WorldWideScience

Sample records for two-colorable graph states

  1. Two-colorable graph states with maximal Schmidt measure

    International Nuclear Information System (INIS)

    Severini, Simone

    2006-01-01

    The Schmidt measure was introduced by Eisert and Briegel for quantifying the degree of entanglement of multipartite quantum systems [J. Eisert, H.-J. Briegel, Phys. Rev. A 64 (2001) 22306]. For two-colorable graph states, the Schmidt measure is related to the spectrum of the associated graph. We observe that almost all two-colorable graph states have maximal Schmidt measure and we construct specific examples. By making appeal to a result of Ehrenfeucht et al. [A. Ehrenfeucht, T. Harju, G. Rozenberg, Discrete Math. 278 (2004) 45], we point out that the graph operations called local complementation and switching form a transitive group acting on the set of all graph states of a given dimension

  2. Two-color studies of autoionizing states of small molecules

    International Nuclear Information System (INIS)

    Pratt, S.T.; Dehmer, P.M.; Dehmer, J.L.; Tomkins, F.S.; O'Halloran, M.A.

    1989-01-01

    Two-color, resonantly enhanced multiphoton ionization is proving to be a valuable technique for the study of autoionizing states of small molecules. In this talk, results obtained by combining REMPI, photoelectron spectroscopy, and mass spectrometry will be discussed and will be illustrated by examples from our recent studies of rotational and vibrational autoionization in molecular hydrogen and rotational autoionization in nitric oxide. 2 refs., 1 fig

  3. A semiclassical approach for two-color four-mode solid-state superfluorescence

    International Nuclear Information System (INIS)

    Lambruschini, C.L.P.

    1991-05-01

    A model for multilevel superfluorescence is presented. By using a parametric solution of this model we explain basic features in the two-color solid-state superfluorescence experiments of Florian, Schwan and Schmid. (author). 23 refs

  4. Bell inequalities for graph states

    International Nuclear Information System (INIS)

    Toth, G.; Hyllus, P.; Briegel, H.J.; Guehne, O.

    2005-01-01

    Full text: In the last years graph states have attracted an increasing interest in the field of quantum information theory. Graph states form a family of multi-qubit states which comprises many popular states such as the GHZ states and the cluster states. They also play an important role in applications. For instance, measurement based quantum computation uses graph states as resources. From a theoretical point of view, it is remarkable that graph states allow for a simple description in terms of stabilizing operators. In this contribution, we investigate the non-local properties of graph states. We derive a family of Bell inequalities which require three measurement settings for each party and are maximally violated by graph states. In turn, any graph state violates at least one of the inequalities. We show that for certain types of graph states the violation of these inequalities increases exponentially with the number of qubits. We also discuss connections to other entanglement properties such as the positively of the partial transpose or the geometric measure of entanglement. (author)

  5. Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers.

    Science.gov (United States)

    Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas

    2014-03-01

    We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.

  6. Quantum information processing with graph states

    International Nuclear Information System (INIS)

    Schlingemann, Dirk-Michael

    2005-04-01

    Graph states are multiparticle states which are associated with graphs. Each vertex of the graph corresponds to a single system or particle. The links describe quantum correlations (entanglement) between pairs of connected particles. Graph states were initiated independently by two research groups: On the one hand, graph states were introduced by Briegel and Raussendorf as a resource for a new model of one-way quantum computing, where algorithms are implemented by a sequence of measurements at single particles. On the other hand, graph states were developed by the author of this thesis and ReinhardWerner in Braunschweig, as a tool to build quantum error correcting codes, called graph codes. The connection between the two approaches was fully realized in close cooperation of both research groups. This habilitation thesis provides a survey of the theory of graph codes, focussing mainly, but not exclusively on the author's own research work. We present the theoretical and mathematical background for the analysis of graph codes. The concept of one-way quantum computing for general graph states is discussed. We explicitly show how to realize the encoding and decoding device of a graph code on a one-way quantum computer. This kind of implementation is to be seen as a mathematical description of a quantum memory device. In addition to that, we investigate interaction processes, which enable the creation of graph states on very large systems. Particular graph states can be created, for instance, by an Ising type interaction between next neighbor particles which sits at the points of an infinitely extended cubic lattice. Based on the theory of quantum cellular automata, we give a constructive characterization of general interactions which create a translationally invariant graph state. (orig.)

  7. Optical generation of matter qubit graph states

    International Nuclear Information System (INIS)

    Benjamin, S C; Eisert, J; Stace, T M

    2005-01-01

    We present a scheme for rapidly entangling matter qubits in order to create graph states for one-way quantum computing. The qubits can be simple three-level systems in separate cavities. Coupling involves only local fields and a static (unswitched) linear optics network. Fusion of graph-state sections occurs with, in principle, zero probability of damaging the nascent graph state. We avoid the finite thresholds of other schemes by operating on two entangled pairs, so that each generates exactly one photon. We do not require the relatively slow single qubit local flips to be applied during the growth phase: growth of the graph state can then become a purely optical process. The scheme naturally generates graph states with vertices of high degree and so is easily able to construct minimal graph states, with consequent resource savings. The most efficient approach will be to create new graph-state edges even as qubits elsewhere are measured, in a 'just in time' approach. An error analysis indicates that the scheme is relatively robust against imperfections in the apparatus

  8. Determining X-chains in graph states

    International Nuclear Information System (INIS)

    Wu, Jun-Yi; Kampermann, Hermann; Bruß, Dagmar

    2016-01-01

    The representation of graph states in the X-basis as well as the calculation of graph state overlaps can efficiently be performed by using the concept of X-chains (Wu et al 2015 Phys. Rev. A 92 012322). We present a necessary and sufficient criterion for X-chains and show that they can efficiently be determined by the Bareiss algorithm. An analytical approach for searching X-chain groups of a graph state is proposed. Furthermore we generalize the concept of X-chains to so-called Euler chains, whose induced subgraphs are Eulerian. This approach helps to determine if a given vertex set is an X-chain and we show how Euler chains can be used in the construction of multipartite Bell inequalities for graph states. (paper)

  9. Deterministic dense coding and faithful teleportation with multipartite graph states

    International Nuclear Information System (INIS)

    Huang, C.-Y.; Yu, I-C.; Lin, F.-L.; Hsu, L.-Y.

    2009-01-01

    We propose schemes to perform the deterministic dense coding and faithful teleportation with multipartite graph states. We also find the sufficient and necessary condition of a viable graph state for the proposed schemes. That is, for the associated graph, the reduced adjacency matrix of the Tanner-type subgraph between senders and receivers should be invertible.

  10. Adiabatic graph-state quantum computation

    International Nuclear Information System (INIS)

    Antonio, B; Anders, J; Markham, D

    2014-01-01

    Measurement-based quantum computation (MBQC) and holonomic quantum computation (HQC) are two very different computational methods. The computation in MBQC is driven by adaptive measurements executed in a particular order on a large entangled state. In contrast in HQC the system starts in the ground subspace of a Hamiltonian which is slowly changed such that a transformation occurs within the subspace. Following the approach of Bacon and Flammia, we show that any MBQC on a graph state with generalized flow (gflow) can be converted into an adiabatically driven holonomic computation, which we call adiabatic graph-state quantum computation (AGQC). We then investigate how properties of AGQC relate to the properties of MBQC, such as computational depth. We identify a trade-off that can be made between the number of adiabatic steps in AGQC and the norm of H-dot as well as the degree of H, in analogy to the trade-off between the number of measurements and classical post-processing seen in MBQC. Finally the effects of performing AGQC with orderings that differ from standard MBQC are investigated. (paper)

  11. Greenberger-Horne-Zeilinger paradoxes from qudit graph states.

    Science.gov (United States)

    Tang, Weidong; Yu, Sixia; Oh, C H

    2013-03-08

    One fascinating way of revealing quantum nonlocality is the all-versus-nothing test due to Greenberger, Horne, and Zeilinger (GHZ) known as the GHZ paradox. So far genuine multipartite and multilevel GHZ paradoxes are known to exist only in systems containing an odd number of particles. Here we shall construct GHZ paradoxes for an arbitrary number (greater than 3) of particles with the help of qudit graph states on a special kind of graphs, called GHZ graphs. Furthermore, based on the GHZ paradox arising from a GHZ graph, we derive a Bell inequality with two d-outcome observables for each observer, whose maximal violation attained by the corresponding graph state, and a Kochen-Specker inequality testing the quantum contextuality in a state-independent fashion.

  12. Efficient growth of complex graph states via imperfect path erasure

    International Nuclear Information System (INIS)

    Campbell, Earl T; Fitzsimons, Joseph; Benjamin, Simon C; Kok, Pieter

    2007-01-01

    Given a suitably large and well connected (complex) graph state, any quantum algorithm can be implemented purely through local measurements on the individual qubits. Measurements can also be used to create the graph state: path erasure techniques allow one to entangle multiple qubits by determining only global properties of the qubits. Here, this powerful approach is extended by demonstrating that even imperfect path erasure can produce the required graph states with high efficiency. By characterizing the degree of error in each path erasure attempt, one can subsume the resulting imperfect entanglement into an extended graph state formalism. The subsequent growth of the improper graph state can be guided, through a series of strategic decisions, in such a way as to bound the growth of the error and eventually yield a high-fidelity graph state. As an implementation of these techniques, we develop an analytic model for atom (or atom-like) qubits in mismatched cavities, under the double-heralding entanglement procedure of Barrett and Kok (2005 Phys. Rev. A 71 060310). Compared to straightforward post-selection techniques our protocol offers a dramatic improvement in growing complex high-fidelity graph states

  13. Two-setting Bell inequalities for graph states

    International Nuclear Information System (INIS)

    Toth, Geza; Guehne, Otfried; Briegel, Hans J.

    2006-01-01

    We present Bell inequalities for graph states with a high violation of local realism. In particular, we show that there is a basic Bell inequality for every nontrivial graph state which is violated by the state at least by a factor of 2. This inequality needs the measurement of, at most, two operators for each qubit and involves only some of the qubits. We also show that for some families of graph states composite Bell inequalities can be constructed such that the violation of local realism increases exponentially with the number of qubits. We prove that some of our inequalities are facets of the convex polytope containing the many-body correlations consistent with local hidden variable models. Our Bell inequalities are built from stabilizing operators of graph states

  14. Random graph states, maximal flow and Fuss-Catalan distributions

    International Nuclear Information System (INIS)

    Collins, BenoIt; Nechita, Ion; Zyczkowski, Karol

    2010-01-01

    For any graph consisting of k vertices and m edges we construct an ensemble of random pure quantum states which describe a system composed of 2m subsystems. Each edge of the graph represents a bipartite, maximally entangled state. Each vertex represents a random unitary matrix generated according to the Haar measure, which describes the coupling between subsystems. Dividing all subsystems into two parts, one may study entanglement with respect to this partition. A general technique to derive an expression for the average entanglement entropy of random pure states associated with a given graph is presented. Our technique relies on Weingarten calculus and flow problems. We analyze the statistical properties of spectra of such random density matrices and show for which cases they are described by the free Poissonian (Marchenko-Pastur) distribution. We derive a discrete family of generalized, Fuss-Catalan distributions and explicitly construct graphs which lead to ensembles of random states characterized by these novel distributions of eigenvalues.

  15. Network-based Arbitrated Quantum Signature Scheme with Graph State

    Science.gov (United States)

    Ma, Hongling; Li, Fei; Mao, Ningyi; Wang, Yijun; Guo, Ying

    2017-08-01

    Implementing an arbitrated quantum signature(QAS) through complex networks is an interesting cryptography technology in the literature. In this paper, we propose an arbitrated quantum signature for the multi-user-involved networks, whose topological structures are established by the encoded graph state. The determinative transmission of the shared keys, is enabled by the appropriate stabilizers performed on the graph state. The implementation of this scheme depends on the deterministic distribution of the multi-user-shared graph state on which the encoded message can be processed in signing and verifying phases. There are four parties involved, the signatory Alice, the verifier Bob, the arbitrator Trent and Dealer who assists the legal participants in the signature generation and verification. The security is guaranteed by the entanglement of the encoded graph state which is cooperatively prepared by legal participants in complex quantum networks.

  16. Two-color infrared detector

    Science.gov (United States)

    Klem, John F; Kim, Jin K

    2014-05-13

    A two-color detector includes a first absorber layer. The first absorber layer exhibits a first valence band energy characterized by a first valence band energy function. A barrier layer adjoins the first absorber layer at a first interface. The barrier layer exhibits a second valence band energy characterized by a second valence band energy function. The barrier layer also adjoins a second absorber layer at a second interface. The second absorber layer exhibits a third valence band energy characterized by a third valence band energy function. The first and second valence band energy functions are substantially functionally or physically continuous at the first interface and the second and third valence band energy functions are substantially functionally or physically continuous at the second interface.

  17. Distributed Graph-Based State Space Generation

    NARCIS (Netherlands)

    Blom, Stefan; Kant, Gijs; Rensink, Arend; De Lara, J.; Varro, D.

    LTSMIN provides a framework in which state space generation can be distributed easily over many cores on a single compute node, as well as over multiple compute nodes. The tool works on the basis of a vector representation of the states; the individual cores are assigned the task of computing all

  18. Spectral stability of shifted states on star graphs

    Science.gov (United States)

    Kairzhan, Adilbek; Pelinovsky, Dmitry E.

    2018-03-01

    We consider the nonlinear Schrödinger (NLS) equation with the subcritical power nonlinearity on a star graph consisting of N edges and a single vertex under generalized Kirchhoff boundary conditions. The stationary NLS equation may admit a family of solitary waves parameterized by a translational parameter, which we call the shifted states. The two main examples include (i) the star graph with even N under the classical Kirchhoff boundary conditions and (ii) the star graph with one incoming edge and N  -  1 outgoing edges under a single constraint on coefficients of the generalized Kirchhoff boundary conditions. We obtain the general counting results on the Morse index of the shifted states and apply them to the two examples. In the case of (i), we prove that the shifted states with even N ≥slant 4 are saddle points of the action functional which are spectrally unstable under the NLS flow. In the case of (ii), we prove that the shifted states with the monotone profiles in the N  -  1 edges are spectrally stable, whereas the shifted states with non-monotone profiles in the N  -  1 edges are spectrally unstable, the two families intersect at the half-soliton states which are spectrally stable but nonlinearly unstable under the NLS flow. Since the NLS equation on a star graph with shifted states can be reduced to the homogeneous NLS equation on an infinite line, the spectral instability of shifted states is due to the perturbations breaking this reduction. We give a simple argument suggesting that the spectrally stable shifted states in the case of (ii) are nonlinearly unstable under the NLS flow due to the perturbations breaking the reduction to the homogeneous NLS equation.

  19. Graph state generation with noisy mirror-inverting spin chains

    International Nuclear Information System (INIS)

    Clark, Stephen R; Klein, Alexander; Bruderer, Martin; Jaksch, Dieter

    2007-01-01

    We investigate the influence of noise on a graph state generation scheme which exploits a mirror inverting spin chain. Within this scheme the spin chain is used repeatedly as an entanglement bus (EB) to create multi-partite entanglement. The noise model we consider comprises of each spin of this EB being exposed to independent local noise which degrades the capabilities of the EB. Here we concentrate on quantifying its performance as a single-qubit channel and as a mediator of a two-qubit entangling gate, since these are basic operations necessary for graph state generation using the EB. In particular, for the single-qubit case we numerically calculate the average channel fidelity and whether the channel becomes entanglement breaking, i.e. expunges any entanglement the transferred qubit may have with other external qubits. We find that neither local decay nor dephasing noise cause entanglement breaking. This is in contrast to local thermal and depolarizing noise where we determine a critical length and critical noise coupling, respectively, at which entanglement breaking occurs. The critical noise coupling for local depolarizing noise is found to exhibit a power-law dependence on the chain length. For two-qubits we similarly compute the average gate fidelity and whether the ability for this gate to create entanglement is maintained. The concatenation of these noisy gates for the construction of a five-qubit linear cluster state and a Greenberger-Horne-Zeilinger state indicates that the level of noise that can be tolerated for graph state generation is tightly constrained

  20. An Infinite Family of Circulant Graphs with Perfect State Transfer in Discrete Quantum Walks

    OpenAIRE

    Zhan, Hanmeng

    2017-01-01

    We study perfect state transfer in a discrete quantum walk. In particular, we show that there are infinitely many $4$-regular circulant graphs that admit perfect state transfer between antipodal vertices. To the best of our knowledge, previously there was no infinite family of $k$-regular graphs with perfect state transfer, for any $k\\ge 3$.

  1. Bell-type inequalities embedded in the subgraph of graph states

    International Nuclear Information System (INIS)

    Hsu, L.-Y.

    2006-01-01

    We investigate the Bell-type inequalities of graph states. In this paper, Bell-type inequalities can be derived based on two kinds of the associated subgraphs of the graph states. First, the star subgraphs lead to the maximal violation of the modified Seevinck-Svetlichny inequalities. Second, cycle subgraphs lead to maximal violation of Bell-type inequalities. As a result, once the associated graph of a graph state is given, the corresponding Bell operators can be immediatedly determined using stabilizing generators. In the above Bell-type inequalities, two measurement settings for each party are required

  2. Perfect state transfer in unitary Cayley graphs over local rings

    Directory of Open Access Journals (Sweden)

    Yotsanan Meemark

    2014-12-01

    Full Text Available In this work, using eigenvalues and eigenvectors of unitary Cayley graphs over finite local rings and elementary linear algebra, we characterize which local rings allowing PST occurring in its unitary Cayley graph. Moreover, we have some developments when $R$ is a product of local rings.

  3. Visibility graphs for fMRI data: Multiplex temporal graphs and their modulations across resting-state networks

    Directory of Open Access Journals (Sweden)

    Speranza Sannino

    2017-10-01

    Full Text Available Visibility algorithms are a family of methods that map time series into graphs, such that the tools of graph theory and network science can be used for the characterization of time series. This approach has proved a convenient tool, and visibility graphs have found applications across several disciplines. Recently, an approach has been proposed to extend this framework to multivariate time series, allowing a novel way to describe collective dynamics. Here we test their application to fMRI time series, following two main motivations, namely that (a this approach allows vs to simultaneously capture and process relevant aspects of both local and global dynamics in an easy and intuitive way, and (b this provides a suggestive bridge between time series and network theory that nicely fits the consolidating field of network neuroscience. Our application to a large open dataset reveals differences in the similarities of temporal networks (and thus in correlated dynamics across resting-state networks, and gives indications that some differences in brain activity connected to psychiatric disorders could be picked up by this approach. Here we present the first application of multivariate visibility graphs to fMRI data. Visibility graphs are a way to represent a time series as a temporal network, evidencing specific aspects of its dynamics, such as extreme events. Multivariate time series, as those encountered in neuroscience, and in fMRI in particular, can be seen as a multiplex network, in which each layer represents a time series (a region of interest in the brain in our case. Here we report the method, we describe some relevant aspects of its application to BOLD time series, and we discuss the analogies and differences with existing methods. Finally, we present an application to a high-quality, publicly available dataset, containing healthy subjects and psychotic patients, and we discuss our findings. All the code to reproduce the analyses and the

  4. Two-color walking Peregrine solitary waves.

    Science.gov (United States)

    Baronio, Fabio; Chen, Shihua; Mihalache, Dumitru

    2017-09-15

    We study the extreme localization of light, evolving upon a non-zero background, in two-color parametric wave interaction in nonlinear quadratic media. We report the existence of quadratic Peregrine solitary waves, in the presence of significant group-velocity mismatch between the waves (or Poynting vector beam walk-off), in the regime of cascading second-harmonic generation. This finding opens a novel path for the experimental demonstration of extreme rogue waves in ultrafast quadratic nonlinear optics.

  5. Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings

    Science.gov (United States)

    Krenn, Mario; Gu, Xuemei; Zeilinger, Anton

    2017-12-01

    We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory—such as Hall's marriage problem—are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).

  6. Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings.

    Science.gov (United States)

    Krenn, Mario; Gu, Xuemei; Zeilinger, Anton

    2017-12-15

    We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory-such as Hall's marriage problem-are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).

  7. Entanglement of the valence-bond-solid state on an arbitrary graph

    International Nuclear Information System (INIS)

    Xu Ying; Korepin, Vladimir E

    2008-01-01

    The Affleck-Kennedy-Lieb-Tasaki (AKLT) spin interacting model can be defined on an arbitrary graph. We explain the construction of the AKLT Hamiltonian. Given certain conditions, the ground state is unique and known as the valence-bond-solid (VBS) state. It can be used in measurement-based quantum computation as a resource state instead of the cluster state. We study the VBS ground state on an arbitrary connected graph. The graph is cut into two disconnected parts: the block and the environment. We study the entanglement between these two parts and prove that many eigenvalues of the density matrix of the block are zero. We describe a subspace of eigenvectors of the density matrix corresponding to non-zero eigenvalues. The subspace is the degenerate ground states of some Hamiltonian which we call the block Hamiltonian

  8. Spinor Slow Light and Two-Color Qubits

    Science.gov (United States)

    Yu, Ite; Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriasov, Viaceslav; Chang, Kao-Fang; Cho, Hung-Wen; Juzeliunas, Gediminas; Yu, Ite A.

    2015-05-01

    We report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by six light fields. The oscillation due to the interaction between the two components was observed. SSL can be used to achieve high conversion efficiencies in the sum frequency generation and is a better method than the widely-used double- Λ scheme. On the basis of the stored light, our data showed that the DT scheme behaves like the two outcomes of an interferometer enabling precision measurements of frequency detuning. Furthermore, the single-photon SSL can be considered as the qubit with the superposition state of two frequency modes or, simply, as the two-color qubit. We experimentally demonstrated a possible application of the DT scheme as quantum memory/rotator for the two-color qubit. This work opens up a new direction in the EIT/slow light research. yu@phys.nthu.edu.tw

  9. Local unitary versus local Clifford equivalence of stabilizer and graph states

    International Nuclear Information System (INIS)

    Zeng, Bei; Chung, Hyeyoun; Cross, Andrew W.; Chuang, Isaac L.

    2007-01-01

    The equivalence of stabilizer states under local transformations is of fundamental interest in understanding properties and uses of entanglement. Two stabilizer states are equivalent under the usual stochastic local operations and classical communication criterion if and only if they are equivalent under local unitary (LU) operations. More surprisingly, under certain conditions, two LU-equivalent stabilizer states are also equivalent under local Clifford (LC) operations, as was shown by Van den Nest et al. [Phys. Rev. A 71, 062323 (2005)]. Here, we broaden the class of stabilizer states for which LU equivalence implies LC equivalence (LU LC) to include all stabilizer states represented by graphs with cycles of length neither 3 nor 4. To compare our result with Van den Nest et al.'s, we show that any stabilizer state of distance δ=2 is beyond their criterion. We then further prove that LU LC holds for a more general class of stabilizer states of δ=2. We also explicitly construct graphs representing δ>2 stabilizer states which are beyond their criterion: we identify all 58 graphs with up to 11 vertices and construct graphs with 2 m -1 (m≥4) vertices using quantum error-correcting codes which have non-Clifford transversal gates

  10. Energy Minimization of Discrete Protein Titration State Models Using Graph Theory

    Science.gov (United States)

    Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A.

    2016-01-01

    There are several applications in computational biophysics which require the optimization of discrete interacting states; e.g., amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial-time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of “maximum flow-minimum cut” graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein, and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial-time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered. PMID:27089174

  11. Energy Minimization of Discrete Protein Titration State Models Using Graph Theory.

    Science.gov (United States)

    Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A

    2016-08-25

    There are several applications in computational biophysics that require the optimization of discrete interacting states, for example, amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of "maximum flow-minimum cut" graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered.

  12. Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory.

    Science.gov (United States)

    Khazaee, Ali; Ebrahimzadeh, Ata; Babajani-Feremi, Abbas

    2015-11-01

    Study of brain network on the basis of resting-state functional magnetic resonance imaging (fMRI) has provided promising results to investigate changes in connectivity among different brain regions because of diseases. Graph theory can efficiently characterize different aspects of the brain network by calculating measures of integration and segregation. In this study, we combine graph theoretical approaches with advanced machine learning methods to study functional brain network alteration in patients with Alzheimer's disease (AD). Support vector machine (SVM) was used to explore the ability of graph measures in diagnosis of AD. We applied our method on the resting-state fMRI data of twenty patients with AD and twenty age and gender matched healthy subjects. The data were preprocessed and each subject's graph was constructed by parcellation of the whole brain into 90 distinct regions using the automated anatomical labeling (AAL) atlas. The graph measures were then calculated and used as the discriminating features. Extracted network-based features were fed to different feature selection algorithms to choose most significant features. In addition to the machine learning approach, statistical analysis was performed on connectivity matrices to find altered connectivity patterns in patients with AD. Using the selected features, we were able to accurately classify patients with AD from healthy subjects with accuracy of 100%. Results of this study show that pattern recognition and graph of brain network, on the basis of the resting state fMRI data, can efficiently assist in the diagnosis of AD. Classification based on the resting-state fMRI can be used as a non-invasive and automatic tool to diagnosis of Alzheimer's disease. Copyright © 2015 International Federation of Clinical Neurophysiology. All rights reserved.

  13. State space model extraction of thermohydraulic systems – Part I: A linear graph approach

    International Nuclear Information System (INIS)

    Uren, K.R.; Schoor, G. van

    2013-01-01

    Thermohydraulic simulation codes are increasingly making use of graphical design interfaces. The user can quickly and easily design a thermohydraulic system by placing symbols on the screen resembling system components. These components can then be connected to form a system representation. Such system models may then be used to obtain detailed simulations of the physical system. Usually this kind of simulation models are too complex and not ideal for control system design. Therefore, a need exists for automated techniques to extract lumped parameter models useful for control system design. The goal of this first paper, in a two part series, is to propose a method that utilises a graphical representation of a thermohydraulic system, and a lumped parameter modelling approach, to extract state space models. In this methodology each physical domain of the thermohydraulic system is represented by a linear graph. These linear graphs capture the interaction between all components within and across energy domains – hydraulic, thermal and mechanical. These linear graphs are analysed using a graph-theoretic approach to derive reduced order state space models. These models capture the dominant dynamics of the thermohydraulic system and are ideal for control system design purposes. The proposed state space model extraction method is demonstrated by considering a U-tube system. A non-linear state space model is extracted representing both the hydraulic and thermal domain dynamics of the system. The simulated state space model is compared with a Flownex ® model of the U-tube. Flownex ® is a validated systems thermal-fluid simulation software package. - Highlights: • A state space model extraction methodology based on graph-theoretic concepts. • An energy-based approach to consider multi-domain systems in a common framework. • Allow extraction of transparent (white-box) state space models automatically. • Reduced order models containing only independent state

  14. Probing Xe electronic structure by two-color HHG

    International Nuclear Information System (INIS)

    Faccialà, D; Ciriolo, A G; De Silvestri, S; Devetta, M; Negro, M; Stagira, S; Vozzi, C; Pabst, S; Bruner, B D; Dudovich, N; Soifer, H

    2015-01-01

    The aim of this study is probing the multi-electron behavior in xenon by two-color driven high harmonic generation. By changing the relative polarization of the two colors we were able to study different aspects of the multi-electron response. (paper)

  15. Efficient Sampling of the Structure of Crypto Generators' State Transition Graphs

    Science.gov (United States)

    Keller, Jörg

    Cryptographic generators, e.g. stream cipher generators like the A5/1 used in GSM networks or pseudo-random number generators, are widely used in cryptographic network protocols. Basically, they are finite state machines with deterministic transition functions. Their state transition graphs typically cannot be analyzed analytically, nor can they be explored completely because of their size which typically is at least n = 264. Yet, their structure, i.e. number and sizes of weakly connected components, is of interest because a structure deviating significantly from expected values for random graphs may form a distinguishing attack that indicates a weakness or backdoor. By sampling, one randomly chooses k nodes, derives their distribution onto connected components by graph exploration, and extrapolates these results to the complete graph. In known algorithms, the computational cost to determine the component for one randomly chosen node is up to O(√n), which severely restricts the sample size k. We present an algorithm where the computational cost to find the connected component for one randomly chosen node is O(1), so that a much larger sample size k can be analyzed in a given time. We report on the performance of a prototype implementation, and about preliminary analysis for several generators.

  16. Discriminating between brain rest and attention states using fMRI connectivity graphs and subtree SVM

    Science.gov (United States)

    Mokhtari, Fatemeh; Bakhtiari, Shahab K.; Hossein-Zadeh, Gholam Ali; Soltanian-Zadeh, Hamid

    2012-02-01

    Decoding techniques have opened new windows to explore the brain function and information encoding in brain activity. In the current study, we design a recursive support vector machine which is enriched by a subtree graph kernel. We apply the classifier to discriminate between attentional cueing task and resting state from a block design fMRI dataset. The classifier is trained using weighted fMRI graphs constructed from activated regions during the two mentioned states. The proposed method leads to classification accuracy of 1. It is also able to elicit discriminative regions and connectivities between the two states using a backward edge elimination algorithm. This algorithm shows the importance of regions including cerebellum, insula, left middle superior frontal gyrus, post cingulate cortex, and connectivities between them to enhance the correct classification rate.

  17. Effects of a static electric field on two-color photoassociation between different atoms

    International Nuclear Information System (INIS)

    Chakraborty, Debashree; Deb, Bimalendu

    2014-01-01

    We study non-perturbative effects of a static electric field on two-color photoassociation of different atoms. A static electric field induces anisotropy in scattering between two different atoms and hybridizes field-free rotational states of heteronuclear dimers or polar molecules. In a previous paper [D. Chakraborty et al., J. Phys. B 44, 095201 (2011)], the effects of a static electric field on one-color photoassociation between different atoms has been described through field-modified ground-state scattering states, neglecting electric field effects on heteronuclear diatomic bound states. To study the effects of a static electric field on heteronuclear bound states, and the resulting influence on Raman-type two-color photoassociation between different atoms in the presence of a static electric field, we develop a non-perturbative numerical method to calculate static electric field-dressed heteronuclear bound states. We show that the static electric field induced scattering anisotropy as well as hybridization of rotational states strongly influence two-color photoassociation spectra, leading to significant enhancement in PA rate and large shift. In particular, for static electric field strengths of a few hundred kV/cm, two-color PA rate involving high-lying bound states in electronic ground-state increases by several orders of magnitude even in the weak photoassociative coupling regime

  18. Long-range predissociation in two-color photoassociation of ultracold Na atoms

    NARCIS (Netherlands)

    Molenaar, P.A.; Straten, P. van der; Heideman, H.G.M.

    1997-01-01

    We report two-color photo-associative ionization of sodium in a Magneto-Optical Trap. The experimental results yield information on both singly and doubly excited states. We find that the highest bound vibrational levels (v > 20) of the singly-excited 0^- g state predissociate into the 3²P3/2

  19. Hadronic equation of state in the statistical bootstrap model and linear graph theory

    International Nuclear Information System (INIS)

    Fre, P.; Page, R.

    1976-01-01

    Taking a statistical mechanical point og view, the statistical bootstrap model is discussed and, from a critical analysis of the bootstrap volume comcept, it is reached a physical ipothesis, which leads immediately to the hadronic equation of state provided by the bootstrap integral equation. In this context also the connection between the statistical bootstrap and the linear graph theory approach to interacting gases is analyzed

  20. Finite density two color chiral perturbation theory revisited

    Science.gov (United States)

    Adhikari, Prabal; Beleznay, Soma B.; Mannarelli, Massimo

    2018-06-01

    We revisit two-color, two-flavor chiral perturbation theory at finite isospin and baryon density. We investigate the phase diagram obtained varying the isospin and the baryon chemical potentials, focusing on the phase transition occurring when the two chemical potentials are equal and exceed the pion mass (which is degenerate with the diquark mass). In this case, there is a change in the order parameter of the theory that does not lend itself to the standard picture of first order transitions. We explore this phase transition both within a Ginzburg-Landau framework valid in a limited parameter space and then by inspecting the full chiral Lagrangian in all the accessible parameter space. Across the phase transition between the two broken phases the order parameter becomes an SU(2) doublet, with the ground state fixing the expectation value of the sum of the magnitude squared of the pion and the diquark fields. Furthermore, we find that the Lagrangian at equal chemical potentials is invariant under global SU(2) transformations and construct the effective Lagrangian of the three Goldstone degrees of freedom by integrating out the radial fluctuations.

  1. Young's double-slit interference with two-color biphotons.

    Science.gov (United States)

    Zhang, De-Jian; Wu, Shuang; Li, Hong-Guo; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige

    2017-12-12

    In classical optics, Young's double-slit experiment with colored coherent light gives rise to individual interference fringes for each light frequency, referring to single-photon interference. However, two-photon double-slit interference has been widely studied only for wavelength-degenerate biphoton, known as subwavelength quantum lithography. In this work, we report double-slit interference experiments with two-color biphoton. Different from the degenerate case, the experimental results depend on the measurement methods. From a two-axis coincidence measurement pattern we can extract complete interference information about two colors. The conceptual model provides an intuitional picture of the in-phase and out-of-phase photon correlations and a complete quantum understanding about the which-path information of two colored photons.

  2. Graph-state preparation and quantum computation with global addressing of optical lattices

    International Nuclear Information System (INIS)

    Kay, Alastair; Pachos, Jiannis K.; Adams, Charles S.

    2006-01-01

    We present a way to manipulate ultracold atoms where four atomic levels are trapped by appropriately tuned optical lattices. When employed to perform quantum computation via global control, this unique structure dramatically reduces the number of steps involved in the control procedures, either for the standard, network, model, or for one-way quantum computation. The use of a far-blue-detuned lattice and a magnetically insensitive computational basis makes the scheme robust against decoherence. The present scheme is a promising candidate for experimental implementation of quantum computation and for graph-state preparation in one, two, or three spatial dimensions

  3. Rational choices for the wavelengths of a two color interferometer

    International Nuclear Information System (INIS)

    Jobes, F.C.

    1995-07-01

    If in a two color interferometer for plasma density measurements, the two wavelengths are chosen to have a ratio that is a rational number, and if the signals from each of the wavelengths are multiplied in frequency by the appropriate integer of the rational number and then heterodyned together, the resultant signal will have all effects of component motion nulled out. A phase measurement of this signal will have only plasma density information in it. With CO 2 lasers, it is possible to find suitable wavelength pairs which are close enough to rational numbers to produce an improvement of about 100 in density resolution, compared to standard two color interferometers

  4. Interaction graphs

    DEFF Research Database (Denmark)

    Seiller, Thomas

    2016-01-01

    Interaction graphs were introduced as a general, uniform, construction of dynamic models of linear logic, encompassing all Geometry of Interaction (GoI) constructions introduced so far. This series of work was inspired from Girard's hyperfinite GoI, and develops a quantitative approach that should...... be understood as a dynamic version of weighted relational models. Until now, the interaction graphs framework has been shown to deal with exponentials for the constrained system ELL (Elementary Linear Logic) while keeping its quantitative aspect. Adapting older constructions by Girard, one can clearly define...... "full" exponentials, but at the cost of these quantitative features. We show here that allowing interpretations of proofs to use continuous (yet finite in a measure-theoretic sense) sets of states, as opposed to earlier Interaction Graphs constructions were these sets of states were discrete (and finite...

  5. The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI.

    Science.gov (United States)

    Gargouri, Fatma; Kallel, Fathi; Delphine, Sebastien; Ben Hamida, Ahmed; Lehéricy, Stéphane; Valabregue, Romain

    2018-01-01

    Resting state functional MRI (rs-fMRI) is an imaging technique that allows the spontaneous activity of the brain to be measured. Measures of functional connectivity highly depend on the quality of the BOLD signal data processing. In this study, our aim was to study the influence of preprocessing steps and their order of application on small-world topology and their efficiency in resting state fMRI data analysis using graph theory. We applied the most standard preprocessing steps: slice-timing, realign, smoothing, filtering, and the tCompCor method. In particular, we were interested in how preprocessing can retain the small-world economic properties and how to maximize the local and global efficiency of a network while minimizing the cost. Tests that we conducted in 54 healthy subjects showed that the choice and ordering of preprocessing steps impacted the graph measures. We found that the csr (where we applied realignment, smoothing, and tCompCor as a final step) and the scr (where we applied realignment, tCompCor and smoothing as a final step) strategies had the highest mean values of global efficiency (eg) . Furthermore, we found that the fscr strategy (where we applied realignment, tCompCor, smoothing, and filtering as a final step), had the highest mean local efficiency (el) values. These results confirm that the graph theory measures of functional connectivity depend on the ordering of the processing steps, with the best results being obtained using smoothing and tCompCor as the final steps for global efficiency with additional filtering for local efficiency.

  6. Graph-based network analysis of resting-state functional MRI

    Directory of Open Access Journals (Sweden)

    Jinhui Wang

    2010-06-01

    Full Text Available In the past decade, resting-state functional MRI (R-fMRI measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain’s spontaneous or intrinsic (i.e., task-free activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain’s intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.

  7. Graph-based network analysis of resting-state functional MRI.

    Science.gov (United States)

    Wang, Jinhui; Zuo, Xinian; He, Yong

    2010-01-01

    In the past decade, resting-state functional MRI (R-fMRI) measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain's spontaneous or intrinsic (i.e., task-free) activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain's intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging, and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.

  8. The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI

    Directory of Open Access Journals (Sweden)

    Fatma Gargouri

    2018-02-01

    Full Text Available Resting state functional MRI (rs-fMRI is an imaging technique that allows the spontaneous activity of the brain to be measured. Measures of functional connectivity highly depend on the quality of the BOLD signal data processing. In this study, our aim was to study the influence of preprocessing steps and their order of application on small-world topology and their efficiency in resting state fMRI data analysis using graph theory. We applied the most standard preprocessing steps: slice-timing, realign, smoothing, filtering, and the tCompCor method. In particular, we were interested in how preprocessing can retain the small-world economic properties and how to maximize the local and global efficiency of a network while minimizing the cost. Tests that we conducted in 54 healthy subjects showed that the choice and ordering of preprocessing steps impacted the graph measures. We found that the csr (where we applied realignment, smoothing, and tCompCor as a final step and the scr (where we applied realignment, tCompCor and smoothing as a final step strategies had the highest mean values of global efficiency (eg. Furthermore, we found that the fscr strategy (where we applied realignment, tCompCor, smoothing, and filtering as a final step, had the highest mean local efficiency (el values. These results confirm that the graph theory measures of functional connectivity depend on the ordering of the processing steps, with the best results being obtained using smoothing and tCompCor as the final steps for global efficiency with additional filtering for local efficiency.

  9. The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI

    Science.gov (United States)

    Gargouri, Fatma; Kallel, Fathi; Delphine, Sebastien; Ben Hamida, Ahmed; Lehéricy, Stéphane; Valabregue, Romain

    2018-01-01

    Resting state functional MRI (rs-fMRI) is an imaging technique that allows the spontaneous activity of the brain to be measured. Measures of functional connectivity highly depend on the quality of the BOLD signal data processing. In this study, our aim was to study the influence of preprocessing steps and their order of application on small-world topology and their efficiency in resting state fMRI data analysis using graph theory. We applied the most standard preprocessing steps: slice-timing, realign, smoothing, filtering, and the tCompCor method. In particular, we were interested in how preprocessing can retain the small-world economic properties and how to maximize the local and global efficiency of a network while minimizing the cost. Tests that we conducted in 54 healthy subjects showed that the choice and ordering of preprocessing steps impacted the graph measures. We found that the csr (where we applied realignment, smoothing, and tCompCor as a final step) and the scr (where we applied realignment, tCompCor and smoothing as a final step) strategies had the highest mean values of global efficiency (eg). Furthermore, we found that the fscr strategy (where we applied realignment, tCompCor, smoothing, and filtering as a final step), had the highest mean local efficiency (el) values. These results confirm that the graph theory measures of functional connectivity depend on the ordering of the processing steps, with the best results being obtained using smoothing and tCompCor as the final steps for global efficiency with additional filtering for local efficiency. PMID:29497372

  10. Two-color photoionization and photoelectron studies by combining infrared and vacuum ultraviolet

    International Nuclear Information System (INIS)

    Ng, C.Y.

    2005-01-01

    Recent developments of two-color infrared (IR)-vacuum ultraviolet (VUV) and VUV-IR photoionization and photoelectron detection schemes for spectroscopic studies are described. By preparing molecules in selected rovibrational states by IR excitation prior to VUV-photoionization, state-selected and state-to-state photoionization cross sections can be obtained by IR-VUV-photoionization efficiency (IR-VUV-PIE) and IR-VUV-pulsed field ionization-photoelectron (IR-VUV-PFI-PE) measurements, respectively. Rotationally resolved autoionizing Rydberg states converging to excited ionic states, which cannot be observed by single-photon VUV-PIE measurements, can be examined by the IR-VUV-PIE scheme. By monitoring the photoion and the PFI-PE intensities at a fixed VUV energy as a function of IR frequency, the respective IR photoion and IR absorption spectra of the corresponding neutral molecule can be measured. Two-color VUV-IR photo-induced Rydberg ionization (PIRI) experiment, in which high-n Rydberg states are prepared by VUV-photoexcitation followed by IR-induced autoionization, has also been demonstrated. Since the IR-VUV-PIE, IR-VUV-PFI-PE, and VUV-IR-PIRI methods do not require the existence of a bound intermediate electronic state in the UV and are generally applicable to all molecules, the development of these two-color photoionization and photoelectron schemes is expected to significantly enhance the scope of VUV spectroscopy and chemistry

  11. Comparison between state graphs and fault trees for sequential and repairable systems

    International Nuclear Information System (INIS)

    Soussan, D.; Saignes, P.

    1996-01-01

    In French PSA (Probabilistic Safety Assessment) 1300 for the 1300 Mwe PWR plants carried out by EDF, sequential and reparable systems are modeled with state graphs. This method is particularly convenient for modeling dynamic systems with long-term missions but induces a bad traceability and understandability of models. In the objective of providing elements for rewriting PSA 1300 with only boolean models, EDF has asked CEA to participate to a methodological study. The aim is to carry out a feasibility study of transposition of state graphs models into fault trees on Component Cooling System and Essential Service Water System (CCS/ESWS) and to draw a methodological guide for transposition. The study realized on CCS/ESWS involves two main axes: quantification of cold source loss (as an accident sequence initiating event, called H1); quantification of the CCS/ESWS missions in accident sequences. The subject of this article is to show that this transformation is applicable with minimum distortions of the results and to determine the hypotheses, the conditions and the limits of application of this conversion. (authors). 2 refs

  12. Attosecond pulse trains generated using two color laser fields

    International Nuclear Information System (INIS)

    Mauritsson, J.; Louisiana State University, Baton Rouge, LA; Johnsson, P.; Gustafsson, E.; L'Hullier, A.; Schafer, K.J.; Gaarde, M.B.

    2006-01-01

    Complete test of publication follows. We present the generation of attosecond pulse trains from a superposition of an infrared (IR) laser field and its second harmonic. Our attosecond pulses are synthesized by selecting a number of synchronized harmonics generated in argon. By adding the second harmonic to the driving field the inversion symmetry of generation process is broken and both odd and even harmonics are generated. Consecutive half cycles in the two color field differ beyond the simple sign change that occurs in a one color field and have very different shapes and amplitudes. This sub-cycle structure of the field, which governs the generation of the attosecond pulses, depends strongly on the relative phase and intensity of the two fields, thereby providing additional control over the generation process. The generation of attosecond pulses is frequently described using the semi-classical three step model where an electron is: (1) ionized through tunneling ionization during one half cycle; (2) reaccelerated back towards the ion core by the next half cycle; where it (3) recombines with the ground-state releasing the access energy in a short burst of light. In the two color field the symmetry between the ionizing and reaccelerating field is broken, which leads to two possible scenarios: the electron can either be ionized during a strong half cycle and reaccelerated by a weaker field or vice versa. The periodicity is a full IR cycle in both cases and hence two trains of attosecond pulses are generated which are offset from each other. The generation efficiency, however, is very different for the two cases since it is determined mainly by the electric field strength at the time of tunneling and one of the trains will therefore dominate the other. We investigate experimentally both the spectral and temporal structure of the generated attosecond pulse trains as a function of the relative phase between the two driving fields. We find that for a wide range of

  13. Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder.

    Science.gov (United States)

    Xing, Mengqi; Tadayonnejad, Reza; MacNamara, Annmarie; Ajilore, Olusola; DiGangi, Julia; Phan, K Luan; Leow, Alex; Klumpp, Heide

    2017-01-01

    Functional magnetic resonance imaging (fMRI) resting-state studies show generalized social anxiety disorder (gSAD) is associated with disturbances in networks involved in emotion regulation, emotion processing, and perceptual functions, suggesting a network framework is integral to elucidating the pathophysiology of gSAD. However, fMRI does not measure the fast dynamic interconnections of functional networks. Therefore, we examined whole-brain functional connectomics with electroencephalogram (EEG) during resting-state. Resting-state EEG data was recorded for 32 patients with gSAD and 32 demographically-matched healthy controls (HC). Sensor-level connectivity analysis was applied on EEG data by using Weighted Phase Lag Index (WPLI) and graph analysis based on WPLI was used to determine clustering coefficient and characteristic path length to estimate local integration and global segregation of networks. WPLI results showed increased oscillatory midline coherence in the theta frequency band indicating higher connectivity in the gSAD relative to HC group during rest. Additionally, WPLI values positively correlated with state anxiety levels within the gSAD group but not the HC group. Our graph theory based connectomics analysis demonstrated increased clustering coefficient and decreased characteristic path length in theta-based whole brain functional organization in subjects with gSAD compared to HC. Theta-dependent interconnectivity was associated with state anxiety in gSAD and an increase in information processing efficiency in gSAD (compared to controls). Results may represent enhanced baseline self-focused attention, which is consistent with cognitive models of gSAD and fMRI studies implicating emotion dysregulation and disturbances in task negative networks (e.g., default mode network) in gSAD.

  14. Making ultracold molecules in a two-color pump-dump photoassociation scheme using chirped pulses

    International Nuclear Information System (INIS)

    Koch, Christiane P.; Luc-Koenig, Eliane; Masnou-Seeuws, Francoise

    2006-01-01

    This theoretical paper investigates the formation of ground state molecules from ultracold cesium atoms in a two-color scheme. Following previous work on photoassociation with chirped picosecond pulses [Luc-Koenig et al., Phys. Rev. A, 70, 033414 (2004)], we investigate stabilization by a second (dump) pulse. By appropriately choosing the dump pulse parameters and time delay with respect to the photoassociation pulse, we show that a large number of deeply bound molecules are created in the ground triplet state. We discuss (i) broad-bandwidth dump pulses which maximize the probability to form molecules while creating a broad vibrational distribution as well as (ii) narrow-bandwidth pulses populating a single vibrational ground state level, bound by 113 cm -1 . The use of chirped pulses makes the two-color scheme robust, simple, and efficient

  15. Tunneling ionization and harmonic generation in two-color fields

    International Nuclear Information System (INIS)

    Kondo, K.; Kobayashi, Y.; Sagisaka, A.; Nabekawa, Y.; Watanabe, S.

    1996-01-01

    Tunneling ionization and harmonic generation in two-color fields were studied with a fundamental beam (ω) and its harmonics (2ω,3ω), which were generated by a 100-fs Ti:sapphire laser. Ion yields of atoms and molecules were successfully controlled by means of a change in the relative phase between ω and 3ω pulses. Two-color interference was clearly observed in photoelectron spectra and harmonic spectra. In the ω endash 2ω field even-order harmonics were observed in which the intensity was almost equal to that of the odd harmonics because of an asymmetric optical field. These results were compared with the quasi-static model for ionization and with the quantum theory for harmonic generation. copyright 1996 Optical Society of America

  16. Design study for a two-color beta measurement system

    Science.gov (United States)

    1982-01-01

    Design analysis of the beam splitter combined two color beta system is presented. Conventional and dichroic beam splitters are discussed. Design analysis of the beta system employing two beams with focusing at separate points is presented. Alterations and basic parameters of the two beam system are discussed. Alterations in the focus of the initial laser and the returning beams are also discussed. Heterodyne efficiencies for the on axis and off axis reflected radiation are included.

  17. Making ultracold molecules in a two color pump-dump photoassociation scheme using chirped pulses

    OpenAIRE

    Koch, Christiane P.; Luc-Koenig, Eliane; Masnou-Seeuws, Françoise

    2005-01-01

    This theoretical paper investigates the formation of ground state molecules from ultracold cesium atoms in a two-color scheme. Following previous work on photoassociation with chirped picosecond pulses [Luc-Koenig et al., Phys. Rev. A {\\bf 70}, 033414 (2004)], we investigate stabilization by a second (dump) pulse. By appropriately choosing the dump pulse parameters and time delay with respect to the photoassociation pulse, we show that a large number of deeply bound molecules are created in t...

  18. Graph Aggregation

    NARCIS (Netherlands)

    Endriss, U.; Grandi, U.

    Graph aggregation is the process of computing a single output graph that constitutes a good compromise between several input graphs, each provided by a different source. One needs to perform graph aggregation in a wide variety of situations, e.g., when applying a voting rule (graphs as preference

  19. Two-color stabilization of atomic hydrogen in circularly polarized laser fields

    International Nuclear Information System (INIS)

    Bauer, D.; Ceccherini, F.

    2002-01-01

    The dynamic stabilization of atomic hydrogen against ionization in high-frequency single- and two-color, circularly polarized laser pulses is observed by numerically solving the three-dimensional, time-dependent Schroedinger equation. The single-color case is revisited and numerically determined ionization rates are compared with both, the exact and the approximate high-frequency Floquet rates. The positions of the peaks in the photoelectron spectra can be explained with the help of dressed initial states. In two-color laser fields of opposite circular polarization, the stabilized probability density may be shaped in various ways. For laser frequencies ω 1 and ω 2 =nω 1 , n=2,3,..., and sufficiently large excursion amplitudes (n+1) distinct probability density peaks are observed. This may be viewed as the generalization of the well-known 'dichotomy' in linearly polarized laser fields, i.e, as 'trichotomy', 'quatrochotomy', 'pentachotomy' etc. All those observed structures and their 'hula-hoop'-like dynamics can be understood with the help of high-frequency Floquet theory and the two-color Kramers-Henneberger transformation. The shaping of the probability density in the stabilization regime can be realized without additional loss in the survival probability, as compared to the corresponding single-color results

  20. Detectable states, cycle fluxes, and motility scaling of molecular motor kinesin: An integrative kinetic graph theory analysis

    Science.gov (United States)

    Ren, Jie

    2017-12-01

    The process by which a kinesin motor couples its ATPase activity with concerted mechanical hand-over-hand steps is a foremost topic of molecular motor physics. Two major routes toward elucidating kinesin mechanisms are the motility performance characterization of velocity and run length, and single-molecular state detection experiments. However, these two sets of experimental approaches are largely uncoupled to date. Here, we introduce an integrative motility state analysis based on a theorized kinetic graph theory for kinesin, which, on one hand, is validated by a wealth of accumulated motility data, and, on the other hand, allows for rigorous quantification of state occurrences and chemomechanical cycling probabilities. An interesting linear scaling for kinesin motility performance across species is discussed as well. An integrative kinetic graph theory analysis provides a powerful tool to bridge motility and state characterization experiments, so as to forge a unified effort for the elucidation of the working mechanisms of molecular motors.

  1. Graph sampling

    OpenAIRE

    Zhang, L.-C.; Patone, M.

    2017-01-01

    We synthesise the existing theory of graph sampling. We propose a formal definition of sampling in finite graphs, and provide a classification of potential graph parameters. We develop a general approach of Horvitz–Thompson estimation to T-stage snowball sampling, and present various reformulations of some common network sampling methods in the literature in terms of the outlined graph sampling theory.

  2. Identification of Voxels Confounded by Venous Signals Using Resting-State fMRI Functional Connectivity Graph Clustering

    Directory of Open Access Journals (Sweden)

    Klaudius eKalcher

    2015-12-01

    Full Text Available Identifying venous voxels in fMRI datasets is important to increase the specificity of fMRI analyses to microvasculature in the vicinity of the neural processes triggering the BOLD response. This is, however, difficult to achieve in particular in typical studies where magnitude images of BOLD EPI are the only data available. In this study, voxelwise functional connectivity graphs were computed on minimally preprocessed low TR (333 ms multiband resting-state fMRI data, using both high positive and negative correlations to define edges between nodes (voxels. A high correlation threshold for binarization ensures that most edges in the resulting sparse graph reflect the high coherence of signals in medium to large veins. Graph clustering based on the optimization of modularity was then employed to identify clusters of coherent voxels in this graph, and all clusters of 50 or more voxels were then interpreted as corresponding to medium to large veins. Indeed, a comparison with SWI reveals that 75.6 ± 5.9% of voxels within these large clusters overlap with veins visible in the SWI image or lie outside the brain parenchyma. Some of the remainingdifferences between the two modalities can be explained by imperfect alignment or geometric distortions between the two images. Overall, the graph clustering based method for identifying venous voxels has a high specificity as well as the additional advantages of being computed in the same voxel grid as the fMRI dataset itself and not needingany additional data beyond what is usually acquired (and exported in standard fMRI experiments.

  3. Two-color lattice QCD with staggered quarks

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, David

    2015-07-20

    The study of quantum chromodynamics (QCD) at finite temperature and density provides important contributions to the understanding of strong-interaction matter as it is present e.g. in nuclear matter and in neutron stars or as produced in heavy-ion collision experiments. Lattice QCD is a non-perturbative approach, where equations of motion for quarks and gluons are discretized on a finite space-time lattice. The method successfully describes the behavior of QCD in the vacuum and at finite temperature, however it cannot be applied to finite baryon density due to the fermion sign problem. Various QCD-like theories, that offer to draw conclusions about QCD, allow simulations also at finite densities. In this work we investigate two-color QCD as a popular example of a QCD-like theory free from the sign problem with methods from lattice gauge theory. For the generation of gauge configurations with two dynamical quark flavors in the staggered formalism with the ''rooting trick'' we apply the Rational Hybrid Monte Carlo (RHMC) algorithm. We carry out essential preparatory work for future simulations at finite density. As a start, we concentrate on the calculation of the effective potential for the Polyakov loop, which is an order parameter for the confinement-deconfinement transition, in dependence of the temperature and quark mass. It serves as an important input for effective models of QCD. We obtain the effective potential via the histogram method from local distributions of the Polyakov loop. To study the influence of dynamical quarks on gluonic observables, the simulations are performed with large quark masses and are compared to calculations in the pure gauge theory. In the second part of the thesis we examine aspects of the chiral phase transition along the temperature axis. The symmetry group of chiral symmetry in two-color QCD is enlarged to SU(2N{sub f}). Discretized two-color QCD in the staggered formalism exhibits a chiral symmetry breaking

  4. A technology mapping based on graph of excitations and outputs for finite state machines

    Science.gov (United States)

    Kania, Dariusz; Kulisz, Józef

    2017-11-01

    A new, efficient technology mapping method of FSMs, dedicated for PAL-based PLDs is proposed. The essence of the method consists in searching for the minimal set of PAL-based logic blocks that cover a set of multiple-output implicants describing the transition and output functions of an FSM. The method is based on a new concept of graph: the Graph of Excitations and Outputs. The proposed algorithm was tested using the FSM benchmarks. The obtained results were compared with the classical technology mapping of FSM.

  5. Study on two-color planar laser induced fluorescence thermometry

    International Nuclear Information System (INIS)

    Li Shaodan; Tan Sichao; Gao Puzhen; Lin Yuansheng

    2014-01-01

    Many of the convection heat transfer process are involved in the research of nuclear reactor thermal hydraulics. To experimentally determine the variation of the temperature field in those processes is important for the design and safety operation of the nuclear reactor. The application of the two-color planar laser induced fluorescence (PLIF) in the measurements of fluid temperature distribution is discussed in the paper. The laser dyes used here is rhodamine B (RhB) with negative temperature coefficient and fluorescein 27 (F127) with positive temperature coefficient. The beam of the laser light is adjusted to laser sheet by using the lens group. The fluid with dyes is excited by this laser sheet in a specific plane and temperature dependent fluorescence is released. The temperature field of the plane can be determined through the intensity information. Some technical aspects encountered in the application of the two-laser PLIF are discussed in the paper, such as the spectra characteristic of the dyes and the separation of the spectra. The calibration temperature is higher than the water saturation temperature (at atmosphere pressure). (authors)

  6. Graph spectrum

    NARCIS (Netherlands)

    Brouwer, A.E.; Haemers, W.H.; Brouwer, A.E.; Haemers, W.H.

    2012-01-01

    This chapter presents some simple results on graph spectra.We assume the reader is familiar with elementary linear algebra and graph theory. Throughout, J will denote the all-1 matrix, and 1 is the all-1 vector.

  7. A method for independent component graph analysis of resting-state fMRI

    DEFF Research Database (Denmark)

    de Paula, Demetrius Ribeiro; Ziegler, Erik; Abeyasinghe, Pubuditha M.

    2017-01-01

    Introduction Independent component analysis (ICA) has been extensively used for reducing task-free BOLD fMRI recordings into spatial maps and their associated time-courses. The spatially identified independent components can be considered as intrinsic connectivity networks (ICNs) of non-contiguou......Introduction Independent component analysis (ICA) has been extensively used for reducing task-free BOLD fMRI recordings into spatial maps and their associated time-courses. The spatially identified independent components can be considered as intrinsic connectivity networks (ICNs) of non......-contiguous regions. To date, the spatial patterns of the networks have been analyzed with techniques developed for volumetric data. Objective Here, we detail a graph building technique that allows these ICNs to be analyzed with graph theory. Methods First, ICA was performed at the single-subject level in 15 healthy...... parcellated regions. Third, between-node functional connectivity was established by building edge weights for each networks. Group-level graph analysis was finally performed for each network and compared to the classical network. Results Network graph comparison between the classically constructed network...

  8. Long-Range Predissociation in Two-Color Photoassociation of Ultracold Na Atoms

    International Nuclear Information System (INIS)

    Molenaar, P.A.; van der Straten, P.; Heideman, H.G.

    1996-01-01

    We report two-color photoassociative ionization of sodium in a magneto-optical trap. The experimental results yield information on both singly and doubly excited states. We find that the highest bound vibrational levels (v approx-gt 20) of the singly excited 0 g - state predissociate into the 3 2 P 3/2 +3 2 S 1/2 (F g =1) dissociation continuum due to avoided crossings of the hyperfine components of this potential with other molecular symmetries. Based on symmetry and energy consideration we argue that a doubly excited 1 u state remains autoionizing even when only a few GHz above the dissociation continuum. copyright 1996 The American Physical Society

  9. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.

    Science.gov (United States)

    Li, Rui; Zhang, Xiaodong; Li, Hanzhe; Zhang, Liming; Lu, Zhufeng; Chen, Jiangcheng

    2018-08-01

    Brain control technology can restore communication between the brain and a prosthesis, and choosing a Brain-Computer Interface (BCI) paradigm to evoke electroencephalogram (EEG) signals is an essential step for developing this technology. In this paper, the Scene Graph paradigm used for controlling prostheses was proposed; this paradigm is based on Steady-State Visual Evoked Potentials (SSVEPs) regarding the Scene Graph of a subject's intention. A mathematic model was built to predict SSVEPs evoked by the proposed paradigm and a sinusoidal stimulation method was used to present the Scene Graph stimulus to elicit SSVEPs from subjects. Then, a 2-degree of freedom (2-DOF) brain-controlled prosthesis system was constructed to validate the performance of the Scene Graph-SSVEP (SG-SSVEP)-based BCI. The classification of SG-SSVEPs was detected via the Canonical Correlation Analysis (CCA) approach. To assess the efficiency of proposed BCI system, the performances of traditional SSVEP-BCI system were compared. Experimental results from six subjects suggested that the proposed system effectively enhanced the SSVEP responses, decreased the degradation of SSVEP strength and reduced the visual fatigue in comparison with the traditional SSVEP-BCI system. The average signal to noise ratio (SNR) of SG-SSVEP was 6.31 ± 2.64 dB, versus 3.38 ± 0.78 dB of traditional-SSVEP. In addition, the proposed system achieved good performances in prosthesis control. The average accuracy was 94.58% ± 7.05%, and the corresponding high information transfer rate (IRT) was 19.55 ± 3.07 bit/min. The experimental results revealed that the SG-SSVEP based BCI system achieves the good performance and improved the stability relative to the conventional approach. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Two-color visible/vacuum ultraviolet photoelectron imaging dynamics of Br2.

    Science.gov (United States)

    Plenge, Jürgen; Nicolas, Christophe; Caster, Allison G; Ahmed, Musahid; Leone, Stephen R

    2006-10-07

    An experimental two-color photoionization dynamics study of laser-excited Br2 molecules is presented, combining pulsed visible laser excitation and tunable vacuum ultraviolet (VUV) synchrotron radiation with photoelectron imaging. The X 1Sigmag + -B 3Pi0+u transition in Br2 is excited at 527 nm corresponding predominantly to excitation of the v' = 28 vibrational level in the B 3Pi0+u state. Tunable VUV undulator radiation in the energy range of 8.40-10.15 eV is subsequently used to ionize the excited molecules to the X 2Pi32,12 state of the ion, and the ionic ground state is probed by photoelectron imaging. Similar experiments are performed using single-photon synchrotron ionization in the photon energy range of 10.75-12.50 eV without any laser excitation. Photoelectron kinetic energy distributions are extracted from the photoelectron images. In the case of two-color photoionization using resonant excitation of the intermediate B 3Pi0+u state, a broad distribution of photoelectron kinetic energies is observed, and in some cases even a bimodal distribution, which depends on the VUV photon energy. In contrast, for single-photon ionization, a single nearly Gaussian-shaped distribution is observed, which shifts to higher energy with photon energy. Simulated spectra based on Franck-Condon factors for the transitions Br2(X 1Sigmag+, v" = 0)-Br2 +(X 2Pi12,32, v+) and Br2(B 3Pi0+u, v' = 28)-Br2 +(X 2Pi12,32, v+) are generated. Comparison of these calculated spectra with the measured images suggests that the differences in the kinetic energy distributions for the two ionization processes reflect the different extensions of the vibrational wave functions in the v" = 0 electronic ground state (X 1Sigmag+) versus the electronically and vibrationally excited state (B 3Pi0+u, v' = 28).

  11. Two-color mid-infrared spectroscopy of optically doped semiconductors

    International Nuclear Information System (INIS)

    Forcales, M.; Klik, M.A.J.; Vinh, N.Q.; Phillips, J.; Wells, J-P.R.; Gregorkiewicz, T.

    2003-01-01

    Optical doping is an attractive method to tailor photonic properties of semiconductor matrices for development of solid-state electroluminescent structures. For practical applications, thermal stability of emission obtained from these materials is required. Thermal processes can be conveniently investigated by two-color spectroscopy in the visible and the mid-infrared. Free-electron laser is a versatile high-brilliance source of radiation in the latter spectral range. In this contribution, we briefly review some of the results obtained recently by the two-color spectroscopy with a free-electron laser in different semiconductors optically doped with rare earth and transition metal ions. Effects leading to both enhancement and quenching of emission from optical dopants will be presented. For InP:Yb, Si:Er, and Si:Cu activation of particular optically induced non-radiative recombination paths will be shown. For Si:Er and Si:Ag, observation of a low temperature optical memory effect will be reported

  12. Hadron wave functions as a probe of a two-color baryonic medium

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Alessandro [Swansea University, Department of Physics, College of Science, Swansea (United Kingdom); University of Helsinki, Department of Physics and Helsinki Institute of Physics, P.O. Box 64, Helsinki (Finland); Giudice, Pietro [Universitaet Muenster, Institut fuer Theoretische Physik, Muenster (Germany); Hands, Simon [Swansea University, Department of Physics, College of Science, Swansea (United Kingdom)

    2015-04-01

    The properties of the ground state of two-color QCD at non-zero baryon chemical potential μ present an interesting problem in strongly interacting gauge theory; in particular the nature of the physically relevant degrees of freedom in the superfluid phase in the post-onset regime μ > m{sub π} /2 still needs clarification. In this study we present evidence for in-medium effects at high μ by studying the wave functions of mesonic and diquark states using orthodox lattice simulation techniques, made possible by the absence of a sign problem for the model with N{sub f} = 2. Our results show that beyond onset the spatial extent of hadrons decreases as μ grows, and that the wave function profiles are consistent with the existence of a dynamically gapped Fermi surface in this regime. (orig.)

  13. Test-retest reliability of fMRI-based graph theoretical properties during working memory, emotion processing, and resting state.

    Science.gov (United States)

    Cao, Hengyi; Plichta, Michael M; Schäfer, Axel; Haddad, Leila; Grimm, Oliver; Schneider, Michael; Esslinger, Christine; Kirsch, Peter; Meyer-Lindenberg, Andreas; Tost, Heike

    2014-01-01

    The investigation of the brain connectome with functional magnetic resonance imaging (fMRI) and graph theory analyses has recently gained much popularity, but little is known about the robustness of these properties, in particular those derived from active fMRI tasks. Here, we studied the test-retest reliability of brain graphs calculated from 26 healthy participants with three established fMRI experiments (n-back working memory, emotional face-matching, resting state) and two parcellation schemes for node definition (AAL atlas, functional atlas proposed by Power et al.). We compared the intra-class correlation coefficients (ICCs) of five different data processing strategies and demonstrated a superior reliability of task-regression methods with condition-specific regressors. The between-task comparison revealed significantly higher ICCs for resting state relative to the active tasks, and a superiority of the n-back task relative to the face-matching task for global and local network properties. While the mean ICCs were typically lower for the active tasks, overall fair to good reliabilities were detected for global and local connectivity properties, and for the n-back task with both atlases, smallworldness. For all three tasks and atlases, low mean ICCs were seen for the local network properties. However, node-specific good reliabilities were detected for node degree in regions known to be critical for the challenged functions (resting-state: default-mode network nodes, n-back: fronto-parietal nodes, face-matching: limbic nodes). Between-atlas comparison demonstrated significantly higher reliabilities for the functional parcellations for global and local network properties. Our findings can inform the choice of processing strategies, brain atlases and outcome properties for fMRI studies using active tasks, graph theory methods, and within-subject designs, in particular future pharmaco-fMRI studies. © 2013 Elsevier Inc. All rights reserved.

  14. Graph-theoretic analysis of discrete-phase-space states for condition change detection and quantification of information

    Science.gov (United States)

    Hively, Lee M.

    2014-09-16

    Data collected from devices and human condition may be used to forewarn of critical events such as machine/structural failure or events from brain/heart wave data stroke. By monitoring the data, and determining what values are indicative of a failure forewarning, one can provide adequate notice of the impending failure in order to take preventive measures. This disclosure teaches a computer-based method to convert dynamical numeric data representing physical objects (unstructured data) into discrete-phase-space states, and hence into a graph (structured data) for extraction of condition change.

  15. Presurgery resting-state local graph-theory measures predict neurocognitive outcomes after brain surgery in temporal lobe epilepsy.

    Science.gov (United States)

    Doucet, Gaelle E; Rider, Robert; Taylor, Nathan; Skidmore, Christopher; Sharan, Ashwini; Sperling, Michael; Tracy, Joseph I

    2015-04-01

    This study determined the ability of resting-state functional connectivity (rsFC) graph-theory measures to predict neurocognitive status postsurgery in patients with temporal lobe epilepsy (TLE) who underwent anterior temporal lobectomy (ATL). A presurgical resting-state functional magnetic resonance imaging (fMRI) condition was collected in 16 left and 16 right TLE patients who underwent ATL. In addition, patients received neuropsychological testing pre- and postsurgery in verbal and nonverbal episodic memory, language, working memory, and attention domains. Regarding the functional data, we investigated three graph-theory properties (local efficiency, distance, and participation), measuring segregation, integration and centrality, respectively. These measures were only computed in regions of functional relevance to the ictal pathology, or the cognitive domain. Linear regression analyses were computed to predict the change in each neurocognitive domain. Our analyses revealed that cognitive outcome was successfully predicted with at least 68% of the variance explained in each model, for both TLE groups. The only model not significantly predictive involved nonverbal episodic memory outcome in right TLE. Measures involving the healthy hippocampus were the most common among the predictors, suggesting that enhanced integration of this structure with the rest of the brain may improve cognitive outcomes. Regardless of TLE group, left inferior frontal regions were the best predictors of language outcome. Working memory outcome was predicted mostly by right-sided regions, in both groups. Overall, the results indicated our integration measure was the most predictive of neurocognitive outcome. In contrast, our segregation measure was the least predictive. This study provides evidence that presurgery rsFC measures may help determine neurocognitive outcomes following ATL. The results have implications for refining our understanding of compensatory reorganization and predicting

  16. Quantum walks on quotient graphs

    International Nuclear Information System (INIS)

    Krovi, Hari; Brun, Todd A.

    2007-01-01

    A discrete-time quantum walk on a graph Γ is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. If this unitary evolution operator has an associated group of symmetries, then for certain initial states the walk will be confined to a subspace of the original Hilbert space. Symmetries of the original graph, given by its automorphism group, can be inherited by the evolution operator. We show that a quantum walk confined to the subspace corresponding to this symmetry group can be seen as a different quantum walk on a smaller quotient graph. We give an explicit construction of the quotient graph for any subgroup H of the automorphism group and illustrate it with examples. The automorphisms of the quotient graph which are inherited from the original graph are the original automorphism group modulo the subgroup H used to construct it. The quotient graph is constructed by removing the symmetries of the subgroup H from the original graph. We then analyze the behavior of hitting times on quotient graphs. Hitting time is the average time it takes a walk to reach a given final vertex from a given initial vertex. It has been shown in earlier work [Phys. Rev. A 74, 042334 (2006)] that the hitting time for certain initial states of a quantum walks can be infinite, in contrast to classical random walks. We give a condition which determines whether the quotient graph has infinite hitting times given that they exist in the original graph. We apply this condition for the examples discussed and determine which quotient graphs have infinite hitting times. All known examples of quantum walks with hitting times which are short compared to classical random walks correspond to systems with quotient graphs much smaller than the original graph; we conjecture that the existence of a small quotient graph with finite hitting times is necessary for a walk to exhibit a quantum speedup

  17. Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM.

    Science.gov (United States)

    Hojjati, Seyed Hani; Ebrahimzadeh, Ata; Khazaee, Ali; Babajani-Feremi, Abbas

    2017-04-15

    We investigated identifying patients with mild cognitive impairment (MCI) who progress to Alzheimer's disease (AD), MCI converter (MCI-C), from those with MCI who do not progress to AD, MCI non-converter (MCI-NC), based on resting-state fMRI (rs-fMRI). Graph theory and machine learning approach were utilized to predict progress of patients with MCI to AD using rs-fMRI. Eighteen MCI converts (average age 73.6 years; 11 male) and 62 age-matched MCI non-converters (average age 73.0 years, 28 male) were included in this study. We trained and tested a support vector machine (SVM) to classify MCI-C from MCI-NC using features constructed based on the local and global graph measures. A novel feature selection algorithm was developed and utilized to select an optimal subset of features. Using subset of optimal features in SVM, we classified MCI-C from MCI-NC with an accuracy, sensitivity, specificity, and the area under the receiver operating characteristic (ROC) curve of 91.4%, 83.24%, 90.1%, and 0.95, respectively. Furthermore, results of our statistical analyses were used to identify the affected brain regions in AD. To the best of our knowledge, this is the first study that combines the graph measures (constructed based on rs-fMRI) with machine learning approach and accurately classify MCI-C from MCI-NC. Results of this study demonstrate potential of the proposed approach for early AD diagnosis and demonstrate capability of rs-fMRI to predict conversion from MCI to AD by identifying affected brain regions underlying this conversion. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Equipackable graphs

    DEFF Research Database (Denmark)

    Vestergaard, Preben Dahl; Hartnell, Bert L.

    2006-01-01

    There are many results dealing with the problem of decomposing a fixed graph into isomorphic subgraphs. There has also been work on characterizing graphs with the property that one can delete the edges of a number of edge disjoint copies of the subgraph and, regardless of how that is done, the gr...

  19. Spectrally resolved measurements of the terahertz beam profile generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Zalkovskij, Maksim; Strikwerda, Andrew

    2014-01-01

    Using a THz camera and THz bandpass filters, we measure the frequency - resolved beam profile emitted from a two - color air plasma. We observe a frequency - independent emission angle from the plasma .......Using a THz camera and THz bandpass filters, we measure the frequency - resolved beam profile emitted from a two - color air plasma. We observe a frequency - independent emission angle from the plasma ....

  20. On Two Color and CCD Methods for the Determination of Astronomic Position.

    Science.gov (United States)

    1986-03-14

    INTRODUCTION .................................... 2 A. Astroposition Objectives As Related to Two-Color Refractometry .................. 2 B. Results...value for the astronomic longitude and latitude.-_ A. Astroposition Objectives As Related to Two-Color Refractometry The long term objectives consist...The interior of the box was divided into 4 bays containing the telescope, the refractometry optics, the power supplies and the refralctometry

  1. A Modal-Logic Based Graph Abstraction

    NARCIS (Netherlands)

    Bauer, J.; Boneva, I.B.; Kurban, M.E.; Rensink, Arend; Ehrig, H; Heckel, R.; Rozenberg, G.; Taentzer, G.

    2008-01-01

    Infinite or very large state spaces often prohibit the successful verification of graph transformation systems. Abstract graph transformation is an approach that tackles this problem by abstracting graphs to abstract graphs of bounded size and by lifting application of productions to abstract

  2. Compact 6 dB Two-Color Continuous Variable Entangled Source Based on a Single Ring Optical Resonator

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2018-02-01

    Full Text Available Continuous-variable entangled optical beams at the degenerate wavelength of 0.8 μm or 1.5 μm have been investigated extensively, but separately. The two-color entangled states of these two useful wavelengths, with sufficiently high degrees of entanglement, still lag behind. In this work, we analyze the various limiting factors that affect the entanglement degree. On the basis of this, we successfully achieve 6 dB of two-color quadrature entangled light beams by improving the escape efficiency of the nondegenerate optical amplifier, the stability of the phase-locking servo system, and the detection efficiency. Our entangled source is constructed only from a single ring optical resonator, and thus is highly compact, which is suitable for applications in long-distance quantum communication networks.

  3. Chemical reactivation of resin-embedded pHuji adds red for simultaneous two-color imaging with EGFP

    Science.gov (United States)

    Guo, Wenyan; Liu, Xiuli; Liu, Yurong; Gang, Yadong; He, Xiaobin; Jia, Yao; Yin, Fangfang; Li, Pei; Huang, Fei; Zhou, Hongfu; Wang, Xiaojun; Gong, Hui; Luo, Qingming; Xu, Fuqiang; Zeng, Shaoqun

    2017-01-01

    The pH-sensitive fluorescent proteins enabling chemical reactivation in resin are useful tools for fluorescence microimaging. EGFP or EYFP is good for such applications. For simultaneous two-color imaging, a suitable red fluorescent protein is an urgent need. Here a pH-sensitive red fluorescent protein, pHuji, is selected and verified to remain pH-sensitive in HM20 resin. We observe 183% fluorescence intensity of pHuji in resin-embeded mouse brain and 29.08-fold fluorescence intensity of reactivated pHuji compared to the quenched state. pHuji and EGFP can be quenched and chemically reactivated simultaneously in resin, thus enabling simultaneous two-color micro-optical sectioning tomography of resin-embedded mouse brain. This method may greatly facilitate the visualization of neuronal morphology and neural circuits to promote understanding of the structure and function of the brain. PMID:28717566

  4. Directed Graph Methodology for Acquisition Path Analysis: a possible tool to support the state-level approach

    International Nuclear Information System (INIS)

    Vincze, Arpad; Nemeth, Andras

    2013-01-01

    According to a recent statement, the IAEA seeks to develop a more effective safeguards system to achieve greater deterrence, because deterrence of proliferation is much more effective than detection. To achieve this goal, a less predictive safeguards system is being developed based on the advanced state-level approach that is driven by all available safeguards-relevant information. The 'directed graph analysis' is recommended as a possible methodology to implement acquisition path analysis by the IAEA to support the State evaluation process. The basic methodology is simple, well established, powerful, and its adaptation to the modelling of the nuclear profile of a State requires minimum software development. Based on this methodology the material flow network model has been developed under the Hungarian Support Programme to the IAEA, which is described in detail. In the proposed model, materials in different chemical and physical form can flow through pipes representing declared processes, material transports, diversions or undeclared processes. The nodes of the network are the material types, while the edges of the network are the pipes. A state parameter (p) is assigned to each node and edge representing the probability of their existence in the State. The possible application of this model in the State-level analytical approach will be discussed and outlook for further work will be given. The paper is followed by the slides of the presentation

  5. Acyclicity in edge-colored graphs

    DEFF Research Database (Denmark)

    Gutin, Gregory; Jones, Mark; Sheng, Bin

    2017-01-01

    A walk W in edge-colored graphs is called properly colored (PC) if every pair of consecutive edges in W is of different color. We introduce and study five types of PC acyclicity in edge-colored graphs such that graphs of PC acyclicity of type i is a proper superset of graphs of acyclicity of type i......+1, i=1,2,3,4. The first three types are equivalent to the absence of PC cycles, PC closed trails, and PC closed walks, respectively. While graphs of types 1, 2 and 3 can be recognized in polynomial time, the problem of recognizing graphs of type 4 is, somewhat surprisingly, NP-hard even for 2-edge-colored...... graphs (i.e., when only two colors are used). The same problem with respect to type 5 is polynomial-time solvable for all edge-colored graphs. Using the five types, we investigate the border between intractability and tractability for the problems of finding the maximum number of internally vertex...

  6. Development of two color laser diagnostics for the ITER poloidal polarimeter.

    Science.gov (United States)

    Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S

    2010-10-01

    Two color laser diagnostics using terahertz laser sources are under development for a high performance operation of the Large Helical Device and for future fusion devices such as ITER. So far, we have achieved high power laser oscillation lines simultaneously oscillating at 57.2 and 47.7 μm by using a twin optically pumped CH(3)OD laser, and confirmed the original function, compensation of mechanical vibration, of the two color laser interferometer. In this article, application of the two color laser diagnostics to the ITER poloidal polarimeter and recent hardware developments will be described.

  7. Development of two color laser diagnostics for the ITER poloidal polarimeter

    International Nuclear Information System (INIS)

    Kawahata, K.; Akiyama, T.; Tanaka, K.; Nakayama, K.; Okajima, S.

    2010-01-01

    Two color laser diagnostics using terahertz laser sources are under development for a high performance operation of the Large Helical Device and for future fusion devices such as ITER. So far, we have achieved high power laser oscillation lines simultaneously oscillating at 57.2 and 47.7 μm by using a twin optically pumped CH 3 OD laser, and confirmed the original function, compensation of mechanical vibration, of the two color laser interferometer. In this article, application of the two color laser diagnostics to the ITER poloidal polarimeter and recent hardware developments will be described.

  8. State Authorization Tracking System (StATS) - Data, Charts and Graphs

    Data.gov (United States)

    U.S. Environmental Protection Agency — The State Authorization Tracking System (StATS) is an information management system designed to document the progress of each state and territory in establishing and...

  9. Theoretical evaluation of measurement uncertainties of two-color pyrometry applied to optical diagnostics

    International Nuclear Information System (INIS)

    Fu Tairan; Cheng Xiaofang; Yang Zangjian

    2008-01-01

    We present a theoretical analysis of two-color pyrometry applied to optical diagnostics. A two-color pyrometer built with a single CCD is advantageous due to the simple system design. We evaluate the possibility and degree of ill-conditionness on the basis of measurement uncertainties for different measurement approaches of this two-color system. We classify measurement approaches. The corresponding ill-conditionness criterion is established. The greater the criterion value is, the worse the ill-conditioned degree of solution is. So, the optimum choice of measurement approach for the two-color system is achieved through intercomparison of the criterion values. Numerical examples are also given to illustrate this point. The theoretical analysis not only provides an effective way of evaluating different measurement approaches, but also may help us to better understand the influences that determine the choices between wavelength/waveband measurements and calibration/noncalibration modes for temperature and soot distribution

  10. Quantum manipulation of two-color stationary light: Quantum wavelength conversion

    International Nuclear Information System (INIS)

    Moiseev, S. A.; Ham, B. S.

    2006-01-01

    We present a quantum manipulation of a traveling light pulse using electromagnetically induced transparency-based slow light phenomenon for the generation of two-color stationary light. We theoretically discuss the two-color stationary light for the quantum wavelength conversion process in terms of pulse area, energy transfer, and propagation directions. The condition of the two-color stationary light pulse generation has been found and the quantum light dynamics has been studied analytically in the adiabatic limit. The quantum frequency conversion rate of the traveling light is dependent on the spatial spreading of the two-color stationary light pulse and can be near unity in an optically dense medium for the optimal frequencies of the control laser fields

  11. Modern graph theory

    CERN Document Server

    Bollobás, Béla

    1998-01-01

    The time has now come when graph theory should be part of the education of every serious student of mathematics and computer science, both for its own sake and to enhance the appreciation of mathematics as a whole. This book is an in-depth account of graph theory, written with such a student in mind; it reflects the current state of the subject and emphasizes connections with other branches of pure mathematics. The volume grew out of the author's earlier book, Graph Theory -- An Introductory Course, but its length is well over twice that of its predecessor, allowing it to reveal many exciting new developments in the subject. Recognizing that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavor of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory such as coloring, matching, extremal theory, and algebraic graph theory, the book presents a detailed ...

  12. Numerical study of dense adjoint matter in two color QCD

    International Nuclear Information System (INIS)

    Hands, S.; Morrison, S.; Scorzato, L.; Oevers, M.

    2000-06-01

    We identify the global symmetries of SU(2) lattice gauge theory with N flavors of staggered fermion in the presence of a quark chemical potential μ, for fermions in both fundamental and adjoint representations, and anticipate likely patterns of symmetry breaking at both low and high densities. Results from numerical simulations of the model with N=1 adjoint flavor on a 4 3 x 8 lattice are presented, using both hybrid Monte Carlo and two-step multi-boson algorithms. It is shown that the sign of the fermion determinant starts to fluctuate once the model enters a phase with non-zero baryon charge density. HMC simulations are not ergodic in this regime, but TSMB simulations retain ergodicity even in the dense phase, and in addition appear to show superior decorrelation. The HMC results for the equation of state and the pion mass show good quantitative agreement with the predictions of chiral perturbation theory, which should hold only for N≥2. The TSMB results incorporating the sign of the determinant support a delayed onset transition, consistent with the pattern of symmetry breaking expected for N=1. (orig.)

  13. Nonvolatile two-step, two-color holography with continuous-wave lights for both congruent and near-stoichiometric LiNbO3:Fe

    International Nuclear Information System (INIS)

    Shen Yan; Zhang Guoquan; Fu Bo; Xu Qingjun; Xu Jingjun

    2004-01-01

    We have studied theoretically the steady-state nonvolatile two-step, two-color holographic recording performance for both the congruent and the near-stoichiometric LiNbO 3 :Fe based on the two-center model (the deep-trap and the shallow-trap centers are Fe 2+ /Fe 3+ and Nb Li 4+ /Nb Li 5+ , respectively). The results show that the direct electron exchange between the Fe 2+ /Fe 3+ centers and the Nb Li 4+ /Nb Li 5+ centers due to the tunneling effect dominates the charge-transfer process during the nonvolatile two-step, two-color holography and determines the two-step, two-color holography performance in LiNbO 3 :Fe. We have further studied the effects of the crystal stoichiometry on the performance of the two-step, two-color holography. It is shown that, as far as the total space-charge field is considered, the nonvolatile two-step, two-color holography performance in the near-stoichiometric LiNbO 3 :Fe is much better than that in the congruent LiNbO 3 :Fe within the intensity range reachable by the continuous-wave lights

  14. Phase diagram of dense two-color QCD within lattice simulations

    Directory of Open Access Journals (Sweden)

    Braguta V.V.

    2017-01-01

    Full Text Available We present the results of a low-temperature scan of the phase diagram of dense two-color QCD with Nf = 2 quarks. The study is conducted using lattice simulation with rooted staggered quarks. At small chemical potential we observe the hadronic phase, where the theory is in a confining state, chiral symmetry is broken, the baryon density is zero and there is no diquark condensate. At the critical point μ = mπ/2 we observe the expected second order transition to Bose-Einstein condensation of scalar diquarks. In this phase the system is still in confinement in conjunction with nonzero baryon density, but the chiral symmetry is restored in the chiral limit. We have also found that in the first two phases the system is well described by chiral perturbation theory. For larger values of the chemical potential the system turns into another phase, where the relevant degrees of freedom are fermions residing inside the Fermi sphere, and the diquark condensation takes place on the Fermi surface. In this phase the system is still in confinement, chiral symmetry is restored and the system is very similar to the quarkyonic state predicted by SU(Nc theory at large Nc.

  15. Introduction to graph theory

    CERN Document Server

    Trudeau, Richard J

    1994-01-01

    Preface1. Pure Mathematics Introduction; Euclidean Geometry as Pure Mathematics; Games; Why Study Pure Mathematics?; What's Coming; Suggested Reading2. Graphs Introduction; Sets; Paradox; Graphs; Graph diagrams; Cautions; Common Graphs; Discovery; Complements and Subgraphs; Isomorphism; Recognizing Isomorphic Graphs; Semantics The Number of Graphs Having a Given nu; Exercises; Suggested Reading3. Planar Graphs Introduction; UG, K subscript 5, and the Jordan Curve Theorem; Are there More Nonplanar Graphs?; Expansions; Kuratowski's Theorem; Determining Whether a Graph is Planar or

  16. Optical trapping of cold neutral atoms using a two-color evanescent light field around a carbon nanotube

    International Nuclear Information System (INIS)

    Nga, Do Thi; Viet, Nguyen Ai; Nga, Dao Thi Thuy; Lan, Nguyen Thi Phuong

    2014-01-01

    We suggest a new schema of trapping cold atoms using a two-color evanescent light field around a carbon nanotube. The two light fields circularly polarized sending through a carbon nanotube generates an evanescent wave around this nanotube. By evanescent effect, the wave decays away from the nanotube producing a set of trapping minima of the total potential in the transverse plane as a ring around the nanotube. This schema allows capture of atoms to a cylindrical shell around the nanotube. We consider some possible boundary conditions leading to the non-trivial bound state solution. Our result will be compared to some recent trapping models and our previous trapping models.

  17. Stimulated emission pumping of NH in flames by using two-color resonant four-wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Radi, P P; Frey, H M; Mischler, B; Tzannis, A P; Beaud, P; Gerber, T [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    In this work we examine the analytical potential of two-color resonant four-wave mixing for the determination and characterization of trace elements in a combustion environment. Experimental results for NH in flames at atmospheric pressure are presented. The selectivity of the technique is used to simplify the Q-branch region of the (0-0)A{sup 3}{Pi}-X{sup 3}{Sigma} vibronic transition of NH. In addition, we demonstrate that the technique is sensitive to state changing collisions. (author) 2 figs., 5 refs.

  18. Graph theory

    CERN Document Server

    Diestel, Reinhard

    2017-01-01

    This standard textbook of modern graph theory, now in its fifth edition, combines the authority of a classic with the engaging freshness of style that is the hallmark of active mathematics. It covers the core material of the subject with concise yet reliably complete proofs, while offering glimpses of more advanced methods in each field by one or two deeper results, again with proofs given in full detail. The book can be used as a reliable text for an introductory course, as a graduate text, and for self-study. From the reviews: “This outstanding book cannot be substituted with any other book on the present textbook market. It has every chance of becoming the standard textbook for graph theory.”Acta Scientiarum Mathematiciarum “Deep, clear, wonderful. This is a serious book about the heart of graph theory. It has depth and integrity. ”Persi Diaconis & Ron Graham, SIAM Review “The book has received a very enthusiastic reception, which it amply deserves. A masterly elucidation of modern graph theo...

  19. Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder

    Directory of Open Access Journals (Sweden)

    Mengqi Xing

    2017-01-01

    Conclusions: Theta-dependent interconnectivity was associated with state anxiety in gSAD and an increase in information processing efficiency in gSAD (compared to controls. Results may represent enhanced baseline self-focused attention, which is consistent with cognitive models of gSAD and fMRI studies implicating emotion dysregulation and disturbances in task negative networks (e.g., default mode network in gSAD.

  20. Non-parametric Bayesian graph models reveal community structure in resting state fMRI

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Madsen, Kristoffer H.; Siebner, Hartwig Roman

    2014-01-01

    Modeling of resting state functional magnetic resonance imaging (rs-fMRI) data using network models is of increasing interest. It is often desirable to group nodes into clusters to interpret the communication patterns between nodes. In this study we consider three different nonparametric Bayesian...... models for node clustering in complex networks. In particular, we test their ability to predict unseen data and their ability to reproduce clustering across datasets. The three generative models considered are the Infinite Relational Model (IRM), Bayesian Community Detection (BCD), and the Infinite...... between clusters. BCD restricts the between-cluster link probabilities to be strictly lower than within-cluster link probabilities to conform to the community structure typically seen in social networks. IDM only models a single between-cluster link probability, which can be interpreted as a background...

  1. Two-color quark matter: U(1)A restoration, superfluidity, and quarkyonic phase

    International Nuclear Information System (INIS)

    Brauner, Tomas; Fukushima, Kenji; Hidaka, Yoshimasa

    2009-01-01

    We discuss the phase structure of quantum chromodynamics (QCD) with two colors and two flavors of light quarks. This is motivated by the increasing interest in the QCD phase diagram as follows: (1) The QCD critical point search has been under intensive dispute and its location and existence suffer from uncertainty of effective U(1) A symmetry restoration. (2) A new phase called quarkyonic matter is drawing theoretical and experimental attention but it is not clear whether it can coexist with diquark condensation. We point out that two-color QCD is nontrivial enough to contain essential ingredients for (1) and (2) both, and most importantly, is a system without the sign problem in numerical simulations on the lattice. We adopt the two-flavor Nambu-Jona-Lasinio model extended with the two-color Polyakov loop and make quantitative predictions that can be tested by lattice simulations.

  2. Graph theory

    CERN Document Server

    Gould, Ronald

    2012-01-01

    This introduction to graph theory focuses on well-established topics, covering primary techniques and including both algorithmic and theoretical problems. The algorithms are presented with a minimum of advanced data structures and programming details. This thoroughly corrected 1988 edition provides insights to computer scientists as well as advanced undergraduates and graduate students of topology, algebra, and matrix theory. Fundamental concepts and notation and elementary properties and operations are the first subjects, followed by examinations of paths and searching, trees, and networks. S

  3. Graphs & digraphs

    CERN Document Server

    Chartrand, Gary; Zhang, Ping

    2010-01-01

    Gary Chartrand has influenced the world of Graph Theory for almost half a century. He has supervised more than a score of Ph.D. dissertations and written several books on the subject. The most widely known of these texts, Graphs and Digraphs, … has much to recommend it, with clear exposition, and numerous challenging examples [that] make it an ideal textbook for the advanced undergraduate or beginning graduate course. The authors have updated their notation to reflect the current practice in this still-growing area of study. By the authors' estimation, the 5th edition is approximately 50% longer than the 4th edition. … the legendary Frank Harary, author of the second graph theory text ever produced, is one of the figures profiled. His book was the standard in the discipline for several decades. Chartrand, Lesniak and Zhang have produced a worthy successor.-John T. Saccoman, MAA Reviews, June 2012 (This book is in the MAA's basic library list.)As with the earlier editions, the current text emphasizes clear...

  4. Inkjet printing the three organic functional layers of two-colored organic light emitting diodes

    International Nuclear Information System (INIS)

    Coenen, Michiel J.J.; Slaats, Thijs M.W.L.; Eggenhuisen, Tamara M.; Groen, Pim

    2015-01-01

    Inkjet printing allows for the roll-2-roll fabrication of organic electronic devices at an industrial scale. In this paper we demonstrate the fabrication of two-colored organic light emitting diodes (OLEDs) in which three adjacent organic device layers were inkjet printed from halogen free inks. The resulting devices demonstrate the possibilities offered by this technique for the fabrication of OLEDs for signage and personalized electronics. - Highlights: • Two-colored organic light emitting diodes with 3 inkjet printed device layers were fabricated. • All materials were printed from halogen free inks. • Inkjet printing of emissive materials is suitable for signage applications

  5. Investigation of dynamic of unconsolidated materials using two-color digital holography

    Directory of Open Access Journals (Sweden)

    Boileau J.-P.

    2010-06-01

    Full Text Available The paper presents a two-color digital holographic interferometer. The set-up is devoted to the study of the fundamental dynamic of unconsolidated materials. Optical configuration and algorithms to recover the optical phase of two-color digitally encoded holograms are described. The method is based on a spatial-color-multiplexing scheme in which holographic reconstruction is performed using adapted wavelength zero-padding and reconstructing distance. Experimental results are presented in the case of granular media excited in the frequency range 400Hz-3000Hz and exhibits the 3D movement.

  6. Controlling nonsequential double ionization of Ne with parallel-polarized two-color laser pulses.

    Science.gov (United States)

    Luo, Siqiang; Ma, Xiaomeng; Xie, Hui; Li, Min; Zhou, Yueming; Cao, Wei; Lu, Peixiang

    2018-05-14

    We measure the recoil-ion momentum distributions from nonsequential double ionization of Ne by two-color laser pulses consisting of a strong 800-nm field and a weak 400-nm field with parallel polarizations. The ion momentum spectra show pronounced asymmetries in the emission direction, which depend sensitively on the relative phase of the two-color components. Moreover, the peak of the doubly charged ion momentum distribution shifts gradually with the relative phase. The shifted range is much larger than the maximal vector potential of the 400-nm laser field. Those features are well recaptured by a semiclassical model. Through analyzing the correlated electron dynamics, we found that the energy sharing between the two electrons is extremely unequal at the instant of recollison. We further show that the shift of the ion momentum corresponds to the change of the recollision time in the two-color laser field. By tuning the relative phase of the two-color components, the recollision time is controlled with attosecond precision.

  7. Extended analysis of benchmark datasets for Agilent two-color microarrays

    Directory of Open Access Journals (Sweden)

    Kerr Kathleen F

    2007-10-01

    Full Text Available Abstract Background As part of its broad and ambitious mission, the MicroArray Quality Control (MAQC project reported the results of experiments using External RNA Controls (ERCs on five microarray platforms. For most platforms, several different methods of data processing were considered. However, there was no similar consideration of different methods for processing the data from the Agilent two-color platform. While this omission is understandable given the scale of the project, it can create the false impression that there is consensus about the best way to process Agilent two-color data. It is also important to consider whether ERCs are representative of all the probes on a microarray. Results A comparison of different methods of processing Agilent two-color data shows substantial differences among methods for low-intensity genes. The sensitivity and specificity for detecting differentially expressed genes varies substantially for different methods. Analysis also reveals that the ERCs in the MAQC data only span the upper half of the intensity range, and therefore cannot be representative of all genes on the microarray. Conclusion Although ERCs demonstrate good agreement between observed and expected log-ratios on the Agilent two-color platform, such an analysis is incomplete. Simple loess normalization outperformed data processing with Agilent's Feature Extraction software for accurate identification of differentially expressed genes. Results from studies using ERCs should not be over-generalized when ERCs are not representative of all probes on a microarray.

  8. Rovibronically selected and resolved two-color laser photoionization and photoelectron study of cobalt carbide cation.

    Science.gov (United States)

    Huang, Huang; Chang, Yih Chung; Luo, Zhihong; Shi, Xiaoyu; Lam, Chow-Shing; Lau, Kai-Chung; Ng, C Y

    2013-03-07

    We have conducted a two-color visible-ultraviolet (VIS-UV) resonance-enhanced laser photoionization efficiency and pulsed field ionization-photoelectron (PFI-PE) study of gaseous cobalt carbide (CoC) near its ionization onset in the total energy range of 61,200-64,510 cm(-1). The cold gaseous CoC sample was prepared by a laser ablation supersonically cooled beam source. By exciting CoC molecules thus generated to single N' rotational levels of the intermediate CoC∗((2)Σ(+); v') state using a VIS dye laser prior to UV laser photoionization, we have obtained N(+) rotationally resolved PFI-PE spectra for the CoC(+)(X(1)Σ(+); v(+) = 0 and 1) ion vibrational bands free from interference by impurity species except Co atoms produced in the ablation source. The rotationally selected and resolved PFI-PE spectra have made possible unambiguous rotational assignments, yielding accurate values for the adiabatic ionization energy of CoC(X(2)Σ(+)), IE(CoC) = 62,384.3 ± 0.6 cm(-1) (7.73467 ± 0.00007 eV), the vibrational frequency ωe (+) = 985.6 ± 0.6 cm(-1), the anharmonicity constant ωe (+)χe (+) = 6.3 ± 0.6 cm(-1), the rotational constants (Be (+) = 0.7196 ± 0.0005 cm(-1), αe (+) = 0.0056 ± 0.0008 cm(-1)), and the equilibrium bond length re (+) = 1.534 Å for CoC(+)(X(1)Σ(+)). The observation of the N(+) = 0 level in the PFI-PE measurement indicates that the CoC(+) ground state is of (1)Σ(+) symmetry. Large ΔN(+) = N(+) - N' changes up to 6 are observed for the photoionization transitions CoC(+)(X(1)Σ(+); v(+) = 0-2; N(+)) ← CoC∗((2)Σ(+); v'; N' = 6, 7, 8, and 9). The highly precise energetic and spectroscopic data obtained in the present study have served as a benchmark for testing theoretical predictions based on state-of-the-art ab initio quantum calculations at the CCSDTQ∕CBS level of theory as presented in the companion article.

  9. Bipartite separability and nonlocal quantum operations on graphs

    Science.gov (United States)

    Dutta, Supriyo; Adhikari, Bibhas; Banerjee, Subhashish; Srikanth, R.

    2016-07-01

    In this paper we consider the separability problem for bipartite quantum states arising from graphs. Earlier it was proved that the degree criterion is the graph-theoretic counterpart of the familiar positive partial transpose criterion for separability, although there are entangled states with positive partial transpose for which the degree criterion fails. Here we introduce the concept of partially symmetric graphs and degree symmetric graphs by using the well-known concept of partial transposition of a graph and degree criteria, respectively. Thus, we provide classes of bipartite separable states of dimension m ×n arising from partially symmetric graphs. We identify partially asymmetric graphs that lack the property of partial symmetry. We develop a combinatorial procedure to create a partially asymmetric graph from a given partially symmetric graph. We show that this combinatorial operation can act as an entanglement generator for mixed states arising from partially symmetric graphs.

  10. Chromatic graph theory

    CERN Document Server

    Chartrand, Gary; Rosen, Kenneth H

    2008-01-01

    Beginning with the origin of the four color problem in 1852, the field of graph colorings has developed into one of the most popular areas of graph theory. Introducing graph theory with a coloring theme, Chromatic Graph Theory explores connections between major topics in graph theory and graph colorings as well as emerging topics. This self-contained book first presents various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. The remainder of the text deals exclusively with graph colorings. It covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings, and many distance-related vertex coloring...

  11. THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses

    Science.gov (United States)

    Nguyen, A.; González de Alaiza Martínez, P.; Thiele, I.; Skupin, S.; Bergé, L.

    2018-03-01

    We numerically study the influence of chirping and delaying several ionizing two-color light pulses in order to engineer terahertz (THz) wave generation in air. By means of comprehensive 3D simulations, it is shown that two chirped pulses can increase the THz yield when they are separated by a suitable time delay for the same laser energy in focused propagation geometry. To interpret these results, the local current theory is revisited and we propose an easy, accessible all-optical criterion that predicts the laser-to-THz conversion efficiencies given any input laser spectrum. In the filamentation regime, numerical simulations display evidence that a chirped pulse is able to produce more THz radiation due to propagation effects, which maintain the two colors of the laser field more efficiently coupled over long distances. A large delay between two pulses promotes multi-peaked THz spectra as well as conversion efficiencies above 10‑4.

  12. Generation of a strong attosecond pulse train with an orthogonally polarized two-color laser field

    International Nuclear Information System (INIS)

    Kim, Chul Min; Kim, I Jong; Nam, Chang Hee

    2005-01-01

    We theoretically investigate the high-order harmonic generation from a neon atom irradiated by an intense two-color femtosecond laser pulse, in which the fundamental field and its second harmonic are linearly polarized and orthogonal to each other. In contrast to usual high-harmonic generation with linearly polarized fundamental field alone, a very strong and clean high-harmonic spectrum, consisting of both odd and even orders of harmonics, can be generated in the orthogonally polarized two-color laser field with proper selection of the relative phase between the fundamental and second-harmonic fields. In time domain, this results in a strong and regular attosecond pulse train. The origin of these behaviors is elucidated by analyzing semiclassical electron paths and by simulating high-harmonic generation quantum mechanically

  13. Quantum walk on a chimera graph

    Science.gov (United States)

    Xu, Shu; Sun, Xiangxiang; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum; Sanders, Barry C.

    2018-05-01

    We analyse a continuous-time quantum walk on a chimera graph, which is a graph of choice for designing quantum annealers, and we discover beautiful quantum walk features such as localization that starkly distinguishes classical from quantum behaviour. Motivated by technological thrusts, we study continuous-time quantum walk on enhanced variants of the chimera graph and on diminished chimera graph with a random removal of vertices. We explain the quantum walk by constructing a generating set for a suitable subgroup of graph isomorphisms and corresponding symmetry operators that commute with the quantum walk Hamiltonian; the Hamiltonian and these symmetry operators provide a complete set of labels for the spectrum and the stationary states. Our quantum walk characterization of the chimera graph and its variants yields valuable insights into graphs used for designing quantum-annealers.

  14. On a conjecture concerning helly circle graphs

    Directory of Open Access Journals (Sweden)

    Durán Guillermo

    2003-01-01

    Full Text Available We say that G is an e-circle graph if there is a bijection between its vertices and straight lines on the cartesian plane such that two vertices are adjacent in G if and only if the corresponding lines intersect inside the circle of radius one. This definition suggests a method for deciding whether a given graph G is an e-circle graph, by constructing a convenient system S of equations and inequations which represents the structure of G, in such a way that G is an e-circle graph if and only if S has a solution. In fact, e-circle graphs are exactly the circle graphs (intersection graphs of chords in a circle, and thus this method provides an analytic way for recognizing circle graphs. A graph G is a Helly circle graph if G is a circle graph and there exists a model of G by chords such that every three pairwise intersecting chords intersect at the same point. A conjecture by Durán (2000 states that G is a Helly circle graph if and only if G is a circle graph and contains no induced diamonds (a diamond is a graph formed by four vertices and five edges. Many unsuccessful efforts - mainly based on combinatorial and geometrical approaches - have been done in order to validate this conjecture. In this work, we utilize the ideas behind the definition of e-circle graphs and restate this conjecture in terms of an equivalence between two systems of equations and inequations, providing a new, analytic tool to deal with it.

  15. Chromatic polynomials of random graphs

    International Nuclear Information System (INIS)

    Van Bussel, Frank; Fliegner, Denny; Timme, Marc; Ehrlich, Christoph; Stolzenberg, Sebastian

    2010-01-01

    Chromatic polynomials and related graph invariants are central objects in both graph theory and statistical physics. Computational difficulties, however, have so far restricted studies of such polynomials to graphs that were either very small, very sparse or highly structured. Recent algorithmic advances (Timme et al 2009 New J. Phys. 11 023001) now make it possible to compute chromatic polynomials for moderately sized graphs of arbitrary structure and number of edges. Here we present chromatic polynomials of ensembles of random graphs with up to 30 vertices, over the entire range of edge density. We specifically focus on the locations of the zeros of the polynomial in the complex plane. The results indicate that the chromatic zeros of random graphs have a very consistent layout. In particular, the crossing point, the point at which the chromatic zeros with non-zero imaginary part approach the real axis, scales linearly with the average degree over most of the density range. While the scaling laws obtained are purely empirical, if they continue to hold in general there are significant implications: the crossing points of chromatic zeros in the thermodynamic limit separate systems with zero ground state entropy from systems with positive ground state entropy, the latter an exception to the third law of thermodynamics.

  16. Graph visualization (Invited talk)

    NARCIS (Netherlands)

    Wijk, van J.J.; Kreveld, van M.J.; Speckmann, B.

    2012-01-01

    Black and white node link diagrams are the classic method to depict graphs, but these often fall short to give insight in large graphs or when attributes of nodes and edges play an important role. Graph visualization aims obtaining insight in such graphs using interactive graphical representations.

  17. Some remarks on definability of process graphs

    NARCIS (Netherlands)

    Grabmayer, C.A.; Klop, J.W.; Luttik, B.; Baier, C.; Hermanns, H.

    2006-01-01

    We propose the notions of "density" and "connectivity" of infinite process graphs and investigate them in the context of the wellknown process algebras BPA and BPP. For a process graph G, the density function in a state s maps a natural number n to the number of states of G with distance less or

  18. Pragmatic Graph Rewriting Modifications

    OpenAIRE

    Rodgers, Peter; Vidal, Natalia

    1999-01-01

    We present new pragmatic constructs for easing programming in visual graph rewriting programming languages. The first is a modification to the rewriting process for nodes the host graph, where nodes specified as 'Once Only' in the LHS of a rewrite match at most once with a corresponding node in the host graph. This reduces the previously common use of tags to indicate the progress of matching in the graph. The second modification controls the application of LHS graphs, where those specified a...

  19. Assessing probe-specific dye and slide biases in two-color microarray data

    Directory of Open Access Journals (Sweden)

    Goldberg Zelanna

    2008-07-01

    Full Text Available Abstract Background A primary reason for using two-color microarrays is that the use of two samples labeled with different dyes on the same slide, that bind to probes on the same spot, is supposed to adjust for many factors that introduce noise and errors into the analysis. Most users assume that any differences between the dyes can be adjusted out by standard methods of normalization, so that measures such as log ratios on the same slide are reliable measures of comparative expression. However, even after the normalization, there are still probe specific dye and slide variation among the data. We define a method to quantify the amount of the dye-by-probe and slide-by-probe interaction. This serves as a diagnostic, both visual and numeric, of the existence of probe-specific dye bias. We show how this improved the performance of two-color array analysis for arrays for genomic analysis of biological samples ranging from rice to human tissue. Results We develop a procedure for quantifying the extent of probe-specific dye and slide bias in two-color microarrays. The primary output is a graphical diagnostic of the extent of the bias which called ECDF (Empirical Cumulative Distribution Function, though numerical results are also obtained. Conclusion We show that the dye and slide biases were high for human and rice genomic arrays in two gene expression facilities, even after the standard intensity-based normalization, and describe how this diagnostic allowed the problems causing the probe-specific bias to be addressed, and resulted in important improvements in performance. The R package LMGene which contains the method described in this paper has been available to download from Bioconductor.

  20. Two-color planar laser-induced fluorescence thermometry in aqueous solutions

    International Nuclear Information System (INIS)

    Robinson, G. Andrew; Lucht, Robert P.; Laurendeau, Normand M.

    2008-01-01

    We demonstrate a two-color planar laser-induced fluorescence technique for obtaining two-dimensional temperature images in water. For this method, a pulsed Nd:YAG laser at 532 nm excites a solution of temperature-sensitive rhodamine 560 and temperature-insensitive sulforhodamine 640. The resulting emissions are optically separated through filters and detected via a charged-couple device (CCD) camera system. A ratio of the two images yields temperature images independent of incident irradiance. An uncertainty in temperature of ±1.4 deg. C is established at the 95% confidence interval

  1. Two-color QCD with non-zero chiral chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Braguta, V.V. [Institute for High Energy Physics NRC “Kurchatov Institute' ,142281 Protvino (Russian Federation); Far Eastern Federal University, School of Biomedicine,690950 Vladivostok (Russian Federation); Goy, V.A. [Far Eastern Federal University, School of Natural Sciences,690950 Vladivostok (Russian Federation); Ilgenfritz, E.M. [Joint Institute for Nuclear Research,BLTP, 141980 Dubna (Russian Federation); Kotov, A.Yu. [Institute of Theoretical and Experimental Physics,117259 Moscow (Russian Federation); Molochkov, A.V. [Far Eastern Federal University, School of Biomedicine,690950 Vladivostok (Russian Federation); Müller-Preussker, M.; Petersson, B. [Humboldt-Universität zu Berlin, Institut für Physik,12489 Berlin (Germany)

    2015-06-16

    The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.

  2. Stokes image reconstruction for two-color microgrid polarization imaging systems.

    Science.gov (United States)

    Lemaster, Daniel A

    2011-07-18

    The Air Force Research Laboratory has developed a new microgrid polarization imaging system capable of simultaneously reconstructing linear Stokes parameter images in two colors on a single focal plane array. In this paper, an effective method for extracting Stokes images is presented for this type of camera system. It is also shown that correlations between the color bands can be exploited to significantly increase overall spatial resolution. Test data is used to show the advantages of this approach over bilinear interpolation. The bounds (in terms of available reconstruction bandwidth) on image resolution are also provided.

  3. Quick Mining of Isomorphic Exact Large Patterns from Large Graphs

    KAUST Repository

    Almasri, Islam

    2014-12-01

    The applications of the sub graph isomorphism search are growing with the growing number of areas that model their systems using graphs or networks. Specifically, many biological systems, such as protein interaction networks, molecular structures and protein contact maps, are modeled as graphs. The sub graph isomorphism search is concerned with finding all sub graphs that are isomorphic to a relevant query graph, the existence of such sub graphs can reflect on the characteristics of the modeled system. The most computationally expensive step in the search for isomorphic sub graphs is the backtracking algorithm that traverses the nodes of the target graph. In this paper, we propose a pruning approach that is inspired by the minimum remaining value heuristic that achieves greater scalability over large query and target graphs. Our testing on various biological networks shows that performance enhancement of our approach over existing state-of-the-art approaches varies between 6x and 53x. © 2014 IEEE.

  4. Quick Mining of Isomorphic Exact Large Patterns from Large Graphs

    KAUST Repository

    Almasri, Islam; Gao, Xin; Fedoroff, Nina V.

    2014-01-01

    The applications of the sub graph isomorphism search are growing with the growing number of areas that model their systems using graphs or networks. Specifically, many biological systems, such as protein interaction networks, molecular structures and protein contact maps, are modeled as graphs. The sub graph isomorphism search is concerned with finding all sub graphs that are isomorphic to a relevant query graph, the existence of such sub graphs can reflect on the characteristics of the modeled system. The most computationally expensive step in the search for isomorphic sub graphs is the backtracking algorithm that traverses the nodes of the target graph. In this paper, we propose a pruning approach that is inspired by the minimum remaining value heuristic that achieves greater scalability over large query and target graphs. Our testing on various biological networks shows that performance enhancement of our approach over existing state-of-the-art approaches varies between 6x and 53x. © 2014 IEEE.

  5. Quantum snake walk on graphs

    International Nuclear Information System (INIS)

    Rosmanis, Ansis

    2011-01-01

    I introduce a continuous-time quantum walk on graphs called the quantum snake walk, the basis states of which are fixed-length paths (snakes) in the underlying graph. First, I analyze the quantum snake walk on the line, and I show that, even though most states stay localized throughout the evolution, there are specific states that most likely move on the line as wave packets with momentum inversely proportional to the length of the snake. Next, I discuss how an algorithm based on the quantum snake walk might potentially be able to solve an extended version of the glued trees problem, which asks to find a path connecting both roots of the glued trees graph. To the best of my knowledge, no efficient quantum algorithm solving this problem is known yet.

  6. Crustal Strain Observation Using a Two-Color Interferometer with Accurate Correction of Refractive Index of Air

    Directory of Open Access Journals (Sweden)

    Souichi Telada

    2014-07-01

    Full Text Available A highly accurate two-color interferometer with automatic correction of the refractive index of air was developed for crustal strain observation. The two-color interferometer, which can measure a geometrical distance of approximately 70 m, with a relative resolution of 2 × 10−9, clearly detected a change in strain due to earth tides in spite of optical measurement in air. Moreover, a large strain quake due to an earthquake could be observed without disturbing the measurement. We demonstrated the advantages of the two-color interferometer in air for geodetic observation.

  7. Controlling of the electromagnetic solitary waves generation in the wake of a two-color laser

    Science.gov (United States)

    Pan, K. Q.; Li, S. W.; Guo, L.; Yang, D.; Li, Z. C.; Zheng, C. Y.; Jiang, S. E.; Zhang, B. H.; He, X. T.

    2018-05-01

    Electromagnetic solitary waves generated by a two-color laser interaction with an underdense plasma are investigated. It is shown that, when the former wave packet of the two-color laser is intense enough, it will excite nonlinear wakefields and generate electron density cavities. The latter wave packets will beat with the nonlinear wakefield and generate both high-frequency and low-frequency components. When the peak density of the cavities exceeds the critical density of the low-frequency component, this part of the electromagnetic field will be trapped to generate electromagnetic solitary waves. By changing the laser and plasma parameters, we can control the wakefield generation, which will also control the generation of the solitary waves. One-dimensional particle-in-cell simulations are performed to prove the controlling of the solitary waves. The simulation results also show that solitary waves generated by higher laser intensities will become moving solitary waves. The two-dimensional particle-in-cell also shows the generation of the solitary waves. In the two-dimensional case, solitary waves are distributed in the transverse directions because of the filamentation instability.

  8. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry.

    Science.gov (United States)

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Li, Jianshuang; Qu, Xinghua

    2016-10-17

    Two-color interferometry is powerful for the correction of the air refractive index especially in the turbulent air over long distance, since the empirical equations could introduce considerable measurement uncertainty if the environmental parameters cannot be measured with sufficient precision. In this paper, we demonstrate a method for absolute distance measurement with high-accuracy correction of air refractive index using two-color dispersive interferometry. The distances corresponding to the two wavelengths can be measured via the spectrograms captured by a CCD camera pair in real time. In the long-term experiment of the correction of air refractive index, the experimental results show a standard deviation of 3.3 × 10-8 for 12-h continuous measurement without the precise knowledge of the environmental conditions, while the variation of the air refractive index is about 2 × 10-6. In the case of absolute distance measurement, the comparison with the fringe counting interferometer shows an agreement within 2.5 μm in 12 m range.

  9. Graphs and matrices

    CERN Document Server

    Bapat, Ravindra B

    2014-01-01

    This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reo...

  10. Exploring the brains of Baduk (Go experts: gray matter morphometry, resting-state functional connectivity, and graph theoretical analysis

    Directory of Open Access Journals (Sweden)

    Wi Hoon eJung

    2013-10-01

    Full Text Available One major characteristic of experts is intuitive judgment, which is an automatic process whereby patterns stored in memory through long-term training are recognized. Indeed, long-term training may influence brain structure and function. A recent study revealed that chess experts at rest showed differences in structure and functional connectivity (FC in the head of caudate, which is associated with rapid best next-move generation. However, less is known about the structure and function of the brains of Baduk experts compared with those of experts in other strategy games. Therefore, we performed voxel-based morphometry and FC analyses in Baduk experts to investigate structural brain differences and to clarify the influence of these differences on functional interactions. We also conducted graph theoretical analysis to explore the topological organization of whole-brain functional networks. Compared to novices, Baduk experts exhibited decreased and increased gray matter volume in the amygdala and nucleus accumbens, respectively. We also found increased FC between the amygdala and medial orbitofrontal cortex and decreased FC between the nucleus accumbens and medial prefrontal cortex. Further graph theoretical analysis revealed differences in measures of the integration of the network and in the regional nodal characteristics of various brain regions activated during Baduk. This study provides evidence for structural and functional differences as well as altered topological organization of the whole-brain functional networks in Baduk experts. Our findings also offer novel suggestions about the cognitive mechanisms behind Baduk expertise, which involves intuitive decision-making mediated by somatic marker circuitry and visuospatial processing.

  11. Adaptive Graph Convolutional Neural Networks

    OpenAIRE

    Li, Ruoyu; Wang, Sheng; Zhu, Feiyun; Huang, Junzhou

    2018-01-01

    Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data, the graph structures varies in both size and connectivity. The paper proposes a generalized and flexible graph CNN taking data of arbitrary graph structure as input. In that way a task-driven adaptive graph is learned for eac...

  12. On middle cube graphs

    Directory of Open Access Journals (Sweden)

    C. Dalfo

    2015-10-01

    Full Text Available We study a family of graphs related to the $n$-cube. The middle cube graph of parameter k is the subgraph of $Q_{2k-1}$ induced by the set of vertices whose binary representation has either $k-1$ or $k$ number of ones. The middle cube graphs can be obtained from the well-known odd graphs by doubling their vertex set. Here we study some of the properties of the middle cube graphs in the light of the theory of distance-regular graphs. In particular, we completely determine their spectra (eigenvalues and their multiplicities, and associated eigenvectors.

  13. Optimal designs for one- and two-color microarrays using mixed models: a comparative evaluation of their efficiencies.

    Science.gov (United States)

    Lima Passos, Valéria; Tan, Frans E S; Winkens, Bjorn; Berger, Martijn P F

    2009-01-01

    Comparative studies between the one- and two-color microarrays provide supportive evidence for similarities of results on differential gene expression. So far, no design comparisons between the two platforms have been undertaken. With the objective of comparing optimal designs of one- and two-color microarrays in their statistical efficiencies, techniques of design optimization were applied within a mixed model framework. A- and D-optimal designs for the one- and two-color platforms were sought for a 3 x 3 factorial experiment. The results suggest that the choice of the platform will not affect the "subjects to groups" allocation, being concordant in the two designs. However, under financial constraints, the two-color arrays are expected to have a slight upper hand in terms of efficiency of model parameters estimates, once the price of arrays is more expensive than that of subjects. This statement is especially valid for microarray studies envisaging class comparisons.

  14. Generation of Individual Whole-Brain Atlases With Resting-State fMRI Data Using Simultaneous Graph Computation and Parcellation.

    Science.gov (United States)

    Wang, J; Hao, Z; Wang, H

    2018-01-01

    The human brain can be characterized as functional networks. Therefore, it is important to subdivide the brain appropriately in order to construct reliable networks. Resting-state functional connectivity-based parcellation is a commonly used technique to fulfill this goal. Here we propose a novel individual subject-level parcellation approach based on whole-brain resting-state functional magnetic resonance imaging (fMRI) data. We first used a supervoxel method known as simple linear iterative clustering directly on resting-state fMRI time series to generate supervoxels, and then combined similar supervoxels to generate clusters using a clustering method known as graph-without-cut (GWC). The GWC approach incorporates spatial information and multiple features of the supervoxels by energy minimization, simultaneously yielding an optimal graph and brain parcellation. Meanwhile, it theoretically guarantees that the actual cluster number is exactly equal to the initialized cluster number. By comparing the results of the GWC approach and those of the random GWC approach, we demonstrated that GWC does not rely heavily on spatial structures, thus avoiding the challenges encountered in some previous whole-brain parcellation approaches. In addition, by comparing the GWC approach to two competing approaches, we showed that GWC achieved better parcellation performances in terms of different evaluation metrics. The proposed approach can be used to generate individualized brain atlases for applications related to cognition, development, aging, disease, personalized medicine, etc. The major source codes of this study have been made publicly available at https://github.com/yuzhounh/GWC.

  15. Generation of Individual Whole-Brain Atlases With Resting-State fMRI Data Using Simultaneous Graph Computation and Parcellation

    Directory of Open Access Journals (Sweden)

    J. Wang

    2018-05-01

    Full Text Available The human brain can be characterized as functional networks. Therefore, it is important to subdivide the brain appropriately in order to construct reliable networks. Resting-state functional connectivity-based parcellation is a commonly used technique to fulfill this goal. Here we propose a novel individual subject-level parcellation approach based on whole-brain resting-state functional magnetic resonance imaging (fMRI data. We first used a supervoxel method known as simple linear iterative clustering directly on resting-state fMRI time series to generate supervoxels, and then combined similar supervoxels to generate clusters using a clustering method known as graph-without-cut (GWC. The GWC approach incorporates spatial information and multiple features of the supervoxels by energy minimization, simultaneously yielding an optimal graph and brain parcellation. Meanwhile, it theoretically guarantees that the actual cluster number is exactly equal to the initialized cluster number. By comparing the results of the GWC approach and those of the random GWC approach, we demonstrated that GWC does not rely heavily on spatial structures, thus avoiding the challenges encountered in some previous whole-brain parcellation approaches. In addition, by comparing the GWC approach to two competing approaches, we showed that GWC achieved better parcellation performances in terms of different evaluation metrics. The proposed approach can be used to generate individualized brain atlases for applications related to cognition, development, aging, disease, personalized medicine, etc. The major source codes of this study have been made publicly available at https://github.com/yuzhounh/GWC.

  16. Co-Roman domination in graphs

    Indian Academy of Sciences (India)

    1National Centre for Advanced Research in Discrete Mathematics ... 3Department of Computer Science, Ball State University, Muncie, IN, USA .... The corona of two disjoint graphs G1 and G2 is defined to be the graph G = G1 ◦ G2,.

  17. Non-destructive spatial characterization of buried interfaces in multilayer stacks via two color picosecond acoustics

    Science.gov (United States)

    Faria, Jorge C. D.; Garnier, Philippe; Devos, Arnaud

    2017-12-01

    We demonstrate the ability to construct wide-area spatial mappings of buried interfaces in thin film stacks in a non-destructive manner using two color picosecond acoustics. Along with the extraction of layer thicknesses and sound velocities from acoustic signals, the morphological information presented is a powerful demonstration of phonon imaging as a metrological tool. For a series of heterogeneous (polymer, metal, and semiconductor) thin film stacks that have been treated with a chemical procedure known to alter layer properties, the spatial mappings reveal changes to interior thicknesses and chemically modified surface features without the need to remove uppermost layers. These results compare well to atomic force microscopy scans showing that the technique provides a significant advantage to current characterization methods for industrially important device stacks.

  18. Ar 3p photoelectron sideband spectra in two-color XUV + NIR laser fields

    Science.gov (United States)

    Minemoto, Shinichirou; Shimada, Hiroyuki; Komatsu, Kazma; Komatsubara, Wataru; Majima, Takuya; Mizuno, Tomoya; Owada, Shigeki; Sakai, Hirofumi; Togashi, Tadashi; Yoshida, Shintaro; Yabashi, Makina; Yagishita, Akira

    2018-04-01

    We performed photoelectron spectroscopy using femtosecond XUV pulses from a free-electron laser and femtosecond near-infrared pulses from a synchronized laser, and succeeded in measuring Ar 3p photoelectron sideband spectra due to the two-color above-threshold ionization. In our calculations of the first-order time-dependent perturbation theoretical model based on the strong field approximation, the photoelectron sideband spectra and their angular distributions are well reproduced by considering the timing jitter between the XUV and the NIR pulses, showing that the timing jitter in our experiments was distributed over the width of {1.0}+0.4-0.2 ps. The present approach can be used as a method to evaluate the timing jitter inevitable in FEL experiments.

  19. Calibration of a two-color soft x-ray diagnostic for electron temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Reusch, L. M., E-mail: lmmcguire@wisc.edu; Den Hartog, D. J.; Goetz, J.; McGarry, M. B. [University of Wisconsin - Madison, Madison, Wisconsin 53703 (United States); Franz, P. [Consorzio RFX, Padova (Italy); Stephens, H. D. [University of Wisconsin - Madison, Madison, Wisconsin 53703 (United States); Pierce College Fort Steilacoom, Lakewood, Washington 98498 (United States)

    2016-11-15

    The two-color soft x-ray (SXR) tomography diagnostic on the Madison Symmetric Torus is capable of making electron temperature measurements via the double-filter technique; however, there has been a 15% systematic discrepancy between the SXR double-filter (SXR{sub DF}) temperature and Thomson scattering (TS) temperature. Here we discuss calibration of the Be filters used in the SXR{sub DF} measurement using empirical measurements of the transmission function versus energy at the BESSY II electron storage ring, electron microprobe analysis of filter contaminants, and measurement of the effective density. The calibration does not account for the TS and SXR{sub DF} discrepancy, and evidence from experiments indicates that this discrepancy is due to physics missing from the SXR{sub DF} analysis rather than instrumentation effects.

  20. Two-color Fermi-liquid theory for transport through a multilevel Kondo impurity

    Science.gov (United States)

    Karki, D. B.; Mora, Christophe; von Delft, Jan; Kiselev, Mikhail N.

    2018-05-01

    We consider a quantum dot with K ≥2 orbital levels occupied by two electrons connected to two electric terminals. The generic model is given by a multilevel Anderson Hamiltonian. The weak-coupling theory at the particle-hole symmetric point is governed by a two-channel S =1 Kondo model characterized by intrinsic channels asymmetry. Based on a conformal field theory approach we derived an effective Hamiltonian at a strong-coupling fixed point. The Hamiltonian capturing the low-energy physics of a two-stage Kondo screening represents the quantum impurity by a two-color local Fermi liquid. Using nonequilibrium (Keldysh) perturbation theory around the strong-coupling fixed point we analyze the transport properties of the model at finite temperature, Zeeman magnetic field, and source-drain voltage applied across the quantum dot. We compute the Fermi-liquid transport constants and discuss different universality classes associated with emergent symmetries.

  1. Enhanced hole boring with two-color relativistic laser pulses in the fast ignition scheme

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Changhai; Tian, Ye; Li, Wentao; Wang, Wentao; Zhang, Zhijun; Qi, Rong; Wang, Cheng [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Deng, Aihua, E-mail: aihuadeng1985@gmail.com [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Liu, Jiansheng, E-mail: michaeljs-liu@siom.ac.cn [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-08-15

    A scheme of using two-color laser pulses for hole boring into overdense plasma as well as energy transfer into electron and ion beams has been studied using particle-in-cell simulations. Following an ultra-short ultra-intense hole-boring laser pulse with a short central wavelength in extreme ultra-violet range, the main infrared driving laser pulse can be guided in the hollow channel preformed by the former laser and propagate much deeper into an overdense plasma, as compared to the case using the infrared laser only. In addition to efficiently transferring the main driving laser energy into energetic electrons and ions generation deep inside the overdense plasma, the ion beam divergence can be greatly reduced. The results might be beneficial for the fast ignition concept of inertial confinement fusion.

  2. Memory effects, two color percolation, and the temperature dependence of Mott variable-range hopping

    Science.gov (United States)

    Agam, Oded; Aleiner, Igor L.

    2014-06-01

    There are three basic processes that determine hopping transport: (a) hopping between normally empty sites (i.e., having exponentially small occupation numbers at equilibrium), (b) hopping between normally occupied sites, and (c) transitions between normally occupied and unoccupied sites. In conventional theories all these processes are considered Markovian and the correlations of occupation numbers of different sites are believed to be small (i.e., not exponential in temperature). We show that, contrary to this belief, memory effects suppress the processes of type (c) and manifest themselves in a subleading exponential temperature dependence of the variable-range hopping conductivity. This temperature dependence originates from the property that sites of type (a) and (b) form two independent resistor networks that are weakly coupled to each other by processes of type (c). This leads to a two-color percolation problem which we solve in the critical region.

  3. Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography

    Science.gov (United States)

    Scott, Timothy F.; Kowalski, Benjamin A.; Sullivan, Amy C.; Bowman, Christopher N.; McLeod, Robert R.

    2009-05-01

    Controlling and reducing the developed region initiated by photoexposure is one of the fundamental goals of optical lithography. Here, we demonstrate a two-color irradiation scheme whereby initiating species are generated by single-photon absorption at one wavelength while inhibiting species are generated by single-photon absorption at a second, independent wavelength. Co-irradiation at the second wavelength thus reduces the polymerization rate, delaying gelation of the material and facilitating enhanced spatial control over the polymerization. Appropriate overlapping of the two beams produces structures with both feature sizes and monomer conversions otherwise unobtainable with use of single- or two-photon absorption photopolymerization. Additionally, the generated inhibiting species rapidly recombine when irradiation with the second wavelength ceases, allowing for fast sequential exposures not limited by memory effects in the material and thus enabling fabrication of complex two- or three-dimensional structures.

  4. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope.

    Science.gov (United States)

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-07-01

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope.

  5. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope

    International Nuclear Information System (INIS)

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-01-01

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope

  6. Design of a real-time two-color interferometer for MAST Upgrade

    International Nuclear Information System (INIS)

    O’Gorman, T.; Naylor, G.; Scannell, R.; Cunningham, G.; Martin, R.; Croft, D.; Brunner, K. J.

    2014-01-01

    A single chord two-color CO 2 /HeNe (10.6/0.633 μm) heterodyne laser interferometer has been designed to measure the line integral electron density along the mid-plane of the MAST Upgrade tokamak, with a typical error of 1 × 10 18 m −3 (∼2° phase error) at 4 MHz temporal resolution. To ensure this diagnostic system can be restored from any failures without stopping MAST Upgrade operations, it has been located outside of the machine area. The final design and initial testing of this system, including details of the optics, vibration isolation, and a novel phase detection scheme are discussed in this paper

  7. A dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy.

    Science.gov (United States)

    Wang, Xu; Yang, Cheng-Xiong; Chen, Jia-Tong; Yan, Xiu-Ping

    2014-04-01

    The targetability of a theranostic probe is one of the keys to assuring its theranostic efficiency. Here we show the design and fabrication of a dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy (PDT). The nanoplatform was prepared from 3-aminophenylboronic acid functionalized upconversion nanocrystals (APBA-UCNPs) and hyaluronated fullerene (HAC60) via a specific diol-borate condensation. The two specific ligands of aminophenylboronic acid and hyaluronic acid provide synergistic targeting effects, high targetability, and hence a dramatically elevated uptake of the nanoplatform by cancer cells. The high generation yield of (1)O2 due to multiplexed Förster resonance energy transfer between APBA-UCNPs (donor) and HAC60 (acceptor) allows effective therapy. The present nanoplatform shows great potential for highly selective tumor-targeted imaging-guided PDT.

  8. Spatial properties of a terahertz beam generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Wang, Tianwu; Buron, Jonas Christian Due

    2013-01-01

    We present a spatial characterization of terahertz (THz) beams generated from a two-color air plasma under different conditions by measuring full 3D beam profiles using a commercial THz camera. We compare two THz beam profiles emitted from plasmas generated by 35 fs and 100 fs laser pulses...... that this reduces the beam waist, and that the beam spot shape changes from Lorentzian to Gaussian. Finally, we observe a forward-propagating Gaussian THz beam by spatially filtering away the conical off-axis radiation with a 1 cm aperture......., and show that the spatial properties of the two THz beams do not change significantly. For the THz beam profile generated by the 35 fs pulse, the spatial effect of eliminating the lower frequencies is investigated by implementing two crossed polarizers working as a high-pass filter. We show...

  9. Melting the diquark condensate in two-color QCD: A renormalization group analysis

    International Nuclear Information System (INIS)

    Wirstam, J.; Lenaghan, J.T.; Splittorff, K.

    2003-01-01

    We use a Landau theory and the ε expansion to study the superfluid phase transition of two-color QCD at a nonzero temperature T and baryonic chemical potential μ. At low T, and for N f flavors of massless quarks, the global SU(N f )xSU(N f )xU(1) symmetry is spontaneously broken by a diquark condensate down to Sp(N f )xSp(N f ) for any μ>0. As the temperature increases, the diquark condensate melts, and at sufficiently large T the symmetry is restored. Using renormalization group arguments, we find that in the presence of the chiral anomaly term there can be a second order phase transition when N f =2 or N f ≥6, while the transition is first order for N f =4. We discuss the relevance of these results for the emergence of a tricritical point recently observed in lattice simulations

  10. Mechanisms of two-color laser-induced field-free molecular orientation.

    Science.gov (United States)

    Spanner, Michael; Patchkovskii, Serguei; Frumker, Eugene; Corkum, Paul

    2012-09-14

    Two mechanisms of two-color (ω+2ω) laser-induced field-free molecular orientation, based on the hyperpolarizability and ionization depletion, are explored and compared. The CO molecule is used as a computational example. While the hyperpolarizability mechanism generates small amounts of orientation at intensities below the ionization threshold, ionization depletion quickly becomes the dominant mechanism as soon as ionizing intensities are reached. Only the ionization mechanism leads to substantial orientation (e.g., on the order of ≳0.1). For intensities typical of laser-induced molecular alignment and orientation experiments, the two mechanisms lead to robust, characteristic timings of the field-free orientation wave-packet revivals relative to the alignment revivals and the revival time. The revival timings can be used to detect the active orientation mechanism experimentally.

  11. Using Canonical Forms for Isomorphism Reduction in Graph-based Model Checking

    NARCIS (Netherlands)

    Kant, Gijs

    Graph isomorphism checking can be used in graph-based model checking to achieve symmetry reduction. Instead of one-to-one comparing the graph representations of states, canonical forms of state graphs can be computed. These canonical forms can be used to store and compare states. However, computing

  12. Survey of Approaches to Generate Realistic Synthetic Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Seung-Hwan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Sangkeun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Sarah S [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shankar, Mallikarjun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Imam, Neena [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    A graph is a flexible data structure that can represent relationships between entities. As with other data analysis tasks, the use of realistic graphs is critical to obtaining valid research results. Unfortunately, using the actual ("real-world") graphs for research and new algorithm development is difficult due to the presence of sensitive information in the data or due to the scale of data. This results in practitioners developing algorithms and systems that employ synthetic graphs instead of real-world graphs. Generating realistic synthetic graphs that provide reliable statistical confidence to algorithmic analysis and system evaluation involves addressing technical hurdles in a broad set of areas. This report surveys the state of the art in approaches to generate realistic graphs that are derived from fitted graph models on real-world graphs.

  13. Price competition on graphs

    NARCIS (Netherlands)

    Soetevent, A.R.

    2010-01-01

    This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. I propose an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. One feature of graph models of price competition is that spatial

  14. Graphing Inequalities, Connecting Meaning

    Science.gov (United States)

    Switzer, J. Matt

    2014-01-01

    Students often have difficulty with graphing inequalities (see Filloy, Rojano, and Rubio 2002; Drijvers 2002), and J. Matt Switzer's students were no exception. Although students can produce graphs for simple inequalities, they often struggle when the format of the inequality is unfamiliar. Even when producing a correct graph of an…

  15. Similarity Measure of Graphs

    Directory of Open Access Journals (Sweden)

    Amine Labriji

    2017-07-01

    Full Text Available The topic of identifying the similarity of graphs was considered as highly recommended research field in the Web semantic, artificial intelligence, the shape recognition and information research. One of the fundamental problems of graph databases is finding similar graphs to a graph query. Existing approaches dealing with this problem are usually based on the nodes and arcs of the two graphs, regardless of parental semantic links. For instance, a common connection is not identified as being part of the similarity of two graphs in cases like two graphs without common concepts, the measure of similarity based on the union of two graphs, or the one based on the notion of maximum common sub-graph (SCM, or the distance of edition of graphs. This leads to an inadequate situation in the context of information research. To overcome this problem, we suggest a new measure of similarity between graphs, based on the similarity measure of Wu and Palmer. We have shown that this new measure satisfies the properties of a measure of similarities and we applied this new measure on examples. The results show that our measure provides a run time with a gain of time compared to existing approaches. In addition, we compared the relevance of the similarity values obtained, it appears that this new graphs measure is advantageous and  offers a contribution to solving the problem mentioned above.

  16. Distance-regular graphs

    NARCIS (Netherlands)

    van Dam, Edwin R.; Koolen, Jack H.; Tanaka, Hajime

    2016-01-01

    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN'[Brouwer, A.E., Cohen, A.M., Neumaier,

  17. Fuzzy Graph Language Recognizability

    OpenAIRE

    Kalampakas , Antonios; Spartalis , Stefanos; Iliadis , Lazaros

    2012-01-01

    Part 5: Fuzzy Logic; International audience; Fuzzy graph language recognizability is introduced along the lines of the established theory of syntactic graph language recognizability by virtue of the algebraic structure of magmoids. The main closure properties of the corresponding class are investigated and several interesting examples of fuzzy graph languages are examined.

  18. Spectra of Graphs

    NARCIS (Netherlands)

    Brouwer, A.E.; Haemers, W.H.

    2012-01-01

    This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association

  19. Graph topologies on closed multifunctions

    Directory of Open Access Journals (Sweden)

    Giuseppe Di Maio

    2003-10-01

    Full Text Available In this paper we study function space topologies on closed multifunctions, i.e. closed relations on X x Y using various hypertopologies. The hypertopologies are in essence, graph topologies i.e topologies on functions considered as graphs which are subsets of X x Y . We also study several topologies, including one that is derived from the Attouch-Wets filter on the range. We state embedding theorems which enable us to generalize and prove some recent results in the literature with the use of known results in the hyperspace of the range space and in the function space topologies of ordinary functions.

  20. Graphs and Homomorphisms

    CERN Document Server

    Hell, Pavol

    2004-01-01

    This is a book about graph homomorphisms. Graph theory is now an established discipline but the study of graph homomorphisms has only recently begun to gain wide acceptance and interest. The subject gives a useful perspective in areas such as graph reconstruction, products, fractional and circular colourings, and has applications in complexity theory, artificial intelligence, telecommunication, and, most recently, statistical physics.Based on the authors' lecture notes for graduate courses, this book can be used as a textbook for a second course in graph theory at 4th year or master's level an

  1. Simplicial complexes of graphs

    CERN Document Server

    Jonsson, Jakob

    2008-01-01

    A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics, including commutative algebra, geometry, and knot theory. Identifying each graph with its edge set, one may view a graph complex as a simplicial complex and hence interpret it as a geometric object. This volume examines topological properties of graph complexes, focusing on homotopy type and homology. Many of the proofs are based on Robin Forman's discrete version of Morse theory. As a byproduct, this volume also provides a loosely defined toolbox for attacking problems in topological combinatorics via discrete Morse theory. In terms of simplicity and power, arguably the most efficient tool is Forman's divide and conquer approach via decision trees; it is successfully applied to a large number of graph and digraph complexes.

  2. Introduction to quantum graphs

    CERN Document Server

    Berkolaiko, Gregory

    2012-01-01

    A "quantum graph" is a graph considered as a one-dimensional complex and equipped with a differential operator ("Hamiltonian"). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., "meso-" or "nano-scale") system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on qu...

  3. Graph Theoretical Analysis of Functional Brain Networks: Test-Retest Evaluation on Short- and Long-Term Resting-State Functional MRI Data

    Science.gov (United States)

    Wang, Jin-Hui; Zuo, Xi-Nian; Gohel, Suril; Milham, Michael P.; Biswal, Bharat B.; He, Yong

    2011-01-01

    Graph-based computational network analysis has proven a powerful tool to quantitatively characterize functional architectures of the brain. However, the test-retest (TRT) reliability of graph metrics of functional networks has not been systematically examined. Here, we investigated TRT reliability of topological metrics of functional brain networks derived from resting-state functional magnetic resonance imaging data. Specifically, we evaluated both short-term (5 months apart) TRT reliability for 12 global and 6 local nodal network metrics. We found that reliability of global network metrics was overall low, threshold-sensitive and dependent on several factors of scanning time interval (TI, long-term>short-term), network membership (NM, networks excluding negative correlations>networks including negative correlations) and network type (NT, binarized networks>weighted networks). The dependence was modulated by another factor of node definition (ND) strategy. The local nodal reliability exhibited large variability across nodal metrics and a spatially heterogeneous distribution. Nodal degree was the most reliable metric and varied the least across the factors above. Hub regions in association and limbic/paralimbic cortices showed moderate TRT reliability. Importantly, nodal reliability was robust to above-mentioned four factors. Simulation analysis revealed that global network metrics were extremely sensitive (but varying degrees) to noise in functional connectivity and weighted networks generated numerically more reliable results in compared with binarized networks. For nodal network metrics, they showed high resistance to noise in functional connectivity and no NT related differences were found in the resistance. These findings provide important implications on how to choose reliable analytical schemes and network metrics of interest. PMID:21818285

  4. Integer Flows and Circuit Covers of Graphs and Signed Graphs

    Science.gov (United States)

    Cheng, Jian

    The work in Chapter 2 is motivated by Tutte and Jaeger's pioneering work on converting modulo flows into integer-valued flows for ordinary graphs. For a signed graphs (G, sigma), we first prove that for each k ∈ {2, 3}, if (G, sigma) is (k - 1)-edge-connected and contains an even number of negative edges when k = 2, then every modulo k-flow of (G, sigma) can be converted into an integer-valued ( k + 1)-ow with a larger or the same support. We also prove that if (G, sigma) is odd-(2p+1)-edge-connected, then (G, sigma) admits a modulo circular (2 + 1/ p)-flows if and only if it admits an integer-valued circular (2 + 1/p)-flows, which improves all previous result by Xu and Zhang (DM2005), Schubert and Steffen (EJC2015), and Zhu (JCTB2015). Shortest circuit cover conjecture is one of the major open problems in graph theory. It states that every bridgeless graph G contains a set of circuits F such that each edge is contained in at least one member of F and the length of F is at most 7/5∥E(G)∥. This concept was recently generalized to signed graphs by Macajova et al. (JGT2015). In Chapter 3, we improve their upper bound from 11∥E( G)∥ to 14/3 ∥E(G)∥, and if G is 2-edgeconnected and has even negativeness, then it can be further reduced to 11/3 ∥E(G)∥. Tutte's 3-flow conjecture has been studied by many graph theorists in the last several decades. As a new approach to this conjecture, DeVos and Thomassen considered the vectors as ow values and found that there is a close relation between vector S1-flows and integer 3-NZFs. Motivated by their observation, in Chapter 4, we prove that if a graph G admits a vector S1-flow with rank at most two, then G admits an integer 3-NZF. The concept of even factors is highly related to the famous Four Color Theorem. We conclude this dissertation in Chapter 5 with an improvement of a recent result by Chen and Fan (JCTB2016) on the upperbound of even factors. We show that if a graph G contains an even factor, then it

  5. Graphing trillions of triangles.

    Science.gov (United States)

    Burkhardt, Paul

    2017-07-01

    The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed.

  6. Frequency modulation of high-order harmonic generation in an orthogonally polarized two-color laser field.

    Science.gov (United States)

    Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin

    2016-08-08

    We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.

  7. Laser-induced plasmas in air studied using two-color interferometry

    International Nuclear Information System (INIS)

    Yang, Zefeng; Wu, Jian; Li, Xingwen; Han, Jiaxun; Jia, Shenli; Qiu, Aici; Wei, Wenfu

    2016-01-01

    Temporally and spatially resolved density profiles of Cu atoms, electrons, and compressed air, from laser-induced copper plasmas in air, are measured using fast spectral imaging and two-color interferometry. From the intensified CCD images filtered by a narrow-band-pass filter centered at 515.32 nm, the Cu atoms expansion route is estimated and used to determine the position of the fracture surface between the Cu atoms and the air. Results indicate that the Cu atoms density at distances closer to the target (0–0.4 mm) is quite low, with the maximum density appearing at the edge of the plasma's core being ∼4.6 × 10"2"4" m"−"3 at 304 ns. The free electrons are mainly located in the internal region of the plume, which is supposed to have a higher temperature. The density of the shock wave is (4–6) × 10"2"5" m"−"3, corresponding to air compression of a factor of 1.7–2.5.

  8. QCD with two colors at finite baryon density at next-to-leading order

    International Nuclear Information System (INIS)

    Splittorff, K.; Toublan, D.; Verbaarschot, J.J.M.

    2002-01-01

    We study QCD with two colors and quarks in the fundamental representation at finite baryon density in the limit of light-quark masses. In this limit the free energy of this theory reduces to the free energy of a chiral Lagrangian which is based on the symmetries of the microscopic theory. In earlier work this Lagrangian was analyzed at the mean-field level and a phase transition to a phase of condensed diquarks was found at a chemical potential of half the diquark mass (which is equal to the pion mass). In this article we analyze this theory at next-to-leading order in chiral perturbation theory. We show that the theory is renormalizable and calculate the next-to-leading order free energy in both phases of the theory. By deriving a Landau-Ginzburg theory for the order parameter we show that the finite one-loop contribution and the next-to-leading order terms in the chiral Lagrangian do not qualitatively change the phase transition. In particular, the critical chemical potential is equal to half the next-to-leading order pion mass, and the phase transition is of second order

  9. Double ionization of nitrogen molecules in orthogonal two-color femtosecond laser fields

    Science.gov (United States)

    Song, Qiying; Li, Hui; Wang, Junping; Lu, Peifen; Gong, Xiaochun; Ji, Qinying; Lin, Kang; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian

    2018-04-01

    Double ionization of nitrogen molecules in orthogonally polarized two-color femtosecond laser fields is investigated by varying the relative intensity between the fundamental wave (FW) and its second harmonic (SH) components. The yield ratios of the double ionization channels, i.e., the non-dissociative {{{{N}}}2}2+ and Coulomb exploded (N+, N+), to the singly charged N2 + channel exhibit distinct dependences on the relative strength between the FW and SH fields. As the intensity ratio of SH to FW increases, the yield ratio of (N+, N+)/N2 + gradually increases, while the ratio of {{{{N}}}2}2+/N2 + first descends and then increases constituting a valley shape which is similar to the behavior of Ar2+/Ar+ observed in the same experimental condition. Based on the classical trajectory simulations, we found that the different characteristics of the two doubly ionized channels stem from two mechanisms, i.e., the {{{{N}}}2}2+ is mostly accessed by the (e, 2e) impact ionization while the recollision-induced excitation with subsequent ionization plays an important role in producing the (N+, N+) channel.

  10. Opportunities for two-color experiments at the SASE3 undulator line of the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca; Mazza, Tommaso; Meyer, Michael; Serkez, Svitozar [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-06-15

    X-ray Free Electron Lasers (XFELs) have been proven to generate short and powerful radiation pulses allowing for a wide class of novel experiments. If an XFEL facility supports the generation of two X-ray pulses with different wavelengths and controllable delay, the range of possible experiments is broadened even further to include X-ray-pump/X-ray-probe applications. In this work we discuss the possibility of applying a simple and cost-effective method for producing two-color pulses at the SASE3 soft X-ray beamline of the European XFEL. The technique is based on the installation of a magnetic chicane in the baseline undulator and can be accomplished in several steps. We discuss the scientific interest of this upgrade for the Small Quantum Systems (SQS) instrument, in connection with the high-repetition rate of the European XFEL, and we provide start-to-end simulations up to the radiation focus on the sample, proving the feasibility of our concept.

  11. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kyung-Won, E-mail: kwsuh@chungbuk.ac.kr [Department of Astronomy and Space Science, Chungbuk National University, Cheongju-City, 362-763 (Korea, Republic of)

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionary tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.

  12. Laser-induced plasmas in air studied using two-color interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zefeng; Wu, Jian, E-mail: jxjawj@mail.xjtu.edu.cn; Li, Xingwen; Han, Jiaxun; Jia, Shenli; Qiu, Aici [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi 710049 (China); Wei, Wenfu [School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-08-15

    Temporally and spatially resolved density profiles of Cu atoms, electrons, and compressed air, from laser-induced copper plasmas in air, are measured using fast spectral imaging and two-color interferometry. From the intensified CCD images filtered by a narrow-band-pass filter centered at 515.32 nm, the Cu atoms expansion route is estimated and used to determine the position of the fracture surface between the Cu atoms and the air. Results indicate that the Cu atoms density at distances closer to the target (0–0.4 mm) is quite low, with the maximum density appearing at the edge of the plasma's core being ∼4.6 × 10{sup 24 }m{sup −3} at 304 ns. The free electrons are mainly located in the internal region of the plume, which is supposed to have a higher temperature. The density of the shock wave is (4–6) × 10{sup 25 }m{sup −3}, corresponding to air compression of a factor of 1.7–2.5.

  13. Pixels to Graphs by Associative Embedding

    KAUST Repository

    Newell, Alejandro

    2017-06-22

    Graphs are a useful abstraction of image content. Not only can graphs represent details about individual objects in a scene but they can capture the interactions between pairs of objects. We present a method for training a convolutional neural network such that it takes in an input image and produces a full graph. This is done end-to-end in a single stage with the use of associative embeddings. The network learns to simultaneously identify all of the elements that make up a graph and piece them together. We benchmark on the Visual Genome dataset, and report a Recall@50 of 9.7% compared to the prior state-of-the-art at 3.4%, a nearly threefold improvement on the challenging task of scene graph generation.

  14. Introductory graph theory

    CERN Document Server

    Chartrand, Gary

    1984-01-01

    Graph theory is used today in the physical sciences, social sciences, computer science, and other areas. Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics - profusely illustrated - include: Mathematical Models, Elementary Concepts of Grap

  15. Price Competition on Graphs

    OpenAIRE

    Adriaan R. Soetevent

    2010-01-01

    This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. I propose an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. One feature of graph models of price competition is that spatial discontinuities in firm-level demand may occur. I show that the existence result of D'Aspremont et al. (1979) does not extend to simple star graphs. I conjecture that this non-existence result holds...

  16. Price Competition on Graphs

    OpenAIRE

    Pim Heijnen; Adriaan Soetevent

    2014-01-01

    This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. We derive an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. These graph models of price competition may lead to spatial discontinuities in firm-level demand. We show that the existence result of D'Aspremont et al. (1979) does not extend to simple star graphs and conjecture that this non-existence result holds more general...

  17. Pattern graph rewrite systems

    Directory of Open Access Journals (Sweden)

    Aleks Kissinger

    2014-03-01

    Full Text Available String diagrams are a powerful tool for reasoning about physical processes, logic circuits, tensor networks, and many other compositional structures. Dixon, Duncan and Kissinger introduced string graphs, which are a combinatoric representations of string diagrams, amenable to automated reasoning about diagrammatic theories via graph rewrite systems. In this extended abstract, we show how the power of such rewrite systems can be greatly extended by introducing pattern graphs, which provide a means of expressing infinite families of rewrite rules where certain marked subgraphs, called !-boxes ("bang boxes", on both sides of a rule can be copied any number of times or removed. After reviewing the string graph formalism, we show how string graphs can be extended to pattern graphs and how pattern graphs and pattern rewrite rules can be instantiated to concrete string graphs and rewrite rules. We then provide examples demonstrating the expressive power of pattern graphs and how they can be applied to study interacting algebraic structures that are central to categorical quantum mechanics.

  18. Functions and graphs

    CERN Document Server

    Gelfand, I M; Shnol, E E

    1969-01-01

    The second in a series of systematic studies by a celebrated mathematician I. M. Gelfand and colleagues, this volume presents students with a well-illustrated sequence of problems and exercises designed to illuminate the properties of functions and graphs. Since readers do not have the benefit of a blackboard on which a teacher constructs a graph, the authors abandoned the customary use of diagrams in which only the final form of the graph appears; instead, the book's margins feature step-by-step diagrams for the complete construction of each graph. The first part of the book employs simple fu

  19. Creating more effective graphs

    CERN Document Server

    Robbins, Naomi B

    2012-01-01

    A succinct and highly readable guide to creating effective graphs The right graph can be a powerful tool for communicating information, improving a presentation, or conveying your point in print. If your professional endeavors call for you to present data graphically, here's a book that can help you do it more effectively. Creating More Effective Graphs gives you the basic knowledge and techniques required to choose and create appropriate graphs for a broad range of applications. Using real-world examples everyone can relate to, the author draws on her years of experience in gr

  20. Graph Generator Survey

    Energy Technology Data Exchange (ETDEWEB)

    Lothian, Joshua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Sarah S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sullivan, Blair D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baker, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schrock, Jonathan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poole, Stephen W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-10-01

    The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allowed the emulation of different application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report examines existing synthetic graph generator implementations in preparation for further study on the properties of their generated synthetic graphs.

  1. Loose Graph Simulations

    DEFF Research Database (Denmark)

    Mansutti, Alessio; Miculan, Marino; Peressotti, Marco

    2017-01-01

    We introduce loose graph simulations (LGS), a new notion about labelled graphs which subsumes in an intuitive and natural way subgraph isomorphism (SGI), regular language pattern matching (RLPM) and graph simulation (GS). Being a unification of all these notions, LGS allows us to express directly...... also problems which are “mixed” instances of previous ones, and hence which would not fit easily in any of them. After the definition and some examples, we show that the problem of finding loose graph simulations is NP-complete, we provide formal translation of SGI, RLPM, and GS into LGSs, and we give...

  2. Graph Compression by BFS

    Directory of Open Access Journals (Sweden)

    Alberto Apostolico

    2009-08-01

    Full Text Available The Web Graph is a large-scale graph that does not fit in main memory, so that lossless compression methods have been proposed for it. This paper introduces a compression scheme that combines efficient storage with fast retrieval for the information in a node. The scheme exploits the properties of the Web Graph without assuming an ordering of the URLs, so that it may be applied to more general graphs. Tests on some datasets of use achieve space savings of about 10% over existing methods.

  3. A nonlinear deformed su(2) algebra with a two-color quasitriangular Hopf structure

    International Nuclear Information System (INIS)

    Bonatsos, D.; Daskaloyannis, C.; Kolokotronis, P.; Ludu, A.; Quesne, C.

    1997-01-01

    Nonlinear deformations of the enveloping algebra of su(2), involving two arbitrary functions of J 0 and generalizing the Witten algebra, were introduced some time ago by Delbecq and Quesne. In the present paper, the problem of endowing some of them with a Hopf algebraic structure is addressed by studying in detail a specific example, referred to as scr(A) q + (1). This algebra is shown to possess two series of (N+1)-dimensional unitary irreducible representations, where N=0,1,2,hor-ellipsis. To allow the coupling of any two such representations, a generalization of the standard Hopf axioms is proposed by proceeding in two steps. In the first one, a variant and extension of the deforming functional technique is introduced: variant because a map between two deformed algebras, su q (2) and scr(A) q + (1), is considered instead of a map between a Lie algebra and a deformed one, and extension because use is made of a two-valued functional, whose inverse is singular. As a result, the Hopf structure of su q (2) is carried over to scr(A) q + (1), thereby endowing the latter with a double Hopf structure. In the second step, the definition of the coproduct, counit, antipode, and scr(R)-matrix is extended so that the double Hopf algebra is enlarged into a new algebraic structure. The latter is referred to as a two-color quasitriangular Hopf algebra because the corresponding scr(R)-matrix is a solution of the colored Yang endash Baxter equation, where the open-quotes colorclose quotes parameters take two discrete values associated with the two series of finite-dimensional representations. copyright 1997 American Institute of Physics

  4. Phase diagram of two-color QCD in a Dyson-Schwinger approach

    Energy Technology Data Exchange (ETDEWEB)

    Buescher, Pascal Joachim

    2014-04-28

    We investigate two-color QCD with N{sub f}=2 at finite temperatures and chemical potentials using a Dyson-Schwinger approach. We employ two different truncations for the quark loop in the gluon DSE: one based on the Hard-Dense/Hard-Thermal Loop (HDTL) approximation of the quark loop and one based on the back-coupling of the full, self-consistent quark propagator (SCQL). We compare results for the different truncations with each other as well as with other approaches. As expected, we find a phase dominated by the condensation of quark-quark pairs. This diquark condensation phase overshadows the critical end point and first-order phase transition which one finds if diquark condensation is neglected. The phase transition from the phase without diquark condensation to the diquark-condensation phase is of second order. We observe that the dressing with massless quarks in the HDTL approximation leads to a significant violation of the Silver Blaze property and to a too small diquark condensate. The SCQL truncation, on the other hand, is found to reproduce all expected features of the μ-dependent quark condensates. Moreover, with parameters adapted to the situation in other approaches, we also find good to very good agreement with model and lattice calculations in all quark quantities. We find indictions that the physics in recent lattice calculations is likely to be driven solely by the explicit chiral symmetry breaking. Discrepancies w.r.t. the lattice are, however, observed in two quantities that are very sensitive to the screening of the gluon propagator, the dressed gluon propagator itself and the phase-transition line at high temperatures.

  5. Tests of a two-color interferometer and polarimeter for ITER density measurements

    Science.gov (United States)

    Van Zeeland, M. A.; Carlstrom, T. N.; Finkenthal, D. K.; Boivin, R. L.; Colio, A.; Du, D.; Gattuso, A.; Glass, F.; Muscatello, C. M.; O'Neill, R.; Smiley, M.; Vasquez, J.; Watkins, M.; Brower, D. L.; Chen, J.; Ding, W. X.; Johnson, D.; Mauzey, P.; Perry, M.; Watts, C.; Wood, R.

    2017-12-01

    A full-scale 120 m path length ITER toroidal interferometer and polarimeter (TIP) prototype, including an active feedback alignment system, has been constructed and undergone initial testing at General Atomics. In the TIP prototype, two-color interferometry is carried out at 10.59 μm and 5.22 μm using a CO2 and quantum cascade laser (QCL) respectively while a separate polarimetry measurement of the plasma induced Faraday effect is made at 10.59 μm. The polarimeter system uses co-linear right and left-hand circularly polarized beams upshifted by 40 and 44 MHz acousto-optic cells respectively, to generate the necessary beat signal for heterodyne phase detection, while interferometry measurements are carried out at both 40 MHz and 44 MHz for the CO2 laser and 40 MHz for the QCL. The high-resolution phase information is obtained using an all-digital FPGA based phase demodulation scheme and precision clock source. The TIP prototype is equipped with a piezo tip/tilt stage active feedback alignment system responsible for minimizing noise in the measurement and keeping the TIP diagnostic aligned indefinitely on its 120 m beam path including as the ITER vessel is brought from ambient to operating temperatures. The prototype beam path incorporates translation stages to simulate ITER motion through a bake cycle as well as other sources of motion or misalignment. Even in the presence of significant motion, the TIP prototype is able to meet ITER’s density measurement requirements over 1000 s shot durations with demonstrated phase resolution of 0.06° and 1.5° for the polarimeter and vibration compensated interferometer respectively. TIP vibration compensated interferometer measurements of a plasma have also been made in a pulsed radio frequency device and show a line-integrated density resolution of δ {nL}=3.5× {10}17 m-2.

  6. Dissection of Rovibronic Structure by Polarization-Resolved Two-Color Resonant Four-Wave Mixing Spectroscopy

    Science.gov (United States)

    Murdock, Daniel; Burns, Lori A.; Vaccaro, Patrick H.

    2009-08-01

    A synergistic theoretical and experimental investigation of stimulated emission pumping (SEP) as implemented in the coherent framework of two-color resonant four-wave mixing (TC-RFWM) spectroscopy is presented, with special emphasis directed toward the identification of polarization geometries that can distinguish spectral features according to their attendant changes in rotational quantum numbers. A vector-recoupling formalism built upon a perturbative treatment of matter-field interactions and a state-multipole expansion of the density operator allowed the weak-field signal intensity to be cast in terms of a TC-RFWM response tensor, RQ(K)(ɛ4*ɛ3ɛ2*ɛ1;Jg,Je,Jh,Jf), which separates the transverse characteristics of the incident and generated electromagnetic waves (ɛ4*ɛ3ɛ2*ɛ1) from the angular momentum properties of the PUMP and DUMP resonances (Jg,Je,Jh,Jf). For an isolated SEP process induced in an isotropic medium, the criteria needed to discriminate against subsets of rovibronic structure were encoded in the roots of a single tensor element, R0(0)(ɛ4*ɛ3ɛ2*ɛ1;Jg,Je,Jh,Je). By assuming all optical fields to be polarized linearly and invoking the limit of high quantum numbers, specific angles of polarization for the detected signal field were found to suppress DUMP resonances selectively according to the nature of their rotational branch and the rotational branch of the meshing PUMP line. These predictions were corroborated by performing SEP measurements on the ground electronic potential energy surface of tropolone in two distinct regimes of vibrational excitation, with the near-ultraviolet Ã1B2-X˜1A1 (π* ← π) absorption system affording the requisite PUMP and DUMP transitions.

  7. Graph Theory. 1. Fragmentation of Structural Graphs

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2002-12-01

    Full Text Available The investigation of structural graphs has many fields of applications in engineering, especially in applied sciences like as applied chemistry and physics, computer sciences and automation, electronics and telecommunication. The main subject of the paper is to express fragmentation criteria in graph using a new method of investigation: terminal paths. Using terminal paths are defined most of the fragmentation criteria that are in use in molecular topology, but the fields of applications are more generally than that, as I mentioned before. Graphical examples of fragmentation are given for every fragmentation criteria. Note that all fragmentation is made with a computer program that implements a routine for every criterion.[1] A web routine for tracing all terminal paths in graph can be found at the address: http://vl.academicdirect.ro/molecular_topology/tpaths/ [1] M. V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology, Nova Science, Commack, New York, 2001, 2002.

  8. On the chiral perturbation theory for two-flavor two-color QCD at finite chemical potential

    Czech Academy of Sciences Publication Activity Database

    Brauner, Tomáš

    2006-01-01

    Roč. 21, č. 7 (2006), s. 559-569 ISSN 0217-7323 R&D Projects: GA ČR(CZ) GD202/05/H003 Institutional research plan: CEZ:AV0Z10480505 Keywords : two-color QCD * chiral perturbation theory * chemical potential Subject RIV: BE - Theoretical Physics Impact factor: 1.564, year: 2006

  9. High Dimensional Spectral Graph Theory and Non-backtracking Random Walks on Graphs

    Science.gov (United States)

    Kempton, Mark

    This thesis has two primary areas of focus. First we study connection graphs, which are weighted graphs in which each edge is associated with a d-dimensional rotation matrix for some fixed dimension d, in addition to a scalar weight. Second, we study non-backtracking random walks on graphs, which are random walks with the additional constraint that they cannot return to the immediately previous state at any given step. Our work in connection graphs is centered on the notion of consistency, that is, the product of rotations moving from one vertex to another is independent of the path taken, and a generalization called epsilon-consistency. We present higher dimensional versions of the combinatorial Laplacian matrix and normalized Laplacian matrix from spectral graph theory, and give results characterizing the consistency of a connection graph in terms of the spectra of these matrices. We generalize several tools from classical spectral graph theory, such as PageRank and effective resistance, to apply to connection graphs. We use these tools to give algorithms for sparsification, clustering, and noise reduction on connection graphs. In non-backtracking random walks, we address the question raised by Alon et. al. concerning how the mixing rate of a non-backtracking random walk to its stationary distribution compares to the mixing rate for an ordinary random walk. Alon et. al. address this question for regular graphs. We take a different approach, and use a generalization of Ihara's Theorem to give a new proof of Alon's result for regular graphs, and to extend the result to biregular graphs. Finally, we give a non-backtracking version of Polya's Random Walk Theorem for 2-dimensional grids.

  10. A graph rewriting programming language for graph drawing

    OpenAIRE

    Rodgers, Peter

    1998-01-01

    This paper describes Grrr, a prototype visual graph drawing tool. Previously there were no visual languages for programming graph drawing algorithms despite the inherently visual nature of the process. The languages which gave a diagrammatic view of graphs were not computationally complete and so could not be used to implement complex graph drawing algorithms. Hence current graph drawing tools are all text based. Recent developments in graph rewriting systems have produced computationally com...

  11. Graph Processing on GPUs: A Survey

    DEFF Research Database (Denmark)

    Shi, Xuanhua; Zheng, Zhigao; Zhou, Yongluan

    2018-01-01

    hundreds of billions, has attracted much attention in both industry and academia. It still remains a great challenge to process such large-scale graphs. Researchers have been seeking for new possible solutions. Because of the massive degree of parallelism and the high memory access bandwidth in GPU......, utilizing GPU to accelerate graph processing proves to be a promising solution. This article surveys the key issues of graph processing on GPUs, including data layout, memory access pattern, workload mapping, and specific GPU programming. In this article, we summarize the state-of-the-art research on GPU...

  12. Graph Transforming Java Data

    NARCIS (Netherlands)

    de Mol, M.J.; Rensink, Arend; Hunt, James J.

    This paper introduces an approach for adding graph transformation-based functionality to existing JAVA programs. The approach relies on a set of annotations to identify the intended graph structure, as well as on user methods to manipulate that structure, within the user’s own JAVA class

  13. Distance-transitive graphs

    NARCIS (Netherlands)

    Cohen, A.M.; Beineke, L.W.; Wilson, R.J.; Cameron, P.J.

    2004-01-01

    In this chapter we investigate the classification of distance-transitive graphs: these are graphs whose automorphism groups are transitive on each of the sets of pairs of vertices at distance i, for i = 0, 1,.... We provide an introduction into the field. By use of the classification of finite

  14. Adventures in graph theory

    CERN Document Server

    Joyner, W David

    2017-01-01

    This textbook acts as a pathway to higher mathematics by seeking and illuminating the connections between graph theory and diverse fields of mathematics, such as calculus on manifolds, group theory, algebraic curves, Fourier analysis, cryptography and other areas of combinatorics. An overview of graph theory definitions and polynomial invariants for graphs prepares the reader for the subsequent dive into the applications of graph theory. To pique the reader’s interest in areas of possible exploration, recent results in mathematics appear throughout the book, accompanied with examples of related graphs, how they arise, and what their valuable uses are. The consequences of graph theory covered by the authors are complicated and far-reaching, so topics are always exhibited in a user-friendly manner with copious graphs, exercises, and Sage code for the computation of equations. Samples of the book’s source code can be found at github.com/springer-math/adventures-in-graph-theory. The text is geared towards ad...

  15. Recognition of fractal graphs

    NARCIS (Netherlands)

    Perepelitsa, VA; Sergienko, [No Value; Kochkarov, AM

    1999-01-01

    Definitions of prefractal and fractal graphs are introduced, and they are used to formulate mathematical models in different fields of knowledge. The topicality of fractal-graph recognition from the point of view, of fundamental improvement in the efficiency of the solution of algorithmic problems

  16. Graph Colouring Algorithms

    DEFF Research Database (Denmark)

    Husfeldt, Thore

    2015-01-01

    This chapter presents an introduction to graph colouring algorithms. The focus is on vertex-colouring algorithms that work for general classes of graphs with worst-case performance guarantees in a sequential model of computation. The presentation aims to demonstrate the breadth of available...

  17. Packing Degenerate Graphs Greedily

    Czech Academy of Sciences Publication Activity Database

    Allen, P.; Böttcher, J.; Hladký, J.; Piguet, Diana

    2017-01-01

    Roč. 61, August (2017), s. 45-51 ISSN 1571-0653 R&D Projects: GA ČR GJ16-07822Y Institutional support: RVO:67985807 Keywords : tree packing conjecture * graph packing * graph processes Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics

  18. b-tree facets for the simple graph partitioning polytope

    DEFF Research Database (Denmark)

    Sørensen, Michael Malmros

    2004-01-01

    The simple graph partitioning problem is to partition an edge-weighted graph into mutually disjoint subgraphs, each consisting of no more than b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we introduce a large class of facet defining inequalities...... for the simple graph partitioning polytopes P_n(b), b >= 3, associated with the complete graph on n nodes. These inequalities are induced by a graph configuration which is built upon trees of cardinality b. We provide a closed-form theorem that states all necessary and sufficient conditions for the facet...... defining property of the inequalities. Udgivelsesdato: JUN...

  19. Low-Rank Matrix Factorization With Adaptive Graph Regularizer.

    Science.gov (United States)

    Lu, Gui-Fu; Wang, Yong; Zou, Jian

    2016-05-01

    In this paper, we present a novel low-rank matrix factorization algorithm with adaptive graph regularizer (LMFAGR). We extend the recently proposed low-rank matrix with manifold regularization (MMF) method with an adaptive regularizer. Different from MMF, which constructs an affinity graph in advance, LMFAGR can simultaneously seek graph weight matrix and low-dimensional representations of data. That is, graph construction and low-rank matrix factorization are incorporated into a unified framework, which results in an automatically updated graph rather than a predefined one. The experimental results on some data sets demonstrate that the proposed algorithm outperforms the state-of-the-art low-rank matrix factorization methods.

  20. Generalized connectivity of graphs

    CERN Document Server

    Li, Xueliang

    2016-01-01

    Noteworthy results, proof techniques, open problems and conjectures in generalized (edge-) connectivity are discussed in this book. Both theoretical and practical analyses for generalized (edge-) connectivity of graphs are provided. Topics covered in this book include: generalized (edge-) connectivity of graph classes, algorithms, computational complexity, sharp bounds, Nordhaus-Gaddum-type results, maximum generalized local connectivity, extremal problems, random graphs, multigraphs, relations with the Steiner tree packing problem and generalizations of connectivity. This book enables graduate students to understand and master a segment of graph theory and combinatorial optimization. Researchers in graph theory, combinatorics, combinatorial optimization, probability, computer science, discrete algorithms, complexity analysis, network design, and the information transferring models will find this book useful in their studies.

  1. Incremental View Maintenance for Deductive Graph Databases Using Generalized Discrimination Networks

    Directory of Open Access Journals (Sweden)

    Thomas Beyhl

    2016-12-01

    Full Text Available Nowadays, graph databases are employed when relationships between entities are in the scope of database queries to avoid performance-critical join operations of relational databases. Graph queries are used to query and modify graphs stored in graph databases. Graph queries employ graph pattern matching that is NP-complete for subgraph isomorphism. Graph database views can be employed that keep ready answers in terms of precalculated graph pattern matches for often stated and complex graph queries to increase query performance. However, such graph database views must be kept consistent with the graphs stored in the graph database. In this paper, we describe how to use incremental graph pattern matching as technique for maintaining graph database views. We present an incremental maintenance algorithm for graph database views, which works for imperatively and declaratively specified graph queries. The evaluation shows that our maintenance algorithm scales when the number of nodes and edges stored in the graph database increases. Furthermore, our evaluation shows that our approach can outperform existing approaches for the incremental maintenance of graph query results.

  2. Autoregressive Moving Average Graph Filtering

    OpenAIRE

    Isufi, Elvin; Loukas, Andreas; Simonetto, Andrea; Leus, Geert

    2016-01-01

    One of the cornerstones of the field of signal processing on graphs are graph filters, direct analogues of classical filters, but intended for signals defined on graphs. This work brings forth new insights on the distributed graph filtering problem. We design a family of autoregressive moving average (ARMA) recursions, which (i) are able to approximate any desired graph frequency response, and (ii) give exact solutions for tasks such as graph signal denoising and interpolation. The design phi...

  3. Graph Treewidth and Geometric Thickness Parameters

    OpenAIRE

    Dujmović, Vida; Wood, David R.

    2005-01-01

    Consider a drawing of a graph $G$ in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of $G$, is the classical graph parameter "thickness". By restricting the edges to be straight, we obtain the "geometric thickness". By further restricting the vertices to be in convex position, we obtain the "book thickness". This paper studies the relationship between these parameters and treewidth. Our first main result states that for grap...

  4. Subgraph detection using graph signals

    KAUST Repository

    Chepuri, Sundeep Prabhakar

    2017-03-06

    In this paper we develop statistical detection theory for graph signals. In particular, given two graphs, namely, a background graph that represents an usual activity and an alternative graph that represents some unusual activity, we are interested in answering the following question: To which of the two graphs does the observed graph signal fit the best? To begin with, we assume both the graphs are known, and derive an optimal Neyman-Pearson detector. Next, we derive a suboptimal detector for the case when the alternative graph is not known. The developed theory is illustrated with numerical experiments.

  5. Subgraph detection using graph signals

    KAUST Repository

    Chepuri, Sundeep Prabhakar; Leus, Geert

    2017-01-01

    In this paper we develop statistical detection theory for graph signals. In particular, given two graphs, namely, a background graph that represents an usual activity and an alternative graph that represents some unusual activity, we are interested in answering the following question: To which of the two graphs does the observed graph signal fit the best? To begin with, we assume both the graphs are known, and derive an optimal Neyman-Pearson detector. Next, we derive a suboptimal detector for the case when the alternative graph is not known. The developed theory is illustrated with numerical experiments.

  6. Extremal graph theory

    CERN Document Server

    Bollobas, Bela

    2004-01-01

    The ever-expanding field of extremal graph theory encompasses a diverse array of problem-solving methods, including applications to economics, computer science, and optimization theory. This volume, based on a series of lectures delivered to graduate students at the University of Cambridge, presents a concise yet comprehensive treatment of extremal graph theory.Unlike most graph theory treatises, this text features complete proofs for almost all of its results. Further insights into theory are provided by the numerous exercises of varying degrees of difficulty that accompany each chapter. A

  7. Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light.

    Science.gov (United States)

    Rivas, David; Muñoz-Matutano, Guillermo; Canet-Ferrer, Josep; García-Calzada, Raúl; Trevisi, Giovanna; Seravalli, Luca; Frigeri, Paola; Martínez-Pastor, Juan P

    2014-02-12

    In this work, we propose the use of the Hanbury-Brown and Twiss interferometric technique and a switchable two-color excitation method for evaluating the exciton and noncorrelated electron-hole dynamics associated with single photon emission from indium arsenide (InAs) self-assembled quantum dots (QDs). Using a microstate master equation model we demonstrate that our single QDs are described by nonlinear exciton dynamics. The simultaneous detection of two-color, single photon emission from InAs QDs using these nonlinear dynamics was used to design a NOT AND logic transference function. This computational functionality combines the advantages of working with light/photons as input/output device parameters (all-optical system) and that of a nanodevice (QD size of ∼ 20 nm) while also providing high optical sensitivity (ultralow optical power operational requirements). These system features represent an important and interesting step toward the development of new prototypes for the incoming quantum information technologies.

  8. Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range

    Science.gov (United States)

    Yu, Anchi; Ye, Xiong; Ionascu, Dan; Cao, Wenxiang; Champion, Paul M.

    2005-11-01

    An electronically delayed two-color pump-probe instrument was developed using two synchronized laser systems. The instrument has picosecond time resolution and can perform scans over hundreds of nanoseconds without the beam divergence and walk-off effects that occur using standard spatial delay systems. A unique picosecond Ti :sapphire regenerative amplifier was also constructed without the need for pulse stretching and compressing optics. The picosecond regenerative amplifier has a broad wavelength tuning range, which suggests that it will make a significant contribution to two-color pump-probe experiments. To test this instrument we studied the rotational correlation relaxation of myoglobin (τr=8.2±0.5ns) in water as well as the geminate rebinding kinetics of oxygen to myoglobin (kg1=1.7×1011s-1, kg2=3.4×107s-1). The results are consistent with, and improve upon, previous studies.

  9. Use of Attack Graphs in Security Systems

    Directory of Open Access Journals (Sweden)

    Vivek Shandilya

    2014-01-01

    Full Text Available Attack graphs have been used to model the vulnerabilities of the systems and their potential exploits. The successful exploits leading to the partial/total failure of the systems are subject of keen security interest. Considerable effort has been expended in exhaustive modeling, analyses, detection, and mitigation of attacks. One prominent methodology involves constructing attack graphs of the pertinent system for analysis and response strategies. This not only gives the simplified representation of the system, but also allows prioritizing the security properties whose violations are of greater concern, for both detection and repair. We present a survey and critical study of state-of-the-art technologies in attack graph generation and use in security system. Based on our research, we identify the potential, challenges, and direction of the current research in using attack graphs.

  10. Density profiles of small Dirac operator eigenvalues for two color QCD at nonzero chemical potential compared to matrix models

    OpenAIRE

    Akemann, G; Bittner, E; Lombardo, M; Markum, H; Pullirsch, R

    2004-01-01

    We investigate the eigenvalue spectrum of the staggered Dirac matrix in two color QCD at finite chemical potential. The profiles of complex eigenvalues close to the origin are compared to a complex generalization of the chiral Gaussian Symplectic Ensemble, confirming its predictions for weak and strong non-Hermiticity. They differ from the QCD symmetry class with three colors by a level repulsion from both the real and imaginary axis.

  11. Density profiles of small Dirac operator eigenvalues for two color QCD at nonzero chemical potential compared to matrix models

    International Nuclear Information System (INIS)

    Akemann, Gernot; Bittner, Elmar; Lombardo, Maria-Paola; Markum, Harald; Pullirsch, Rainer

    2005-01-01

    We investigate the eigenvalue spectrum of the staggered Dirac matrix in two color QCD at finite chemical potential. The profiles of complex eigenvalues close to the origin are compared to a complex generalization of the chiral Gaussian Symplectic Ensemble, confirming its predictions for weak and strong non-Hermiticity. They differ from the QCD symmetry class with three colors by a level repulsion from both the real and imaginary axis

  12. Generation and amplification of sub-THz radiation in a rare gases plasma formed by a two-color femtosecond laser pulse

    Science.gov (United States)

    Bogatskaya, A. V.; Volkova, E. A.; Popov, A. M.

    2018-06-01

    A new approach to constructing the source of radiation in the sub-THz frequency range is discussed. It is based on the strong-field ionization of heavy rare gases with Ramsauer minimum in the transport cross-section by a two-color () femtosecond laser pulse. Then a four-photon nonlinear process ( are the frequencies from the spectral width of the pulse with frequency ω, and is the frequency from the spectral width of the second harmonic 2ω) with a transition to the initial state results in a low-frequency spontaneous emission that can be amplified in the strongly nonequilibrium laser plasma if the position of the photoelectron peaks is located in the region of growing energy transport cross-section.

  13. Downhill Domination in Graphs

    Directory of Open Access Journals (Sweden)

    Haynes Teresa W.

    2014-08-01

    Full Text Available A path π = (v1, v2, . . . , vk+1 in a graph G = (V,E is a downhill path if for every i, 1 ≤ i ≤ k, deg(vi ≥ deg(vi+1, where deg(vi denotes the degree of vertex vi ∈ V. The downhill domination number equals the minimum cardinality of a set S ⊆ V having the property that every vertex v ∈ V lies on a downhill path originating from some vertex in S. We investigate downhill domination numbers of graphs and give upper bounds. In particular, we show that the downhill domination number of a graph is at most half its order, and that the downhill domination number of a tree is at most one third its order. We characterize the graphs obtaining each of these bounds

  14. Tailored Random Graph Ensembles

    International Nuclear Information System (INIS)

    Roberts, E S; Annibale, A; Coolen, A C C

    2013-01-01

    Tailored graph ensembles are a developing bridge between biological networks and statistical mechanics. The aim is to use this concept to generate a suite of rigorous tools that can be used to quantify and compare the topology of cellular signalling networks, such as protein-protein interaction networks and gene regulation networks. We calculate exact and explicit formulae for the leading orders in the system size of the Shannon entropies of random graph ensembles constrained with degree distribution and degree-degree correlation. We also construct an ergodic detailed balance Markov chain with non-trivial acceptance probabilities which converges to a strictly uniform measure and is based on edge swaps that conserve all degrees. The acceptance probabilities can be generalized to define Markov chains that target any alternative desired measure on the space of directed or undirected graphs, in order to generate graphs with more sophisticated topological features.

  15. Cycles in graphs

    CERN Document Server

    Alspach, BR

    1985-01-01

    This volume deals with a variety of problems involving cycles in graphs and circuits in digraphs. Leading researchers in this area present here 3 survey papers and 42 papers containing new results. There is also a collection of unsolved problems.

  16. Introduction to graph theory

    CERN Document Server

    Wilson, Robin J

    1985-01-01

    Graph Theory has recently emerged as a subject in its own right, as well as being an important mathematical tool in such diverse subjects as operational research, chemistry, sociology and genetics. This book provides a comprehensive introduction to the subject.

  17. Hyperbolicity in median graphs

    Indian Academy of Sciences (India)

    mic problems in hyperbolic spaces and hyperbolic graphs have been .... that in general the main obstacle is that we do not know the location of ...... [25] Jonckheere E and Lohsoonthorn P, A hyperbolic geometry approach to multipath routing,.

  18. The design of two color interferometer system for the 3-dimensional analysis of plasma density evolution on KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.C., E-mail: kclee@nfri.re.kr [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Juhn, J.-W.; Nam, Y.U.; Kim, Y.S.; Wi, H.M. [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Kim, S.W.; Ghim, Y.-C. [Korea Advanced Institute of Science and Technology, Daejeon 34141 (Korea, Republic of)

    2016-12-15

    Highlights: • A Two Color Interferometer (TCI) system is designed for 3-D measurement of KSTAR. • TCI is consists of 10.6 μm CO2 laser and 0.63 μm HeNe laser with tangential 5 channels. • 2 channels are installed in 2016 and 5 channel operation is planned in 2017. - Abstract: A 5-channel two color interferometer (TCI) system has been designed on KSTAR. TCI system is designed for tangential beam paths, which will combine with two existing interferometer systems of vertical and radial beam paths, so that it will provide 3-dimensional measurement of electron density evolution. TCI system uses wavelengths of 10.6 μm by a CO{sub 2} laser and 0.633 μm by a HeNe laser. The system compensates the vibrational noise by using two colors and avoids refraction by short wavelengths. The main purpose of the TCI is to generate routine measurement of the line integrated plasma density for the real time density control on KSTAR. The 5-channels will provide profile data for the density. Time resolution of the system is expected to be 500 kHz or higher in order to measure 3-dimensional density fluctuations for ELMs and other MHD activities including TAE modes. The system is planned to be working on KSTAR 2016 campaign with 1–2 channels.

  19. Two-color above-threshold ionization of atoms and ions in XUV Bessel beams and intense laser light

    Science.gov (United States)

    Seipt, D.; Müller, R. A.; Surzhykov, A.; Fritzsche, S.

    2016-11-01

    The two-color above-threshold ionization (ATI) of atoms and ions is investigated for a vortex Bessel beam in the presence of a strong near-infrared (NIR) light field. While the photoionization is caused by the photons from the weak but extreme ultraviolet (XUV) vortex Bessel beam, the energy and angular distribution of the photoelectrons and their sideband structure are affected by the plane-wave NIR field. We here explore the energy spectra and angular emission of the photoelectrons in such two-color fields as a function of the size and location of the target atoms with regard to the beam axis. In addition, analog to the circular dichroism in typical two-color ATI experiments with circularly polarized light, we define and discuss seven different dichroism signals for such vortex Bessel beams that arise from the various combinations of the orbital and spin angular momenta of the two light fields. For localized targets, it is found that these dichroism signals strongly depend on the size and position of the atoms relative to the beam. For macroscopically extended targets, in contrast, three of these dichroism signals tend to zero, while the other four just coincide with the standard circular dichroism, similar as for Bessel beams with a small opening angle. Detailed computations of the dichroism are performed and discussed for the 4 s valence-shell photoionization of Ca+ ions.

  20. Imaging of particles with 3D full parallax mode with two-color digital off-axis holography

    Science.gov (United States)

    Kara-Mohammed, Soumaya; Bouamama, Larbi; Picart, Pascal

    2018-05-01

    This paper proposes an approach based on two orthogonal views and two wavelengths for recording off-axis two-color holograms. The approach permits to discriminate particles aligned along the sight-view axis. The experimental set-up is based on a double Mach-Zehnder architecture in which two different wavelengths provides the reference and the object beams. The digital processing to get images from the particles is based on convolution so as to obtain images with no wavelength dependence. The spatial bandwidth of the angular spectrum transfer function is adapted in order to increase the maximum reconstruction distance which is generally limited to a few tens of millimeters. In order to get the images of particles in the 3D volume, a calibration process is proposed and is based on the modulation theorem to perfectly superimpose the two views in a common XYZ axis. The experimental set-up is applied to two-color hologram recording of moving non-calibrated opaque particles with average diameter at about 150 μm. After processing the two-color holograms with image reconstruction and view calibration, the location of particles in the 3D volume can be obtained. Particularly, ambiguity about close particles, generating hidden particles in a single-view scheme, can be removed to determine the exact number of particles in the region of interest.

  1. Generation of an isolated sub-30 attosecond pulse in a two-color laser field and a static electric field

    International Nuclear Information System (INIS)

    Zhang Gang-Tai; Zhang Mei-Guang; Bai Ting-Ting

    2012-01-01

    We theoretically investigate high-order harmonic generation (HHG) from a helium ion model in a two-color laser field, which is synthesized by a fundamental pulse and its second harmonic pulse. It is shown that a supercontinuum spectrum can be generated in the two-color field. However, the spectral intensity is very low, limiting the application of the generated attosecond (as) pulse. By adding a static electric field to the synthesized two-color field, not only is the ionization yield of electrons contributing to the harmonic emission remarkably increased, but also the quantum paths of the HHG can be significantly modulated. As a result, the extension and enhancement of the supercontinuum spectrum are achieved, producing an intense isolated 26-as pulse with a bandwidth of about 170.5 eV. In particular, we also analyse the influence of the laser parameters on the ultrabroad supercontinuum spectrum and isolated sub-30-as pulse generation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. The design of two color interferometer system for the 3-dimensional analysis of plasma density evolution on KSTAR

    International Nuclear Information System (INIS)

    Lee, K.C.; Juhn, J.-W.; Nam, Y.U.; Kim, Y.S.; Wi, H.M.; Kim, S.W.; Ghim, Y.-C.

    2016-01-01

    Highlights: • A Two Color Interferometer (TCI) system is designed for 3-D measurement of KSTAR. • TCI is consists of 10.6 μm CO2 laser and 0.63 μm HeNe laser with tangential 5 channels. • 2 channels are installed in 2016 and 5 channel operation is planned in 2017. - Abstract: A 5-channel two color interferometer (TCI) system has been designed on KSTAR. TCI system is designed for tangential beam paths, which will combine with two existing interferometer systems of vertical and radial beam paths, so that it will provide 3-dimensional measurement of electron density evolution. TCI system uses wavelengths of 10.6 μm by a CO 2 laser and 0.633 μm by a HeNe laser. The system compensates the vibrational noise by using two colors and avoids refraction by short wavelengths. The main purpose of the TCI is to generate routine measurement of the line integrated plasma density for the real time density control on KSTAR. The 5-channels will provide profile data for the density. Time resolution of the system is expected to be 500 kHz or higher in order to measure 3-dimensional density fluctuations for ELMs and other MHD activities including TAE modes. The system is planned to be working on KSTAR 2016 campaign with 1–2 channels.

  3. Uniform Single Valued Neutrosophic Graphs

    Directory of Open Access Journals (Sweden)

    S. Broumi

    2017-09-01

    Full Text Available In this paper, we propose a new concept named the uniform single valued neutrosophic graph. An illustrative example and some properties are examined. Next, we develop an algorithmic approach for computing the complement of the single valued neutrosophic graph. A numerical example is demonstrated for computing the complement of single valued neutrosophic graphs and uniform single valued neutrosophic graph.

  4. Collective Rationality in Graph Aggregation

    NARCIS (Netherlands)

    Endriss, U.; Grandi, U.; Schaub, T.; Friedrich, G.; O'Sullivan, B.

    2014-01-01

    Suppose a number of agents each provide us with a directed graph over a common set of vertices. Graph aggregation is the problem of computing a single “collective” graph that best represents the information inherent in this profile of individual graphs. We consider this aggregation problem from the

  5. Classical dynamics on graphs

    International Nuclear Information System (INIS)

    Barra, F.; Gaspard, P.

    2001-01-01

    We consider the classical evolution of a particle on a graph by using a time-continuous Frobenius-Perron operator that generalizes previous propositions. In this way, the relaxation rates as well as the chaotic properties can be defined for the time-continuous classical dynamics on graphs. These properties are given as the zeros of some periodic-orbit zeta functions. We consider in detail the case of infinite periodic graphs where the particle undergoes a diffusion process. The infinite spatial extension is taken into account by Fourier transforms that decompose the observables and probability densities into sectors corresponding to different values of the wave number. The hydrodynamic modes of diffusion are studied by an eigenvalue problem of a Frobenius-Perron operator corresponding to a given sector. The diffusion coefficient is obtained from the hydrodynamic modes of diffusion and has the Green-Kubo form. Moreover, we study finite but large open graphs that converge to the infinite periodic graph when their size goes to infinity. The lifetime of the particle on the open graph is shown to correspond to the lifetime of a system that undergoes a diffusion process before it escapes

  6. Proxy Graph: Visual Quality Metrics of Big Graph Sampling.

    Science.gov (United States)

    Nguyen, Quan Hoang; Hong, Seok-Hee; Eades, Peter; Meidiana, Amyra

    2017-06-01

    Data sampling has been extensively studied for large scale graph mining. Many analyses and tasks become more efficient when performed on graph samples of much smaller size. The use of proxy objects is common in software engineering for analysis and interaction with heavy objects or systems. In this paper, we coin the term 'proxy graph' and empirically investigate how well a proxy graph visualization can represent a big graph. Our investigation focuses on proxy graphs obtained by sampling; this is one of the most common proxy approaches. Despite the plethora of data sampling studies, this is the first evaluation of sampling in the context of graph visualization. For an objective evaluation, we propose a new family of quality metrics for visual quality of proxy graphs. Our experiments cover popular sampling techniques. Our experimental results lead to guidelines for using sampling-based proxy graphs in visualization.

  7. Comparison of soot formation for diesel and jet-a in a constant volume combustion chamber using two-color pyrometry

    KAUST Repository

    Jing, Wei

    2014-04-01

    The measurement of the two-color line of sight soot and KL factor for NO.2 diesel and jet-A fuels was conducted in an optical constant volume combustion chamber by using a high speed camera under 1000 K ambient temperature and varied oxygen concentration conditions. The ambient conditions were set as follows: four oxygen cases including 10%, 15%, 18% and 21% at 1000 K ambient temperature. KL factor and soot temperature were determined based on the two-color pyrometry technique using two band-pass filters with wavelengths of 650 nm and 550 nm. The results show that low soot temperature is observed in the upstream inner flame along the centerline, which is surrounded by high soot temperature regions, and a high KL factor is found in the same region with a low soot temperature. The results under different times suggest that soot temperature is higher for high O2 conditions during the entire flame development; meanwhile, both integrated KL factor and soot area decrease with the increase of O2 concentration. The two fuels share a similar trend of soot temperature and KL factor, however, diesel flame has a higher soot temperature and a larger high soot temperature area compared to jet-A flame. On the other hand, diesel flame shows a lower soot level during the quasi-steady state with a higher total soot level at the end of the combustion under low O2 conditions. A lower O2 concentration range from 10% to 15% is expected to have the possibility to achieve a simultaneous reduction of soot and NOx in sooting flames under the 1000 K ambient temperature condition. Copyright © 2014 SAE International.

  8. On some covering graphs of a graph

    Directory of Open Access Journals (Sweden)

    Shariefuddin Pirzada

    2016-10-01

    Full Text Available For a graph $G$ with vertex set $V(G=\\{v_1, v_2, \\dots, v_n\\}$, let $S$ be the covering set of $G$ having the maximum degree over all the minimum covering sets of $G$. Let $N_S[v]=\\{u\\in S : uv \\in E(G \\}\\cup \\{v\\}$ be the closed neighbourhood of the vertex $v$ with respect to $S.$ We define a square matrix $A_S(G= (a_{ij},$ by $a_{ij}=1,$ if $\\left |N_S[v_i]\\cap N_S[v_j] \\right| \\geq 1, i\

  9. Fundamentals of algebraic graph transformation

    CERN Document Server

    Ehrig, Hartmut; Prange, Ulrike; Taentzer, Gabriele

    2006-01-01

    Graphs are widely used to represent structural information in the form of objects and connections between them. Graph transformation is the rule-based manipulation of graphs, an increasingly important concept in computer science and related fields. This is the first textbook treatment of the algebraic approach to graph transformation, based on algebraic structures and category theory. Part I is an introduction to the classical case of graph and typed graph transformation. In Part II basic and advanced results are first shown for an abstract form of replacement systems, so-called adhesive high-level replacement systems based on category theory, and are then instantiated to several forms of graph and Petri net transformation systems. Part III develops typed attributed graph transformation, a technique of key relevance in the modeling of visual languages and in model transformation. Part IV contains a practical case study on model transformation and a presentation of the AGG (attributed graph grammar) tool envir...

  10. The STAPL Parallel Graph Library

    KAUST Repository

    Harshvardhan,

    2013-01-01

    This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable distributed graph container and a collection of commonly used parallel graph algorithms. The library introduces pGraph pViews that separate algorithm design from the container implementation. It supports three graph processing algorithmic paradigms, level-synchronous, asynchronous and coarse-grained, and provides common graph algorithms based on them. Experimental results demonstrate improved scalability in performance and data size over existing graph libraries on more than 16,000 cores and on internet-scale graphs containing over 16 billion vertices and 250 billion edges. © Springer-Verlag Berlin Heidelberg 2013.

  11. Parallel Algorithm for Incremental Betweenness Centrality on Large Graphs

    KAUST Repository

    Jamour, Fuad Tarek

    2017-10-17

    Betweenness centrality quantifies the importance of nodes in a graph in many applications, including network analysis, community detection and identification of influential users. Typically, graphs in such applications evolve over time. Thus, the computation of betweenness centrality should be performed incrementally. This is challenging because updating even a single edge may trigger the computation of all-pairs shortest paths in the entire graph. Existing approaches cannot scale to large graphs: they either require excessive memory (i.e., quadratic to the size of the input graph) or perform unnecessary computations rendering them prohibitively slow. We propose iCentral; a novel incremental algorithm for computing betweenness centrality in evolving graphs. We decompose the graph into biconnected components and prove that processing can be localized within the affected components. iCentral is the first algorithm to support incremental betweeness centrality computation within a graph component. This is done efficiently, in linear space; consequently, iCentral scales to large graphs. We demonstrate with real datasets that the serial implementation of iCentral is up to 3.7 times faster than existing serial methods. Our parallel implementation that scales to large graphs, is an order of magnitude faster than the state-of-the-art parallel algorithm, while using an order of magnitude less computational resources.

  12. Graphs, groups and surfaces

    CERN Document Server

    White, AT

    1985-01-01

    The field of topological graph theory has expanded greatly in the ten years since the first edition of this book appeared. The original nine chapters of this classic work have therefore been revised and updated. Six new chapters have been added, dealing with: voltage graphs, non-orientable imbeddings, block designs associated with graph imbeddings, hypergraph imbeddings, map automorphism groups and change ringing.Thirty-two new problems have been added to this new edition, so that there are now 181 in all; 22 of these have been designated as ``difficult'''' and 9 as ``unsolved''''. Three of the four unsolved problems from the first edition have been solved in the ten years between editions; they are now marked as ``difficult''''.

  13. Profinite graphs and groups

    CERN Document Server

    Ribes, Luis

    2017-01-01

    This book offers a detailed introduction to graph theoretic methods in profinite groups and applications to abstract groups. It is the first to provide a comprehensive treatment of the subject. The author begins by carefully developing relevant notions in topology, profinite groups and homology, including free products of profinite groups, cohomological methods in profinite groups, and fixed points of automorphisms of free pro-p groups. The final part of the book is dedicated to applications of the profinite theory to abstract groups, with sections on finitely generated subgroups of free groups, separability conditions in free and amalgamated products, and algorithms in free groups and finite monoids. Profinite Graphs and Groups will appeal to students and researchers interested in profinite groups, geometric group theory, graphs and connections with the theory of formal languages. A complete reference on the subject, the book includes historical and bibliographical notes as well as a discussion of open quest...

  14. Subdominant pseudoultrametric on graphs

    Energy Technology Data Exchange (ETDEWEB)

    Dovgoshei, A A; Petrov, E A [Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Donetsk (Ukraine)

    2013-08-31

    Let (G,w) be a weighted graph. We find necessary and sufficient conditions under which the weight w:E(G)→R{sup +} can be extended to a pseudoultrametric on V(G), and establish a criterion for the uniqueness of such an extension. We demonstrate that (G,w) is a complete k-partite graph, for k≥2, if and only if for any weight that can be extended to a pseudoultrametric, among all such extensions one can find the least pseudoultrametric consistent with w. We give a structural characterization of graphs for which the subdominant pseudoultrametric is an ultrametric for any strictly positive weight that can be extended to a pseudoultrametric. Bibliography: 14 titles.

  15. Coherent control of D2/H2 dissociative ionization by a mid-infrared two-color laser field

    International Nuclear Information System (INIS)

    Wanie, Vincent; Ibrahim, Heide; Beaulieu, Samuel; Thiré, Nicolas; Schmidt, Bruno E; Légaré, François; Deng, Yunpei; Alnaser, Ali S; Litvinyuk, Igor V; Tong, Xiao-Min

    2016-01-01

    Steering the electrons during an ultrafast photo-induced process in a molecule influences the chemical behavior of the system, opening the door to the control of photochemical reactions and photobiological processes. Electrons can be efficiently localized using a strong laser field with a well-designed temporal shape of the electric component. Consequently, many experiments have been performed with laser sources in the near-infrared region (800 nm) in the interest of studying and enhancing the electron localization. However, due to its limited accessibility, the mid-infrared (MIR) range has barely been investigated, although it allows to efficiently control small molecules and even more complex systems. To push further the manipulation of basic chemical mechanisms, we used a MIR two-color (1800 and 900 nm) laser field to ionize H 2 and D 2 molecules and to steer the remaining electron during the photo-induced dissociation. The study of this prototype reaction led to the simultaneous control of four fragmentation channels. The results are well reproduced by a theoretical model solving the time-dependent Schrödinger equation for the molecular ion, identifying the involved dissociation mechanisms. By varying the relative phase between the two colors, asymmetries (i.e., electron localization selectivity) of up to 65% were obtained, corresponding to enhanced or equivalent levels of control compared to previous experiments. Experimentally easier to implement, the use of a two-color laser field leads to a better electron localization than carrier-envelope phase stabilized pulses and applying the technique in the MIR range reveals more dissociation channels than at 800 nm. (paper)

  16. Multi-terminal Two-color ZnCdSe/ZnCdMgSe Based Quantum-well Infrared Photodetector

    Science.gov (United States)

    Kaya, Yasin; Ravikumar, Arvind; Chen, Guopeng; Tamargo, Maria C.; Shen, Aidong; Gmachl, Claire

    Target recognition and identification applications benefits from two-color infrared (IR) detectors in the mid and long-wavelength IR regions. Currently, InGaAs/AlGaAs and GaAs/AlGaAs multiple quantum wells (QWs) grown on GaAs substrate are the most commonly used two-color QW IR photodetectors (QWIPs). However, the lattice-mismatch and the buildup of strain limit the number of QWs that can be grown, in turn increasing the dark current noise, and limiting the device detectivity.In this work, we report on two-color QWIPs based on the large conduction band offset (~1.12ev) ZnCdSe/ZnCdMgSe material system lattice matched to InP. QWIPs were designed based on a bound to quasi-bound transition, centered at 4 μm and 7 μm and each QW is repeated 50 times to eliminate the high dark current and a contact layer is inserted between the two stacks of QWs for independent electrical contacts. Wafers are processed into two step rectangular mesas by lithography and wet etching. Experiments showed absorption spectra centered at 4.9 μm and 7.6 μm at 80 K and the full width at half maximums were Δλ / λ = 21 % and Δλ / λ = 23 % , respectively. Current work studies the Johnson and the background noise limited detectivities of these QWIPs. Current address: School of Earth, Energy and Environmental Sciences, Stanford, CA 94305, USA.

  17. Transduction on Directed Graphs via Absorbing Random Walks.

    Science.gov (United States)

    De, Jaydeep; Zhang, Xiaowei; Lin, Feng; Cheng, Li

    2017-08-11

    In this paper we consider the problem of graph-based transductive classification, and we are particularly interested in the directed graph scenario which is a natural form for many real world applications.Different from existing research efforts that either only deal with undirected graphs or circumvent directionality by means of symmetrization, we propose a novel random walk approach on directed graphs using absorbing Markov chains, which can be regarded as maximizing the accumulated expected number of visits from the unlabeled transient states. Our algorithm is simple, easy to implement, and works with large-scale graphs on binary, multiclass, and multi-label prediction problems. Moreover, it is capable of preserving the graph structure even when the input graph is sparse and changes over time, as well as retaining weak signals presented in the directed edges. We present its intimate connections to a number of existing methods, including graph kernels, graph Laplacian based methods, and interestingly, spanning forest of graphs. Its computational complexity and the generalization error are also studied. Empirically our algorithm is systematically evaluated on a wide range of applications, where it has shown to perform competitively comparing to a suite of state-of-the-art methods. In particular, our algorithm is shown to work exceptionally well with large sparse directed graphs with e.g. millions of nodes and tens of millions of edges, where it significantly outperforms other state-of-the-art methods. In the dynamic graph setting involving insertion or deletion of nodes and edge-weight changes over time, it also allows efficient online updates that produce the same results as of the batch update counterparts.

  18. Quantitative graph theory mathematical foundations and applications

    CERN Document Server

    Dehmer, Matthias

    2014-01-01

    The first book devoted exclusively to quantitative graph theory, Quantitative Graph Theory: Mathematical Foundations and Applications presents and demonstrates existing and novel methods for analyzing graphs quantitatively. Incorporating interdisciplinary knowledge from graph theory, information theory, measurement theory, and statistical techniques, this book covers a wide range of quantitative-graph theoretical concepts and methods, including those pertaining to real and random graphs such as:Comparative approaches (graph similarity or distance)Graph measures to characterize graphs quantitat

  19. Simulation of Far-Field Superresolution Fluorescence Imaging with Two-Color One-Photon Excitation of Reversible Photoactivatable Protein

    International Nuclear Information System (INIS)

    Wang Chen; Qiao Ling-Ling; Mao Zheng-Le

    2011-01-01

    We propose to achieve far-field super-resolution imaging by using offset two-color one-photon (2C1P) excitation of reversible photoactivatable fluorescence proteins. Due to the distinctive photoswitching performance of the proteins, such as dronpa, the fluorescence emission will only come from the overlapped region of activation beam and excitation beam. The analysis solution of rate equation shows that the resolution of offset 2C1P microscope is 'engineered' by laser power of excitation and activation beams and the power ratio between them. Superior lateral and transverse resolution is theoretically demonstrated compared with conventional fluorescence scanning microscopy. (fundamental areas of phenomenology(including applications))

  20. Observations of strain accumulation across the san andreas fault near palmdale, california, with a two-color geodimeter.

    Science.gov (United States)

    Langbein, J O; Linker, M F; McGarr, A; Slater, L E

    1982-12-17

    Two-color laser ranging measurements during a 15-month period over a geodetic network spanning the San Andreas fault near Palmdale, California, indicate that the crust expands and contracts aseismically in episodes as short as 2 weeks. Shear strain parallel to the fault has accumulated monotonically since November 1980, but at a variable rate. Improvements in measurement precision and temporal resolution over those of previous geodetic studies near Palmdale have resulted in the definition of a time history of crustal deformation that is much more complex than formerly realized.

  1. Distilling two-center-interference information during tunneling of aligned molecules with orthogonally polarized two-color laser fields

    Science.gov (United States)

    Gao, F.; Chen, Y. J.; Xin, G. G.; Liu, J.; Fu, L. B.

    2017-12-01

    When electrons tunnel through a barrier formed by the strong laser field and the two-center potential of a diatomic molecule, a double-slit-like interference can occur. However, this interference effect can not be probed directly right now, as it is strongly coupled with other dynamical processes during tunneling. Here, we show numerically and analytically that orthogonally polarized two-color (OTC) laser fields are capable of resolving the interference effect in tunneling, while leaving clear footprints of this effect in photoelectron momentum distributions. Moreover, this effect can be manipulated by changing the relative field strength of OTC fields.

  2. Augmented marked graphs

    CERN Document Server

    Cheung, King Sing

    2014-01-01

    Petri nets are a formal and theoretically rich model for the modelling and analysis of systems. A subclass of Petri nets, augmented marked graphs possess a structure that is especially desirable for the modelling and analysis of systems with concurrent processes and shared resources.This monograph consists of three parts: Part I provides the conceptual background for readers who have no prior knowledge on Petri nets; Part II elaborates the theory of augmented marked graphs; finally, Part III discusses the application to system integration. The book is suitable as a first self-contained volume

  3. Graph Query Portal

    OpenAIRE

    Dayal, Amit; Brock, David

    2018-01-01

    Prashant Chandrasekar, a lead developer for the Social Interactome project, has tasked the team with creating a graph representation of the data collected from the social networks involved in that project. The data is currently stored in a MySQL database. The client requested that the graph database be Cayley, but after a literature review, Neo4j was chosen. The reasons for this shift will be explained in the design section. Secondarily, the team was tasked with coming up with three scena...

  4. Spectral radius of graphs

    CERN Document Server

    Stevanovic, Dragan

    2015-01-01

    Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the

  5. Graph embedding with rich information through heterogeneous graph

    KAUST Repository

    Sun, Guolei

    2017-01-01

    Graph embedding, aiming to learn low-dimensional representations for nodes in graphs, has attracted increasing attention due to its critical application including node classification, link prediction and clustering in social network analysis. Most

  6. What Would a Graph Look Like in this Layout? A Machine Learning Approach to Large Graph Visualization.

    Science.gov (United States)

    Kwon, Oh-Hyun; Crnovrsanin, Tarik; Ma, Kwan-Liu

    2018-01-01

    Using different methods for laying out a graph can lead to very different visual appearances, with which the viewer perceives different information. Selecting a "good" layout method is thus important for visualizing a graph. The selection can be highly subjective and dependent on the given task. A common approach to selecting a good layout is to use aesthetic criteria and visual inspection. However, fully calculating various layouts and their associated aesthetic metrics is computationally expensive. In this paper, we present a machine learning approach to large graph visualization based on computing the topological similarity of graphs using graph kernels. For a given graph, our approach can show what the graph would look like in different layouts and estimate their corresponding aesthetic metrics. An important contribution of our work is the development of a new framework to design graph kernels. Our experimental study shows that our estimation calculation is considerably faster than computing the actual layouts and their aesthetic metrics. Also, our graph kernels outperform the state-of-the-art ones in both time and accuracy. In addition, we conducted a user study to demonstrate that the topological similarity computed with our graph kernel matches perceptual similarity assessed by human users.

  7. The circumference of the square of a connected graph

    DEFF Research Database (Denmark)

    Brandt, S.; Muttel, J.; Rautenbach, D.

    2014-01-01

    The celebrated result of Fleischner states that the square of every 2-connected graph is Hamiltonian. We investigate what happens if the graph is just connected. For every n a parts per thousand yen 3, we determine the smallest length c(n) of a longest cycle in the square of a connected graph of ...... of order n and show that c(n) is a logarithmic function in n. Furthermore, for every c a parts per thousand yen 3, we characterize the connected graphs of largest order whose square contains no cycle of length at least c....

  8. Using Graph and Vertex Entropy to Compare Empirical Graphs with Theoretical Graph Models

    Directory of Open Access Journals (Sweden)

    Tomasz Kajdanowicz

    2016-09-01

    Full Text Available Over the years, several theoretical graph generation models have been proposed. Among the most prominent are: the Erdős–Renyi random graph model, Watts–Strogatz small world model, Albert–Barabási preferential attachment model, Price citation model, and many more. Often, researchers working with real-world data are interested in understanding the generative phenomena underlying their empirical graphs. They want to know which of the theoretical graph generation models would most probably generate a particular empirical graph. In other words, they expect some similarity assessment between the empirical graph and graphs artificially created from theoretical graph generation models. Usually, in order to assess the similarity of two graphs, centrality measure distributions are compared. For a theoretical graph model this means comparing the empirical graph to a single realization of a theoretical graph model, where the realization is generated from the given model using an arbitrary set of parameters. The similarity between centrality measure distributions can be measured using standard statistical tests, e.g., the Kolmogorov–Smirnov test of distances between cumulative distributions. However, this approach is both error-prone and leads to incorrect conclusions, as we show in our experiments. Therefore, we propose a new method for graph comparison and type classification by comparing the entropies of centrality measure distributions (degree centrality, betweenness centrality, closeness centrality. We demonstrate that our approach can help assign the empirical graph to the most similar theoretical model using a simple unsupervised learning method.

  9. Handbook of graph grammars and computing by graph transformation

    CERN Document Server

    Engels, G; Kreowski, H J; Rozenberg, G

    1999-01-01

    Graph grammars originated in the late 60s, motivated by considerations about pattern recognition and compiler construction. Since then, the list of areas which have interacted with the development of graph grammars has grown quite impressively. Besides the aforementioned areas, it includes software specification and development, VLSI layout schemes, database design, modeling of concurrent systems, massively parallel computer architectures, logic programming, computer animation, developmental biology, music composition, visual languages, and many others.The area of graph grammars and graph tran

  10. Topics in graph theory graphs and their Cartesian product

    CERN Document Server

    Imrich, Wilfried; Rall, Douglas F

    2008-01-01

    From specialists in the field, you will learn about interesting connections and recent developments in the field of graph theory by looking in particular at Cartesian products-arguably the most important of the four standard graph products. Many new results in this area appear for the first time in print in this book. Written in an accessible way, this book can be used for personal study in advanced applications of graph theory or for an advanced graph theory course.

  11. Hierarchical graphs for rule-based modeling of biochemical systems

    Directory of Open Access Journals (Sweden)

    Hu Bin

    2011-02-01

    Full Text Available Abstract Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal of an edge represents a class of association (dissociation reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for

  12. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects

    Science.gov (United States)

    González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.

    2016-01-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689

  13. Intensity dependence of nonsequential double ionization of helium in IR+XUV two-color laser fields

    International Nuclear Information System (INIS)

    Jin, Facheng; Wang, Bingbing; Chen, Jing; Yang, Yujun; Yan, Zong-Chao

    2016-01-01

    By applying the frequency-domain theory, we investigate the dependence of momentum spectra on laser intensity in a nonsequential double ionization (NSDI) process of helium in infrared (IR) and extreme ultraviolet (XUV) two-color laser fields. We find that the two-color laser fields play distinct roles in an NSDI process, where the IR laser field mainly determines the width of each band, and the XUV laser field mainly plays a role on the NSDI probability. Furthermore, an NSDI process can be decoupled into a two-step process: an above-threshold ionization (ATI), followed by a laser-assisted collision (LAC). It is found that, the IR laser field is responsible for broadening the peak in the ATI process and providing additional momenta to the two ionized electrons in the LAC process; while the XUV laser field plays a crucial role on the strength of the spectrum in the ATI process, and influences the radii of orbits in momentum space in the LAC process. (paper)

  14. High-order harmonic generation spectra and isolated attosecond pulse generation with a two-color time delayed pulse

    International Nuclear Information System (INIS)

    Feng Liqiang; Chu Tianshu

    2012-01-01

    Highlights: ► Investigation of HHG spectra and single isolated attosecond pulse generation. ► Irradiation from a model Ne atom by two-color time delayed pulse. ► Observation of time delay effect and relative phase effect. ► Revelation of the optimal condition for generating isolated attosecond pulse. ► Generation of a single isolated attosecond pulse of 45as. - Abstract: In this paper, we theoretically investigate the delay time effect on the high-order harmonic generation (HHG) when a model Ne atom is exposed to a two-color time delayed pulse, consisting of a 5fs/800 nm fundamental field and a 20fs/2000 nm controlling field. It shows that the HHG spectra are strongly sensitive to the delay time between the two laser fields, in particular, for the zero carrier-envelope phase (CEP) φ case (corresponding to the 800 nm fundamental field), the maximum cutoff energy has been achieved at zero delay time. However, with the introduction of the CEP (φ = 180°), the delay effect on HHG is changed, exhibiting a ‘U’ structure harmonic emission from −1 T to 1 T. In addition, the combinations of different controlling pulse frequencies and pulse intensities have also been considered, showing the similar results as the original controlling field case, but with some characteristics. Finally, by properly superposing the optimal harmonic spectrum, an isolated 45as pulse is generated without phase compensation.

  15. Partitioning a call graph

    NARCIS (Netherlands)

    Bisseling, R.H.; Byrka, J.; Cerav-Erbas, S.; Gvozdenovic, N.; Lorenz, M.; Pendavingh, R.A.; Reeves, C.; Röger, M.; Verhoeven, A.; Berg, van den J.B.; Bhulai, S.; Hulshof, J.; Koole, G.; Quant, C.; Williams, J.F.

    2006-01-01

    Splitting a large software system into smaller and more manageable units has become an important problem for many organizations. The basic structure of a software system is given by a directed graph with vertices representing the programs of the system and arcs representing calls from one program to

  16. Coloring geographical threshold graphs

    Energy Technology Data Exchange (ETDEWEB)

    Bradonjic, Milan [Los Alamos National Laboratory; Percus, Allon [Los Alamos National Laboratory; Muller, Tobias [EINDHOVEN UNIV. OF TECH

    2008-01-01

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.

  17. Supermarket model on graphs

    NARCIS (Netherlands)

    Budhiraja, A.S.; Mukherjee, D.; Wu, R.

    2017-01-01

    We consider a variation of the supermarket model in which the servers can communicate with their neighbors and where the neighborhood relationships are described in terms of a suitable graph. Tasks with unit-exponential service time distributions arrive at each vertex as independent Poisson

  18. Basin Hopping Graph

    DEFF Research Database (Denmark)

    Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter

    2014-01-01

    of the folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...

  19. Absolute carrier phase effects in the two-color excitation of dipolar molecules

    International Nuclear Information System (INIS)

    Brown, Alex; Meath, W.J.; Kondo, A.E.

    2002-01-01

    The pump-probe excitation of a two-level dipolar (d≠0) molecule, where the pump frequency is tuned to the energy level separation while the probe frequency is extremely small, is examined theoretically as an example of absolute phase control of excitation processes. The state populations depend on the probe field's absolute carrier phase but are independent of the pump field's absolute carrier phase. Interestingly, the absolute phase effects occur for pulse durations much longer and field intensities much weaker than those required to see such effects in single pulse excitation

  20. The STAPL Parallel Graph Library

    KAUST Repository

    Harshvardhan,; Fidel, Adam; Amato, Nancy M.; Rauchwerger, Lawrence

    2013-01-01

    This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable

  1. Cellular Automata on Graphs: Topological Properties of ER Graphs Evolved towards Low-Entropy Dynamics

    Directory of Open Access Journals (Sweden)

    Marc-Thorsten Hütt

    2012-06-01

    Full Text Available Cellular automata (CA are a remarkably  efficient tool for exploring general properties of complex systems and spatiotemporal patterns arising from local rules. Totalistic cellular automata,  where the update  rules depend  only on the density of neighboring states, are at the same time a versatile  tool for exploring  dynamical  processes on graphs. Here we briefly review our previous results on cellular automata on graphs, emphasizing some systematic relationships between network architecture and dynamics identified in this way. We then extend the investigation  towards graphs obtained in a simulated-evolution procedure, starting from Erdő s–Rényi (ER graphs and selecting for low entropies of the CA dynamics. Our key result is a strong association of low Shannon entropies with a broadening of the graph’s degree distribution.

  2. A Clustering Graph Generator

    Energy Technology Data Exchange (ETDEWEB)

    Winlaw, Manda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); De Sterck, Hans [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    In very simple terms a network can be de ned as a collection of points joined together by lines. Thus, networks can be used to represent connections between entities in a wide variety of elds including engi- neering, science, medicine, and sociology. Many large real-world networks share a surprising number of properties, leading to a strong interest in model development research and techniques for building synthetic networks have been developed, that capture these similarities and replicate real-world graphs. Modeling these real-world networks serves two purposes. First, building models that mimic the patterns and prop- erties of real networks helps to understand the implications of these patterns and helps determine which patterns are important. If we develop a generative process to synthesize real networks we can also examine which growth processes are plausible and which are not. Secondly, high-quality, large-scale network data is often not available, because of economic, legal, technological, or other obstacles [7]. Thus, there are many instances where the systems of interest cannot be represented by a single exemplar network. As one example, consider the eld of cybersecurity, where systems require testing across diverse threat scenarios and validation across diverse network structures. In these cases, where there is no single exemplar network, the systems must instead be modeled as a collection of networks in which the variation among them may be just as important as their common features. By developing processes to build synthetic models, so-called graph generators, we can build synthetic networks that capture both the essential features of a system and realistic variability. Then we can use such synthetic graphs to perform tasks such as simulations, analysis, and decision making. We can also use synthetic graphs to performance test graph analysis algorithms, including clustering algorithms and anomaly detection algorithms.

  3. Groupies in multitype random graphs

    OpenAIRE

    Shang, Yilun

    2016-01-01

    A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erd?s-R?nyi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.

  4. Groupies in multitype random graphs.

    Science.gov (United States)

    Shang, Yilun

    2016-01-01

    A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erdős-Rényi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.

  5. Temporal Representation in Semantic Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Levandoski, J J; Abdulla, G M

    2007-08-07

    A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.

  6. A generalization of total graphs

    Indian Academy of Sciences (India)

    M Afkhami

    2018-04-12

    Apr 12, 2018 ... product of any lower triangular matrix with the transpose of any element of U belongs to U. The ... total graph of R, which is denoted by T( (R)), is a simple graph with all elements of R as vertices, and ...... [9] Badawi A, On dot-product graph of a commutative ring, Communications in Algebra 43 (2015). 43–50.

  7. Graph transformation tool contest 2008

    NARCIS (Netherlands)

    Rensink, Arend; van Gorp, Pieter

    This special section is the outcome of the graph transformation tool contest organised during the Graph-Based Tools (GraBaTs) 2008 workshop, which took place as a satellite event of the International Conference on Graph Transformation (ICGT) 2008. The contest involved two parts: three “off-line case

  8. On dominator colorings in graphs

    Indian Academy of Sciences (India)

    colors required for a dominator coloring of G is called the dominator .... Theorem 1.3 shows that the complete graph Kn is the only connected graph of order n ... Conversely, if a graph G satisfies condition (i) or (ii), it is easy to see that χd(G) =.

  9. Topic Model for Graph Mining.

    Science.gov (United States)

    Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng

    2015-12-01

    Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs.

  10. A Bond Graph Approach for the Modeling and Simulation of a Buck Converter

    Directory of Open Access Journals (Sweden)

    Rached Zrafi

    2018-01-01

    Full Text Available This paper deals with the modeling of bond graph buck converter systems. The bond graph formalism, which represents a heterogeneous formalism for physical modeling, is used to design a sub-model of a power MOSFET and PiN diode switchers. These bond graph models are based on the device’s electrical elements. The application of these models to a bond graph buck converter permit us to obtain an invariant causal structure when the switch devices change state. This paper shows the usefulness of the bond graph device’s modeling to simulate an implicit bond graph buck converter.

  11. Connected Colourings of Complete Graphs and Hypergraphs

    OpenAIRE

    Leader, Imre; Tan, Ta Sheng

    2014-01-01

    Gallai's colouring theorem states that if the edges of a complete graph are 3-coloured, with each colour class forming a connected (spanning) subgraph, then there is a triangle that has all 3 colours. What happens for more colours: if we $k$-colour the edges of the complete graph, with each colour class connected, how many of the $\\binom{k}{3}$ triples of colours must appear as triangles? In this note we show that the `obvious' conjecture, namely that there are always at least $\\binom{k-1}{2}...

  12. Efficient Graph Computation for Node2Vec

    OpenAIRE

    Zhou, Dongyan; Niu, Songjie; Chen, Shimin

    2018-01-01

    Node2Vec is a state-of-the-art general-purpose feature learning method for network analysis. However, current solutions cannot run Node2Vec on large-scale graphs with billions of vertices and edges, which are common in real-world applications. The existing distributed Node2Vec on Spark incurs significant space and time overhead. It runs out of memory even for mid-sized graphs with millions of vertices. Moreover, it considers at most 30 edges for every vertex in generating random walks, causin...

  13. Graph-based semi-supervised learning

    CERN Document Server

    Subramanya, Amarnag

    2014-01-01

    While labeled data is expensive to prepare, ever increasing amounts of unlabeled data is becoming widely available. In order to adapt to this phenomenon, several semi-supervised learning (SSL) algorithms, which learn from labeled as well as unlabeled data, have been developed. In a separate line of work, researchers have started to realize that graphs provide a natural way to represent data in a variety of domains. Graph-based SSL algorithms, which bring together these two lines of work, have been shown to outperform the state-of-the-art in many applications in speech processing, computer visi

  14. Polarimetric, Two-Color, Photon-Counting Laser Altimeter Measurements of Forest Canopy Structure

    Science.gov (United States)

    Harding, David J.; Dabney, Philip W.; Valett, Susan

    2011-01-01

    Laser altimeter measurements of forest stands with distinct structures and compositions have been acquired at 532 nm (green) and 1064 nm (near-infrared) wavelengths and parallel and perpendicular polarization states using the Slope Imaging Multi-polarization Photon Counting Lidar (SIMPL). The micropulse, single photon ranging measurement approach employed by SIMPL provides canopy structure measurements with high vertical and spatial resolution. Using a height distribution analysis method adapted from conventional, 1064 nm, full-waveform lidar remote sensing, the sensitivity of two parameters commonly used for above-ground biomass estimation are compared as a function of wavelength. The results for the height of median energy (HOME) and canopy cover are for the most part very similar, indicating biomass estimations using lidars operating at green and near-infrared wavelengths will yield comparable estimates. The expected detection of increasing depolarization with depth into the canopies due to volume multiple-scattering was not observed, possibly due to the small laser footprint and the small detector field of view used in the SIMPL instrument. The results of this work provide pathfinder information for NASA's ICESat-2 mission that will employ a 532 nm, micropulse, photon counting laser altimeter.

  15. Algorithms for Planar Graphs and Graphs in Metric Spaces

    DEFF Research Database (Denmark)

    Wulff-Nilsen, Christian

    structural properties that can be exploited. For instance, a road network or a wire layout on a microchip is typically (near-)planar and distances in the network are often defined w.r.t. the Euclidean or the rectilinear metric. Specialized algorithms that take advantage of such properties are often orders...... of magnitude faster than the corresponding algorithms for general graphs. The first and main part of this thesis focuses on the development of efficient planar graph algorithms. The most important contributions include a faster single-source shortest path algorithm, a distance oracle with subquadratic...... for geometric graphs and graphs embedded in metric spaces. Roughly speaking, the stretch factor is a real value expressing how well a (geo-)metric graph approximates the underlying complete graph w.r.t. distances. We give improved algorithms for computing the stretch factor of a given graph and for augmenting...

  16. Generating Realistic Labelled, Weighted Random Graphs

    Directory of Open Access Journals (Sweden)

    Michael Charles Davis

    2015-12-01

    Full Text Available Generative algorithms for random graphs have yielded insights into the structure and evolution of real-world networks. Most networks exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Usually, random graph models consider only structural information, but many real-world networks also have labelled vertices and weighted edges. In this paper, we present a generative model for random graphs with discrete vertex labels and numeric edge weights. The weights are represented as a set of Beta Mixture Models (BMMs with an arbitrary number of mixtures, which are learned from real-world networks. We propose a Bayesian Variational Inference (VI approach, which yields an accurate estimation while keeping computation times tractable. We compare our approach to state-of-the-art random labelled graph generators and an earlier approach based on Gaussian Mixture Models (GMMs. Our results allow us to draw conclusions about the contribution of vertex labels and edge weights to graph structure.

  17. Herdable Systems Over Signed, Directed Graphs

    KAUST Repository

    Ruf, Sebastian F.

    2018-04-11

    This paper considers the notion of herdability, a set-based reachability condition, which asks whether the state of a system can be controlled to be element-wise larger than a non-negative threshold. The basic theory of herdable systems is presented, including a necessary and sufficient condition for herdability. This paper then considers the impact of the underlying graph structure of a linear system on the herdability of the system, for the case where the graph is represented as signed and directed. By classifying nodes based on the length and sign of walks from an input, we find a class of completely herdable systems as well as provide a complete characterization of nodes that can be herded in systems with an underlying graph that is a directed out-branching rooted at a single input.

  18. Learning molecular energies using localized graph kernels

    Science.gov (United States)

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-01

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  19. Herdable Systems Over Signed, Directed Graphs

    KAUST Repository

    Ruf, Sebastian F.; Egerstedt, Magnus; Shamma, Jeff S.

    2018-01-01

    This paper considers the notion of herdability, a set-based reachability condition, which asks whether the state of a system can be controlled to be element-wise larger than a non-negative threshold. The basic theory of herdable systems is presented, including a necessary and sufficient condition for herdability. This paper then considers the impact of the underlying graph structure of a linear system on the herdability of the system, for the case where the graph is represented as signed and directed. By classifying nodes based on the length and sign of walks from an input, we find a class of completely herdable systems as well as provide a complete characterization of nodes that can be herded in systems with an underlying graph that is a directed out-branching rooted at a single input.

  20. graphkernels: R and Python packages for graph comparison.

    Science.gov (United States)

    Sugiyama, Mahito; Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten

    2018-02-01

    Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch. Supplementary data are available online at Bioinformatics. © The Author(s) 2017. Published by Oxford University Press.

  1. Development of Two Color Fluorescent Imager and Integrated Fluidic System for Nanosatellite Biology Applications

    Science.gov (United States)

    Wu, Diana Terri; Ricco, Antonio Joseph; Lera, Matthew P.; Timucin, Linda R.; Parra, Macarena P.

    2012-01-01

    Nanosatellites offer frequent, low-cost space access as secondary payloads on launches of larger conventional satellites. We summarize the payload science and technology of the Microsatellite in-situ Space Technologies (MisST) nanosatellite for conducting automated biological experiments. The payload (two fused 10-cm cubes) includes 1) an integrated fluidics system that maintains organism viability and supports growth and 2) a fixed-focus imager with fluorescence and scattered-light imaging capabilities. The payload monitors temperature, pressure and relative humidity, and actively controls temperature. C. elegans (nematode, 50 m diameter x 1 mm long) was selected as a model organism due to previous space science experience, its completely sequenced genome, size, hardiness, and the variety of strains available. Three strains were chosen: two green GFP-tagged strains and one red tdTomato-tagged strain that label intestinal, nerve, and pharyngeal cells, respectively. The integrated fluidics system includes bioanalytical and reservoir modules. The former consists of four 150 L culture wells and a 4x5 mm imaging zone the latter includes two 8 mL fluid reservoirs for reagent and waste storage. The fluidic system is fabricated using multilayer polymer rapid prototyping: laser cutting, precision machining, die cutting, and pressure-sensitive adhesives it also includes eight solenoid-operated valves and one mini peristaltic pump. Young larval-state (L2) nematodes are loaded in C. elegans Maintenance Media (CeMM) in the bioanalytical module during pre-launch assembly. By the time orbit is established, the worms have grown to sufficient density to be imaged and are fed fresh CeMM. The strains are pumped sequentially into the imaging area, imaged, then pumped into waste. Reagent storage utilizes polymer bags under slight pressure to prevent bubble formation in wells or channels. The optical system images green and red fluorescence bands by excitation with blue (473 nm peak

  2. A seminar on graph theory

    CERN Document Server

    Harary, Frank

    2015-01-01

    Presented in 1962-63 by experts at University College, London, these lectures offer a variety of perspectives on graph theory. Although the opening chapters form a coherent body of graph theoretic concepts, this volume is not a text on the subject but rather an introduction to the extensive literature of graph theory. The seminar's topics are geared toward advanced undergraduate students of mathematics.Lectures by this volume's editor, Frank Harary, include ""Some Theorems and Concepts of Graph Theory,"" ""Topological Concepts in Graph Theory,"" ""Graphical Reconstruction,"" and other introduc

  3. Spectral fluctuations of quantum graphs

    International Nuclear Information System (INIS)

    Pluhař, Z.; Weidenmüller, H. A.

    2014-01-01

    We prove the Bohigas-Giannoni-Schmit conjecture in its most general form for completely connected simple graphs with incommensurate bond lengths. We show that for graphs that are classically mixing (i.e., graphs for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap), the generating functions for all (P,Q) correlation functions for both closed and open graphs coincide (in the limit of infinite graph size) with the corresponding expressions of random-matrix theory, both for orthogonal and for unitary symmetry

  4. Dynamic Representations of Sparse Graphs

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Fagerberg, Rolf

    1999-01-01

    We present a linear space data structure for maintaining graphs with bounded arboricity—a large class of sparse graphs containing e.g. planar graphs and graphs of bounded treewidth—under edge insertions, edge deletions, and adjacency queries. The data structure supports adjacency queries in worst...... case O(c) time, and edge insertions and edge deletions in amortized O(1) and O(c+log n) time, respectively, where n is the number of nodes in the graph, and c is the bound on the arboricity....

  5. Domination criticality in product graphs

    Directory of Open Access Journals (Sweden)

    M.R. Chithra

    2015-07-01

    Full Text Available A connected dominating set is an important notion and has many applications in routing and management of networks. Graph products have turned out to be a good model of interconnection networks. This motivated us to study the Cartesian product of graphs G with connected domination number, γc(G=2,3 and characterize such graphs. Also, we characterize the k−γ-vertex (edge critical graphs and k−γc-vertex (edge critical graphs for k=2,3 where γ denotes the domination number of G. We also discuss the vertex criticality in grids.

  6. Graph Creation, Visualisation and Transformation

    Directory of Open Access Journals (Sweden)

    Maribel Fernández

    2010-03-01

    Full Text Available We describe a tool to create, edit, visualise and compute with interaction nets - a form of graph rewriting systems. The editor, called GraphPaper, allows users to create and edit graphs and their transformation rules using an intuitive user interface. The editor uses the functionalities of the TULIP system, which gives us access to a wealth of visualisation algorithms. Interaction nets are not only a formalism for the specification of graphs, but also a rewrite-based computation model. We discuss graph rewriting strategies and a language to express them in order to perform strategic interaction net rewriting.

  7. Study of Chromatic parameters of Line, Total, Middle graphs and Graph operators of Bipartite graph

    Science.gov (United States)

    Nagarathinam, R.; Parvathi, N.

    2018-04-01

    Chromatic parameters have been explored on the basis of graph coloring process in which a couple of adjacent nodes receives different colors. But the Grundy and b-coloring executes maximum colors under certain restrictions. In this paper, Chromatic, b-chromatic and Grundy number of some graph operators of bipartite graph has been investigat

  8. Graph Sampling for Covariance Estimation

    KAUST Repository

    Chepuri, Sundeep Prabhakar

    2017-04-25

    In this paper the focus is on subsampling as well as reconstructing the second-order statistics of signals residing on nodes of arbitrary undirected graphs. Second-order stationary graph signals may be obtained by graph filtering zero-mean white noise and they admit a well-defined power spectrum whose shape is determined by the frequency response of the graph filter. Estimating the graph power spectrum forms an important component of stationary graph signal processing and related inference tasks such as Wiener prediction or inpainting on graphs. The central result of this paper is that by sampling a significantly smaller subset of vertices and using simple least squares, we can reconstruct the second-order statistics of the graph signal from the subsampled observations, and more importantly, without any spectral priors. To this end, both a nonparametric approach as well as parametric approaches including moving average and autoregressive models for the graph power spectrum are considered. The results specialize for undirected circulant graphs in that the graph nodes leading to the best compression rates are given by the so-called minimal sparse rulers. A near-optimal greedy algorithm is developed to design the subsampling scheme for the non-parametric and the moving average models, whereas a particular subsampling scheme that allows linear estimation for the autoregressive model is proposed. Numerical experiments on synthetic as well as real datasets related to climatology and processing handwritten digits are provided to demonstrate the developed theory.

  9. Unquenched Complex Dirac Spectra at Nonzero Chemical Potential: Two-Color QCD Lattice Data versus Matrix Model

    International Nuclear Information System (INIS)

    Akemann, Gernot; Bittner, Elmar

    2006-01-01

    We compare analytic predictions of non-Hermitian chiral random matrix theory with the complex Dirac operator eigenvalue spectrum of two-color lattice gauge theory with dynamical fermions at nonzero chemical potential. The Dirac eigenvalues come in complex conjugate pairs, making the action of this theory real and positive for our choice of two staggered flavors. This enables us to use standard Monte Carlo simulations in testing the influence of the chemical potential and quark mass on complex eigenvalues close to the origin. We find excellent agreement between the analytic predictions and our data for two different volumes over a range of chemical potentials below the chiral phase transition. In particular, we detect the effect of unquenching when going to very small quark masses

  10. Detecting the propagation effect of terahertz wave inside the two-color femtosecond laser filament in the air

    Science.gov (United States)

    Zhao, J.; Zhang, X.; Li, S.; Liu, C.; Chen, Y.; Peng, Y.; Zhu, Y.

    2018-03-01

    In this work, to decide the existence of terahertz (THz) wave propagation effect, THz pulses emitted from a blocked two-color femtosecond laser filament with variable length were recorded by a standard electric-optic sampling setup. The phenomenon of temporal advance of the THz waveform's peak with the increasing filament length has been observed. Together with another method of knife-edge measurement which aims at directly retrieving the THz beam diameter, both the experimental approaches have efficiently indicated the same filament range within which THz wave propagated inside the plasma column. At last, a preliminary two-dimensional near-field scanning imaging of the THz spot inside the cross section of the filament has been suggested as the third way to determine the issue of THz wave propagation effect.

  11. Practical graph mining with R

    CERN Document Server

    Hendrix, William; Jenkins, John; Padmanabhan, Kanchana; Chakraborty, Arpan

    2014-01-01

    Practical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or clusters of nodes that share common patterns of attributes and relationships, the extraction of patterns that distinguish one category of graphs from another, and the use of those patterns to predict the category of new graphs. Hands-On Application of Graph Data Mining Each chapter in the book focuses on a graph mining task, such as link analysis, cluster analysis, and classification. Through applications using real data sets, the book demonstrates how computational techniques can help solve real-world problems. The applications covered include network intrusion detection, tumor cell diagnostics, face recognition, predictive toxicology, mining metabolic and protein-protein interaction networks, and community detection in social networks. De...

  12. Canonical Labelling of Site Graphs

    Directory of Open Access Journals (Sweden)

    Nicolas Oury

    2013-06-01

    Full Text Available We investigate algorithms for canonical labelling of site graphs, i.e. graphs in which edges bind vertices on sites with locally unique names. We first show that the problem of canonical labelling of site graphs reduces to the problem of canonical labelling of graphs with edge colourings. We then present two canonical labelling algorithms based on edge enumeration, and a third based on an extension of Hopcroft's partition refinement algorithm. All run in quadratic worst case time individually. However, one of the edge enumeration algorithms runs in sub-quadratic time for graphs with "many" automorphisms, and the partition refinement algorithm runs in sub-quadratic time for graphs with "few" bisimulation equivalences. This suite of algorithms was chosen based on the expectation that graphs fall in one of those two categories. If that is the case, a combined algorithm runs in sub-quadratic worst case time. Whether this expectation is reasonable remains an interesting open problem.

  13. Learning heat diffusion graphs

    OpenAIRE

    Thanou, Dorina; Dong, Xiaowen; Kressner, Daniel; Frossard, Pascal

    2016-01-01

    Effective information analysis generally boils down to properly identifying the structure or geometry of the data, which is often represented by a graph. In some applications, this structure may be partly determined by design constraints or pre-determined sensing arrangements, like in road transportation networks for example. In general though, the data structure is not readily available and becomes pretty difficult to define. In particular, the global smoothness assumptions, that most of the...

  14. An Unusual Exponential Graph

    Science.gov (United States)

    Syed, M. Qasim; Lovatt, Ian

    2014-01-01

    This paper is an addition to the series of papers on the exponential function begun by Albert Bartlett. In particular, we ask how the graph of the exponential function y = e[superscript -t/t] would appear if y were plotted versus ln t rather than the normal practice of plotting ln y versus t. In answering this question, we find a new way to…

  15. Understanding Charts and Graphs.

    Science.gov (United States)

    1987-07-28

    Farenheit degrees, which have no Onaturalo zero ); finally, ratio scales have numbers that are ordered so that the magnitudes of differences are important and...system. They have to do with the very nature of how marks serve as meaningful symbols. In the ideal case, a chart or graph will be absolutely unambiguous...and these laws comprise this principle (see Stevens, 1974). Absolute discriminability: A minimal magnitude of a mark is necessary for it to be detected

  16. Exclusivity structures and graph representatives of local complementation orbits

    Science.gov (United States)

    Cabello, Adán; Parker, Matthew G.; Scarpa, Giannicola; Severini, Simone

    2013-07-01

    We describe a construction that maps any connected graph G on three or more vertices into a larger graph, H(G), whose independence number is strictly smaller than its Lovász number which is equal to its fractional packing number. The vertices of H(G) represent all possible events consistent with the stabilizer group of the graph state associated with G, and exclusive events are adjacent. Mathematically, the graph H(G) corresponds to the orbit of G under local complementation. Physically, the construction translates into graph-theoretic terms the connection between a graph state and a Bell inequality maximally violated by quantum mechanics. In the context of zero-error information theory, the construction suggests a protocol achieving the maximum rate of entanglement-assisted capacity, a quantum mechanical analogue of the Shannon capacity, for each H(G). The violation of the Bell inequality is expressed by the one-shot version of this capacity being strictly larger than the independence number. Finally, given the correspondence between graphs and exclusivity structures, we are able to compute the independence number for certain infinite families of graphs with the use of quantum non-locality, therefore highlighting an application of quantum theory in the proof of a purely combinatorial statement.

  17. Photoionization and trans-to-cis isomerization of β-cyclodextrin-encapsulated azobenzene induced by two-color two-laser-pulse excitation.

    Science.gov (United States)

    Takeshita, Tatsuya; Hara, Michihiro

    2018-03-15

    Azobenzene (1) and the complex resulting from the incorporation of 1 with cyclodextrin (1/CD) are attractive for light-driven applications such as micromachining and chemical biology tools. The highly sensitive photoresponse of 1 is crucial for light-driven applications containing both 1 and 1/CD to reach their full potential. In this study, we investigated the photoionization and trans-to-cis isomerization of 1/CD induced by one- and two-color two-laser pulse excitation. Photoionization of 1/CD, which was induced by stepwise two-photon absorption, was observed using laser pulse excitation at 266nm. Additionally, simultaneous irradiation with 266 and 532nm laser pulses increased the trans-to-cis isomerization yield (Υ t→c ) by 27%. It was concluded that the increase in Υ t→c was caused by the occurrence of trans-to-cis isomerization in the higher-energy singlet state (S n ), which was reached by S 1 →S n transition induced by laser pulse excitation at 532nm. The results of this study are potentially applicable in light-driven applications such as micromachining and chemical biology tools. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Graphs cospectral with a friendship graph or its complement

    Directory of Open Access Journals (Sweden)

    Alireza Abdollahi

    2013-12-01

    Full Text Available Let $n$ be any positive integer and let $F_n$ be the friendship (or Dutch windmill graph with $2n+1$ vertices and $3n$ edges. Here we study graphs with the same adjacency spectrum as the $F_n$. Two graphs are called cospectral if the eigenvalues multiset of their adjacency matrices are the same. Let $G$ be a graph cospectral with $F_n$. Here we prove that if $G$ has no cycle of length $4$ or $5$, then $Gcong F_n$. Moreover if $G$ is connected and planar then $Gcong F_n$.All but one of connected components of $G$ are isomorphic to $K_2$.The complement $overline{F_n}$ of the friendship graph is determined by its adjacency eigenvalues, that is, if $overline{F_n}$ is cospectral with a graph $H$, then $Hcong overline{F_n}$.

  19. Decomposing Oriented Graphs into Six Locally Irregular Oriented Graphs

    DEFF Research Database (Denmark)

    Bensmail, Julien; Renault, Gabriel

    2016-01-01

    An undirected graph G is locally irregular if every two of its adjacent vertices have distinct degrees. We say that G is decomposable into k locally irregular graphs if there exists a partition E1∪E2∪⋯∪Ek of the edge set E(G) such that each Ei induces a locally irregular graph. It was recently co...

  20. X-Graphs: Language and Algorithms for Heterogeneous Graph Streams

    Science.gov (United States)

    2017-09-01

    are widely used by academia and industry. 15. SUBJECT TERMS Data Analytics, Graph Analytics, High-Performance Computing 16. SECURITY CLASSIFICATION...form the core of the DeepDive Knowledge Construction System. 2 INTRODUCTION The goal of the X-Graphs project was to develop computational techniques...memory multicore machine. Ringo is based on Snap.py and SNAP, and uses Python . Ringo now allows the integration of Delite DSL Framework Graph

  1. Localization in random bipartite graphs: Numerical and empirical study

    Science.gov (United States)

    Slanina, František

    2017-05-01

    We investigate adjacency matrices of bipartite graphs with a power-law degree distribution. Motivation for this study is twofold: first, vibrational states in granular matter and jammed sphere packings; second, graphs encoding social interaction, especially electronic commerce. We establish the position of the mobility edge and show that it strongly depends on the power in the degree distribution and on the ratio of the sizes of the two parts of the bipartite graph. At the jamming threshold, where the two parts have the same size, localization vanishes. We found that the multifractal spectrum is nontrivial in the delocalized phase, but still near the mobility edge. We also study an empirical bipartite graph, namely, the Amazon reviewer-item network. We found that in this specific graph the mobility edge disappears, and we draw a conclusion from this fact regarding earlier empirical studies of the Amazon network.

  2. Efficient Extraction of High Centrality Vertices in Distributed Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Kumbhare, Alok [Univ. of Southern California, Los Angeles, CA (United States); Frincu, Marc [Univ. of Southern California, Los Angeles, CA (United States); Raghavendra, Cauligi S. [Univ. of Southern California, Los Angeles, CA (United States); Prasanna, Viktor K. [Univ. of Southern California, Los Angeles, CA (United States)

    2014-09-09

    Betweenness centrality (BC) is an important measure for identifying high value or critical vertices in graphs, in variety of domains such as communication networks, road networks, and social graphs. However, calculating betweenness values is prohibitively expensive and, more often, domain experts are interested only in the vertices with the highest centrality values. In this paper, we first propose a partition-centric algorithm (MS-BC) to calculate BC for a large distributed graph that optimizes resource utilization and improves overall performance. Further, we extend the notion of approximate BC by pruning the graph and removing a subset of edges and vertices that contribute the least to the betweenness values of other vertices (MSL-BC), which further improves the runtime performance. We evaluate the proposed algorithms using a mix of real-world and synthetic graphs on an HPC cluster and analyze its strengths and weaknesses. The experimental results show an improvement in performance of upto 12x for large sparse graphs as compared to the state-of-the-art, and at the same time highlights the need for better partitioning methods to enable a balanced workload across partitions for unbalanced graphs such as small-world or power-law graphs.

  3. Endomorphisms of graph algebras

    DEFF Research Database (Denmark)

    Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech

    2012-01-01

    We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...

  4. Total colourings of graphs

    CERN Document Server

    Yap, Hian-Poh

    1996-01-01

    This book provides an up-to-date and rapid introduction to an important and currently active topic in graph theory. The author leads the reader to the forefront of research in this area. Complete and easily readable proofs of all the main theorems, together with numerous examples, exercises and open problems are given. The book is suitable for use as a textbook or as seminar material for advanced undergraduate and graduate students. The references are comprehensive and so it will also be useful for researchers as a handbook.

  5. Graph Algorithm Animation with Grrr

    OpenAIRE

    Rodgers, Peter; Vidal, Natalia

    2000-01-01

    We discuss geometric positioning, highlighting of visited nodes and user defined highlighting that form the algorithm animation facilities in the Grrr graph rewriting programming language. The main purpose of animation was initially for the debugging and profiling of Grrr code, but recently it has been extended for the purpose of teaching algorithms to undergraduate students. The animation is restricted to graph based algorithms such as graph drawing, list manipulation or more traditional gra...

  6. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications.

    Science.gov (United States)

    Kolmakov, Kirill; Wurm, Christian A; Meineke, Dirk N H; Göttfert, Fabian; Boyarskiy, Vadim P; Belov, Vladimir N; Hell, Stefan W

    2014-01-03

    The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino-reactive sites (NHS esters or mixed N-succinimidyl carbonates) are reported. All fluorophores contain an N-alkyl-1,2-dihydro-2,2,4-trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635-639 and 655-659 nm, respectively. A vastly simplified approach to red-emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N-hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino-reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono-N-hydroxysuccinimidyl ester from 5-carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92% for free fluorophores, and amounted to 18-64% for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two-color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two-color channels with low cross-talk and negligible background at approximately 40 nm resolution. Copyright

  7. Optimization Problems on Threshold Graphs

    Directory of Open Access Journals (Sweden)

    Elena Nechita

    2010-06-01

    Full Text Available During the last three decades, different types of decompositions have been processed in the field of graph theory. Among these we mention: decompositions based on the additivity of some characteristics of the graph, decompositions where the adjacency law between the subsets of the partition is known, decompositions where the subgraph induced by every subset of the partition must have predeterminate properties, as well as combinations of such decompositions. In this paper we characterize threshold graphs using the weakly decomposition, determine: density and stability number, Wiener index and Wiener polynomial for threshold graphs.

  8. Eulerian Graphs and Related Topics

    CERN Document Server

    Fleischner, Herbert

    1990-01-01

    The two volumes comprising Part 1 of this work embrace the theme of Eulerian trails and covering walks. They should appeal both to researchers and students, as they contain enough material for an undergraduate or graduate graph theory course which emphasizes Eulerian graphs, and thus can be read by any mathematician not yet familiar with graph theory. But they are also of interest to researchers in graph theory because they contain many recent results, some of which are only partial solutions to more general problems. A number of conjectures have been included as well. Various problems (such a

  9. Quantum Graph Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sterk, Jonathan David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lobser, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parekh, Ojas D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ryan-Anderson, Ciaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    In recent years, advanced network analytics have become increasingly important to na- tional security with applications ranging from cyber security to detection and disruption of ter- rorist networks. While classical computing solutions have received considerable investment, the development of quantum algorithms to address problems, such as data mining of attributed relational graphs, is a largely unexplored space. Recent theoretical work has shown that quan- tum algorithms for graph analysis can be more efficient than their classical counterparts. Here, we have implemented a trapped-ion-based two-qubit quantum information proces- sor to address these goals. Building on Sandia's microfabricated silicon surface ion traps, we have designed, realized and characterized a quantum information processor using the hyperfine qubits encoded in two 171 Yb + ions. We have implemented single qubit gates using resonant microwave radiation and have employed Gate set tomography (GST) to characterize the quan- tum process. For the first time, we were able to prove that the quantum process surpasses the fault tolerance thresholds of some quantum codes by demonstrating a diamond norm distance of less than 1 . 9 x 10 [?] 4 . We used Raman transitions in order to manipulate the trapped ions' motion and realize two-qubit gates. We characterized the implemented motion sensitive and insensitive single qubit processes and achieved a maximal process infidelity of 6 . 5 x 10 [?] 5 . We implemented the two-qubit gate proposed by Molmer and Sorensen and achieved a fidelity of more than 97 . 7%.

  10. Asymptote Misconception on Graphing Functions: Does Graphing Software Resolve It?

    Directory of Open Access Journals (Sweden)

    Mehmet Fatih Öçal

    2017-01-01

    Full Text Available Graphing function is an important issue in mathematics education due to its use in various areas of mathematics and its potential roles for students to enhance learning mathematics. The use of some graphing software assists students’ learning during graphing functions. However, the display of graphs of functions that students sketched by hand may be relatively different when compared to the correct forms sketched using graphing software. The possible misleading effects of this situation brought a discussion of a misconception (asymptote misconception on graphing functions. The purpose of this study is two- fold. First of all, this study investigated whether using graphing software (GeoGebra in this case helps students to determine and resolve this misconception in calculus classrooms. Second, the reasons for this misconception are sought. The multiple case study was utilized in this study. University students in two calculus classrooms who received instructions with (35 students or without GeoGebra assisted instructions (32 students were compared according to whether they fell into this misconception on graphing basic functions (1/x, lnx, ex. In addition, students were interviewed to reveal the reasons behind this misconception. Data were analyzed by means of descriptive and content analysis methods. The findings indicated that those who received GeoGebra assisted instruction were better in resolving it. In addition, the reasons behind this misconception were found to be teacher-based, exam-based and some other factors.

  11. Momentum spectra of electrons rescattered from rare-gas targets following their extraction by one- and two-color femtosecond laser pulses

    International Nuclear Information System (INIS)

    Ray, D.; Chen Zhangjin; De, S.; Cao, W.; Le, A. T.; Lin, C. D.; Cocke, C. L.; Litvinyuk, I. V.; Kling, M. F.

    2011-01-01

    We have used velocity-map imaging to measure the three-dimensional momenta of electrons rescattered from Xe and Ar following the liberation of the electrons from these atoms by 45 fs, 800 nm intense laser pulses. Strong structure in the rescattering region is observed in both angle and energy, and is interpreted in terms of quantitative rescattering (QRS) theory. Momentum images have also been taken with two-color (800 nm + 400 nm) pulses on Xe targets. A strong dependence of the spectra on the relative phase of the two colors is observed in the rescattering region. Interpretation of the phase dependence using both QRS theory and a full solution to the time-dependent Schroedinger equation shows that the rescattered electrons provide a much more robust method for determining the relative phase of the two colors than do the direct electrons.

  12. Single attosecond pulse generation in an orthogonally polarized two-color laser field combined with a static electric field

    International Nuclear Information System (INIS)

    Xia Changlong; Zhang Gangtai; Wu Jie; Liu Xueshen

    2010-01-01

    We investigate theoretic high-order harmonic generation and single attosecond pulse generation in an orthogonally polarized two-color laser field, which is synthesized by a mid-infrared (IR) pulse (12.5 fs, 2000 nm) in the y component and a much weaker (12 fs, 800 nm) pulse in the x component. We find that the width of the harmonic plateau can be extended when a static electric field is added in the y component. We also investigate emission time of harmonics in terms of a time-frequency analysis to illustrate the physical mechanism of high-order harmonic generation. We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variation of harmonic intensity for different static electric field strengths. When the ratio of strengths of the static and the y-component laser fields is 0.1, a continuous harmonic spectrum is formed from 220 to 420 eV. By superposing a properly selected range of the harmonic spectrum from 300 to 350 eV, an isolated attosecond pulse with a duration of about 75 as is obtained, which is near linearly polarized.

  13. Two-color cytofluorometry and cellular properties of the urokinase receptor associated with a human metastatic carcinomatous cell line

    International Nuclear Information System (INIS)

    Takahashi, K.; Gojobori, T.; Tanifuji, M.

    1991-01-01

    Purified human urokinase was labeled with either fluorescein isothiocyanate or iodine-125 and used as a probe for binding to the human metastatic carcinomatous cell line, Detroit 562. Cytofluorometry showed that the ligand bound preferentially to cells that had been exposed to acidic pH. The binding was competitive and decreased after mild tryptic digestion. The bound ligand could be removed by restoration of the cells to a low pH. Therefore, the cells had specific binding sites. The bound urokinase was involved in the breakdown of fibrin. Two-color cytofluorometric maps were constructed by counterstaining with propidium iodide. Results suggested that there were different cell populations that had different numbers of receptors and amounts of DNA. We cloned cells and found that single clones had homogeneous levels of receptors with different dissociation constants (from 10(-13) to 10(-11) mol/mg protein) for different clones. Cells of one clone, C5, which had high levels of receptor production, moved characteristically on a glass substratum coated with gold particles and reacted with wheat germ agglutinin, but not with concanavalin A. The receptors were found together with adhesion proteins at the sites where the cells adhered to the substrate. These results and the data obtained by zymography of the cellular proteins suggested that the urokinase-type plasminogen activators were bound to the receptors. The membrane-associated activator may stimulate local proteolysis, facilitating the migration of the tumor cell across the substrate

  14. Two-color cytofluorometry and cellular properties of the urokinase receptor associated with a human metastatic carcinomatous cell line

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K.; Gojobori, T.; Tanifuji, M. (Shimane Medical Univ., Izumo (Japan))

    1991-02-01

    Purified human urokinase was labeled with either fluorescein isothiocyanate or iodine-125 and used as a probe for binding to the human metastatic carcinomatous cell line, Detroit 562. Cytofluorometry showed that the ligand bound preferentially to cells that had been exposed to acidic pH. The binding was competitive and decreased after mild tryptic digestion. The bound ligand could be removed by restoration of the cells to a low pH. Therefore, the cells had specific binding sites. The bound urokinase was involved in the breakdown of fibrin. Two-color cytofluorometric maps were constructed by counterstaining with propidium iodide. Results suggested that there were different cell populations that had different numbers of receptors and amounts of DNA. We cloned cells and found that single clones had homogeneous levels of receptors with different dissociation constants (from 10(-13) to 10(-11) mol/mg protein) for different clones. Cells of one clone, C5, which had high levels of receptor production, moved characteristically on a glass substratum coated with gold particles and reacted with wheat germ agglutinin, but not with concanavalin A. The receptors were found together with adhesion proteins at the sites where the cells adhered to the substrate. These results and the data obtained by zymography of the cellular proteins suggested that the urokinase-type plasminogen activators were bound to the receptors. The membrane-associated activator may stimulate local proteolysis, facilitating the migration of the tumor cell across the substrate.

  15. Trade-offs in disease and bleaching susceptibility among two color morphs of the Hawaiian reef coral, Montipora capitata

    Science.gov (United States)

    Shore-Maggio, Amanda; Callahan, Sean M.; Aeby, Greta S.

    2018-06-01

    Two threats impacting coral reefs are bleaching and disease, and differential susceptibility to both exists among and within coral taxa. Bleaching resistance is commonly linked to the clade of endosymbiotic Symbiodinium, but may come at a cost to other biological traits. Montipora capitata is an Indo-Pacific reef-building coral with two color morphs, red and orange, which harbor different clades of Symbiodinium. We explored whether these color morphs displayed differences in bleaching/disease susceptibility and other biological traits (growth rate, reproductive output, and lipid content). We found a trade-off between disease and bleaching susceptibility. The orange morph had significantly higher disease prevalence, whereas the red morph had significantly higher bleaching prevalence. Thermal stress experiments found that bleaching and loss of photochemical efficiency occurred significantly faster in the red morph, but at normal temperatures, the red morph had a significantly higher growth rate. Higher abundance of the red morph in the field suggests that disease resistance is a more successful strategy in the absence of thermal stress events. The orange morph may better tolerate increases in sea temperatures, but may not persist due to decreased growth rate and increased disease susceptibility. Trade-offs in response to stressors highlight the need to consider local and global threats to coral reefs.

  16. Probabilistic Cash Flow-Based Optimal Investment Timing Using Two-Color Rainbow Options Valuation for Economic Sustainability Appraisement

    Directory of Open Access Journals (Sweden)

    Yonggu Kim

    2017-10-01

    Full Text Available This research determines the optimal investment timing using real options valuation to support decision-making for economic sustainability assessment. This paper illustrates an option pricing model using the Black-Scholes model applied to a case project to understand the model performance. Applicability of the project to the model requires two Monte Carlo simulations to satisfy a Markov process and a Wiener process. The position of project developers is not only the seller of products, but it is also the buyer of raw materials. Real options valuation can be influenced by the volatility of cash outflow, as well as the volatility of cash inflow. This study suggests two-color rainbow options valuation to overcome this issue, which is demonstrated for a steel plant project. The asymmetric results of the case study show that cash outflow (put option influences the value of the steel plant project more than cash inflow (call option does of which the discussion of the results is referred to a sensitivity analysis. The real options valuation method proposed in this study contributes to the literature on applying the new model, taking into consideration that investors maximize project profitability for economic sustainable development.

  17. ON BIPOLAR SINGLE VALUED NEUTROSOPHIC GRAPHS

    OpenAIRE

    Said Broumi; Mohamed Talea; Assia Bakali; Florentin Smarandache

    2016-01-01

    In this article, we combine the concept of bipolar neutrosophic set and graph theory. We introduce the notions of bipolar single valued neutrosophic graphs, strong bipolar single valued neutrosophic graphs, complete bipolar single valued neutrosophic graphs, regular bipolar single valued neutrosophic graphs and investigate some of their related properties.

  18. Graph Theory. 2. Vertex Descriptors and Graph Coloring

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2002-12-01

    Full Text Available This original work presents the construction of a set of ten sequence matrices and their applications for ordering vertices in graphs. For every sequence matrix three ordering criteria are applied: lexicographic ordering, based on strings of numbers, corresponding to every vertex, extracted as rows from sequence matrices; ordering by the sum of path lengths from a given vertex; and ordering by the sum of paths, starting from a given vertex. We also examine a graph that has different orderings for the above criteria. We then proceed to demonstrate that every criterion induced its own partition of graph vertex. We propose the following theoretical result: both LAVS and LVDS criteria generate identical partitioning of vertices in any graph. Finally, a coloring of graph vertices according to introduced ordering criteria was proposed.

  19. On an edge partition and root graphs of some classes of line graphs

    Directory of Open Access Journals (Sweden)

    K Pravas

    2017-04-01

    Full Text Available The Gallai and the anti-Gallai graphs of a graph $G$ are complementary pairs of spanning subgraphs of the line graph of $G$. In this paper we find some structural relations between these graph classes by finding a partition of the edge set of the line graph of a graph $G$ into the edge sets of the Gallai and anti-Gallai graphs of $G$. Based on this, an optimal algorithm to find the root graph of a line graph is obtained. Moreover, root graphs of diameter-maximal, distance-hereditary, Ptolemaic and chordal graphs are also discussed.

  20. The One Universal Graph — a free and open graph database

    International Nuclear Information System (INIS)

    Ng, Liang S.; Champion, Corbin

    2016-01-01

    Recent developments in graph database mostly are huge projects involving big organizations, big operations and big capital, as the name Big Data attests. We proposed the concept of One Universal Graph (OUG) which states that all observable and known objects and concepts (physical, conceptual or digitally represented) can be connected with only one single graph; furthermore the OUG can be implemented with a very simple text file format with free software, capable of being executed on Android or smaller devices. As such the One Universal Graph Data Exchange (GOUDEX) modules can potentially be installed on hundreds of millions of Android devices and Intel compatible computers shipped annually. Coupled with its open nature and ability to connect to existing leading search engines and databases currently in operation, GOUDEX has the potential to become the largest and a better interface for users and programmers to interact with the data on the Internet. With a Web User Interface for users to use and program in native Linux environment, Free Crowdware implemented in GOUDEX can help inexperienced users learn programming with better organized documentation for free software, and is able to manage programmer's contribution down to a single line of code or a single variable in software projects. It can become the first practically realizable “Internet brain” on which a global artificial intelligence system can be implemented. Being practically free and open, One Universal Graph can have significant applications in robotics, artificial intelligence as well as social networks. (paper)

  1. The One Universal Graph — a free and open graph database

    Science.gov (United States)

    Ng, Liang S.; Champion, Corbin

    2016-02-01

    Recent developments in graph database mostly are huge projects involving big organizations, big operations and big capital, as the name Big Data attests. We proposed the concept of One Universal Graph (OUG) which states that all observable and known objects and concepts (physical, conceptual or digitally represented) can be connected with only one single graph; furthermore the OUG can be implemented with a very simple text file format with free software, capable of being executed on Android or smaller devices. As such the One Universal Graph Data Exchange (GOUDEX) modules can potentially be installed on hundreds of millions of Android devices and Intel compatible computers shipped annually. Coupled with its open nature and ability to connect to existing leading search engines and databases currently in operation, GOUDEX has the potential to become the largest and a better interface for users and programmers to interact with the data on the Internet. With a Web User Interface for users to use and program in native Linux environment, Free Crowdware implemented in GOUDEX can help inexperienced users learn programming with better organized documentation for free software, and is able to manage programmer's contribution down to a single line of code or a single variable in software projects. It can become the first practically realizable “Internet brain” on which a global artificial intelligence system can be implemented. Being practically free and open, One Universal Graph can have significant applications in robotics, artificial intelligence as well as social networks.

  2. Multigraph: Interactive Data Graphs on the Web

    Science.gov (United States)

    Phillips, M. B.

    2010-12-01

    Many aspects of geophysical science involve time dependent data that is often presented in the form of a graph. Considering that the web has become a primary means of communication, there are surprisingly few good tools and techniques available for presenting time-series data on the web. The most common solution is to use a desktop tool such as Excel or Matlab to create a graph which is saved as an image and then included in a web page like any other image. This technique is straightforward, but it limits the user to one particular view of the data, and disconnects the graph from the data in a way that makes updating a graph with new data an often cumbersome manual process. This situation is somewhat analogous to the state of mapping before the advent of GIS. Maps existed only in printed form, and creating a map was a laborious process. In the last several years, however, the world of mapping has experienced a revolution in the form of web-based and other interactive computer technologies, so that it is now commonplace for anyone to easily browse through gigabytes of geographic data. Multigraph seeks to bring a similar ease of access to time series data. Multigraph is a program for displaying interactive time-series data graphs in web pages that includes a simple way of configuring the appearance of the graph and the data to be included. It allows multiple data sources to be combined into a single graph, and allows the user to explore the data interactively. Multigraph lets users explore and visualize "data space" in the same way that interactive mapping applications such as Google Maps facilitate exploring and visualizing geography. Viewing a Multigraph graph is extremely simple and intuitive, and requires no instructions. Creating a new graph for inclusion in a web page involves writing a simple XML configuration file and requires no programming. Multigraph can read data in a variety of formats, and can display data from a web service, allowing users to "surf

  3. The planar cubic Cayley graphs

    CERN Document Server

    Georgakopoulos, Agelos

    2018-01-01

    The author obtains a complete description of the planar cubic Cayley graphs, providing an explicit presentation and embedding for each of them. This turns out to be a rich class, comprising several infinite families. He obtains counterexamples to conjectures of Mohar, Bonnington and Watkins. The author's analysis makes the involved graphs accessible to computation, corroborating a conjecture of Droms.

  4. Groupies in random bipartite graphs

    OpenAIRE

    Yilun Shang

    2010-01-01

    A vertex $v$ of a graph $G$ is called a groupie if its degree is notless than the average of the degrees of its neighbors. In thispaper we study the influence of bipartition $(B_1,B_2)$ on groupiesin random bipartite graphs $G(B_1,B_2,p)$ with both fixed $p$ and$p$ tending to zero.

  5. Nested Dynamic Condition Response Graphs

    DEFF Research Database (Denmark)

    Hildebrandt, Thomas; Mukkamala, Raghava Rao; Slaats, Tijs

    2012-01-01

    We present an extension of the recently introduced declarative process model Dynamic Condition Response Graphs ( DCR Graphs) to allow nested subgraphs and a new milestone relation between events. The extension was developed during a case study carried out jointly with our industrial partner...

  6. Graph Sampling for Covariance Estimation

    KAUST Repository

    Chepuri, Sundeep Prabhakar; Leus, Geert

    2017-01-01

    specialize for undirected circulant graphs in that the graph nodes leading to the best compression rates are given by the so-called minimal sparse rulers. A near-optimal greedy algorithm is developed to design the subsampling scheme for the non

  7. Network reconstruction via graph blending

    Science.gov (United States)

    Estrada, Rolando

    2016-05-01

    Graphs estimated from empirical data are often noisy and incomplete due to the difficulty of faithfully observing all the components (nodes and edges) of the true graph. This problem is particularly acute for large networks where the number of components may far exceed available surveillance capabilities. Errors in the observed graph can render subsequent analyses invalid, so it is vital to develop robust methods that can minimize these observational errors. Errors in the observed graph may include missing and spurious components, as well fused (multiple nodes are merged into one) and split (a single node is misinterpreted as many) nodes. Traditional graph reconstruction methods are only able to identify missing or spurious components (primarily edges, and to a lesser degree nodes), so we developed a novel graph blending framework that allows us to cast the full estimation problem as a simple edge addition/deletion problem. Armed with this framework, we systematically investigate the viability of various topological graph features, such as the degree distribution or the clustering coefficients, and existing graph reconstruction methods for tackling the full estimation problem. Our experimental results suggest that incorporating any topological feature as a source of information actually hinders reconstruction accuracy. We provide a theoretical analysis of this phenomenon and suggest several avenues for improving this estimation problem.

  8. A cluster algorithm for graphs

    NARCIS (Netherlands)

    S. van Dongen

    2000-01-01

    textabstractA cluster algorithm for graphs called the emph{Markov Cluster algorithm (MCL~algorithm) is introduced. The algorithm provides basically an interface to an algebraic process defined on stochastic matrices, called the MCL~process. The graphs may be both weighted (with nonnegative weight)

  9. Applicability of the Directed Graph Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Huszti, Jozsef [Institute of Isotope of the Hungarian Academy of Sciences, Budapest (Hungary); Nemeth, Andras [ESRI Hungary, Budapest (Hungary); Vincze, Arpad [Hungarian Atomic Energy Authority, Budapest (Hungary)

    2012-06-15

    Possible methods to construct, visualize and analyse the 'map' of the State's nuclear infrastructure based on different directed graph approaches are proposed. The transportation and the flow network models are described in detail. The use of the possible evaluation methodologies and the use of available software tools to construct and maintain the nuclear 'map' using pre-defined standard building blocks (nuclear facilities) are introduced and discussed.

  10. State space model extraction of thermohydraulic systems – Part II: A linear graph approach applied to a Brayton cycle-based power conversion unit

    International Nuclear Information System (INIS)

    Uren, Kenneth Richard; Schoor, George van

    2013-01-01

    This second paper in a two part series presents the application of a developed state space model extraction methodology applied to a Brayton cycle-based PCU (power conversion unit) of a PBMR (pebble bed modular reactor). The goal is to investigate if the state space extraction methodology can cope with larger and more complex thermohydraulic systems. In Part I the state space model extraction methodology for the purpose of control was described in detail and a state space representation was extracted for a U-tube system to illustrate the concept. In this paper a 25th order nonlinear state space representation in terms of the different energy domains is extracted. This state space representation is solved and the responses of a number of important states are compared with results obtained from a PBMR PCU Flownex ® model. Flownex ® is a validated thermo fluid simulation software package. The results show that the state space model closely resembles the dynamics of the PBMR PCU. This kind of model may be used for nonlinear MIMO (multi-input, multi-output) type of control strategies. However, there is still a need for linear state space models since many control system design and analysis techniques require a linear state space model. This issue is also addressed in this paper by showing how a linear state space model can be derived from the extracted nonlinear state space model. The linearised state space model is also validated by comparing the state space model to an existing linear Simulink ® model of the PBMR PCU system. - Highlights: • State space model extraction of a pebble bed modular reactor PCU (power conversion unit). • A 25th order nonlinear time varying state space model is obtained. • Linearisation of a nonlinear state space model for use in power output control. • Non-minimum phase characteristic that is challenging in terms of control. • Models derived are useful for MIMO control strategies

  11. Planar graphs theory and algorithms

    CERN Document Server

    Nishizeki, T

    1988-01-01

    Collected in this volume are most of the important theorems and algorithms currently known for planar graphs, together with constructive proofs for the theorems. Many of the algorithms are written in Pidgin PASCAL, and are the best-known ones; the complexities are linear or 0(nlogn). The first two chapters provide the foundations of graph theoretic notions and algorithmic techniques. The remaining chapters discuss the topics of planarity testing, embedding, drawing, vertex- or edge-coloring, maximum independence set, subgraph listing, planar separator theorem, Hamiltonian cycles, and single- or multicommodity flows. Suitable for a course on algorithms, graph theory, or planar graphs, the volume will also be useful for computer scientists and graph theorists at the research level. An extensive reference section is included.

  12. Quantum chaos on discrete graphs

    International Nuclear Information System (INIS)

    Smilansky, Uzy

    2007-01-01

    Adapting a method developed for the study of quantum chaos on quantum (metric) graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76), spectral ζ functions and trace formulae for discrete Laplacians on graphs are derived. This is achieved by expressing the spectral secular equation in terms of the periodic orbits of the graph and obtaining functions which belong to the class of ζ functions proposed originally by Ihara (1966 J. Mat. Soc. Japan 18 219) and expanded by subsequent authors (Stark and Terras 1996 Adv. Math. 121 124, Kotani and Sunada 2000 J. Math. Sci. Univ. Tokyo 7 7). Finally, a model of 'classical dynamics' on the discrete graph is proposed. It is analogous to the corresponding classical dynamics derived for quantum graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76). (fast track communication)

  13. RJSplot: Interactive Graphs with R.

    Science.gov (United States)

    Barrios, David; Prieto, Carlos

    2018-03-01

    Data visualization techniques provide new methods for the generation of interactive graphs. These graphs allow a better exploration and interpretation of data but their creation requires advanced knowledge of graphical libraries. Recent packages have enabled the integration of interactive graphs in R. However, R provides limited graphical packages that allow the generation of interactive graphs for computational biology applications. The present project has joined the analytical power of R with the interactive graphical features of JavaScript in a new R package (RJSplot). It enables the easy generation of interactive graphs in R, provides new visualization capabilities, and contributes to the advance of computational biology analytical methods. At present, 16 interactive graphics are available in RJSplot, such as the genome viewer, Manhattan plots, 3D plots, heatmaps, dendrograms, networks, and so on. The RJSplot package is freely available online at http://rjsplot.net. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Faucet: streaming de novo assembly graph construction.

    Science.gov (United States)

    Rozov, Roye; Goldshlager, Gil; Halperin, Eran; Shamir, Ron

    2018-01-01

    We present Faucet, a two-pass streaming algorithm for assembly graph construction. Faucet builds an assembly graph incrementally as each read is processed. Thus, reads need not be stored locally, as they can be processed while downloading data and then discarded. We demonstrate this functionality by performing streaming graph assembly of publicly available data, and observe that the ratio of disk use to raw data size decreases as coverage is increased. Faucet pairs the de Bruijn graph obtained from the reads with additional meta-data derived from them. We show these metadata-coverage counts collected at junction k-mers and connections bridging between junction pairs-contain most salient information needed for assembly, and demonstrate they enable cleaning of metagenome assembly graphs, greatly improving contiguity while maintaining accuracy. We compared Fauceted resource use and assembly quality to state of the art metagenome assemblers, as well as leading resource-efficient genome assemblers. Faucet used orders of magnitude less time and disk space than the specialized metagenome assemblers MetaSPAdes and Megahit, while also improving on their memory use; this broadly matched performance of other assemblers optimizing resource efficiency-namely, Minia and LightAssembler. However, on metagenomes tested, Faucet,o outputs had 14-110% higher mean NGA50 lengths compared with Minia, and 2- to 11-fold higher mean NGA50 lengths compared with LightAssembler, the only other streaming assembler available. Faucet is available at https://github.com/Shamir-Lab/Faucet. rshamir@tau.ac.il or eranhalperin@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  15. On characterizing terrain visibility graphs

    Directory of Open Access Journals (Sweden)

    William Evans

    2015-06-01

    Full Text Available A terrain is an $x$-monotone polygonal line in the $xy$-plane. Two vertices of a terrain are mutually visible if and only if there is no terrain vertex on or above the open line segment connecting them. A graph whose vertices represent terrain vertices and whose edges represent mutually visible pairs of terrain vertices is called a terrain visibility graph. We would like to find properties that are both necessary and sufficient for a graph to be a terrain visibility graph; that is, we would like to characterize terrain visibility graphs.Abello et al. [Discrete and Computational Geometry, 14(3:331--358, 1995] showed that all terrain visibility graphs are “persistent”. They showed that the visibility information of a terrain point set implies some ordering requirements on the slopes of the lines connecting pairs of points in any realization, and as a step towards showing sufficiency, they proved that for any persistent graph $M$ there is a total order on the slopes of the (pseudo lines in a generalized configuration of points whose visibility graph is $M$.We give a much simpler proof of this result by establishing an orientation to every triple of vertices, reflecting some slope ordering requirements that are consistent with $M$ being the visibility graph, and prove that these requirements form a partial order. We give a faster algorithm to construct a total order on the slopes. Our approach attempts to clarify the implications of the graph theoretic properties on the ordering of the slopes, and may be interpreted as defining properties on an underlying oriented matroid that we show is a restricted type of $3$-signotope.

  16. Graph embedding with rich information through heterogeneous graph

    KAUST Repository

    Sun, Guolei

    2017-11-12

    Graph embedding, aiming to learn low-dimensional representations for nodes in graphs, has attracted increasing attention due to its critical application including node classification, link prediction and clustering in social network analysis. Most existing algorithms for graph embedding only rely on the topology information and fail to use the copious information in nodes as well as edges. As a result, their performance for many tasks may not be satisfactory. In this thesis, we proposed a novel and general framework for graph embedding with rich text information (GERI) through constructing a heterogeneous network, in which we integrate node and edge content information with graph topology. Specially, we designed a novel biased random walk to explore the constructed heterogeneous network with the notion of flexible neighborhood. Our sampling strategy can compromise between BFS and DFS local search on heterogeneous graph. To further improve our algorithm, we proposed semi-supervised GERI (SGERI), which learns graph embedding in an discriminative manner through heterogeneous network with label information. The efficacy of our method is demonstrated by extensive comparison experiments with 9 baselines over multi-label and multi-class classification on various datasets including Citeseer, Cora, DBLP and Wiki. It shows that GERI improves the Micro-F1 and Macro-F1 of node classification up to 10%, and SGERI improves GERI by 5% in Wiki.

  17. Simultaneous two-phase flow measurement of spray mixing process by means of high-speed two-color PIV

    International Nuclear Information System (INIS)

    Zhang, Ming; Xu, Min; Hung, David L S

    2014-01-01

    In this article, a novel high-speed two-color PIV optical diagnostic technique has been developed and applied to simultaneously measure the velocity flow-fields of a multi-hole spark-ignition direct injection (SIDI) fuel injector spray and its ambient gas in a high-pressure constant volume chamber. To allow for the phase discrimination between the fuel droplets and ambient gas, a special tracer-filter system was designed. Fluorescent seeding particles with Sauter mean diameter (SMD) of 4.8 µm were used to trace the gas inside the chamber. With a single high-speed Nd:YLF laser sheet (527 nm) as the incident light source, the Mie-scattering signal marked the phase of the fuel spray, while the fluorescent signal generated from the seeding particles tracked the phase of ambient gas. A high-speed camera, with an image-doubler (mounted in front of the camera lens) that divided the camera pixels into two parts focusing on the same field of view, was used to collect the Mie-scattering signal and LIF (laser induced fluorescence) signal simultaneously with two carefully selected optical filters. To accommodate the large dynamic range of velocities in the two phases (1–2 orders of magnitude difference), two separation times (dt) were introduced. This technique was successfully applied to the liquid spray and ambient gas two-phase flow measurement. The measurement accuracy was compared with those from LDV (laser Doppler velocimetry) measurement and good agreement was obtained. Ambient gas motion surrounding the fuel spray was investigated and characterized into three zones. The momentum transfer process between the fuel spray and ambient gas in each zone was analyzed. The two-phase flow interaction under various superheated conditions was investigated. A strengthened momentum transfer from the liquid spray to the ambient was observed with increased superheat degree. (paper)

  18. CORECLUSTER: A Degeneracy Based Graph Clustering Framework

    OpenAIRE

    Giatsidis , Christos; Malliaros , Fragkiskos; Thilikos , Dimitrios M. ,; Vazirgiannis , Michalis

    2014-01-01

    International audience; Graph clustering or community detection constitutes an important task forinvestigating the internal structure of graphs, with a plethora of applications in several domains. Traditional tools for graph clustering, such asspectral methods, typically suffer from high time and space complexity. In thisarticle, we present \\textsc{CoreCluster}, an efficient graph clusteringframework based on the concept of graph degeneracy, that can be used along withany known graph clusteri...

  19. Quantum walks of two interacting particles on percolation graphs

    Science.gov (United States)

    Siloi, Ilaria; Benedetti, Claudia; Piccinini, Enrico; Paris, Matteo G. A.; Bordone, Paolo

    2017-10-01

    We address the dynamics of two indistinguishable interacting particles moving on a dynamical percolation graph, i.e., a graph where the edges are independent random telegraph processes whose values jump between 0 and 1, thus mimicking percolation. The interplay between the particle interaction strength, initial state and the percolation rate determine different dynamical regimes for the walkers. We show that, whenever the walkers are initially localised within the interaction range, fast noise enhances the particle spread compared to the noiseless case.

  20. Comparison of soot formation for diesel and jet-a in a constant volume combustion chamber using two-color pyrometry

    KAUST Repository

    Jing, Wei; Roberts, William L.; Fang, Tiegang

    2014-01-01

    The measurement of the two-color line of sight soot and KL factor for NO.2 diesel and jet-A fuels was conducted in an optical constant volume combustion chamber by using a high speed camera under 1000 K ambient temperature and varied oxygen

  1. Label Information Guided Graph Construction for Semi-Supervised Learning.

    Science.gov (United States)

    Zhuang, Liansheng; Zhou, Zihan; Gao, Shenghua; Yin, Jingwen; Lin, Zhouchen; Ma, Yi

    2017-09-01

    In the literature, most existing graph-based semi-supervised learning methods only use the label information of observed samples in the label propagation stage, while ignoring such valuable information when learning the graph. In this paper, we argue that it is beneficial to consider the label information in the graph learning stage. Specifically, by enforcing the weight of edges between labeled samples of different classes to be zero, we explicitly incorporate the label information into the state-of-the-art graph learning methods, such as the low-rank representation (LRR), and propose a novel semi-supervised graph learning method called semi-supervised low-rank representation. This results in a convex optimization problem with linear constraints, which can be solved by the linearized alternating direction method. Though we take LRR as an example, our proposed method is in fact very general and can be applied to any self-representation graph learning methods. Experiment results on both synthetic and real data sets demonstrate that the proposed graph learning method can better capture the global geometric structure of the data, and therefore is more effective for semi-supervised learning tasks.

  2. GSMNet: A Hierarchical Graph Model for Moving Objects in Networks

    Directory of Open Access Journals (Sweden)

    Hengcai Zhang

    2017-03-01

    Full Text Available Existing data models for moving objects in networks are often limited by flexibly controlling the granularity of representing networks and the cost of location updates and do not encompass semantic information, such as traffic states, traffic restrictions and social relationships. In this paper, we aim to fill the gap of traditional network-constrained models and propose a hierarchical graph model called the Geo-Social-Moving model for moving objects in Networks (GSMNet that adopts four graph structures, RouteGraph, SegmentGraph, ObjectGraph and MoveGraph, to represent the underlying networks, trajectories and semantic information in an integrated manner. The bulk of user-defined data types and corresponding operators is proposed to handle moving objects and answer a new class of queries supporting three kinds of conditions: spatial, temporal and semantic information. Then, we develop a prototype system with the native graph database system Neo4Jto implement the proposed GSMNet model. In the experiment, we conduct the performance evaluation using simulated trajectories generated from the BerlinMOD (Berlin Moving Objects Database benchmark and compare with the mature MOD system Secondo. The results of 17 benchmark queries demonstrate that our proposed GSMNet model has strong potential to reduce time-consuming table join operations an d shows remarkable advantages with regard to representing semantic information and controlling the cost of location updates.

  3. System dynamics and control with bond graph modeling

    CERN Document Server

    Kypuros, Javier

    2013-01-01

    Part I Dynamic System ModelingIntroduction to System DynamicsIntroductionSystem Decomposition and Model ComplexityMathematical Modeling of Dynamic SystemsAnalysis and Design of Dynamic SystemsControl of Dynamic SystemsDiagrams of Dynamic SystemsA Graph-Centered Approach to ModelingSummaryPracticeExercisesBasic Bond Graph ElementsIntroductionPower and Energy VariablesBasic 1-Port ElementsBasic 2-Ports ElementsJunction ElementsSimple Bond Graph ExamplesSummaryPracticeExercisesBond Graph Synthesis and Equation DerivationIntroductionGeneral GuidelinesMechanical TranslationMechanical RotationElectrical CircuitsHydraulic CircuitsMixed SystemsState Equation DerivationState-Space RepresentationsAlgebraic Loops and Derivative CausalitySummaryPracticeExercisesImpedance Bond GraphsIntroductionLaplace Transform of the State-Space EquationBasic 1-Port ImpedancesImpedance Bond Graph SynthesisJunctions, Transformers, and GyratorsEffort and Flow DividersSign ChangesTransfer Function DerivationAlternative Derivation of Transf...

  4. Hierarchy of modular graph identities

    International Nuclear Information System (INIS)

    D’Hoker, Eric; Kaidi, Justin

    2016-01-01

    The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues s(s−1) for positive integers s bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.

  5. Semantic graphs and associative memories

    Science.gov (United States)

    Pomi, Andrés; Mizraji, Eduardo

    2004-12-01

    Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.

  6. Hierarchy of modular graph identities

    Energy Technology Data Exchange (ETDEWEB)

    D’Hoker, Eric; Kaidi, Justin [Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy,University of California,Los Angeles, CA 90095 (United States)

    2016-11-09

    The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues s(s−1) for positive integers s bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.

  7. XML Graphs in Program Analysis

    DEFF Research Database (Denmark)

    Møller, Anders; Schwartzbach, Michael I.

    2011-01-01

    of XML graphs against different XML schema languages, and provide a software package that enables others to make use of these ideas. We also survey the use of XML graphs for program analysis with four very different languages: XACT (XML in Java), Java Servlets (Web application programming), XSugar......XML graphs have shown to be a simple and effective formalism for representing sets of XML documents in program analysis. It has evolved through a six year period with variants tailored for a range of applications. We present a unified definition, outline the key properties including validation...

  8. Coloring and The Lonely Graph

    OpenAIRE

    Rabern, Landon

    2007-01-01

    We improve upper bounds on the chromatic number proven independently in \\cite{reedNote} and \\cite{ingo}. Our main lemma gives a sufficient condition for two paths in graph to be completely joined. Using this, we prove that if a graph has an optimal coloring with more than $\\frac{\\omega}{2}$ singleton color classes, then it satisfies $\\chi \\leq \\frac{\\omega + \\Delta + 1}{2}$. It follows that a graph satisfying $n - \\Delta < \\alpha + \\frac{\\omega - 1}{2}$ must also satisfy $\\chi \\leq \\frac{\\ome...

  9. Graphs with Eulerian unit spheres

    OpenAIRE

    Knill, Oliver

    2015-01-01

    d-spheres in graph theory are inductively defined as graphs for which all unit spheres S(x) are (d-1)-spheres and that the removal of one vertex renders the graph contractible. Eulerian d-spheres are geometric d-spheres which are d+1 colorable. We prove here that G is an Eulerian sphere if and only if the degrees of all the (d-2)-dimensional sub-simplices in G are even. This generalizes a Kempe-Heawood result for d=2 and is work related to the conjecture that all d-spheres have chromatic numb...

  10. Evolutionary games on graphs

    Science.gov (United States)

    Szabó, György; Fáth, Gábor

    2007-07-01

    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by non-mean-field-type social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.

  11. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  12. Properly colored connectivity of graphs

    CERN Document Server

    Li, Xueliang; Qin, Zhongmei

    2018-01-01

    A comprehensive survey of proper connection of graphs is discussed in this book with real world applications in computer science and network security. Beginning with a brief introduction, comprising relevant definitions and preliminary results, this book moves on to consider a variety of properties of graphs that imply bounds on the proper connection number. Detailed proofs of significant advancements toward open problems and conjectures are presented with complete references. Researchers and graduate students with an interest in graph connectivity and colorings will find this book useful as it builds upon fundamental definitions towards modern innovations, strategies, and techniques. The detailed presentation lends to use as an introduction to proper connection of graphs for new and advanced researchers, a solid book for a graduate level topics course, or as a reference for those interested in expanding and further developing research in the area.

  13. Graph anomalies in cyber communications

    Energy Technology Data Exchange (ETDEWEB)

    Vander Wiel, Scott A [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Sandine, Gary [Los Alamos National Laboratory; Hagberg, Aric A [Los Alamos National Laboratory; Fisk, Michael [Los Alamos National Laboratory

    2011-01-11

    Enterprises monitor cyber traffic for viruses, intruders and stolen information. Detection methods look for known signatures of malicious traffic or search for anomalies with respect to a nominal reference model. Traditional anomaly detection focuses on aggregate traffic at central nodes or on user-level monitoring. More recently, however, traffic is being viewed more holistically as a dynamic communication graph. Attention to the graph nature of the traffic has expanded the types of anomalies that are being sought. We give an overview of several cyber data streams collected at Los Alamos National Laboratory and discuss current work in modeling the graph dynamics of traffic over the network. We consider global properties and local properties within the communication graph. A method for monitoring relative entropy on multiple correlated properties is discussed in detail.

  14. Open Graphs and Computational Reasoning

    Directory of Open Access Journals (Sweden)

    Lucas Dixon

    2010-06-01

    Full Text Available We present a form of algebraic reasoning for computational objects which are expressed as graphs. Edges describe the flow of data between primitive operations which are represented by vertices. These graphs have an interface made of half-edges (edges which are drawn with an unconnected end and enjoy rich compositional principles by connecting graphs along these half-edges. In particular, this allows equations and rewrite rules to be specified between graphs. Particular computational models can then be encoded as an axiomatic set of such rules. Further rules can be derived graphically and rewriting can be used to simulate the dynamics of a computational system, e.g. evaluating a program on an input. Examples of models which can be formalised in this way include traditional electronic circuits as well as recent categorical accounts of quantum information.

  15. The toughness of split graphs

    NARCIS (Netherlands)

    Woeginger, G.J.

    1998-01-01

    In this short note we argue that the toughness of split graphs can be computed in polynomial time. This solves an open problem from a recent paper by Kratsch et al. (Discrete Math. 150 (1996) 231–245).

  16. Generating random networks and graphs

    CERN Document Server

    Coolen, Ton; Roberts, Ekaterina

    2017-01-01

    This book supports researchers who need to generate random networks, or who are interested in the theoretical study of random graphs. The coverage includes exponential random graphs (where the targeted probability of each network appearing in the ensemble is specified), growth algorithms (i.e. preferential attachment and the stub-joining configuration model), special constructions (e.g. geometric graphs and Watts Strogatz models) and graphs on structured spaces (e.g. multiplex networks). The presentation aims to be a complete starting point, including details of both theory and implementation, as well as discussions of the main strengths and weaknesses of each approach. It includes extensive references for readers wishing to go further. The material is carefully structured to be accessible to researchers from all disciplines while also containing rigorous mathematical analysis (largely based on the techniques of statistical mechanics) to support those wishing to further develop or implement the theory of rand...

  17. Graph theory and its applications

    CERN Document Server

    Gross, Jonathan L

    2006-01-01

    Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.

  18. A faithful functor among algebras and graphs

    OpenAIRE

    Falcón Ganfornina, Óscar Jesús; Falcón Ganfornina, Raúl Manuel; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad; Vigo Aguiar, Jesús (Coordinador)

    2016-01-01

    The problem of identifying a functor between the categories of algebras and graphs is currently open. Based on a known algorithm that identifies isomorphisms of Latin squares with isomorphism of vertex-colored graphs, we describe here a pair of graphs that enable us to find a faithful functor between finite-dimensional algebras over finite fields and these graphs.

  19. Graphs with branchwidth at most three

    NARCIS (Netherlands)

    Bodlaender, H.L.; Thilikos, D.M.

    1997-01-01

    In this paper we investigate both the structure of graphs with branchwidth at most three, as well as algorithms to recognise such graphs. We show that a graph has branchwidth at most three, if and only if it has treewidth at most three and does not contain the three-dimensional binary cube graph

  20. Graphs whose complement and square are isomorphic

    DEFF Research Database (Denmark)

    Pedersen, Anders Sune

    2014-01-01

    We study square-complementary graphs, that is, graphs whose complement and square are isomorphic. We prove several necessary conditions for a graph to be square-complementary, describe ways of building new square-complementary graphs from existing ones, construct infinite families of square-compl...

  1. Acyclicity in edge-colored graphs

    DEFF Research Database (Denmark)

    Gutin, Gregory; Jones, Mark; Sheng, Bin

    2017-01-01

    A walk W in edge-colored graphs is called properly colored (PC) if every pair of consecutive edges in W is of different color. We introduce and study five types of PC acyclicity in edge-colored graphs such that graphs of PC acyclicity of type i is a proper superset of graphs of acyclicity of type...

  2. Building Scalable Knowledge Graphs for Earth Science

    Science.gov (United States)

    Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Zhang, Jia; Duan, Xiaoyi; Miller, J. J.; Bugbee, Kaylin; Christopher, Sundar; Freitag, Brian

    2017-01-01

    Knowledge Graphs link key entities in a specific domain with other entities via relationships. From these relationships, researchers can query knowledge graphs for probabilistic recommendations to infer new knowledge. Scientific papers are an untapped resource which knowledge graphs could leverage to accelerate research discovery. Goal: Develop an end-to-end (semi) automated methodology for constructing Knowledge Graphs for Earth Science.

  3. Port-Hamiltonian Systems on Open Graphs

    NARCIS (Netherlands)

    Schaft, A.J. van der; Maschke, B.M.

    2010-01-01

    In this talk we discuss how to define in an intrinsic manner port-Hamiltonian dynamics on open graphs. Open graphs are graphs where some of the vertices are boundary vertices (terminals), which allow interconnection with other systems. We show that a directed graph carries two natural Dirac

  4. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  5. Skew-adjacency matrices of graphs

    NARCIS (Netherlands)

    Cavers, M.; Cioaba, S.M.; Fallat, S.; Gregory, D.A.; Haemers, W.H.; Kirkland, S.J.; McDonald, J.J.; Tsatsomeros, M.

    2012-01-01

    The spectra of the skew-adjacency matrices of a graph are considered as a possible way to distinguish adjacency cospectral graphs. This leads to the following topics: graphs whose skew-adjacency matrices are all cospectral; relations between the matchings polynomial of a graph and the characteristic

  6. Commuting graphs of matrix algebras

    International Nuclear Information System (INIS)

    Akbari, S.; Bidkhori, H.; Mohammadian, A.

    2006-08-01

    The commuting graph of a ring R, denoted by Γ(R), is a graph whose vertices are all non- central elements of R and two distinct vertices x and y are adjacent if and only if xy = yx. The commuting graph of a group G, denoted by Γ(G), is similarly defined. In this paper we investigate some graph theoretic properties of Γ(M n (F)), where F is a field and n ≥ 2. Also we study the commuting graphs of some classical groups such as GL n (F) and SL n (F). We show that Γ(M n (F)) is a connected graph if and only if every field extension of F of degree n contains a proper intermediate field. We prove that apart from finitely many fields, a similar result is true for Γ(GL n (F)) and Γ(SL n (F)). Also we show that for two fields E and F and integers m, n ≥> 2, if Γ(M m (E)) ≅ Γ(M n (F)), then m = n and vertical bar E vertical bar = vertical bar F vertical bar. (author)

  7. Graph Quasicontinuous Functions and Densely Continuous Forms

    Directory of Open Access Journals (Sweden)

    Lubica Hola

    2017-07-01

    Full Text Available Let $X, Y$ be topological spaces. A function $f: X \\to Y$ is said to be graph quasicontinuous if there is a quasicontinuous function $g: X \\to Y$ with the graph of $g$ contained in the closure of the graph of $f$. There is a close relation between the notions of graph quasicontinuous functions and minimal usco maps as well as the notions of graph quasicontinuous functions and densely continuous forms. Every function with values in a compact Hausdorff space is graph quasicontinuous; more generally every locally compact function is graph quasicontinuous.

  8. The forwarding indices of graphs - a survey

    Directory of Open Access Journals (Sweden)

    Jun-Ming Xu

    2013-01-01

    Full Text Available A routing \\(R\\ of a connected graph \\(G\\ of order \\(n\\ is a collection of \\(n(n-1\\ simple paths connecting every ordered pair of vertices of \\(G\\. The vertex-forwarding index \\(\\xi(G,R\\ of \\(G\\ with respect to a routing \\(R\\ is defined as the maximum number of paths in \\(R\\ passing through any vertex of \\(G\\. The vertex-forwarding index \\(\\xi(G\\ of \\(G\\ is defined as the minimum \\(\\xi(G,R\\ over all routings \\(R\\ of \\(G\\. Similarly, the edge-forwarding index \\(\\pi(G,R\\ of \\(G\\ with respect to a routing \\(R\\ is the maximum number of paths in \\(R\\ passing through any edge of \\(G\\. The edge-forwarding index \\(\\pi(G\\ of \\(G\\ is the minimum \\(\\pi(G,R\\ over all routings \\(R\\ of \\(G\\. The vertex-forwarding index or the edge-forwarding index corresponds to the maximum load of the graph. Therefore, it is important to find routings minimizing these indices and thus has received much research attention for over twenty years. This paper surveys some known results on these forwarding indices, further research problems and several conjectures, also states some difficulty and relations to other topics in graph theory.

  9. Interactive Graph Layout of a Million Nodes

    OpenAIRE

    Peng Mi; Maoyuan Sun; Moeti Masiane; Yong Cao; Chris North

    2016-01-01

    Sensemaking of large graphs, specifically those with millions of nodes, is a crucial task in many fields. Automatic graph layout algorithms, augmented with real-time human-in-the-loop interaction, can potentially support sensemaking of large graphs. However, designing interactive algorithms to achieve this is challenging. In this paper, we tackle the scalability problem of interactive layout of large graphs, and contribute a new GPU-based force-directed layout algorithm that exploits graph to...

  10. Khovanov homology of graph-links

    Energy Technology Data Exchange (ETDEWEB)

    Nikonov, Igor M [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2012-08-31

    Graph-links arise as the intersection graphs of turning chord diagrams of links. Speaking informally, graph-links provide a combinatorial description of links up to mutations. Many link invariants can be reformulated in the language of graph-links. Khovanov homology, a well-known and useful knot invariant, is defined for graph-links in this paper (in the case of the ground field of characteristic two). Bibliography: 14 titles.

  11. PRIVATE GRAPHS – ACCESS RIGHTS ON GRAPHS FOR SEAMLESS NAVIGATION

    Directory of Open Access Journals (Sweden)

    W. Dorner

    2016-06-01

    Full Text Available After the success of GNSS (Global Navigational Satellite Systems and navigation services for public streets, indoor seems to be the next big development in navigational services, relying on RTLS – Real Time Locating Services (e.g. WIFI and allowing seamless navigation. In contrast to navigation and routing services on public streets, seamless navigation will cause an additional challenge: how to make routing data accessible to defined users or restrict access rights for defined areas or only to parts of the graph to a defined user group? The paper will present case studies and data from literature, where seamless and especially indoor navigation solutions are presented (hospitals, industrial complexes, building sites, but the problem of restricted access rights was only touched from a real world, but not a technical perspective. The analysis of case studies will show, that the objective of navigation and the different target groups for navigation solutions will demand well defined access rights and require solutions, how to make only parts of a graph to a user or application available to solve a navigational task. The paper will therefore introduce the concept of private graphs, which is defined as a graph for navigational purposes covering the street, road or floor network of an area behind a public street and suggest different approaches how to make graph data for navigational purposes available considering access rights and data protection, privacy and security issues as well.

  12. Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field

    International Nuclear Information System (INIS)

    Yao Jinping; Zeng Bin; Fu Yuxi; Chu Wei; Ni Jielei; Li Yao; Xiong Hui; Xu Han; Cheng Ya; Xu Zhizhan; Liu Xiaojun; Chen, J.

    2010-01-01

    We theoretically investigate the high-order harmonic generation (HHG) in helium using a two-color laser field synthesized by an intense 25-fs laser pulse at 800 nm and a relatively weak ∼43-fs laser pulse at 1400 nm. When the polarization between the two pulses is arranged at an angle of ∼73 deg., supercontinuum spectra are dramatically broadened to 180 eV, which is sufficient to support an isolated ∼73-as pulse without any phase compensation. The physical mechanisms behind the phenomenon are well explained in terms of quantum and classical analyses. Furthermore, in the long-pulse regime, this method of extending the supercontinuum spectrum shows the significant advantage over previous two-color HHG schemes.

  13. Silicon isotope separation utilizing infrared multiphoton dissociation of Si{sub 2}F{sub 6} irradiated with two-color CO{sub 2} laser light

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Atsushi; Ohba, Hironori; Hashimoto, Masashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishii, Takeshi; Ohya, Akio [Nuclear Development Corp., Tokai, Ibaraki (Japan); Arai, Shigeyoshi [Hill Research Co. Ltd., Tokyo (Japan)

    2002-08-01

    Silicon isotope separation has been done by utilizing the Infrared Multiphoton Dissociation (IRMPD) of Si{sub 2}F{sub 6} irradiated with two-color CO{sub 2} laser lights. The two-color excitation method improved the separation efficiency keeping the high enrichment factors. For example, 99.74% of {sup 28}Si was obtained at 49.63% dissociation of Si{sub 2}F{sub 6} after the simultaneous irradiation of 200 pulses with 966.23 cm{sup -1} photons (0.084 J/cm{sup 2}) and 954.55 cm{sup -1} photons (0.658 J/cm{sup 2}), while 2000 pulses were needed to obtain 99.35% of {sup 28}Si at 35.6% dissociation in the case of only one-color irradiation at 954.55 cm{sup -1} (0.97 J/cm{sup 2}). (author)

  14. 'Two-color' reflection multilayers for He-I and He-II resonance lines for micro-UPS using Schwarzschild objective

    International Nuclear Information System (INIS)

    Ejima, Takeo; Kondo, Yuzi; Watanabe, Makoto

    2000-01-01

    'Two-color' multilayers reflecting both He-I (58.4 nm) and He-II (30.4 nm) resonance lines have been designed and fabricated for reflection coatings of Schwarzschild objectives of micro-UPS instruments. They are designed so that their reflectances for both He-I and He-II resonance lines are more than 20%. The 'two-color' multilayers are piled double layers coated with top single layers. Fabricated are multilayers of SiC(top layer)-Mg/SiC(double layers) and SiC(top layer)-Mg/Y 2 O 3 (double layers), and their reflectances for the He-I and the He-II are 23% and 17%, and 20% and 23%, respectively

  15. Silicon isotope separation utilizing infrared multiphoton dissociation of Si2F6 irradiated with two-color CO2 laser light

    International Nuclear Information System (INIS)

    Yokoyama, Atsushi; Ohba, Hironori; Hashimoto, Masashi; Arai, Shigeyoshi

    2002-01-01

    Silicon isotope separation has been done by utilizing the Infrared Multiphoton Dissociation (IRMPD) of Si 2 F 6 irradiated with two-color CO 2 laser lights. The two-color excitation method improved the separation efficiency keeping the high enrichment factors. For example, 99.74% of 28 Si was obtained at 49.63% dissociation of Si 2 F 6 after the simultaneous irradiation of 200 pulses with 966.23 cm -1 photons (0.084 J/cm 2 ) and 954.55 cm -1 photons (0.658 J/cm 2 ), while 2000 pulses were needed to obtain 99.35% of 28 Si at 35.6% dissociation in the case of only one-color irradiation at 954.55 cm -1 (0.97 J/cm 2 ). (author)

  16. Intraminiband Relaxation In Doped GaAs/AlGaAs Superlattices Studied By Two-Color Infrared Pump-Probe Experiments

    International Nuclear Information System (INIS)

    Wagner, M.; Stehr, D.; Schneider, H.; Helm, M.; Andrews, A. M.; Roch, T.; Strasser, G.

    2010-01-01

    In this work we report on two-color pump-probe measurements to investigate the intraminiband dynamics of doped GaAs/AlGaAs superlattices with different miniband widths smaller or larger than the optical phonon energy. For a miniband with a width larger than the optical phonon energy we found a fast relaxation, independent of the excitation intensity. For narrow minibands this relaxation takes longer and shows a strong temperature and intensity dependence.

  17. Overlapping community detection based on link graph using distance dynamics

    Science.gov (United States)

    Chen, Lei; Zhang, Jing; Cai, Li-Jun

    2018-01-01

    The distance dynamics model was recently proposed to detect the disjoint community of a complex network. To identify the overlapping structure of a network using the distance dynamics model, an overlapping community detection algorithm, called L-Attractor, is proposed in this paper. The process of L-Attractor mainly consists of three phases. In the first phase, L-Attractor transforms the original graph to a link graph (a new edge graph) to assure that one node has multiple distances. In the second phase, using the improved distance dynamics model, a dynamic interaction process is introduced to simulate the distance dynamics (shrink or stretch). Through the dynamic interaction process, all distances converge, and the disjoint community structure of the link graph naturally manifests itself. In the third phase, a recovery method is designed to convert the disjoint community structure of the link graph to the overlapping community structure of the original graph. Extensive experiments are conducted on the LFR benchmark networks as well as real-world networks. Based on the results, our algorithm demonstrates higher accuracy and quality than other state-of-the-art algorithms.

  18. How do we select multiple features? Transient costs for selecting two colors rather than one, persistent costs for color-location conjunctions.

    Science.gov (United States)

    Lo, Shih-Yu; Holcombe, Alex O

    2014-02-01

    In a previous study Lo, Howard, & Holcombe (Vision Research 63:20-33, 2012), selecting two colors did not induce a performance cost, relative to selecting one color. For example, requiring possible report of both a green and a red target did not yield a worse performance than when both targets were green. Yet a cost of selecting multiple colors was observed when selection needed be contingent on both color and location. When selecting a red target to the left and a green target to the right, superimposing a green distractor to the left and a red distractor to the right impeded performance. Possibly, participants cannot confine attention to a color at a particular location. As a result, distractors that share the target colors disrupt attentional selection of the targets. The attempt to select the targets must then be repeated, which increases the likelihood that the trial terminates when selection is not effective, even for long trials. Consistent with this, here we find a persistent cost of selecting two colors when the conjunction of color and location is needed, but the cost is confined to short exposure durations when the observer just has to monitor red and green stimuli without the need to use the location information. These results suggest that selecting two colors is time-consuming but effective, whereas selection of simultaneous conjunctions is never entirely successful.

  19. Benchmarking Measures of Network Controllability on Canonical Graph Models

    Science.gov (United States)

    Wu-Yan, Elena; Betzel, Richard F.; Tang, Evelyn; Gu, Shi; Pasqualetti, Fabio; Bassett, Danielle S.

    2018-03-01

    The control of networked dynamical systems opens the possibility for new discoveries and therapies in systems biology and neuroscience. Recent theoretical advances provide candidate mechanisms by which a system can be driven from one pre-specified state to another, and computational approaches provide tools to test those mechanisms in real-world systems. Despite already having been applied to study network systems in biology and neuroscience, the practical performance of these tools and associated measures on simple networks with pre-specified structure has yet to be assessed. Here, we study the behavior of four control metrics (global, average, modal, and boundary controllability) on eight canonical graphs (including Erdős-Rényi, regular, small-world, random geometric, Barábasi-Albert preferential attachment, and several modular networks) with different edge weighting schemes (Gaussian, power-law, and two nonparametric distributions from brain networks, as examples of real-world systems). We observe that differences in global controllability across graph models are more salient when edge weight distributions are heavy-tailed as opposed to normal. In contrast, differences in average, modal, and boundary controllability across graph models (as well as across nodes in the graph) are more salient when edge weight distributions are less heavy-tailed. Across graph models and edge weighting schemes, average and modal controllability are negatively correlated with one another across nodes; yet, across graph instances, the relation between average and modal controllability can be positive, negative, or nonsignificant. Collectively, these findings demonstrate that controllability statistics (and their relations) differ across graphs with different topologies and that these differences can be muted or accentuated by differences in the edge weight distributions. More generally, our numerical studies motivate future analytical efforts to better understand the mathematical

  20. Eigenfunction statistics on quantum graphs

    International Nuclear Information System (INIS)

    Gnutzmann, S.; Keating, J.P.; Piotet, F.

    2010-01-01

    We investigate the spatial statistics of the energy eigenfunctions on large quantum graphs. It has previously been conjectured that these should be described by a Gaussian Random Wave Model, by analogy with quantum chaotic systems, for which such a model was proposed by Berry in 1977. The autocorrelation functions we calculate for an individual quantum graph exhibit a universal component, which completely determines a Gaussian Random Wave Model, and a system-dependent deviation. This deviation depends on the graph only through its underlying classical dynamics. Classical criteria for quantum universality to be met asymptotically in the large graph limit (i.e. for the non-universal deviation to vanish) are then extracted. We use an exact field theoretic expression in terms of a variant of a supersymmetric σ model. A saddle-point analysis of this expression leads to the estimates. In particular, intensity correlations are used to discuss the possible equidistribution of the energy eigenfunctions in the large graph limit. When equidistribution is asymptotically realized, our theory predicts a rate of convergence that is a significant refinement of previous estimates. The universal and system-dependent components of intensity correlation functions are recovered by means of an exact trace formula which we analyse in the diagonal approximation, drawing in this way a parallel between the field theory and semiclassics. Our results provide the first instance where an asymptotic Gaussian Random Wave Model has been established microscopically for eigenfunctions in a system with no disorder.

  1. Box graphs and resolutions I

    Directory of Open Access Journals (Sweden)

    Andreas P. Braun

    2016-04-01

    Full Text Available Box graphs succinctly and comprehensively characterize singular fibers of elliptic fibrations in codimension two and three, as well as flop transitions connecting these, in terms of representation theoretic data. We develop a framework that provides a systematic map between a box graph and a crepant algebraic resolution of the singular elliptic fibration, thus allowing an explicit construction of the fibers from a singular Weierstrass or Tate model. The key tool is what we call a fiber face diagram, which shows the relevant information of a (partial toric triangulation and allows the inclusion of more general algebraic blowups. We shown that each such diagram defines a sequence of weighted algebraic blowups, thus providing a realization of the fiber defined by the box graph in terms of an explicit resolution. We show this correspondence explicitly for the case of SU(5 by providing a map between box graphs and fiber faces, and thereby a sequence of algebraic resolutions of the Tate model, which realizes each of the box graphs.

  2. Degree-based graph construction

    International Nuclear Information System (INIS)

    Kim, Hyunju; Toroczkai, Zoltan; Erdos, Peter L; Miklos, Istvan; Szekely, Laszlo A

    2009-01-01

    Degree-based graph construction is a ubiquitous problem in network modelling (Newman et al 2006 The Structure and Dynamics of Networks (Princeton Studies in Complexity) (Princeton, NJ: Princeton University Press), Boccaletti et al 2006 Phys. Rep. 424 175), ranging from social sciences to chemical compounds and biochemical reaction networks in the cell. This problem includes existence, enumeration, exhaustive construction and sampling questions with aspects that are still open today. Here we give necessary and sufficient conditions for a sequence of nonnegative integers to be realized as a simple graph's degree sequence, such that a given (but otherwise arbitrary) set of connections from an arbitrarily given node is avoided. We then use this result to present a swap-free algorithm that builds all simple graphs realizing a given degree sequence. In a wider context, we show that our result provides a greedy construction method to build all the f-factor subgraphs (Tutte 1952 Can. J. Math. 4 314) embedded within K n setmn S k , where K n is the complete graph and S k is a star graph centred on one of the nodes. (fast track communication)

  3. Hierarchical organisation of causal graphs

    International Nuclear Information System (INIS)

    Dziopa, P.

    1993-01-01

    This paper deals with the design of a supervision system using a hierarchy of models formed by graphs, in which the variables are the nodes and the causal relations between the variables of the arcs. To obtain a representation of the variables evolutions which contains only the relevant features of their real evolutions, the causal relations are completed with qualitative transfer functions (QTFs) which produce roughly the behaviour of the classical transfer functions. Major improvements have been made in the building of the hierarchical organization. First, the basic variables of the uppermost level and the causal relations between them are chosen. The next graph is built by adding intermediary variables to the upper graph. When the undermost graph has been built, the transfer functions parameters corresponding to its causal relations are identified. The second task consists in the upwelling of the information from the undermost graph to the uppermost one. A fusion procedure of the causal relations has been designed to compute the QFTs relevant for each level. This procedure aims to reduce the number of parameters needed to represent an evolution at a high level of abstraction. These techniques have been applied to the hierarchical modelling of nuclear process. (authors). 8 refs., 12 figs

  4. Graph based techniques for tag cloud generation

    DEFF Research Database (Denmark)

    Leginus, Martin; Dolog, Peter; Lage, Ricardo Gomes

    2013-01-01

    Tag cloud is one of the navigation aids for exploring documents. Tag cloud also link documents through the user defined terms. We explore various graph based techniques to improve the tag cloud generation. Moreover, we introduce relevance measures based on underlying data such as ratings...... or citation counts for improved measurement of relevance of tag clouds. We show, that on the given data sets, our approach outperforms the state of the art baseline methods with respect to such relevance by 41 % on Movielens dataset and by 11 % on Bibsonomy data set....

  5. Graph modeling systems and methods

    Science.gov (United States)

    Neergaard, Mike

    2015-10-13

    An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.

  6. On the graph turnpike problem

    KAUST Repository

    Feder, Tomá s; Motwani, Rajeev

    2009-01-01

    Results on graph turnpike problem without distinctness, including its NP-completeness, and an O(m+n log n) algorithm, is presented. The usual turnpike problem has all pairwise distances given, but does not specify which pair of vertices w e corresponds to. There are two other problems that can be viewed as special cases of the graph turnpike problem, including the bandwidth problem and the low-distortion graph embedding problem. The aim for the turnpike problem in the NP-complete is to orient the edges with weights w i in either direction so that when the whole cycle is transversed in the real line, it returns to a chosen starting point for the cycle. An instance of the turnpike problem with or without distinctness is uniquely mappable if there exists at most one solution up to translation and choice of orientation.

  7. On the graph turnpike problem

    KAUST Repository

    Feder, Tomás

    2009-06-01

    Results on graph turnpike problem without distinctness, including its NP-completeness, and an O(m+n log n) algorithm, is presented. The usual turnpike problem has all pairwise distances given, but does not specify which pair of vertices w e corresponds to. There are two other problems that can be viewed as special cases of the graph turnpike problem, including the bandwidth problem and the low-distortion graph embedding problem. The aim for the turnpike problem in the NP-complete is to orient the edges with weights w i in either direction so that when the whole cycle is transversed in the real line, it returns to a chosen starting point for the cycle. An instance of the turnpike problem with or without distinctness is uniquely mappable if there exists at most one solution up to translation and choice of orientation.

  8. Negation switching invariant signed graphs

    Directory of Open Access Journals (Sweden)

    Deepa Sinha

    2014-04-01

    Full Text Available A signed graph (or, $sigraph$ in short is a graph G in which each edge x carries a value $\\sigma(x \\in \\{-, +\\}$ called its sign. Given a sigraph S, the negation $\\eta(S$ of the sigraph S is a sigraph obtained from S by reversing the sign of every edge of S. Two sigraphs $S_{1}$ and $S_{2}$ on the same underlying graph are switching equivalent if it is possible to assign signs `+' (`plus' or `-' (`minus' to vertices of $S_{1}$ such that by reversing the sign of each of its edges that has received opposite signs at its ends, one obtains $S_{2}$. In this paper, we characterize sigraphs which are negation switching invariant and also see for what sigraphs, S and $\\eta (S$ are signed isomorphic.

  9. On Graph Rewriting, Reduction and Evaluation

    DEFF Research Database (Denmark)

    Zerny, Ian

    2010-01-01

    We inter-derive two prototypical styles of graph reduction: reduction machines à la Turner and graph rewriting systems à la Barendregt et al. To this end, we adapt Danvy et al.'s mechanical program derivations from the world of terms to the world of graphs. We also outline how to inter-derive a t......We inter-derive two prototypical styles of graph reduction: reduction machines à la Turner and graph rewriting systems à la Barendregt et al. To this end, we adapt Danvy et al.'s mechanical program derivations from the world of terms to the world of graphs. We also outline how to inter...

  10. The fascinating world of graph theory

    CERN Document Server

    Benjamin, Arthur; Zhang, Ping

    2015-01-01

    Graph theory goes back several centuries and revolves around the study of graphs-mathematical structures showing relations between objects. With applications in biology, computer science, transportation science, and other areas, graph theory encompasses some of the most beautiful formulas in mathematics-and some of its most famous problems. The Fascinating World of Graph Theory explores the questions and puzzles that have been studied, and often solved, through graph theory. This book looks at graph theory's development and the vibrant individuals responsible for the field's growth. Introducin

  11. Graph-based modelling in engineering

    CERN Document Server

    Rysiński, Jacek

    2017-01-01

    This book presents versatile, modern and creative applications of graph theory in mechanical engineering, robotics and computer networks. Topics related to mechanical engineering include e.g. machine and mechanism science, mechatronics, robotics, gearing and transmissions, design theory and production processes. The graphs treated are simple graphs, weighted and mixed graphs, bond graphs, Petri nets, logical trees etc. The authors represent several countries in Europe and America, and their contributions show how different, elegant, useful and fruitful the utilization of graphs in modelling of engineering systems can be. .

  12. XML Graphs in Program Analysis

    DEFF Research Database (Denmark)

    Møller, Anders; Schwartzbach, Michael Ignatieff

    2007-01-01

    XML graphs have shown to be a simple and effective formalism for representing sets of XML documents in program analysis. It has evolved through a six year period with variants tailored for a range of applications. We present a unified definition, outline the key properties including validation...... of XML graphs against different XML schema languages, and provide a software package that enables others to make use of these ideas. We also survey four very different applications: XML in Java, Java Servlets and JSP, transformations between XML and non-XML data, and XSLT....

  13. Cyclic graphs and Apery's theorem

    International Nuclear Information System (INIS)

    Sorokin, V N

    2002-01-01

    This is a survey of results about the behaviour of Hermite-Pade approximants for graphs of Markov functions, and a survey of interpolation problems leading to Apery's result about the irrationality of the value ζ(3) of the Riemann zeta function. The first example is given of a cyclic graph for which the Hermite-Pade problem leads to Apery's theorem. Explicit formulae for solutions are obtained, namely, Rodrigues' formulae and integral representations. The asymptotic behaviour of the approximants is studied, and recurrence formulae are found

  14. Interacting particle systems on graphs

    Science.gov (United States)

    Sood, Vishal

    In this dissertation, the dynamics of socially or biologically interacting populations are investigated. The individual members of the population are treated as particles that interact via links on a social or biological network represented as a graph. The effect of the structure of the graph on the properties of the interacting particle system is studied using statistical physics techniques. In the first chapter, the central concepts of graph theory and social and biological networks are presented. Next, interacting particle systems that are drawn from physics, mathematics and biology are discussed in the second chapter. In the third chapter, the random walk on a graph is studied. The mean time for a random walk to traverse between two arbitrary sites of a random graph is evaluated. Using an effective medium approximation it is found that the mean first-passage time between pairs of sites, as well as all moments of this first-passage time, are insensitive to the density of links in the graph. The inverse of the mean-first passage time varies non-monotonically with the density of links near the percolation transition of the random graph. Much of the behavior can be understood by simple heuristic arguments. Evolutionary dynamics, by which mutants overspread an otherwise uniform population on heterogeneous graphs, are studied in the fourth chapter. Such a process underlies' epidemic propagation, emergence of fads, social cooperation or invasion of an ecological niche by a new species. The first part of this chapter is devoted to neutral dynamics, in which the mutant genotype does not have a selective advantage over the resident genotype. The time to extinction of one of the two genotypes is derived. In the second part of this chapter, selective advantage or fitness is introduced such that the mutant genotype has a higher birth rate or a lower death rate. This selective advantage leads to a dynamical competition in which selection dominates for large populations

  15. Critical Behavior of the Annealed Ising Model on Random Regular Graphs

    Science.gov (United States)

    Can, Van Hao

    2017-11-01

    In Giardinà et al. (ALEA Lat Am J Probab Math Stat 13(1):121-161, 2016), the authors have defined an annealed Ising model on random graphs and proved limit theorems for the magnetization of this model on some random graphs including random 2-regular graphs. Then in Can (Annealed limit theorems for the Ising model on random regular graphs, arXiv:1701.08639, 2017), we generalized their results to the class of all random regular graphs. In this paper, we study the critical behavior of this model. In particular, we determine the critical exponents and prove a non standard limit theorem stating that the magnetization scaled by n^{3/4} converges to a specific random variable, with n the number of vertices of random regular graphs.

  16. Efficient nonparametric and asymptotic Bayesian model selection methods for attributed graph clustering

    KAUST Repository

    Xu, Zhiqiang

    2017-02-16

    Attributed graph clustering, also known as community detection on attributed graphs, attracts much interests recently due to the ubiquity of attributed graphs in real life. Many existing algorithms have been proposed for this problem, which are either distance based or model based. However, model selection in attributed graph clustering has not been well addressed, that is, most existing algorithms assume the cluster number to be known a priori. In this paper, we propose two efficient approaches for attributed graph clustering with automatic model selection. The first approach is a popular Bayesian nonparametric method, while the second approach is an asymptotic method based on a recently proposed model selection criterion, factorized information criterion. Experimental results on both synthetic and real datasets demonstrate that our approaches for attributed graph clustering with automatic model selection significantly outperform the state-of-the-art algorithm.

  17. Efficient nonparametric and asymptotic Bayesian model selection methods for attributed graph clustering

    KAUST Repository

    Xu, Zhiqiang; Cheng, James; Xiao, Xiaokui; Fujimaki, Ryohei; Muraoka, Yusuke

    2017-01-01

    Attributed graph clustering, also known as community detection on attributed graphs, attracts much interests recently due to the ubiquity of attributed graphs in real life. Many existing algorithms have been proposed for this problem, which are either distance based or model based. However, model selection in attributed graph clustering has not been well addressed, that is, most existing algorithms assume the cluster number to be known a priori. In this paper, we propose two efficient approaches for attributed graph clustering with automatic model selection. The first approach is a popular Bayesian nonparametric method, while the second approach is an asymptotic method based on a recently proposed model selection criterion, factorized information criterion. Experimental results on both synthetic and real datasets demonstrate that our approaches for attributed graph clustering with automatic model selection significantly outperform the state-of-the-art algorithm.

  18. Multiple graph regularized protein domain ranking

    KAUST Repository

    Wang, Jim Jing-Yan

    2012-11-19

    Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.

  19. Multiple graph regularized protein domain ranking

    KAUST Repository

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2012-01-01

    Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.

  20. Multiple graph regularized protein domain ranking.

    Science.gov (United States)

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2012-11-19

    Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  1. Multiple graph regularized protein domain ranking

    Directory of Open Access Journals (Sweden)

    Wang Jim

    2012-11-01

    Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  2. Constructing Knowledge Graphs of Depression

    NARCIS (Netherlands)

    Huang, Zhisheng; Yang, Jie; van Harmelen, Frank; Hu, Qing

    2017-01-01

    Knowledge Graphs have been shown to be useful tools for integrating multiple medical knowledge sources, and to support such tasks as medical decision making, literature retrieval, determining healthcare quality indicators, co-morbodity analysis and many others. A large number of medical knowledge

  3. Partitioning graphs into connected parts

    NARCIS (Netherlands)

    Hof, van 't P.; Paulusma, D.; Woeginger, G.J.; Frid, A.; Morozov, A.S.; Rybalchenko, A.; Wagner, K.W.

    2009-01-01

    The 2-DISJOINT CONNECTED SUBGRAPHS problem asks if a given graph has two vertex-disjoint connected subgraphs containing pre-specified sets of vertices. We show that this problem is NP-complete even if one of the sets has cardinality 2. The LONGEST PATH CONTRACTIBILITY problem asks for the largest

  4. Isoperimetric inequalities for minimal graphs

    International Nuclear Information System (INIS)

    Pacelli Bessa, G.; Montenegro, J.F.

    2007-09-01

    Based on Markvorsen and Palmer's work on mean time exit and isoperimetric inequalities we establish slightly better isoperimetric inequalities and mean time exit estimates for minimal graphs in N x R. We also prove isoperimetric inequalities for submanifolds of Hadamard spaces with tamed second fundamental form. (author)

  5. Ancestral Genres of Mathematical Graphs

    Science.gov (United States)

    Gerofsky, Susan

    2011-01-01

    Drawing from sources in gesture studies, cognitive science, the anthropology of religion and art/architecture history, this article explores cultural, bodily and cosmological resonances carried (unintentionally) by mathematical graphs on Cartesian coordinates. Concepts of asymmetric bodily spaces, grids, orthogonality, mapping and sacred spaces…

  6. Humidity Graphs for All Seasons.

    Science.gov (United States)

    Esmael, F.

    1982-01-01

    In a previous article in this journal (Vol. 17, p358, 1979), a wet-bulb depression table was recommended for two simple experiments to determine relative humidity. However, the use of a graph is suggested because it gives the relative humidity directly from the wet and dry bulb readings. (JN)

  7. Contracting a planar graph efficiently

    DEFF Research Database (Denmark)

    Holm, Jacob; Italiano, Giuseppe F.; Karczmarz, Adam

    2017-01-01

    the data structure, we can achieve optimal running times for decremental bridge detection, 2-edge connectivity, maximal 3-edge connected components, and the problem of finding a unique perfect matching for a static planar graph. Furthermore, we improve the running times of algorithms for several planar...

  8. Graph Model Based Indoor Tracking

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin

    2009-01-01

    The tracking of the locations of moving objects in large indoor spaces is important, as it enables a range of applications related to, e.g., security and indoor navigation and guidance. This paper presents a graph model based approach to indoor tracking that offers a uniform data management...

  9. A graph with fractional revival

    Science.gov (United States)

    Bernard, Pierre-Antoine; Chan, Ada; Loranger, Érika; Tamon, Christino; Vinet, Luc

    2018-02-01

    An example of a graph that admits balanced fractional revival between antipodes is presented. It is obtained by establishing the correspondence between the quantum walk on a hypercube where the opposite vertices across the diagonals of each face are connected and, the coherent transport of single excitations in the extension of the Krawtchouk spin chain with next-to-nearest neighbour interactions.

  10. Fixation Time for Evolutionary Graphs

    Science.gov (United States)

    Nie, Pu-Yan; Zhang, Pei-Ai

    Evolutionary graph theory (EGT) is recently proposed by Lieberman et al. in 2005. EGT is successful for explaining biological evolution and some social phenomena. It is extremely important to consider the time of fixation for EGT in many practical problems, including evolutionary theory and the evolution of cooperation. This study characterizes the time to asymptotically reach fixation.

  11. Contracts for Cross-organizational Workflows as Timed Dynamic Condition Response Graphs

    DEFF Research Database (Denmark)

    Hildebrandt, Thomas; Mukkamala, Raghava Rao; Slaats, Tijs

    2013-01-01

    We conservatively extend the declarative Dynamic Condition Response (DCR) Graph process model, introduced in the PhD thesis of the second author, to allow for discrete time deadlines. We prove that safety and liveness properties can be verified by mapping finite timed DCR Graphs to finite state...

  12. Decomposing series-parallel graphs into paths of length 3 and triangles

    DEFF Research Database (Denmark)

    Merker, Martin

    2015-01-01

    An old conjecture by Jünger, Reinelt and Pulleyblank states that every 2-edge-connected planar graph can be decomposed into paths of length 3 and triangles, provided its size is divisible by 3. We prove the conjecture for a class of planar graphs including all 2-edge-connected series-parallel gra...

  13. Coloring sums of extensions of certain graphs

    Directory of Open Access Journals (Sweden)

    Johan Kok

    2017-12-01

    Full Text Available We recall that the minimum number of colors that allow a proper coloring of graph $G$ is called the chromatic number of $G$ and denoted $\\chi(G$. Motivated by the introduction of the concept of the $b$-chromatic sum of a graph the concept of $\\chi'$-chromatic sum and $\\chi^+$-chromatic sum are introduced in this paper. The extended graph $G^x$ of a graph $G$ was recently introduced for certain regular graphs. This paper furthers the concepts of $\\chi'$-chromatic sum and $\\chi^+$-chromatic sum to extended paths and cycles. Bipartite graphs also receive some attention. The paper concludes with patterned structured graphs. These last said graphs are typically found in chemical and biological structures.

  14. Mathematical Minute: Rotating a Function Graph

    Science.gov (United States)

    Bravo, Daniel; Fera, Joseph

    2013-01-01

    Using calculus only, we find the angles you can rotate the graph of a differentiable function about the origin and still obtain a function graph. We then apply the solution to odd and even degree polynomials.

  15. Towards a theory of geometric graphs

    CERN Document Server

    Pach, Janos

    2004-01-01

    The early development of graph theory was heavily motivated and influenced by topological and geometric themes, such as the Konigsberg Bridge Problem, Euler's Polyhedral Formula, or Kuratowski's characterization of planar graphs. In 1936, when Denes Konig published his classical Theory of Finite and Infinite Graphs, the first book ever written on the subject, he stressed this connection by adding the subtitle Combinatorial Topology of Systems of Segments. He wanted to emphasize that the subject of his investigations was very concrete: planar figures consisting of points connected by straight-line segments. However, in the second half of the twentieth century, graph theoretical research took an interesting turn. In the most popular and most rapidly growing areas (the theory of random graphs, Ramsey theory, extremal graph theory, algebraic graph theory, etc.), graphs were considered as abstract binary relations rather than geometric objects. Many of the powerful techniques developed in these fields have been su...

  16. Bounds on Gromov hyperbolicity constant in graphs

    Indian Academy of Sciences (India)

    Infinite graphs; Cartesian product graphs; independence number; domin- ation number; geodesics ... the secure transmission of information through the internet (see [15, 16]). In particular, ..... In particular, δ(G) is an integer multiple of 1/4.

  17. Summary: beyond fault trees to fault graphs

    International Nuclear Information System (INIS)

    Alesso, H.P.; Prassinos, P.; Smith, C.F.

    1984-09-01

    Fault Graphs are the natural evolutionary step over a traditional fault-tree model. A Fault Graph is a failure-oriented directed graph with logic connectives that allows cycles. We intentionally construct the Fault Graph to trace the piping and instrumentation drawing (P and ID) of the system, but with logical AND and OR conditions added. Then we evaluate the Fault Graph with computer codes based on graph-theoretic methods. Fault Graph computer codes are based on graph concepts, such as path set (a set of nodes traveled on a path from one node to another) and reachability (the complete set of all possible paths between any two nodes). These codes are used to find the cut-sets (any minimal set of component failures that will fail the system) and to evaluate the system reliability

  18. Torsional rigidity, isospectrality and quantum graphs

    International Nuclear Information System (INIS)

    Colladay, Don; McDonald, Patrick; Kaganovskiy, Leon

    2017-01-01

    We study torsional rigidity for graph and quantum graph analogs of well-known pairs of isospectral non-isometric planar domains. We prove that such isospectral pairs are distinguished by torsional rigidity. (paper)

  19. Graph theory with applications

    CERN Document Server

    Vasudev, C

    2006-01-01

    Salient Features Over 1500 problems are used to illustrate concepts, related to different topics, and introduce applications. Over 1000 exercises in the text with many different types of questions posed. Precise mathematical language is used without excessive formalism and abstraction. Care has been taken to balance the mix of notation and words in mathematical statements. Problem sets are stated clearly and unambiguously, and all are carefully graded for various levels of difficulty. This text has been carefully designed for flexible use.

  20. Visibility Graph Based Time Series Analysis.

    Science.gov (United States)

    Stephen, Mutua; Gu, Changgui; Yang, Huijie

    2015-01-01

    Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it's microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks.

  1. Visibility Graph Based Time Series Analysis.

    Directory of Open Access Journals (Sweden)

    Mutua Stephen

    Full Text Available Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it's microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks.

  2. Bond graph modeling of centrifugal compression systems

    OpenAIRE

    Uddin, Nur; Gravdahl, Jan Tommy

    2015-01-01

    A novel approach to model unsteady fluid dynamics in a compressor network by using a bond graph is presented. The model is intended in particular for compressor control system development. First, we develop a bond graph model of a single compression system. Bond graph modeling offers a different perspective to previous work by modeling the compression system based on energy flow instead of fluid dynamics. Analyzing the bond graph model explains the energy flow during compressor surge. Two pri...

  3. A Graph Calculus for Predicate Logic

    Directory of Open Access Journals (Sweden)

    Paulo A. S. Veloso

    2013-03-01

    Full Text Available We introduce a refutation graph calculus for classical first-order predicate logic, which is an extension of previous ones for binary relations. One reduces logical consequence to establishing that a constructed graph has empty extension, i. e. it represents bottom. Our calculus establishes that a graph has empty extension by converting it to a normal form, which is expanded to other graphs until we can recognize conflicting situations (equivalent to a formula and its negation.

  4. Sphere and dot product representations of graphs

    NARCIS (Netherlands)

    R.J. Kang (Ross); T. Müller (Tobias)

    2012-01-01

    textabstractA graph $G$ is a $k$-sphere graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such that $ij\\in E(G)$ if and only if the distance between $v_i$ and $v_j$ is at most $1$. A graph $G$ is a $k$-dot product graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such

  5. Deep Learning with Dynamic Computation Graphs

    OpenAIRE

    Looks, Moshe; Herreshoff, Marcello; Hutchins, DeLesley; Norvig, Peter

    2017-01-01

    Neural networks that compute over graph structures are a natural fit for problems in a variety of domains, including natural language (parse trees) and cheminformatics (molecular graphs). However, since the computation graph has a different shape and size for every input, such networks do not directly support batched training or inference. They are also difficult to implement in popular deep learning libraries, which are based on static data-flow graphs. We introduce a technique called dynami...

  6. Constructs for Programming with Graph Rewrites

    OpenAIRE

    Rodgers, Peter

    2000-01-01

    Graph rewriting is becoming increasingly popular as a method for programming with graph based data structures. We present several modifications to a basic serial graph rewriting paradigm and discuss how they improve coding programs in the Grrr graph rewriting programming language. The constructs we present are once only nodes, attractor nodes and single match rewrites. We illustrate the operation of the constructs by example. The advantages of adding these new rewrite modifiers is to reduce t...

  7. Nonlinear optical response of a gold surface in the visible range: A study by two-color sum-frequency generation spectroscopy. I. Experimental determination.

    Science.gov (United States)

    Dalstein, L; Revel, A; Humbert, C; Busson, B

    2018-04-07

    We experimentally determine the effective nonlinear second-order susceptibility of gold over the visible spectral range. To reach that goal, we probe by vibrational two-color sum-frequency generation spectroscopy the methyl stretching region of a dodecanethiol self-assembled monolayer adsorbed on a gold film. The sum-frequency generation spectra show a remarkable shape reversal when the visible probe wavelength is tuned from 435 to 705 nm. After correcting from Fresnel effects, the methyl stretching vibrations serve as an internal reference, allowing to extract the dispersion of the absolute phase and relative amplitude of the effective nonlinear optical response of gold in the visible range.

  8. Controlling the Branching Ratio of Photoionization Products under Two-Color Excitation: Competition between ac Stark Splitting and Two-Path Interference

    International Nuclear Information System (INIS)

    Nakajima, T.; Zhang, J.; Lambropoulos, P.; Lambropoulos, P.

    1997-01-01

    We investigate the variation of the photoionization yields into different ionic channels by means of the one-photon-near-resonant two-photon ionization scheme under two-color excitation. We present a general formulation and the results of specific calculations pertaining to the Ca atom with realistic parameters. A significant change of the ionization into Ca + 4s , 3d , and 4p channels has been observed as a detuning is varied, which agrees qualitatively well with the observation by Wang, Chen, and Elliott [Phys.Rev.Lett.77, 2416 (1996)] for the Ba atom. The importance of the laser intensity effects is also addressed. copyright 1997 The American Physical Society

  9. Blue and Orange Two-Color CW Laser Based on Single-Pass Second-Harmonic and Sum-Frequency Generation in MgO:PPLN

    Directory of Open Access Journals (Sweden)

    Dismas K. Choge

    2018-04-01

    Full Text Available We demonstrate a compact blue and orange-two color continuous wave laser source emitting at 487 nm and from 597.4 to 600.3 nm, respectively. The temperature tunable coherent orange radiation is achieved by frequency mixing 974 nm laser diode (LD and a C-band amplified spontaneous emission laser source while the temperature insensitive blue radiation is generated by second-order quasi-phase-matching frequency doubling of 974 nm LD. We implement the simultaneous nonlinear processes in a single magnesium oxide doped periodically poled lithium niobate bulk crystal without the need of an aperiodic design.

  10. On the sizes of expander graphs and minimum distances of graph codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Justesen, Jørn

    2014-01-01

    We give lower bounds for the minimum distances of graph codes based on expander graphs. The bounds depend only on the second eigenvalue of the graph and the parameters of the component codes. We also give an upper bound on the size of a degree regular graph with given second eigenvalue....

  11. Combinatorics and graph theory

    CERN Document Server

    Vasudev, C

    2007-01-01

    About the Book: This text has been carefully designed for flexible use for First Semester M.C.A. course of Uttar Pradesh Technical University (U.P.T.U.), and it contains the following features: Precise mathematical language is used without excessive formalism and abstraction. Over 900 exercises (problem sets) in the text with many different types of questions posed. Care has been taken to balance the mix of notation and words in mathematical statements. Problem sets (exercises) are stated clearly and unambiguously and all are carefully graded for various levels of difficulty. Contents:

  12. My Bar Graph Tells a Story

    Science.gov (United States)

    McMillen, Sue; McMillen, Beth

    2010-01-01

    Connecting stories to qualitative coordinate graphs has been suggested as an effective instructional strategy. Even students who are able to "create" bar graphs may struggle to correctly "interpret" them. Giving children opportunities to work with qualitative graphs can help them develop the skills to interpret, describe, and compare information…

  13. The groupies of random multipartite graphs

    OpenAIRE

    Portmann, Marius; Wang, Hongyun

    2012-01-01

    If a vertex $v$ in a graph $G$ has degree larger than the average of the degrees of its neighbors, we call it a groupie in $G$. In the current work, we study the behavior of groupie in random multipartite graphs with the link probability between sets of nodes fixed. Our results extend the previous ones on random (bipartite) graphs.

  14. Modeling Software Evolution using Algebraic Graph Rewriting

    NARCIS (Netherlands)

    Ciraci, Selim; van den Broek, Pim

    We show how evolution requests can be formalized using algebraic graph rewriting. In particular, we present a way to convert the UML class diagrams to colored graphs. Since changes in software may effect the relation between the methods of classes, our colored graph representation also employs the

  15. A Type Graph Model for Java Programs

    NARCIS (Netherlands)

    Rensink, Arend; Zambon, Eduardo

    2009-01-01

    In this report we present a type graph that models all executable constructs of the Java programming language. Such a model is useful for any graph-based technique that relies on a representation of Java programs as graphs. The model can be regarded as a common representation to which all Java

  16. An intersection graph of straight lines

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2002-01-01

    G. Ehrlich, S. Even, and R.E. Tarjan conjectured that the graph obtained from a complete 3 partite graph K4,4,4 by deleting the edges of four disjoint triangles is not the intersection graph of straight line segments in the plane. We show that it is....

  17. Girth 5 graphs from relative difference sets

    DEFF Research Database (Denmark)

    Jørgensen, Leif Kjær

    2005-01-01

    We consider the problem of construction of graphs with given degree $k$ and girth 5 and as few vertices as possible. We give a construction of a family of girth 5 graphs based on relative difference sets. This family contains the smallest known graph of degree 8 and girth 5 which was constructed ...

  18. Cycles in weighted graphs and related topics

    NARCIS (Netherlands)

    Zhang, Shenggui

    2002-01-01

    This thesis contains results on paths andcycles in graphs andon a more or less relatedtopic, the vulnerability of graphs. In the first part of the thesis, Chapters 2 through 5, we concentrate on paths andcycles in weightedgraphs. A number of sufficient conditions are presentedfor graphs to contain

  19. Graph Transformation Semantics for a QVT Language

    NARCIS (Netherlands)

    Rensink, Arend; Nederpel, Ronald; Bruni, Roberto; Varró, Dániel

    It has been claimed by many in the graph transformation community that model transformation, as understood in the context of Model Driven Architecture, can be seen as an application of graph transformation. In this paper we substantiate this claim by giving a graph transformation-based semantics to

  20. Girth 5 graphs from relative difference sets

    DEFF Research Database (Denmark)

    Jørgensen, Leif Kjær

    We consider the problem of construction of graphs with given degree and girth 5 and as few vertices as possible. We give a construction of a family of girth 5 graphs based on relative difference sets. This family contains the smallest known graph of degree 8 and girth 5 which was constructed by G...

  1. Improper colouring of (random) unit disk graphs

    NARCIS (Netherlands)

    Kang, R.J.; Müller, T.; Sereni, J.S.

    2008-01-01

    For any graph G, the k-improper chromatic number ¿k(G) is the smallest number of colours used in a colouring of G such that each colour class induces a subgraph of maximum degree k. We investigate ¿k for unit disk graphs and random unit disk graphs to generalise results of McDiarmid and Reed

  2. Alliances and Bisection Width for Planar Graphs

    DEFF Research Database (Denmark)

    Olsen, Martin; Revsbæk, Morten

    2013-01-01

    An alliance in a graph is a set of vertices (allies) such that each vertex in the alliance has at least as many allies (counting the vertex itself) as non-allies in its neighborhood of the graph. We show that any planar graph with minimum degree at least 4 can be split into two alliances in polyn...

  3. A Type Graph Model for Java Programs

    NARCIS (Netherlands)

    Rensink, Arend; Zambon, Eduardo; Lee, D.; Lopes, A.; Poetzsch-Heffter, A.

    2009-01-01

    In this work we present a type graph that models all executable constructs of the Java programming language. Such a model is useful for any graph-based technique that relies on a representation of Java programs as graphs. The model can be regarded as a common representation to which all Java syntax

  4. RATGRAPH: Computer Graphing of Rational Functions.

    Science.gov (United States)

    Minch, Bradley A.

    1987-01-01

    Presents an easy-to-use Applesoft BASIC program that graphs rational functions and any asymptotes that the functions might have. Discusses the nature of rational functions, graphing them manually, employing a computer to graph rational functions, and describes how the program works. (TW)

  5. A new cluster algorithm for graphs

    NARCIS (Netherlands)

    S. van Dongen

    1998-01-01

    textabstractA new cluster algorithm for graphs called the emph{Markov Cluster algorithm ($MCL$ algorithm) is introduced. The graphs may be both weighted (with nonnegative weight) and directed. Let~$G$~be such a graph. The $MCL$ algorithm simulates flow in $G$ by first identifying $G$ in a

  6. Well-covered graphs and factors

    DEFF Research Database (Denmark)

    Randerath, Bert; Vestergaard, Preben D.

    2006-01-01

    A maximum independent set of vertices in a graph is a set of pairwise nonadjacent vertices of largest cardinality α. Plummer defined a graph to be well-covered, if every independent set is contained in a maximum independent set of G. Every well-covered graph G without isolated vertices has a perf...

  7. A new characterization of trivially perfect graphs

    Directory of Open Access Journals (Sweden)

    Christian Rubio Montiel

    2015-03-01

    Full Text Available A graph $G$ is \\emph{trivially perfect} if for every induced subgraph the cardinality of the largest set of pairwise nonadjacent vertices (the stability number $\\alpha(G$ equals the number of (maximal cliques $m(G$. We characterize the trivially perfect graphs in terms of vertex-coloring and we extend some definitions to infinite graphs.

  8. 47 CFR 80.761 - Conversion graphs.

    Science.gov (United States)

    2010-10-01

    ... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units is... 47 Telecommunication 5 2010-10-01 2010-10-01 false Conversion graphs. 80.761 Section 80.761...

  9. Graph Theory Approach for Studying Food Webs

    Science.gov (United States)

    Longjas, A.; Tejedor, A.; Foufoula-Georgiou, E.

    2017-12-01

    Food webs are complex networks of feeding interactions among species in ecological communities. Metrics describing food web structure have been proposed to compare and classify food webs ranging from food chain length, connectance, degree distribution, centrality measures, to the presence of motifs (distinct compartments), among others. However, formal methodologies for studying both food web topology and the dynamic processes operating on them are still lacking. Here, we utilize a quantitative framework using graph theory within which a food web is represented by a directed graph, i.e., a collection of vertices (species or trophic species defined as sets of species sharing the same predators and prey) and directed edges (predation links). This framework allows us to identify apex (environmental "source" node) to outlet (top predators) subnetworks and compute the steady-state flux (e.g., carbon, nutrients, energy etc.) in the food web. We use this framework to (1) construct vulnerability maps that quantify the relative change of flux delivery to the top predators in response to perturbations in prey species (2) identify keystone species, whose loss would precipitate further species extinction, and (3) introduce a suite of graph-theoretic metrics to quantify the topologic (imposed by food web connectivity) and dynamic (dictated by the flux partitioning and distribution) components of a food web's complexity. By projecting food webs into a 2D Topodynamic Complexity Space whose coordinates are given by Number of alternative paths (topologic) and Leakage Index (dynamic), we show that this space provides a basis for food web comparison and provide physical insights into their dynamic behavior.

  10. Graphs with not all possible path-kernels

    DEFF Research Database (Denmark)

    Aldred, Robert; Thomassen, Carsten

    2004-01-01

    The Path Partition Conjecture states that the vertices of a graph G with longest path of length c may be partitioned into two parts X and Y such that the longest path in the subgraph of G induced by X has length at most a and the longest path in the subgraph of G induced by Y has length at most b...

  11. Modeling of tethered satellite formations using graph theory

    DEFF Research Database (Denmark)

    Larsen, Martin Birkelund; Smith, Roy S; Blanke, Mogens

    2011-01-01

    satellite formation and proposes a method to deduce the equations of motion for the attitude dynamics of the formation in a compact form. The use of graph theory and Lagrange mechanics together allows a broad class of formations to be described using the same framework. A method is stated for finding...

  12. A Note on Longest Paths in Circular Arc Graphs

    Directory of Open Access Journals (Sweden)

    Joos Felix

    2015-08-01

    Full Text Available As observed by Rautenbach and Sereni [SIAM J. Discrete Math. 28 (2014 335-341] there is a gap in the proof of the theorem of Balister et al. [Combin. Probab. Comput. 13 (2004 311-317], which states that the intersection of all longest paths in a connected circular arc graph is nonempty. In this paper we close this gap.

  13. Bond graph to digraph conversion: A sensor placement optimization ...

    Indian Academy of Sciences (India)

    In this paper, we consider the optimal sensors placement problem for ... is due to the fact that the construction is generally done from the state equations, ... The Bond Graph (BG) tool defined in Paynter (1961) formal- ... Sensor placement and structural problem formulation .... Thus the obtained four matrices are as follows:.

  14. Exact parallel maximum clique algorithm for general and protein graphs.

    Science.gov (United States)

    Depolli, Matjaž; Konc, Janez; Rozman, Kati; Trobec, Roman; Janežič, Dušanka

    2013-09-23

    A new exact parallel maximum clique algorithm MaxCliquePara, which finds the maximum clique (the fully connected subgraph) in undirected general and protein graphs, is presented. First, a new branch and bound algorithm for finding a maximum clique on a single computer core, which builds on ideas presented in two published state of the art sequential algorithms is implemented. The new sequential MaxCliqueSeq algorithm is faster than the reference algorithms on both DIMACS benchmark graphs as well as on protein-derived product graphs used for protein structural comparisons. Next, the MaxCliqueSeq algorithm is parallelized by splitting the branch-and-bound search tree to multiple cores, resulting in MaxCliquePara algorithm. The ability to exploit all cores efficiently makes the new parallel MaxCliquePara algorithm markedly superior to other tested algorithms. On a 12-core computer, the parallelization provides up to 2 orders of magnitude faster execution on the large DIMACS benchmark graphs and up to an order of magnitude faster execution on protein product graphs. The algorithms are freely accessible on http://commsys.ijs.si/~matjaz/maxclique.

  15. Centrosymmetric Graphs And A Lower Bound For Graph Energy Of Fullerenes

    Directory of Open Access Journals (Sweden)

    Katona Gyula Y.

    2014-11-01

    Full Text Available The energy of a molecular graph G is defined as the summation of the absolute values of the eigenvalues of adjacency matrix of a graph G. In this paper, an infinite class of fullerene graphs with 10n vertices, n ≥ 2, is considered. By proving centrosymmetricity of the adjacency matrix of these fullerene graphs, a lower bound for its energy is given. Our method is general and can be extended to other class of fullerene graphs.

  16. Continuous-Time Classical and Quantum Random Walk on Direct Product of Cayley Graphs

    International Nuclear Information System (INIS)

    Salimi, S.; Jafarizadeh, M. A.

    2009-01-01

    In this paper we define direct product of graphs and give a recipe for obtaining probability of observing particle on vertices in the continuous-time classical and quantum random walk. In the recipe, the probability of observing particle on direct product of graph is obtained by multiplication of probability on the corresponding to sub-graphs, where this method is useful to determining probability of walk on complicated graphs. Using this method, we calculate the probability of continuous-time classical and quantum random walks on many of finite direct product Cayley graphs (complete cycle, complete K n , charter and n-cube). Also, we inquire that the classical state the stationary uniform distribution is reached as t → ∞ but for quantum state is not always satisfied. (general)

  17. Subsampling for graph power spectrum estimation

    KAUST Repository

    Chepuri, Sundeep Prabhakar; Leus, Geert

    2016-01-01

    In this paper we focus on subsampling stationary random signals that reside on the vertices of undirected graphs. Second-order stationary graph signals are obtained by filtering white noise and they admit a well-defined power spectrum. Estimating the graph power spectrum forms a central component of stationary graph signal processing and related inference tasks. We show that by sampling a significantly smaller subset of vertices and using simple least squares, we can reconstruct the power spectrum of the graph signal from the subsampled observations, without any spectral priors. In addition, a near-optimal greedy algorithm is developed to design the subsampling scheme.

  18. On 4-critical t-perfect graphs

    OpenAIRE

    Benchetrit, Yohann

    2016-01-01

    It is an open question whether the chromatic number of $t$-perfect graphs is bounded by a constant. The largest known value for this parameter is 4, and the only example of a 4-critical $t$-perfect graph, due to Laurent and Seymour, is the complement of the line graph of the prism $\\Pi$ (a graph is 4-critical if it has chromatic number 4 and all its proper induced subgraphs are 3-colorable). In this paper, we show a new example of a 4-critical $t$-perfect graph: the complement of the line gra...

  19. Subsampling for graph power spectrum estimation

    KAUST Repository

    Chepuri, Sundeep Prabhakar

    2016-10-06

    In this paper we focus on subsampling stationary random signals that reside on the vertices of undirected graphs. Second-order stationary graph signals are obtained by filtering white noise and they admit a well-defined power spectrum. Estimating the graph power spectrum forms a central component of stationary graph signal processing and related inference tasks. We show that by sampling a significantly smaller subset of vertices and using simple least squares, we can reconstruct the power spectrum of the graph signal from the subsampled observations, without any spectral priors. In addition, a near-optimal greedy algorithm is developed to design the subsampling scheme.

  20. Proving relations between modular graph functions

    International Nuclear Information System (INIS)

    Basu, Anirban

    2016-01-01

    We consider modular graph functions that arise in the low energy expansion of the four graviton amplitude in type II string theory. The vertices of these graphs are the positions of insertions of vertex operators on the toroidal worldsheet, while the links are the scalar Green functions connecting the vertices. Graphs with four and five links satisfy several non-trivial relations, which have been proved recently. We prove these relations by using elementary properties of Green functions and the details of the graphs. We also prove a relation between modular graph functions with six links. (paper)

  1. P1-9: Relationship between Color Shifts in Land's Two-Color Method and Higher- and Lower-Level Visual Information

    Directory of Open Access Journals (Sweden)

    Saki Iwaida

    2012-10-01

    Full Text Available Land's two-color method gives rise to apparent full-color perception, even though only two colors (e.g., red and gray are used. Previous studies indicate that chromatic adaptation, color memory, and inductive effects contribute to the shifts of color perception from real to illusory colors (e.g., Kuriki, 2006 Vision Research 46 3055–3066. This paper investigates the relationship between the color shifts induced by Land images and the skewness of the luminance histogram. In Experiment 1, several Land images are created based on a yellow ball, and the magnitude of the color shifts of the images are measured. The results of Experiment 1 show a significant correlation between the magnitude of the color shifts and skewness, suggesting that skewness is critical for the color shifts. In Experiment 2, we test the hypothesis that color shifts depends on just skewness; the color shifts should be invariant even if the Land images are scrambled. However, the results of Experiment 2 demonstrate that scrambled Land images exhibit less intense color shifts, suggesting that color shifts are determined by the object's overall shape or surface gloss, not just skewness. Taken together, we conclude that both low-level visual processes, such as those associated with luminance histogram skew, and high-level cognitive functions, such as object interpretation or understanding of surface gloss, are involved in the color shift of Land images.

  2. MIDCOURSE SPACE EXPERIMENT VERSUS IRAS TWO-COLOR DIAGRAMS AND THE CIRCUMSTELLAR ENVELOPE-SEQUENCE OF OXYGEN-RICH LATE-TYPE STARS

    International Nuclear Information System (INIS)

    Sjouwerman, Lorant O.; Capen, Stephanie M.; Claussen, Mark J.

    2009-01-01

    We present Midcourse Space Experiment (MSX) two-color diagrams that can be used to characterize circumstellar environments of sources with good quality MSX colors in terms of IRAS color regions for oxygen-rich stars. With these diagrams, we aim to provide a new tool that can be used to study circumstellar environments and to improve detection rates for targeted surveys for circumstellar maser emission similar to the IRAS two-color diagram. This new tool is especially useful for regions in the sky where IRAS was confused, in particular in the Galactic plane and bulge region. Unfortunately, using MSX colors alone does not allow one to distinguish between carbon-rich and oxygen-rich objects. An application of this tool on 86 GHz SiO masers shows that for this type of masers an instantaneous detection rate of 60% to 80% can be achieved if target sources are selected according to MSX color (region). Our investigations may have revealed an error in the MSX point source catalog version 2.3. That is, the photometry of the 21.3 μm (MSX E filter) band for most weak 8.28 μm (or MSX A filter) band sources seems off by about a factor 2 (0.5-1 mag too bright).

  3. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds

    Science.gov (United States)

    Xiong, B.; Oude Elberink, S.; Vosselman, G.

    2014-07-01

    In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.

  4. Query Optimizations over Decentralized RDF Graphs

    KAUST Repository

    Abdelaziz, Ibrahim

    2017-05-18

    Applications in life sciences, decentralized social networks, Internet of Things, and statistical linked dataspaces integrate data from multiple decentralized RDF graphs via SPARQL queries. Several approaches have been proposed to optimize query processing over a small number of heterogeneous data sources by utilizing schema information. In the case of schema similarity and interlinks among sources, these approaches cause unnecessary data retrieval and communication, leading to poor scalability and response time. This paper addresses these limitations and presents Lusail, a system for scalable and efficient SPARQL query processing over decentralized graphs. Lusail achieves scalability and low query response time through various optimizations at compile and run times. At compile time, we use a novel locality-aware query decomposition technique that maximizes the number of query triple patterns sent together to a source based on the actual location of the instances satisfying these triple patterns. At run time, we use selectivity-awareness and parallel query execution to reduce network latency and to increase parallelism by delaying the execution of subqueries expected to return large results. We evaluate Lusail using real and synthetic benchmarks, with data sizes up to billions of triples on an in-house cluster and a public cloud. We show that Lusail outperforms state-of-the-art systems by orders of magnitude in terms of scalability and response time.

  5. Aligning Biomolecular Networks Using Modular Graph Kernels

    Science.gov (United States)

    Towfic, Fadi; Greenlee, M. Heather West; Honavar, Vasant

    Comparative analysis of biomolecular networks constructed using measurements from different conditions, tissues, and organisms offer a powerful approach to understanding the structure, function, dynamics, and evolution of complex biological systems. We explore a class of algorithms for aligning large biomolecular networks by breaking down such networks into subgraphs and computing the alignment of the networks based on the alignment of their subgraphs. The resulting subnetworks are compared using graph kernels as scoring functions. We provide implementations of the resulting algorithms as part of BiNA, an open source biomolecular network alignment toolkit. Our experiments using Drosophila melanogaster, Saccharomyces cerevisiae, Mus musculus and Homo sapiens protein-protein interaction networks extracted from the DIP repository of protein-protein interaction data demonstrate that the performance of the proposed algorithms (as measured by % GO term enrichment of subnetworks identified by the alignment) is competitive with some of the state-of-the-art algorithms for pair-wise alignment of large protein-protein interaction networks. Our results also show that the inter-species similarity scores computed based on graph kernels can be used to cluster the species into a species tree that is consistent with the known phylogenetic relationships among the species.

  6. Significance evaluation in factor graphs

    DEFF Research Database (Denmark)

    Madsen, Tobias; Hobolth, Asger; Jensen, Jens Ledet

    2017-01-01

    in genomics and the multiple-testing issues accompanying them, accurate significance evaluation is of great importance. We here address the problem of evaluating statistical significance of observations from factor graph models. Results Two novel numerical approximations for evaluation of statistical...... significance are presented. First a method using importance sampling. Second a saddlepoint approximation based method. We develop algorithms to efficiently compute the approximations and compare them to naive sampling and the normal approximation. The individual merits of the methods are analysed both from....... Conclusions The applicability of saddlepoint approximation and importance sampling is demonstrated on known models in the factor graph framework. Using the two methods we can substantially improve computational cost without compromising accuracy. This contribution allows analyses of large datasets...

  7. Groups, graphs and random walks

    CERN Document Server

    Salvatori, Maura; Sava-Huss, Ecaterina

    2017-01-01

    An accessible and panoramic account of the theory of random walks on groups and graphs, stressing the strong connections of the theory with other branches of mathematics, including geometric and combinatorial group theory, potential analysis, and theoretical computer science. This volume brings together original surveys and research-expository papers from renowned and leading experts, many of whom spoke at the workshop 'Groups, Graphs and Random Walks' celebrating the sixtieth birthday of Wolfgang Woess in Cortona, Italy. Topics include: growth and amenability of groups; Schrödinger operators and symbolic dynamics; ergodic theorems; Thompson's group F; Poisson boundaries; probability theory on buildings and groups of Lie type; structure trees for edge cuts in networks; and mathematical crystallography. In what is currently a fast-growing area of mathematics, this book provides an up-to-date and valuable reference for both researchers and graduate students, from which future research activities will undoubted...

  8. Flux networks in metabolic graphs

    International Nuclear Information System (INIS)

    Warren, P B; Queiros, S M Duarte; Jones, J L

    2009-01-01

    A metabolic model can be represented as a bipartite graph comprising linked reaction and metabolite nodes. Here it is shown how a network of conserved fluxes can be assigned to the edges of such a graph by combining the reaction fluxes with a conserved metabolite property such as molecular weight. A similar flux network can be constructed by combining the primal and dual solutions to the linear programming problem that typically arises in constraint-based modelling. Such constructions may help with the visualization of flux distributions in complex metabolic networks. The analysis also explains the strong correlation observed between metabolite shadow prices (the dual linear programming variables) and conserved metabolite properties. The methods were applied to recent metabolic models for Escherichia coli, Saccharomyces cerevisiae and Methanosarcina barkeri. Detailed results are reported for E. coli; similar results were found for other organisms

  9. 3-biplacement of bipartite graphs

    Directory of Open Access Journals (Sweden)

    Lech Adamus

    2008-01-01

    Full Text Available Let \\(G=(L,R;E\\ be a bipartite graph with color classes \\(L\\ and \\(R\\ and edge set \\(E\\. A set of two bijections \\(\\{\\varphi_1 , \\varphi_2\\}\\, \\(\\varphi_1 , \\varphi_2 :L \\cup R \\to L \\cup R\\, is said to be a \\(3\\-biplacement of \\(G\\ if \\(\\varphi_1(L= \\varphi_2(L = L\\ and \\(E \\cap \\varphi_1^*(E=\\emptyset\\, \\(E \\cap \\varphi_2^*(E=\\emptyset\\, \\(\\varphi_1^*(E \\cap \\varphi_2^*(E=\\emptyset\\, where \\(\\varphi_1^*\\, \\(\\varphi_2^*\\ are the maps defined on \\(E\\, induced by \\(\\varphi_1\\, \\(\\varphi_2\\, respectively. We prove that if \\(|L| = p\\, \\(|R| = q\\, \\(3 \\leq p \\leq q\\, then every graph \\(G=(L,R;E\\ of size at most \\(p\\ has a \\(3\\-biplacement.

  10. On the centrality of some graphs

    Directory of Open Access Journals (Sweden)

    Vecdi Aytac

    2017-10-01

    Full Text Available A central issue in the analysis of complex networks is the assessment of their stability and vulnerability. A variety of measures have been proposed in the literature to quantify the stability of networks and a number of graph-theoretic parameters have been used to derive formulas for calculating network reliability. Different measures for graph vulnerability have been introduced so far to study different aspects of the graph behavior after removal of vertices or links such as connectivity, toughness, scattering number, binding number, residual closeness and integrity. In this paper, we consider betweenness centrality of a graph. Betweenness centrality of a vertex of a graph is portion of the shortest paths all pairs of vertices passing through a given vertex. In this paper, we obtain exact values for betweenness centrality for some wheel related graphs namely gear, helm, sunflower and friendship graphs.

  11. Fibonacci number of the tadpole graph

    Directory of Open Access Journals (Sweden)

    Joe DeMaio

    2014-10-01

    Full Text Available In 1982, Prodinger and Tichy defined the Fibonacci number of a graph G to be the number of independent sets of the graph G. They did so since the Fibonacci number of the path graph Pn is the Fibonacci number F(n+2 and the Fibonacci number of the cycle graph Cn is the Lucas number Ln. The tadpole graph Tn,k is the graph created by concatenating Cn and Pk with an edge from any vertex of Cn to a pendant of Pk for integers n=3 and k=0. This paper establishes formulae and identities for the Fibonacci number of the tadpole graph via algebraic and combinatorial methods.

  12. Software for Graph Analysis and Visualization

    Directory of Open Access Journals (Sweden)

    M. I. Kolomeychenko

    2014-01-01

    Full Text Available This paper describes the software for graph storage, analysis and visualization. The article presents a comparative analysis of existing software for analysis and visualization of graphs, describes the overall architecture of application and basic principles of construction and operation of the main modules. Furthermore, a description of the developed graph storage oriented to storage and processing of large-scale graphs is presented. The developed algorithm for finding communities and implemented algorithms of autolayouts of graphs are the main functionality of the product. The main advantage of the developed software is high speed processing of large size networks (up to millions of nodes and links. Moreover, the proposed graph storage architecture is unique and has no analogues. The developed approaches and algorithms are optimized for operating with big graphs and have high productivity.

  13. Bond graphs : an integrating tool for design of mechatronic systems

    International Nuclear Information System (INIS)

    Ould Bouamama, B.

    2011-01-01

    Bond graph is a powerful tool well known for dynamic modelling of multi physical systems: This is the only modelling technique to generate automatically state space or non-linear models using dedicated software tools (CAMP-G, 20-Sim, Symbols, Dymola...). Recently several fundamental theories have been developed for using a bond graph model not only for modeling but also as a real integrated tool from conceptual ideas to optimal practical realization of mechatronic system. This keynote presents a synthesis of those new theories which exploit some particular properties (such as causal, structural and behavioral) of this graphical methodology. Based on a pedagogical example, it will be shown how from a physical system (not a transfer function or state equation) and using only one representation (Bond graph), the following results can be performed: modeling (formal state equations generation), Control analysis (observability, controllability, Structural I/O decouplability, dynamic decoupling,...) diagnosis analysis (automatic generation of robust fault indicators, sensor placement, structural diagnosability) and finally sizing of actuators. The presentation will be illustrated by real industrial applications. Limits and perspectives of bond graph theory conclude the keynote.

  14. Parallel External Memory Graph Algorithms

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Goodrich, Michael T.; Sitchinava, Nodari

    2010-01-01

    In this paper, we study parallel I/O efficient graph algorithms in the Parallel External Memory (PEM) model, one o f the private-cache chip multiprocessor (CMP) models. We study the fundamental problem of list ranking which leads to efficient solutions to problems on trees, such as computing lowest...... an optimal speedup of ¿(P) in parallel I/O complexity and parallel computation time, compared to the single-processor external memory counterparts....

  15. Submanifolds weakly associated with graphs

    Indian Academy of Sciences (India)

    A CARRIAZO, L M FERN ´ANDEZ and A RODRÍGUEZ-HIDALGO. Department of Geometry and Topology, ..... by means of trees (connected graphs without cycles) and forests (disjoint unions of trees, see [6]) given in [3], by extending it to weak ... CR-submanifold. In this case, every tree is a K2. Finally, Theorem 3.8 of [3] can ...

  16. Topological structure of dictionary graphs

    International Nuclear Information System (INIS)

    Fuks, Henryk; Krzeminski, Mark

    2009-01-01

    We investigate the topological structure of the subgraphs of dictionary graphs constructed from WordNet and Moby thesaurus data. In the process of learning a foreign language, the learner knows only a subset of all words of the language, corresponding to a subgraph of a dictionary graph. When this subgraph grows with time, its topological properties change. We introduce the notion of the pseudocore and argue that the growth of the vocabulary roughly follows decreasing pseudocore numbers-that is, one first learns words with a high pseudocore number followed by smaller pseudocores. We also propose an alternative strategy for vocabulary growth, involving decreasing core numbers as opposed to pseudocore numbers. We find that as the core or pseudocore grows in size, the clustering coefficient first decreases, then reaches a minimum and starts increasing again. The minimum occurs when the vocabulary reaches a size between 10 3 and 10 4 . A simple model exhibiting similar behavior is proposed. The model is based on a generalized geometric random graph. Possible implications for language learning are discussed.

  17. Using Behavior Over Time Graphs to Spur Systems Thinking Among Public Health Practitioners.

    Science.gov (United States)

    Calancie, Larissa; Anderson, Seri; Branscomb, Jane; Apostolico, Alexsandra A; Lich, Kristen Hassmiller

    2018-02-01

    Public health practitioners can use Behavior Over Time (BOT) graphs to spur discussion and systems thinking around complex challenges. Multiple large systems, such as health care, the economy, and education, affect chronic disease rates in the United States. System thinking tools can build public health practitioners' capacity to understand these systems and collaborate within and across sectors to improve population health. BOT graphs show a variable, or variables (y axis) over time (x axis). Although analyzing trends is not new to public health, drawing BOT graphs, annotating the events and systemic forces that are likely to influence the depicted trends, and then discussing the graphs in a diverse group provides an opportunity for public health practitioners to hear each other's perspectives and creates a more holistic understanding of the key factors that contribute to a trend. We describe how BOT graphs are used in public health, how they can be used to generate group discussion, and how this process can advance systems-level thinking. Then we describe how BOT graphs were used with groups of maternal and child health (MCH) practitioners and partners (N = 101) during a training session to advance their thinking about MCH challenges. Eighty-six percent of the 84 participants who completed an evaluation agreed or strongly agreed that they would use this BOT graph process to engage stakeholders in their home states and jurisdictions. The BOT graph process we describe can be applied to a variety of public health issues and used by practitioners, stakeholders, and researchers.

  18. Degree Associated Edge Reconstruction Number of Graphs with Regular Pruned Graph

    Directory of Open Access Journals (Sweden)

    P. Anusha Devi

    2015-10-01

    Full Text Available An ecard of a graph $G$ is a subgraph formed by deleting an edge. A da-ecard specifies the degree of the deleted edge along with the ecard. The degree associated edge reconstruction number of a graph $G,~dern(G,$ is the minimum number of da-ecards that uniquely determines $G.$  The adversary degree associated edge reconstruction number of a graph $G, adern(G,$ is the minimum number $k$ such that every collection of $k$ da-ecards of $G$ uniquely determines $G.$ The maximal subgraph without end vertices of a graph $G$ which is not a tree is the pruned graph of $G.$ It is shown that $dern$ of complete multipartite graphs and some connected graphs with regular pruned graph is $1$ or $2.$ We also determine $dern$ and $adern$ of corona product of standard graphs.

  19. Methods of filtering the graph images of the functions

    Directory of Open Access Journals (Sweden)

    Олександр Григорович Бурса

    2017-06-01

    Full Text Available The theoretical aspects of cleaning raster images of scanned graphs of functions from digital, chromatic and luminance distortions by using computer graphics techniques have been considered. The basic types of distortions characteristic of graph images of functions have been stated. To suppress the distortion several methods, providing for high-quality of the resulting images and saving their topological features, were suggested. The paper describes the techniques developed and improved by the authors: the method of cleaning the image of distortions by means of iterative contrasting, based on the step-by-step increase in image contrast in the graph by 1%; the method of small entities distortion restoring, based on the thinning of the known matrix of contrast increase filter (the allowable dimensions of the nucleus dilution radius convolution matrix, which provide for the retention of the graph lines have been established; integration technique of the noise reduction method by means of contrasting and distortion restoring method of small entities with known σ-filter. Each method in the complex has been theoretically substantiated. The developed methods involve treatment of graph images as the entire image (global processing and its fragments (local processing. The metrics assessing the quality of the resulting image with the global and local processing have been chosen, the substantiation of the choice as well as the formulas have been given. The proposed complex methods of cleaning the graphs images of functions from grayscale image distortions is adaptive to the form of an image carrier, the distortion level in the image and its distribution. The presented results of testing the developed complex of methods for a representative sample of images confirm its effectiveness

  20. Evolutionary dynamics on graphs: Efficient method for weak selection

    Science.gov (United States)

    Fu, Feng; Wang, Long; Nowak, Martin A.; Hauert, Christoph

    2009-04-01

    Investigating the evolutionary dynamics of game theoretical interactions in populations where individuals are arranged on a graph can be challenging in terms of computation time. Here, we propose an efficient method to study any type of game on arbitrary graph structures for weak selection. In this limit, evolutionary game dynamics represents a first-order correction to neutral evolution. Spatial correlations can be empirically determined under neutral evolution and provide the basis for formulating the game dynamics as a discrete Markov process by incorporating a detailed description of the microscopic dynamics based on the neutral correlations. This framework is then applied to one of the most intriguing questions in evolutionary biology: the evolution of cooperation. We demonstrate that the degree heterogeneity of a graph impedes cooperation and that the success of tit for tat depends not only on the number of rounds but also on the degree of the graph. Moreover, considering the mutation-selection equilibrium shows that the symmetry of the stationary distribution of states under weak selection is skewed in favor of defectors for larger selection strengths. In particular, degree heterogeneity—a prominent feature of scale-free networks—generally results in a more pronounced increase in the critical benefit-to-cost ratio required for evolution to favor cooperation as compared to regular graphs. This conclusion is corroborated by an analysis of the effects of population structures on the fixation probabilities of strategies in general 2×2 games for different types of graphs. Computer simulations confirm the predictive power of our method and illustrate the improved accuracy as compared to previous studies.

  1. Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions

    Science.gov (United States)

    Choi, Jun-Ho; Lee, Hochan; Choi, Hyung Ran; Cho, Minhaeng

    2018-04-01

    In molecular and cellular biology, dissolved ions and molecules have decisive effects on chemical and biological reactions, conformational stabilities, and functions of small to large biomolecules. Despite major efforts, the current state of understanding of the effects of specific ions, osmolytes, and bioprotecting sugars on the structure and dynamics of water H-bonding networks and proteins is not yet satisfactory. Recently, to gain deeper insight into this subject, we studied various aggregation processes of ions and molecules in high-concentration salt, osmolyte, and sugar solutions with time-resolved vibrational spectroscopy and molecular dynamics simulation methods. It turns out that ions (or solute molecules) have a strong propensity to self-assemble into large and polydisperse aggregates that affect both local and long-range water H-bonding structures. In particular, we have shown that graph-theoretical approaches can be used to elucidate morphological characteristics of large aggregates in various aqueous salt, osmolyte, and sugar solutions. When ion and molecular aggregates in such aqueous solutions are treated as graphs, a variety of graph-theoretical properties, such as graph spectrum, degree distribution, clustering coefficient, minimum path length, and graph entropy, can be directly calculated by considering an ensemble of configurations taken from molecular dynamics trajectories. Here we show percolating behavior exhibited by ion and molecular aggregates upon increase in solute concentration in high solute concentrations and discuss compelling evidence of the isomorphic relation between percolation transitions of ion and molecular aggregates and water H-bonding networks. We anticipate that the combination of graph theory and molecular dynamics simulation methods will be of exceptional use in achieving a deeper understanding of the fundamental physical chemistry of dissolution and in describing the interplay between the self-aggregation of solute

  2. Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions.

    Science.gov (United States)

    Choi, Jun-Ho; Lee, Hochan; Choi, Hyung Ran; Cho, Minhaeng

    2018-04-20

    In molecular and cellular biology, dissolved ions and molecules have decisive effects on chemical and biological reactions, conformational stabilities, and functions of small to large biomolecules. Despite major efforts, the current state of understanding of the effects of specific ions, osmolytes, and bioprotecting sugars on the structure and dynamics of water H-bonding networks and proteins is not yet satisfactory. Recently, to gain deeper insight into this subject, we studied various aggregation processes of ions and molecules in high-concentration salt, osmolyte, and sugar solutions with time-resolved vibrational spectroscopy and molecular dynamics simulation methods. It turns out that ions (or solute molecules) have a strong propensity to self-assemble into large and polydisperse aggregates that affect both local and long-range water H-bonding structures. In particular, we have shown that graph-theoretical approaches can be used to elucidate morphological characteristics of large aggregates in various aqueous salt, osmolyte, and sugar solutions. When ion and molecular aggregates in such aqueous solutions are treated as graphs, a variety of graph-theoretical properties, such as graph spectrum, degree distribution, clustering coefficient, minimum path length, and graph entropy, can be directly calculated by considering an ensemble of configurations taken from molecular dynamics trajectories. Here we show percolating behavior exhibited by ion and molecular aggregates upon increase in solute concentration in high solute concentrations and discuss compelling evidence of the isomorphic relation between percolation transitions of ion and molecular aggregates and water H-bonding networks. We anticipate that the combination of graph theory and molecular dynamics simulation methods will be of exceptional use in achieving a deeper understanding of the fundamental physical chemistry of dissolution and in describing the interplay between the self-aggregation of solute

  3. Graph-cut based discrete-valued image reconstruction.

    Science.gov (United States)

    Tuysuzoglu, Ahmet; Karl, W Clem; Stojanovic, Ivana; Castañòn, David; Ünlü, M Selim

    2015-05-01

    Efficient graph-cut methods have been used with great success for labeling and denoising problems occurring in computer vision. Unfortunately, the presence of linear image mappings has prevented the use of these techniques in most discrete-amplitude image reconstruction problems. In this paper, we develop a graph-cut based framework for the direct solution of discrete amplitude linear image reconstruction problems cast as regularized energy function minimizations. We first analyze the structure of discrete linear inverse problem cost functions to show that the obstacle to the application of graph-cut methods to their solution is the variable mixing caused by the presence of the linear sensing operator. We then propose to use a surrogate energy functional that overcomes the challenges imposed by the sensing operator yet can be utilized efficiently in existing graph-cut frameworks. We use this surrogate energy functional to devise a monotonic iterative algorithm for the solution of discrete valued inverse problems. We first provide experiments using local convolutional operators and show the robustness of the proposed technique to noise and stability to changes in regularization parameter. Then we focus on nonlocal, tomographic examples where we consider limited-angle data problems. We compare our technique with state-of-the-art discrete and continuous image reconstruction techniques. Experiments show that the proposed method outperforms state-of-the-art techniques in challenging scenarios involving discrete valued unknowns.

  4. Extended phase graphs with anisotropic diffusion

    Science.gov (United States)

    Weigel, M.; Schwenk, S.; Kiselev, V. G.; Scheffler, K.; Hennig, J.

    2010-08-01

    The extended phase graph (EPG) calculus gives an elegant pictorial description of magnetization response in multi-pulse MR sequences. The use of the EPG calculus enables a high computational efficiency for the quantitation of echo intensities even for complex sequences with multiple refocusing pulses with arbitrary flip angles. In this work, the EPG concept dealing with RF pulses with arbitrary flip angles and phases is extended to account for anisotropic diffusion in the presence of arbitrary varying gradients. The diffusion effect can be expressed by specific diffusion weightings of individual magnetization pathways. This can be represented as an action of a linear operator on the magnetization state. The algorithm allows easy integration of diffusion anisotropy effects. The formalism is validated on known examples from literature and used to calculate the effective diffusion weighting in multi-echo sequences with arbitrary refocusing flip angles.

  5. Feynman graph derivation of Einstein quadrupole formula

    International Nuclear Information System (INIS)

    Dass, N.D.H.; Soni, V.

    1980-11-01

    The one graviton transition operator, and consequently, the classical energy loss formula for gravitational radiation are derived from the Feynman graphs of helicity +- 2 theories of gravitation. The calculations are done both for the case of electromagnetic and gravitational scattering. The departure of the in and out states from plane waves owing to the long range nature of gravitation is taken into account to improve the Born approximation calculations. This also includes a long range modification of the graviton wave function which is shown to be equivalent to the classical problem of the true light cones deviating logarithmically at large distances from the flat space light cones. The transition from the S-matrix elements calculated graphically to the graviton transition operator is done by using complimentarity of space-time and momentum descriptions. The energy loss formula derived originally by Einstein is shown to be correct. (Auth.)

  6. Proceedings 3rd Workshop on GRAPH Inspection and Traversal Engineering (GRAPHITE 2014)

    DEFF Research Database (Denmark)

    2014-01-01

    is to foster the convergence on research interests from several communities dealing with graph analysis in all its forms in computer science, with a particular attention to software development and analysis. Graphs are used to represent data and processes in many application areas, and they are subjected......These are the proceedings of the Third Workshop on GRAPH Inspection and Traversal Engineering (GRAPHITE 2014), which took place on April 5, 2014 in Grenoble, France, as a satellite event of the 17th European Joint Conferences on Theory and Practice of Software (ETAPS 2014). The aim of GRAPHITE...... to various computational algorithms in order to analyze them. Just restricting the attention to the analysis of software, graph analysis algorithms are used, for instance, to verify properties using model checking techniques that explore the system's state space graph or static analysis techniques based...

  7. The graph representation approach to topological field theory in 2 + 1 dimensions

    International Nuclear Information System (INIS)

    Martin, S.P.

    1991-02-01

    An alternative definition of topological quantum field theory in 2+1 dimensions is discussed. The fundamental objects in this approach are not gauge fields as in the usual approach, but non-local observables associated with graphs. The classical theory of graphs is defined by postulating a simple diagrammatic rule for computing the Poisson bracket of any two graphs. The theory is quantized by exhibiting a quantum deformation of the classical Poisson bracket algebra, which is realized as a commutator algebra on a Hilbert space of states. The wavefunctions in this ''graph representation'' approach are functionals on an appropriate set of graphs. This is in contrast to the usual ''connection representation'' approach in which the theory is defined in terms of a gauge field and the wavefunctions are functionals on the space of flat spatial connections modulo gauge transformations

  8. Selected cis- and trans-3-fluorostyrene rotamers studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy

    Science.gov (United States)

    Wu, Pei Ying; Tzeng, Wen Bih

    2015-10-01

    We applied two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques to record the vibronic, photoionization efficiency, and cation spectra of the selected rotamers of 3-fluorostyrene. The adiabatic ionization energies of cis- and trans-3-fluorostyrene were determined to be 69 960 ± 5 and 69 856 ± 5 cm-1, respectively. Cation vibrations 10a, 15, 6b, and 12 of both rotamers have been found to have frequencies of 218, 404, 452, and 971 cm-1, respectively. This finding shows that the relative orientation of the vinyl group with respect to the F atom does not affect these vibrations of the 3-fluorostyrene cation. Our one-dimensional potential energy surface calculations support that the cis-trans isomerization of 3-fluorostyrene does not occur under the present experimental conditions.

  9. Generation of Bright, Spatially Coherent Soft X-Ray High Harmonics in a Hollow Waveguide Using Two-Color Synthesized Laser Pulses.

    Science.gov (United States)

    Jin, Cheng; Stein, Gregory J; Hong, Kyung-Han; Lin, C D

    2015-07-24

    We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom. Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching is accomplished and how an optimized waveform is maintained when optimal waveguide parameters (radius and length) and gas pressure are identified. Our analysis should help laboratory development in the generation of high-flux bright coherent soft x rays as tabletop light sources for applications.

  10. A nonlinear merging protocol for consensus in multi-agent systems on signed and weighted graphs

    Science.gov (United States)

    Feng, Shasha; Wang, Li; Li, Yijia; Sun, Shiwen; Xia, Chengyi

    2018-01-01

    In this paper, we investigate the multi-agent consensus for networks with undirected graphs which are not connected, especially for the signed graph in which some edge weights are positive and some edges have negative weights, and the negative-weight graph whose edge weights are negative. We propose a novel nonlinear merging consensus protocol to drive the states of all agents to converge to the same state zero which is not dependent upon the initial states of agents. If the undirected graph whose edge weights are positive is connected, then the states of all agents converge to the same state more quickly when compared to most other protocols. While the undirected graph whose edge weights might be positive or negative is unconnected, the states of all agents can still converge to the same state zero under the premise that the undirected graph can be divided into several connected subgraphs with more than one node. Furthermore, we also discuss the impact of parameter r presented in our protocol. Current results can further deepen the understanding of consensus processes for multi-agent systems.

  11. A 7.2 keV spherical x-ray crystal backlighter for two-frame, two-color backlighting at Sandia's Z Pulsed Power Facility

    Science.gov (United States)

    Schollmeier, M. S.; Knapp, P. F.; Ampleford, D. J.; Harding, E. C.; Jennings, C. A.; Lamppa, D. C.; Loisel, G. P.; Martin, M. R.; Robertson, G. K.; Shores, J. E.; Smith, I. C.; Speas, C. S.; Weis, M. R.; Porter, J. L.; McBride, R. D.

    2017-10-01

    Many experiments on Sandia National Laboratories' Z Pulsed Power Facility—a 30 MA, 100 ns rise-time, pulsed-power driver—use a monochromatic quartz crystal backlighter system at 1.865 keV (Si He α ) or 6.151 keV (Mn He α ) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire array z-pinch. The x-ray source is generated by the Z-Beamlet laser, which provides two 527-nm, 1 kJ, 1-ns laser pulses. Radiographs of imploding, thick-walled beryllium liners at convergence ratios CR above 15 [ C R = r i ( 0 ) / r i ( t ) ] using the 6.151-keV backlighter system were too opaque to identify the inner radius r i of the liner with high confidence, demonstrating the need for a higher-energy x-ray radiography system. Here, we present a 7.242 keV backlighter system using a Ge(335) spherical crystal with the Co He α resonance line. This system operates at a similar Bragg angle as the existing 1.865 keV and 6.151 keV backlighters, enhancing our capabilities for two-color, two-frame radiography without modifying the system integration at Z. The first data taken at Z include 6.2-keV and 7.2-keV two-color radiographs as well as radiographs of low-convergence (CR about 4-5), high-areal-density liner implosions.

  12. Replica methods for loopy sparse random graphs

    International Nuclear Information System (INIS)

    Coolen, ACC

    2016-01-01

    I report on the development of a novel statistical mechanical formalism for the analysis of random graphs with many short loops, and processes on such graphs. The graphs are defined via maximum entropy ensembles, in which both the degrees (via hard constraints) and the adjacency matrix spectrum (via a soft constraint) are prescribed. The sum over graphs can be done analytically, using a replica formalism with complex replica dimensions. All known results for tree-like graphs are recovered in a suitable limit. For loopy graphs, the emerging theory has an appealing and intuitive structure, suggests how message passing algorithms should be adapted, and what is the structure of theories describing spin systems on loopy architectures. However, the formalism is still largely untested, and may require further adjustment and refinement. (paper)

  13. Chemical Graph Transformation with Stereo-Information

    DEFF Research Database (Denmark)

    Andersen, Jakob Lykke; Flamm, Christoph; Merkle, Daniel

    2017-01-01

    Double Pushout graph transformation naturally facilitates the modelling of chemical reactions: labelled undirected graphs model molecules and direct derivations model chemical reactions. However, the most straightforward modelling approach ignores the relative placement of atoms and their neighbo......Double Pushout graph transformation naturally facilitates the modelling of chemical reactions: labelled undirected graphs model molecules and direct derivations model chemical reactions. However, the most straightforward modelling approach ignores the relative placement of atoms...... and their neighbours in space. Stereoisomers of chemical compounds thus cannot be distinguished, even though their chemical activity may differ substantially. In this contribution we propose an extended chemical graph transformation system with attributes that encode information about local geometry. The modelling...... of graph transformation, but we here propose a framework that also allows for partially specified stereoinformation. While there are several stereochemical configurations to be considered, we focus here on the tetrahedral molecular shape, and suggest general principles for how to treat all other chemically...

  14. [A retrieval method of drug molecules based on graph collapsing].

    Science.gov (United States)

    Qu, J W; Lv, X Q; Liu, Z M; Liao, Y; Sun, P H; Wang, B; Tang, Z

    2018-04-18

    To establish a compact and efficient hypergraph representation and a graph-similarity-based retrieval method of molecules to achieve effective and efficient medicine information retrieval. Chemical structural formula (CSF) was a primary search target as a unique and precise identifier for each compound at the molecular level in the research field of medicine information retrieval. To retrieve medicine information effectively and efficiently, a complete workflow of the graph-based CSF retrieval system was introduced. This system accepted the photos taken from smartphones and the sketches drawn on tablet personal computers as CSF inputs, and formalized the CSFs with the corresponding graphs. Then this paper proposed a compact and efficient hypergraph representation for molecules on the basis of analyzing factors that directly affected the efficiency of graph matching. According to the characteristics of CSFs, a hierarchical collapsing method combining graph isomorphism and frequent subgraph mining was adopted. There was yet a fundamental challenge, subgraph overlapping during the collapsing procedure, which hindered the method from establishing the correct compact hypergraph of an original CSF graph. Therefore, a graph-isomorphism-based algorithm was proposed to select dominant acyclic subgraphs on the basis of overlapping analysis. Finally, the spatial similarity among graphical CSFs was evaluated by multi-dimensional measures of similarity. To evaluate the performance of the proposed method, the proposed system was firstly compared with Wikipedia Chemical Structure Explorer (WCSE), the state-of-the-art system that allowed CSF similarity searching within Wikipedia molecules dataset, on retrieval accuracy. The system achieved higher values on mean average precision, discounted cumulative gain, rank-biased precision, and expected reciprocal rank than WCSE from the top-2 to the top-10 retrieved results. Specifically, the system achieved 10%, 1.41, 6.42%, and 1

  15. Information Graph Flow: A Geometric Approximation of Quantum and Statistical Systems

    Science.gov (United States)

    Vanchurin, Vitaly

    2018-05-01

    Given a quantum (or statistical) system with a very large number of degrees of freedom and a preferred tensor product factorization of the Hilbert space (or of a space of distributions) we describe how it can be approximated with a very low-dimensional field theory with geometric degrees of freedom. The geometric approximation procedure consists of three steps. The first step is to construct weighted graphs (we call information graphs) with vertices representing subsystems (e.g., qubits or random variables) and edges representing mutual information (or the flow of information) between subsystems. The second step is to deform the adjacency matrices of the information graphs to that of a (locally) low-dimensional lattice using the graph flow equations introduced in the paper. (Note that the graph flow produces very sparse adjacency matrices and thus might also be used, for example, in machine learning or network science where the task of graph sparsification is of a central importance.) The third step is to define an emergent metric and to derive an effective description of the metric and possibly other degrees of freedom. To illustrate the procedure we analyze (numerically and analytically) two information graph flows with geometric attractors (towards locally one- and two-dimensional lattices) and metric perturbations obeying a geometric flow equation. Our analysis also suggests a possible approach to (a non-perturbative) quantum gravity in which the geometry (a secondary object) emerges directly from a quantum state (a primary object) due to the flow of the information graphs.

  16. A Comparative Study of Theoretical Graph Models for Characterizing Structural Networks of Human Brain

    Directory of Open Access Journals (Sweden)

    Xiaojin Li

    2013-01-01

    Full Text Available Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY and scale-free gene duplication model (SF-GD, that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.

  17. Feature selection and multi-kernel learning for adaptive graph regularized nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-09-20

    Nonnegative matrix factorization (NMF), a popular part-based representation technique, does not capture the intrinsic local geometric structure of the data space. Graph regularized NMF (GNMF) was recently proposed to avoid this limitation by regularizing NMF with a nearest neighbor graph constructed from the input data set. However, GNMF has two main bottlenecks. First, using the original feature space directly to construct the graph is not necessarily optimal because of the noisy and irrelevant features and nonlinear distributions of data samples. Second, one possible way to handle the nonlinear distribution of data samples is by kernel embedding. However, it is often difficult to choose the most suitable kernel. To solve these bottlenecks, we propose two novel graph-regularized NMF methods, AGNMFFS and AGNMFMK, by introducing feature selection and multiple-kernel learning to the graph regularized NMF, respectively. Instead of using a fixed graph as in GNMF, the two proposed methods learn the nearest neighbor graph that is adaptive to the selected features and learned multiple kernels, respectively. For each method, we propose a unified objective function to conduct feature selection/multi-kernel learning, NMF and adaptive graph regularization simultaneously. We further develop two iterative algorithms to solve the two optimization problems. Experimental results on two challenging pattern classification tasks demonstrate that the proposed methods significantly outperform state-of-the-art data representation methods.

  18. Reconstructing Topological Graphs and Continua

    OpenAIRE

    Gartside, Paul; Pitz, Max F.; Suabedissen, Rolf

    2015-01-01

    The deck of a topological space $X$ is the set $\\mathcal{D}(X)=\\{[X \\setminus \\{x\\}] \\colon x \\in X\\}$, where $[Z]$ denotes the homeomorphism class of $Z$. A space $X$ is topologically reconstructible if whenever $\\mathcal{D}(X)=\\mathcal{D}(Y)$ then $X$ is homeomorphic to $Y$. It is shown that all metrizable compact connected spaces are reconstructible. It follows that all finite graphs, when viewed as a 1-dimensional cell-complex, are reconstructible in the topological sense, and more genera...

  19. Decomposing a graph into bistars

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2013-01-01

    Bárat and the present author conjectured that, for each tree T, there exists a natural number kT such that the following holds: If G is a kT-edge-connected graph such that |E(T)| divides |E(G)|, then G has a T-decomposition, that is, a decomposition of the edge set into trees each of which...... is isomorphic to T. The conjecture has been verified for infinitely many paths and for each star. In this paper we verify the conjecture for an infinite family of trees that are neither paths nor stars, namely all the bistars S(k,k+1)....

  20. On path hypercompositions in graphs and automata

    Directory of Open Access Journals (Sweden)

    Massouros Christos G.

    2016-01-01

    Full Text Available The paths in graphs define hypercompositions in the set of their vertices and therefore it is feasible to associate hypercompositional structures to each graph. Similarly, the strings of letters from their alphabet, define hypercompositions in the automata, which in turn define the associated hypergroups to the automata. The study of the associated hypercompositional structures gives results in both, graphs and automata theory.