, Arend; Wijs, A.; Bosnacki, D.; Edelkamp, S.
In this paper we present the extension of an existing method for abstract graph-based state space exploration, called neighbourhood abstraction, with a reduction technique based on subsumption. Basically, one abstract state subsumes another when it covers more concrete states; in such a case, the
Entanglement in eight-qubit graph states
Energy Technology Data Exchange (ETDEWEB)
Cabello, Adan [Departamento de Fisica Aplicada II, Universidad de Sevilla, E-41012 Sevilla (Spain)], E-mail: adan@us.es; Lopez-Tarrida, Antonio J.; Moreno, Pilar [Departamento de Fisica Aplicada II, Universidad de Sevilla, E-41012 Sevilla (Spain); Portillo, Jose R. [Departamento de Matematica Aplicada I, Universidad de Sevilla, E-41012 Sevilla (Spain)
2009-06-15
Any 8-qubit graph state belongs to one of the 101 equivalence classes under local unitary operations within the Clifford group. For each of these classes we obtain a representative which requires the minimum number of controlled-Z gates for its preparation, and calculate the Schmidt measure for the 8-partite split, and the Schmidt ranks for all bipartite splits. This results into an extension to 8 qubits of the classification of graph states proposed by Hein, Eisert, and Briegel [M. Hein, J. Eisert, H.J. Briegel, Phys. Rev. A 69 (2004) 062311].
Efficient growth of complex graph states via imperfect path erasure
Campbell, E T; Fitzsimons, J; Kok, P; Benjamin, Simon C.; Campbell, Earl T.; Fitzsimons, Joseph; Kok, Pieter
2007-01-01
Given a suitably large and well connected (complex) graph state, any quantum algorithm can be implemented purely through local measurements on the individual qubits. Measurements can also be used to create the graph state: Path erasure techniques allow one to entangle multiple qubits by determining only global properties of the qubits. Here, this powerful approach is extended by demonstrating that even imperfect path erasure can produce the required graph states with high efficiency. By characterizing the degree of error in each path erasure attempt, one can subsume the resulting imperfect entanglement into an extended graph state formalism. The subsequent growth of the improper graph state can be guided, through a series of strategic decisions, in such a way as to bound the growth of the error and eventually yield a high-fidelity graph state. As an implementation of these techniques, we develop an analytic model for atom (or atom-like) qubits in mismatched cavities, under the double-heralding entanglement pr...
Perfect state transfer, integral circulants and join of graphs
Angeles-Canul, Ricardo Javier; Opperman, Michael C; Paribello, Christopher C; Russell, Matthew C; Tamon, Christino
2009-01-01
We propose new families of graphs which exhibit quantum perfect state transfer. Our constructions are based on the join operator on graphs, its circulant generalizations, and the Cartesian product of graphs. We build upon the results of Ba\\v{s}i\\'{c} et al \\cite{bps09,bp09} and construct new integral circulants and regular graphs with perfect state transfer. More specifically, we show that the integral circulant $\\textsc{ICG}_{n}(\\{2,n/2^{b}\\} \\cup Q)$ has perfect state transfer, where $b \\in \\{1,2\\}$, $n$ is a multiple of 16 and $Q$ is a subset of the odd divisors of $n$. Using the standard join of graphs, we also show a family of double-cone graphs which are non-periodic but exhibit perfect state transfer. This class of graphs is constructed by simply taking the join of the empty two-vertex graph with a specific class of regular graphs. This answers a question posed by Godsil \\cite{godsil08}.
Samblowski, Aiko; Grosse, Nicolai; Lam, Ping Koy; Schnabel, Roman
2010-01-01
We report on the generation of entangled states of light between the wavelengths 810 and 1550 nm in the continuous variable regime. The fields were produced by type I optical parametric oscillation in a standing-wave cavity build around a periodically poled potassium titanyl phosphate crystal, operated above threshold. Balanced homodyne detection was used to detect the non-classical noise properties, while filter cavities provided the local oscillators by separating carrier fields from the entangled sidebands. We were able to obtain an inseparability of I=0.82, corresponding to about -0.86 dB of non-classical quadrature correlation.
Perfect state transfer of quantum walks on quotient graphs
Bachman, R; Fuller, J; Landry, M; Opperman, M; Tamon, C; Tollefson, A
2011-01-01
We study perfect state transfer of quantum walks on graphs using equitable partitions. A main observation we use throughout is that a graph has perfect state transfer if and only if its quotient graph modulo some equitable partition has perfect state transfer. We use this observation to prove the following results: i) If a quotient graph $G/\\pi$ has perfect state transfer for some equitable partition $\\pi$, then $G$ also has perfect state transfer. This lifting property can be used to show that there is a graph $G$ with perfect state transfer between two of its vertices $u$ and $v$ but which has no automorphism mapping $u$ to $v$. This answers a question of Godsil. ii) For a collection of graphs $\\{G_{k}\\}$ and their equitable partitions $\\pi_{k}$, there is an equitable partition $\\pi$ so that $\\Box_{k} (G_{k}/\\pi_{k}) \\cong (\\Box_{k} G_{k})/\\pi$. This generalizes a construction of Feder \\cite{f06} which was obtained from a $k$-boson quantum walk on a single graph. Our construction yields new families of weig...
Multipartite entanglement in four-qubit graph states
Jafarpour, Mojtaba; Assadi, Leila
2016-03-01
We consider a compendium of the non-trivial four-qubit graphs, derive their corresponding quantum states and classify them into equivalent classes. We use Meyer-Wallach measure and its generalizations to study block-partition and global entanglement in these states. We obtain several entanglement quantities for each graph state, which present a comprehensive characterization of the entanglement properties of the latter. As a result, a number of correlations between the graph structure and multipartite entanglement quantities have also been established.
Generation of various multiatom entangled graph states via resonant interactions
Institute of Scientific and Technical Information of China (English)
Dong Ping; Zhang Li-Hua; Cao Zhuo-Liang
2008-01-01
In this paper, a scheme for generating various multiatom entangled graph states via resonant interactions is proposed. We investigate the generation of various four-atom graph states first in the ideal case and then in the case in which the cavity decay and atomic spontaneous emission are taken into consideration in the process of interaction. More importantly, we improve the possible distortion of the graph states coming from cavity decay and atomic spontaneous emission by performing appropriate unitary transforms on atoms. The generation of multiatom entangled graph states is very important for constructing quantum one-way computer in a fault-tolerant manner. The resonant interaction time is very short, which is important in the sense of decoherence. Our scheme is easy and feasible within the reach of current experimental technology.
Random graph states, maximal flow and Fuss-Catalan distributions
Energy Technology Data Exchange (ETDEWEB)
Collins, BenoIt; Nechita, Ion [Department of Mathematics and Statistics, University of Ottawa, Ontario K1N8M2 (Canada); Zyczkowski, Karol [Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland)
2010-07-09
For any graph consisting of k vertices and m edges we construct an ensemble of random pure quantum states which describe a system composed of 2m subsystems. Each edge of the graph represents a bipartite, maximally entangled state. Each vertex represents a random unitary matrix generated according to the Haar measure, which describes the coupling between subsystems. Dividing all subsystems into two parts, one may study entanglement with respect to this partition. A general technique to derive an expression for the average entanglement entropy of random pure states associated with a given graph is presented. Our technique relies on Weingarten calculus and flow problems. We analyze the statistical properties of spectra of such random density matrices and show for which cases they are described by the free Poissonian (Marchenko-Pastur) distribution. We derive a discrete family of generalized, Fuss-Catalan distributions and explicitly construct graphs which lead to ensembles of random states characterized by these novel distributions of eigenvalues.
Random graph states, maximal flow and Fuss-Catalan distributions
Collins, Benoit; Zyczkowski, Karol
2010-01-01
For any graph consisting of $k$ vertices and $m$ edges we construct an ensemble of random pure quantum states which describe a system composed of $2m$ subsystems. Each edge of the graph represents a bi-partite, maximally entangled state. Each vertex represents a random unitary matrix generated according to the Haar measure, which describes the coupling between subsystems. Dividing all subsystems into two parts, one may study entanglement with respect to this partition. A general technique to derive an expression for the average entanglement entropy of random pure states associated to a given graph is presented. Our technique relies on Weingarten calculus and flow problems. We analyze statistical properties of spectra of such random density matrices and show for which cases they are described by the free Poissonian (Marchenko-Pastur) distribution. We derive a discrete family of generalized, Fuss-Catalan distributions and explicitly construct graphs which lead to ensembles of random states characterized by thes...
Network-based Arbitrated Quantum Signature Scheme with Graph State
Ma, Hongling; Li, Fei; Mao, Ningyi; Wang, Yijun; Guo, Ying
2017-08-01
Implementing an arbitrated quantum signature(QAS) through complex networks is an interesting cryptography technology in the literature. In this paper, we propose an arbitrated quantum signature for the multi-user-involved networks, whose topological structures are established by the encoded graph state. The determinative transmission of the shared keys, is enabled by the appropriate stabilizers performed on the graph state. The implementation of this scheme depends on the deterministic distribution of the multi-user-shared graph state on which the encoded message can be processed in signing and verifying phases. There are four parties involved, the signatory Alice, the verifier Bob, the arbitrator Trent and Dealer who assists the legal participants in the signature generation and verification. The security is guaranteed by the entanglement of the encoded graph state which is cooperatively prepared by legal participants in complex quantum networks.
Experimental demonstration of graph-state quantum secret sharing
Bell, B A; Herrera-Martí, D A; Marin, A; Wadsworth, W J; Rarity, J G; Tame, M S
2014-01-01
Distributed quantum communication and quantum computing offer many new opportunities for quantum information processing. Here networks based on highly nonlocal quantum resources with complex entanglement structures have been proposed for distributing, sharing and processing quantum information. Graph states in particular have emerged as powerful resources for such tasks using measurement-based techniques. We report an experimental demonstration of graph-state quantum secret sharing, an important primitive for a quantum network. We use an all-optical setup to encode quantum information into photons representing a five-qubit graph state. We are able to reliably encode, distribute and share quantum information between four parties. In our experiment we demonstrate the integration of three distinct secret sharing protocols, which allow for security and protocol parameters not possible with any single protocol alone. Our results show that graph states are a promising approach for sophisticated multi-layered protoc...
B.E. Kohler; T. Shaler; W.J. Buma
1992-01-01
Vibrationally resolved 1 1Ag2 1Ag excitation spectra and decay times for cis,trans-1,3,5,7-octatetraene seeded in a supersonic He expansion have been measured by two-color resonance enhanced two-photon ionization spectroscopy. The excitation energy of the 1 1Ag2 1Ag 0-0 band (29 035 cm-1 ) is ~6500
Weaving independently generated photons into an arbitrary graph state
Energy Technology Data Exchange (ETDEWEB)
Lin, Qing [College of Information Science and Engineering, Huaqiao University (Xiamen), Xiamen 361021 (China); He, Bing [University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Institute for Quantum Information Science, University of Calgary, Alberta T2N 1N4 (Canada)
2011-12-15
The controlled-Z (cz) operations acting separately on pairs of qubits are commonly adopted in the schemes of generating graph states, the multipartite entangled states for the one-way quantum computing. For this purpose, we propose a setup of cascade cz operation on a whole group of qubits in sequence. The operation of the setup starts with entangling an ancilla photon with the first photon as qubit, and this ancilla automatically moves from one entanglement link to another in assisting the formation of a string in graph states. The generation of some special types of graph states, such as the three-dimensional ones, can be greatly simplified in this approach. The setup presented uses weak nonlinearities, but an implementation using probabilistic linear optics is also possible.
Testing Equivalence of Pure Quantum States and Graph States under SLOCC
Briët, J.; Feder, D.L.; D'Souza, A.G.
2010-01-01
A set of necessary and sufficient conditions are derived for the equivalence of an arbitrary pure state and a graph state on n qubits under stochastic local operations and classical communication (SLOCC), using the stabilizer formalism. Because all stabilizer states are equivalent to graph states by
Characterization of circulant graphs having perfect state transfer
Bašić, Milan
2011-01-01
In this paper we answer the question of when circulant quantum spin networks with nearest-neighbor couplings can give perfect state transfer. The network is described by a circulant graph $G$, which is characterized by its circulant adjacency matrix $A$. Formally, we say that there exists a {\\it perfect state transfer} (PST) between vertices $a,b\\in V(G)$ if $|F(\\tau)_{ab}|=1$, for some positive real number $\\tau$, where $F(t)=\\exp(\\i At)$. Saxena, Severini and Shparlinski ({\\it International Journal of Quantum Information} 5 (2007), 417--430) proved that $|F(\\tau)_{aa}|=1$ for some $a\\in V(G)$ and $\\tau\\in \\R^+$ if and only if all eigenvalues of $G$ are integer (that is, the graph is integral). The integral circulant graph $\\ICG_n (D)$ has the vertex set $Z_n = \\{0, 1, 2, ..., n - 1\\}$ and vertices $a$ and $b$ are adjacent if $\\gcd(a-b,n)\\in D$, where $D \\subseteq \\{d : d \\mid n,\\ 1\\leq d
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
By introducing state payoff vector to every state node on the connected graph in this paper,dynamic game is researched on finite graphs.The concept of simple strategy about games on graph defined by Berge is introduced to prove the existence theorem of absolute equilibrium about games on the connected graph with state payoff vector.The complete algorithm and an example in the three-dimensional connected mesh-like graph are given in this paper.
Reliability forecasting of vehicles basing upon the graph of states
Abramovich, M. S.; Prikhodko, Yu.
2010-01-01
The forecasting technique of reliability measures is described for the vehicle MAZ in monitoring maintenance. The base of the technique is mathematical model of vehicle maintenance as stochastic walk over a graph of state. The offered model enables to make a forecast of reliability measures both in time, and under the changing maintenance conditions or maintenance policy.
Klem, John F; Kim, Jin K
2014-05-13
A two-color detector includes a first absorber layer. The first absorber layer exhibits a first valence band energy characterized by a first valence band energy function. A barrier layer adjoins the first absorber layer at a first interface. The barrier layer exhibits a second valence band energy characterized by a second valence band energy function. The barrier layer also adjoins a second absorber layer at a second interface. The second absorber layer exhibits a third valence band energy characterized by a third valence band energy function. The first and second valence band energy functions are substantially functionally or physically continuous at the first interface and the second and third valence band energy functions are substantially functionally or physically continuous at the second interface.
Graph states under the action of local Clifford group in non-binary case
Bahramgiri, M; Bahramgiri, Mohsen; Beigi, Salman
2006-01-01
We establish a bound on the number of graph states which are neither isomorphic nor equivalent under the action of local Clifford group. Also we study graph states in non-binary case, and translate the action of local Clifford group into transformations on their associated graphs. And finally, we present an efficient algorithm, the first known, to verify whether two graph states are locally equivalent or not.
Ensembles of physical states and random quantum circuits on graphs
Hamma, Alioscia; Zanardi, Paolo
2012-01-01
In this paper we continue and extend the investigations of the ensembles of random physical states introduced in A. Hamma et al arXiv:1109.4391. These ensembles are constructed by finite-length random quantum circuits (RQC) acting on (hyper)edges of an underlying (hyper)graph structure. The latter encodes for the locality structure associated with finite-time quantum evolutions generated by physical i.e., local, Hamiltonians. Our goal is to analyze physical properties of typical states in these ensembles, in particular here we focus on proxies of quantum entanglement as purity and $\\alpha$-Renyi entropies. The problem is formulated in terms of matrix elements of superoperators which depend on the graph structure, choice of probability measure over the local unitaries and circuit length. In the $\\alpha=2$ case these superoperators act on a restricted multi-qubit space generated by permutation operators associated to the subsets of vertices of the graph. For permutationally invariant interactions the dynamics c...
Energy Technology Data Exchange (ETDEWEB)
Boz, Tamer; Skullerud, Jon-Ivar [Department of Mathematical Physics, Maynooth University, Maynooth, Co. Kildare (Ireland); Centre for the Subatomic Structure of Matter, Adelaide University, Adelaide, SA 5005 (Australia); Giudice, Pietro [Universität Münster, Institut für Theoretische Physik, Münster (Germany); Hands, Simon [Department of Physics, College of Science, Swansea University, Swansea (United Kingdom); Williams, Anthony G. [Centre for the Subatomic Structure of Matter, Adelaide University, Adelaide, SA 5005 (Australia)
2016-01-22
QCD at high chemical potential has interesting properties such as deconfinement of quarks. Two-color QCD, which enables numerical simulations on the lattice, constitutes a laboratory to study QCD at high chemical potential. Among the interesting properties of two-color QCD at high density is the diquark condensation, for which we present recent results obtained on a finer lattice compared to previous studies. The quark propagator in two-color QCD at non-zero chemical potential is referred to as the Gor’kov propagator. We express the Gor’kov propagator in terms of form factors and present recent lattice simulation results.
Experimental demonstration of a graph state quantum error-correction code.
Bell, B A; Herrera-Martí, D A; Tame, M S; Markham, D; Wadsworth, W J; Rarity, J G
2014-04-22
Scalable quantum computing and communication requires the protection of quantum information from the detrimental effects of decoherence and noise. Previous work tackling this problem has relied on the original circuit model for quantum computing. However, recently a family of entangled resources known as graph states has emerged as a versatile alternative for protecting quantum information. Depending on the graph's structure, errors can be detected and corrected in an efficient way using measurement-based techniques. Here we report an experimental demonstration of error correction using a graph state code. We use an all-optical setup to encode quantum information into photons representing a four-qubit graph state. We are able to reliably detect errors and correct against qubit loss. The graph we realize is setup independent, thus it could be employed in other physical settings. Our results show that graph state codes are a promising approach for achieving scalable quantum information processing.
Perfect state transfer in unitary Cayley graphs over local rings
Directory of Open Access Journals (Sweden)
Yotsanan Meemark
2014-12-01
Full Text Available In this work, using eigenvalues and eigenvectors of unitary Cayley graphs over finite local rings and elementary linear algebra, we characterize which local rings allowing PST occurring in its unitary Cayley graph. Moreover, we have some developments when $R$ is a product of local rings.
Quantum anonymous voting with unweighted continuous-variable graph states
Guo, Ying; Feng, Yanyan; Zeng, Guihua
2016-08-01
Motivated by the revealing topological structures of continuous-variable graph state (CVGS), we investigate the design of quantum voting scheme, which has serious advantages over the conventional ones in terms of efficiency and graphicness. Three phases are included, i.e., the preparing phase, the voting phase and the counting phase, together with three parties, i.e., the voters, the tallyman and the ballot agency. Two major voting operations are performed on the yielded CVGS in the voting process, namely the local rotation transformation and the displacement operation. The voting information is carried by the CVGS established before hand, whose persistent entanglement is deployed to keep the privacy of votes and the anonymity of legal voters. For practical applications, two CVGS-based quantum ballots, i.e., comparative ballot and anonymous survey, are specially designed, followed by the extended ballot schemes for the binary-valued and multi-valued ballots under some constraints for the voting design. Security is ensured by entanglement of the CVGS, the voting operations and the laws of quantum mechanics. The proposed schemes can be implemented using the standard off-the-shelf components when compared to discrete-variable quantum voting schemes attributing to the characteristics of the CV-based quantum cryptography.
Two-color walking Peregrine solitary waves.
Baronio, Fabio; Chen, Shihua; Mihalache, Dumitru
2017-09-15
We study the extreme localization of light, evolving upon a non-zero background, in two-color parametric wave interaction in nonlinear quadratic media. We report the existence of quadratic Peregrine solitary waves, in the presence of significant group-velocity mismatch between the waves (or Poynting vector beam walk-off), in the regime of cascading second-harmonic generation. This finding opens a novel path for the experimental demonstration of extreme rogue waves in ultrafast quadratic nonlinear optics.
A structural analysis of the A5/1 state transition graph
Directory of Open Access Journals (Sweden)
Andreas Beckmann
2012-10-01
Full Text Available We describe efficient algorithms to analyze the cycle structure of the graph induced by the state transition function of the A5/1 stream cipher used in GSM mobile phones and report on the results of the implementation. The analysis is performed in five steps utilizing HPC clusters, GPGPU and external memory computation. A great reduction of this huge state transition graph of 2^64 nodes is achieved by focusing on special nodes in the first step and removing leaf nodes that can be detected with limited effort in the second step. This step does not break the overall structure of the graph and keeps at least one node on every cycle. In the third step the nodes of the reduced graph are connected by weighted edges. Since the number of nodes is still huge an efficient bitslice approach is presented that is implemented with NVIDIA's CUDA framework and executed on several GPUs concurrently. An external memory algorithm based on the STXXL library and its parallel pipelining feature further reduces the graph in the fourth step. The result is a graph containing only cycles that can be further analyzed in internal memory to count the number and size of the cycles. This full analysis which previously would take months can now be completed within a few days and allows to present structural results for the full graph for the first time. The structure of the A5/1 graph deviates notably from the theoretical results for random mappings.
Adaptive strategies for graph state growth in the presence of monitored errors
Campbell, E T; Benjamin, S C; Kok, P; Campbell, Earl T.; Fitzsimons, Joseph; Benjamin, Simon C.; Kok, Pieter
2006-01-01
Graph states, also known as cluster states, are the entanglement resource that enables one-way quantum computing. They can be grown by a series of projective measurements on the component qubits. Such measurements typically carry a significant failure probability. Moreover, even upon success they may generate imperfect entanglement. Here we describe strategies to adapt growth operations in order to cancel incurred errors. Nascent states that initially deviate from the ideal graph states evolve toward the desired high fidelity resource without incurring an impractical overhead. Our analysis extends the diagrammatic language of graph states to include characteristics such as tilted vertices, weighted edges, and partial fusion, which may arise due to experimental imperfections. The strategies we present are relevant to parity projection schemes such as optical `path erasure' with distributed matter qubits.
Two Color QCD beyond the BEC regime
Hands, S; Skullerud, J I; Hands, Simon; Kim, Seyong; Skullerud, Jon-Ivar
2005-01-01
We present results of simulations of Two Color QCD using two flavors of Wilson quark in the fundamental representation, at non-zero quark chemical potential mu, on an 8^3x16 lattice. Results for the quark number density, quark and gluon energy densities, and superfluid condensate are qualitatively distinct from the behaviour expected on the assumption that the dominant degrees of freedom are tightly bound scalar diquarks which Bose condense; rather the scaling with mu is more suggestive of a Fermi surface disrupted by a Cooper pair condensate. We also present evidence both for screening of the static potential, and color deconfinement, arising solely as a result of a non-zero quark density.
A method for independent component graph analysis of resting-state fMRI
DEFF Research Database (Denmark)
de Paula, Demetrius Ribeiro; Ziegler, Erik; Abeyasinghe, Pubuditha M.
2017-01-01
-contiguous regions. To date, the spatial patterns of the networks have been analyzed with techniques developed for volumetric data. Objective Here, we detail a graph building technique that allows these ICNs to be analyzed with graph theory. Methods First, ICA was performed at the single-subject level in 15 healthy...... parcellated regions. Third, between-node functional connectivity was established by building edge weights for each networks. Group-level graph analysis was finally performed for each network and compared to the classical network. Results Network graph comparison between the classically constructed network...... for each network. This increased specificity could be relevant for studying pathological brain activity or altered states of consciousness as induced by anesthesia or sleep, where specific networks are known to be altered in different strength....
Experimental Test of Bell inequalities with Six-Qubit Graph States
Gao, Wei-Bo; Xu, Ping; Gühne, Otfried; Cabello, Adán; Lu, Chao-Yang; Yang, Tao; Chen, Zeng-Bing; Pan, Jian-Wei
2009-01-01
We report on the experimental realization of two different Bell inequality tests based on six-qubit linear-type and Y-shape graph states. For each of these states, the Bell inequalities tested are optimal in the sense that they provide the maximum violation among all Bell inequalities with stabilizing observables and possess the maximum resistance to noise.
Energy Minimization of Discrete Protein Titration State Models Using Graph Theory
Energy Technology Data Exchange (ETDEWEB)
Purvine, Emilie AH; Monson, Kyle E.; Jurrus, Elizabeth R.; Star, Keith T.; Baker, Nathan A.
2016-09-01
There are several applications in computational biophysics which require the optimization of discrete interacting states; e.g., amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial-time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of maximum flow-minimum cut graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein, and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial-time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered.
Graph State-Based Quantum Secret Sharing with the Chinese Remainder Theorem
Guo, Ying; Luo, Peng; Wang, Yijun
2016-07-01
Quantum secret sharing (QSS) is a significant quantum cryptography technology in the literature. Dividing an initial secret into several sub-secrets which are then transferred to other legal participants so that it can be securely recovered in a collaboration fashion. In this paper, we develop a quantum route selection based on the encoded quantum graph state, thus enabling the practical QSS scheme in the small-scale complex quantum network. Legal participants are conveniently designated with the quantum route selection using the entanglement of the encoded graph states. Each participant holds a vertex of the graph state so that legal participants are selected through performing operations on specific vertices. The Chinese remainder theorem (CRT) strengthens the security of the recovering process of the initial secret among the legal participants. The security is ensured by the entanglement of the encoded graph states that are cooperatively prepared and shared by legal users beforehand with the sub-secrets embedded in the CRT over finite fields.
Graph State-Based Quantum Secret Sharing with the Chinese Remainder Theorem
Guo, Ying; Luo, Peng; Wang, Yijun
2016-11-01
Quantum secret sharing (QSS) is a significant quantum cryptography technology in the literature. Dividing an initial secret into several sub-secrets which are then transferred to other legal participants so that it can be securely recovered in a collaboration fashion. In this paper, we develop a quantum route selection based on the encoded quantum graph state, thus enabling the practical QSS scheme in the small-scale complex quantum network. Legal participants are conveniently designated with the quantum route selection using the entanglement of the encoded graph states. Each participant holds a vertex of the graph state so that legal participants are selected through performing operations on specific vertices. The Chinese remainder theorem (CRT) strengthens the security of the recovering process of the initial secret among the legal participants. The security is ensured by the entanglement of the encoded graph states that are cooperatively prepared and shared by legal users beforehand with the sub-secrets embedded in the CRT over finite fields.
Feasible schemes for preparation of all five-atom graph states
Institute of Scientific and Technical Information of China (English)
Zhang Jin
2008-01-01
We propose feasible schemes for preparation of all five-atom graph states by cavity quantum electrodynamics (QED). Our schemes require only the atom-cavity interaction with a large dettming which is available in current experiment so that these schemes axe within the reach of the current technology.
Development of a two-color FQI
Energy Technology Data Exchange (ETDEWEB)
Butcher, T.; Wei, G. [Brookhaven National Lab., Upton, NY (United States)
1996-07-01
The Flame Quality Indicator (FQI) concept was developed at Brookhaven National Laboratory as a simple device which could be used to monitor oil burner flames and indicate when a problem was starting to occur. Fault situations which could be identified by the FQI include: fouled nozzle, increased or decreased excess air, blocked air inlet or flue, and use of low quality oil. The basic concept of the FQI is quite simple. A conventional cadmium sulfide photocell is used to measure the amount of light emitted from an oil burner flame when the appliance is fully warmed-up. The measured amount of light is compared to a set point, established during burner tune-up. If the two intensities differ by more than a set range, a {open_quotes}service required{close_quotes} signal is produced. The amount of light which is emitted from an oil burner flame depends upon the amount of {open_quotes}soot{close_quotes} or carbon in the flame, the size and shape of the flame, and the flame temperature. The quality of flame is practically judged by the amount of soot which it is producing and for this reason it is necessary to eliminate effects of other parameters. Temperature is expected to be the most important of these. The FQI eliminates effects due to the chamber environment by establishing a set point for each specific appliance. The transient temperature effects are accounted for by examining the flame brightness only at a single time during the firing cycle. BNL is currently involved with the development of a two-color approach to the monitoring of flame quality. The basic concept involved is the measurement of both flame temperature and total amount of light emitted to allow a more direct estimate to be made of the amount of soot being produced and so the flame quality. The objective is to develop a more sensitive measurement which may be more universally applicable. This paper provides a summary of our approach and results to date in this project.
Continuity of the integrated density of states on random length metric graphs
Lenz, Daniel; Post, Olaf; Veselic', Ivan
2008-01-01
We establish several properties of the integrated density of states for random quantum graphs: Under appropriate ergodicity and amenability assumptions, the integrated density of states can be defined using an exhaustion procedure by compact subgraphs. A trace per unit volume formula holds, similarly as in the Euclidean case. Our setting includes periodic graphs. For a model where the edge length are random and vary independently in a smooth way we prove a Wegner estimate and related regularity results for the integrated density of states. These results are illustrated for an example based on the Kagome lattice. In the periodic case we characterise all compactly supported eigenfunctions and calculate the position and size of discontinuities of the integrated density of states.
Mokhtari, Fatemeh; Bakhtiari, Shahab K.; Hossein-Zadeh, Gholam Ali; Soltanian-Zadeh, Hamid
2012-02-01
Decoding techniques have opened new windows to explore the brain function and information encoding in brain activity. In the current study, we design a recursive support vector machine which is enriched by a subtree graph kernel. We apply the classifier to discriminate between attentional cueing task and resting state from a block design fMRI dataset. The classifier is trained using weighted fMRI graphs constructed from activated regions during the two mentioned states. The proposed method leads to classification accuracy of 1. It is also able to elicit discriminative regions and connectivities between the two states using a backward edge elimination algorithm. This algorithm shows the importance of regions including cerebellum, insula, left middle superior frontal gyrus, post cingulate cortex, and connectivities between them to enhance the correct classification rate.
New Protocols and Lower Bound for Quantum Secret Sharing with Graph States
Javelle, Jérôme; Perdrix, Simon
2011-01-01
We introduce a new family of quantum secret sharing protocols with limited quantum resources which extends the protocols proposed by Markham and Sanders and by Broadbent, Chouha, and Tapp. Parametrized by a graph G and a subset of its vertices A, the protocol consists in: (i) encoding the quantum secret into the corresponding graph state by acting on the qubits in A; (ii) use a classical encoding to ensure the existence of a threshold. These new protocols realize ((k,n)) quantum secret sharing i.e., any set of at least k players among n can reconstruct the quantum secret, whereas any set of less than k players has no information about the secret. In the particular case where the secret is encoded on all the qubits, we explore the values of k for which there exists a graph such that the corresponding protocol realizes a ((k,n)) secret sharing. We show that for any threshold k> n-n^{0.68} there exists a graph allowing a ((k,n)) protocol. On the other hand, we prove that for any kn_0.
Long-range predissociation in two-color photoassociation of ultracold Na atoms
Molenaar, P.A.; Straten, P. van der; Heideman, H.G.M.
1997-01-01
We report two-color photo-associative ionization of sodium in a Magneto-Optical Trap. The experimental results yield information on both singly and doubly excited states. We find that the highest bound vibrational levels (v > 20) of the singly-excited 0^- g state predissociate into the 3²P3/2
Uniform existence of the integrated density of states on metric Cayley graphs
Pogorzelski, Felix; Seifert, Christian
2011-01-01
Given a finitely generated amenable group we consider ergodic random Schr\\"odinger operators on a Cayley graph with random potentials and random boundary conditions. We show that the normalised eigenvalue counting functions of finite volume parts converge uniformly. The integrated density of states as the limit can be expressed by a Pastur-Shubin formula. The spectrum supports the corresponding measure and discontinuities correspond to the existence of compactly supported eigenfunctions.
Ground state and orbital stability for the NLS equation on a general starlike graph with potentials
Cacciapuoti, Claudio; Finco, Domenico; Noja, Diego
2017-08-01
We consider a nonlinear Schrödinger equation (NLS) posed on a graph (or network) composed of a generic compact part to which a finite number of half-lines are attached. We call this structure a starlike graph. At the vertices of the graph interactions of δ-type can be present and an overall external potential is admitted. Under general assumptions on the potential, we prove that the NLS is globally well-posed in the energy domain. We are interested in minimizing the energy of the system on the manifold of constant mass (L 2-norm). When existing, the minimizer is called ground state and it is the profile of an orbitally stable standing wave for the NLS evolution. We prove that a ground state exists for sufficiently small masses whenever the quadratic part of the energy admits a simple isolated eigenvalue at the bottom of the spectrum (the linear ground state). This is a wide generalization of a result previously obtained for a star-graph with a single vertex. The main part of the proof is devoted to prove the concentration compactness principle for starlike structures; this is non trivial due to the lack of translation invariance of the domain. Then we show that a minimizing, bounded, H 1 sequence for the constrained NLS energy with external linear potentials is in fact convergent if its mass is small enough. Moreover we show that the ground state bifurcates from the vanishing solution at the bottom of the linear spectrum. Examples are provided with a discussion of the hypotheses on the linear part.
Approximation algorithms for two-state anti-ferromagnetic spin systems on bounded degree graphs
Sinclair, Alistair; Thurley, Marc
2011-01-01
In a seminal paper (Weitz, 2006), Weitz gave a deterministic fully polynomial approximation scheme for counting exponentially weighted independent sets (which is the same as approximating the partition function of the hard-core model from statistical physics) in graphs of degree at most d, up to the critical activity for the uniqueness of the Gibbs measure on the infinite d-regular tree. More recently Sly (see also Galanis et al, 2011) showed that this is optimal in the sense that if there is an FPRAS for the hard-core partition function on graphs of maximum degree d for activities larger than the critical activity on the infinite d-regular tree then NP = RP. In this paper we extend Weitz's approach to derive a deterministic fully polynomial approximation scheme for the partition function of general two-state anti-ferromagnetic spin systems on graphs of maximum degree d, up to the corresponding critical point on the d-regular tree. The main ingredient of our result is a proof that for two-state anti-ferromagn...
Graph network analysis of immediate motor-learning induced changes in resting state BOLD
Directory of Open Access Journals (Sweden)
Saber eSami
2013-05-01
Full Text Available Recent studies have demonstrated that following learning tasks, changes in the resting state activity of the brain shape regional connections in functionally specific circuits. Here we expand on these findings by comparing changes induced in the resting state immediately following four motor tasks. Two groups of participants performed a visuo-motor joystick task with one group adapting to a transformed relationship between joystick and cursor. Two other groups were trained in either explicit or implicit procedural sequence learning. Resting state BOLD data were collected immediately before and after the tasks. We then used graph theory-based approaches that include statistical measures of functional integration and segregation to characterise changes in biologically plausible brain connectivity networks within each group. Our results demonstrate that motor learning reorganizes resting brain networks with an increase in local information transfer, as indicated by local efficiency measures that affect the brain's small world network architecture. This was particularly apparent when comparing two distinct forms of explicit motor learning: procedural learning and the joystick learning task. Both groups showed notable increases in local efficiency. However changes in local efficiency in the inferior frontal and cerebellar regions also distinguishes between the two learning tasks. Additional graph analytic measures on the "non-learning" visuo-motor performance task revealed reversed topological patterns in comparison with the three learning tasks. These findings underscore the utility of graph-based network analysis as a novel means to compare both regional and global changes in functional brain connectivity in the resting state following motor learning tasks.
Effects of a static electric field on two-color photoassociation of heteronuclear atom-pairs
Chakraborty, Debashree
2013-01-01
We study non-perturbative effects of a static electric field on two-color photoassociation of heteronuclear atom-pairs. A static electric field induces anisotropy in scattering between two heteronuclear atoms and hybridizes field-free rotational states of heteronuclear dimers or polar molecules. In a previous paper [D. Chakraborty $\\it {et.}$ $\\it {al.}$, J. Phys. B 44, 095201 (2011)], the effects of a static electric field on one-color photoassociation between heteronuclear atoms has been described through field-modified ground-state scattering states, neglecting electric field effects on heteronuclear diatomic bound states. To study the effects of a static electric field on heteronuclear bound states, and the resulting influence on Raman-type two-color photoassociation between heteronuclear atoms in the presence of a static electric field, we develop a non-perturbative numerical method to calculate static electric field-dressed heteronuclear bound states. We show that the static electric field induced scatt...
The State of the Art in Graph-Based Pattern Matching
Energy Technology Data Exchange (ETDEWEB)
Gallagher, B
2006-03-30
The task of searching for patterns in graph-structured data has applications in such diverse areas as computer vision, biology, electronics, computer aided design, social networks, and intelligence analysis. As such, work on graph-based pattern matching spans a wide range of research communities. Due to variations in graph characteristics and problem requirements, graph-based pattern matching is not a single problem, but a set of related problems. This paper presents a survey of existing work on graph-based pattern matching, describing variations among graph matching problems, general and specific solution approaches, evaluation techniques, and directions for further research. An emphasis is given to techniques that apply to general graphs with semantic characteristics. The survey also discusses techniques for graph mining, an extension of the graph matching problem.
Graph-based network analysis of resting-state functional MRI
Directory of Open Access Journals (Sweden)
Jinhui Wang
2010-06-01
Full Text Available In the past decade, resting-state functional MRI (R-fMRI measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain’s spontaneous or intrinsic (i.e., task-free activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain’s intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.
Graph-based network analysis of resting-state functional MRI.
Wang, Jinhui; Zuo, Xinian; He, Yong
2010-01-01
In the past decade, resting-state functional MRI (R-fMRI) measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain's spontaneous or intrinsic (i.e., task-free) activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain's intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging, and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.
Combining Digital Watermarks with Two-Color Bitmap Image
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A technology for combining digital watermarks with two-color bitmap image based on the threshold watermarking method is presented. Our technology doesn't add any thing to the digital media, but combines the watermarks in two-color bitmap image by looking for some characteristic values in the bitmap and uses the relationship between the watermarks and the characteristic values to prove the copyright protection. The choice of the characteristic values depends on the choice of a cryptographic key known by the owner of the bitmap. The benefit of using a cryptographic key is to combine the watermarks with the bitmap in a high secure way.
Rational choices for the wavelengths of a two color interferometer
Energy Technology Data Exchange (ETDEWEB)
Jobes, F.C.
1995-07-01
If in a two color interferometer for plasma density measurements, the two wavelengths are chosen to have a ratio that is a rational number, and if the signals from each of the wavelengths are multiplied in frequency by the appropriate integer of the rational number and then heterodyned together, the resultant signal will have all effects of component motion nulled out. A phase measurement of this signal will have only plasma density information in it. With CO{sub 2} lasers, it is possible to find suitable wavelength pairs which are close enough to rational numbers to produce an improvement of about 100 in density resolution, compared to standard two color interferometers.
Femtosecond Non-degenerate Four Wave Mixing Spectroscopy: The Two Color Photon Echo Peak Shift
Prall, B S
2005-01-01
The couplings between multiple electronic states and electronic and nuclear coordinates are examined for condensed phase systems by femtosecond degenerate and non-degenerate four wave mixing. The two-color photon echo peak shift experiment is developed which allows measurement of the correlation between transition frequencies in two different spectral regions. Two-color photon echo peak shift (2C3PEPS) experiments are used to study coupling between electronic states in the lutetium bisphthalocyanine anion, LuPc2−. Electronically induced mixing between exciton and charge resonance states leads to correlations in transition energies for the two observed transitions. This correlation generates non-zero 2C3PEPS which, when compared with 1C3PEPS, allows experimental determination of the degree of mixing, which was in good agreement with theoretical predictions. By exploiting a coherently excited nuclear wavepacket, the nuclear dependence on the electronic mixing between exciton and charge resonance state...
DEFF Research Database (Denmark)
Seiller, Thomas
2016-01-01
Interaction graphs were introduced as a general, uniform, construction of dynamic models of linear logic, encompassing all Geometry of Interaction (GoI) constructions introduced so far. This series of work was inspired from Girard's hyperfinite GoI, and develops a quantitative approach that should...... be understood as a dynamic version of weighted relational models. Until now, the interaction graphs framework has been shown to deal with exponentials for the constrained system ELL (Elementary Linear Logic) while keeping its quantitative aspect. Adapting older constructions by Girard, one can clearly define...... "full" exponentials, but at the cost of these quantitative features. We show here that allowing interpretations of proofs to use continuous (yet finite in a measure-theoretic sense) sets of states, as opposed to earlier Interaction Graphs constructions were these sets of states were discrete (and finite...
State Tracking and Fault Diagnosis for Dynamic Systems Using Labeled Uncertainty Graph
Directory of Open Access Journals (Sweden)
Gan Zhou
2015-11-01
Full Text Available Cyber-physical systems such as autonomous spacecraft, power plants and automotive systems become more vulnerable to unanticipated failures as their complexity increases. Accurate tracking of system dynamics and fault diagnosis are essential. This paper presents an efficient state estimation method for dynamic systems modeled as concurrent probabilistic automata. First, the Labeled Uncertainty Graph (LUG method in the planning domain is introduced to describe the state tracking and fault diagnosis processes. Because the system model is probabilistic, the Monte Carlo technique is employed to sample the probability distribution of belief states. In addition, to address the sample impoverishment problem, an innovative look-ahead technique is proposed to recursively generate most likely belief states without exhaustively checking all possible successor modes. The overall algorithms incorporate two major steps: a roll-forward process that estimates system state and identifies faults, and a roll-backward process that analyzes possible system trajectories once the faults have been detected. We demonstrate the effectiveness of this approach by applying it to a real world domain: the power supply control unit of a spacecraft.
Approximating the XY model on a random graph with a q -state clock model
Lupo, Cosimo; Ricci-Tersenghi, Federico
2017-02-01
Numerical simulations of spin glass models with continuous variables set the problem of a reliable but efficient discretization of such variables. In particular, the main question is how fast physical observables computed in the discretized model converge toward the ones of the continuous model when the number of states of the discretized model increases. We answer this question for the XY model and its discretization, the q -state clock model, in the mean-field setting provided by random graphs. It is found that the convergence of physical observables is exponentially fast in the number q of states of the clock model, so allowing a very reliable approximation of the XY model by using a rather small number of states. Furthermore, such an exponential convergence is found to be independent from the disorder distribution used. Only at T =0 , the convergence is slightly slower (stretched exponential). Thanks to the analytical solution to the q -state clock model, we compute accurate phase diagrams in the temperature versus disorder strength plane. We find that, at zero temperature, spontaneous replica symmetry breaking takes place for any amount of disorder, even an infinitesimal one. We also study the one step of replica symmetry breaking (1RSB) solution in the low-temperature spin glass phase.
Autler-Townes splitting in two-color photoassociation of 6Li
Schloeder, U; Silber, C; Zimmermann, C; Schloeder, Ulrike; Deuschle, Thomas; Silber, Christian; Zimmermann, Claus
2003-01-01
We report on high-resolution two-color photoassociation spectroscopy in the triplet system of magneto-optically trapped 6Li. The absolute transition frequencies have been measured. Strong optical coupling of the bound molecular states has been observed as Autler-Townes splitting in the photoassociation signal. The spontaneous bound-bound transition rate is determined and the molecule formation rate is estimated. The observed lineshapes are in good agreement with the theoretical model.
Improved bounds on linear coloring of plane graphs
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, we give some upper bounds on linear chromatic number for plane graphs with respect to their girth, that improve some results of Raspaud and Wang (2009).
What graph theory actually tells us about resting state interictal MEG epileptic activity.
Niso, Guiomar; Carrasco, Sira; Gudín, María; Maestú, Fernando; Del-Pozo, Francisco; Pereda, Ernesto
2015-01-01
Graph theory provides a useful framework to study functional brain networks from neuroimaging data. In epilepsy research, recent findings suggest that it offers unique insight into the fingerprints of this pathology on brain dynamics. Most studies hitherto have focused on seizure activity during focal epilepsy, but less is known about functional epileptic brain networks during interictal activity in frontal focal and generalized epilepsy. Besides, it is not clear yet which measures are most suitable to characterize these networks. To address these issues, we recorded magnetoencephalographic (MEG) data using two orthogonal planar gradiometers from 45 subjects from three groups (15 healthy controls (7 males, 24 ± 6 years), 15 frontal focal (8 male, 32 ± 16 years) and 15 generalized epileptic (6 male, 27 ± 7 years) patients) during interictal resting state with closed eyes. Then, we estimated the total and relative spectral power of the largest principal component of the gradiometers, and the degree of phase synchronization between each sensor site in the frequency range [0.5-40 Hz]. We further calculated a comprehensive battery of 15 graph-theoretic measures and used the affinity propagation clustering algorithm to elucidate the minimum set of them that fully describe these functional brain networks. The results show that differences in spectral power between the control and the other two groups have a distinctive pattern: generalized epilepsy presents higher total power for all frequencies except the alpha band over a widespread set of sensors; frontal focal epilepsy shows higher relative power in the beta band bilaterally in the fronto-central sensors. Moreover, all network indices can be clustered into three groups, whose exemplars are the global network efficiency, the eccentricity and the synchronizability. Again, the patterns of differences were clear: the brain network of the generalized epilepsy patients presented greater efficiency and lower
What graph theory actually tells us about resting state interictal MEG epileptic activity
Directory of Open Access Journals (Sweden)
Guiomar Niso
2015-01-01
Full Text Available Graph theory provides a useful framework to study functional brain networks from neuroimaging data. In epilepsy research, recent findings suggest that it offers unique insight into the fingerprints of this pathology on brain dynamics. Most studies hitherto have focused on seizure activity during focal epilepsy, but less is known about functional epileptic brain networks during interictal activity in frontal focal and generalized epilepsy. Besides, it is not clear yet which measures are most suitable to characterize these networks. To address these issues, we recorded magnetoencephalographic (MEG data using two orthogonal planar gradiometers from 45 subjects from three groups (15 healthy controls (7 males, 24 ± 6 years, 15 frontal focal (8 male, 32 ± 16 years and 15 generalized epileptic (6 male, 27 ± 7 years patients during interictal resting state with closed eyes. Then, we estimated the total and relative spectral power of the largest principal component of the gradiometers, and the degree of phase synchronization between each sensor site in the frequency range [0.5–40 Hz]. We further calculated a comprehensive battery of 15 graph-theoretic measures and used the affinity propagation clustering algorithm to elucidate the minimum set of them that fully describe these functional brain networks. The results show that differences in spectral power between the control and the other two groups have a distinctive pattern: generalized epilepsy presents higher total power for all frequencies except the alpha band over a widespread set of sensors; frontal focal epilepsy shows higher relative power in the beta band bilaterally in the fronto-central sensors. Moreover, all network indices can be clustered into three groups, whose exemplars are the global network efficiency, the eccentricity and the synchronizability. Again, the patterns of differences were clear: the brain network of the generalized epilepsy patients presented greater
The study of two-color excitation upconversion of Pr(0.5)Yb(3):ZBLAN
Institute of Scientific and Technical Information of China (English)
CHEN; Xiaobo; SONG; Zengfu
2006-01-01
The excited state absorption upconversion of Pr(0.5)Yb(3):ZBLAN glass material, under two-color excitation of the 960 nm semiconductor laser and the Xe lamp light simultaneously, is reported in this article. It was found that the upconversion emission spectra of 480.1, 519.0, 601.9 and 631.8 nm coincide with the common emission spectra. Meanwhile, the upconversion-excitation spectrum has three obvious peaks under two-color excitation, and they respectively correspond to the 856.0 nm upconversion excitation transition [1G4(Pr3+)→1I6(Pr3+) and 1G4(Pr3+)→3P1(Pr3+)], the 789.0 nm upconversion excitation transition 1G4(Pr3+)→3P2(Pr3+), and the 803.7 nm upconversion excitation transition 3H6(Pr3+)→1D2(Pr3+). The upconversion excitation transition 1G4(Pr3+)→1I6(Pr3+) is strong because its oscillator strength f = 23.040(10-6 is large, which results in a large peak appearing in the upconversion excitation spectrum. That is just the new interesting two-color excitation upconversion luminescence phenomenon of Pr(0.5)Yb(3):ZBLAN induced by one laser and one continuous normal light simultaneously.
Yamasaki, Hayata; Soeda, Akihito; Murao, Mio
2017-09-01
We introduce and analyze graph-associated entanglement cost, a generalization of the entanglement cost of quantum states to multipartite settings. We identify a necessary and sufficient condition for any multipartite entangled state to be constructible when quantum communication between the multiple parties is restricted to a quantum network represented by a tree. The condition for exact state construction is expressed in terms of the Schmidt ranks of the state defined with respect to edges of the tree. We also study approximate state construction and provide a second-order asymptotic analysis.
Harrison, JM; Robbins, JM; 10.1098/rspa.2010.0254
2011-01-01
Quantum graphs are commonly used as models of complex quantum systems, for example molecules, networks of wires, and states of condensed matter. We consider quantum statistics for indistinguishable spinless particles on a graph, concentrating on the simplest case of abelian statistics for two particles. In spite of the fact that graphs are locally one-dimensional, anyon statistics emerge in a generalized form. A given graph may support a family of independent anyon phases associated with topologically inequivalent exchange processes. In addition, for sufficiently complex graphs, there appear new discrete-valued phases. Our analysis is simplified by considering combinatorial rather than metric graphs -- equivalently, a many-particle tight-binding model. The results demonstrate that graphs provide an arena in which to study new manifestations of quantum statistics. Possible applications include topological quantum computing, topological insulators, the fractional quantum Hall effect, superconductivity and molec...
Institute of Scientific and Technical Information of China (English)
傅育熙
1998-01-01
The paper proposes reaction graphs as graphical representations of computational objects.A reaction graph is a directed graph with all its arrows and some of its nodes labeled.Computations are modled by graph rewriting of a simple nature.The basic rewriting rules embody the essence of both the communications among processes and cut-eliminations in proofs.Calculi of graphs are ideentified to give a formal and algebraic account of reaction graphs in the spirit of process algebra.With the help of the calculi,it is demonstrated that reaction graphs capture many interesting aspects of computations.
Two-color beam generation based on wakefield excitation
Bettoni, S.; Prat, E.; Reiche, S.
2016-05-01
Several beam manipulation methods have been studied and experimentally tested to generate two-color photon beams in free electron laser facilities to accommodate the user requests. We propose to use the interaction of the beam with an oscillating longitudinal wakefield source to obtain a suitable electron beam structure. The bunch generates two subpulses with different energies and delayed in time passing through a magnetic chicane after its longitudinal phase space has been modulated by the wakefield source. According to this approach the power of the emitted radiation is not degraded compared to the monochromatic beam, and the setup in the machine is quite simple because the bunch is manipulated only in the high energy section, where it is more rigid. We present the design applied to SwissFEL. We identified the parameters and the corresponding range of tunability of the time and energy separation among the two subbunches.
A Modal-Logic Based Graph Abstraction
Bauer, J.; Boneva, I.B.; Kurban, M.E.; Rensink, A.; Ehrig, H.; Heckel, R.; Rozenberg, G.; Taentzer, G.
2008-01-01
Infinite or very large state spaces often prohibit the successful verification of graph transformation systems. Abstract graph transformation is an approach that tackles this problem by abstracting graphs to abstract graphs of bounded size and by lifting application of productions to abstract graphs
Directory of Open Access Journals (Sweden)
Cichy Marian
2015-12-01
Full Text Available The main advantage of the use of the Bond Graphs method and State Equations for modeling energy systems with a complex structure (marine power plants, hybrid vehicles, etc. is the ability to model the system components of different physical nature using identical theoretical basis. The paper presents a method of modeling thermal energy storage, which is in line with basic BG theory. Critical comments have been put forward concerning multiport energy storage introduced by other authors or the so-called C-field. In suggested approach, the decision not to use pseudo Bond Graphs has been justified as not being in line with basic BG theory. On the basis of molecular physics it was considered that the state variable, in physical and mathematical sense, should be temperature rather than entropy. Examples of the application of the proposed approach to thermodynamic processes and heat exchange have been presented. The application of a single graph as a model for thermal energy storage has been illustrated by a way of numerical simulation examples.
Framings for graph hypersurfaces
Brown, Francis
2013-01-01
We present a method for computing the framing on the cohomology of graph hypersurfaces defined by the Feynman differential form. This answers a question of Bloch, Esnault and Kreimer in the affirmative for an infinite class of graphs for which the framings are Tate motives. Applying this method to the modular graphs of Brown and Schnetz, we find that the Feynman differential form is not of Tate type in general. This finally disproves a folklore conjecture stating that the periods of Feynman integrals of primitive graphs in phi^4 theory factorise through a category of mixed Tate motives.
Two-color lattice QCD with staggered quarks
Energy Technology Data Exchange (ETDEWEB)
Scheffler, David
2015-07-20
The study of quantum chromodynamics (QCD) at finite temperature and density provides important contributions to the understanding of strong-interaction matter as it is present e.g. in nuclear matter and in neutron stars or as produced in heavy-ion collision experiments. Lattice QCD is a non-perturbative approach, where equations of motion for quarks and gluons are discretized on a finite space-time lattice. The method successfully describes the behavior of QCD in the vacuum and at finite temperature, however it cannot be applied to finite baryon density due to the fermion sign problem. Various QCD-like theories, that offer to draw conclusions about QCD, allow simulations also at finite densities. In this work we investigate two-color QCD as a popular example of a QCD-like theory free from the sign problem with methods from lattice gauge theory. For the generation of gauge configurations with two dynamical quark flavors in the staggered formalism with the ''rooting trick'' we apply the Rational Hybrid Monte Carlo (RHMC) algorithm. We carry out essential preparatory work for future simulations at finite density. As a start, we concentrate on the calculation of the effective potential for the Polyakov loop, which is an order parameter for the confinement-deconfinement transition, in dependence of the temperature and quark mass. It serves as an important input for effective models of QCD. We obtain the effective potential via the histogram method from local distributions of the Polyakov loop. To study the influence of dynamical quarks on gluonic observables, the simulations are performed with large quark masses and are compared to calculations in the pure gauge theory. In the second part of the thesis we examine aspects of the chiral phase transition along the temperature axis. The symmetry group of chiral symmetry in two-color QCD is enlarged to SU(2N{sub f}). Discretized two-color QCD in the staggered formalism exhibits a chiral symmetry breaking
Rensink, Arend; Distefano, Dino
2005-01-01
Graphs may be used as representations of system states in operational semantics and model checking; in the latter context, they are being investigated as an alternative to bit vectors. The corresponding transitions are obtained as derivations from graph production rules. In this paper we propose an
Rensink, Arend; Distefano, Dino; Mukhopadhyay, S.; Roychoudhury, A.; Yang, Z.
2006-01-01
Graphs may be used as representations of system states in operational semantics and model checking; in the latter context, they are being investigated as an alternative to bit vectors. The corresponding transitions are obtained as derivations from graph production rules. In this paper we propose an
Noise in two-color electronic distance meter measurements revisited
Langbein, J.
2004-01-01
Frequent, high-precision geodetic data have temporally correlated errors. Temporal correlations directly affect both the estimate of rate and its standard error; the rate of deformation is a key product from geodetic measurements made in tectonically active areas. Various models of temporally correlated errors are developed and these provide relations between the power spectral density and the data covariance matrix. These relations are applied to two-color electronic distance meter (EDM) measurements made frequently in California over the past 15-20 years. Previous analysis indicated that these data have significant random walk error. Analysis using the noise models developed here indicates that the random walk model is valid for about 30% of the data. A second 30% of the data can be better modeled with power law noise with a spectral index between 1 and 2, while another 30% of the data can be modeled with a combination of band-pass-filtered plus random walk noise. The remaining 10% of the data can be best modeled as a combination of band-pass-filtered plus power law noise. This band-pass-filtered noise is a product of an annual cycle that leaks into adjacent frequency bands. For time spans of more than 1 year these more complex noise models indicate that the precision in rate estimates is better than that inferred by just the simpler, random walk model of noise.
Two-color, double-slit in vivo flow cytometer.
Novak, J; Puoris'haag, M
2007-10-15
The in vivo flow cytometer enables the real-time detection and quantification of fluorescent cells circulating within a live animal without the need for incisions or extraction of blood. It has been used in demonstrating flow velocity disparities in biological flows, and in the investigation of the circulation kinetics of various types of cells. However, a shortcoming of this in vivo flow cytometer is that it provides only one excitation slit at one wavelength, resulting in several performance limitations. Therefore, a second in vivo flow cytometer that provides two different laser wavelengths, 473 and 633 nm, and one or two excitation slits has been designed and built. Thus far, the two-color system has been used to acquire circulation kinetics data of two different cell populations each labeled with a different marker, one cell population labeled with two different markers, and one cell population expressing the green-fluorescent protein gene. In addition, accurate arterial red blood cell velocities within a mouse have been determined using the cytometer.
Towards the phase diagram of dense two-color matter
Cotter, Seamus; Hands, Simon; Skullerud, Jon-Ivar
2012-01-01
We study two-color QCD with two flavors of Wilson fermion as a function of quark chemical potential mu and temperature T. We find evidence of a superfluid phase at intermediate mu and low T where the quark number density and diquark condensate are both very well described by a Fermi sphere of nearly-free quarks disrupted by a BCS condensate. Our results suggest that the quark contribution to the energy density is negative (and balanced by a positive gauge contribution), although this result is highly sensitive to details of the energy renormalisation. We also find evidence that the chiral condensate in this region vanishes in the massless limit. This region gives way to a region of deconfined quark matter at higher T and mu, with the deconfinement temperature, determined from the renormalised Polyakov loop, decreasing only very slowly with increasing chemical potential. The quark number susceptibility chi_q does not exhibit any qualitative change at the deconfinement transition. We argue that this is because ...
Skurnick, Ronald; Davi, Charles; Skurnick, Mia
2005-01-01
Since 1952, several well-known graph theorists have proven numerous results regarding Hamiltonian graphs. In fact, many elementary graph theory textbooks contain the theorems of Ore, Bondy and Chvatal, Chvatal and Erdos, Posa, and Dirac, to name a few. In this note, the authors state and prove some propositions of their own concerning Hamiltonian…
Text analysis for knowledge graphs
Popping, Roel
2007-01-01
The concept of knowledge graphs is introduced as a method to represent the state of the art in a specific scientific discipline. Next the text analysis part in the construction of such graphs is considered. Here the 'translation' from text to graph takes place. The method that is used here is compar
Two-color HgCdTe infrared staring focal plane arrays
Smith, Edward P.; Pham, Le T.; Venzor, Gregory M.; Norton, Elyse; Newton, Michael; Goetz, Paul; Randall, Valerie; Pierce, Gregory; Patten, Elizabeth A.; Coussa, Raymond A.; Kosai, Ken; Radford, William A.; Edwards, John; Johnson, Scott M.; Baur, Stefan T.; Roth, John A.; Nosho, Brett; Jensen, John E.; Longshore, Randolph E.
2003-12-01
Raytheon Vision Systems (RVS) in collaboration with HRL Laboratories is contributing to the maturation and manufacturing readiness of third-generation two-color HgCdTe infrared staring focal plane arrays (FPAs). This paper will highlight data from the routine growth and fabrication of 256x256 30μm unit-cell staring FPAs that provide dual-color detection in the mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) spectral regions. FPAs configured for MWIR/MWIR, MWIR/LWIR and LWIR/LWIR detection are used for target identification, signature recognition and clutter rejection in a wide variety of space and ground-based applications. Optimized triple-layer-heterojunction (TLHJ) device designs and molecular beam epitaxy (MBE) growth using in-situ controls has contributed to individual bands in all two-color FPA configurations exhibiting high operability (>99%) and both performance and FPA functionality comparable to state-of-the-art single-color technology. The measured spectral cross talk from out-of-band radiation for either band is also typically less than 10%. An FPA architecture based on a single mesa, single indium bump, and sequential mode operation leverages current single-color processes in production while also providing compatibility with existing second-generation technologies.
Renormalization algorithm with graph enhancement
Hübener, R; Hartmann, L; Dür, W; Plenio, M B; Eisert, J
2011-01-01
We present applications of the renormalization algorithm with graph enhancement (RAGE). This analysis extends the algorithms and applications given for approaches based on matrix product states introduced in [Phys. Rev. A 79, 022317 (2009)] to other tensor-network states such as the tensor tree states (TTS) and projected entangled pair states (PEPS). We investigate the suitability of the bare TTS to describe ground states, showing that the description of certain graph states and condensed matter models improves. We investigate graph-enhanced tensor-network states, demonstrating that in some cases (disturbed graph states and for certain quantum circuits) the combination of weighted graph states with tensor tree states can greatly improve the accuracy of the description of ground states and time evolved states. We comment on delineating the boundary of the classically efficiently simulatable states of quantum many-body systems.
Hively, Lee M.
2014-09-16
Data collected from devices and human condition may be used to forewarn of critical events such as machine/structural failure or events from brain/heart wave data stroke. By monitoring the data, and determining what values are indicative of a failure forewarning, one can provide adequate notice of the impending failure in order to take preventive measures. This disclosure teaches a computer-based method to convert dynamical numeric data representing physical objects (unstructured data) into discrete-phase-space states, and hence into a graph (structured data) for extraction of condition change.
Caetano, Tibério S; McAuley, Julian J; Cheng, Li; Le, Quoc V; Smola, Alex J
2009-06-01
As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a correspondence between the nodes of different graphs. Many formulations of this problem can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node compatibility and a quadratic term encodes edge compatibility. The main research focus in this theme is about designing efficient algorithms for approximately solving the quadratic assignment problem, since it is NP-hard. In this paper we turn our attention to a different question: how to estimate compatibility functions such that the solution of the resulting graph matching problem best matches the expected solution that a human would manually provide. We present a method for learning graph matching: the training examples are pairs of graphs and the 'labels' are matches between them. Our experimental results reveal that learning can substantially improve the performance of standard graph matching algorithms. In particular, we find that simple linear assignment with such a learning scheme outperforms Graduated Assignment with bistochastic normalisation, a state-of-the-art quadratic assignment relaxation algorithm.
Ortiz, Erick; Stingl, Krunoslav; Münßinger, Jana; Braun, Christoph; Preissl, Hubert; Belardinelli, Paolo
2012-01-01
Resting state functional connectivity of MEG data was studied in 29 children (9-10 years old). The weighted phase lag index (WPLI) was employed for estimating connectivity and compared to coherence. To further evaluate the network structure, a graph analysis based on WPLI was used to determine clustering coefficient (C) and betweenness centrality (BC) as local coefficients as well as the characteristic path length (L) as a parameter for global interconnectedness. The network's modular structure was also calculated to estimate functional segregation. A seed region was identified in the central occipital area based on the power distribution at the sensor level in the alpha band. WPLI reveals a specific connectivity map different from power and coherence. BC and modularity show a strong level of connectedness in the occipital area between lateral and central sensors. C shows different isolated areas of occipital sensors. Globally, a network with the shortest L is detected in the alpha band, consistently with the local results. Our results are in agreement with findings in adults, indicating a similar functional network in children at this age in the alpha band. The integrated use of WPLI and graph analysis can help to gain a better description of resting state networks. PMID:23049617
Sahasranand, K R
2010-01-01
Almost all known secret sharing schemes work on numbers. Such methods will have difficulty in sharing graphs since the number of graphs increases exponentially with the number of nodes. We propose a secret sharing scheme for graphs where we use graph intersection for reconstructing the secret which is hidden as a sub graph in the shares. Our method does not rely on heavy computational operations such as modular arithmetic or polynomial interpolation but makes use of very basic operations like assignment and checking for equality, and graph intersection can also be performed visually. In certain cases, the secret could be reconstructed using just pencil and paper by authorised parties but cannot be broken by an adversary even with unbounded computational power. The method achieves perfect secrecy for (2, n) scheme and requires far fewer operations compared to Shamir's algorithm. The proposed method could be used to share objects such as matrices, sets, plain text and even a heterogeneous collection of these. S...
THz wave emission from argon in two-color laser field
Institute of Scientific and Technical Information of China (English)
杜玲玲; 赵松峰; 周效信; 赵增秀
2015-01-01
Terahertz (THz) wave emission from argon atom in a two-color laser pulses is studied numerically by solving the one-dimensional (1D) time-dependent Schr ¨odinger equation. The THz spectra we obtained include both discontinuous and continuum ones. By using the special basis functions that we previously proposed, our analysis points out that the discontinuous and continuum parts are contributed by bound–bound and continuum–continuum transition of atomic energy levels. Although the atomic wave function is strongly dressed during the interaction with laser fields, our identification for the discontinuous part of the THz wave shows that the transition between highly excited bound states can still be well described by the field-free basis function in the tunneling ionization regime.
Li, Xueliang; Gutman, Ivan
2012-01-01
This book is about graph energy. The authors have included many of the important results on graph energy, such as the complete solution to the conjecture on maximal energy of unicyclic graphs, the Wagner-Heuberger's result on the energy of trees, the energy of random graphs or the approach to energy using singular values. It contains an extensive coverage of recent results and a gradual development of topics and the inclusion of complete proofs from most of the important recent results in the area. The latter fact makes it a valuable reference for researchers looking to get into the field of g
Aurich, Nathassia K; Alves Filho, José O; Marques da Silva, Ana M; Franco, Alexandre R
2015-01-01
With resting-state functional MRI (rs-fMRI) there are a variety of post-processing methods that can be used to quantify the human brain connectome. However, there is also a choice of which preprocessing steps will be used prior to calculating the functional connectivity of the brain. In this manuscript, we have tested seven different preprocessing schemes and assessed the reliability between and reproducibility within the various strategies by means of graph theoretical measures. Different preprocessing schemes were tested on a publicly available dataset, which includes rs-fMRI data of healthy controls. The brain was parcellated into 190 nodes and four graph theoretical (GT) measures were calculated; global efficiency (GEFF), characteristic path length (CPL), average clustering coefficient (ACC), and average local efficiency (ALE). Our findings indicate that results can significantly differ based on which preprocessing steps are selected. We also found dependence between motion and GT measurements in most preprocessing strategies. We conclude that by using censoring based on outliers within the functional time-series as a processing, results indicate an increase in reliability of GT measurements with a reduction of the dependency of head motion.
On Two Color and CCD Methods for the Determination of Astronomic Position.
1986-03-14
INTRODUCTION .................................... 2 A. Astroposition Objectives As Related to Two-Color Refractometry .................. 2 B. Results...value for the astronomic longitude and latitude.-_ A. Astroposition Objectives As Related to Two-Color Refractometry The long term objectives consist...The interior of the box was divided into 4 bays containing the telescope, the refractometry optics, the power supplies and the refralctometry
DEFF Research Database (Denmark)
Vestergaard, Preben Dahl; Hartnell, Bert L.
2006-01-01
There are many results dealing with the problem of decomposing a fixed graph into isomorphic subgraphs. There has also been work on characterizing graphs with the property that one can delete the edges of a number of edge disjoint copies of the subgraph and, regardless of how that is done, the gr...
Assadi, Leila; Jafarpour, Mojtaba
2016-07-01
We use concurrence to study bipartite entanglement, Meyer-Wallach measure and its generalizations to study multi-partite entanglement and MABK and SASA inequalities to study the non-local properties of the 4-qubit entangled graph states, quantitatively. Then, we present 3 classifications, each one in accordance with one of the aforementioned properties. We also observe that the classification according to multipartite entanglement does exactly coincide with that according to nonlocal properties, but does not match with that according to bipartite entanglement. This observation signifies the fact that non-locality and multipartite entanglement enjoy the same basic underlying principles, while bipartite entanglement may not reveal the non-locality issue in its entirety.
Directory of Open Access Journals (Sweden)
Muhammad Hajarul Aswad
2016-05-01
Full Text Available The application of Graph Theory Concept in Communication Network Analysis is interesting to observe. This research was carried out to learn how Communication Network structure was formed and who had necessary role in the network. It was explorative research and conducted at Female Students’ Dormitory of State Islamic Institute of Palopo (Asrama Putri IAIN Palopo. The results were interpreted by using Microsoft NodeXL Version 1.0.1.113. It was found that the communication network structure of female students’ who stayed at the Dormitory decentralized. It shows that each student had same opportunity to communicate one another directly or indirectly, which 4 to 9 path distance. It was also identified that from 110 people, Suarni was the student who had significant influence in the communication network.
State Authorization Tracking System (StATS) - Data, Charts and Graphs
U.S. Environmental Protection Agency — The State Authorization Tracking System (StATS) is an information management system designed to document the progress of each state and territory in establishing and...
Development of two color laser diagnostics for the ITER poloidal polarimeter.
Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S
2010-10-01
Two color laser diagnostics using terahertz laser sources are under development for a high performance operation of the Large Helical Device and for future fusion devices such as ITER. So far, we have achieved high power laser oscillation lines simultaneously oscillating at 57.2 and 47.7 μm by using a twin optically pumped CH(3)OD laser, and confirmed the original function, compensation of mechanical vibration, of the two color laser interferometer. In this article, application of the two color laser diagnostics to the ITER poloidal polarimeter and recent hardware developments will be described.
In situ spatial mapping of Gouy phase slip with terahertz generation in two-color field.
Meng, Chao; Lü, Zhihui; Huang, Yindong; Wang, Xiaowei; Chen, Wenbo; Zhang, Dongwen; Zhao, Zengxiu; Yuan, Jianmin
2016-05-30
We establish a one-to-one mapping between the local phase slip and the spatial position near the focus by scanning a thin jet along the propagation direction of laser beams. The measurement shows that the optimal phase of terahertz can be utilized to characterize in situ the spatially dependent relative phase of the two-color field. We also investigate the role of the Gouy phase shift on terahertz generation from two-color laser-induced plasma. The result is of critical importance for phase-dependent applications of two-color laser-field, including high-order harmonic and terahertz generation.
2012-08-01
al., “Functional disintegration in paranoid schizophrenia using resting-state fMRI”, Schiz. Res, vol. 97, pp. 194–205, 2007. [24] L.Q. Uddin, et al...disruptions in the resting state networks and neurocognitive pathologies such as schizophrenia , Alzheimer’s disease and attention deficit hyperactive
National Research Council Canada - National Science Library
Bolajoko O Olusanya; Tina M Slusher; Donald O Imosemi; Abieyuwa A Emokpae
2017-01-01
.... This study therefore, set out to evaluate the performance of a -two-color icterometer (BilistripTM) as a possible screening tool for detecting significant jaundice by mothers or care-givers in the first week of life...
Bollobás, Béla
1998-01-01
The time has now come when graph theory should be part of the education of every serious student of mathematics and computer science, both for its own sake and to enhance the appreciation of mathematics as a whole. This book is an in-depth account of graph theory, written with such a student in mind; it reflects the current state of the subject and emphasizes connections with other branches of pure mathematics. The volume grew out of the author's earlier book, Graph Theory -- An Introductory Course, but its length is well over twice that of its predecessor, allowing it to reveal many exciting new developments in the subject. Recognizing that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavor of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory such as coloring, matching, extremal theory, and algebraic graph theory, the book presents a detailed ...
Phase diagram of dense two-color QCD within lattice simulations
Braguta, V. V.; Ilgenfritz, E.-M.; Kotov, A. Yu.; Molochkov, A. V.; Nikolaev, A. A.
2017-03-01
We present the results of a low-temperature scan of the phase diagram of dense two-color QCD with Nf = 2 quarks. The study is conducted using lattice simulation with rooted staggered quarks. At small chemical potential we observe the hadronic phase, where the theory is in a confining state, chiral symmetry is broken, the baryon density is zero and there is no diquark condensate. At the critical point μ = mπ/2 we observe the expected second order transition to Bose-Einstein condensation of scalar diquarks. In this phase the system is still in confinement in conjunction with nonzero baryon density, but the chiral symmetry is restored in the chiral limit. We have also found that in the first two phases the system is well described by chiral perturbation theory. For larger values of the chemical potential the system turns into another phase, where the relevant degrees of freedom are fermions residing inside the Fermi sphere, and the diquark condensation takes place on the Fermi surface. In this phase the system is still in confinement, chiral symmetry is restored and the system is very similar to the quarkyonic state predicted by SU(Nc) theory at large Nc.
Graph Coarsening for Path Finding in Cybersecurity Graphs
Energy Technology Data Exchange (ETDEWEB)
Hogan, Emilie A.; Johnson, John R.; Halappanavar, Mahantesh
2013-01-01
n the pass-the-hash attack, hackers repeatedly steal password hashes and move through a computer network with the goal of reaching a computer with high level administrative privileges. In this paper we apply graph coarsening in network graphs for the purpose of detecting hackers using this attack or assessing the risk level of the network's current state. We repeatedly take graph minors, which preserve the existence of paths in the graph, and take powers of the adjacency matrix to count the paths. This allows us to detect the existence of paths as well as find paths that have high risk of being used by adversaries.
Plane Graphs with Maximum Degree 5 Are 11-Linear-Colorable
Institute of Scientific and Technical Information of China (English)
Kan WANG; Weifan WANG
2012-01-01
A linear coloring of a graph G is a proper vertex coloring such that the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths.The linear chromatic number lc(G) of G is the smallest number of colors in a linear coloring of G.In this paper,we prove that every planar graph G with maximum degree 5 is 11-linear-colorable.
Statistical mechanics on isoradial graphs
Boutillier, Cédric
2010-01-01
Isoradial graphs are a natural generalization of regular graphs which give, for many models of statistical mechanics, the right framework for studying models at criticality. In this survey paper, we first explain how isoradial graphs naturally arise in two approaches used by physicists: transfer matrices and conformal field theory. This leads us to the fact that isoradial graphs provide a natural setting for discrete complex analysis, to which we dedicate one section. Then, we give an overview of explicit results obtained for different models of statistical mechanics defined on such graphs: the critical dimer model when the underlying graph is bipartite, the 2-dimensional critical Ising model, random walk and spanning trees and the q-state Potts model.
Trudeau, Richard J
1994-01-01
Preface1. Pure Mathematics Introduction; Euclidean Geometry as Pure Mathematics; Games; Why Study Pure Mathematics?; What's Coming; Suggested Reading2. Graphs Introduction; Sets; Paradox; Graphs; Graph diagrams; Cautions; Common Graphs; Discovery; Complements and Subgraphs; Isomorphism; Recognizing Isomorphic Graphs; Semantics The Number of Graphs Having a Given nu; Exercises; Suggested Reading3. Planar Graphs Introduction; UG, K subscript 5, and the Jordan Curve Theorem; Are there More Nonplanar Graphs?; Expansions; Kuratowski's Theorem; Determining Whether a Graph is Planar or
Stimulated emission pumping of NH in flames by using two-color resonant four-wave mixing
Energy Technology Data Exchange (ETDEWEB)
Radi, P.P.; Frey, H.M.; Mischler, B.; Tzannis, A.P.; Beaud, P.; Gerber, T. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-06-01
In this work we examine the analytical potential of two-color resonant four-wave mixing for the determination and characterization of trace elements in a combustion environment. Experimental results for NH in flames at atmospheric pressure are presented. The selectivity of the technique is used to simplify the Q-branch region of the (0-0)A{sup 3}{Pi}-X{sup 3}{Sigma} vibronic transition of NH. In addition, we demonstrate that the technique is sensitive to state changing collisions. (author) 2 figs., 5 refs.
Non-parametric Bayesian graph models reveal community structure in resting state fMRI
DEFF Research Database (Denmark)
Andersen, Kasper Winther; Madsen, Kristoffer H.; Siebner, Hartwig Roman
2014-01-01
Modeling of resting state functional magnetic resonance imaging (rs-fMRI) data using network models is of increasing interest. It is often desirable to group nodes into clusters to interpret the communication patterns between nodes. In this study we consider three different nonparametric Bayesian...
Study of the phase diagram of dense two-color QCD within lattice simulation
Braguta, V V; Kotov, A Yu; Molochkov, A V; Nikolaev, A A
2016-01-01
In this paper we carry out a low-temperature scan of the phase diagram of dense two-color QCD with $N_f=2$ quarks. The study is conducted using lattice simulation with rooted staggered quarks. At small chemical potential we observe the hadronic phase, where the theory is in a confining state, chiral symmetry is broken, the baryon density is zero and there is no diquark condensate. At the critical point $\\mu = m_{\\pi}/2$ we observe the expected second order transition to Bose-Einstein condensation of scalar diquarks. In this phase the system is still in confinement in conjunction with nonzero baryon density, but the chiral symmetry is restored in the chiral limit. We have also found that in the first two phases the system is well described by chiral perturbation theory. For larger values of the chemical potential the system turns into another phase, where the relevant degrees of freedom are fermions residing inside the Fermi sphere, and the diquark condensation takes place on the Fermi surface. In this phase t...
Diestel, Reinhard
2000-01-01
This book is a concise, yet carefully written, introduction to modern graph theory, covering all its major recent developments. It can be used both as a reliable textbook for an introductory course and as a graduate text: on each topic it covers all the basic material in full detail, and adds one or two deeper results (again with detailed proofs) to illustrate the more advanced methods of that field. This second edition extends the first in two ways. It offers a thoroughly revised and updated chapter on graph minors, which now includes full new proofs of two of the central Robertson-Seymour theorems (as well as a detailed sketch of the entire proof of their celebrated Graph Minor Theorem). Second, there is now a section of hints for all the exercises, to enhance their value for both individual study and classroom use.
Quantum Markov fields on graphs
2009-01-01
We introduce generalized quantum Markov states and generalized d-Markov chains which extend the notion quantum Markov chains on spin systems to that on $C^*$-algebras defined by general graphs. As examples of generalized d-Markov chains, we construct the entangled Markov fields on tree graphs. The concrete examples of generalized d-Markov chains on Cayley trees are also investigated.
Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder
Directory of Open Access Journals (Sweden)
Mengqi Xing
2017-01-01
Conclusions: Theta-dependent interconnectivity was associated with state anxiety in gSAD and an increase in information processing efficiency in gSAD (compared to controls. Results may represent enhanced baseline self-focused attention, which is consistent with cognitive models of gSAD and fMRI studies implicating emotion dysregulation and disturbances in task negative networks (e.g., default mode network in gSAD.
Beeken, Paul
2014-11-01
Graphing is an essential skill that forms the foundation of any physical science.1 Understanding the relationships between measurements ultimately determines which modeling equations are successful in predicting observations.2 Over the years, science and math teachers have approached teaching this skill with a variety of techniques. For secondary school instruction, the job of graphing skills falls heavily on physics teachers. By virtue of the nature of the topics we cover, it is our mission to develop this skill to the fine art that it is.
Diestel, Reinhard
2017-01-01
This standard textbook of modern graph theory, now in its fifth edition, combines the authority of a classic with the engaging freshness of style that is the hallmark of active mathematics. It covers the core material of the subject with concise yet reliably complete proofs, while offering glimpses of more advanced methods in each field by one or two deeper results, again with proofs given in full detail. The book can be used as a reliable text for an introductory course, as a graduate text, and for self-study. From the reviews: “This outstanding book cannot be substituted with any other book on the present textbook market. It has every chance of becoming the standard textbook for graph theory.”Acta Scientiarum Mathematiciarum “Deep, clear, wonderful. This is a serious book about the heart of graph theory. It has depth and integrity. ”Persi Diaconis & Ron Graham, SIAM Review “The book has received a very enthusiastic reception, which it amply deserves. A masterly elucidation of modern graph theo...
Graphs in Practical Situations
Institute of Scientific and Technical Information of China (English)
刘晓玫; 任心玥
2008-01-01
<正>Linear graphs are often used to depict conversion graphs and travel graphs. Example: The following graph shows the conversion between the Singapore dollar (S $) and the Malay- sian ringgit (RM) in 2000.
Energy Technology Data Exchange (ETDEWEB)
2016-06-01
GraphBench is a benchmark suite for graph pattern mining and graph analysis systems. The benchmark suite is a significant addition to conducting apples-apples comparison of graph analysis software (databases, in-memory tools, triple stores, etc.)
Iacovacci, Jacopo
2015-01-01
Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of visibility graph motifs, smaller substructures that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated to general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable to distinguish among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification a...
Reddy, A Satyanarayana
2011-01-01
A graph $X$ is said to be a pattern polynomial graph if its adjacency algebra is a coherent algebra. In this study we will find a necessary and sufficient condition for a graph to be a pattern polynomial graph. Some of the properties of the graphs which are polynomials in the pattern polynomial graph have been studied. We also identify known graph classes which are pattern polynomial graphs.
Two-Color Magneto-Optical Trap with Small Magnetic Field for Ytterbium
Kawasaki, Akio; Yu, QinQin; Vuletić, Vladan
2015-01-01
We report a two-color magneto-optical trap (MOT) for ytterbium atoms operating at a low magnetic field gradient down to 2 G/cm where a conventional MOT using the singlet transition (6s^2 1S0 -> 6s6p 1P1) is unable to trap atoms. By simultaneously applying laser light on both the broad-linewidth singlet transition and the narrow-linewidth triplet transition (6s^2 1S0 -> 6s6p 3P1), we load and trap 4.0 x 10^5 atoms directly from an atomic beam at 700 K. In the two-color MOT, the slowing and trapping functions are separately performed by the singlet transition light and the triplet transition light, respectively. The two-color MOT is highly robust against laser power imbalance even at very low magnetic field gradients.
Warchalowski, Wiktor; Krawczyk, Malgorzata J.
2017-03-01
We found the Lindenmayer systems for line graphs built on selected fractals. We show that the fractal dimension of such obtained graphs in all analysed cases is the same as for their original graphs. Both for the original graphs and for their line graphs we identified classes of nodes which reflect symmetry of the graph.
Betweenness Centrality in Graphs
2014-01-01
The first book devoted exclusively to quantitative graph theory, Quantitative Graph Theory: Mathematical Foundations and Applications presents and demonstrates existing and novel methods for analyzing graphs quantitatively. Incorporating interdisciplinary knowledge from graph theory, information theory, measurement theory, and statistical techniques, this book covers a wide range of quantitative-graph theoretical concepts and methods, including those pertaining to real and random graphs such ...
Inkjet printing the three organic functional layers of two-colored organic light emitting diodes
Energy Technology Data Exchange (ETDEWEB)
Coenen, Michiel J.J., E-mail: Michiel.Coenen@tmc.nl [Holst Centre, PO BOX 8550, 5605 KN Eindhoven (Netherlands); Slaats, Thijs M.W.L.; Eggenhuisen, Tamara M. [Holst Centre, PO BOX 8550, 5605 KN Eindhoven (Netherlands); Groen, Pim [Holst Centre, PO BOX 8550, 5605 KN Eindhoven (Netherlands); Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629HS Delft (Netherlands)
2015-05-29
Inkjet printing allows for the roll-2-roll fabrication of organic electronic devices at an industrial scale. In this paper we demonstrate the fabrication of two-colored organic light emitting diodes (OLEDs) in which three adjacent organic device layers were inkjet printed from halogen free inks. The resulting devices demonstrate the possibilities offered by this technique for the fabrication of OLEDs for signage and personalized electronics. - Highlights: • Two-colored organic light emitting diodes with 3 inkjet printed device layers were fabricated. • All materials were printed from halogen free inks. • Inkjet printing of emissive materials is suitable for signage applications.
Electron Correlation in Nonsequential Double Ionization of Helium by Two-Color Pulses
Institute of Scientific and Technical Information of China (English)
ZHOU Yue-Ming; LIAO Qing; HUANG Cheng; TONG Ai-Hong; LU Pei-Xiang
2010-01-01
@@ We investigate the momentum and energy correlations between the two electrons from nonsequential double ionization(NSDI)of helium by strong two-color pulses with the classical three-dimensional ensemble model.The correlated momentum distribution in the direction parallel to the laser field exhibits an arc-like structure and the sum-energy spectrum shows a sharp peak for the NSDI of helium in the two-color fields.Back analysis reveals that the narrow time interval during which recollisions occur,the low returning energy and the short time delay between recollision and double ionization lead to the novel momentum and energy correlations.
Gould, Ronald
2012-01-01
This introduction to graph theory focuses on well-established topics, covering primary techniques and including both algorithmic and theoretical problems. The algorithms are presented with a minimum of advanced data structures and programming details. This thoroughly corrected 1988 edition provides insights to computer scientists as well as advanced undergraduates and graduate students of topology, algebra, and matrix theory. Fundamental concepts and notation and elementary properties and operations are the first subjects, followed by examinations of paths and searching, trees, and networks. S
Weinzierl, Stefan
2013-01-01
In these lectures I discuss Feynman graphs and the associated Feynman integrals. Of particular interest are the classes functions, which appear in the evaluation of Feynman integrals. The most prominent class of functions is given by multiple polylogarithms. The algebraic properties of multiple polylogarithms are reviewed in the second part of these lectures. The final part of these lectures is devoted to Feynman integrals, which cannot be expressed in terms of multiple polylogarithms. Methods from algebraic geometry provide tools to tackle these integrals.
Quantum walks on general graphs
Kendon, V
2003-01-01
A scheme for a discrete time quantum walk on a general graph of N vertices with undirected edges is given, and compared with the continuous time quantum walk on a general graph introduced by Farhi and Gutmann [PRA 58 915 (1998)]. Both walks are contrasted with the examples of quantum walks in the literature treating graphs of fixed, small (< log N) degree. This illustrates the way in which extra information about the graph allows more efficient algorithms to be designed. To obtain a quantum speed up over classical for comparable resources it is necessary to code the position space of the quantum walk into a qubit register (or equivalent). The role of the oracle is also discussed and an efficient gate sequence is presented for implementing a discrete quantum walk given one copy of a quantum state encoding the adjacency matrix of the graph.
Diestel, Reinhard
2012-01-01
HauptbeschreibungThis standard textbook of modern graph theory, now in its fourth edition, combinesthe authority of a classic with the engaging freshness of style that is the hallmarkof active mathematics. It covers the core material of the subject with concise yetreliably complete proofs, while offering glimpses of more advanced methodsin each field by one or two deeper results, again with proofs given in full detail.The book can be used as a reliable text for an introductory course, as a graduatetext, and for self-study. Rezension"Deep, clear, wonderful. This is a serious book about the
Merris, Russell
2001-01-01
A lively invitation to the flavor, elegance, and power of graph theoryThis mathematically rigorous introduction is tempered and enlivened by numerous illustrations, revealing examples, seductive applications, and historical references. An award-winning teacher, Russ Merris has crafted a book designed to attract and engage through its spirited exposition, a rich assortment of well-chosen exercises, and a selection of topics that emphasizes the kinds of things that can be manipulated, counted, and pictured. Intended neither to be a comprehensive overview nor an encyclopedic reference, th
Understanding Graphs & Charts.
Cleary, John J.; Gravely, Mary Liles
Developed by educators from the Emily Griffith Opportunity School, this teacher's guide was developed for a 4-hour workshop to teach employees how to read the charts and graphs they need in the workplace. The unit covers four types of graphs: pictographs, bar graphs, line graphs, and circle graphs. The guide is divided into four sections: reading…
H, Sattarian; S, Shojaei; E, Darabi
2016-05-01
In the present study, graphene photonic crystals are employed to enhance the light extraction efficiency (LEE) of two-color, red and blue, light-emitting diode (LED). The transmission characteristics of one-dimensional (1D) Fibonacci graphene photonic crystal LED (FGPC-LED) are investigated by using the transfer matrix method and the scaling study is presented. We analyzed the influence of period, thickness, and permittivity in the structure to enhance the LEE. The transmission spectrum of 1D FGPC has been optimized in detail. In addition, the effects of the angle of incidence and the state of polarization are investigated. As the main result, we found the optimum values of relevant parameters to enhance the extraction of red and blue light from an LED as well as provide perfect omnidirectional and high peak transmission filters for the TE and TM modes.
Streaking temporal double slit interference by an orthogonal two-color laser field
Richter, Martin; Schöffler, Markus; Jahnke, Till; Schmidt, Lothar P H; Li, Min; Liu, Yunquan; Dörner, Reinhard
2015-01-01
We investigate electron momentum distributions from single ionization of Ar by two orthogonally polarized laser pulses of different color. The two-color scheme is used to experimentally control the interference between electron wave packets released at different times within one laser cycle. This intracycle interference pattern is typically hard to resolve in an experiment. With the two-color control scheme these features become the dominant contribution to the electron momentum distribution. Furthermore the second color can be used for streaking of the otherwise interfering wave packets establishing a which-way marker. Our investigation shows that the visibility of the interference fringes depends on the degree of the which-way information determined by the controllable phase between the two pulses.
APPLICATION OF TWO-COLOR INTERPHASE FISH USING SEX PROBE IN ALLOGENEIC STEM CELL TRANSPLANTATION
Institute of Scientific and Technical Information of China (English)
曾慧兰; 李建勇; 朱康儿; 薛永权; 李杨秋; 刘晓力; 过宇
2002-01-01
Objective: To evaluate the significance of two-color interphase fluorescence in situ hybridization (FISH) using X and Y centromere probe in the engraftment estimation and minimal residual disease (MRD) monitoring after allogeneic stem cell transplantation (alloSCT). Methods: Samples from 12 cases patients in different periods after alloSCT were detected by interphase FISH. Results: All of the 12 patients were proved to obtain engraftment 22(35 days after alloSCT. While traditional karyotype showed as 100%XX or 100%XY invariably, FISH showed different percentages of donor original sex chromosome. Conclusion: Two-color interphase FISH is a more sensitive and simple test for engraftment evaluation and MRD monitoring post SCT, though, it can not entirely replace traditional karyotype analysis and gene detection by RT-PCR.
Two-color mid-infrared thermometer with a hollow glass optical fiber.
Small, W; Celliers, P M; Da Silva, L B; Matthews, D L; Soltz, B A
1998-10-01
We have developed a low-temperature optical-fiber-based two-color infrared thermometer. A single 700-mum-bore hollow glass optical fiber collects and transmits radiation that is then modulated and split into two paths by a reflective optical chopper. Two different thermoelectrically cooled mid-infrared HgCdZnTe photoconductors monitor the chopped signals that are recovered with lock-in amplification. With the two previously obtained blackbody calibration equations, a computer algorithm calculates the true temperature and emissivity of a target in real time, taking into account reflection of the ambient radiation field from the target surface. The small numerical aperture of the hollow glass fiber and the fast response of the detectors, together with the two-color principle, permit high spatial and temporal resolution while allowing the user to dynamically alter the fiber-to-target distance.
Low-temperature characteristics of two-color InAs/InP quantum dots laser
Institute of Scientific and Technical Information of China (English)
Shiguo Li; Qian Gong; Xinzhong Wang; Li Yue; Oingbo Liu; Hailong Wang
2012-01-01
We report on the lasing characteristics of a two-color InAs/InP quantum dots (QDs) laser at a low temperature.Two lasing peaks with a tunable gap are simultaneously observed.At a low temperature of 80 K,a tunable range greater than a 20-nm wavelength is demonstrated by varying the injection current from 30 to 500 mA.Under a special condition,we even observe three lasing peaks,which are in contrast to those observed at room temperature.The temperature coefficient of the lasing wavelength was obtained for the two colors in the 80-280 K temperature range,which is lower than that of the reference quantum well (QW) laser working in the same wavelength region.
Dirac Spectrum of the Wilson Dirac Operator for QCD with Two Colors
Kieburg, Mario; Zafeiropoulos, Savvas
2015-01-01
We study the lattice artefacts of the Wilson Dirac operator for QCD with two colors and fermions in the fundamental representation from the viewpoint of chiral perturbation theory. These effects are studied with the help of the following spectral observables: the level density of the Hermitian Wilson Dirac operator, the distribution of chirality over the real eigenvalues, and the chiral condensate for the quenched as well as for the unquenched theory. We provide analytical expressions for all these quantities. Moreover we derive constraints for the level density of the real eigenvalues of the non-Hermitian Wilson Dirac operator and the number of additional real modes. The latter is a good measure for the strength of lattice artefacts. All computations are confirmed by Monte Carlo simulations of the corresponding random matrix theory which agrees with chiral perturbation theory of two color QCD with Wilson fermions.
Gusfield, Dan
2010-03-01
The Multi-State Perfect Phylogeny Problem is an extension of the Binary Perfect Phylogeny Problem, allowing characters to take on more than two states. In this article, we consider three problems that extend the utility of the multi-state perfect phylogeny model: (1) the Missing Data (MD) Problem, where some entries in the input are missing and the question is whether (bounded) values for the missing data can be imputed so that the resulting data has a multi-state perfect phylogeny; (2) the Character-Removal (CR) Problem, where we want to minimize the number of characters to remove from the data so that the resulting data has a multi-state perfect phylogeny; and (3) the Missing-Data Character-Removal (MDCR) Problem, where the input has missing data and we want to impute values for the missing data to minimize the solution to the resulting Character-Removal Problem. We discuss Integer Linear Programming (ILP) solutions to these problems for the special case of three, four, and five permitted states per character, and we report on extensive empirical testing of these solutions. Then we develop a general theory to solve the MD problem for an arbitrary number of permitted states, using chordal graph theory and results on minimal triangulation of non-chordal graphs. This establishes new necessary and sufficient conditions for the existence of a perfect phylogeny with (or without) missing data. We implement the general theory using integer linear programming, although other optimization methods are possible. We extensively explore the empirical behavior of the general solution, showing that the methods are very practical for data of size and complexity that is characteristic of many current applications in phylogenetics. Some of the empirical results for the MD problem with an arbitrary number of permitted states are very surprising, suggesting the existence of additional combinatorial structure in multi-state perfect phylogenies. Finally, we note some relationships
Lowest eigenvalues of the Dirac operator for two color QCD at finite density
Bittner, E; Markum, H; Pullirsch, R; Bittner, Elmar; Lombardo, Maria-Paola; Markum, Harald; Pullirsch, Rainer
2001-01-01
We investigate the eigenvalue spectrum of the staggered Dirac matrix in full QCD with two colors and finite chemical potential. Along the strong-coupling axis up to the temperature phase transition, the low-lying Dirac spectrum is well described by random matrix theory (RMT) and exhibits universal behavior. The situation is discussed in the chirally symmetric phase and no universality is seen for the microscopic spectral density.
Polyakov-Quark-Meson-Diquark Model for two-color QCD
Strodthoff, Nils
2013-01-01
We present an update on the phase diagram of two-color QCD from a chiral effective model approach based on a quark-meson-diquark model using the Functional Renormalization Group (FRG). We discuss the impact of perturbative UV contributions, the inclusion of gauge field dynamics via a phenomenological Polyakov loop potential, and the impact of matter backcoupling on the gauge sector. The corresponding phase diagram including these effects is found to be in qualitative agreement with recent lattice investigations.
Tan, Yong
2013-01-01
In this paper, author uses set theory to construct a logic model of abstract figure from binary relation. Based on the uniform quantified structure, author gives two logic system for graph traversal and graph coloring respectively, moreover shows a new method of cutting graph. Around this model, there are six algorithms in this paper including exact graph traversal, Algebra calculation of natural number, graph partition and graph coloring.
Fast approximate quadratic programming for graph matching.
Directory of Open Access Journals (Sweden)
Joshua T Vogelstein
Full Text Available Quadratic assignment problems arise in a wide variety of domains, spanning operations research, graph theory, computer vision, and neuroscience, to name a few. The graph matching problem is a special case of the quadratic assignment problem, and graph matching is increasingly important as graph-valued data is becoming more prominent. With the aim of efficiently and accurately matching the large graphs common in big data, we present our graph matching algorithm, the Fast Approximate Quadratic assignment algorithm. We empirically demonstrate that our algorithm is faster and achieves a lower objective value on over 80% of the QAPLIB benchmark library, compared with the previous state-of-the-art. Applying our algorithm to our motivating example, matching C. elegans connectomes (brain-graphs, we find that it efficiently achieves performance.
Fast approximate quadratic programming for graph matching.
Vogelstein, Joshua T; Conroy, John M; Lyzinski, Vince; Podrazik, Louis J; Kratzer, Steven G; Harley, Eric T; Fishkind, Donniell E; Vogelstein, R Jacob; Priebe, Carey E
2015-01-01
Quadratic assignment problems arise in a wide variety of domains, spanning operations research, graph theory, computer vision, and neuroscience, to name a few. The graph matching problem is a special case of the quadratic assignment problem, and graph matching is increasingly important as graph-valued data is becoming more prominent. With the aim of efficiently and accurately matching the large graphs common in big data, we present our graph matching algorithm, the Fast Approximate Quadratic assignment algorithm. We empirically demonstrate that our algorithm is faster and achieves a lower objective value on over 80% of the QAPLIB benchmark library, compared with the previous state-of-the-art. Applying our algorithm to our motivating example, matching C. elegans connectomes (brain-graphs), we find that it efficiently achieves performance.
New Upper Bounds on Linear Coloring of Planar Graphs
Institute of Scientific and Technical Information of China (English)
Bin LIU; Gui Zhen LIU
2012-01-01
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths.The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G.In this paper,it is proved that every planar graph G with girth g and maximum degree △ has (1) lc(G) ≤ △ + 21 if △ ≥ 9; (2) lc(G) ≤ [△/2] + 7 if g ≥ 5; (3) lc(G) ≤[△/2]+2 if g ≥ 7 and △ ≥ 7.
On a conjecture concerning helly circle graphs
Directory of Open Access Journals (Sweden)
Durán Guillermo
2003-01-01
Full Text Available We say that G is an e-circle graph if there is a bijection between its vertices and straight lines on the cartesian plane such that two vertices are adjacent in G if and only if the corresponding lines intersect inside the circle of radius one. This definition suggests a method for deciding whether a given graph G is an e-circle graph, by constructing a convenient system S of equations and inequations which represents the structure of G, in such a way that G is an e-circle graph if and only if S has a solution. In fact, e-circle graphs are exactly the circle graphs (intersection graphs of chords in a circle, and thus this method provides an analytic way for recognizing circle graphs. A graph G is a Helly circle graph if G is a circle graph and there exists a model of G by chords such that every three pairwise intersecting chords intersect at the same point. A conjecture by Durán (2000 states that G is a Helly circle graph if and only if G is a circle graph and contains no induced diamonds (a diamond is a graph formed by four vertices and five edges. Many unsuccessful efforts - mainly based on combinatorial and geometrical approaches - have been done in order to validate this conjecture. In this work, we utilize the ideas behind the definition of e-circle graphs and restate this conjecture in terms of an equivalence between two systems of equations and inequations, providing a new, analytic tool to deal with it.
Institute of Scientific and Technical Information of China (English)
Shaolin Chen; Xiangming Liu; Bo Fu; Guoquan Zhang
2009-01-01
Nonvolatile two-color holographic recording gated by incoherent ultraviolet (UV) light centered at 365 nm is investigated in near-stoichiometric lithium niobate crystals. The influence of thermal treatment on the two-color recording is studied. The results show that thermal reduction tends to improve the two-color recording performance, whereas thermal oxidation degrades the two-color recording. With an incoherent 0.2-W/cm2 UV gating light and a 0.25-W/cm2 semiconductor recording laser at 780 nm, a two-color recording sensitivity of 4 x 10-3 cm/J and a recording dynamic range characterized by M/# of 0.12 are achieved in a 2.2-mm thermally reduced near-stoichiometric lithium niobate crystal. We attribute the improvement to the prolonged lifetime of small polarons and the increased absorption at the gating wavelength due to thermal reduction.
Baillie, C F; Kownacki, J P
1994-01-01
The Ising model on ``thin'' graphs (standard Feynman diagrams) displays several interesting properties. For ferromagnetic couplings there is a mean field phase transition at the corresponding Bethe lattice transition point. For antiferromagnetic couplings the replica trick gives some evidence for a spin glass phase. In this paper we investigate both the ferromagnetic and antiferromagnetic models with the aid of simulations. We confirm the Bethe lattice values of the critical points for the ferromagnetic model on \\phi^3 and \\phi^4 graphs and examine the putative spin glass phase in the antiferromagnetic model by looking at the overlap between replicas in a quenched ensemble of graphs. We also compare the Ising results with those for higher state Potts models and Ising models on ``fat'' graphs, such as those used in 2D gravity simulations.
Chromatic polynomials of random graphs
Van Bussel, Frank; Ehrlich, Christoph; Fliegner, Denny; Stolzenberg, Sebastian; Timme, Marc
2010-04-01
Chromatic polynomials and related graph invariants are central objects in both graph theory and statistical physics. Computational difficulties, however, have so far restricted studies of such polynomials to graphs that were either very small, very sparse or highly structured. Recent algorithmic advances (Timme et al 2009 New J. Phys. 11 023001) now make it possible to compute chromatic polynomials for moderately sized graphs of arbitrary structure and number of edges. Here we present chromatic polynomials of ensembles of random graphs with up to 30 vertices, over the entire range of edge density. We specifically focus on the locations of the zeros of the polynomial in the complex plane. The results indicate that the chromatic zeros of random graphs have a very consistent layout. In particular, the crossing point, the point at which the chromatic zeros with non-zero imaginary part approach the real axis, scales linearly with the average degree over most of the density range. While the scaling laws obtained are purely empirical, if they continue to hold in general there are significant implications: the crossing points of chromatic zeros in the thermodynamic limit separate systems with zero ground state entropy from systems with positive ground state entropy, the latter an exception to the third law of thermodynamics.
Stauffer, Hans U.; Roy, Sukesh; Schmidt, Jacob B.; Wrzesinski, Paul J.; Gord, James R.
2016-09-01
A resonantly enhanced, two-color, femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) approach is demonstrated and used to explore the nature of the frequency- and time-dependent signals produced by gas-phase nitric oxide (NO). Through careful selection of the input pulse wavelengths, this fully resonant electronically enhanced CARS (FREE-CARS) scheme allows rovibronic-state-resolved observation of time-dependent rovibrational wavepackets propagating on the vibrationally excited ground-state potential energy surface of this diatomic species. Despite the use of broadband, ultrafast time-resolved input pulses, high spectral resolution of gas-phase rovibronic transitions is observed in the FREE-CARS signal, dictated by the electronic dephasing timescales of these states. Analysis and computational simulation of the time-dependent spectra observed as a function of pump-Stokes and Stokes-probe delays provide insight into the rotationally resolved wavepacket motion observed on the excited-state and vibrationally excited ground-state potential energy surfaces of NO, respectively.
Multigraph: Reusable Interactive Data Graphs
Phillips, M. B.
2010-12-01
There are surprisingly few good software tools available for presenting time series data on the internet. The most common practice is to use a desktop program such as Excel or Matlab to save a graph as an image which can be included in a web page like any other image. This disconnects the graph from the data in a way that makes updating a graph with new data a cumbersome manual process, and it limits the user to one particular view of the data. The Multigraph project defines an XML format for describing interactive data graphs, and software tools for creating and rendering those graphs in web pages and other internet connected applications. Viewing a Multigraph graph is extremely simple and intuitive, and requires no instructions; the user can pan and zoom by clicking and dragging, in a familiar "Google Maps" kind of way. Creating a new graph for inclusion in a web page involves writing a simple XML configuration file. Multigraph can read data in a variety of formats, and can display data from a web service, allowing users to "surf" through large data sets, downloading only those the parts of the data that are needed for display. The Multigraph XML format, or "MUGL" for short, provides a concise description of the visual properties of a graph, such as axes, plot styles, data sources, labels, etc, as well as interactivity properties such as how and whether the user can pan or zoom along each axis. Multigraph reads a file in this format, draws the described graph, and allows the user to interact with it. Multigraph software currently includes a Flash application for embedding graphs in web pages, a Flex component for embedding graphs in larger Flex/Flash applications, and a plugin for creating graphs in the WordPress content management system. Plans for the future include a Java version for desktop viewing and editing, a command line version for batch and server side rendering, and possibly Android and iPhone versions. Multigraph is currently in use on several web
Quick Mining of Isomorphic Exact Large Patterns from Large Graphs
Almasri, Islam
2014-12-01
The applications of the sub graph isomorphism search are growing with the growing number of areas that model their systems using graphs or networks. Specifically, many biological systems, such as protein interaction networks, molecular structures and protein contact maps, are modeled as graphs. The sub graph isomorphism search is concerned with finding all sub graphs that are isomorphic to a relevant query graph, the existence of such sub graphs can reflect on the characteristics of the modeled system. The most computationally expensive step in the search for isomorphic sub graphs is the backtracking algorithm that traverses the nodes of the target graph. In this paper, we propose a pruning approach that is inspired by the minimum remaining value heuristic that achieves greater scalability over large query and target graphs. Our testing on various biological networks shows that performance enhancement of our approach over existing state-of-the-art approaches varies between 6x and 53x. © 2014 IEEE.
Lawes, Jonathan F.
2013-01-01
Graphing polar curves typically involves a combination of three traditional techniques, all of which can be time-consuming and tedious. However, an alternative method--graphing the polar function on a rectangular plane--simplifies graphing, increases student understanding of the polar coordinate system, and reinforces graphing techniques learned…
2014-01-01
© 2015 Elsevier B.V. Motivated by recent extensive studies on Wenger graphs, we introduce a new infinite class of bipartite graphs of a similar type, called linearized Wenger graphs. The spectrum, diameter and girth of these linearized Wenger graphs are determined.
Zhou, Feng; de la Torre, Fernando
2015-11-19
Graph matching (GM) is a fundamental problem in computer science, and it plays a central role to solve correspondence problems in computer vision. GM problems that incorporate pairwise constraints can be formulated as a quadratic assignment problem (QAP). Although widely used, solving the correspondence problem through GM has two main limitations: (1) the QAP is NP-hard and difficult to approximate; (2) GM algorithms do not incorporate geometric constraints between nodes that are natural in computer vision problems. To address aforementioned problems, this paper proposes factorized graph matching (FGM). FGM factorizes the large pairwise affinity matrix into smaller matrices that encode the local structure of each graph and the pairwise affinity between edges. Four are the benefits that follow from this factorization: (1) There is no need to compute the costly (in space and time) pairwise affinity matrix; (2) The factorization allows the use of a path-following optimization algorithm, that leads to improved optimization strategies and matching performance; (3) Given the factorization, it becomes straight-forward to incorporate geometric transformations (rigid and non-rigid) to the GM problem. (4) Using a matrix formulation for the GM problem and the factorization, it is easy to reveal commonalities and differences between different GM methods. The factorization also provides a clean connection with other matching algorithms such as iterative closest point; Experimental results on synthetic and real databases illustrate how FGM outperforms state-of-the-art algorithms for GM. The code is available at http://humansensing.cs.cmu.edu/fgm.
Assessing probe-specific dye and slide biases in two-color microarray data
Directory of Open Access Journals (Sweden)
Goldberg Zelanna
2008-07-01
Full Text Available Abstract Background A primary reason for using two-color microarrays is that the use of two samples labeled with different dyes on the same slide, that bind to probes on the same spot, is supposed to adjust for many factors that introduce noise and errors into the analysis. Most users assume that any differences between the dyes can be adjusted out by standard methods of normalization, so that measures such as log ratios on the same slide are reliable measures of comparative expression. However, even after the normalization, there are still probe specific dye and slide variation among the data. We define a method to quantify the amount of the dye-by-probe and slide-by-probe interaction. This serves as a diagnostic, both visual and numeric, of the existence of probe-specific dye bias. We show how this improved the performance of two-color array analysis for arrays for genomic analysis of biological samples ranging from rice to human tissue. Results We develop a procedure for quantifying the extent of probe-specific dye and slide bias in two-color microarrays. The primary output is a graphical diagnostic of the extent of the bias which called ECDF (Empirical Cumulative Distribution Function, though numerical results are also obtained. Conclusion We show that the dye and slide biases were high for human and rice genomic arrays in two gene expression facilities, even after the standard intensity-based normalization, and describe how this diagnostic allowed the problems causing the probe-specific bias to be addressed, and resulted in important improvements in performance. The R package LMGene which contains the method described in this paper has been available to download from Bioconductor.
Rosmanis, Ansis
2010-01-01
I introduce a new type of continuous-time quantum walk on graphs called the quantum snake walk, the basis states of which are fixed-length paths (snakes) in the underlying graph. First I analyze the quantum snake walk on the line, and I show that, even though most states stay localized throughout the evolution, there are specific states which most likely move on the line as wave packets with momentum inversely proportional to the length of the snake. Next I discuss how an algorithm based on the quantum snake walk might be able to solve an extended version of the glued trees problem which asks to find a path connecting both roots of the glued trees graph. No efficient quantum algorithm solving this problem is known yet.
Two-color CO{sub 2}/HeNe laser interferometer for C-2 experiment
Energy Technology Data Exchange (ETDEWEB)
Gornostaeva, O.; Deng, B. H.; Garate, E.; Gota, H.; Kinley, J.; Schroeder, J.; Tuszewski, M. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)
2010-10-15
A six-channel two-color interferometer has been developed for plasma electron density measurements in the C-2 field reversed configuration experiment. A CO{sub 2} laser is utilized as the main probe beams, while copropagating visible HeNe laser beams are mainly sensitive to vibration. Density measurements in C-2 plasmas have shown that this is a reliable turn-key system. The maximum residual phase noise after vibration compensation is less than {+-}5 deg., corresponding to a line integral density of 3x10{sup 18} m{sup -2}. The time resolution for routine operation is 2 {mu}s.
Control of the polarization of attosecond pulses using a two-color field
Energy Technology Data Exchange (ETDEWEB)
Ruiz, Camilo; Hoffmann, David J; Torres, Ricardo; Chipperfield, Luke E; Marangos, Jonathan P [Blackett Laboratory, Imperial College London, London SW7 2BW (United Kingdom)], E-mail: camilo@usal.es
2009-11-15
Control over the polarization of an attosecond pulse train (APT) is demonstrated theoretically using orthogonally polarized two-color fields. The carrier envelope phase of the two pulses is used as a control parameter to generate both an APT with linear polarization in two nearly perpendicular planes or a train of elliptically polarized pulses of alternating helicity. By using few-cycle driving laser fields an isolated attosecond pulse with elliptical polarization is shown to be generated after selecting the cut-off region of the harmonic spectrum. The control mechanism is explained in terms of classical trajectories.
Tomographic imaging of asymmetric molecular orbitals with a two-color multicycle laser field
Qin, Meiyan; Zhang, Qingbin; Lu, Peixiang
2013-01-01
We theoretically demonstrate a scheme for tomographic reconstruction of asymmetric molecular orbitals based on high-order harmonic generation with a two-color multicycle laser field. It is shown that by adjusting the relative phase of the two fields, the returning electrons can be forced to recollide from one direction for all the orientations of molecules. Thus the reconstruction of the asymmetric orbitals can be carried out with multicycle laser field. This releases the stringent requirement of a single-cycle pulse with a stabilized and controllable carrier-envelop phase for the tomographic imaging of asymmetric molecular orbitals.
Two-Color Fabry-Perot Laser Diode with THz Primary Mode Spacing
O'Brien, S; Buckley, K; Fehse, R; Amann, A; O'Reilly, E P; Barry, L P; Anandarajah, P; Patchell, J; O'Gorman, J
2006-01-01
A class of multiwavelength Fabry-Perot lasers is introduced where the spectrum is tailored through a non-periodic patterning of the cavity effective index. The cavity geometry is obtained using an inverse scattering approach and can be designed such that the spacing of discrete Fabry-Perot lasing modes is limited only by the bandwidth of the inverted gain medium. A specific two-color semiconductor laser with a mode spacing in the THz regime is designed, and measurements are presented demonstrating the simultaneous oscillation of the two wavelengths. The extension of the Fabry-Perot laser concept described presents significant new possibilities in laser cavity design.
Two-color QCD with non-zero chiral chemical potential
Energy Technology Data Exchange (ETDEWEB)
Braguta, V.V. [Institute for High Energy Physics NRC “Kurchatov Institute' ,142281 Protvino (Russian Federation); Far Eastern Federal University, School of Biomedicine,690950 Vladivostok (Russian Federation); Goy, V.A. [Far Eastern Federal University, School of Natural Sciences,690950 Vladivostok (Russian Federation); Ilgenfritz, E.M. [Joint Institute for Nuclear Research,BLTP, 141980 Dubna (Russian Federation); Kotov, A.Yu. [Institute of Theoretical and Experimental Physics,117259 Moscow (Russian Federation); Molochkov, A.V. [Far Eastern Federal University, School of Biomedicine,690950 Vladivostok (Russian Federation); Müller-Preussker, M.; Petersson, B. [Humboldt-Universität zu Berlin, Institut für Physik,12489 Berlin (Germany)
2015-06-16
The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.
Flank transparency: transparent filters seen in dynamic two-color displays.
Wollschläger, D; Rodriguez, A M; Hoffman, D D
2001-01-01
Flank transparency is the perception of a colored transparent filter evoked by apparent-motion displays containing as few as two colors. Displays of flank transparency contain a random array of line segments placed on a uniform background. Small flanks are added to the line segments if the segments fall in the interior of a moving virtual shape, such as a virtual disk. This leads to the perception of a colored transparent disk with well-defined boundaries moving over the array of lines. Current qualitative and quantitative models of luminance and color conditions for perceptual transparency do not account for flank transparency as they require displays containing at least three different colors.
Spatial properties of a terahertz beam generated from a two-color air plasma
DEFF Research Database (Denmark)
Pedersen, Pernille Klarskov; Wang, Tianwu; Buron, Jonas Christian Due
2013-01-01
We present a spatial characterization of terahertz (THz) beams generated from a two-color air plasma under different conditions by measuring full 3D beam profiles using a commercial THz camera. We compare two THz beam profiles emitted from plasmas generated by 35 fs and 100 fs laser pulses......, and show that the spatial properties of the two THz beams do not change significantly. For the THz beam profile generated by the 35 fs pulse, the spatial effect of eliminating the lower frequencies is investigated by implementing two crossed polarizers working as a high-pass filter. We show...
Semiconductor cluster beams: One and two color ionization studies of Six and Gex
Heath, J R; Liu, Yuan; O'Brien, S. C.; Zhang, Qing-ling; Curl, R. F.; Tittel, F.K.; Smalley, R.E.
1985-01-01
Supersonic beams of clusters of Si and Ge atoms have been produced by laser vaporization followed by supersonic expansion in a helium carrier. The cluster beams were characterized by F2(7.9 eV) and ArF(6.4 eV) excimer laser ionization accompanied by time-of-flight mass analysis. In addition, the feasibility of a resonant two-photon ionization (R2PI) spectroscopic study was explored by two-color experiments involving initial excitation with the second (2.36 eV) and third (3.54 eV) harmonics of...
Two-color CO2/HeNe laser interferometer for C-2 experiment.
Gornostaeva, O; Deng, B H; Garate, E; Gota, H; Kinley, J; Schroeder, J; Tuszewski, M
2010-10-01
A six-channel two-color interferometer has been developed for plasma electron density measurements in the C-2 field reversed configuration experiment. A CO(2) laser is utilized as the main probe beams, while copropagating visible HeNe laser beams are mainly sensitive to vibration. Density measurements in C-2 plasmas have shown that this is a reliable turn-key system. The maximum residual phase noise after vibration compensation is less than ±5°, corresponding to a line integral density of 3×10(18) m(-2). The time resolution for routine operation is 2 μs.
Mancuso, Christopher A.; Dorney, Kevin M.; Hickstein, Daniel D.; Chaloupka, Jan L.; Ellis, Jennifer L.; Dollar, Franklin J.; Knut, Ronny; Grychtol, Patrik; Zusin, Dmitriy; Gentry, Christian; Gopalakrishnan, Maithreyi; Kapteyn, Henry C.; Murnane, Margaret M.
2016-09-01
Atoms undergoing strong-field ionization in two-color circularly polarized femtosecond laser fields exhibit unique two-dimensional photoelectron trajectories and can emit bright circularly polarized extreme ultraviolet and soft-x-ray beams. In this Letter, we present the first experimental observation of nonsequential double ionization in these tailored laser fields. Moreover, we can enhance or suppress nonsequential double ionization by changing the intensity ratio and helicity of the two driving laser fields to maximize or minimize high-energy electron-ion rescattering. Our experimental results are explained through classical simulations, which also provide insight into how to optimize the generation of circularly polarized high harmonic beams.
Stokes image reconstruction for two-color microgrid polarization imaging systems.
Lemaster, Daniel A
2011-07-18
The Air Force Research Laboratory has developed a new microgrid polarization imaging system capable of simultaneously reconstructing linear Stokes parameter images in two colors on a single focal plane array. In this paper, an effective method for extracting Stokes images is presented for this type of camera system. It is also shown that correlations between the color bands can be exploited to significantly increase overall spatial resolution. Test data is used to show the advantages of this approach over bilinear interpolation. The bounds (in terms of available reconstruction bandwidth) on image resolution are also provided.
CUDA Enabled Graph Subset Examiner
Energy Technology Data Exchange (ETDEWEB)
2016-12-22
Finding Godsil-McKay switching sets in graphs is one way to demonstrate that a specific graph is not determined by its spectrum--the eigenvalues of its adjacency matrix. An important area of active research in pure mathematics is determining which graphs are determined by their spectra, i.e. when the spectrum of the adjacency matrix uniquely determines the underlying graph. We are interested in exploring the spectra of graphs in the Johnson scheme and specifically seek to determine which of these graphs are determined by their spectra. Given a graph G, a Godsil-McKay switching set is an induced subgraph H on 2k vertices with the following properties: I) H is regular, ii) every vertex in G/H is adjacent to either 0, k, or 2k vertices of H, and iii) at least one vertex in G/H is adjacent to k vertices in H. The software package examines each subset of a user specified size to determine whether or not it satisfies those 3 conditions. The software makes use of the massive parallel processing power of CUDA enabled GPUs. It also exploits the vertex transitivity of graphs in the Johnson scheme by reasoning that if G has a Godsil-McKay switching set, then it has a switching set which includes vertex 1. While the code (in its current state) is tuned to this specific problem, the method of examining each induced subgraph of G can be easily re-written to check for any user specified conditions on the subgraphs and can therefore be used much more broadly.
Directory of Open Access Journals (Sweden)
Wi Hoon eJung
2013-10-01
Full Text Available One major characteristic of experts is intuitive judgment, which is an automatic process whereby patterns stored in memory through long-term training are recognized. Indeed, long-term training may influence brain structure and function. A recent study revealed that chess experts at rest showed differences in structure and functional connectivity (FC in the head of caudate, which is associated with rapid best next-move generation. However, less is known about the structure and function of the brains of Baduk experts compared with those of experts in other strategy games. Therefore, we performed voxel-based morphometry and FC analyses in Baduk experts to investigate structural brain differences and to clarify the influence of these differences on functional interactions. We also conducted graph theoretical analysis to explore the topological organization of whole-brain functional networks. Compared to novices, Baduk experts exhibited decreased and increased gray matter volume in the amygdala and nucleus accumbens, respectively. We also found increased FC between the amygdala and medial orbitofrontal cortex and decreased FC between the nucleus accumbens and medial prefrontal cortex. Further graph theoretical analysis revealed differences in measures of the integration of the network and in the regional nodal characteristics of various brain regions activated during Baduk. This study provides evidence for structural and functional differences as well as altered topological organization of the whole-brain functional networks in Baduk experts. Our findings also offer novel suggestions about the cognitive mechanisms behind Baduk expertise, which involves intuitive decision-making mediated by somatic marker circuitry and visuospatial processing.
Quantum secret sharing with quantum graph states%基于量子图态的量子秘密共享∗
Institute of Scientific and Technical Information of China (English)
梁建武; 程资; 石金晶; 郭迎
2016-01-01
Quantum secret sharing is an important way to achieve secure communications, which has critical applications in the field of information security for its physical properties. According to the perspective of the practical applications, improving the confidentiality and integrity of secret sharing schemes is a good method to increase the security and reliability of communications. In this paper, we propose a quantum secret sharing scheme based on generator matrix segmentation and the structural features of quantum graph states. The security of the secure secret sharing scheme is guaranteed by the pattern of transferring information by stabilizers, scalability of the information and new recovery strategy provided by the entanglement of the related graph states. It puts forward an effective solution to the problem of matrix cycle period, where some numbers without the primitive element cannot construct the generation matrix. First of all, the physical properties of quantum bits (qubits), such as uncertainty principle, no-cloning theorem and indistinguishability, not only optimize the classical schemes but also ensure the absolute safety of communication. Secondly, the application of matrix segmentation makes secret information has better scalability. It improves the coding diversity and the diﬃculty in deciphering. Thirdly, the favorable entanglement properties and mature experiment preparation techniques of graph states provide an approach to the practical applications. The superiority of the yielded graph states is described in graphical fashion with an elegant stabilizer. Fourthly, the shuﬄing operation can ensure the independence of the message among participants. Therefore, Eve can not obtain any useful information by measuring randomly. Two group-recovery protocols are proposed to show the secret recovering processing through rebuilding sub-secrets among legal cooperative participants. In the scheme design, the dealer extracts the classical secret information
Generation of strong terahertz field from two-color laser filamentation and optical rectification
Kuk, Donghoon; Yoo, Yungjun; Oh, Taek Il; You, Yong Sing; Kim, Ki-Yong
2015-04-01
We have demonstrated strong-field (>8 MV/cm), high-peak-power (12 MW) THz generation with a bandwidth of >20 THz via two-color laser filamentation. Moderate average power (1.4 mW) is also achieved by using a cryogenically-cooled Ti:sapphire amplifier capable of producing 30 fs, 15 mJ pulses at a 1 kHz repetition rate. For maximal THz generation and transmission, we have used a combination of a thin dichroic waveplate and a large Brewster-angled silicon filter. Here we have used a thin BBO crystal for frequency doubling (800 nm to 400 nm) and observed strong terahertz emission from the crystal itself. We also find that this type of terahertz emission can be optimized to yield more output power compared to two-color photoionization. In both cases, we have used a microbolometer camera for real-time THz beam profiling. This cost-effective THz camera along with our intense THz sources can be a useful tool for nonlinear THz studies including broadband THz spectroscopy and imaging. Work supported by DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. 014216-001.
DEFF Research Database (Denmark)
Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter
2014-01-01
Motivation RNA folding is a complicated kinetic process. The minimum free energy structure provides only a static view of the most stable conformational state of the system. It is insufficient to give detailed insights into the dynamic behavior of RNAs. A sufficiently sophisticated analysis...... of the folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...
Bapat, Ravindra B
2014-01-01
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reo...
Parallel Graph Partitioning for Complex Networks
Meyerhenke, Henning; Schulz, Christian
2014-01-01
Processing large complex networks like social networks or web graphs has recently attracted considerable interest. In order to do this in parallel, we need to partition them into pieces of about equal size. Unfortunately, previous parallel graph partitioners originally developed for more regular mesh-like networks do not work well for these networks. This paper addresses this problem by parallelizing and adapting the label propagation technique originally developed for graph clustering. By introducing size constraints, label propagation becomes applicable for both the coarsening and the refinement phase of multilevel graph partitioning. We obtain very high quality by applying a highly parallel evolutionary algorithm to the coarsened graph. The resulting system is both more scalable and achieves higher quality than state-of-the-art systems like ParMetis or PT-Scotch. For large complex networks the performance differences are very big. For example, our algorithm can partition a web graph with 3.3 billion edges ...
Efficient Snapshot Retrieval over Historical Graph Data
Khurana, Udayan
2012-01-01
We address the problem of managing historical data for large evolving information networks like social networks or citation networks, with the goal to enable temporal and evolutionary queries and analysis. We present the design and architecture of a distributed graph database system that stores the entire history of a network and provides support for efficient retrieval of multiple graphs from arbitrary time points in the past, in addition to maintaining the current state for ongoing updates. Our system exposes a general programmatic API to process and analyze the retrieved snapshots. We introduce DeltaGraph, a novel, extensible, highly tunable, and distributed hierarchical index structure that enables compactly recording the historical information, and that supports efficient retrieval of historical graph snapshots for single-site or parallel processing. Along with the original graph data, DeltaGraph can also maintain and index auxiliary information; this functionality can be used to extend the structure to ...
Using Canonical Forms for Isomorphism Reduction in Graph-based Model Checking
Kant, Gijs
2010-01-01
Graph isomorphism checking can be used in graph-based model checking to achieve symmetry reduction. Instead of one-to-one comparing the graph representations of states, canonical forms of state graphs can be computed. These canonical forms can be used to store and compare states. However, computing
Energy Technology Data Exchange (ETDEWEB)
Radi, P.P.; Tulej, M.; Knopp, G.; Beaud, P.; Gerber, T.
2004-03-01
Stimulated emission pumping by applying two-color resonant four-wave mixing is used to measure rotationally resolved spectra of the HCO (0,0,0) B {sup 2}A' - (0,3,1) X {sup 2}A' transition. The formyl radical is produced by photodissociation of formaldehyde at 31710.8 cm{sup -1} under thermalized conditions in a low pressure cell. In contrast to the highly congested one-color spectrum of HCO at room temperature, the doubleresonance method yields well isolated transitions which are assigned unambiguously due to intermediate level labeling. 89 rotational transitions have been assigned and yield accurate rotational constants for the vibrationally excited (0,3,1) band of the electronic ground state X {sup 2}A' of HCO. The determined rotational constant A = 25.84{+-}0.01 cm-1 is considerably higher than that for the vibrationless ground state and reflects the structural change due to excitation of the bending mode of the formyl radical. (author)
Directory of Open Access Journals (Sweden)
C. Dalfo
2015-10-01
Full Text Available We study a family of graphs related to the $n$-cube. The middle cube graph of parameter k is the subgraph of $Q_{2k-1}$ induced by the set of vertices whose binary representation has either $k-1$ or $k$ number of ones. The middle cube graphs can be obtained from the well-known odd graphs by doubling their vertex set. Here we study some of the properties of the middle cube graphs in the light of the theory of distance-regular graphs. In particular, we completely determine their spectra (eigenvalues and their multiplicities, and associated eigenvectors.
Spectral recognition of graphs
Directory of Open Access Journals (Sweden)
Cvetković Dragoš
2012-01-01
Full Text Available At some time, in the childhood of spectral graph theory, it was conjectured that non-isomorphic graphs have different spectra, i.e. that graphs are characterized by their spectra. Very quickly this conjecture was refuted and numerous examples and families of non-isomorphic graphs with the same spectrum (cospectral graphs were found. Still some graphs are characterized by their spectra and several mathematical papers are devoted to this topic. In applications to computer sciences, spectral graph theory is considered as very strong. The benefit of using graph spectra in treating graphs is that eigenvalues and eigenvectors of several graph matrices can be quickly computed. Spectral graph parameters contain a lot of information on the graph structure (both global and local including some information on graph parameters that, in general, are computed by exponential algorithms. Moreover, in some applications in data mining, graph spectra are used to encode graphs themselves. The Euclidean distance between the eigenvalue sequences of two graphs on the same number of vertices is called the spectral distance of graphs. Some other spectral distances (also based on various graph matrices have been considered as well. Two graphs are considered as similar if their spectral distance is small. If two graphs are at zero distance, they are cospectral. In this sense, cospectral graphs are similar. Other spectrally based measures of similarity between networks (not necessarily having the same number of vertices have been used in Internet topology analysis, and in other areas. The notion of spectral distance enables the design of various meta-heuristic (e.g., tabu search, variable neighbourhood search algorithms for constructing graphs with a given spectrum (spectral graph reconstruction. Several spectrally based pattern recognition problems appear in many areas (e.g., image segmentation in computer vision, alignment of protein-protein interaction networks in bio
Evolution of the THz Beam Profile from a Two-Color Air Plasma Through a Beam Waist
DEFF Research Database (Denmark)
Strikwerda, Andrew; Pedersen, Pernille Klarskov; Jepsen, Peter Uhd
2013-01-01
We experimentally measure the profile of a THz beam generated by a two-color air plasma as it passes through a beam waist, and show that it can be approximated as a Bessel-Gauss beam.......We experimentally measure the profile of a THz beam generated by a two-color air plasma as it passes through a beam waist, and show that it can be approximated as a Bessel-Gauss beam....
Fenner, Andreas; Stephan, Peter
2017-06-01
This paper presents two dye combinations suitable for two-color/two-dye laser-induced fluorescence thermography for ethanol. Besides the temperature dependency of the fluorescence, the influences of laser fluence, dye concentration, pressure, dissolved air, and photobleaching are also discussed. The experimental data are compared with models and data available in literature. Based on this, parameter ranges for two-color/two-dye laser-induced fluorescence thermography applications can be determined.
An Execution Algorithm for UML Activity Graphs
Eshuis, H.; Wieringa, Roelf J.; Gogolla, Martin; Kobryn, Cris
2001-01-01
We present a real-time execution semantics for UML activity graphs that is intended for workflow modelling. The semantics is defined in terms of execution algorithms that define how components of a workflow system execute an activity graph. The semantics stays close to the semantics of UML state
人群异常状态检测的图分析方法%A Graph Analysis Method for Abnormal Crowd State Detection
Institute of Scientific and Technical Information of China (English)
朱海龙; 刘鹏; 刘家锋; 唐降龙
2012-01-01
提出一种图分析方法用于动态人群场景异常状态检测.使用自适应Mean shift算法对场景速度场进行非参数概率密度估计聚类,聚类结果构成以聚类中心为顶点、各聚类中心之间距离为边权重的无向图.通过分析图顶点的空间分布及边权重矩阵动态系统的预测值与观测值之间的离散程度,对动态场景中的异常事件进行检测和定位.使用多个典型动态场景视频数据库进行对比实验,结果表明图分析方法适应性强、可有效监控动态人群场景中的异常状态.%An abnormity detection method for a dynamic crowd scene is proposed based on graph analysis. After the non-parametric clustering in velocity space via an adaptive mean shift algorithm, we get the clustering results containing some cluster centers and Euclidean distances between them, and they can form a graph whose vertexes are the cluster centers and edge weights are the distances. Through analyzing the vertexes' distribution in feature space and the state transform of a dynamic system made by the sequence of the edge weight matrix, we can detect and locate the abnormal events in the scenario. To testify the method's effectiveness, we conducted experiments on several well-known datasets and obtained good performance in both abnormal events detection and location. The results show that the graph analysis method has strong adaptability and can efficiently detect the abnormal states in dynamic crowd scene.
Survey of Approaches to Generate Realistic Synthetic Graphs
Energy Technology Data Exchange (ETDEWEB)
Lim, Seung-Hwan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Sangkeun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Sarah S [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shankar, Mallikarjun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Imam, Neena [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-10-01
A graph is a flexible data structure that can represent relationships between entities. As with other data analysis tasks, the use of realistic graphs is critical to obtaining valid research results. Unfortunately, using the actual ("real-world") graphs for research and new algorithm development is difficult due to the presence of sensitive information in the data or due to the scale of data. This results in practitioners developing algorithms and systems that employ synthetic graphs instead of real-world graphs. Generating realistic synthetic graphs that provide reliable statistical confidence to algorithmic analysis and system evaluation involves addressing technical hurdles in a broad set of areas. This report surveys the state of the art in approaches to generate realistic graphs that are derived from fitted graph models on real-world graphs.
Pancyclic and bipancyclic graphs
George, John C; Wallis, W D
2016-01-01
This book is focused on pancyclic and bipancyclic graphs and is geared toward researchers and graduate students in graph theory. Readers should be familiar with the basic concepts of graph theory, the definitions of a graph and of a cycle. Pancyclic graphs contain cycles of all possible lengths from three up to the number of vertices in the graph. Bipartite graphs contain only cycles of even lengths, a bipancyclic graph is defined to be a bipartite graph with cycles of every even size from 4 vertices up to the number of vertices in the graph. Cutting edge research and fundamental results on pancyclic and bipartite graphs from a wide range of journal articles and conference proceedings are composed in this book to create a standalone presentation. The following questions are highlighted through the book: - What is the smallest possible number of edges in a pancyclic graph with v vertices? - When do pancyclic graphs exist with exactly one cycle of every possible length? - What is the smallest possible number of...
Unsupervised Spectral Mesh Segmentation Driven by Heterogeneous Graphs.
Theologou, Panagiotis; Pratikakis, Ioannis; Theoharis, Theoharis
2017-02-01
A fully automatic mesh segmentation scheme using heterogeneous graphs is presented. We introduce a spectral framework where local geometry affinities are coupled with surface patch affinities. A heterogeneous graph is constructed combining two distinct graphs: a weighted graph based on adjacency of patches of an initial over-segmentation, and the weighted dual mesh graph. The partitioning relies on processing each eigenvector of the heterogeneous graph Laplacian individually, taking into account the nodal set and nodal domain theory. Experiments on standard datasets show that the proposed unsupervised approach outperforms the state-of-the-art unsupervised methodologies and is comparable to the best supervised approaches.
Multiscale Monte Carlo equilibration: Two-color QCD with two fermion flavors
Detmold, William
2016-01-01
We demonstrate the applicability of a recently proposed multi-scale thermalization algorithm to two-color quantum chromodynamics (QCD) with two mass-degenerate fermion flavors. The algorithm involves refining an ensemble of gauge configurations that had been generated using a renormalization group (RG) matched coarse action, thereby producing a fine ensemble that is close to the thermalized distribution of a target fine action; the refined ensemble is subsequently rethermalized using conventional algorithms. Although the generalization of this algorithm from pure Yang-Mills theory to QCD with dynamical fermions is straight-forward, we find that in the latter case, the method is susceptible to numerical instabilities during the initial stages of rethermalization when using the hybrid Monte Carlo algorithm. We find that these instabilities arise from large fermion forces in the evolution, which are attributed to an accumulation of spurious near-zero modes of the Dirac operator. We propose a simple strategy for ...
Two-color Photodetectors%双波段光电探测器
Institute of Scientific and Technical Information of China (English)
刘铁权; 但伟
2000-01-01
Photodetectors are the critical parts for implementation of optoelectoronic detection and various optoelectronic technology. The paper introduces two-color photodetectors made of silicon integrated with InGaAs. These photodetectors can detect and respond incident light with the range of 400～1 100 nm and 1 100～1 650 nm simultaneously.%光电探测器是实现光电检测及各种光电技术的核心部件。文章介绍采用Si和In-GaAs两种材料集成制作的双波段光电探测器，它能同时探测并区分400～1100nm和1100～1 650 nm波段的入射光。
Remote creation of strong and coherent emissions in air with two-color ultrafast laser pulses
Yao, Jinping; Jing, Chenrui; Zeng, Bin; Chu, Wei; Ni, Jielei; Zhang, Haisu; Xie, Hongqiang; Zhang, Chaojin; Li, Helong; Xu, Huailiang; Chin, See Leang; Cheng, Ya; Xu, Zhizhan
2012-01-01
We experimentally demonstrate generation of strong narrow-bandwidth emissions with excellent coherent properties at ~391 nm and ~428 nm from molecular ions of nitrogen inside a femtosecond filament in air by an orthogonally polarized two-color driver field (i. e., 800 nm laser pulse and its second harmonic). The durations of the coherent emissions at 391 nm and 428 nm are measured to be ~2.4 ps and ~7.8 ps respectively, both of which are much longer than the duration of the pump and its second harmonic pulses. Furthermore, the measured temporal decay characteristics of the excited molecular systems suggest an "instantaneous" population inversion mechanism that may be achieved in molecular nitrogen ions at an ultrafast time scale comparable to the 800 nm pump pulse.
Statistical analysis of efficient unbalanced factorial designs for two-color microarray experiments.
Tempelman, Robert J
2008-01-01
Experimental designs that efficiently embed a fixed effects treatment structure within a random effects design structure typically require a mixed-model approach to data analyses. Although mixed model software tailored for the analysis of two-color microarray data is increasingly available, much of this software is generally not capable of correctly analyzing the elaborate incomplete block designs that are being increasingly proposed and used for factorial treatment structures. That is, optimized designs are generally unbalanced as it pertains to various treatment comparisons, with different specifications of experimental variability often required for different treatment factors. This paper uses a publicly available microarray dataset, as based upon an efficient experimental design, to demonstrate a proper mixed model analysis of a typical unbalanced factorial design characterized by incomplete blocks and hierarchical levels of variability.
Fabrication of optical multilayer for two-color phase plate in super-resolution microscope.
Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor
2014-07-01
In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope.
Magnetic catalysis (and inverse catalysis) at finite temperature in two-color lattice QCD
Ilgenfritz, E -M; Petersson, B; Schreiber, A
2013-01-01
Two-color lattice QCD with N_f=4 staggered fermion degrees of freedom (no rooting trick is applied) with equal electric charge q is studied in a homogeneous magnetic background field B and at non-zero temperature T. In order to circumvent renormalization as a function of the bare coupling we apply a fixed-scale approach. We study the influence of the magnetic field on the critical temperature. At rather small pseudo-scalar meson mass (m_pi \\approx 175 MeV \\approx T_c(B=0)) we confirm magnetic catalysis for sufficiently strong magnetic field strength, while at T=195 MeV and weak magnetic field (qB {\\lesssim} 0.8 GeV^2) we find a rise of the Polyakov loop with qB and thus, indications for an inverse magnetic catalysis.
Calibration of a two-color soft x-ray diagnostic for electron temperature measurement
Energy Technology Data Exchange (ETDEWEB)
Reusch, L. M., E-mail: lmmcguire@wisc.edu; Den Hartog, D. J.; Goetz, J.; McGarry, M. B. [University of Wisconsin - Madison, Madison, Wisconsin 53703 (United States); Franz, P. [Consorzio RFX, Padova (Italy); Stephens, H. D. [University of Wisconsin - Madison, Madison, Wisconsin 53703 (United States); Pierce College Fort Steilacoom, Lakewood, Washington 98498 (United States)
2016-11-15
The two-color soft x-ray (SXR) tomography diagnostic on the Madison Symmetric Torus is capable of making electron temperature measurements via the double-filter technique; however, there has been a 15% systematic discrepancy between the SXR double-filter (SXR{sub DF}) temperature and Thomson scattering (TS) temperature. Here we discuss calibration of the Be filters used in the SXR{sub DF} measurement using empirical measurements of the transmission function versus energy at the BESSY II electron storage ring, electron microprobe analysis of filter contaminants, and measurement of the effective density. The calibration does not account for the TS and SXR{sub DF} discrepancy, and evidence from experiments indicates that this discrepancy is due to physics missing from the SXR{sub DF} analysis rather than instrumentation effects.
Synthesis of Two-Color Laser Pulses for the Harmonic Cutoff Extension
Wang, Guo-Li; Zhou, Li-Hua; Zhao, Song-Feng; Zhou, Xiao-Xin
2016-05-01
Increasing simultaneously both the cutoff energy and efficiency is a big challenge to all applications of high-order harmonic generation (HHG). For this purpose, the shaping of the waveform of driving pulse is an alternative approach. Here, we show that the harmonic cutoff can be extended by about two times without reducing harmonic yield after considering macroscopic propagation effects, by adopting a practical way to synthesize two-color fields with fixed energy. Our results, combined with the experimental techniques, show the great potential of HHG as a tabletop light source. Supported by the National Natural Science Foundation of China under Grant Nos. 11264036, 11164025, 11364038, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001, and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province
Biosynthetic labeling and two-color imaging of phospholipids in cells.
Jao, Cindy Y; Roth, Mary; Welti, Ruth; Salic, Adrian
2015-02-09
Phospholipids with a choline head group are abundant components of all biological membranes, performing critical functions in cellular structure, metabolism, and signaling. In spite of their importance, our ability to visualize choline phospholipids in vivo remains very limited. We present a simple and robust chemical strategy to image choline phospholipids, based on the metabolic incorporation of azidocholine analogues, that accurately reflects the normal biosynthetic incorporation of choline into cellular phospholipids. Azidocholine-labeled phospholipids can be imaged in cells with high sensitivity and resolution, following derivatization with fluorophores, by bio-orthogonal chemical reactions compatible with live-cell imaging. We used this method to visualize the subcellular localization of choline phospholipids. We also demonstrate that double metabolic labeling with azidocholine and propargylcholine allows sensitive two-color imaging of choline phospholipids. Our method represents a powerful approach to directly image phospholipids, and to study their dynamics in cells and tissues.
Enhanced hole boring with two-color relativistic laser pulses in the fast ignition scheme
Yu, Changhai; Deng, Aihua; Tian, Ye; Li, Wentao; Wang, Wentao; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Liu, Jiansheng
2016-08-01
A scheme of using two-color laser pulses for hole boring into overdense plasma as well as energy transfer into electron and ion beams has been studied using particle-in-cell simulations. Following an ultra-short ultra-intense hole-boring laser pulse with a short central wavelength in extreme ultra-violet range, the main infrared driving laser pulse can be guided in the hollow channel preformed by the former laser and propagate much deeper into an overdense plasma, as compared to the case using the infrared laser only. In addition to efficiently transferring the main driving laser energy into energetic electrons and ions generation deep inside the overdense plasma, the ion beam divergence can be greatly reduced. The results might be beneficial for the fast ignition concept of inertial confinement fusion.
Mechanisms of two-color laser-induced field-free molecular orientation.
Spanner, Michael; Patchkovskii, Serguei; Frumker, Eugene; Corkum, Paul
2012-09-14
Two mechanisms of two-color (ω+2ω) laser-induced field-free molecular orientation, based on the hyperpolarizability and ionization depletion, are explored and compared. The CO molecule is used as a computational example. While the hyperpolarizability mechanism generates small amounts of orientation at intensities below the ionization threshold, ionization depletion quickly becomes the dominant mechanism as soon as ionizing intensities are reached. Only the ionization mechanism leads to substantial orientation (e.g., on the order of ≳0.1). For intensities typical of laser-induced molecular alignment and orientation experiments, the two mechanisms lead to robust, characteristic timings of the field-free orientation wave-packet revivals relative to the alignment revivals and the revival time. The revival timings can be used to detect the active orientation mechanism experimentally.
Two-color resonance photoionization spectrum of nickelocene in a supersonic jet
Ketkov, S. Yu.; Selzle, H. L.; Schlag, E. W.; Titova, S. N.; Kalakutskaya, L. V.
2004-10-01
Two-color photoionization of nickelocene molecules cooled in a supersonic jet is performed using a tunable nanosecond pulsed laser. The first stage of the multiphoton excitation is the transition from the highest occupied molecular orbital of nickelocene to the lowest Rydberg level. Conditions are found under which molecular ions (η 5-C5H5)2Ni+ are the only product of the multiphoton ionization in the one-color experiment. Irradiation of an excited molecule by an intense pulse of another laser increases significantly the yield of molecular ions. The dependence of the yield of (η5-C5H5)2Ni+ ions on the frequency of the second laser makes it possible to determine the adiabatic ionization potential of nickelocene as 6.138±0.012eV.
Calibration of a two-color soft x-ray diagnostic for electron temperature measurement
Reusch, L. M.; Den Hartog, D. J.; Franz, P.; Goetz, J.; McGarry, M. B.; Stephens, H. D.
2016-11-01
The two-color soft x-ray (SXR) tomography diagnostic on the Madison Symmetric Torus is capable of making electron temperature measurements via the double-filter technique; however, there has been a 15% systematic discrepancy between the SXR double-filter (SXRDF) temperature and Thomson scattering (TS) temperature. Here we discuss calibration of the Be filters used in the SXRDF measurement using empirical measurements of the transmission function versus energy at the BESSY II electron storage ring, electron microprobe analysis of filter contaminants, and measurement of the effective density. The calibration does not account for the TS and SXRDF discrepancy, and evidence from experiments indicates that this discrepancy is due to physics missing from the SXRDF analysis rather than instrumentation effects.
BEC-BCS crossover in a cold and magnetized two color NJL model
Duarte, Dyana C; Farias, R L S; Manso, Pedro H A; Ramos, Rudnei O; Scoccola, N N
2016-01-01
The BEC-BCS crossover for a NJL model with diquark interactions is studied in the presence of an external magnetic field. Particular attention is paid to different regularization schemes used in the literature. A thorough comparison of results is performed for the case of a cold and magnetized two-color NJL model. According to our results, the critical chemical potential for the BEC transition exhibits a clear inverse magnetic catalysis effect for magnetic fields in the range $ 1 \\lesssim eB/m_\\pi^2 \\lesssim 20 $. As for the BEC-BCS crossover, the corresponding critical chemical potential is very weakly sensitive to magnetic fields up to $eB \\sim 9\\ m_\\pi^2$, showing a much smaller inverse magnetic catalysis as compared to the BEC transition, and displays a strong magnetic catalysis from this point on.
Two-color in vivo imaging of photoreceptor apoptosis and development in Drosophila.
Gambis, Alexis; Dourlen, Pierre; Steller, Hermann; Mollereau, Bertrand
2011-03-01
We report a new two-color fluorescent imaging system to visualize the mosaic adult photoreceptor neurons (PRs) in real-time. Using this method, we examined a collection of 434 mutants and identified genes required for PR survival, planar cell polarity (PCP), patterning and differentiation. We could track the progression of PR degeneration in living flies. By introducing the expression of p35, a caspase inhibitor, we found mutations that specifically activate caspase-dependent death. Moreover, we showed that grh is required in R3 for correct PCP establishment. The "Tomato/GFP-FLP/FRT" method allows high-throughput, rapid and precise identification of survival and developmental pathways in living adult PRs at single-cell resolution.
Frequency doubler and two-color mode of operation at free electron laser FLASH2
Kuhlmann, M.; Schneidmiller, E. A.; Yurkov, M. V.
2017-06-01
We report on the results of the first operation of a frequency doubler at FLASH2. The scheme uses the feature of the variable gap of the undulator. Undulator is divided in two parts. The second part of the undulator is tuned to the double frequency of the first part. Modulated electron beam enters the second part of the undulator and generates radiation at the 2nd harmonic. Depending on a balance between the gain of undulator sections, frequency doubler allows operation in a two-color mode and operation at shorter wavelengths with respect to standard SASE scheme. The shortest wavelength of 3.1 nm (photon energy 400 eV) has been achieved at FLASH2 with frequency doubler scheme, which is significantly below the design value for the standard SASE option.
National Research Council Canada - National Science Library
Compeau, Phillip E.C
2011-01-01
We consider four families of pancake graphs, which are Cayley graphs, whose vertex sets are either the symmetric group on n objects or the hyperoctahedral group on n objects and whose generating sets...
2013-01-01
on Facebook , one would like to detect tightly connected communities, which is useful for subsequent tasks like customized recommendation and... advertisement . Graphs in modern applications have several characteristics that complicate graph clustering: • Small density gap: the edge density across
Shuai, Hong-Han; Yu, Philip S; Shen, Chih-Ya; Chen, Ming-Syan
2013-01-01
The importance of graph mining has been widely recognized thanks to a large variety of applications in many areas, while real datasets always play important roles to examine the solution quality and efficiency of a graph mining algorithm. Nevertheless, the size of a real dataset is usually fixed and constrained according to the available resources, such as the efforts to crawl an on-line social network. In this case, employing a synthetic graph generator is a possible way to generate a massive graph (e.g., billions nodes) for evaluating the scalability of an algorithm, and current popular statistical graph generators are properly designed to maintain statistical metrics such as total node degree, degree distribution, diameter, and clustering coefficient of the original social graphs. Nevertheless, in addition to the above metrics, recent studies on graph mining point out that graph frequent patterns are also important to provide useful implications for the corresponding social networking applications, but thi...
Standards for Graph Algorithm Primitives
Mattson, Tim; Bader, David; Berry, Jon; Buluc, Aydin; Dongarra, Jack; Faloutsos, Christos; Feo, John; Gilbert, John; Gonzalez, Joseph; Hendrickson, Bruce; Kepner, Jeremy; Leiserson, Charles; Lumsdaine, Andrew; Padua, David; Poole, Stephen
2014-01-01
It is our view that the state of the art in constructing a large collection of graph algorithms in terms of linear algebraic operations is mature enough to support the emergence of a standard set of primitive building blocks. This paper is a position paper defining the problem and announcing our intention to launch an open effort to define this standard.
Evolutionary Graph Drawing Algorithms
Institute of Scientific and Technical Information of China (English)
Huang Jing-wei; Wei Wen-fang
2003-01-01
In this paper, graph drawing algorithms based on genetic algorithms are designed for general undirected graphs and directed graphs. As being shown, graph drawing algorithms designed by genetic algorithms have the following advantages: the frames of the algorithms are unified, the method is simple, different algorithms may be attained by designing different objective functions, therefore enhance the reuse of the algorithms. Also, aesthetics or constrains may be added to satisfy different requirements.
On molecular graph comparison.
Melo, Jenny A; Daza, Edgar
2011-06-01
Since the last half of the nineteenth century, molecular graphs have been present in several branches of chemistry. When used for molecular structure representation, they have been compared after mapping the corresponding graphs into mathematical objects. However, direct molecular comparison of molecular graphs is a research field less explored. The goal of this mini-review is to show some distance and similarity coefficients which were proposed to directly compare molecular graphs or which could be useful to do so.
Integral trees and integral graphs
Wang, Ligong
2005-01-01
This monograph deals with integral graphs, Laplacian integral regular graphs, cospectral graphs and cospectral integral graphs. The organization of this work, which consists of eight chapters, is as follows.
Shchatsinin, Ihar; Laarmann, Tim; Zhavoronkov, Nick; Schulz, Claus Peter; Hertel, Ingolf V
2008-11-28
Strong-field excitation and energy redistribution dynamics of C(60) fullerenes are studied by means of time-resolved mass spectrometry in a two-color femtosecond pump-probe setup. Resonant pre-excitation of the electronic system via the first dipole-allowed HOMO-->LUMO+1(t(1g)) (HOMO denotes highest occupied molecular orbital and LUMO denotes lowest unoccupied molecular orbital) transition with ultrashort 25 fs pulses at 399 nm of some 10(12) W cm(-2) results in a highly nonequilibrium distribution of excited electrons and vibrational modes in the neutral species. The subsequent coupling among the electronic and nuclear degrees of freedom is monitored by probing the system with time-delayed 27 fs pulses at 797 nm of some 10(13) W cm(-2). Direct information on the characteristic relaxation time is derived from the analysis of transient singly and multiply charged parent and fragment ion signals as a function of pump-probe delay and laser pulse intensity. The observed relaxation times tau(el) approximately 60-400 fs are attributed to different microcanonical ensembles prepared in the pre-excitation process and correspond to different total energy contents and energy sharing between electronic and vibrational degrees. The characteristic differences and trends allow one to extract a consistent picture for the formation dynamics of ions in different charge states and their fullerenelike fragments and give evidence to collective effects in multiple ionization such as plasmon-enhanced energy deposition.
Ellens, W.; Spieksma, F.M.; Mieghem, P. van; Jamakovic, A.; Kooij, R.E.
2011-01-01
This paper studies an interesting graph measure that we call the effective graph resistance. The notion of effective graph resistance is derived from the field of electric circuit analysis where it is defined as the accumulated effective resistance between all pairs of vertices. The objective of the
Graphing Inequalities, Connecting Meaning
Switzer, J. Matt
2014-01-01
Students often have difficulty with graphing inequalities (see Filloy, Rojano, and Rubio 2002; Drijvers 2002), and J. Matt Switzer's students were no exception. Although students can produce graphs for simple inequalities, they often struggle when the format of the inequality is unfamiliar. Even when producing a correct graph of an…
Directory of Open Access Journals (Sweden)
Charles Suffel
1982-01-01
Full Text Available A graph is subeulerian if it is spanned by an eulerian supergraph. Boesch, Suffel and Tindell have characterized the class of subeulerian graphs and determined the minimum number of additional lines required to make a subeulerian graph eulerian.
Loukas, A.
2015-01-01
We have recently seen a surge of research focusing on the processing of graph data. The emerging field of signal processing on graphs focuses on the extension of classical discrete signal processing techniques to the graph setting. Arguably, the greatest breakthrough of the field has been the extens
Contextuality in multipartie pseudo-telepathy graph games
Hoyer, Peter; Mhalla, Mehdi; Perdrix, Simon
2016-01-01
Analyzing pseudo-telepathy graph games, we propose a way to build contextuality scenarios exhibiting the quantum supremacy using graph states. We consider the combinatorial structures generating equivalent scenarios. We investigate which scenarios are more multipartite and show that there exist graphs generating scenarios with a linear multipartiteness width.
Directory of Open Access Journals (Sweden)
Shujie Geng
2017-07-01
Full Text Available As an emerging brain imaging technique, functional near infrared spectroscopy (fNIRS has attracted widespread attention for advancing resting-state functional connectivity (FC and graph theoretical analyses of brain networks. However, it remains largely unknown how the duration of the fNIRS signal scanning is related to stable and reproducible functional brain network features. To answer this question, we collected resting-state fNIRS signals (10-min duration, two runs from 18 participants and then truncated the hemodynamic time series into 30-s time bins that ranged from 1 to 10 min. Measures of nodal efficiency, nodal betweenness, network local efficiency, global efficiency, and clustering coefficient were computed for each subject at each fNIRS signal acquisition duration. Analyses of the stability and between-run reproducibility were performed to identify optimal time length for each measure. We found that the FC, nodal efficiency and nodal betweenness stabilized and were reproducible after 1 min of fNIRS signal acquisition, whereas network clustering coefficient, local and global efficiencies stabilized after 1 min and were reproducible after 5 min of fNIRS signal acquisition for only local and global efficiencies. These quantitative results provide direct evidence regarding the choice of the resting-state fNIRS scanning duration for functional brain connectivity and topological metric stability of brain network connectivity.
Yoder, Sharon K.
This book discusses four kinds of graphs that are taught in mathematics at the middle school level: pictographs, bar graphs, line graphs, and circle graphs. The chapters on each of these types of graphs contain information such as starting, scaling, drawing, labeling, and finishing the graphs using "LogoWriter." The final chapter of the book…
Energy Technology Data Exchange (ETDEWEB)
Herbrich, Sebastian; Al-Hadhuri, Tawfik; Gericke, Karl-Heinz, E-mail: k.Gericke@tu-bs.de [Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Hans-Sommer-Straße 10, 38106 Braunschweig (Germany); Shternin, Peter S., E-mail: pshternin@gmail.com; Vasyutinskii, Oleg S., E-mail: osv@pms.ioffe.ru [Ioffe Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); St. Petersburg Polytechnic University, Politekhnicheskaya 29, St. Petersburg 195251 (Russian Federation); Smolin, Andrey G. [Ioffe Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation)
2015-01-14
We present a detailed study of two-color two-photon excited fluorescence in indole dissolved in propylene glycol. Femtosecond excitation pulses at effective wavelengths from 268 to 293.33 nm were used to populate the two lowest indole excited states {sup 1}L{sub a} and {sup 1}L{sub b} and polarized fluorescence was then detected. All seven molecular parameters and the two-photon polarization ratio Ω containing information on two-photon absorption dynamics, molecular lifetime τ{sub f}, and rotation correlation time τ{sub rot} have been determined from experiment and analyzed as a function of the excitation wavelength. The analysis of the experimental data has shown that {sup 1}L{sub b}–{sup 1}L{sub a} inversion occurred under the conditions of our experiment. The two-photon absorption predominantly populated the {sup 1}L{sub a} state at all excitation wavelengths but in the 287–289 nm area which contained an absorption hump of the {sup 1}L{sub b} state 0-0 origin. The components of the two-photon excitation tensor S were analyzed giving important information on the principal tensor axes and absorption symmetry. The results obtained are in a good agreement with the results reported by other groups. The lifetime τ{sub f} and the rotation correlation time τ{sub rot} showed no explicit dependence on the effective excitation wavelength. Their calculated weighted average values were found to be τ{sub f} = 3.83 ± 0.14 ns and τ{sub rot} = 0.74 ± 0.06 ns.
Gross, Jonathan L
2003-01-01
The Handbook of Graph Theory is the most comprehensive single-source guide to graph theory ever published. Best-selling authors Jonathan Gross and Jay Yellen assembled an outstanding team of experts to contribute overviews of more than 50 of the most significant topics in graph theory-including those related to algorithmic and optimization approaches as well as ""pure"" graph theory. They then carefully edited the compilation to produce a unified, authoritative work ideal for ready reference.Designed and edited with non-experts in mind, the Handbook of Graph Theory makes information easy to fi
Wong, Pak C.; Mackey, Patrick S.; Perrine, Kenneth A.; Foote, Harlan P.; Thomas, James J.
2008-12-23
Methods for visualizing a graph by automatically drawing elements of the graph as labels are disclosed. In one embodiment, the method comprises receiving node information and edge information from an input device and/or communication interface, constructing a graph layout based at least in part on that information, wherein the edges are automatically drawn as labels, and displaying the graph on a display device according to the graph layout. In some embodiments, the nodes are automatically drawn as labels instead of, or in addition to, the label-edges.
Caetano, Tiberio S; Cheng, Li; Le, Quoc V; Smola, Alex J
2008-01-01
As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a correspondence between the nodes of different graphs. Many formulations of this problem can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node compatibility and a quadratic term encodes edge compatibility. The main research focus in this theme is about designing efficient algorithms for approximately solving the quadratic assignment problem, since it is NP-hard. In this paper we turn our attention to a different question: how to estimate compatibility functions such that the solution of the resulting graph matching problem best matches the expected solution that a human would manually provide. We present a method for learning graph matching: the training examples are pairs of graphs and the `labels' are ma...
Simplicial complexes of graphs
Jonsson, Jakob
2008-01-01
A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics, including commutative algebra, geometry, and knot theory. Identifying each graph with its edge set, one may view a graph complex as a simplicial complex and hence interpret it as a geometric object. This volume examines topological properties of graph complexes, focusing on homotopy type and homology. Many of the proofs are based on Robin Forman's discrete version of Morse theory. As a byproduct, this volume also provides a loosely defined toolbox for attacking problems in topological combinatorics via discrete Morse theory. In terms of simplicity and power, arguably the most efficient tool is Forman's divide and conquer approach via decision trees; it is successfully applied to a large number of graph and digraph complexes.
Understanding physics and physical chemistry using formal graphs
Vieil, Eric
2012-01-01
IntroductionAim of this BookAn Imperfect State of ScienceImprovement through GraphsNodes of GraphsEnergy and State VariablesLinks and OrganizationSystem Constitutive PropertiesFormal Objects and Organization LevelsPolesThe Pole as Elementary CollectionFormal Graph Representation of a PoleComposition of PolesDefinition of a Pole and Its VariablesSpace Distributed PolesThe Role of SpaceFormal Graph Representation of a Space Distributed PoleSpace OperatorsTranslation Problems and GeneralizationDipolesThe DipoleFormal Graph Representation of a DipoleInteraction through Exchange between PolesDipole
Fabrication of two-color annular hybrid wave plate for three-dimensional super-resolution microscopy
Kumagai, Hiroshi; Iketaki, Yoshinori; Jahn, Kornel; Bokor, Nador
2016-03-01
In super-resolution microscopy, we use fluorescence depletion, where an erase beam quenches a molecule in the S1 state generated by a pump beam, and then prevents fluorescence from the S1 state. When a tight doughnut shaped erase beam with is focused on the dyed sample together with a Gaussian pump beam, the remaining fluorescence spot in the focal plane becomes smaller than the diffraction-limited size. Applying destructive interference to the erase beam, erase beam has a minute three-dimensional dark spot surrounded by the light near the focal region. Since this spot introduces fluorescence depletion along the optical axis as in the focal plane, we can achieve three-dimensional super-resolution microscopy. However, to overcome the diffraction limit, an extremely precise optical alignment is required for projecting the focused pump beam into the dark spot of the erase beam. To resolve this technical issue, we fabricated a two-color annular hybrid wave plate (TAHWP) by combining two multi-order wave quartz plates. Although the pump and erase beams co-axially pass through the plate; the pump beam retains its original Gaussian shape, while the erase beam undergoes destructive interference. Inserting the TAHWP into a commercial scanning laser microscope, a three-dimensional spherical fluorescence spot with a volume of (~100 nm)3 can be created. Beside eliminating alignment problems and yielding a compact setup, the TAHWP makes our proposed method very suitable for commercial microscope systems. In this study, we report about detailed fabrication procedure and three-dimensional image properties given by the TAHWP.
Comprehensive Survey on Dynamic Graph Models
Directory of Open Access Journals (Sweden)
Aya Zaki
2016-02-01
Full Text Available Most of the critical real-world networks are con-tinuously changing and evolving with time. Motivated by the growing importance and widespread impact of this type of networks, the dynamic nature of these networks have gained a lot of attention. Because of their intrinsic and special characteristics, these networks are best represented by dynamic graph models. To cope with their evolving nature, the representation model must keep the historical information of the network along with its temporal time. Storing such amount of data, poses many problems from the perspective of dynamic graph data management. This survey provides an in-depth overview on dynamic graph related problems. Novel categorization and classification of the state of the art dynamic graph models are also presented in a systematic and comprehensive way. Finally, we discuss dynamic graph processing including the output representation of its algorithms.
Structured Operational Semantics for Graph Rewriting
Dorman, Andrei; 10.4204/EPTCS.59.4
2011-01-01
Process calculi and graph transformation systems provide models of reactive systems with labelled transition semantics. While the semantics for process calculi is compositional, this is not the case for graph transformation systems, in general. Hence, the goal of this article is to obtain a compositional semantics for graph transformation system in analogy to the structural operational semantics (SOS) for Milner's Calculus of Communicating Systems (CCS). The paper introduces an SOS style axiomatization of the standard labelled transition semantics for graph transformation systems. The first result is its equivalence with the so-called Borrowed Context technique. Unfortunately, the axiomatization is not compositional in the expected manner as no rule captures "internal" communication of sub-systems. The main result states that such a rule is derivable if the given graph transformation system enjoys a certain property, which we call "complementarity of actions". Archetypal examples of such systems are interacti...
Quantum graphs and random-matrix theory
Pluhař, Z.; Weidenmüller, H. A.
2015-07-01
For simple connected graphs with incommensurate bond lengths and with unitary symmetry we prove the Bohigas-Giannoni-Schmit (BGS) conjecture in its most general form. Using supersymmetry and taking the limit of infinite graph size, we show that the generating function for every (P,Q) correlation function for both closed and open graphs coincides with the corresponding expression of random-matrix theory. We show that the classical Perron-Frobenius operator is bistochastic and possesses a single eigenvalue +1. In the quantum case that implies the existence of a zero (or massless) mode of the effective action. That mode causes universal fluctuation properties. Avoiding the saddle-point approximation we show that for graphs that are classically mixing (i.e. for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap) and that do not carry a special class of bound states, the zero mode dominates in the limit of infinite graph size.
Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin
2016-08-08
We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.
Two-color infrared FEL facility employing a 250-MeV linac injector of Saga synchrotron light source
Tomimasu, T; Koga, N; Hashiguchi, Y; Ochiai, Y; Ishibashi, M
2001-01-01
A two-color infrared free electron laser (FEL) facility is proposed. This FEL facility will employ a new 250-MeV linac injector of the Saga synchrotron light source (SLS). The linac has two operation modes: short macropulse mode of 1 mu s at 250 MeV is for injection to a 1.4-GeV storage ring and long macropulse mode of 13 mu s at 40 MeV is for the two-color FEL facility. The two-color FEL uses a single electron beam and simultaneously provides both infrared (IR) and far-IR laser pulses for pump-probe studies of quantum-well structures and studying vibrational relaxation of molecules. The Saga SLS will be operated in 2004 to promote material science, bio-medical and industrial applications in Kyushu.
Höhm, Sandra; Herzlieb, Marcel; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn
2015-01-12
Two-color double-fs-pulse experiments were performed on silicon wafers to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder interferometer generated parallel or cross-polarized double-pulse sequences at 400 and 800 nm wavelength, with inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Multiple two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample. The resulting LIPSS characteristics (periods, areas) were analyzed by scanning electron microscopy. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS. These two-color experiments extend previous single-color studies and prove the importance of the ultrafast energy deposition for LIPSS formation.
Two-color temporal focusing multiphoton excitation imaging with tunable-wavelength excitation
Lien, Chi-Hsiang; Abrigo, Gerald; Chen, Pei-Hsuan; Chien, Fan-Ching
2017-02-01
Wavelength tunable temporal focusing multiphoton excitation microscopy (TFMPEM) is conducted to visualize optical sectioning images of multiple fluorophore-labeled specimens through the optimal two-photon excitation (TPE) of each type of fluorophore. The tunable range of excitation wavelength was determined by the groove density of the grating, the diffraction angle, the focal length of lenses, and the shifting distance of the first lens in the beam expander. Based on a consideration of the trade-off between the tunable-wavelength range and axial resolution of temporal focusing multiphoton excitation imaging, the presented system demonstrated a tunable-wavelength range from 770 to 920 nm using a diffraction grating with groove density of 830 lines/mm. TPE fluorescence imaging examination of a fluorescent thin film indicated that the width of the axial confined excitation was 3.0±0.7 μm and the shifting distance of the temporal focal plane was less than 0.95 μm within the presented wavelength tunable range. Fast different wavelength excitation and three-dimensionally rendered imaging of Hela cell mitochondria and cytoskeletons and mouse muscle fibers were demonstrated. Significantly, the proposed system can improve the quality of two-color TFMPEM images through different excitation wavelengths to obtain higher-quality fluorescent signals in multiple-fluorophore measurements.
Opportunities for two-color experiments at the SASE3 undulator line of the European XFEL
Energy Technology Data Exchange (ETDEWEB)
Geloni, Gianluca; Mazza, Tommaso; Meyer, Michael; Serkez, Svitozar [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2017-06-15
X-ray Free Electron Lasers (XFELs) have been proven to generate short and powerful radiation pulses allowing for a wide class of novel experiments. If an XFEL facility supports the generation of two X-ray pulses with different wavelengths and controllable delay, the range of possible experiments is broadened even further to include X-ray-pump/X-ray-probe applications. In this work we discuss the possibility of applying a simple and cost-effective method for producing two-color pulses at the SASE3 soft X-ray beamline of the European XFEL. The technique is based on the installation of a magnetic chicane in the baseline undulator and can be accomplished in several steps. We discuss the scientific interest of this upgrade for the Small Quantum Systems (SQS) instrument, in connection with the high-repetition rate of the European XFEL, and we provide start-to-end simulations up to the radiation focus on the sample, proving the feasibility of our concept.
Enhanced sensitivity in H photofragment detection by two-color reduced-Doppler ion imaging
Energy Technology Data Exchange (ETDEWEB)
Epshtein, Michael; Portnov, Alexander; Kupfer, Rotem; Rosenwaks, Salman; Bar, Ilana, E-mail: ibar@bgu.ac.il [Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)
2013-11-14
Two-color reduced-Doppler (TCRD) and one-color velocity map imaging (VMI) were used for probing H atom photofragments resulting from the ∼243.1 nm photodissociation of pyrrole. The velocity components of the H photofragments were probed by employing two counterpropagating beams at close and fixed wavelengths of 243.15 and 243.12 nm in TCRD and a single beam at ∼243.1 nm, scanned across the Doppler profile in VMI. The TCRD imaging enabled probing of the entire velocity distribution in a single pulse, resulting in enhanced ionization efficiency, as well as improved sensitivity and signal-to-noise ratio. These advantages were utilized for studying the pyrrole photodissociation at ∼243.1 and 225 nm, where the latter wavelength provided only a slight increase in the H yield over the self-signal from the probe beams. The TCRD imaging enabled obtaining high quality H{sup +} images, even for the low H photofragment yields formed in the 225 nm photolysis process, and allowed determining the velocity distributions and anisotropy parameters and getting insight into pyrrole photodissociation.
Goulphar: rapid access and expertise for standard two-color microarray normalization methods
Directory of Open Access Journals (Sweden)
Servant Nicolas
2006-10-01
Full Text Available Abstract Background Raw data normalization is a critical step in microarray data analysis because it directly affects data interpretation. Most of the normalization methods currently used are included in the R/BioConductor packages but it is often difficult to identify the most appropriate method. Furthermore, the use of R commands for functions and graphics can introduce mistakes that are difficult to trace. We present here a script written in R that provides a flexible means of access to and monitoring of data normalization for two-color microarrays. This script combines the power of BioConductor and R analysis functions and reduces the amount of R programming required. Results Goulphar was developed in and runs using the R language and environment. It combines and extends functions found in BioConductor packages (limma and marray to correct for dye biases and spatial artifacts. Goulphar provides a wide range of optional and customizable filters for excluding incorrect signals during the pre-processing step. It displays informative output plots, enabling the user to monitor the normalization process, and helps adapt the normalization method appropriately to the data. All these analyses and graphical outputs are presented in a single PDF report. Conclusion Goulphar provides simple, rapid access to the power of the R/BioConductor statistical analysis packages, with precise control and visualization of the results obtained. Complete documentation, examples and online forms for setting script parameters are available from http://transcriptome.ens.fr/goulphar/.
Two-color detector: Mercury-cadmium-telluride as a terahertz and infrared detector
Energy Technology Data Exchange (ETDEWEB)
Sizov, F.; Zabudsky, V.; Petryakov, V.; Golenkov, A.; Andreyeva, K.; Tsybrii, Z. [Institute of Semiconductor Physics, 03028 Kiev (Ukraine); Dvoretskii, S. [Institute of Semiconductor Physics of SB RAS, 630090 Novosibirsk (Russian Federation)
2015-02-23
In this paper, issues associated with the development of infrared (IR) and terahertz (THz) radiation detectors based on HgCdTe are discussed. Two-color un-cooled and cooled to 78 K narrow-gap mercury-cadmium-telluride semiconductor thin layers with antennas were considered both as sub-THz (sub-THz) direct detection bolometers and 3–10 μm IR photoconductors. The noise equivalent power (NEP) for one of the detectors studied at ν ≈ 140 GHz reaches NEP{sub 300 K} ≈ 4.5 × 10{sup −10} W/Hz{sup 1/2} and NEP{sub 78 K} ≈ 5 × 10{sup −9} W/Hz{sup 1/2}. The same detector used as an IR photoconductor showed the responsivity at temperatures T = 78 K and 300 K with signal-to-noise ratio S/N ≈ 750 and 50, respectively, under illumination by using IR monochromator and globar as a thermal source.
Brugnera, Leonardo; Hoffmann, David J; Siegel, Thomas; Frank, Felix; Zaïr, Amelle; Tisch, John W G; Marangos, Jonathan P
2011-10-07
We demonstrate control of short and long quantum trajectories in high harmonic emission through the use of an orthogonally polarized two-color field. By controlling the relative phase ϕ between the two fields we show via classical and quantum calculations that we can steer the two-dimensional trajectories to return, or not, to the core and so control the relative strength of the short or long quantum trajectory contribution. In experiments, we demonstrate that this leads to robust control over the trajectory contributions using a drive field from a femtosecond laser composed of the fundamental ω at 800 nm (intensity ∼1.2×10(14) W cm(-2)) and its weaker orthogonally polarized second harmonic 2ω (intensity ∼0.3×10(14) W cm(-2)) with the relative phase between the ω and 2ω fields varied simply by tilting a fused silica plate. This is the first demonstration of short and long quantum trajectory control at the single-atom level.
Radiation damage free two-color X-ray ghost diffraction with atomic resolution
Li, Zheng; Chapman, Henry; Shih, Yanhua
2015-01-01
The X-ray free electron lasers (XFEL) can enable diffractive structural determination of protein crystals or single molecules that are too small and radiation-sensitive for conventional X-ray analysis. However the electronic form factor could have been modified during the ultrashort X-ray pulse due to photoionization and electron cascade caused by the intense X-ray pulse. For general X-ray imaging techniques, to minimize radiation damage effect is of major concern to ensure faithful reconstruction of the structure. Here we show that a radiation damage free diffraction can be achieved with an atomic spatial resolution, by using X-ray parametric down-conversion (PDC), and two-color biphoton ghost imaging. We illustrate that formation of the diffractive patterns satisfies a condition analogous to the Bragg equation, with a resolution that could be as fine as the lattice length scale of several Angstrom. Because the samples are illuminated by the optical photons of low energy, they can be free of radiation damage...
Jampani, Krishnam Raju
2010-01-01
In a recent paper, we introduced the simultaneous representation problem (defined for any graph class C) and studied the problem for chordal, comparability and permutation graphs. For interval graphs, the problem is defined as follows. Two interval graphs G_1 and G_2, sharing some vertices I (and the corresponding induced edges), are said to be `simultaneous interval graphs' if there exist interval representations R_1 and R_2 of G_1 and G_2, such that any vertex of I is mapped to the same interval in both R_1 and R_2. Equivalently, G_1 and G_2 are simultaneous interval graphs if there exist edges E' between G_1-I and G_2-I such that G_1 \\cup G_2 \\cup E' is an interval graph. Simultaneous representation problems are related to simultaneous planar embeddings, and have applications in any situation where it is desirable to consistently represent two related graphs, for example: interval graphs capturing overlaps of DNA fragments of two similar organisms; or graphs connected in time, where one is an updated versi...
Fujie, Futaba
2014-01-01
Covering Walks in Graphs is aimed at researchers and graduate students in the graph theory community and provides a comprehensive treatment on measures of two well studied graphical properties, namely Hamiltonicity and traversability in graphs. This text looks into the famous Kӧnigsberg Bridge Problem, the Chinese Postman Problem, the Icosian Game and the Traveling Salesman Problem as well as well-known mathematicians who were involved in these problems. The concepts of different spanning walks with examples and present classical results on Hamiltonian numbers and upper Hamiltonian numbers of graphs are described; in some cases, the authors provide proofs of these results to illustrate the beauty and complexity of this area of research. Two new concepts of traceable numbers of graphs and traceable numbers of vertices of a graph which were inspired by and closely related to Hamiltonian numbers are introduced. Results are illustrated on these two concepts and the relationship between traceable concepts and...
Dosen, K
2011-01-01
Plural (or multiple-conclusion) cuts are inferences made by applying a structural rule introduced by Gentzen for his sequent formulation of classical logic. As singular (single-conclusion) cuts yield trees, which underlie ordinary natural deduction derivations, so plural cuts yield graphs of a more complicated kind, related to trees, which this paper defines. Besides the inductive definition of these oriented graphs, which is based on sequent systems, a non-inductive, graph-theoretical, combinatorial, definition is given, and to reach that other definition is the main goal of the paper. As trees underlie multicategories, so the graphs of plural cuts underlie polycategories. The graphs of plural cuts are interesting in particular when the plural cuts are appropriate for sequent systems without the structural rule of permutation, and the main body of the paper deals with that matter. It gives a combinatorial characterization of the planarity of the graphs involved.
Velasco, Pedro Pablo Perez
2008-01-01
This book objective is to develop an algebraization of graph grammars. Equivalently, we study graph dynamics. From the point of view of a computer scientist, graph grammars are a natural generalization of Chomsky grammars for which a purely algebraic approach does not exist up to now. A Chomsky (or string) grammar is, roughly speaking, a precise description of a formal language (which in essence is a set of strings). On a more discrete mathematical style, it can be said that graph grammars -- Matrix Graph Grammars in particular -- study dynamics of graphs. Ideally, this algebraization would enforce our understanding of grammars in general, providing new analysis techniques and generalizations of concepts, problems and results known so far.
Arrighi, Pablo
2012-01-01
We generalize the theory of Cellular Automata to arbitrary, time-varying graphs. In other words we formalize, and prove theorems about, the intuitive idea of a labelled graph which evolves in time - but under the natural constraint that information can only ever be transmitted at a bounded speed, with respect to the distance given by the graph. The notion of translation-invariance is also generalized. The definition we provide for these `causal graph dynamics' is simple and axiomatic. The theorems we provide also show that it is robust. For instance, causal graph dynamics are stable under composition and under restriction to radius one. In the finite case some fundamental facts of Cellular Automata theory carry through: causal graph dynamics admit a characterization as continuous functions and they are stable under inversion. The provided examples suggest a wide range of applications of this mathematical object, from complex systems science to theoretical physics. Keywords: Dynamical networks, Boolean network...
Buczyńska, Weronika
2010-01-01
We define toric projective model of a trivalent graph as a generalization of a binary symmetric model of a trivalent phylogenetic tree. Generators of the projective coordinate ring of the models of graphs with one cycle are explicitly described. The models of graphs with the same topological invariants are deformation equivalent and share the same Hilbert function. We also provide an algorithm to compute the Hilbert function.
Chartrand, Gary
1984-01-01
Graph theory is used today in the physical sciences, social sciences, computer science, and other areas. Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics - profusely illustrated - include: Mathematical Models, Elementary Concepts of Grap
Creating more effective graphs
Robbins, Naomi B
2012-01-01
A succinct and highly readable guide to creating effective graphs The right graph can be a powerful tool for communicating information, improving a presentation, or conveying your point in print. If your professional endeavors call for you to present data graphically, here's a book that can help you do it more effectively. Creating More Effective Graphs gives you the basic knowledge and techniques required to choose and create appropriate graphs for a broad range of applications. Using real-world examples everyone can relate to, the author draws on her years of experience in gr
Energy Technology Data Exchange (ETDEWEB)
Lothian, Josh [ORNL; Powers, Sarah S [ORNL; Sullivan, Blair D [ORNL; Baker, Matthew B [ORNL; Schrock, Jonathan [ORNL; Poole, Stephen W [ORNL
2013-12-01
The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allowed the emulation of dierent application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report examines existing synthetic graph generator implementations in preparation for further study on the properties of their generated synthetic graphs.
DEFF Research Database (Denmark)
Thomassen, Carsten
2014-01-01
We prove a general result on graph factors modulo k . A special case says that, for each natural number k , every (12k−7)-edge-connected graph with an even number of vertices contains a spanning subgraph in which each vertex has degree congruent to k modulo 2k.......We prove a general result on graph factors modulo k . A special case says that, for each natural number k , every (12k−7)-edge-connected graph with an even number of vertices contains a spanning subgraph in which each vertex has degree congruent to k modulo 2k....
Gelfand, I M; Shnol, E E
2002-01-01
The second in a series of systematic studies by a celebrated mathematician I. M. Gelfand and colleagues, this volume presents students with a well-illustrated sequence of problems and exercises designed to illuminate the properties of functions and graphs. Since readers do not have the benefit of a blackboard on which a teacher constructs a graph, the authors abandoned the customary use of diagrams in which only the final form of the graph appears; instead, the book's margins feature step-by-step diagrams for the complete construction of each graph. The first part of the book employs simple fu
Bradford, Robert; Chmutov, Sergei
2011-01-01
We introduce an additional structure on ribbon graphs, arrow structure. We extend the Bollob\\'as-Riordan polynomial to ribbon graph with this structure. The extended polynomial satisfies the contraction-deletion relations and naturally behaves with respect to the partial duality of ribbon graphs. We construct an arrow ribbon graph from a virtual link whose extended Bollob\\'as-Riordan polynomial specializes to the arrow polynomial of the virtual link recently introduced by H.Dye and L.Kauffman. This result generalizes the classical Thistlethwaite theorem to the arrow polynomial of virtual links.
Directory of Open Access Journals (Sweden)
Alberto Apostolico
2009-08-01
Full Text Available The Web Graph is a large-scale graph that does not fit in main memory, so that lossless compression methods have been proposed for it. This paper introduces a compression scheme that combines efficient storage with fast retrieval for the information in a node. The scheme exploits the properties of the Web Graph without assuming an ordering of the URLs, so that it may be applied to more general graphs. Tests on some datasets of use achieve space savings of about 10% over existing methods.
Institute of Scientific and Technical Information of China (English)
Ping WANG; Jiong Sheng LI
2005-01-01
Let G be a finite simple graph with adjacency matrix A, and let P(A) be the convex closure of the set of all permutation matrices commuting with A. G is said to be compact if every doubly stochastic matrix which commutes with A is in P(A). In this paper, we characterize 3-regular compact graphs and prove that if G is a connected regular compact graph, G - v is also compact, and give a family of almost regular compact connected graphs.
Phase diagram of two-color QCD in a Dyson-Schwinger approach
Energy Technology Data Exchange (ETDEWEB)
Buescher, Pascal Joachim
2014-04-28
We investigate two-color QCD with N{sub f}=2 at finite temperatures and chemical potentials using a Dyson-Schwinger approach. We employ two different truncations for the quark loop in the gluon DSE: one based on the Hard-Dense/Hard-Thermal Loop (HDTL) approximation of the quark loop and one based on the back-coupling of the full, self-consistent quark propagator (SCQL). We compare results for the different truncations with each other as well as with other approaches. As expected, we find a phase dominated by the condensation of quark-quark pairs. This diquark condensation phase overshadows the critical end point and first-order phase transition which one finds if diquark condensation is neglected. The phase transition from the phase without diquark condensation to the diquark-condensation phase is of second order. We observe that the dressing with massless quarks in the HDTL approximation leads to a significant violation of the Silver Blaze property and to a too small diquark condensate. The SCQL truncation, on the other hand, is found to reproduce all expected features of the μ-dependent quark condensates. Moreover, with parameters adapted to the situation in other approaches, we also find good to very good agreement with model and lattice calculations in all quark quantities. We find indictions that the physics in recent lattice calculations is likely to be driven solely by the explicit chiral symmetry breaking. Discrepancies w.r.t. the lattice are, however, observed in two quantities that are very sensitive to the screening of the gluon propagator, the dressed gluon propagator itself and the phase-transition line at high temperatures.
Incremental View Maintenance for Deductive Graph Databases Using Generalized Discrimination Networks
Directory of Open Access Journals (Sweden)
Thomas Beyhl
2016-12-01
Full Text Available Nowadays, graph databases are employed when relationships between entities are in the scope of database queries to avoid performance-critical join operations of relational databases. Graph queries are used to query and modify graphs stored in graph databases. Graph queries employ graph pattern matching that is NP-complete for subgraph isomorphism. Graph database views can be employed that keep ready answers in terms of precalculated graph pattern matches for often stated and complex graph queries to increase query performance. However, such graph database views must be kept consistent with the graphs stored in the graph database. In this paper, we describe how to use incremental graph pattern matching as technique for maintaining graph database views. We present an incremental maintenance algorithm for graph database views, which works for imperatively and declaratively specified graph queries. The evaluation shows that our maintenance algorithm scales when the number of nodes and edges stored in the graph database increases. Furthermore, our evaluation shows that our approach can outperform existing approaches for the incremental maintenance of graph query results.
b-Tree Facets for the Simple Graph Partitioning Polytope
DEFF Research Database (Denmark)
Sørensen, Michael Malmros
2000-01-01
The simple graph partitioning problem is to partition an edge-weighted graph into mutually disjoint subgraphs, each consisting of no more than b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we introduce a large class of facet defining inequalities...... for the simple graph partitioning polytopes P_n(b), b >= 3, associated with the complete graph on n nodes. These inequalities are induced by a graph configuration which is built upon trees of cardinality b. We provide a closed-form theorem that states all necessary and sufficient conditions for the facet...
b-tree facets for the simple graph partitioning polytope
DEFF Research Database (Denmark)
Sørensen, Michael Malmros
2004-01-01
The simple graph partitioning problem is to partition an edge-weighted graph into mutually disjoint subgraphs, each consisting of no more than b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we introduce a large class of facet defining inequalities...... for the simple graph partitioning polytopes P_n(b), b >= 3, associated with the complete graph on n nodes. These inequalities are induced by a graph configuration which is built upon trees of cardinality b. We provide a closed-form theorem that states all necessary and sufficient conditions for the facet...
NOUS: A Knowledge Graph Management System
Energy Technology Data Exchange (ETDEWEB)
2017-06-26
Knowledge graphs represent information as entities and relationships between them. For tasks such as natural language question answering or automated analysis of text, a knowledge graph provides valuable context to establish the specific type of entities being discussed. It allow us to derive better context about newly arriving information and leads to intelligent reasoning capabilities. We address two primary needs: A) Automated construction of knowledge graphs is a technically challenging, expensive process; and B) The ability to synthesize new information by monitoring newly emerging knowledge is a transformational capability that does not exist in state of the art systems.
Moment graphs and representations
DEFF Research Database (Denmark)
Jantzen, Jens Carsten
2012-01-01
Moment graphs and sheaves on moment graphs are basically combinatorial objects that have be used to describe equivariant intersectiion cohomology. In these lectures we are going to show that they can be used to provide a direct link from this cohomology to the representation theory of simple Lie...
DEFF Research Database (Denmark)
Husfeldt, Thore
2015-01-01
This chapter presents an introduction to graph colouring algorithms. The focus is on vertex-colouring algorithms that work for general classes of graphs with worst-case performance guarantees in a sequential model of computation. The presentation aims to demonstrate the breadth of available...
Directory of Open Access Journals (Sweden)
Behnaz Tolue
2018-07-01
Full Text Available In this paper we introduce stable subgroup graph associated to the group $G$. It is a graph with vertex set all subgroups of $G$ and two distinct subgroups $H_1$ and $H_2$ are adjacent if $St_{G}(H_1\\cap H_2\
Mol, de Maarten; Rensink, Arend; Hunt, James J.
2012-01-01
This paper introduces an approach for adding graph transformation-based functionality to existing JAVA programs. The approach relies on a set of annotations to identify the intended graph structure, as well as on user methods to manipulate that structure, within the user’s own JAVA class declaration
Husfeldt, Thore
2015-01-01
This chapter presents an introduction to graph colouring algorithms. The focus is on vertex-colouring algorithms that work for general classes of graphs with worst-case performance guarantees in a sequential model of computation. The presentation aims to demonstrate the breadth of available techniques and is organized by algorithmic paradigm.
Perepelitsa, VA; Sergienko, [No Value; Kochkarov, AM
1999-01-01
Definitions of prefractal and fractal graphs are introduced, and they are used to formulate mathematical models in different fields of knowledge. The topicality of fractal-graph recognition from the point of view, of fundamental improvement in the efficiency of the solution of algorithmic problems i
Belkhechine, Houmem; Elayech, Mohamed Baka
2010-01-01
Given a (directed) graph G=(V,A), a subset X of V is an interval of G provided that for any a, b\\in X and x\\in V-X, (a,x)\\in A if and only if (b,x)\\in A and (x,a)\\in A if and only if (x,b)\\in A. For example, \\emptyset, \\{x\\} (x \\in V) and V are intervals of G, called trivial intervals. A graph, all the intervals of which are trivial, is indecomposable; otherwise, it is decomposable. A vertex x of an indecomposable graph is critical if G-x is decomposable. In 1993, J.H. Schmerl and W.T. Trotter characterized the indecomposable graphs, all the vertices of which are critical, called critical graphs. In this article, we characterize the indecomposable graphs which admit a single non critical vertex, that we call (-1)-critical graphs.} This gives an answer to a question asked by Y. Boudabbous and P. Ille in a recent article studying the critical vertices in an indecomposable graph.
Directory of Open Access Journals (Sweden)
A. Assari
2016-01-01
Full Text Available In this paper, a graph is assigned to any probability measure on the σ-algebra of Borel sets of a topological space. Using this construction, it is proved that given any number n (finite or infinite there exists a nonregular graph such that its clique, chromatic, and dominating number equals n.
Moment graphs and representations
DEFF Research Database (Denmark)
Jantzen, Jens Carsten
2012-01-01
Moment graphs and sheaves on moment graphs are basically combinatorial objects that have be used to describe equivariant intersectiion cohomology. In these lectures we are going to show that they can be used to provide a direct link from this cohomology to the representation theory of simple Lie...... algebras and of simple algebraic groups. The first section contains some background on equivariant cohomology....
Graphs: Associated Markov Chains
2012-01-01
In this research paper, weighted / unweighted, directed / undirected graphs are associated with interesting Discrete Time Markov Chains (DTMCs) as well as Continuous Time Markov Chains (CTMCs). The equilibrium / transient behaviour of such Markov chains is studied. Also entropy dynamics (Shannon entropy) of certain structured Markov chains is investigated. Finally certain structured graphs and the associated Markov chains are studied.
Kim, Suh-Ryung; Park, Boram; Sano, Yoshio
2011-01-01
The competition graph of a digraph $D$ is a (simple undirected) graph which has the same vertex set as $D$ and has an edge between $x$ and $y$ if and only if there exists a vertex $v$ in $D$ such that $(x,v)$ and $(y,v)$ are arcs of $D$. For any graph $G$, $G$ together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number $k(G)$ of $G$ is the smallest number of such isolated vertices. In general, it is hard to compute the competition number $k(G)$ for a graph $G$ and it has been one of the important research problems in the study of competition graphs. Opsut~[1982] suggested that the edge clique cover number $\\theta_E(G)$ should be closely related to $k(G)$ by showing $\\theta_E(G)-|V(G)|+2 \\leq k(G) \\leq \\theta_E(G)$. In this note, we study on these inequalities. We first show that for any positive integer $m$ satisfying $2 \\leq m \\leq |V(G)|$, there is a graph $G$ satisfying $k(G)=\\theta_E(G)-|V(G)|+m$ and characterize a graph $G$ satisfying $k(G)=\\...
Generalized connectivity of graphs
Li, Xueliang
2016-01-01
Noteworthy results, proof techniques, open problems and conjectures in generalized (edge-) connectivity are discussed in this book. Both theoretical and practical analyses for generalized (edge-) connectivity of graphs are provided. Topics covered in this book include: generalized (edge-) connectivity of graph classes, algorithms, computational complexity, sharp bounds, Nordhaus-Gaddum-type results, maximum generalized local connectivity, extremal problems, random graphs, multigraphs, relations with the Steiner tree packing problem and generalizations of connectivity. This book enables graduate students to understand and master a segment of graph theory and combinatorial optimization. Researchers in graph theory, combinatorics, combinatorial optimization, probability, computer science, discrete algorithms, complexity analysis, network design, and the information transferring models will find this book useful in their studies.
Sketch Matching on Topology Product Graph.
Liang, Shuang; Luo, Jun; Liu, Wenyin; Wei, Yichen
2015-08-01
Sketch matching is the fundamental problem in sketch based interfaces. After years of study, it remains challenging when there exists large irregularity and variations in the hand drawn sketch shapes. While most existing works exploit topology relations and graph representations for this problem, they are usually limited by the coarse topology exploration and heuristic (thus suboptimal) similarity metrics between graphs. We present a new sketch matching method with two novel contributions. We introduce a comprehensive definition of topology relations, which results in a rich and informative graph representation of sketches. For graph matching, we propose topology product graph that retains the full correspondence for matching two graphs. Based on it, we derive an intuitive sketch similarity metric whose exact solution is easy to compute. In addition, the graph representation and new metric naturally support partial matching, an important practical problem that received less attention in the literature. Extensive experimental results on a real challenging dataset and the superior performance of our method show that it outperforms the state-of-the-art.
Subgraph detection using graph signals
Chepuri, Sundeep Prabhakar
2017-03-06
In this paper we develop statistical detection theory for graph signals. In particular, given two graphs, namely, a background graph that represents an usual activity and an alternative graph that represents some unusual activity, we are interested in answering the following question: To which of the two graphs does the observed graph signal fit the best? To begin with, we assume both the graphs are known, and derive an optimal Neyman-Pearson detector. Next, we derive a suboptimal detector for the case when the alternative graph is not known. The developed theory is illustrated with numerical experiments.
Linear coloring of graphs embeddable in a surface of nonnegative characteristic
Institute of Scientific and Technical Information of China (English)
2009-01-01
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, we prove that every graph G with girth g(G) and maximum degree Δ(G) that can be embedded in a surface of nonnegative characteristic has lc(G) = Δ(2G )+ 1 if there is a pair (Δ, g) ∈ {(13, 7), (9, 8), (7, 9), (5, 10), (3, 13)} such that G satisfies Δ(G) Δ and g(G) g.
Linear coloring of graphs embeddable in a surface of nonnegative characteristic
Institute of Scientific and Technical Information of China (English)
WANG WeiFan; LI Chao
2009-01-01
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, we prove that every graph G with girth g(G) and maximum degree △(G) that can be embedded in a surface of nonnegative characteristic has lc(G) = 「△(G)/2」+ 1 if there is a pair (△,g) ∈ {(13, 7), (9, 8), (7, 9), (5, 10), (3, 13)} such that G satisfies △(G) ≥ △ and g(G) ≥ g.
Encoding the core electrons with graph concepts.
Pogliani, Lionello
2004-01-01
The core electron problem of atoms in chemical graph studies has always been considered as a minor problem. Usually, chemical graphs had to encode just a small set of second row atoms, i.e., C, N, O, and F, thus, graph and, in some cases, pseudograph concepts were enough to "graph" encode the molecules at hand. Molecular connectivity theory, together with its side-branch the electrotopological state, introduced two "ad hoc" algorithms for the core electrons of higher-row atoms based, mainly, on quantum concepts alike. Recently, complete graphs, and, especially, odd complete graphs have been introduced to encode the core electrons of higher-row atoms. By the aid of these types of graphs a double-valued algorithm has been proposed for the valence delta, deltav, of any type of atoms of the periodic table with a principal quantum number n > or =2. The new algorithm is centered on an invariant suggested by the hand-shaking theorem, and the values it gives rise to parallel in some way the values derived by the aid of the two old "quantum" algorithms. A thorough comparative analysis of the newly proposed algorithms has been undertaken for atoms of the group 1A-7A of the periodic table. This comparative study includes the electronegativity, the size of the atoms, the first ionization energy, and the electron affinity. The given algorithm has also been tested with sequential complete graphs, while the even complete graphs give rise to conceptual difficulties. QSAR/QSPR studies do not show a clear-cut preference for any of the two values the algorithm gives rise to, even if recent results seem to prefer one of the two values.
Baillie, C F; Johnston, D A; Plechác, P
1995-01-01
In a recent paper we found strong evidence from simulations that the Ising antiferromagnet on ``thin'' random graphs - Feynman diagrams - displayed a mean-field spin glass transition. The intrinsic interest of considering such random graphs is that they give mean field results without long range interactions or the drawbacks, arising from boundary problems, of the Bethe lattice. In this paper we reprise the saddle point calculations for the Ising and Potts ferromagnet, antiferromagnet and spin glass on Feynman diagrams. We use standard results from bifurcation theory that enable us to treat an arbitrary number of replicas and any quenched bond distribution. We note the agreement between the ferromagnetic and spin glass transition temperatures thus calculated and those derived by analogy with the Bethe lattice, or in previous replica calculations. We then investigate numerically spin glasses with a plus or minus J bond distribution fo rthe Ising and Q=3,3,10,50 state Potts models, paying particular attention t...
Directory of Open Access Journals (Sweden)
Niedzialomski Amanda
2016-11-01
Full Text Available For k ∈ ℤ+ and G a simple, connected graph, a k-radio labeling f : V (G → ℤ+ of G requires all pairs of distinct vertices u and v to satisfy |f(u − f(v| ≥ k + 1 − d(u, v. We consider k-radio labelings of G when k = diam(G. In this setting, f is injective; if f is also surjective onto {1, 2, . . . , |V (G|}, then f is a consecutive radio labeling. Graphs that can be labeled with such a labeling are called radio graceful. In this paper, we give two results on the existence of radio graceful Hamming graphs. The main result shows that the Cartesian product of t copies of a complete graph is radio graceful for certain t. Graphs of this form provide infinitely many examples of radio graceful graphs of arbitrary diameter. We also show that these graphs are not radio graceful for large t.
Bidimensionality and Geometric Graphs
Fomin, Fedor V; Saurabh, Saket
2011-01-01
In this paper we use several of the key ideas from Bidimensionality to give a new generic approach to design EPTASs and subexponential time parameterized algorithms for problems on classes of graphs which are not minor closed, but instead exhibit a geometric structure. In particular we present EPTASs and subexponential time parameterized algorithms for Feedback Vertex Set, Vertex Cover, Connected Vertex Cover, Diamond Hitting Set, on map graphs and unit disk graphs, and for Cycle Packing and Minimum-Vertex Feedback Edge Set on unit disk graphs. Our results are based on the recent decomposition theorems proved by Fomin et al [SODA 2011], and our algorithms work directly on the input graph. Thus it is not necessary to compute the geometric representations of the input graph. To the best of our knowledge, these results are previously unknown, with the exception of the EPTAS and a subexponential time parameterized algorithm on unit disk graphs for Vertex Cover, which were obtained by Marx [ESA 2005] and Alber and...
Institute of Scientific and Technical Information of China (English)
Jian Fu; Xiang Yin; Ningyuan Li; Limin Tong
2008-01-01
We propose a two-color scheme of atom waveguides and one-dimensional(1D)optical lattices using evanescent wave fields of different transverse modes around an optical micro/nano-fiber.The atom guide potential can be produced when the optical fiber carries a red-detuned light with TE01 mode and a blue-detuned light with HE11 mode,and the 1D optical lattice potential can be produced when the red-detuned light is transformed to the superposition of the TE01 mode and HE11 mode.The two trapping potentials can be transformed to each other for accurately controlling mode transformation for the red-detuned light.This might provide a new approach to realize flexible transition between the guiding and trapping states of atoms.
Generating Realistic Labelled, Weighted Random Graphs
Davis, Michael Charles; Liu, Weiru; Miller, Paul; Hunter, Ruth; Kee, Frank
2015-01-01
Generative algorithms for random graphs have yielded insights into the structure and evolution of real-world networks. Most networks exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Usually, random graph models consider only structural information, but many real-world networks also have labelled vertices and weighted edges. In this paper, we present a generative model for random graphs with discrete vertex labels and numeric edge weights. The weights are represented as a set of Beta Mixture Models (BMMs) with an arbitrary number of mixtures, which are learned from real-world networks. We propose a Bayesian Variational Inference (VI) approach, which yields an accurate estimation while keeping computation times tractable. We compare our approach to state-of-the-art random labelled graph generators and an earlier approach based on Gaussian Mixture Models (GMMs). Our results allow us to draw conclusions about the contribution of vertex labels a...
Robust Face Recognition through Local Graph Matching
Directory of Open Access Journals (Sweden)
Ehsan Fazl-Ersi
2007-09-01
Full Text Available A novel face recognition method is proposed, in which face images are represented by a set of local labeled graphs, each containing information about the appearance and geometry of a 3-tuple of face feature points, extracted using Local Feature Analysis (LFA technique. Our method automatically learns a model set and builds a graph space for each individual. A two-stage method for optimal matching between the graphs extracted from a probe image and the trained model graphs is proposed. The recognition of each probe face image is performed by assigning it to the trained individual with the maximum number of references. Our approach achieves perfect result on the ORL face set and an accuracy rate of 98.4% on the FERET face set, which shows the superiority of our method over all considered state-of-the-art methods. I
Use of Attack Graphs in Security Systems
Directory of Open Access Journals (Sweden)
Vivek Shandilya
2014-01-01
Full Text Available Attack graphs have been used to model the vulnerabilities of the systems and their potential exploits. The successful exploits leading to the partial/total failure of the systems are subject of keen security interest. Considerable effort has been expended in exhaustive modeling, analyses, detection, and mitigation of attacks. One prominent methodology involves constructing attack graphs of the pertinent system for analysis and response strategies. This not only gives the simplified representation of the system, but also allows prioritizing the security properties whose violations are of greater concern, for both detection and repair. We present a survey and critical study of state-of-the-art technologies in attack graph generation and use in security system. Based on our research, we identify the potential, challenges, and direction of the current research in using attack graphs.
Multiple Structure-View Learning for Graph Classification.
Wu, Jia; Pan, Shirui; Zhu, Xingquan; Zhang, Chengqi; Yu, Philip S
2017-09-20
Many applications involve objects containing structure and rich content information, each describing different feature aspects of the object. Graph learning and classification is a common tool for handling such objects. To date, existing graph classification has been limited to the single-graph setting with each object being represented as one graph from a single structure-view. This inherently limits its use to the classification of complicated objects containing complex structures and uncertain labels. In this paper, we advance graph classification to handle multigraph learning for complicated objects from multiple structure views, where each object is represented as a bag containing several graphs and the label is only available for each graph bag but not individual graphs inside the bag. To learn such graph classification models, we propose a multistructure-view bag constrained learning (MSVBL) algorithm, which aims to explore substructure features across multiple structure views for learning. By enabling joint regularization across multiple structure views and enforcing labeling constraints at the bag and graph levels, MSVBL is able to discover the most effective substructure features across all structure views. Experiments and comparisons on real-world data sets validate and demonstrate the superior performance of MSVBL in representing complicated objects as multigraph for classification, e.g., MSVBL outperforms the state-of-the-art multiview graph classification and multiview multi-instance learning approaches.
Distance spectra and Distance energy of Integral Circulant Graphs
c, Aleksandar Ili\\'
2011-01-01
The distance energy of a graph $G$ is a recently developed energy-type invariant, defined as the sum of absolute values of the eigenvalues of the distance matrix of $G$. There was a vast research for the pairs and families of non-cospectral graphs having equal distance energy, and most of these constructions were based on the join of graphs. A graph is called circulant if it is Cayley graph on the circulant group, i.e. its adjacency matrix is circulant. A graph is called integral if all eigenvalues of its adjacency matrix are integers. Integral circulant graphs play an important role in modeling quantum spin networks supporting the perfect state transfer. In this paper, we characterize the distance spectra of integral circulant graphs and prove that these graphs have integral eigenvalues of distance matrix $D$. Furthermore, we calculate the distance spectra and distance energy of unitary Cayley graphs. In conclusion, we present two families of pairs $(G_1, G_2)$ of integral circulant graphs with equal distanc...
Richter, Martin; Schöffler, Markus; Jahnke, Till; Schmidt, Lothar Ph H; Dörner, Reinhard
2016-01-01
We report on electron momentum distributions from single ionization of Ar in strong orthogonally polarized two-color (OTC) laser fields measured with the COLTRIMS technique. We study the effect of Coulomb focusing whose signature is a cusp like feature in the center of the electron momentum spectrum. While the direct electrons show the expected strong dependence on the phase between the two colors, surprisingly the Coulomb focused structure is almost not influenced by the weak second harmonic streaking field. This effect is explained by the use of a CTMC simulation which describes the tunneled electron wave packet in terms of classical trajectories under the influence of the combined Coulomb- and OTC laser field. We find a subtle interplay between the initial momentum of the electron upon tunneling, the ionization phase and the action of the Coulomb field that makes the Coulomb focused part of the momentum spectrum apparently insensitive to the weaker streaking field.
Matching-based fresh-slice method for generating two-color x-ray free-electron lasers
Directory of Open Access Journals (Sweden)
Weilun Qin
2017-09-01
Full Text Available Two-color high intensity x-ray free-electron lasers (FELs provide powerful tools for probing ultrafast dynamic systems. A novel concept of realizing fresh-slice two-color lasing through slice-dependent transverse mismatch has been proposed by one of the authors [Y. Chao, SLAC Report No. SLAC-PUB-16935, 2016]. In this paper we present a feasible example following this concept based on the Linac Coherent Light Source parameters. Time-dependent mismatch along the bunch is generated by a passive dechirper module and controlled by downstream matching sections, enabling FEL lasing at different wavelength with a split undulator configuration. Simulations for soft x-ray FELs show that tens of gigawatts pulses with femtosecond duration can be generated.
Xie, Xinhua; Kartashov, Daniil; Zhang, Li; Baltuška, Andrius; Kitzler, Markus
2016-01-01
We report on the observation of subcycle interferences of electron wave packets released during the strong field ionization of H$_2$ with cycle-shaped two-color laser fields. With a reaction microscope, channel-resolved photoelectron momentum distribution are obtained for different final products originating from single ionization of H$_2$. Our results show that the subcycle interference structures of electron wave packet are very sensitive to the cycle-shape of the two-color laser field. The reason is that the ionization time within an optical cycle is determined by the cycle-shape of the laser field. The subcycle interference structures can be further used to get the subcycle dynamics of molecules during strong field interaction.
Graph representation of protein free energy landscape.
Li, Minghai; Duan, Mojie; Fan, Jue; Han, Li; Huo, Shuanghong
2013-11-14
The thermodynamics and kinetics of protein folding and protein conformational changes are governed by the underlying free energy landscape. However, the multidimensional nature of the free energy landscape makes it difficult to describe. We propose to use a weighted-graph approach to depict the free energy landscape with the nodes on the graph representing the conformational states and the edge weights reflecting the free energy barriers between the states. Our graph is constructed from a molecular dynamics trajectory and does not involve projecting the multi-dimensional free energy landscape onto a low-dimensional space defined by a few order parameters. The calculation of free energy barriers was based on transition-path theory using the MSMBuilder2 package. We compare our graph with the widely used transition disconnectivity graph (TRDG) which is constructed from the same trajectory and show that our approach gives more accurate description of the free energy landscape than the TRDG approach even though the latter can be organized into a simple tree representation. The weighted-graph is a general approach and can be used on any complex system.
Yoshinaga, Masahiko
2015-01-01
Finite graphs that have a common chromatic polynomial have the same number of regular $n$-colorings. A natural question is whether there exists a natural bijection between regular $n$-colorings. We address this question using a functorial formulation. Let $G$ be a simple graph. Then for each set $X$ we can associate a set of $X$-colorings. This defines a functor, "chromatic functor" from the category of sets with injections to itself. The first main result verifies that two finite graphs dete...
Gross, Jonathan L; Zhang, Ping
2013-01-01
In the ten years since the publication of the best-selling first edition, more than 1,000 graph theory papers have been published each year. Reflecting these advances, Handbook of Graph Theory, Second Edition provides comprehensive coverage of the main topics in pure and applied graph theory. This second edition-over 400 pages longer than its predecessor-incorporates 14 new sections. Each chapter includes lists of essential definitions and facts, accompanied by examples, tables, remarks, and, in some cases, conjectures and open problems. A bibliography at the end of each chapter provides an ex
Bollobas, Bela
2004-01-01
The ever-expanding field of extremal graph theory encompasses a diverse array of problem-solving methods, including applications to economics, computer science, and optimization theory. This volume, based on a series of lectures delivered to graduate students at the University of Cambridge, presents a concise yet comprehensive treatment of extremal graph theory.Unlike most graph theory treatises, this text features complete proofs for almost all of its results. Further insights into theory are provided by the numerous exercises of varying degrees of difficulty that accompany each chapter. A
Asymptote Misconception on Graphing Functions: Does Graphing Software Resolve It?
Öçal, Mehmet Fatih
2017-01-01
Graphing function is an important issue in mathematics education due to its use in various areas of mathematics and its potential roles for students to enhance learning mathematics. The use of some graphing software assists students' learning during graphing functions. However, the display of graphs of functions that students sketched by hand may…
Energy Technology Data Exchange (ETDEWEB)
Akemann, Gernot [Service de Physique Theorique, CEA/DSM/SPhT Saclay, Unite associee CNRS/SPM/URA 2306, F-91191 Gif-sur-Yvette Cedex (France); Department of Mathematical Sciences, Brunel University West London, Uxbridge, UB8 3PH (United Kingdom); Bittner, Elmar [Institut fuer Theoretische Physik, Universitaet Leipzig, Augustplatz 10/11, D-04109 Leipzig (Germany); Lombardo, Maria-Paola [INFN-Laboratori Nazionali di Frascati, I-00044 Frascati (Italy); Markum, Harald [Atominstitut, Technische Universitaet Wien, A-1040 Vienna (Austria); Pullirsch, Rainer [Atominstitut, Technische Universitaet Wien, A-1040 Vienna (Austria)
2005-03-15
We investigate the eigenvalue spectrum of the staggered Dirac matrix in two color QCD at finite chemical potential. The profiles of complex eigenvalues close to the origin are compared to a complex generalization of the chiral Gaussian Symplectic Ensemble, confirming its predictions for weak and strong non-Hermiticity. They differ from the QCD symmetry class with three colors by a level repulsion from both the real and imaginary axis.
Petrović, V. M.; Miladinović, T. B.
2016-12-01
The tunneling photoionization rate for a two color (bichromatic) field consisting of coherent superposition of the fundamental laser field frequency ω and its second harmonic with frequency 2ω , was studied theoretically within the framework of the adiabatic Landau-Dykhne approach. Analytical expressions were derived for the case of fixed specified values of relative phase shift, \\varphi =0 between the harmonics of the incident bichromatic field.
The Interval Graph Completion Problem on Split Graphs
Institute of Scientific and Technical Information of China (English)
ZHANG Zhen-kun; YU Min
2015-01-01
The interval graph completion problem on a graph G is to find an added edge set F such that G+F is an interval supergraph with the smallest possible number of edges. The problem has important applications to numerical algebra, V LSI-layout and algorithm graph theory etc; And it has been known to be N P-complete on general graphs. Some classes of special graphs have been investigated in the literatures. In this paper the interval graph completion problem on split graphs is investigated.
Graph Operations on Clique-Width Bounded Graphs
Gurski, Frank
2007-01-01
Clique-width is a well-known graph parameter. Many NP-hard graph problems admit polynomial-time solutions when restricted to graphs of bounded clique-width. The same holds for NLC-width. In this paper we study the behavior of clique-width and NLC-width under various graph operations and graph transformations. We give upper and lower bounds for the clique-width and NLC-width of the modified graphs in terms of the clique-width and NLC-width of the involved graphs.
Institute of Scientific and Technical Information of China (English)
Zhang Gang-Tai; Bai Ting-Ting; Zhang Mei-Guang
2012-01-01
We theoretically investigate high-order harmonic generation(HHG)from a helium ion model in a two-color laser field,which is synthesized by a fundamental pulse and its second harmonic pulse.It is shown that a supercontinuum spectrum can be generated in the two-color field.However,the spectral intensity is very low,limiting the application of the generated attosecond(as)pulse.By adding a static electric field to the synthesized two-color field,not only is the ionization yield of electrons contributing to the harmonic emission remarkably increased,but also the quantum paths of the HHG can be significantly modulated.As a result,the extension and enhancement of the supercontinuum spectrum are achieved,producing an intense isolated 26-as pulse with a bandwidth of about 170.5 eV.In particular,we also analyse the influence of the laser parameters on the ultrabroad supercontinuum spectrum and isolated sub-30-as pulse generation.
Seipt, D; Surzhykov, A; Fritzsche, S
2016-01-01
The two-color above-threshold ionization (ATI) of atoms and ions is investigated for a vortex Bessel beam in the presence of a strong near-infrared (NIR) light field. While the photoionization is caused by the photons from the weak but extreme ultra-violet (XUV) vortex Bessel beam, the energy and angular distribution of the photoelectrons and their sideband structure are affected by the plane-wave NIR field. We here explore the energy spectra and angular emission of the photoelectrons in such two-color fields as a function of the size and location of the target (atoms) with regard to the beam axis. In addition, analogue to the circular dichroism in typical two-color ATI experiments with circularly polarized light, we define and discuss seven different dichroism signals for such vortex Bessel beams that arise from the various combinations of the orbital and spin angular momenta of the two light fields. For localized targets, it is found that these dichroism signals strongly depend on the size and position of t...
De Haan, W.; Van der Flier, W.M.; Wang, H.; Van Mieghem, P.F.A.; Scheltens, P.; Stam, C.J.
2012-01-01
In Alzheimer’s disease (AD), structural and functional brain network organization is disturbed. However, many of the present network analysis measures require a priori assumptions and methodological choices that influence outcomes and interpretations. Graph spectral analysis (GSA) is a more direct a
Wilson, Robin J
1985-01-01
Graph Theory has recently emerged as a subject in its own right, as well as being an important mathematical tool in such diverse subjects as operational research, chemistry, sociology and genetics. This book provides a comprehensive introduction to the subject.
Alspach, BR
1985-01-01
This volume deals with a variety of problems involving cycles in graphs and circuits in digraphs. Leading researchers in this area present here 3 survey papers and 42 papers containing new results. There is also a collection of unsolved problems.
Directory of Open Access Journals (Sweden)
Haynes Teresa W.
2014-08-01
Full Text Available A path π = (v1, v2, . . . , vk+1 in a graph G = (V,E is a downhill path if for every i, 1 ≤ i ≤ k, deg(vi ≥ deg(vi+1, where deg(vi denotes the degree of vertex vi ∈ V. The downhill domination number equals the minimum cardinality of a set S ⊆ V having the property that every vertex v ∈ V lies on a downhill path originating from some vertex in S. We investigate downhill domination numbers of graphs and give upper bounds. In particular, we show that the downhill domination number of a graph is at most half its order, and that the downhill domination number of a tree is at most one third its order. We characterize the graphs obtaining each of these bounds
Categorical constructions in graph theory
Directory of Open Access Journals (Sweden)
Richard T. Bumby
1986-01-01
Full Text Available This paper presents some graph-theoretic questions from the viewpoint of the portion of category theory which has become common knowledge. In particular, the reader is encouraged to consider whether there is only one natural category of graphs and how theories of directed graphs and undirected graphs are related.
A Semantic Graph Query Language
Energy Technology Data Exchange (ETDEWEB)
Kaplan, I L
2006-10-16
Semantic graphs can be used to organize large amounts of information from a number of sources into one unified structure. A semantic query language provides a foundation for extracting information from the semantic graph. The graph query language described here provides a simple, powerful method for querying semantic graphs.
Local Interaction on Random Graphs
Directory of Open Access Journals (Sweden)
Hans Haller
2010-08-01
Full Text Available We analyze dynamic local interaction in population games where the local interaction structure (modeled as a graph can change over time: A stochastic process generates a random sequence of graphs. This contrasts with models where the initial interaction structure (represented by a deterministic graph or the realization of a random graph cannot change over time.
The Least Eigenvalue of Graphs
Institute of Scientific and Technical Information of China (English)
Guidong YU; Yizheng FAN; Yi WANG
2012-01-01
In this paper we investigate the least eigenvalue of a graph whose complement is connected,and present a lower bound for the least eigenvalue of such graph.We also characterize the unique graph whose least eigenvalue attains the second minimum among all graphs of fixed order.
Solsolitons associated with graphs
Lafuente, Ramiro A
2010-01-01
We show how to associate with each graph with a certain property (positivity) a family of simply connected solvable Lie groups endowed with left-invariant Riemannian metrics that are Ricci solitons (called solsolitons). We classify them up to isometry, obtaining families depending on many parameters of explicit examples of Ricci solitons. A classification of graphs with up to 3 coherent components according to positivity is also given.
Institute of Scientific and Technical Information of China (English)
XU Jin
2016-01-01
A maximal planar graph is called the recursive maximal planar graph if it can be obtained from 4 K by embedding a 3-degree vertex in some triangular face continuously. The uniquely 4-colorable maximal planar graph conjecture states that a planar graph is uniquely 4-colorable if and only if it is a recursive maximal planar graph. This conjecture, which has 43 years of history, is a very influential conjecture in graph coloring theory after the Four-Color Conjecture. In this paper, the structures and properties of dumbbell maximal planar graphs and recursive maximal planar graphs are studied, and an idea of proving the uniquely 4-colorable maximal planar graph conjecture is proposed based on the extending-contracting operation proposed in this series of article (2).
Graph Embedding for Pattern Analysis
Ma, Yunqian
2013-01-01
Graph Embedding for Pattern Analysis covers theory methods, computation, and applications widely used in statistics, machine learning, image processing, and computer vision. This book presents the latest advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph, and graph in vector spaces. Real-world applications of these theories are spanned broadly in dimensionality reduction, subspace learning, manifold learning, clustering, classification, and feature selection. A selective group of experts contribute to different chapters of this book which provides a comprehensive perspective of this field.
Arrighi, Pablo
2016-01-01
Consider a graph having quantum systems lying at each node. Suppose that the whole thing evolves in discrete time steps, according to a global, unitary causal operator. By causal we mean that information can only propagate at a bounded speed, with respect to the distance given by the graph. Suppose, moreover, that the graph itself is subject to the evolution, and may be driven to be in a quantum superposition of graphs---in accordance to the superposition principle. We show that these unitary causal operators must decompose as a finite-depth circuit of local unitary gates. This unifies a result on Quantum Cellular Automata with another on Reversible Causal Graph Dynamics. Along the way we formalize a notion of causality which is valid in the context of quantum superpositions of time-varying graphs, and has a number of good properties. Keywords: Quantum Lattice Gas Automata, Block-representation, Curtis-Hedlund-Lyndon, No-signalling, Localizability, Quantum Gravity, Quantum Graphity, Causal Dynamical Triangula...
Commuting projections on graphs
Energy Technology Data Exchange (ETDEWEB)
Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; Zikatanov, Ludmil T. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mathematics
2013-02-19
For a given (connected) graph, we consider vector spaces of (discrete) functions defined on its vertices and its edges. These two spaces are related by a discrete gradient operator, Grad and its adjoint, ₋Div, referred to as (negative) discrete divergence. We also consider a coarse graph obtained by aggregation of vertices of the original one. Then a coarse vertex space is identified with the subspace of piecewise constant functions over the aggregates. We consider the ℓ_{2}-projection Q_{H} onto the space of these piecewise constants. In the present paper, our main result is the construction of a projection π _{H} from the original edge-space onto a properly constructed coarse edge-space associated with the edges of the coarse graph. The projections π _{H} and Q_{H} commute with the discrete divergence operator, i.e., we have div π _{H} = Q_{H} div. The respective pair of coarse edge-space and coarse vertexspace offer the potential to construct two-level, and by recursion, multilevel methods for the mixed formulation of the graph Laplacian which utilizes the discrete divergence operator. The performance of one two-level method with overlapping Schwarz smoothing and correction based on the constructed coarse spaces for solving such mixed graph Laplacian systems is illustrated on a number of graph examples.
Clique graphs and overlapping communities
Evans, T. S.
2010-12-01
It is shown how to construct a clique graph in which properties of cliques of a fixed order in a given graph are represented by vertices in a weighted graph. Various definitions and motivations for these weights are given. The detection of communities or clusters is used to illustrate how a clique graph may be exploited. In particular a benchmark network is shown where clique graphs find the overlapping communities accurately while vertex partition methods fail.
Jing, Wei
2014-04-01
The measurement of the two-color line of sight soot and KL factor for NO.2 diesel and jet-A fuels was conducted in an optical constant volume combustion chamber by using a high speed camera under 1000 K ambient temperature and varied oxygen concentration conditions. The ambient conditions were set as follows: four oxygen cases including 10%, 15%, 18% and 21% at 1000 K ambient temperature. KL factor and soot temperature were determined based on the two-color pyrometry technique using two band-pass filters with wavelengths of 650 nm and 550 nm. The results show that low soot temperature is observed in the upstream inner flame along the centerline, which is surrounded by high soot temperature regions, and a high KL factor is found in the same region with a low soot temperature. The results under different times suggest that soot temperature is higher for high O2 conditions during the entire flame development; meanwhile, both integrated KL factor and soot area decrease with the increase of O2 concentration. The two fuels share a similar trend of soot temperature and KL factor, however, diesel flame has a higher soot temperature and a larger high soot temperature area compared to jet-A flame. On the other hand, diesel flame shows a lower soot level during the quasi-steady state with a higher total soot level at the end of the combustion under low O2 conditions. A lower O2 concentration range from 10% to 15% is expected to have the possibility to achieve a simultaneous reduction of soot and NOx in sooting flames under the 1000 K ambient temperature condition. Copyright © 2014 SAE International.
Kernel-Based Reconstruction of Graph Signals
Romero, Daniel; Ma, Meng; Giannakis, Georgios B.
2017-02-01
A number of applications in engineering, social sciences, physics, and biology involve inference over networks. In this context, graph signals are widely encountered as descriptors of vertex attributes or features in graph-structured data. Estimating such signals in all vertices given noisy observations of their values on a subset of vertices has been extensively analyzed in the literature of signal processing on graphs (SPoG). This paper advocates kernel regression as a framework generalizing popular SPoG modeling and reconstruction and expanding their capabilities. Formulating signal reconstruction as a regression task on reproducing kernel Hilbert spaces of graph signals permeates benefits from statistical learning, offers fresh insights, and allows for estimators to leverage richer forms of prior information than existing alternatives. A number of SPoG notions such as bandlimitedness, graph filters, and the graph Fourier transform are naturally accommodated in the kernel framework. Additionally, this paper capitalizes on the so-called representer theorem to devise simpler versions of existing Thikhonov regularized estimators, and offers a novel probabilistic interpretation of kernel methods on graphs based on graphical models. Motivated by the challenges of selecting the bandwidth parameter in SPoG estimators or the kernel map in kernel-based methods, the present paper further proposes two multi-kernel approaches with complementary strengths. Whereas the first enables estimation of the unknown bandwidth of bandlimited signals, the second allows for efficient graph filter selection. Numerical tests with synthetic as well as real data demonstrate the merits of the proposed methods relative to state-of-the-art alternatives.
Higher-order graph wavelets and sparsity on circulant graphs
Kotzagiannidis, Madeleine S.; Dragotti, Pier Luigi
2015-08-01
The notion of a graph wavelet gives rise to more advanced processing of data on graphs due to its ability to operate in a localized manner, across newly arising data-dependency structures, with respect to the graph signal and underlying graph structure, thereby taking into consideration the inherent geometry of the data. In this work, we tackle the problem of creating graph wavelet filterbanks on circulant graphs for a sparse representation of certain classes of graph signals. The underlying graph can hereby be data-driven as well as fixed, for applications including image processing and social network theory, whereby clusters can be modelled as circulant graphs, respectively. We present a set of novel graph wavelet filter-bank constructions, which annihilate higher-order polynomial graph signals (up to a border effect) defined on the vertices of undirected, circulant graphs, and are localised in the vertex domain. We give preliminary results on their performance for non-linear graph signal approximation and denoising. Furthermore, we provide extensions to our previously developed segmentation-inspired graph wavelet framework for non-linear image approximation, by incorporating notions of smoothness and vanishing moments, which further improve performance compared to traditional methods.
Regularity in Vague Intersection Graphs and Vague Line Graphs
Directory of Open Access Journals (Sweden)
Muhammad Akram
2014-01-01
Full Text Available Fuzzy graph theory is commonly used in computer science applications, particularly in database theory, data mining, neural networks, expert systems, cluster analysis, control theory, and image capturing. A vague graph is a generalized structure of a fuzzy graph that gives more precision, flexibility, and compatibility to a system when compared with systems that are designed using fuzzy graphs. In this paper, we introduce the notion of vague line graphs, and certain types of vague line graphs and present some of their properties. We also discuss an example application of vague digraphs.
Institute of Scientific and Technical Information of China (English)
ZHU Jing-yin; YE Wen; GONG Hai-yan
2010-01-01
Background Elevation of intraocular pressure is usually associated with primary open angle glaucoma and caused by increased outflow resistance. A two-color fluorescent tracer technique was developed to investigate the hydrodynamics of aqueous humor outflow with changing intraocular pressure within the same eye, to better understand the relationship between outflow facility and effective filtration area. Methods Eighteen enucleated bovine eyes were first perfused at 30 mmHg with Dulbecco's phosphate-buffered saline containing 5.5 mmol/L D-glucose. After a stable baseline facility, red fluorescent microspheres (0.5 μm, 0.002% v/v) were exchanged and perfused. Eyes in the one-color control group (n=6) were immediately perfused with fixative. In the experimental group (n=6), eyes were perfused with green tracer after intraocular pressure reduced to 7 mmHg, while in the two-color control group (n=6), eyes were perfused with green tracer with intraocular pressure remaining at 30 mmHg. All 12 eyes were then perfusion-fixed. Outflow facility was continuously recorded in all eyes. Confocal images were taken along the inner wall of the aqueous plexus and the percent of the effective filtration length (PEFL; length of inner wall exhibiting tracer labeling/total length of inner wall) was measured. The relationships between outflow facility and PEFL were analyzed statistically. Results No significant differences were found in baseline facilities (ulmin~(-1)·mmHg~(-1)) among the three groups (the experimental group: 0.93 0.12; the two-color control group: 0.90 0.19; the one-color control group: 0.98 0.13). In the experimental group, the outflow facility was significantly higher at 7 mmHg (4.29±1.01) than that at 30 mmHg (1.90±0.67, P <0.001), which corresponded to a significant increase in the PEFL at 7 mmHg (54.70±8.42) from that at 30 mmHg ((11.76±4.56)%, P<0.001). The PEFL labeled by red fluorescent microspheres in the experimental group ((11.76±4.56)%) showed no
The STAPL Parallel Graph Library
Harshvardhan,
2013-01-01
This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable distributed graph container and a collection of commonly used parallel graph algorithms. The library introduces pGraph pViews that separate algorithm design from the container implementation. It supports three graph processing algorithmic paradigms, level-synchronous, asynchronous and coarse-grained, and provides common graph algorithms based on them. Experimental results demonstrate improved scalability in performance and data size over existing graph libraries on more than 16,000 cores and on internet-scale graphs containing over 16 billion vertices and 250 billion edges. © Springer-Verlag Berlin Heidelberg 2013.
Fundamentals of algebraic graph transformation
Ehrig, Hartmut; Prange, Ulrike; Taentzer, Gabriele
2006-01-01
Graphs are widely used to represent structural information in the form of objects and connections between them. Graph transformation is the rule-based manipulation of graphs, an increasingly important concept in computer science and related fields. This is the first textbook treatment of the algebraic approach to graph transformation, based on algebraic structures and category theory. Part I is an introduction to the classical case of graph and typed graph transformation. In Part II basic and advanced results are first shown for an abstract form of replacement systems, so-called adhesive high-level replacement systems based on category theory, and are then instantiated to several forms of graph and Petri net transformation systems. Part III develops typed attributed graph transformation, a technique of key relevance in the modeling of visual languages and in model transformation. Part IV contains a practical case study on model transformation and a presentation of the AGG (attributed graph grammar) tool envir...
The circumference of the square of a connected graph
DEFF Research Database (Denmark)
Brandt, S.; Muttel, J.; Rautenbach, D.
2014-01-01
The celebrated result of Fleischner states that the square of every 2-connected graph is Hamiltonian. We investigate what happens if the graph is just connected. For every n a parts per thousand yen 3, we determine the smallest length c(n) of a longest cycle in the square of a connected graph of ...... of order n and show that c(n) is a logarithmic function in n. Furthermore, for every c a parts per thousand yen 3, we characterize the connected graphs of largest order whose square contains no cycle of length at least c....
Space as a low-temperature regime of graphs
Conrady, Florian
2010-01-01
I define a statistical model of graphs in which 2-dimensional spaces arise at low temperature. The configurations are given by graphs with a fixed number of edges and the Hamiltonian is a simple, local function of the graphs. Simulations show that there is a transition between a low-temperature regime in which the graphs form triangulations of 2-dimensional surfaces and a high-temperature regime, where the surfaces disappear. I use data for the specific heat and other observables to discuss whether this is a phase transition. The surface states are analyzed with regard to topology and defects.
Graph Edge Coloring Vizing's Theorem and Goldberg's Conjecture
Stiebitz, Michael; Toft, Bjarne; Favrholdt, Lene M
2012-01-01
Features recent advances and new applications in graph edge coloring Reviewing recent advances in the Edge Coloring Problem, Graph Edge Coloring: Vizing's Theorem and Goldberg's Conjecture provides an overview of the current state of the science, explaining the interconnections among the results obtained from important graph theory studies. The authors introduce many new improved proofs of known results to identify and point to possible solutions for open problems in edge coloring. The book begins with an introduction to graph theory and the concept of edge coloring. Subsequent chapters explor
Clustering with Multi-Layer Graphs: A Spectral Perspective
Dong, Xiaowen; Vandergheynst, Pierre; Nefedov, Nikolai
2011-01-01
Observational data usually comes with a multimodal nature, which means that it can be naturally represented by a multi-layer graph whose layers share the same set of vertices (users) with different edges (pairwise relationships). In this paper, we address the problem of combining different layers of the multi-layer graph for improved clustering of the vertices compared to using layers independently. We propose two novel methods, which are based on joint matrix factorization and graph regularization framework respectively, to efficiently combine the spectrum of the multiple graph layers, namely the eigenvectors of the graph Laplacian matrices. In each case, the resulting combination, which we call a "joint spectrum" of multiple graphs, is used for clustering the vertices. We evaluate our approaches by simulations with several real world social network datasets. Results demonstrate the superior or competitive performance of the proposed methods over state-of-the-art technique and common baseline methods, such a...
Fast Inexact Graph Matching with Applications in Statistical Connectomics
Vogelstein, Joshua T; Podrazik, Louis J; Kratzer, Steven G; Fishkind, Donniell E; Vogelstein, R Jacob; Priebe, Carey E
2011-01-01
It is becoming increasingly popular to represent myriad and diverse data sets as graphs. When the labels of vertices of these graphs are unavailable, graph matching (GM)---the process of determining which permutation assigns vertices of one graph to those of another---is a computationally daunting problem. This work presents an inexact strategy for GM. Specifically, we frame GM as a quadratic assignment problem, and then relax the feasible region to its convex hull. We prove that our relaxed optimization function has the same solution as the original problem, yet it is continuously differentiable. Because the objective function is not necessarily convex, we consider multiple principled initializations. Performance exceeds the previous state-of-the-art in all of 16 benchmark tests. Moreover, this approach is fast, scaling cubically with the number of vertices, requiring only about a minute on a laptop for graphs with a few hundred vertices. We illustrate this approach via a brain-graph application (the Caenorh...
Directory of Open Access Journals (Sweden)
Vassilis Giakoumakis
1997-12-01
Full Text Available We study the P 4-tidy graphs, a new class defined by Rusu [30] in order to illustrate the notion of P 4-domination in perfect graphs. This class strictly contains the P 4-extendible graphs and the P 4-lite graphs defined by Jamison & Olariu in [19] and [23] and we show that the P 4-tidy graphs and P 4-lite graphs are closely related. Note that the class of P 4-lite graphs is a class of brittle graphs strictly containing the P 4-sparse graphs defined by Hoang in [14]. McConnel & Spinrad [2] and independently Cournier & Habib [5] have shown that the modular decomposition tree of any graph is computable in linear time. For recognizing in linear time P 4-tidy graphs, we apply a method introduced by Giakoumakis in [9] and Giakoumakis & Fouquet in [6] using modular decomposition of graphs and we propose linear algorithms for optimization problems on such graphs, as clique number, stability number, chromatic number and scattering number. We show that the Hamiltonian Path Problem is linear for this class of graphs. Our study unifies and generalizes previous results of Jamison & Olariu ([18], [21], [22], Hochstattler & Schindler[16], Jung [25] and Hochstattler & Tinhofer [15].
Quantitative graph theory mathematical foundations and applications
Dehmer, Matthias
2014-01-01
The first book devoted exclusively to quantitative graph theory, Quantitative Graph Theory: Mathematical Foundations and Applications presents and demonstrates existing and novel methods for analyzing graphs quantitatively. Incorporating interdisciplinary knowledge from graph theory, information theory, measurement theory, and statistical techniques, this book covers a wide range of quantitative-graph theoretical concepts and methods, including those pertaining to real and random graphs such as:Comparative approaches (graph similarity or distance)Graph measures to characterize graphs quantitat
Learning Potential Energy Landscapes using Graph Kernels
Ferré, G; Barros, K
2016-01-01
Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab-initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. We show on a standard benchmark that our Graph Approximated Energy (GRAPE) method is competitive with state of the art kernel m...
Enhanced harmonic generation and wave-mixing via two-color multiphoton excitation of atoms/molecules
Avetissian, H K; Mkrtchian, G F
2016-01-01
We consider harmonics generation and wave-mixing by two-color multi photon resonant excitation of three-level atoms/molecules in strong laser fields. The coherent part of the spectra corresponding to multicolor harmonics generation is investigated. The obtained analytical results on the basis of generalized rotating wave approximation are in a good agreement with numerical calculations. The results applied to the hydrogen atom and homonuclear diatomic molecular ion show that one can achieve efficient generation of moderately high multicolor harmonics via multiphoton resonant excitation by appropriate laser pulses.
Wang, Zhe; Zhang, Qingbin; Wang, Shaoyi; Lu, Peixiang
2011-01-01
The generation of isolated attosecond pulses with high efficiency and high beam quality is essential for attosec- ond spectroscopy. We numerically investigate the supercontinuum generation in a neutral rare-gas medium driven by a two-color Bessel-Gauss beam. The results show that an efficient smooth supercontinuum in the plateau is obtained after propagation, and the spatial profile of the generated attosecond pulse is Gaussian-like with the divergence angle of 0.1 degree in the far field. This bright source with high beam quality is beneficial for detecting and controlling the microscopic processes on attosecond time scale.
Optimized Graph Search Using Multi-Level Graph Clustering
Kala, Rahul; Shukla, Anupam; Tiwari, Ritu
Graphs find a variety of use in numerous domains especially because of their capability to model common problems. The social networking graphs that are used for social networking analysis, a feature given by various social networking sites are an example of this. Graphs can also be visualized in the search engines to carry search operations and provide results. Various searching algorithms have been developed for searching in graphs. In this paper we propose that the entire network graph be clustered. The larger graphs are clustered to make smaller graphs. These smaller graphs can again be clustered to further reduce the size of graph. The search is performed on the smallest graph to identify the general path, which may be further build up to actual nodes by working on the individual clusters involved. Since many searches are carried out on the same graph, clustering may be done once and the data may be used for multiple searches over the time. If the graph changes considerably, only then we may re-cluster the graph.
Subdominant pseudoultrametric on graphs
Energy Technology Data Exchange (ETDEWEB)
Dovgoshei, A A; Petrov, E A [Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Donetsk (Ukraine)
2013-08-31
Let (G,w) be a weighted graph. We find necessary and sufficient conditions under which the weight w:E(G)→R{sup +} can be extended to a pseudoultrametric on V(G), and establish a criterion for the uniqueness of such an extension. We demonstrate that (G,w) is a complete k-partite graph, for k≥2, if and only if for any weight that can be extended to a pseudoultrametric, among all such extensions one can find the least pseudoultrametric consistent with w. We give a structural characterization of graphs for which the subdominant pseudoultrametric is an ultrametric for any strictly positive weight that can be extended to a pseudoultrametric. Bibliography: 14 titles.
White, AT
1985-01-01
The field of topological graph theory has expanded greatly in the ten years since the first edition of this book appeared. The original nine chapters of this classic work have therefore been revised and updated. Six new chapters have been added, dealing with: voltage graphs, non-orientable imbeddings, block designs associated with graph imbeddings, hypergraph imbeddings, map automorphism groups and change ringing.Thirty-two new problems have been added to this new edition, so that there are now 181 in all; 22 of these have been designated as ``difficult'''' and 9 as ``unsolved''''. Three of the four unsolved problems from the first edition have been solved in the ten years between editions; they are now marked as ``difficult''''.
Bordenave, Charles; Salez, Justin
2011-01-01
We prove that the local weak convergence of a sequence of graphs is enough to guarantee the convergence of their normalized matching numbers. The limiting quantity is described by a local recursion defined on the weak limit of the graph sequence. However, this recursion may admit several solutions, implying non-trivial long-range dependencies between the edges of a largest matching. We overcome this lack of correlation decay by introducing a perturbative parameter called the temperature, which we let progressively go to zero. When the local weak limit is a unimodular Galton-Watson tree, the recursion simplifies into a distributional equation, resulting into an explicit formula that considerably extends the well-known one by Karp and Sipser for Erd\\"os-R\\'enyi random graphs.
Ribes, Luis
2017-01-01
This book offers a detailed introduction to graph theoretic methods in profinite groups and applications to abstract groups. It is the first to provide a comprehensive treatment of the subject. The author begins by carefully developing relevant notions in topology, profinite groups and homology, including free products of profinite groups, cohomological methods in profinite groups, and fixed points of automorphisms of free pro-p groups. The final part of the book is dedicated to applications of the profinite theory to abstract groups, with sections on finitely generated subgroups of free groups, separability conditions in free and amalgamated products, and algorithms in free groups and finite monoids. Profinite Graphs and Groups will appeal to students and researchers interested in profinite groups, geometric group theory, graphs and connections with the theory of formal languages. A complete reference on the subject, the book includes historical and bibliographical notes as well as a discussion of open quest...
Hyperbolicity in Median Graphs
Indian Academy of Sciences (India)
José M Sigarreta
2013-11-01
If is a geodesic metric space and $x_1,x_2,x_3\\in X$, a geodesic triangle $T=\\{x_1,x_2,x_3\\}$ is the union of the three geodesics $[x_1 x_2],[x_2 x_3]$ and $[x_3 x_1]$ in . The space is -hyperbolic (in the Gromov sense) if any side of is contained in a -neighborhood of the union of the two other sides, for every geodesic triangle in . If is hyperbolic, we denote by () the sharp hyperbolicity constant of , i.e.,$(X)=\\inf\\{≥ 0: X \\quad\\text{is}\\quad -\\text{hyperbolic}\\}$. In this paper we study the hyperbolicity of median graphs and we also obtain some results about general hyperbolic graphs. In particular, we prove that a median graph is hyperbolic if and only if its bigons are thin.
Erickson, Lindsay
2010-01-01
The game of Nim as played on graphs was introduced in Nim on Graphs I and extended in Nim on Graphs II by Masahiko Fukuyama. His papers detail the calculation of Grundy numbers for graphs under specific circumstances. We extend these results and introduce the strategy for even cycles. This paper examines a more general class of graphs by restricting the edge weight to one. We provide structural conditions for which there exist a winning strategy. This yields the solution for the complete graph.
Graph theory and interconnection networks
Hsu, Lih-Hsing
2008-01-01
The advancement of large scale integrated circuit technology has enabled the construction of complex interconnection networks. Graph theory provides a fundamental tool for designing and analyzing such networks. Graph Theory and Interconnection Networks provides a thorough understanding of these interrelated topics. After a brief introduction to graph terminology, the book presents well-known interconnection networks as examples of graphs, followed by in-depth coverage of Hamiltonian graphs. Different types of problems illustrate the wide range of available methods for solving such problems. The text also explores recent progress on the diagnosability of graphs under various models.
DEFF Research Database (Denmark)
Randerath, Bert; Vestergaard, Preben D.
2010-01-01
A graph G is P3-equipackable if any sequence of successive removals of edge-disjoint copies of P3 from G always terminates with a graph having at most one edge. All P3-equipackable graphs are characterised. They belong to a small number of families listed here.......A graph G is P3-equipackable if any sequence of successive removals of edge-disjoint copies of P3 from G always terminates with a graph having at most one edge. All P3-equipackable graphs are characterised. They belong to a small number of families listed here....
Feynman motives of banana graphs
Aluffi, Paolo
2008-01-01
We consider the infinite family of Feynman graphs known as the ``banana graphs'' and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern--Schwartz--MacPherson classes, using the classical Cremona transformation and the dual graph, and a blowup formula for characteristic classes. We outline the interesting similarities between these operations and we give formulae for cones obtained by simple operations on graphs. We formulate a positivity conjecture for characteristic classes of graph hypersurfaces and discuss briefly the effect of passing to noncommutative spacetime.
Locally identifying coloring of graphs
Esperet, Louis; Montassier, Mickael; Ochem, Pascal; Parreau, Aline
2010-01-01
A vertex-coloring of a graph G is said to be locally identifying if for any pair (u,v) of adjacent vertices of G, with distinct closed neighborhood, the set of colors that appears in the closed neighborhoods of u and v are distinct. In this paper, we give several bounds on the minimum number of colors needed in such a coloring for different families of graphs (planar graphs, some subclasses of perfect graphs, graphs with bounded maximum degree) and prove that deciding whether a subcubic bipartite graph with large girth has a locally identifying coloring with 3 colors is an NP-complete problem.
Graph Triangulations and the Compatibility of Unrooted Phylogenetic Trees
Vakati, Sudheer
2010-01-01
We characterize the compatibility of a collection of unrooted phylogenetic trees as a question of determining whether a graph derived from these trees --- the display graph --- has a specific kind of triangulation, which we call legal. Our result is a counterpart to the well known triangulation-based characterization of the compatibility of undirected multi-state characters.
Automated deadlock detection in synchronized reentrant multithreaded call-graphs
I. Grabe (Immo); F.S. de Boer (Frank); J. van Leeuwen (Jan); A. Muscholl; D. Peleg; J. Pokorny; B. Rumpe
2010-01-01
textabstractIn this paper we investigate the synchronization of multithreaded call graphs with reentrance similar to call graphs in Java programs. We model the individual threads as Visibly Pushdown Automata (VPA) and analyse the reachability of a state in the product automaton by means of a Context
Graph-based knowledge representation computational foundations of conceptual graphs
Chein, Michel; Chein, Michel
2008-01-01
In addressing the question of how far it is possible to go in knowledge representation and reasoning through graphs, the authors cover basic conceptual graphs, computational aspects, and kernel extensions. The basic mathematical notions are summarized.
Algorithms for Planar Graphs and Graphs in Metric Spaces
DEFF Research Database (Denmark)
Wulff-Nilsen, Christian
Algorithms for network problems play an increasingly important role in modern society. The graph structure of a network is an abstract and very useful representation that allows classical graph algorithms, such as Dijkstra and Bellman-Ford, to be applied. Real-life networks often have additional...... preprocessing time, an O(n log n) time algorithm for the replacement paths problem, and a min st-cut oracle with nearlinear preprocessing time. We also give improved time bounds for computing various graph invariants such as diameter and girth. In the second part, we consider stretch factor problems...... for geometric graphs and graphs embedded in metric spaces. Roughly speaking, the stretch factor is a real value expressing how well a (geo-)metric graph approximates the underlying complete graph w.r.t. distances. We give improved algorithms for computing the stretch factor of a given graph and for augmenting...
SOME RESULTS ON CIRCULAR PERFECT GRAPHS AND PERFECT GRAPHS
Institute of Scientific and Technical Information of China (English)
XU Baogang
2005-01-01
An r-circular coloring of a graph G is a map f from V(G) to the set of open unit intervals of an Euclidean circle of length r,such that f(u) ∩ f(v) = φ whenever uv ∈ E(G).Circular perfect graphs are defined analogously to perfect graphs by means of two parameters,the circular chromatic number and the circular clique number.In this paper,we study the properties of circular perfect graphs.We give (1) a necessary condition for a graph to be circular perfect,(2) some circular critical imperfect graphs,and (3) a characterization of graphs with the property that each of their induced subgraphs has circular clique number the same as its clique number,and then the two conjectures that are equivalent to the perfect graph conjecture.
Toussaint, Paule-Joanne; Maiz, Sofiane; Coynel, David; Doyon, Julien; Messé, Arnaud; de Souza, Leonardo Cruz; Sarazin, Marie; Perlbarg, Vincent; Habert, Marie-Odile; Benali, Habib
2014-11-01
Cognitive decline in normal ageing and Alzheimer's disease (AD) emerges from functional disruption in the coordination of large-scale brain systems sustaining cognition. Integrity of these systems can be examined by correlation methods based on analysis of resting state functional magnetic resonance imaging (fMRI). Here we investigate functional connectivity within the default mode network (DMN) in normal ageing and AD using resting state fMRI. Images from young and elderly controls, and patients with AD were processed using spatial independent component analysis to identify the DMN. Functional connectivity was quantified using integration and indices derived from graph theory. Four DMN sub-systems were identified: Frontal (medial and superior), parietal (precuneus-posterior cingulate, lateral parietal), temporal (medial temporal), and hippocampal (bilateral). There was a decrease in antero-posterior interactions (lower global efficiency), but increased interactions within the frontal and parietal sub-systems (higher local clustering) in elderly compared to young controls. This decreased antero-posterior integration was more pronounced in AD patients compared to elderly controls, particularly in the precuneus-posterior cingulate region. Conjoint knowledge of integration measures and graph indices in the same data helps in the interpretation of functional connectivity results, as comprehension of one measure improves with understanding of the other. The approach allows for complete characterisation of connectivity changes and could be applied to other resting state networks and different pathologies. Copyright © 2014 Elsevier Inc. All rights reserved.
Using Graph and Vertex Entropy to Compare Empirical Graphs with Theoretical Graph Models
Directory of Open Access Journals (Sweden)
Tomasz Kajdanowicz
2016-09-01
Full Text Available Over the years, several theoretical graph generation models have been proposed. Among the most prominent are: the Erdős–Renyi random graph model, Watts–Strogatz small world model, Albert–Barabási preferential attachment model, Price citation model, and many more. Often, researchers working with real-world data are interested in understanding the generative phenomena underlying their empirical graphs. They want to know which of the theoretical graph generation models would most probably generate a particular empirical graph. In other words, they expect some similarity assessment between the empirical graph and graphs artificially created from theoretical graph generation models. Usually, in order to assess the similarity of two graphs, centrality measure distributions are compared. For a theoretical graph model this means comparing the empirical graph to a single realization of a theoretical graph model, where the realization is generated from the given model using an arbitrary set of parameters. The similarity between centrality measure distributions can be measured using standard statistical tests, e.g., the Kolmogorov–Smirnov test of distances between cumulative distributions. However, this approach is both error-prone and leads to incorrect conclusions, as we show in our experiments. Therefore, we propose a new method for graph comparison and type classification by comparing the entropies of centrality measure distributions (degree centrality, betweenness centrality, closeness centrality. We demonstrate that our approach can help assign the empirical graph to the most similar theoretical model using a simple unsupervised learning method.
Institute of Scientific and Technical Information of China (English)
ZHANG Guoqiang; CHEN Yixiang
2001-01-01
This paper provides a concrete and simple introduction to two pillars of domain theory: (1) solving recursive domain equations, and (2) universal and saturated domains. Our exposition combines Larsen and Winskel's idea on solving domain equations using information systems with Girard's idea of stable domain theory in the form of coherence spaces, or graphs.Detailed constructions are given for universal and even homogeneous objects in two categories of graphs: one representing binary complete, prime algebraic domains with complete primes covering the bottom; the other representing ω-algebraic, prime algebraic lattices. The backand-forth argument in model theory helps to enlighten the constructions.
Cheung, King Sing
2014-01-01
Petri nets are a formal and theoretically rich model for the modelling and analysis of systems. A subclass of Petri nets, augmented marked graphs possess a structure that is especially desirable for the modelling and analysis of systems with concurrent processes and shared resources.This monograph consists of three parts: Part I provides the conceptual background for readers who have no prior knowledge on Petri nets; Part II elaborates the theory of augmented marked graphs; finally, Part III discusses the application to system integration. The book is suitable as a first self-contained volume
Haynes Teresa W.; Hedetniemi Stephen T.; Jamieson Jessie D.; Jamieson William B.
2014-01-01
A path π = (v1, v2, . . . , vk+1) in a graph G = (V,E) is a downhill path if for every i, 1 ≤ i ≤ k, deg(vi) ≥ deg(vi+1), where deg(vi) denotes the degree of vertex vi ∈ V. The downhill domination number equals the minimum cardinality of a set S ⊆ V having the property that every vertex v ∈ V lies on a downhill path originating from some vertex in S. We investigate downhill domination numbers of graphs and give upper bounds. In particular, we show that the downhill domination number of a grap...
Stevanovic, Dragan
2015-01-01
Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the
Distributed Evolutionary Graph Partitioning
Sanders, Peter
2011-01-01
We present a novel distributed evolutionary algorithm, KaFFPaE, to solve the Graph Partitioning Problem, which makes use of KaFFPa (Karlsruhe Fast Flow Partitioner). The use of our multilevel graph partitioner KaFFPa provides new effective crossover and mutation operators. By combining these with a scalable communication protocol we obtain a system that is able to improve the best known partitioning results for many inputs in a very short amount of time. For example, in Walshaw's well known benchmark tables we are able to improve or recompute 76% of entries for the tables with 1%, 3% and 5% imbalance.
Directory of Open Access Journals (Sweden)
Marc-Thorsten Hütt
2012-06-01
Full Text Available Cellular automata (CA are a remarkably efficient tool for exploring general properties of complex systems and spatiotemporal patterns arising from local rules. Totalistic cellular automata, where the update rules depend only on the density of neighboring states, are at the same time a versatile tool for exploring dynamical processes on graphs. Here we briefly review our previous results on cellular automata on graphs, emphasizing some systematic relationships between network architecture and dynamics identified in this way. We then extend the investigation towards graphs obtained in a simulated-evolution procedure, starting from Erdő s–Rényi (ER graphs and selecting for low entropies of the CA dynamics. Our key result is a strong association of low Shannon entropies with a broadening of the graph’s degree distribution.
Handbook of graph grammars and computing by graph transformation
Engels, G; Kreowski, H J; Rozenberg, G
1999-01-01
Graph grammars originated in the late 60s, motivated by considerations about pattern recognition and compiler construction. Since then, the list of areas which have interacted with the development of graph grammars has grown quite impressively. Besides the aforementioned areas, it includes software specification and development, VLSI layout schemes, database design, modeling of concurrent systems, massively parallel computer architectures, logic programming, computer animation, developmental biology, music composition, visual languages, and many others.The area of graph grammars and graph tran
González de Alaiza Martínez, P; Davoine, X; Debayle, A; Gremillet, L; Bergé, L
2016-06-03
We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2). We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 10(17) W/cm(2) laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents.
Institute of Scientific and Technical Information of China (English)
WANG Chen; QIAO Ling-Ling; MAO Zheng-Le
2011-01-01
We propose to achieve far-field super-resolution imaging by using offset two-color one-photon (2C1P) excitation of reversible photoactivatable fluorescence proteins. Due to the distinctive photoswitching performance of the proteins, such as dronpa, the fluorescence emission will only come from the overlapped region of activation beam and excitation beam. The analysis solution of rate equation shows that the resolution of offset 2C1P microscope is "engineered" by laser power of excitation and activation beams and the power ratio between them. Superior lateral and transverse resolution is theoretically demonstrated compared with conventional fluorescence scanning microscopy.%@@ We propose to achieve far-field super-resolution imaging by using offset two-color one-photon(2C1P) excitation of reversible photoactivatable fluorescence proteins.Due to the distinctive photoswitching performance of the proteins,such as dronpa,the fluorescence emission will only come from the overlapped region of activation beam and excitation beam.The analysis solution of rate equation shows that the resolution of offset 2C1P microscope is "engineered" by laser power of excitation and activation beams and the power ratio between them.Superior lateral and transverse resolution is theoretically demonstrated compared with conventional fluorescence scanning microscopy.
Höhm, Sandra; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn
2015-10-05
Single- and two-color double-fs-pulse experiments were performed on titanium to study the dynamics of the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder inter-ferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences in two configurations - either at 800 nm only, or at 400 and 800 nm wavelengths. The inter-pulse delays of the individual 50-fs pulses ranged up to some tens of picoseconds. Multiple of these single- or two-color double-fs-pulse sequences were collinearly focused by a spherical mirror to the sample surface. In both experimental configurations, the peak fluence of each individual pulse was kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics were analyzed by scanning electron microscopy and the periods were quantified by Fourier analyses. The LIPSS periods along with the orientation allow a clear identification of the pulse which dominates the energy coupling to the material. A plasmonic model successfully explains the delay-dependence of the LIPSS on titanium and confirms the importance of the ultrafast energy deposition stage for LIPSS formation.
GraphXML: an XML based graph interchange format
I. Herman (Ivan); M.S. Marshall (Scott)
2000-01-01
textabstractGraphXML is a graph description language in XML that can be used as an interchange format for graph drawing and visualization packages. The generality and rich features of XML make it possible to define an interchange format that not only supports the pure, mathematical description of a
Li, Ziting; Chu, Wei; Xie, Hongqiang; Yao, Jinping; Li, Guihua; Qiao, Lingling; Wang, Zhanshan; Cheng, Ya
2015-01-01
We experimentally investigate generation of molecular nitrogen-ion lasers with two femtosecond laser pulses at different wavelengths. The first pulse serves as the pump which ionizes the nitrogen molecules and excites the molecular ions to excited electronic states. The second pulse serves as the probe which leads to stimulated emission from the excited molecular ions. We observe that changing the angle between the polarization directions of the two pulses gives rise to elliptically polarized molecular nitrogen-ion laser fields, which is interpreted as a result of strong birefringence of the gain medium near the wavelengths of the molecular nitrogen-ion laser.
Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip
Förster, Michael; Paschen, Timo; Krüger, Michael; Lemell, Christoph; Wachter, Georg; Libisch, Florian; Madlener, Thomas; Burgdörfer, Joachim; Hommelhoff, Peter
2016-11-01
We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a contrast of the oscillating current signal of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly. We confirm that photoemission takes place within 10 fs. Accompanying simulations indicate that the current modulation with its large contrast results from two interfering quantum pathways leading to electron emission.
Two-color coherent control of femtosecond above-threshold photoemission from a tungsten nanotip
Förster, Michael; Krüger, Michael; Lemell, Christoph; Wachter, Georg; Libisch, Florian; Madlener, Thomas; Burgdörfer, Joachim; Hommelhoff, Peter
2016-01-01
We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a visibility of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly. We confirm that photoemission takes place within 10 fs. Accompanying simulations indicate that the current modulation with its large contrast results from two interfering quantum pathways leading to electron emission.
Non-Sequential Double Ionization by Counter Rotating Circularly Polarized Two-Color Laser Fields
Eckart, S; Kunitski, M; Hartung, A; Rist, J; Henrichs, K; Schlott, N; Kang, H; Bauer, T; Sann, H; Schmidt, L Ph H; Schöffler, M; Jahnke, T; Dörner, R
2016-01-01
We report on non-sequential double ionization of Ar by a laser pulse consisting of two counter rotating circularly polarized fields (390 nm and 780 nm). The double ionization probability depends strongly on the relative intensity of the two fields and shows a "knee"-like structure as function of intensity. We conclude that double ionization is driven by a beam of nearly monoenergetic recolliding electrons, which can be controlled in intensity and energy by the field parameters. The electron momentum distributions show the recolliding electron as well as a second electron which escapes from an intermediate excited state of Ar$^+$.
Knowledge Graphs and Network Text Analysis
Popping, Roel
2003-01-01
A knowledge graph is a kind of semantic network representing some scientific theory. The article describes the present state of this field and addresses a number of problems that have not yet been solved. These problems are implicit relations, strength of (causal) relations, and exclusiveness. Conce
Institute of Scientific and Technical Information of China (English)
Wenjun Xiao
2002-01-01
Wu, Lakshmivarahan and Dhall[5] recently described a deterministic, distributed routing scheme for some special classes of metacyclic graphs. However they have no proof of correctness that the scheme is a shortest path routing algorithm. In the note we give a suboptimal, deterministic routing algorithm.
Nemirovsky, Ricardo; Tierney, Cornelia; Wright, Tracy
1998-01-01
Analyzed two children's use of a computer-based motion detector to make sense of symbolic expressions (Cartesian graphs). Found three themes: (1) tool perspectives, efforts to understand graphical responses to body motion; (2) fusion, emergent ways of talking and behaving that merge symbols and referents; and (3) graphical spaces, when changing…
Pitts Bannister, Vanessa R.; Jamar, Idorenyin; Mutegi, Jomo W.
2007-01-01
In this article, the learning progress of one fifth-grade student is examined with regard to the development of her graph interpretation skills as she participated in the Junior Science Institute (JSI), a two-week, science intensive summer camp in which participants engaged in microbiology research and application. By showcasing the student's…
S.M. Heditniemi (Sandra); R.C. Laskar (R.C.); H.M. Mulder (Martyn)
2012-01-01
textabstractLet $G = (V,E)$ be a graph. A partition $\\pi = \\{V_1, V_2, \\ldots, V_k \\}$ of the vertices $V$ of $G$ into $k$ {\\it color classes} $V_i$, with $1 \\leq i \\leq k$, is called a {\\it quorum coloring} if for every vertex $v \\in V$, at least half of the vertices in the closed neighborhood
Coloring geographical threshold graphs
Energy Technology Data Exchange (ETDEWEB)
Bradonjic, Milan [Los Alamos National Laboratory; Percus, Allon [Los Alamos National Laboratory; Muller, Tobias [EINDHOVEN UNIV. OF TECH
2008-01-01
We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.
Two-color photoionization of calcium using SHG and LED light
Schuck, C; Almendros, M; Hennrich, M; Eschner, J
2009-01-01
We present a photoionization method to load single 40Ca ions in a linear Paul trap from an atomic beam. Neutral Ca I atoms are resonantly excited from the ground state to the intermediate 4s4p 1P_1-level using coherent 423nm radiation produced by single-pass second harmonic generation in a periodically poled KTiOPO_4 crystal pumped with an 120mW extended cavity diode laser. Ionization is then attained with a high-power light emitting diode imaged to the trap center, using an appropriately designed optical system composed of standard achromatic doublet lenses. The setup simplifies previous implementations at similar efficiency, and it hardly requires any maintenance at all.
Neural networks and graph theory
Institute of Scientific and Technical Information of China (English)
许进; 保铮
2002-01-01
The relationships between artificial neural networks and graph theory are considered in detail. The applications of artificial neural networks to many difficult problems of graph theory, especially NP-complete problems, and the applications of graph theory to artificial neural networks are discussed. For example graph theory is used to study the pattern classification problem on the discrete type feedforward neural networks, and the stability analysis of feedback artificial neural networks etc.
Temporal Representation in Semantic Graphs
Energy Technology Data Exchange (ETDEWEB)
Levandoski, J J; Abdulla, G M
2007-08-07
A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.
Institute of Scientific and Technical Information of China (English)
李浩; 刘群
1989-01-01
Because of the widespread applications of tree and treee graph in computer science,we are interested in studying the reee graph.M.Farber,B.Richter and H.Shang in [1] showed that the graph τ2(G)is 2-edge-connected as |V(G)）≥3，at the same time,we will show the best lower bounds about vertex number and minimum degree of graph τ2(G）.
Graph-based semi-supervised learning
Subramanya, Amarnag
2014-01-01
While labeled data is expensive to prepare, ever increasing amounts of unlabeled data is becoming widely available. In order to adapt to this phenomenon, several semi-supervised learning (SSL) algorithms, which learn from labeled as well as unlabeled data, have been developed. In a separate line of work, researchers have started to realize that graphs provide a natural way to represent data in a variety of domains. Graph-based SSL algorithms, which bring together these two lines of work, have been shown to outperform the state-of-the-art in many applications in speech processing, computer visi
Towards information inequalities for generalized graph entropies.
Directory of Open Access Journals (Sweden)
Lavanya Sivakumar
Full Text Available In this article, we discuss the problem of establishing relations between information measures for network structures. Two types of entropy based measures namely, the Shannon entropy and its generalization, the Rényi entropy have been considered for this study. Our main results involve establishing formal relationships, by means of inequalities, between these two kinds of measures. Further, we also state and prove inequalities connecting the classical partition-based graph entropies and partition-independent entropy measures. In addition, several explicit inequalities are derived for special classes of graphs.
New results on the energy of integral circulant graphs
Ilić, Aleksandar
2011-01-01
Circulant graphs are an important class of interconnection networks in parallel and distributed computing. Integral circulant graphs play an important role in modeling quantum spin networks supporting the perfect state transfer as well. The integral circulant graph $\\ICG_n (D)$ has the vertex set $Z_n = \\{0, 1, 2,..., n - 1\\}$ and vertices $a$ and $b$ are adjacent if $\\gcd(a-b,n)\\in D$, where $D \\subseteq \\{d : d \\mid n,\\ 1\\leq d
Fault Localization for Java Programs using Probabilistic Program Dependence Graph
Askarunisa, A; Babu, B Giri
2012-01-01
Fault localization is a process to find the location of faults. It determines the root cause of the failure. It identifies the causes of abnormal behaviour of a faulty program. It identifies exactly where the bugs are. Existing fault localization techniques are Slice based technique, Program- Spectrum based Technique, Statistics Based Technique, Program State Based Technique, Machine learning based Technique and Similarity Based Technique. In the proposed method Model Based Fault Localization Technique is used, which is called Probabilistic Program Dependence Graph . Probabilistic Program Dependence Graph (PPDG) is an innovative model that scans the internal behaviour of the project. PPDG construction is enhanced by Program Dependence Graph (PDG). PDG is achieved by the Control Flow Graph (CFG). The PPDG construction augments the structural dependences represented by a program dependence graph with estimates of statistical dependences between node states, which are computed from the test set. The PPDG is base...
Structured Operational Semantics for Graph Rewriting
Directory of Open Access Journals (Sweden)
Andrei Dorman
2011-07-01
Full Text Available Process calculi and graph transformation systems provide models of reactive systems with labelled transition semantics. While the semantics for process calculi is compositional, this is not the case for graph transformation systems, in general. Hence, the goal of this article is to obtain a compositional semantics for graph transformation system in analogy to the structural operational semantics (SOS for Milner's Calculus of Communicating Systems (CCS. The paper introduces an SOS style axiomatization of the standard labelled transition semantics for graph transformation systems. The first result is its equivalence with the so-called Borrowed Context technique. Unfortunately, the axiomatization is not compositional in the expected manner as no rule captures "internal" communication of sub-systems. The main result states that such a rule is derivable if the given graph transformation system enjoys a certain property, which we call "complementarity of actions". Archetypal examples of such systems are interaction nets. We also discuss problems that arise if "complementarity of actions" is violated.
On support relations and semantic scene graphs
Yang, Michael Ying; Liao, Wentong; Ackermann, Hanno; Rosenhahn, Bodo
2017-09-01
Scene understanding is one of the essential and challenging topics in computer vision and photogrammetry. Scene graph provides valuable information for such scene understanding. This paper proposes a novel framework for automatic generation of semantic scene graphs which interpret indoor environments. First, a Convolutional Neural Network is used to detect objects of interest in the given image. Then, the precise support relations between objects are inferred by taking two important auxiliary information in the indoor environments: the physical stability and the prior support knowledge between object categories. Finally, a semantic scene graph describing the contextual relations within a cluttered indoor scene is constructed. In contrast to the previous methods for extracting support relations, our approach provides more accurate results. Furthermore, we do not use pixel-wise segmentation to obtain objects, which is computation costly. We also propose different methods to evaluate the generated scene graphs, which lacks in this community. Our experiments are carried out on the NYUv2 dataset. The experimental results demonstrated that our approach outperforms the state-of-the-art methods in inferring support relations. The estimated scene graphs are accurately compared with ground truth.
Generating Realistic Labelled, Weighted Random Graphs
Directory of Open Access Journals (Sweden)
Michael Charles Davis
2015-12-01
Full Text Available Generative algorithms for random graphs have yielded insights into the structure and evolution of real-world networks. Most networks exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Usually, random graph models consider only structural information, but many real-world networks also have labelled vertices and weighted edges. In this paper, we present a generative model for random graphs with discrete vertex labels and numeric edge weights. The weights are represented as a set of Beta Mixture Models (BMMs with an arbitrary number of mixtures, which are learned from real-world networks. We propose a Bayesian Variational Inference (VI approach, which yields an accurate estimation while keeping computation times tractable. We compare our approach to state-of-the-art random labelled graph generators and an earlier approach based on Gaussian Mixture Models (GMMs. Our results allow us to draw conclusions about the contribution of vertex labels and edge weights to graph structure.
Energy Technology Data Exchange (ETDEWEB)
Winlaw, Manda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); De Sterck, Hans [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-10-26
In very simple terms a network can be de ned as a collection of points joined together by lines. Thus, networks can be used to represent connections between entities in a wide variety of elds including engi- neering, science, medicine, and sociology. Many large real-world networks share a surprising number of properties, leading to a strong interest in model development research and techniques for building synthetic networks have been developed, that capture these similarities and replicate real-world graphs. Modeling these real-world networks serves two purposes. First, building models that mimic the patterns and prop- erties of real networks helps to understand the implications of these patterns and helps determine which patterns are important. If we develop a generative process to synthesize real networks we can also examine which growth processes are plausible and which are not. Secondly, high-quality, large-scale network data is often not available, because of economic, legal, technological, or other obstacles [7]. Thus, there are many instances where the systems of interest cannot be represented by a single exemplar network. As one example, consider the eld of cybersecurity, where systems require testing across diverse threat scenarios and validation across diverse network structures. In these cases, where there is no single exemplar network, the systems must instead be modeled as a collection of networks in which the variation among them may be just as important as their common features. By developing processes to build synthetic models, so-called graph generators, we can build synthetic networks that capture both the essential features of a system and realistic variability. Then we can use such synthetic graphs to perform tasks such as simulations, analysis, and decision making. We can also use synthetic graphs to performance test graph analysis algorithms, including clustering algorithms and anomaly detection algorithms.
Asteroidal Quadruples in non Rooted Path Graphs
Directory of Open Access Journals (Sweden)
Gutierrez Marisa
2015-11-01
Full Text Available A directed path graph is the intersection graph of a family of directed subpaths of a directed tree. A rooted path graph is the intersection graph of a family of directed subpaths of a rooted tree. Rooted path graphs are directed path graphs. Several characterizations are known for directed path graphs: one by forbidden induced subgraphs and one by forbidden asteroids. It is an open problem to find such characterizations for rooted path graphs. For this purpose, we are studying in this paper directed path graphs that are non rooted path graphs. We prove that such graphs always contain an asteroidal quadruple.
Mining and Indexing Graph Databases
Yuan, Dayu
2013-01-01
Graphs are widely used to model structures and relationships of objects in various scientific and commercial fields. Chemical molecules, proteins, malware system-call dependencies and three-dimensional mechanical parts are all modeled as graphs. In this dissertation, we propose to mine and index those graph data to enable fast and scalable search.…
Hopkins, Brian
2004-01-01
The interconnected world of actors and movies is a familiar, rich example for graph theory. This paper gives the history of the "Kevin Bacon Game" and makes extensive use of a Web site to analyze the underlying graph. The main content is the classroom development of the weighted average to determine the best choice of "center" for the graph. The…
Mining and Indexing Graph Databases
Yuan, Dayu
2013-01-01
Graphs are widely used to model structures and relationships of objects in various scientific and commercial fields. Chemical molecules, proteins, malware system-call dependencies and three-dimensional mechanical parts are all modeled as graphs. In this dissertation, we propose to mine and index those graph data to enable fast and scalable search.…
Submanifolds Weakly Associated with Graphs
Indian Academy of Sciences (India)
A Carriazo; L M Fernández; A Rodríguez-Hidalgo
2009-06-01
We establish an interesting link between differential geometry and graph theory by defining submanifolds weakly associated with graphs. We prove that, in a local sense, every submanifold satisfies such an association, and other general results. Finally, we study submanifolds associated with graphs either in low dimensions or belonging to some special families.
Matrix Graph Grammars with Application Conditions
Velasco, Pedro Pablo Perez
2009-01-01
In the Matrix approach to graph transformation we represent simple digraphs and rules with Boolean matrices and vectors, and the rewriting is expressed using Boolean operators only. In previous works, we developed analysis techniques that allow studying the applicability of rule sequences, their independence, state reachability and the minimal graph able to fire a sequence. In the present paper we improve our framework in two ways. First, we make explicit (in the form of a Boolean matrix) some negative implicit information in rules. This matrix (called "nihilation matrix") contains the elements that if present, forbid the application of the rule (i.e. potential dangling edges, or newly added edges, which cannot be already present in the simple digraph). Second, we introduce a novel notion of application condition, which combines graph diagrams together with monadic second order logic. This allows more flexibility and expressivity than previous approaches, as well as more concise conditions in certain cases. W...
Polarimetric, Two-Color, Photon-Counting Laser Altimeter Measurements of Forest Canopy Structure
Harding, David J.; Dabney, Philip W.; Valett, Susan
2011-01-01
Laser altimeter measurements of forest stands with distinct structures and compositions have been acquired at 532 nm (green) and 1064 nm (near-infrared) wavelengths and parallel and perpendicular polarization states using the Slope Imaging Multi-polarization Photon Counting Lidar (SIMPL). The micropulse, single photon ranging measurement approach employed by SIMPL provides canopy structure measurements with high vertical and spatial resolution. Using a height distribution analysis method adapted from conventional, 1064 nm, full-waveform lidar remote sensing, the sensitivity of two parameters commonly used for above-ground biomass estimation are compared as a function of wavelength. The results for the height of median energy (HOME) and canopy cover are for the most part very similar, indicating biomass estimations using lidars operating at green and near-infrared wavelengths will yield comparable estimates. The expected detection of increasing depolarization with depth into the canopies due to volume multiple-scattering was not observed, possibly due to the small laser footprint and the small detector field of view used in the SIMPL instrument. The results of this work provide pathfinder information for NASA's ICESat-2 mission that will employ a 532 nm, micropulse, photon counting laser altimeter.
Wu, Diana Terri; Ricco, Antonio Joseph; Lera, Matthew P.; Timucin, Linda R.; Parra, Macarena P.
2012-01-01
Nanosatellites offer frequent, low-cost space access as secondary payloads on launches of larger conventional satellites. We summarize the payload science and technology of the Microsatellite in-situ Space Technologies (MisST) nanosatellite for conducting automated biological experiments. The payload (two fused 10-cm cubes) includes 1) an integrated fluidics system that maintains organism viability and supports growth and 2) a fixed-focus imager with fluorescence and scattered-light imaging capabilities. The payload monitors temperature, pressure and relative humidity, and actively controls temperature. C. elegans (nematode, 50 m diameter x 1 mm long) was selected as a model organism due to previous space science experience, its completely sequenced genome, size, hardiness, and the variety of strains available. Three strains were chosen: two green GFP-tagged strains and one red tdTomato-tagged strain that label intestinal, nerve, and pharyngeal cells, respectively. The integrated fluidics system includes bioanalytical and reservoir modules. The former consists of four 150 L culture wells and a 4x5 mm imaging zone the latter includes two 8 mL fluid reservoirs for reagent and waste storage. The fluidic system is fabricated using multilayer polymer rapid prototyping: laser cutting, precision machining, die cutting, and pressure-sensitive adhesives it also includes eight solenoid-operated valves and one mini peristaltic pump. Young larval-state (L2) nematodes are loaded in C. elegans Maintenance Media (CeMM) in the bioanalytical module during pre-launch assembly. By the time orbit is established, the worms have grown to sufficient density to be imaged and are fed fresh CeMM. The strains are pumped sequentially into the imaging area, imaged, then pumped into waste. Reagent storage utilizes polymer bags under slight pressure to prevent bubble formation in wells or channels. The optical system images green and red fluorescence bands by excitation with blue (473 nm peak
Harary, Frank
2015-01-01
Presented in 1962-63 by experts at University College, London, these lectures offer a variety of perspectives on graph theory. Although the opening chapters form a coherent body of graph theoretic concepts, this volume is not a text on the subject but rather an introduction to the extensive literature of graph theory. The seminar's topics are geared toward advanced undergraduate students of mathematics.Lectures by this volume's editor, Frank Harary, include ""Some Theorems and Concepts of Graph Theory,"" ""Topological Concepts in Graph Theory,"" ""Graphical Reconstruction,"" and other introduc
Dynamic Representations of Sparse Graphs
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Fagerberg, Rolf
1999-01-01
We present a linear space data structure for maintaining graphs with bounded arboricity—a large class of sparse graphs containing e.g. planar graphs and graphs of bounded treewidth—under edge insertions, edge deletions, and adjacency queries. The data structure supports adjacency queries in worst...... case O(c) time, and edge insertions and edge deletions in amortized O(1) and O(c+log n) time, respectively, where n is the number of nodes in the graph, and c is the bound on the arboricity....
Managing and Mining Graph Data
Aggarwal, Charu C
2010-01-01
Managing and Mining Graph Data is a comprehensive survey book in graph management and mining. It contains extensive surveys on a variety of important graph topics such as graph languages, indexing, clustering, data generation, pattern mining, classification, keyword search, pattern matching, and privacy. It also studies a number of domain-specific scenarios such as stream mining, web graphs, social networks, chemical and biological data. The chapters are written by well known researchers in the field, and provide a broad perspective of the area. This is the first comprehensive survey book in t
Spectral fluctuations of quantum graphs
Energy Technology Data Exchange (ETDEWEB)
Pluhař, Z. [Faculty of Mathematics and Physics, Charles University, 180 00 Praha 8 (Czech Republic); Weidenmüller, H. A. [Max-Planck-Institut für Kernphysik, 69029 Heidelberg (Germany)
2014-10-15
We prove the Bohigas-Giannoni-Schmit conjecture in its most general form for completely connected simple graphs with incommensurate bond lengths. We show that for graphs that are classically mixing (i.e., graphs for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap), the generating functions for all (P,Q) correlation functions for both closed and open graphs coincide (in the limit of infinite graph size) with the corresponding expressions of random-matrix theory, both for orthogonal and for unitary symmetry.
Boxicity of Circular Arc Graphs
Bhowmick, Diptendu; Chandran, L. Sunil
2008-01-01
A $k$-dimensional box is the cartesian product $R_1 \\times R_2 \\times ... \\times R_k$ where each $R_i$ is a closed interval on the real line. The {\\it boxicity} of a graph $G$, denoted as $box(G)$, is the minimum integer $k$ such that $G$ can be represented as the intersection graph of a collection of $k$-dimensional boxes: that is two vertices are adjacent if and only if their corresponding boxes intersect. A circular arc graph is a graph that can be represented as the intersection graph of ...
Resolvability in Circulant Graphs
Institute of Scientific and Technical Information of China (English)
Muhammad SALMAN; Imran JAVAID; Muhammad Anwar CHAUDHRY
2012-01-01
A set W of the vertices of a connected graph G is called a resolving set for G if for every two distinct vertices u,v ∈ V(G) there is a vertex w ∈ W such that d(u,w) ≠ d(v,w).A resolving set of minimum cardinality is called a metric basis for G and the number of vertices in a metric basis is called the metric dimension of G,denoted by dim(G).For a vertex u of G and a subset S of V(G),the distance between u and S is the number mins∈s d(u,s).A k-partition H ={S1,S2,...,Sk} of V(G) is called a resolving partition if for every two distinct vertices u,v ∈ V(G) there is a set Si in Π such that d(u,Si) ≠ d(v,Si).The minimum k for which there is a resolving k-partition of V(G) is called the partition dimension of G,denoted by pd(G).The circulant graph is a graph with vertex set Zn,an additive group ofintegers modulo n,and two vertices labeled i and j adjacent if and only if i - j (mod n) ∈ C,where C C Zn has the property that C =-C and 0(∈) C.The circulant graph is denoted by Xn,△ where A =|C|.In this paper,we study the metric dimension of a family of circulant graphs Xn,3 with connection set C ={1,-n/2,n - 1} and prove that dim(Xn,3) is independent of choice of n by showing that 3 for all n =0 (mod 4),dim(X,n,3) ={ 4 for all n =2 (mod 4).We also study the partition dimension of a family of circulant graphs Xn,4 with connection set C ={±1,±2} and prove that pd(Xn,4) is independent of choice of n and show that pd(X5,4) =5 and 3 forall odd n≥9,pd(Xn,4) ={ 4 for all even n ≥ 6 and n =7.
Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J.
2013-12-01
The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of laser pulse pairs (50 fs single-pulse duration) of two different wavelengths (400 and 800 nm) is studied experimentally. Parallel polarized double-pulse sequences with a variable delay Δt between -10 and +10 ps and between the individual fs-laser pulses were used to investigate the LIPSS periods versus Δt. These two-color experiments reveal the importance of the ultrafast energy deposition to the silica surface by the first laser pulse for LIPSS formation. The second laser pulse subsequently reinforces the previously seeded spatial LIPSS frequencies.
Energy Technology Data Exchange (ETDEWEB)
Höhm, S.; Herzlieb, M.; Rosenfeld, A. [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Max-Born-Straße 2A, D-12489 Berlin (Germany); Krüger, J.; Bonse, J. [BAM Bundesanstalt für Materialforschung und –prüfung, Unter den Eichen 87, D-12205 Berlin (Germany)
2013-12-16
The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of laser pulse pairs (50 fs single-pulse duration) of two different wavelengths (400 and 800 nm) is studied experimentally. Parallel polarized double-pulse sequences with a variable delay Δt between −10 and +10 ps and between the individual fs-laser pulses were used to investigate the LIPSS periods versus Δt. These two-color experiments reveal the importance of the ultrafast energy deposition to the silica surface by the first laser pulse for LIPSS formation. The second laser pulse subsequently reinforces the previously seeded spatial LIPSS frequencies.
The research on two-color photon sources in infrared and X-ray ranges by compton scattering
Yu Zhao
2001-01-01
The generation of a two-color source of FEL light in both the infrared and soft X-ray ranges by intracavity Compton backscattering is demonstrated by the Beijing FEL facility. 1.20-1.35 keV soft X-rays are successfully extracted from the optical cavity of the FEL through a porous metallic mirror, while a 9-10 mu m FEL laser is output in the other dielectric mirror simultaneously. The average output flux of X-ray is 10 sup 2 -10 sup 3 photons/s when the average output FEL laser power is 6-20 mW. The experimental result allows us to envision a convenient way to expand the application areas of IR FEL facilities into X-ray or gamma-ray ranges.
Yuan, Kai-Jun; Chelkowski, Szczepan; Bandrauk, André D.
2017-09-01
We present molecular photoionization by two-color 2ω1 =ω2 orthogonally polarized ultraviolet laser pulses. Simulations are performed on aligned H+ by numerically solving time-dependent Schrödinger equations. Two ionization processes with one ω2 photon interfering with two ω1 photon absorption are studied at different molecular alignments. Molecular frame photoelectron momentum and angular distributions exhibit asymmetries which are functions of the relative pulse phase. For resonant excitation processes by the ω1 pulse, symmetric distributions are obtained. An attosecond ionization model is adopted to describe the ultrafast ionization dynamics. The dependence of the ionization asymmetry on the molecular alignment allows to further monitor interference effects on orbital symmetry.
Directory of Open Access Journals (Sweden)
Christine Vignon
Full Text Available An optimal technology for cell cycle analysis would allow the concomitant measurement of apoptosis, G0, G1, S, G2 and M phases in combination with cell surface phenotyping. We have developed an easy method in flow cytometry allowing this discrimination in an only two-color fluorescent plot. It is based on the concomitant use of 7-amino-actinomycin D and the antibodies anti-Ki67 and anti-phospho(Ser10-histone H3, both conjugated to Alexa Fluor®488 to discriminate G0 and M phases, respectively. The method is particularly valuable in a clinical setting as verified in our laboratory by analyzing human leukemic cells from marrow samples or after exposure to cell cycle modifiers.
Fukuta, Masatoshi; Someya, Satoshi; Munakata, Tetsuo; LCS Team
2016-11-01
Thermal barrier coatings were applied to the gas turbines and the internal combustion engines for the high thermal efficiency. The evaluation and the improvement of coatings require to measure transient gaseous flow near the wall with coatings. An aim of this study is to combine a two color phosphor thermometry with the PIV to measure simultaneously temperature and velocity of the gas over 1000°C. The temperature and velocity distribution of an impinging jet of high temperature air was simultaneously visualized in experiments. The temperature was estimated from an intensity ratio of luminescent in different ranges of wavelength, 500 600 nm and 400 480 nm. Uncertainty of measured temperature was less than 10°C. Temperatures measured by the developed method and by thermocouples were agreed well. The measured velocity by the PIV with phosphor particles were also agreed well with the velocity measured by a Laser Doppler Velocimeter.
Conditional coloring of some parameterized graphs
Reddy, P Venkata Subba
2010-01-01
For integers k>0 and r>0, a conditional (k,r)-coloring of a graph G is a proper k-coloring of the vertices of G such that every vertex v of degree d(v) in G is adjacent to vertices with at least min{r,d(v)} different colors. The smallest integer k for which a graph G has a conditional (k,r)-coloring is called the rth order conditional chromatic number, denoted by $\\chi_r(G)$. For different values of r we obtain $\\chi_r(G)$ of certain parameterized graphs viz., Windmill graph, line graph of Windmill graph, middle graph of Friendship graph, middle graph of a cycle, line graph of Friendship graph, middle graph of complete k-partite graph and middle graph of a bipartite graph.
Hendrix, William; Jenkins, John; Padmanabhan, Kanchana; Chakraborty, Arpan
2014-01-01
Practical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or clusters of nodes that share common patterns of attributes and relationships, the extraction of patterns that distinguish one category of graphs from another, and the use of those patterns to predict the category of new graphs. Hands-On Application of Graph Data Mining Each chapter in the book focuses on a graph mining task, such as link analysis, cluster analysis, and classification. Through applications using real data sets, the book demonstrates how computational techniques can help solve real-world problems. The applications covered include network intrusion detection, tumor cell diagnostics, face recognition, predictive toxicology, mining metabolic and protein-protein interaction networks, and community detection in social networks. De...
Hierarchy of Modular Graph Identities
D'Hoker, Eric
2016-01-01
The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues are calculated analy...
Valiant Transform of Forney Graphs
Al-Bashabsheh, Ali
2010-01-01
The introduction of Forney graphs, or normal graphs, and the duality result therein [1] is a landmark in the theory of codes on graphs and in graph-based iterative decoding. A generic modeling framework for codes and systems, Forney graphs have since found various applications. It is unfortunate however that the development of the theory and application of Forney graphs to date has been restricted to the context of linear (and group) codes and systems, and the primary tool of Forney graphs is the duality result introduced in [1]. In a rather distant area of computer science, Valiant has recently presented a powerful family of new algorithms, which he calls holographic algorithms [2]. Using holographic algorithms, Valiant provides polynomial-time solutions to families of problems previously unknown to be tractable. At the heart of Valiant's holographic algorithms is the notion of "holographic reduction", which is the engine used in holographic algorithms to reduce from one problem to another. Recognizing the c...
Bond percolation on isoradial graphs
Grimmett, Geoffrey
2012-01-01
In an investigation of percolation on isoradial graphs, we prove the criticality of canonical bond percolation on isoradial embeddings of planar graphs, thus extending celebrated earlier results for homogeneous and inhomogeneous square, triangular, and other lattices. This is achieved via the star-triangle transformation, by transporting the box-crossing property across the family of isoradial graphs. As a consequence, we obtain the universality of these models at the critical point, in the sense that the one-arm and 2j-alternating-arm critical exponents (and therefore also the connectivity and volume exponents) are constant across the family of such percolation processes. The isoradial graphs in question are those that satisfy certain weak conditions on their embedding and on their track system. This class of graphs includes, for example, isoradial embeddings of periodic graphs, and graphs derived from rhombic Penrose tilings.
Jordan, Jonathan
2011-01-01
We introduce a model for a growing random graph based on simultaneous reproduction of the vertices. The model can be thought of as a generalisation of the reproducing graphs of Southwell and Cannings and Bonato et al to allow for a random element, and there are three parameters, $\\alpha$, $\\beta$ and $\\gamma$, which are the probabilities of edges appearing between different types of vertices. We show that as the probabilities associated with the model vary there are a number of phase transitions, in particular concerning the degree sequence. If $(1+\\alpha)(1+\\gamma)1$ then the degree of a typical vertex grows to infinity, and the proportion of vertices having any fixed degree $d$ tends to zero. We also give some results on the number of edges and on the spectral gap.
Normal Order: Combinatorial Graphs
Solomon, A I; Blasiak, P; Horzela, A; Penson, K A; Solomon, Allan I.; Duchamp, Gerard; Blasiak, Pawel; Horzela, Andrzej; Penson, Karol A.
2004-01-01
A conventional context for supersymmetric problems arises when we consider systems containing both boson and fermion operators. In this note we consider the normal ordering problem for a string of such operators. In the general case, upon which we touch briefly, this problem leads to combinatorial numbers, the so-called Rook numbers. Since we assume that the two species, bosons and fermions, commute, we subsequently restrict ourselves to consideration of a single species, single-mode boson monomials. This problem leads to elegant generalisations of well-known combinatorial numbers, specifically Bell and Stirling numbers. We explicitly give the generating functions for some classes of these numbers. In this note we concentrate on the combinatorial graph approach, showing how some important classical results of graph theory lead to transparent representations of the combinatorial numbers associated with the boson normal ordering problem.
Exponential random graph models
Fronczak, Agata
2012-01-01
Nowadays, exponential random graphs (ERGs) are among the most widely-studied network models. Different analytical and numerical techniques for ERG have been developed that resulted in the well-established theory with true predictive power. An excellent basic discussion of exponential random graphs addressed to social science students and researchers is given in [Anderson et al., 1999][Robins et al., 2007]. This essay is intentionally designed to be more theoretical in comparison with the well-known primers just mentioned. Given the interdisciplinary character of the new emerging science of complex networks, the essay aims to give a contribution upon which network scientists and practitioners, who represent different research areas, could build a common area of understanding.
2010-12-02
evaluating the function ΘP (A) for any fixed A,P is equivalent to solving the so-called Quadratic Assignment Problem ( QAP ), and thus we can employ various...tractable linear programming, spectral, and SDP relaxations of QAP [40, 11, 33]. In particular we discuss recent work [14] on exploiting group...symmetry in SDP relaxations of QAP , which is useful for approximately computing elementary convex graph invariants in many interesting cases. Finally in
Syed, M. Qasim; Lovatt, Ian
2014-01-01
This paper is an addition to the series of papers on the exponential function begun by Albert Bartlett. In particular, we ask how the graph of the exponential function y = e[superscript -t/t] would appear if y were plotted versus ln t rather than the normal practice of plotting ln y versus t. In answering this question, we find a new way to…
Lorscheid, Oliver
2010-01-01
Let $X$ be a curve over $\\F_q$ with function field $F$. In this paper, we define a graph for each Hecke operator with fixed ramification. A priori, these graphs can be seen as a convenient language to organize formulas for the action of Hecke operators on automorphic forms. However, they will prove to be a powerful tool for explicit calculations and proofs of finite dimensionality results. We develop a structure theory for certain graphs $G_x$ of unramified Hecke operators, which is of a similar vein to Serre's theory of quotients of Bruhat Tits trees. To be precise, $G_x$ is locally a quotient of a Bruhat Tits tree and has finitely many components. An interpretation of $G_x$ in terms of rank 2 bundles on $X$ and methods from reduction theory show that $G_x$ is the union of finitely many cusps, which are infinite subgraphs of a simple nature, and a nucleus, which is a finite subgraph that depends heavily on the arithmetics of $F$. We describe how one recovers unramified automorphic forms as functions on the g...
Kinetic Stable Delaunay Graphs
Agarwal, Pankaj K; Guibas, Leonidas J; Kaplan, Haim; Koltun, Vladlen; Rubin, Natan; Sharir, Micha
2011-01-01
We consider the problem of maintaining the Euclidean Delaunay triangulation $\\DT$ of a set $P$ of $n$ moving points in the plane, along algebraic trajectories of constant description complexity. Since the best known upper bound on the number of topological changes in the full $\\DT$ is nearly cubic, we seek to maintain a suitable portion of it that is less volatile yet retains many useful properties. We introduce the notion of a stable Delaunay graph, which is a dynamic subgraph of the Delaunay triangulation. The stable Delaunay graph (a) is easy to define, (b) experiences only a nearly quadratic number of discrete changes, (c) is robust under small changes of the norm, and (d) possesses certain useful properties. The stable Delaunay graph ($\\SDG$ in short) is defined in terms of a parameter $\\alpha>0$, and consists of Delaunay edges $pq$ for which the angles at which $p$ and $q$ see their Voronoi edge $e_{pq}$ are at least $\\alpha$. We show that (i) $\\SDG$ always contains at least roughly one third of the Del...
The phylogeny graphs of doubly partial orders
Park, Boram
2011-01-01
The competition graph of a doubly partial order is known to be an interval graph. The CCE graph and the niche graph of a doubly partial order are also known to be interval graphs if the graphs do not contain a cycle of length four and three as an induced subgraph, respectively. Phylogeny graphs are variant of competition graphs. The phylogeny graph $P(D)$ of a digraph $D$ is the (simple undirected) graph defined by $V(P(D)):=V(D)$ and $E(P(D)):=\\{xy \\mid N^+_D(x) \\cap N^+_D(y) \
Graph Complexes and the Moduli Space of Riemann Surfaces
DEFF Research Database (Denmark)
Egas Santander, Daniela
configurations. We use Hatcher's proof of the contractibility of the arc complex to give a new proof of a result of Godin, which states that the category of admissible fat graphs is a model of the mapping class group of open-closed cobordisms. We use this to give a new proof of Costello's result...... potentially allow to transfer constructions in fat graphs to the black and white model. Moreover, we compare Bödigheimer's radial slit configurations and the space of metric admissible fat graphs, producing an explicit homotopy equivalence using a "critical graph" map. This critical graph map descends...... of the punctured disk are trivial; and to give two infinite families of non-trivial classes of the homology of Sullivan diagrams which represent non-trivial string operations.i...
Localization in random bipartite graphs: Numerical and empirical study
Slanina, František
2017-05-01
We investigate adjacency matrices of bipartite graphs with a power-law degree distribution. Motivation for this study is twofold: first, vibrational states in granular matter and jammed sphere packings; second, graphs encoding social interaction, especially electronic commerce. We establish the position of the mobility edge and show that it strongly depends on the power in the degree distribution and on the ratio of the sizes of the two parts of the bipartite graph. At the jamming threshold, where the two parts have the same size, localization vanishes. We found that the multifractal spectrum is nontrivial in the delocalized phase, but still near the mobility edge. We also study an empirical bipartite graph, namely, the Amazon reviewer-item network. We found that in this specific graph the mobility edge disappears, and we draw a conclusion from this fact regarding earlier empirical studies of the Amazon network.
Integral circulant graphs of prime power order with maximal energy
Sander, Jürgen W; 10.1016/j.laa.2011.05.039
2011-01-01
The energy of a graph is the sum of the moduli of the eigenvalues of its adjacency matrix. We study the energy of integral circulant graphs, also called gcd graphs, which can be characterized by their vertex count n and a set D of divisors of n in such a way that they have vertex set Zn and edge set {{a, b} : a, b in Zn; gcd(a - b, n) in D}. Using tools from convex optimization, we study the maximal energy among all integral circulant graphs of prime power order ps and varying divisor sets D. Our main result states that this maximal energy approximately lies between s(p - 1)p^(s-1) and twice this value. We construct suitable divisor sets for which the energy lies in this interval. We also characterize hyperenergetic integral circulant graphs of prime power order and exhibit an interesting topological property of their divisor sets.
Duality in Geometric Graphs: Vector Graphs, Kirchhoff Graphs and Maxwell Reciprocal Figures
Directory of Open Access Journals (Sweden)
Tyler Reese
2016-02-01
Full Text Available We compare two mathematical theories that address duality between cycles and vertex-cuts of graphs in geometric settings. First, we propose a rigorous definition of a new type of graph, vector graphs. The special case of R2-vector graphs matches the intuitive notion of drawing graphs with edges taken as vectors. This leads to a discussion of Kirchhoff graphs, as originally presented by Fehribach, which can be defined independent of any matrix relations. In particular, we present simple cases in which vector graphs are guaranteed to be Kirchhoff or non-Kirchhoff. Next, we review Maxwell’s method of drawing reciprocal figures as he presented in 1864, using modern mathematical language. We then demonstrate cases in which R2-vector graphs defined from Maxwell reciprocals are “dual” Kirchhoff graphs. Given an example in which Maxwell’s theories are not sufficient to define vector graphs, we begin to explore other methods of developing dual Kirchhoff graphs.
Characterization of the 1 ^5Πu - 1 ^5Πg Band of C_2 by Two-Color Resonant Four-Wave Mixing and Lif
Radi, Peter
2015-06-01
The application of two-color resonant four-wave mixing (TC-RFWM) in combination with a discharge slit-source in a molecular beam environment is advantageous for the study of perturbations in C_2. Initial investigations have shown the potential of the method by a detailed deperturbation of the d3Π_g, v=4 state. The deperturbation of the d3Π_g, v=6 state unveiled the presence of the energetically lowest high-spin state of C_2. This dark state gains transition strength through the perturbation process with the d3Π_g, v=6 state yielding weak spectral features that are observable by the high sensitivity of the TC-RFWM technique. The successful deperturbation study of the d3Π_g, v=6 state resulted in the spectroscopic characterization of the quintet (15Πg) and an additional triplet state (d3Π_g, v=19). More recently, investigations have been performed by applying unfolded TC-RFWM to obtain further information on the quintet manifold. The first high-spin transition (15Πu) - 15Πg)) has been observed via an intermediate ``gateway'' state exhibiting both substantial triplet and quintet character owing to the perturbation between the 15Πg), v=0 and the d3Π_g, v=6 states. The high-lying quintet state is found to be predissociative and displays a shallow potential that accommodates three vibrational levels only. Further studies of the high-spin system will be presented in this contribution. By applying TC-RFWM and laser-induced fluorescence, data on the vibrational structure of the 15Πu - 15Πg system is obtained. The results are combined with high-level ab initio computations at the multi-reference configuration interaction (MRCI) level of theory and the largest possible basis currently implemented in the 2012 version of MOLPRO. P. Bornhauser, G. Knopp, T. Gerber, and P.P. Radi, Journal of Molecular Spectroscopy 262, 69 (2010) P. Bornhauser, Y. Sych, G. Knopp, T. Gerber, and P.P. Radi, Journal of Chemical Physics 134, 044302 (2011) Bornhauser, P., Marquardt, R
A PAC-Bayesian Analysis of Graph Clustering and Pairwise Clustering
Seldin, Yevgeny
2010-01-01
We formulate weighted graph clustering as a prediction problem: given a subset of edge weights we analyze the ability of graph clustering to predict the remaining edge weights. This formulation enables practical and theoretical comparison of different approaches to graph clustering as well as comparison of graph clustering with other possible ways to model the graph. We adapt the PAC-Bayesian analysis of co-clustering (Seldin and Tishby, 2008; Seldin, 2009) to derive a PAC-Bayesian generalization bound for graph clustering. The bound shows that graph clustering should optimize a trade-off between empirical data fit and the mutual information that clusters preserve on the graph nodes. A similar trade-off derived from information-theoretic considerations was already shown to produce state-of-the-art results in practice (Slonim et al., 2005; Yom-Tov and Slonim, 2009). This paper supports the empirical evidence by providing a better theoretical foundation, suggesting formal generalization guarantees, and offering...
Graphs cospectral with a friendship graph or its complement
Directory of Open Access Journals (Sweden)
Alireza Abdollahi
2013-12-01
Full Text Available Let $n$ be any positive integer and let $F_n$ be the friendship (or Dutch windmill graph with $2n+1$ vertices and $3n$ edges. Here we study graphs with the same adjacency spectrum as the $F_n$. Two graphs are called cospectral if the eigenvalues multiset of their adjacency matrices are the same. Let $G$ be a graph cospectral with $F_n$. Here we prove that if $G$ has no cycle of length $4$ or $5$, then $Gcong F_n$. Moreover if $G$ is connected and planar then $Gcong F_n$.All but one of connected components of $G$ are isomorphic to $K_2$.The complement $overline{F_n}$ of the friendship graph is determined by its adjacency eigenvalues, that is, if $overline{F_n}$ is cospectral with a graph $H$, then $Hcong overline{F_n}$.
Limited Random Walk Algorithm for Big Graph Data Clustering
Zhang, Honglei; Kiranyaz, Serkan; Gabbouj, Moncef
2016-01-01
Graph clustering is an important technique to understand the relationships between the vertices in a big graph. In this paper, we propose a novel random-walk-based graph clustering method. The proposed method restricts the reach of the walking agent using an inflation function and a normalization function. We analyze the behavior of the limited random walk procedure and propose a novel algorithm for both global and local graph clustering problems. Previous random-walk-based algorithms depend on the chosen fitness function to find the clusters around a seed vertex. The proposed algorithm tackles the problem in an entirely different manner. We use the limited random walk procedure to find attracting vertices in a graph and use them as features to cluster the vertices. According to the experimental results on the simulated graph data and the real-world big graph data, the proposed method is superior to the state-of-the-art methods in solving graph clustering problems. Since the proposed method uses the embarrass...
Description to wear debris boundaries by radar graph fractal method
Institute of Scientific and Technical Information of China (English)
LIU HongTao; GE ShiRong
2007-01-01
In this paper, radar graph fractal method is introduced to describe wear debris boundaries.Research results show that it is a nice way to describe wear debris boundaries.Since the longest axis is selected as the first coordinate axis, its center point selected as the center point of the radar graph, and the coordinate value of wear debris boundary selected as the measure parameter, the limitations existing in Yard fractal measure method can be avoided.For any wear debris, its radar graph fractal dimension value is one and only, and as the wear debris shape changes from round to strip, the radar graph fractal dimension value also changes from low to high, showing strong uniqueness and independence.Due to the fact that the researched wear debris is gotten in different wear states, the results also prove that radar graph fractal dimension value is correlated with frictional pairs work condition and wear state.Radar graph fractal method is compared with Yard fractal measure methods, and results show that radar graph fractal dimension values gotten from different wear debris have enough value grads to avoid effect of errors, and provide higher sensitivity for wear debris shape.This paper also discusses the influencing factors for radar graph fractal method.With the increase of the decomposing degree value, the radar graph fractal dimension tends to keep stable at one certain value, showing the typical characteristic of the fractal theory.All this proves that radar graph fractal method is an effective description method for wear debris boundaries.
Virus Dynamics on Starlike Graphs
Becker, Thealexa; Kontorovich, Leonid Aryeh; Miller, Steven J; Ravikumar, Pradeep; Shen, Karen
2011-01-01
The field of epidemiology has presented fascinating and relevant questions for mathematicians, primarily concerning the spread of viruses in a community. The importance of this research has greatly increased over time as its applications have expanded to also include studies of electronic and social networks and the spread of information and ideas. We study virus propagation on a non-linear hub and spoke graph (which models well many airline networks). We determine the long-term behavior as a function of the cure and infection rates, as well as the number of spokes n. For each n we prove the existence of a critical threshold relating the two rates. Below this threshold, the virus always dies out; above this threshold, all non-trivial initial conditions iterate to a unique non-trivial steady state. We end with some generalizations to other networks.
Evaluation of Graph Pattern Matching Workloads in Graph Analysis Systems
Energy Technology Data Exchange (ETDEWEB)
Hong, Seokyong [North Carolina State University (NCSU), Raleigh; Lee, Sangkeun (Matt) [ORNL; Lim, Seung-Hwan [ORNL; Sukumar, Sreenivas Rangan [ORNL; Vatsavai, Raju [North Carolina State University (NCSU), Raleigh
2016-01-01
Graph analysis has emerged as a powerful method for data scientists to represent, integrate, query, and explore heterogeneous data sources. As a result, graph data management and mining became a popular area of research, and led to the development of plethora of systems in recent years. Unfortunately, the number of emerging graph analysis systems and the wide range of applications, coupled with a lack of apples-to-apples comparisons, make it difficult to understand the trade-offs between different systems and the graph operations for which they are designed. A fair comparison of these systems is a challenging task for the following reasons: multiple data models, non-standardized serialization formats, various query interfaces to users, and diverse environments they operate in. To address these key challenges, in this paper we present a new benchmark suite by extending the Lehigh University Benchmark (LUBM) to cover the most common capabilities of various graph analysis systems. We provide the design process of the benchmark, which generalizes the workflow for data scientists to conduct the desired graph analysis on different graph analysis systems. Equipped with this extended benchmark suite, we present performance comparison for nine subgraph pattern retrieval operations over six graph analysis systems, namely NetworkX, Neo4j, Jena, Titan, GraphX, and uRiKA. Through the proposed benchmark suite, this study reveals both quantitative and qualitative findings in (1) implications in loading data into each system; (2) challenges in describing graph patterns for each query interface; and (3) different sensitivity of each system to query selectivity. We envision that this study will pave the road for: (i) data scientists to select the suitable graph analysis systems, and (ii) data management system designers to advance graph analysis systems.
An Algebraic Representation of Graphs and Applications to Graph Enumeration
Directory of Open Access Journals (Sweden)
Ângela Mestre
2013-01-01
Full Text Available We give a recursion formula to generate all the equivalence classes of connected graphs with coefficients given by the inverses of the orders of their groups of automorphisms. We use an algebraic graph representation to apply the result to the enumeration of connected graphs, all of whose biconnected components have the same number of vertices and edges. The proof uses Abel’s binomial theorem and generalizes Dziobek’s induction proof of Cayley’s formula.
Decomposing Oriented Graphs into Six Locally Irregular Oriented Graphs
DEFF Research Database (Denmark)
Bensmail, Julien; Renault, Gabriel
2016-01-01
An undirected graph G is locally irregular if every two of its adjacent vertices have distinct degrees. We say that G is decomposable into k locally irregular graphs if there exists a partition E1∪E2∪⋯∪Ek of the edge set E(G) such that each Ei induces a locally irregular graph. It was recently co...
Spectral Radius of Hamiltonian Planar Graphs and Outerplanar Graphs
Institute of Scientific and Technical Information of China (English)
周建; 林翠琴; 胡冠章
2001-01-01
The spectral radius is an important parameter of a graph related to networks. A method forestimating the spectral radius of each spanning subgraph is used to prove that the spectral radius of aHamiltonian planar graph of order n ≥ 4 is less than or equal toand the spectral radius of theouterplanar graph of order n ≥ 6 is less than or equal to, which are improvements overprevious results. A direction for further study is then suggested.``
Studying the corona product of graphs under some graph invariants
Directory of Open Access Journals (Sweden)
M. Tavakoli
2014-09-01
Full Text Available The corona product $Gcirc H$ of two graphs $G$ and $H$ is obtained by taking one copy of $G$ and $|V(G|$ copies of $H$; and by joining each vertex of the $i$-th copy of $H$ to the $i$-th vertex of $G$, where $1 leq i leq |V(G|$. In this paper, exact formulas for the eccentric distance sum and the edge revised Szeged indices of the corona product of graphs are presented. We also study the conditions under which the corona product of graphs produces a median graph.
Eilers, Søren; Sørensen, Adam P W
2011-01-01
We provide a complete invariant for graph C*-algebras which are amplified in the sense that whenever there is an edge between two vertices, there are infinitely many. The invariant used is the standard primitive ideal space adorned with a map into {-1,0,1,2,...}, and we prove that the classification result is strong in the sense that isomorphisms at the level of the invariant always lift. We extend the classification result to cover more graphs, and give a range result for the invariant (in the vein of Effros-Handelman-Shen) which is further used to prove that extensions of graph C*-algebras associated to amplified graphs are again graph C*-algebras of amplified graphs.
Dettlaff, Magda; Yero, Ismael G
2012-01-01
The bondage number $b(G)$ of a nonempty graph $G$ is the cardinality of a smallest set of edges whose removal from $G$ results in a graph with domination number greater than the domination number of $G$. Here we study the bondage number of some grid-like graphs. In this sense, we obtain some bounds or exact values of the bondage number of some Cartesian product, strong product or direct product of two paths.
Dettlaff, Magda; Lemanska, Magdalena; Yero, Ismael G.
2012-01-01
The bondage number $b(G)$ of a nonempty graph $G$ is the cardinality of a smallest set of edges whose removal from $G$ results in a graph with domination number greater than the domination number of $G$. Here we study the bondage number of some grid-like graphs. In this sense, we obtain some bounds or exact values of the bondage number of some strong product and direct product of two paths.
Graphs Theory and Applications
Fournier, Jean-Claude
2008-01-01
This book provides a pedagogical and comprehensive introduction to graph theory and its applications. It contains all the standard basic material and develops significant topics and applications, such as: colorings and the timetabling problem, matchings and the optimal assignment problem, and Hamiltonian cycles and the traveling salesman problem, to name but a few. Exercises at various levels are given at the end of each chapter, and a final chapter presents a few general problems with hints for solutions, thus providing the reader with the opportunity to test and refine their knowledge on the
Burleigh, Scott C.
2011-01-01
Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology of scheduled communication contacts in a network based on the DTN (Delay-Tolerant Networking) architecture. It is designed to enable dynamic selection of data transmission routes in a space network based on DTN. This dynamic responsiveness in route computation should be significantly more effective and less expensive than static routing, increasing total data return while at the same time reducing mission operations cost and risk. The basic strategy of CGR is to take advantage of the fact that, since flight mission communication operations are planned in detail, the communication routes between any pair of bundle agents in a population of nodes that have all been informed of one another's plans can be inferred from those plans rather than discovered via dialogue (which is impractical over long one-way-light-time space links). Messages that convey this planning information are used to construct contact graphs (time-varying models of network connectivity) from which CGR automatically computes efficient routes for bundles. Automatic route selection increases the flexibility and resilience of the space network, simplifying cross-support and reducing mission management costs. Note that there are no routing tables in Contact Graph Routing. The best route for a bundle destined for a given node may routinely be different from the best route for a different bundle destined for the same node, depending on bundle priority, bundle expiration time, and changes in the current lengths of transmission queues for neighboring nodes; routes must be computed individually for each bundle, from the Bundle Protocol agent's current network connectivity model for the bundle s destination node (the contact graph). Clearly this places a premium on optimizing the implementation of the route computation algorithm. The scalability of CGR to very large networks remains a research topic
Yap, Hian-Poh
1996-01-01
This book provides an up-to-date and rapid introduction to an important and currently active topic in graph theory. The author leads the reader to the forefront of research in this area. Complete and easily readable proofs of all the main theorems, together with numerous examples, exercises and open problems are given. The book is suitable for use as a textbook or as seminar material for advanced undergraduate and graduate students. The references are comprehensive and so it will also be useful for researchers as a handbook.
Zeps, Dainis
2009-01-01
Using a notation of corner between edges when graph has a fixed rotation, i.e. cyclical order of edges around vertices, we define combinatorial objects - combinatorial maps as pairs of permutations, one for vertices and one for faces. Further, we define multiplication of these objects, that coincides with the multiplication of permutations. We consider closed under multiplication classes of combinatorial maps that consist of closed classes of combinatorial maps with fixed edges where each such class is defined by a knot. One class among them is special, containing selfconjugate maps.
Learning Probabilistic Decision Graphs
DEFF Research Database (Denmark)
Jaeger, Manfred; Dalgaard, Jens; Silander, Tomi
2004-01-01
Probabilistic decision graphs (PDGs) are a representation language for probability distributions based on binary decision diagrams. PDGs can encode (context-specific) independence relations that cannot be captured in a Bayesian network structure, and can sometimes provide computationally more...... efficient representations than Bayesian networks. In this paper we present an algorithm for learning PDGs from data. First experiments show that the algorithm is capable of learning optimal PDG representations in some cases, and that the computational efficiency of PDG models learned from real-life data...
Endomorphisms of graph algebras
DEFF Research Database (Denmark)
Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech
2012-01-01
We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...
*-Regular Leavitt Path Algebras of Arbitrary Graphs
Institute of Scientific and Technical Information of China (English)
Gonzalo ARANDA PINO; Kulumani RANGASWAMY; Lia VA(S)
2012-01-01
If K is a field with involution and E an arbitrary graph,the involution from K naturally induces an involution of the Leavitt path algebra LK(E).We show that the involution on LK(E) is proper if the involution on K is positive-definite,even in the case when the graph E is not necessarily finite or row-finite.It has been shown that the Leavitt path algebra LK(E) is regular if and only if E is acyclic.We give necessary and sufficient conditions for LK(E) to be *-regular (i.e.,regular with proper involution).This characterization of *-regularity of a Leavitt path algebra is given in terms of an algebraic property of K,not just a graph-theoretic property of E.This differs from the.known characterizations of various other algebraic properties of a Leavitt path algebra in terms of graphtheoretic properties of E alone.As a corollary,we show that Handelman's conjecture (stating that every *-regular ring is unit-regular) holds for Leavitt path algebras.Moreover,its generalized version for rings with local units also continues to hold for Leavitt path algebras over arbitrary graphs.
Partitions of generalized split graphs
Shklarsky, Oren
2012-01-01
We discuss matrix partition problems for graphs that admit a partition into k independent sets and ` cliques. We show that when k + ` 6 2, any matrix M has finitely many (k; `) minimal obstructions and hence all of these problems are polynomial time solvable. We provide upper bounds for the size of any (k; `) minimal obstruction when k = ` = 1 (split graphs), when k = 2; ` = 0 (bipartite graphs), and when k = 0; ` = 2 (co-bipartite graphs). When k = ` = 1, we construct an exponential size spl...
Nested Dynamic Condition Response Graphs
DEFF Research Database (Denmark)
Hildebrandt, Thomas; Mukkamala, Raghava Rao; Slaats, Tijs
2012-01-01
We present an extension of the recently introduced declarative process model Dynamic Condition Response Graphs ( DCR Graphs) to allow nested subgraphs and a new milestone relation between events. The extension was developed during a case study carried out jointly with our industrial partner...... Exformatics, a danish provider of case and workflow management systems. We formalize the semantics by giving first a map from Nested to (flat) DCR Graphs with milestones, and then extending the previously given mapping from DCR Graphs to Buchi-automata to include the milestone relation....
Edge Ideals of Weighted Graphs
Paulsen, Chelsey
2012-01-01
We study weighted graphs and their "edge ideals" which are ideals in polynomial rings that are defined in terms of the graphs. We provide combinatorial descriptions of m-irreducible decompositions for the edge ideal of a weighted graph in terms of the combinatorics of "weighted vertex covers". We use these, for instance, to say when these ideals are m-unmixed. We explicitly describe which weighted cycles and trees are unmixed and which ones are Cohen-Macaulay, and we prove that all weighted complete graphs are Cohen-Macaulay.
Intuitionistic Fuzzy Graphs with Categorical Properties
Directory of Open Access Journals (Sweden)
Hossein Rashmanlou
2015-09-01
Full Text Available The main purpose of this paper is to show the rationality of some operations, defined or to be defined, on intuitionistic fuzzy graphs. Firstly, three kinds of new product operations (called direct product, lexicographic product, and strong product are defined in intuitionistic fuzzy graphs, and some important notions on intuitionistic fuzzy graphs are demonstrated by characterizing these notions and their level counterparts graphs such as intuitionistic fuzzy complete graph, cartesian product of intuitionistic fuzzy graphs, composition of intuitionistic fuzzy graphs, union of intuitionistic fuzzy graphs, and join of intuitionistic fuzzy graphs. As a result, a kind of representations of intuitionistic fuzzy graphs and intuitionistic fuzzy complete graphs are given. Next, categorical goodness of intuitionistic fuzzy graphs is illustrated by proving that the category of intuitionistic fuzzy graphs and homomorphisms between them is isomorphic-closed, complete, and co-complete.
Neural network for graphs: a contextual constructive approach.
Micheli, Alessio
2009-03-01
This paper presents a new approach for learning in structured domains (SDs) using a constructive neural network for graphs (NN4G). The new model allows the extension of the input domain for supervised neural networks to a general class of graphs including both acyclic/cyclic, directed/undirected labeled graphs. In particular, the model can realize adaptive contextual transductions, learning the mapping from graphs for both classification and regression tasks. In contrast to previous neural networks for structures that had a recursive dynamics, NN4G is based on a constructive feedforward architecture with state variables that uses neurons with no feedback connections. The neurons are applied to the input graphs by a general traversal process that relaxes the constraints of previous approaches derived by the causality assumption over hierarchical input data. Moreover, the incremental approach eliminates the need to introduce cyclic dependencies in the definition of the system state variables. In the traversal process, the NN4G units exploit (local) contextual information of the graphs vertices. In spite of the simplicity of the approach, we show that, through the compositionality of the contextual information developed by the learning, the model can deal with contextual information that is incrementally extended according to the graphs topology. The effectiveness and the generality of the new approach are investigated by analyzing its theoretical properties and providing experimental results.
2015-12-31
distribution is unlimited" ES 14. ABSTRACT This report examines the application of factor graphs (graph-based architectures utilizing message passing) to...Research Laboratory The Pennsylvania State University Abstract: This report examines the application of factor graphs (graph-based architectures ...on Particle filtering and Smoothing: Fifteen years later. Tokyo, Japan . Duda, R ., Hart, P ., & Stork, D. (2001). Introduction. In Pattern
Yan, Dongpeng; Tang, Yanqun; Lin, Heyang; Wang, Dan
2014-01-01
Co-assembly of chromophore guests with host matrices can afford materials which have photofunctionalities different from those of individual components. Compared with clay and zeolite materials, the use of metal–organic frameworks (MOFs) as a host structure for fabricating luminescent host–guest materials is still at an early stage. Herein, we report the incorporation of a laser dye, 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), into stilbene-based and naphthalene-based MOF systems. The resulting materials exhibit blue/red two-color emission, and the intensity ratio of blue to red fluorescence varies in different planes within the MOF crystal as detected by 3D confocal fluorescence microscopy. The observed changes in ratiometric fluorescence suggest the occurrence of energy transfer from MOF host to DCM molecules, which can be further confirmed by periodic density functional theoretical (DFT) calculations. Moreover, selective changes in luminescence behavior are observed on treating the guest@MOF samples with volatile organic compounds (methanol, acetone and toluene), indicating that these host–guest systems have potential applications as fluorescence sensors. It can be expected that by rational selection of MOF hosts and guest chromophores with suitable emissive colors and energy levels, a wide variety of multi-color luminescent and energy-transfer systems can readily be prepared in a similar manner. PMID:24614015
Krstajić, Nikola; Akram, Ahsan R.; Choudhary, Tushar R.; McDonald, Neil; Tanner, Michael G.; Pedretti, Ettore; Dalgarno, Paul A.; Scholefield, Emma; Girkin, John M.; Moore, Anne; Bradley, Mark; Dhaliwal, Kevin
2016-04-01
We demonstrate a fast two-color widefield fluorescence microendoscopy system capable of simultaneously detecting several disease targets in intact human ex vivo lung tissue. We characterize the system for light throughput from the excitation light emitting diodes, fluorescence collection efficiency, and chromatic focal shifts. We demonstrate the effectiveness of the instrument by imaging bacteria (Pseudomonas aeruginosa) in ex vivo human lung tissue. We describe a mechanism of bacterial detection through the fiber bundle that uses blinking effects of bacteria as they move in front of the fiber core providing detection of objects smaller than the fiber core and cladding (˜3 μm). This effectively increases the measured spatial resolution of 4 μm. We show simultaneous imaging of neutrophils, monocytes, and fungus (Aspergillus fumigatus) in ex vivo human lung tissue. The instrument has 10 nM and 50 nM sensitivity for fluorescein and Cy5 solutions, respectively. Lung tissue autofluorescence remains visible at up to 200 fps camera acquisition rate. The optical system lends itself to clinical translation due to high-fluorescence sensitivity, simplicity, and the ability to multiplex several pathological molecular imaging targets simultaneously.
Generation of attosecond x-ray pulses with a multi-cycle two-color ESASE scheme
Energy Technology Data Exchange (ETDEWEB)
Ding, Y.; Huang, Z.; Ratner, D.; Bucksbaum, P.; /SLAC; Merdji, H.; /Saclay /SLAC
2009-03-04
Generation of attosecond x-ray pulses is attracting much attention within the x-ray free-electron laser (FEL) user community. Several schemes using extremely short laser pulses to manipulate the electron bunches have been proposed. In this paper, we extend the attosecond two-color ESASE scheme proposed by Zholents et al. to the long optical cycle regime using a second detuned laser and a tapered undulator. Both lasers can be about ten-optical-cycles long, with the second laser frequency detuned from the first to optimize the contrast between the central and side current spikes. A tapered undulator mitigates the degradation effect of the longitudinal space charge (LSC) force in the undulator and suppresses the FEL gain of all side current peaks. Simulations using the LCLS parameters show a single attosecond x-ray spike of {approx} 110 attoseconds can be produced. The second laser can also be detuned to coherently control the number of the side x-ray spikes and the length of the radiation pulse.
ON BIPOLAR SINGLE VALUED NEUTROSOPHIC GRAPHS
Said Broumi; Mohamed Talea; Assia Bakali; Florentin Smarandache
2016-01-01
In this article, we combine the concept of bipolar neutrosophic set and graph theory. We introduce the notions of bipolar single valued neutrosophic graphs, strong bipolar single valued neutrosophic graphs, complete bipolar single valued neutrosophic graphs, regular bipolar single valued neutrosophic graphs and investigate some of their related properties.
ON BIPOLAR SINGLE VALUED NEUTROSOPHIC GRAPHS
Said Broumi; Mohamed Talea; Assia Bakali; Florentin Smarandache
2016-01-01
In this article, we combine the concept of bipolar neutrosophic set and graph theory. We introduce the notions of bipolar single valued neutrosophic graphs, strong bipolar single valued neutrosophic graphs, complete bipolar single valued neutrosophic graphs, regular bipolar single valued neutrosophic graphs and investigate some of their related properties.
On Bipolar Single Valued Neutrosophic Graphs
SAID BROUMI; MOHAMED TALEA; ASSIA BAKALI; FLORENTIN SMARANDACHE
2016-01-01
In this article, we combine the concept of bipolar neutrosophic set and graph theory. We introduce the notions of bipolar single valued neutrosophic graphs, strong bipolar single valued neutrosophic graphs, complete bipolar single valued neutrosophic graphs, regular bipolar single valued neutrosophic graphs and investigate some of their related properties.
Double-Critical Graphs and Complete Minors
DEFF Research Database (Denmark)
Kawarabayashi, Ken-ichi; Pedersen, Anders Sune; Toft, Bjarne
2010-01-01
A connected $k$-chromatic graph $G$ is double-critical if for all edges $uv$ of $G$ the graph $G - u - v$ is $(k-2)$-colourable. The only known double-critical $k$-chromatic graph is the complete $k$-graph $K_k$. The conjecture that there are no other double-critical graphs is a special case...
Tutte Polynomial of Multi-Bridge Graphs
Directory of Open Access Journals (Sweden)
Julian A. Allagan
2013-10-01
Full Text Available In this paper, using a well-known recursion for computing the Tutte polynomial of any graph, we found explicit formulae for the Tutte polynomials of any multi-bridge graph and some $2-$tree graphs. Further, several recursive formulae for other graphs such as the fan and the wheel graphs are also discussed.
The One Universal Graph — a free and open graph database
Ng, Liang S.; Champion, Corbin
2016-02-01
Recent developments in graph database mostly are huge projects involving big organizations, big operations and big capital, as the name Big Data attests. We proposed the concept of One Universal Graph (OUG) which states that all observable and known objects and concepts (physical, conceptual or digitally represented) can be connected with only one single graph; furthermore the OUG can be implemented with a very simple text file format with free software, capable of being executed on Android or smaller devices. As such the One Universal Graph Data Exchange (GOUDEX) modules can potentially be installed on hundreds of millions of Android devices and Intel compatible computers shipped annually. Coupled with its open nature and ability to connect to existing leading search engines and databases currently in operation, GOUDEX has the potential to become the largest and a better interface for users and programmers to interact with the data on the Internet. With a Web User Interface for users to use and program in native Linux environment, Free Crowdware implemented in GOUDEX can help inexperienced users learn programming with better organized documentation for free software, and is able to manage programmer's contribution down to a single line of code or a single variable in software projects. It can become the first practically realizable “Internet brain” on which a global artificial intelligence system can be implemented. Being practically free and open, One Universal Graph can have significant applications in robotics, artificial intelligence as well as social networks.
Wang, Suijie
2010-01-01
In this paper, we give a Laplacian characterization of the product of the complete graphs $K_m$ with trees, unicyclic graphs, and bicyclic graphs. More precisely, let $G$ be a connected graph with at most two independent cycles. If $G$ is neither $C_{6}$ nor $\\Theta_{3,2,5}$ and determined by its Laplacain spectrum, then the product $G\\times K_{m}$ is also a graph determined by its Laplacian spectrum. In addition, we find the cosepctral graphs of $C_{6}\\times K_{m}$ and $\\Theta_{3,2,5}\\times K_{m}$, where the case $m=1$ is shown in Figure \\ref{F1} and \\ref{F2}.
A Graph Theoretic Perspective on CPM(Rel
Directory of Open Access Journals (Sweden)
Daniel Marsden
2015-11-01
Full Text Available Mixed states are of interest in quantum mechanics for modelling partial information. More recently categorical approaches to linguistics have also exploited the idea of mixed states to describe ambiguity and hyponym / hypernym relationships. In both these application areas the category Rel of sets and binary relations is often used as an alternative model. Selinger's CPM construction provides the setting for mixed states in Hilbert space based categorical quantum mechanics. By analogy, applying the CPM construction to Rel is seen as introducing mixing into a relational setting. We investigate the category CPM(Rel of completely positive maps in Rel. We show that the states of an object in CPM(Rel are in bijective correspondence with certain families of graphs. Via map-state duality this then allows us provide a graph theoretic characterization of the morphisms in CPM(Rel. By identifying an appropriate composition operation on graphs, we then show that CPM(Rel is isomorphic to a category of sets and graphs between them. This isomorphism then leads to a graph based description of the complete join semilattice enriched dagger compact structure of CPM(Rel. These results allow us to reason about CPM(Rel entirely in terms of graphs. We exploit these techniques in several examples. We give a closed form expression for the number of states of a finite set in CPM(Rel. The pure states are characterized in graph theoretic terms. We also demonstrate the possibly surprising phenomenon of a pure state that can be given as a mixture of two mixed states.
Bootstrap Percolation on Random Geometric Graphs
Bradonjić, Milan
2012-01-01
Bootstrap percolation has been used effectively to model phenomena as diverse as emergence of magnetism in materials, spread of infection, diffusion of software viruses in computer networks, adoption of new technologies, and emergence of collective action and cultural fads in human societies. It is defined on an (arbitrary) network of interacting agents whose state is determined by the state of their neighbors according to a threshold rule. In a typical setting, bootstrap percolation starts by random and independent "activation" of nodes with a fixed probability $p$, followed by a deterministic process for additional activations based on the density of active nodes in each neighborhood ($\\th$ activated nodes). Here, we study bootstrap percolation on random geometric graphs in the regime when the latter are (almost surely) connected. Random geometric graphs provide an appropriate model in settings where the neighborhood structure of each node is determined by geographical distance, as in wireless {\\it ad hoc} ...
Detecting alternative graph clusterings.
Mandala, Supreet; Kumara, Soundar; Yao, Tao
2012-07-01
The problem of graph clustering or community detection has enjoyed a lot of attention in complex networks literature. A quality function, modularity, quantifies the strength of clustering and on maximization yields sensible partitions. However, in most real world networks, there are an exponentially large number of near-optimal partitions with some being very different from each other. Therefore, picking an optimal clustering among the alternatives does not provide complete information about network topology. To tackle this problem, we propose a graph perturbation scheme which can be used to identify an ensemble of near-optimal and diverse clusterings. We establish analytical properties of modularity function under the perturbation which ensures diversity. Our approach is algorithm independent and therefore can leverage any of the existing modularity maximizing algorithms. We numerically show that our methodology can systematically identify very different partitions on several existing data sets. The knowledge of diverse partitions sheds more light into the topological organization and helps gain a more complete understanding of the underlying complex network.
Estrada, Ernesto
2015-01-01
A generalization of the random geometric graph (RGG) model is proposed by considering a set of points uniformly and independently distributed on a rectangle of unit area instead of on a unit square \\left[0,1\\right]^{2}. The topological properties, such as connectivity, average degree, average path length and clustering, of the random rectangular graphs (RRGs) generated by this model are then studied as a function of the rectangle sides lengths a and b=1/a, and the radius r used to connect the nodes. When a=1 we recover the RGG, and when a\\rightarrow\\infty the very elongated rectangle generated resembles a one-dimensional RGG. We provided computational and analytical evidence that the topological properties of the RRG differ significantly from those of the RGG. The connectivity of the RRG depends not only on the number of nodes as in the case of the RGG, but also on the side length of the rectangle. As the rectangle is more elongated the critical radius for connectivity increases following first a power-law an...
Energy Technology Data Exchange (ETDEWEB)
Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sterk, Jonathan David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lobser, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parekh, Ojas D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ryan-Anderson, Ciaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
In recent years, advanced network analytics have become increasingly important to na- tional security with applications ranging from cyber security to detection and disruption of ter- rorist networks. While classical computing solutions have received considerable investment, the development of quantum algorithms to address problems, such as data mining of attributed relational graphs, is a largely unexplored space. Recent theoretical work has shown that quan- tum algorithms for graph analysis can be more efficient than their classical counterparts. Here, we have implemented a trapped-ion-based two-qubit quantum information proces- sor to address these goals. Building on Sandia's microfabricated silicon surface ion traps, we have designed, realized and characterized a quantum information processor using the hyperfine qubits encoded in two 171 Yb + ions. We have implemented single qubit gates using resonant microwave radiation and have employed Gate set tomography (GST) to characterize the quan- tum process. For the first time, we were able to prove that the quantum process surpasses the fault tolerance thresholds of some quantum codes by demonstrating a diamond norm distance of less than 1 . 9 x 10 [?] 4 . We used Raman transitions in order to manipulate the trapped ions' motion and realize two-qubit gates. We characterized the implemented motion sensitive and insensitive single qubit processes and achieved a maximal process infidelity of 6 . 5 x 10 [?] 5 . We implemented the two-qubit gate proposed by Molmer and Sorensen and achieved a fidelity of more than 97 . 7%.
Kirkpatrick, Bonnie; Reshef, Yakir; Finucane, Hilary; Jiang, Haitao; Zhu, Binhai; Karp, Richard M
2012-09-01
Pedigree graphs, or family trees, are typically constructed by an expensive process of examining genealogical records to determine which pairs of individuals are parent and child. New methods to automate this process take as input genetic data from a set of extant individuals and reconstruct ancestral individuals. There is a great need to evaluate the quality of these methods by comparing the estimated pedigree to the true pedigree. In this article, we consider two main pedigree comparison problems. The first is the pedigree isomorphism problem, for which we present a linear-time algorithm for leaf-labeled pedigrees. The second is the pedigree edit distance problem, for which we present (1) several algorithms that are fast and exact in various special cases, and (2) a general, randomized heuristic algorithm. In the negative direction, we first prove that the pedigree isomorphism problem is as hard as the general graph isomorphism problem, and that the sub-pedigree isomorphism problem is NP-hard. We then show that the pedigree edit distance problem is APX-hard in general and NP-hard on leaf-labeled pedigrees. We use simulated pedigrees to compare our edit-distance algorithms to each other as well as to a branch-and-bound algorithm that always finds an optimal solution.
Quantization of gauge fields, graph polynomials and graph homology
Energy Technology Data Exchange (ETDEWEB)
Kreimer, Dirk, E-mail: kreimer@physik.hu-berlin.de [Humboldt University, 10099 Berlin (Germany); Sars, Matthias [Humboldt University, 10099 Berlin (Germany); Suijlekom, Walter D. van [Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands)
2013-09-15
We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology. -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.
Multigraph: Interactive Data Graphs on the Web
Phillips, M. B.
2010-12-01
Many aspects of geophysical science involve time dependent data that is often presented in the form of a graph. Considering that the web has become a primary means of communication, there are surprisingly few good tools and techniques available for presenting time-series data on the web. The most common solution is to use a desktop tool such as Excel or Matlab to create a graph which is saved as an image and then included in a web page like any other image. This technique is straightforward, but it limits the user to one particular view of the data, and disconnects the graph from the data in a way that makes updating a graph with new data an often cumbersome manual process. This situation is somewhat analogous to the state of mapping before the advent of GIS. Maps existed only in printed form, and creating a map was a laborious process. In the last several years, however, the world of mapping has experienced a revolution in the form of web-based and other interactive computer technologies, so that it is now commonplace for anyone to easily browse through gigabytes of geographic data. Multigraph seeks to bring a similar ease of access to time series data. Multigraph is a program for displaying interactive time-series data graphs in web pages that includes a simple way of configuring the appearance of the graph and the data to be included. It allows multiple data sources to be combined into a single graph, and allows the user to explore the data interactively. Multigraph lets users explore and visualize "data space" in the same way that interactive mapping applications such as Google Maps facilitate exploring and visualizing geography. Viewing a Multigraph graph is extremely simple and intuitive, and requires no instructions. Creating a new graph for inclusion in a web page involves writing a simple XML configuration file and requires no programming. Multigraph can read data in a variety of formats, and can display data from a web service, allowing users to "surf
2005-06-01
intuitive results on a variety of synthetic and real-world datasets. Here, we will verify their scalability. Figure 5.9 shows results on a “ caveman ...show timing results on a “ caveman ” graph with 3 caves. The plot shows wall-clock time vs. the number of edges E in the graph, for both SPLIT (dashed
Subgraph Enumeration in Massive Graphs
DEFF Research Database (Denmark)
Silvestri, Francesco
bound also applies with high probability. Our algorithm is I/O optimal, in the worst-case, when the sample graph belongs to the Alon class, which includes cliques, cycles and every graph with a perfect matching: indeed, we show that any algorithm enumerating $T$ instances must always use $\\BOM...
Open Graphs and Monoidal Theories
Dixon, Lucas
2010-01-01
String diagrams are a powerful tool for reasoning about physical processes, logic circuits, tensor networks, and many other compositional structures. The distinguishing feature of these diagrams is that edges need not be connected to vertices at both ends, and these unconnected ends can be interpreted as the inputs and outputs of a diagram. In this paper, we give a concrete construction for string diagrams using a special kind of typed graph called an open-graph. While the category of open-graphs is not itself adhesive, we introduce the notion of a selective adhesive functor, and show that such a functor embeds the category of open-graphs into the ambient adhesive category of typed graphs. Using this functor, the category of open-graphs inherits "enough adhesivity" from the category of typed graphs to perform double-pushout (DPO) graph rewriting. A salient feature of our theory is that it ensures rewrite systems are "type-safe" in the sense that rewriting respects the inputs and outputs. This formalism lets u...
Network reconstruction via graph blending
Estrada, Rolando
2016-05-01
Graphs estimated from empirical data are often noisy and incomplete due to the difficulty of faithfully observing all the components (nodes and edges) of the true graph. This problem is particularly acute for large networks where the number of components may far exceed available surveillance capabilities. Errors in the observed graph can render subsequent analyses invalid, so it is vital to develop robust methods that can minimize these observational errors. Errors in the observed graph may include missing and spurious components, as well fused (multiple nodes are merged into one) and split (a single node is misinterpreted as many) nodes. Traditional graph reconstruction methods are only able to identify missing or spurious components (primarily edges, and to a lesser degree nodes), so we developed a novel graph blending framework that allows us to cast the full estimation problem as a simple edge addition/deletion problem. Armed with this framework, we systematically investigate the viability of various topological graph features, such as the degree distribution or the clustering coefficients, and existing graph reconstruction methods for tackling the full estimation problem. Our experimental results suggest that incorporating any topological feature as a source of information actually hinders reconstruction accuracy. We provide a theoretical analysis of this phenomenon and suggest several avenues for improving this estimation problem.
Graph Transformation and AI Planning
Edelkamp, S.; Rensink, Arend; Edelkamp, S.; Frank, J.
This document provides insight to the similarities and differences of Graph Transformation and AI Planning, two rising research fields with different publication organs and tools. While graph transformation systems can be used as a graphical knowledge engineering front-end for designing planning
Graph Transformation and AI Planning
Edelkamp, S.; Rensink, A.; Edelkamp, S.; Frank, J.
2007-01-01
This document provides insight to the similarities and differences of Graph Transformation and AI Planning, two rising research fields with different publication organs and tools. While graph transformation systems can be used as a graphical knowledge engineering front-end for designing planning pr
Paley Graphs and Their Generalizations
Elsawy, Ahmed Noubi
2012-01-01
To construct a Paley graph, we fix a finite field and consider its elements as vertices of the Paley graph. Two vertices are connected by an edge if their difference is a square in the field. We will study some important properties of the Paley graphs. In particular, we will show that the Paley graphs are connected, symmetric, and self-complementary. Also we will show that the Paley graph of order q is (q-1)/2 -regular, and every two adjacent vertices have (q-5)/4 common neighbors, and every two non-adjacent vertices have q-1/4 common neighbors, which means that the Paley graphs are strongly regular with parameters(q,q-1/2,q-5/4, q-1/4). Paley graphs are generalized by many mathematicians. In the first section of Chapter 3 we will see three examples of these generalizations and some of their basic properties. In the second section of Chapter 3 we will define a new generalization of the Paley graphs, in which pairs of elements of a finite field are connected by an edge if and only if there difference belongs t...
Graph Representation of Projective Resolutions
Institute of Scientific and Technical Information of China (English)
Hong Bo SHI
2011-01-01
We generalize the concept - dimension tree and the related results for monomial algebras to a more general case - relations algebras Λ by bringing Gr(o)bner basis into play. More precisely,graph to be called the minimal resolution graph for M. Algorithms for computing such diagraphs and applications as well will be presented.
A Collection of Features for Semantic Graphs
Energy Technology Data Exchange (ETDEWEB)
Eliassi-Rad, T; Fodor, I K; Gallagher, B
2007-05-02
Semantic graphs are commonly used to represent data from one or more data sources. Such graphs extend traditional graphs by imposing types on both nodes and links. This type information defines permissible links among specified nodes and can be represented as a graph commonly referred to as an ontology or schema graph. Figure 1 depicts an ontology graph for data from National Association of Securities Dealers. Each node type and link type may also have a list of attributes. To capture the increased complexity of semantic graphs, concepts derived for standard graphs have to be extended. This document explains briefly features commonly used to characterize graphs, and their extensions to semantic graphs. This document is divided into two sections. Section 2 contains the feature descriptions for static graphs. Section 3 extends the features for semantic graphs that vary over time.
Asymptotic aspects of Cayley graphs
Dejter, Italo J
2011-01-01
Arising from complete Cayley graphs $\\Gamma_n$ of odd cyclic groups $\\Z_n$, an asymptotic approach is presented on connected labeled graphs whose vertices are labeled via equally-multicolored copies of $K_4$ in $\\Gamma_n$ with adjacency of any two such vertices whenever they are represented by copies of $K_4$ in $\\Gamma_n$ sharing two equally-multicolored triangles. In fact, these connected labeled graphs are shown to form a family of graphs of largest degree 6 and diameter asymptotically of order $|V|^{1/3}$, properties shared by the initial member of a collection of families of Cayley graphs of degree $2m\\geq 6$ with diameter asymptotically of order $|V|^{1/m}$, where $3\\leq m\\in\\Z$.
Planar graphs theory and algorithms
Nishizeki, T
1988-01-01
Collected in this volume are most of the important theorems and algorithms currently known for planar graphs, together with constructive proofs for the theorems. Many of the algorithms are written in Pidgin PASCAL, and are the best-known ones; the complexities are linear or 0(nlogn). The first two chapters provide the foundations of graph theoretic notions and algorithmic techniques. The remaining chapters discuss the topics of planarity testing, embedding, drawing, vertex- or edge-coloring, maximum independence set, subgraph listing, planar separator theorem, Hamiltonian cycles, and single- or multicommodity flows. Suitable for a course on algorithms, graph theory, or planar graphs, the volume will also be useful for computer scientists and graph theorists at the research level. An extensive reference section is included.
GSMNet: A Hierarchical Graph Model for Moving Objects in Networks
Directory of Open Access Journals (Sweden)
Hengcai Zhang
2017-03-01
Full Text Available Existing data models for moving objects in networks are often limited by flexibly controlling the granularity of representing networks and the cost of location updates and do not encompass semantic information, such as traffic states, traffic restrictions and social relationships. In this paper, we aim to fill the gap of traditional network-constrained models and propose a hierarchical graph model called the Geo-Social-Moving model for moving objects in Networks (GSMNet that adopts four graph structures, RouteGraph, SegmentGraph, ObjectGraph and MoveGraph, to represent the underlying networks, trajectories and semantic information in an integrated manner. The bulk of user-defined data types and corresponding operators is proposed to handle moving objects and answer a new class of queries supporting three kinds of conditions: spatial, temporal and semantic information. Then, we develop a prototype system with the native graph database system Neo4Jto implement the proposed GSMNet model. In the experiment, we conduct the performance evaluation using simulated trajectories generated from the BerlinMOD (Berlin Moving Objects Database benchmark and compare with the mature MOD system Secondo. The results of 17 benchmark queries demonstrate that our proposed GSMNet model has strong potential to reduce time-consuming table join operations an d shows remarkable advantages with regard to representing semantic information and controlling the cost of location updates.
Girth 5 graphs from relative difference sets
DEFF Research Database (Denmark)
Jørgensen, Leif Kjær
2005-01-01
We consider the problem of construction of graphs with given degree $k$ and girth 5 and as few vertices as possible. We give a construction of a family of girth 5 graphs based on relative difference sets. This family contains the smallest known graph of degree 8 and girth 5 which was constructed ...... by Royle, four of the known cages including the Hoffman-Singleton graph, some graphs constructed by Exoo and some new smallest known graphs....
Girth 5 graphs from relative difference sets
DEFF Research Database (Denmark)
Jørgensen, Leif Kjær
We consider the problem of construction of graphs with given degree and girth 5 and as few vertices as possible. We give a construction of a family of girth 5 graphs based on relative difference sets. This family contains the smallest known graph of degree 8 and girth 5 which was constructed by G....... Royle, four of the known cages including the Hoffman-Singleton graph, some graphs constructed by G. Exoo and some new smallest known graphs. k...
Parallel Graph Transformation based on Merged Approach
Directory of Open Access Journals (Sweden)
Asmaa Aouat
2013-01-01
Full Text Available Graph transformation is one of the key concepts in graph grammar. In order to accelerate the graph transformation, the concept of parallel graph transformation has been proposed by different tools such as AGG tool. The theory of parallel graph transformation used by AGG just allows clarifying the concepts of conflict and dependency between the transformation rules. This work proposes an approach of parallel graph transformations which enables dependent transformation rules to be executed in parallel.
On characterizing terrain visibility graphs
Directory of Open Access Journals (Sweden)
William Evans
2015-06-01
Full Text Available A terrain is an $x$-monotone polygonal line in the $xy$-plane. Two vertices of a terrain are mutually visible if and only if there is no terrain vertex on or above the open line segment connecting them. A graph whose vertices represent terrain vertices and whose edges represent mutually visible pairs of terrain vertices is called a terrain visibility graph. We would like to find properties that are both necessary and sufficient for a graph to be a terrain visibility graph; that is, we would like to characterize terrain visibility graphs.Abello et al. [Discrete and Computational Geometry, 14(3:331--358, 1995] showed that all terrain visibility graphs are “persistent”. They showed that the visibility information of a terrain point set implies some ordering requirements on the slopes of the lines connecting pairs of points in any realization, and as a step towards showing sufficiency, they proved that for any persistent graph $M$ there is a total order on the slopes of the (pseudo lines in a generalized configuration of points whose visibility graph is $M$.We give a much simpler proof of this result by establishing an orientation to every triple of vertices, reflecting some slope ordering requirements that are consistent with $M$ being the visibility graph, and prove that these requirements form a partial order. We give a faster algorithm to construct a total order on the slopes. Our approach attempts to clarify the implications of the graph theoretic properties on the ordering of the slopes, and may be interpreted as defining properties on an underlying oriented matroid that we show is a restricted type of $3$-signotope.
Sohn, J Y; Ahn, Y H; Yee, K J; Kim, D S
1999-09-20
We performed femtosecond two-color experiments (four-wave mixing and pump probe) using two independently tunable, partially synchronized femtosecond lasers. Despite the fact that the jitter is of the order of 5-10 ps, the time resolution is limited only by the pulse width when a homemade sample-and-hold switch is used.
Abdukerim, Nuriman; Xie, Bai-Song
2016-01-01
The effect of the frequency chirping on momentum spectrum and pair production rate in one- and two-color laser pulse fields is investigated by solving the quantum Vlasov equation. A small frequency chirp shifts the momentum spectrum along the momentum axis. The positive and negative frequency chirp parameters play the same role in increasing the pair number density. The sign change of frequency chirp parameter at the moment $t=0$ leads pulse shape and momentum spectrum to be symmetric, and the number density to be increased. The number density of produced pairs in the two-color pulse field is much higher than that in the one-color pulse field and the larger frequency chirp pulse field dominates more strongly. In the two-color pulse fields, the relation between the frequency ratio of two colors and the number density is not sensitive to the parameters of small frequency chirp added in either low frequency strong field or high frequency weak field but sensitive to the parameters of large frequency chirp added i...
Periodic 2-graphs arising from subshifts
Pask, David; Weaver, Natasha
2009-01-01
Higher-rank graphs were introduced by Kumjian and Pask to provide models for higher-rank Cuntz-Krieger algebras. In a previous paper, we constructed 2-graphs whose path spaces are rank-two subshifts of finite type, and showed that this construction yields aperiodic 2-graphs whose $C^*$-algebras are simple and are not ordinary graph algebras. Here we show that the construction also gives a family of periodic 2-graphs which we call \\emph{domino graphs}. We investigate the combinatorial structure of domino graphs, finding interesting points of contact with the existing combinatorial literature, and prove a structure theorem for the $C^*$-algebras of domino graphs.
An exact algorithm for graph partitioning
Hager, William; Zhang, Hongchao
2009-01-01
An exact algorithm is presented for solving edge weighted graph partitioning problems. The algorithm is based on a branch and bound method applied to a continuous quadratic programming formulation of the problem. Lower bounds are obtained by decomposing the objective function into convex and concave parts and replacing the concave part by an affine underestimate. It is shown that the best affine underestimate can be expressed in terms of the center and the radius of the smallest sphere containing the feasible set. The concave term is obtained either by a constant diagonal shift associated with the smallest eigenvalue of the objective function Hessian, or by a diagonal shift obtained by solving a semidefinite programming problem. Numerical results show that the proposed algorithm is competitive with state-of-the-art graph partitioning codes.
Semantic graphs and associative memories.
Pomi, Andrés; Mizraji, Eduardo
2004-12-01
Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.
Hierarchy of modular graph identities
Energy Technology Data Exchange (ETDEWEB)
D’Hoker, Eric; Kaidi, Justin [Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy,University of California,Los Angeles, CA 90095 (United States)
2016-11-09
The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues s(s−1) for positive integers s bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.
Design Pattern Mining Using Graph Matching
Institute of Scientific and Technical Information of China (English)
LI Qing-hua; ZHANG Zhi-xiang; BEN Ke-rong
2004-01-01
The identification of design pattern instances is important for program understanding and software maintenance. Aiming at the mining of design patterns in existing systems, this paper proposes a sub-graph isomorphism approach to discover several design patterns in a legacy system at a time. The attributed relational graph is used to describe design patterns and legacy systems. The sub-graph isomorphism approach consists of decomposition and composition process. During the decomposition process, graphs corresponding to the design patterns are decomposed into sub-graphs, some of which are graphs corresponding to the elemental design patterns. The composition process tries to get sub-graph isomorphism of the matched graph if sub-graph isomorphism of each sub-graph is obtained. Due to the common structures between design patterns, the proposed approach can reduce the matching times of entities and relations. Compared with the existing methods, the proposed algorithm is not linearly dependent on the number of design pattern graphs.
Some Results on Planar Graphs of Class 1
Institute of Scientific and Technical Information of China (English)
卜月华
2004-01-01
@@ We consider only simple graphs in this paper unless otherwise stated. A plane graph is a particular drawing of a planar graph in the Euclidean plane. For a plane graph G, we denote its vertex set, edge set, face set, and maximum degree by V(G), E(G), F(G), and △(G) (or simply △), respectively. For x ∈ V(G) U F(G), let d(x) denote the degree of x in G. A vertex (or face)of degree k is called a k-vertex (or k-face). Let di(v) denote the number ofi-vertices in G which are adjacent to a vertex v. For a cycle C of length k in G, an edge xy ∈ E(G) \\ E(C) is said to be a chord of C if x, y ∈ V(C). We call C a chordal-k-cycle of G.
Efficient Implementation of the Plan Graph in STAN
Fox, M; 10.1613/jair.570
2011-01-01
STAN is a Graphplan-based planner, so-called because it uses a variety of STate ANalysis techniques to enhance its performance. STAN competed in the AIPS-98 planning competition where it compared well with the other competitors in terms of speed, finding solutions fastest to many of the problems posed. Although the domain analysis techniques STAN exploits are an important factor in its overall performance, we believe that the speed at which STAN solved the competition problems is largely due to the implementation of its plan graph. The implementation is based on two insights: that many of the graph construction operations can be implemented as bit-level logical operations on bit vectors, and that the graph should not be explicitly constructed beyond the fix point. This paper describes the implementation of STAN's plan graph and provides experimental results which demonstrate the circumstances under which advantages can be obtained from using this implementation.
Bond graph model-based fault diagnosis of hybrid systems
Borutzky, Wolfgang
2015-01-01
This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...
Acyclic edge colorings of planar graphs and series parallel graphs
Institute of Scientific and Technical Information of China (English)
HOU JianFeng; WU JianLiang; LIU GuiZhen; LIU Bin
2009-01-01
A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G.The acyclic edge chromatic number of G,denoted by a'(G),is the least number of colors in an acyclic edge coloring of G.Alon et al.conjectured that a'(G) ≤△(G) +2 for any graphs.For planar graphs G with girth g(G),we prove that a'(G) ≤ max{2△(G)-2,△(G) +22} if g(G) ≥3,a'(G)≤△(G)+2if g(G) ≥ 5,a'(G) ≤△(G)+1 if g(G) ≥ 7,and a'(G)=△(G) if g(G) ≥ 16 and △(G) ≥ 3.For series-parallel graphs G,we have a'(G) ≤ △(G) +1.
XML Graphs in Program Analysis
DEFF Research Database (Denmark)
Møller, Anders; Schwartzbach, Michael I.
2011-01-01
XML graphs have shown to be a simple and effective formalism for representing sets of XML documents in program analysis. It has evolved through a six year period with variants tailored for a range of applications. We present a unified definition, outline the key properties including validation...... of XML graphs against different XML schema languages, and provide a software package that enables others to make use of these ideas. We also survey the use of XML graphs for program analysis with four very different languages: XACT (XML in Java), Java Servlets (Web application programming), XSugar...
Graph Model Based Indoor Tracking
DEFF Research Database (Denmark)
Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin
2009-01-01
infrastructure for different symbolic positioning technologies, e.g., Bluetooth and RFID. More specifically, the paper proposes a model of indoor space that comprises a base graph and mappings that represent the topology of indoor space at different levels. The resulting model can be used for one or several...... indoor positioning technologies. Focusing on RFID-based positioning, an RFID specific reader deployment graph model is built from the base graph model. This model is then used in several algorithms for constructing and refining trajectories from raw RFID readings. Empirical studies with implementations...
Chordal Graphs are Fully Orientable
Lai, Hsin-Hao
2012-01-01
Suppose that D is an acyclic orientation of a graph G. An arc of D is called dependent if its reversal creates a directed cycle. Let m and M denote the minimum and the maximum of the number of dependent arcs over all acyclic orientations of G. We call G fully orientable if G has an acyclic orientation with exactly d dependent arcs for every d satisfying m <= d <= M. A graph G is called chordal if every cycle in G of length at least four has a chord. We show that all chordal graphs are fully orientable.
Symmetry properties of subdivision graphs
Daneshkhah, Ashraf; Devillers, Alice; Praeger, Cheryl E.
2010-01-01
The subdivision graph $S(\\Sigma)$ of a graph $\\Sigma$ is obtained from $\\Sigma$ by `adding a vertex' in the middle of every edge of $\\Si$. Various symmetry properties of $\\S(\\Sigma)$ are studied. We prove that, for a connected graph $\\Sigma$, $S(\\Sigma)$ is locally $s$-arc transitive if and only if $\\Sigma$ is $\\lceil\\frac{s+1}{2}\\rceil$-arc transitive. The diameter of $S(\\Sigma)$ is $2d+\\delta$, where $\\Sigma$ has diameter $d$ and $0\\leqslant \\delta\\leqslant 2$, and local $s$-distance transi...
Recursive processing of cyclic graphs.
Bianchini, Monica; Gori, Marco; Sarti, Lorenzo; Scarselli, Franco
2006-01-01
Recursive neural networks are a powerful tool for processing structured data. According to the recursive learning paradigm, the input information consists of directed positional acyclic graphs (DPAGs). In fact, recursive networks are fed following the partial order defined by the links of the graph. Unfortunately, the hypothesis of processing DPAGs is sometimes too restrictive, being the nature of some real-world problems intrinsically cyclic. In this paper, a methodology is proposed, which allows us to process any cyclic directed graph. Therefore, the computational power of recursive networks is definitely established, also clarifying the underlying limitations of the model.
Cubature formulas on combinatorial graphs
Pesenson, Isaac Z
2011-01-01
Many contemporary applications, for example, cataloging of galaxies, document analysis, face recognition, learning theory, image processing, operate with a large amount of data which is often represented as a graph embedded into a high dimensional Euclidean space. The variety of problems arising in contemporary data processing requires development on graphs such topics of the classical harmonic analysis as Shannon sampling, splines, wavelets, cubature formulas. The goal of the paper is to establish cubature formulas on finite combinatorial graphs. The results have direct applications to problems that arise in connection with data filtering, data denoising and data dimension reduction.
On Dominator Colorings in Graphs
Indian Academy of Sciences (India)
S Arumugam; Jay Bagga; K Raja Chandrasekar
2012-11-01
A dominator coloring of a graph is a proper coloring of in which every vertex dominates every vertex of at least one color class. The minimum number of colors required for a dominator coloring of is called the dominator chromatic number of and is denoted by $ d(G)$. In this paper we present several results on graphs with $ d(G)=(G)$ and $ d(G)=(G)$ where $(G)$ and $(G)$ denote respectively the chromatic number and the domination number of a graph . We also prove that if $(G)$ is the Mycielskian of , then $ d(G)+1≤ d((G))≤ d(G)+2$.
EDGE3: A web-based solution for management and analysis of Agilent two color microarray experiments
Directory of Open Access Journals (Sweden)
Craven Mark
2009-09-01
Full Text Available Abstract Background The ability to generate transcriptional data on the scale of entire genomes has been a boon both in the improvement of biological understanding and in the amount of data generated. The latter, the amount of data generated, has implications when it comes to effective storage, analysis and sharing of these data. A number of software tools have been developed to store, analyze, and share microarray data. However, a majority of these tools do not offer all of these features nor do they specifically target the commonly used two color Agilent DNA microarray platform. Thus, the motivating factor for the development of EDGE3 was to incorporate the storage, analysis and sharing of microarray data in a manner that would provide a means for research groups to collaborate on Agilent-based microarray experiments without a large investment in software-related expenditures or extensive training of end-users. Results EDGE3 has been developed with two major functions in mind. The first function is to provide a workflow process for the generation of microarray data by a research laboratory or a microarray facility. The second is to store, analyze, and share microarray data in a manner that doesn't require complicated software. To satisfy the first function, EDGE3 has been developed as a means to establish a well defined experimental workflow and information system for microarray generation. To satisfy the second function, the software application utilized as the user interface of EDGE3 is a web browser. Within the web browser, a user is able to access the entire functionality, including, but not limited to, the ability to perform a number of bioinformatics based analyses, collaborate between research groups through a user-based security model, and access to the raw data files and quality control files generated by the software used to extract the signals from an array image. Conclusion Here, we present EDGE3, an open-source, web
General solution to nonlinear optical quantum graphs using Dalgarno-Lewis summation techniques
Lytel, Rick; Kuzyk, Mark G
2016-01-01
We develop an algorithm to apply the Dalgarno-Lewis (DL) perturbation theory to quantum graphs with multiple, connected edges. We use it to calculate the nonlinear optical hyperpolarizability tensors for graphs and show that it replicates the sum over states computations, but executes ten to fifty times faster. DL requires only knowledge of the ground state of the graph, eliminating the requirement to determine all possible degeneracies of a complex network. The algorithm is general and may be applied to any quantum graph.
Total Restrained Bondage in Graphs
Institute of Scientific and Technical Information of China (English)
Nader JAFARI RAD; Roslan HASNI; Joanna RACZEK; Lutz VOLKMANN
2013-01-01
A subset S of vertices of a graph G with no isolated vertex is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex in V(G)-S is also adjacent to a vertex in V(G)-S.The total restrained domination number of G is the minimum cardinality of a total restrained dominating set of G.In this paper we initiate the study of total restrained bondage in graphs.The total restrained bondage number in a graph G with no isolated vertex,is the minimum cardinality of a subset of edges E such that G-E has no isolated vertex and the total restrained domination number of G-E is greater than the total restrained domination number of G.We obtain several properties,exact values and bounds for the total restrained bondage number of a graph.
Digital Line Graph - Large Scale
U.S. Geological Survey, Department of the Interior — Digital line graph (DLG) data are digital representations of cartographic information. DLGs of map features are converted to digital form from maps and related...
Digital Line Graph - Large Scale
U.S. Geological Survey, Department of the Interior — Digital line graph (DLG) data are digital representations of cartographic information. DLGs of map features are converted to digital form from maps and related...
Hierarchical clustering for graph visualization
Clémençon, Stéphan; Rossi, Fabrice; Tran, Viet Chi
2012-01-01
This paper describes a graph visualization methodology based on hierarchical maximal modularity clustering, with interactive and significant coarsening and refining possibilities. An application of this method to HIV epidemic analysis in Cuba is outlined.
Chordal Graphs and Semidefinite Optimization
DEFF Research Database (Denmark)
Vandenberghe, Lieven; Andersen, Martin Skovgaard
2015-01-01
in combinatorial optimization, linear algebra, statistics, signal processing, machine learning, and nonlinear optimization. This survey covers the theory and applications of chordal graphs, with an emphasis on algorithms developed in the literature on sparse Cholesky factorization. These algorithms are formulated......Chordal graphs play a central role in techniques for exploiting sparsity in large semidefinite optimization problems and in related con-vex optimization problems involving sparse positive semidefinite matrices. Chordal graph properties are also fundamental to several classical results...... as recursions on elimination trees, supernodal elimination trees, or clique trees associated with the graph. The best known example is the multifrontal Cholesky factorization algorithm, but similar algorithms can be formulated for a variety of related problems, including the computation of the partial inverse...
Open Graphs and Computational Reasoning
Directory of Open Access Journals (Sweden)
Lucas Dixon
2010-06-01
Full Text Available We present a form of algebraic reasoning for computational objects which are expressed as graphs. Edges describe the flow of data between primitive operations which are represented by vertices. These graphs have an interface made of half-edges (edges which are drawn with an unconnected end and enjoy rich compositional principles by connecting graphs along these half-edges. In particular, this allows equations and rewrite rules to be specified between graphs. Particular computational models can then be encoded as an axiomatic set of such rules. Further rules can be derived graphically and rewriting can be used to simulate the dynamics of a computational system, e.g. evaluating a program on an input. Examples of models which can be formalised in this way include traditional electronic circuits as well as recent categorical accounts of quantum information.
Tree decompositions and social graphs
Adcock, Aaron B; Mahoney, Michael W
2014-01-01
Recent work has established that large informatics graphs such as social and information networks have non-trivial tree-like structure when viewed at moderate size scales. Here, we present results from the first detailed empirical evaluation of the use of tree decomposition (TD) heuristics for structure identification and extraction in social graphs. Although TDs have historically been used in structural graph theory and scientific computing, we show that---even with existing TD heuristics developed for those very different areas---TD methods can identify interesting structure in a wide range of realistic informatics graphs. Among other things, we show that TD methods can identify structures that correlate strongly with the core-periphery structure of realistic networks, even when using simple greedy heuristics; we show that the peripheral bags of these TDs correlate well with low-conductance communities (when they exist) found using local spectral computations; and we show that several types of large-scale "...
Generating random networks and graphs
Coolen, Ton; Roberts, Ekaterina
2017-01-01
This book supports researchers who need to generate random networks, or who are interested in the theoretical study of random graphs. The coverage includes exponential random graphs (where the targeted probability of each network appearing in the ensemble is specified), growth algorithms (i.e. preferential attachment and the stub-joining configuration model), special constructions (e.g. geometric graphs and Watts Strogatz models) and graphs on structured spaces (e.g. multiplex networks). The presentation aims to be a complete starting point, including details of both theory and implementation, as well as discussions of the main strengths and weaknesses of each approach. It includes extensive references for readers wishing to go further. The material is carefully structured to be accessible to researchers from all disciplines while also containing rigorous mathematical analysis (largely based on the techniques of statistical mechanics) to support those wishing to further develop or implement the theory of rand...